A Collection of Fractional Calculus Books

A Collection of Fractional Calculus Books

(Last updated: 4/8/2019)

(Download the DOCX file. Please send an email to suggest a missing entry. Thank you!)

2019

  1. N. Su: Fractional Calculus in Soil Hydrology and Mechanics: Fundamentals and Applications. CRC Press, 2019, 300 pages, ISBN-10: 1138491667. (Amazon)
  2. H. M. Srivastava: Operators of Fractional Calculus and Their Applications. Mdpi AG, 2019, 136 pages, ISBN-10: 3038973408.  https://doi.org/10.3390/books978-3-03897-341-6   
  3. F. Colombo, J. Gantner: Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes (Operator Theory: Advances and Applications). Birkhäuser, 2019, ISBN-10: 303016408X. (Amazon)
  4. A. I. Saichev: Distributions in the Physical and Engineering Sciences, Volume 3: Random and Anomalous Fractional Dynamics in Continuous Media. Birkhäuser, 2019, 424 pages, ISBN-10: 3030064670. https://doi.org/10.1007/978-3-319-92586-8
  5. X. J. Yang: General Fractional Derivatives: Theory, Methods and Applications. Chapman and Hall/CRC, 2019, 384 pages, ISBN-10: 113833616 (Amazon)
  6. X. J. Yang, F. Gao, J. Yang: General Fractional Derivatives with Applications in Viscoelasticity. Academic Press, 2019, 395 pages, ISBN-10: 0128172088. (Amazon)
  7. W. Chen, Y. Li, P. Ma: The Fractional Laplacian. World Scientific Pub Co Inc, 2019, 350 pages, ISBN-10: 9813223995. https://doi.org/10.1142/10550
  8. O. Banna, Y. Mishura, K. Ralchenko: Fractional Brownian Motion (Approximations of fBm): Weak and Strong Approximations and Projections. Wiley-ISTE, 2019, ISBN-10: 178630260 https://doi.org/10.1002/9781119476771
  9. T. Michelitsch, B. Colle, A. P. Riascos: Fractional Dynamics on Lattices and Networks. Wiley-ISTE, 2019, 200 pages, ISBN-10: 178630158X.  https://doi.org/10.1002/9781119608165
  10. Y. Liang, W. Chen, W. Cai: Hausdorff Calculus: Applications to Fractal Systems (Fractional Calculus in Applied Sciences and Engineering). De Gruyter, 2019, 310 pages, ISBN-10: 3110606925. https://doi.org/1515/9783110608526
  11. A. Kochubei, Y. Luchko: Fractional Differential Equations (De Gruyter Reference). De Gruyter, 2019, 601 pages, ISBN-10: 3110570823. https://doi.org/10.1515/9783110571660
  12. J. F. Gómez, L. Torres, R. F. Escobar: Fractional Derivatives with Mittag-Leffler Kernel: Trends and Applications in Science and Engineering. Springer, 2019, 341 pages, ISBN-10: 3030116611. https://doi.org/10.1007/978-3-030-11662-0
  13. A. M. Mathai, H. J. Haubold: An Introduction to Fractional Calculus (Mathematics Research Developments). Nova Science Pub Inc, 2019, 258 pages, ISBN-10: 1536146323. (Google books)
  14. H. M. Srivastava. Operators of Fractional Calculus and Their Applications. Mdpi AG, 2019, 136 pages, ISBN-10: 3038973408. https://doi.org/10.3390/math6090157
  15. C. Milici, G. Drăgănescu, J. T. Machado: Introduction to fractional differential equations (Nonlinear Systems and Complexity). Springer, 2019, 188 pages, ISBN-10: 3030008940.  https://doi.org/10.1007/978-3-030-00895-6

 

 

2018

  1. F. Ge, Y. Chen, C. Kou: Regional analysis of time-fractional diffusion processes. Springer International Publishing, 2018, 250 pages, ISBN-10: 9783319728957. https://doi.org/10.1007/978-3-319-72896-4
  2. K. Cao, Y. Chen: Fractional Order Crowd Dynamics: Cyber-Human System Modeling and Control. Vol. 4. Walter de Gruyter GmbH & Co KG, 2018, 138 pages, ISBN-13: 978-3110472813. https://doi.org/10.1515/9783110473988
  3. G. A. Anastassiou: Nonlinearity: Ordinary and Fractional Approximations by Sublinear and Max-Product Operators. Springer, 2018, 293 pages, ISBN-10: 3319895087. https://doi.org/10.1007/978-3-319-89509-3
  4. A. Amenta, P. Auscher: Elliptic Boundary Value Problems with Fractional Regularity Data: The First Order Approach. American Mathematical Soc., 2018, 152 pages, ISBN-10: 1470442507. https://doi.org/10.1090/crmm/037
  5. H. J. Hans: Special Functions: Fractional Calculus and the Pathway for Entropy. MDPI, 2018, 304 pages, ISBN-10: 3038426652. https://doi.org/10.3390/books978-3-03842-664-6
  6. M. Edelman, E. N. Macau, M. Sanjuan: Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Springer, 2018, 315 pages, ISBN-10: 3319681087. https://doi.org/10.1007/978-3-319-68109-2
  7. S. Bhalekar: Frontiers in Fractional Calculus (Current Developments in Mathematical Sciences). Bentham Science Publishers, 2018, 375 pages, ISBN-10: 168108600X. https://doi.org/10.2174/97816810859991180101
  8. C. F. Lorenzo, T. Hartley: Generalized Functions for the Fractional Calculus.

Independently published, 1999 (2018 Publish), 36pages, ISBN-10: 1724034332. https://doi.org/10.1615/critrevbiomedeng.v36.i1.40

  1. L. R. Evangelista, E. K. Lenzi: Fractional diffusion equations and anomalous diffusion. Cambridge University Press, 2018, 358 pages, ISBN-10: 9781107143555. https://doi.org/10.1017/9781316534649
  2. R. Martínez-Guerra, C. A. Pérez-Pinacho: Advances in Synchronization of Coupled Fractional Order Systems: Fundamentals and Methods. Springer, 2018, 185 pages, ISBN-10: 3319939459, ISBN-13: 978-3319939452. https://doi.org/10.1007/978-3-319-93946-9
  3. V. Vyawahare, P. V. Nataraj: Fractional-order Modeling of Nuclear Reactor: From Subdiffusive Neutron Transport to Control-oriented Models: A Systematic Approach. Springer, 2018, 200 pages, ISBN-10: 9811356556. https://doi.org/10.1007/978-981-10-7587-2
  4. C. Skiadas: Fractional Dynamics, Anomalous Transport and Plasma Science: Lectures from CHAOS2017. Springer, 2018, 201 pages, ISBN-10: 3030044823. https://doi.org/10.1007/978-3-030-04483-1
  5. G. A. Anastassiou: Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integral Approximators. Springer, 2018, 347 pages, ISBN-10: 3030042863. https://doi.org/10.1007/978-3-030-04287-5
  6. G. A. Anastassiou, I. K. Argyros: Functional Numerical Methods: Applications to Abstract Fractional Calculus. Springer, 2018, 161 pages, ISBN-10: 3319887947. https://doi.org/10.1007/978-3-319-69526-6
  7. S. G. Georgiev: Fractional dynamic calculus and fractional dynamic equations on time scales. Springer, 2018, 360 pages, ISBN-10: 9783319739533. https://doi.org/10.1007/978-3-319-73954-0
  8. J. Dix: Fractional Calculus, Paths on Networks, Geometry, Gravitation: Collected Essays, Volume I. Independently published, 2018, 109 pages, ISBN-10: 1719825270. (Google books)

 

 

2017

  1. A. T. Azar, S. Vaidyanathan, A. Ouannas: Fractional order control and synchronization of chaotic systems. Springer, 2017, 877 pages, ISBN-10: 3319502484. https://doi.org/10.1007/978-3-319-50249-6
  2. R. U. Verma: Semi-Infinite Fractional Programming. Springer Singapore, 2017, 291 pages, ISBN-10: 9811062552. https://doi.org/10.1007/978-981-10-6256-8_4
  3. M. Fečkan, J. Wang, M. Pospíšil: Fractional-order equations and inclusions. Walter de Gruyter GmbH & Co KG, 2017, 367 pages, ISBN-10: 3110521385, ISBN-13: 978-3110521382. https://doi.org/10.1515/9783110522075
  4. M. Chen, S. Shao, P. Shi: Robust adaptive control for fractional-order systems with disturbance and saturation. Wiley-ASME Press Series, 2017, 256 pages, ISBN-10: 1119393272. https://doi.org/10.1002/9781119393351
  5. B. J. West: Nature’s Patterns and the Fractional Calculus. Walter de Gruyter GmbH & Co KG, 2017, 199 pages, ISBN-10: 3110534118, ISBN-13: 978-3110534115. https://doi.org/10.1515/9783110535136
  6. A. M. Mathai, H. J. Haubold: Fractional and multivariable calculus: model building and optimization problems. Springer, 2017, 234 pages, ISBN-10: 3319599925. https://doi.org/10.1007/978-3-319-59993-9
  7. I. M. Stamova, G. T. Stamov: Functional and impulsive differential equations of fractional order: qualitative analysis and applications. CRC Press, 2017, 276 pages, ISBN-10: 1498764835. https://doi.org/10.1201/9781315367453
  8. K. Kubilius, Y. Mishura, K. Ralchenko: Parameter estimation in fractional diffusion models. Springer, 2017, 390 pages, ISBN-10: 331971029X. https://doi.org/10.1007/978-3-319-71030-3
  9. D. Xue: Fractional-order control systems: fundamentals and numerical implementations. Vol. 1. Walter de Gruyter GmbH & Co KG, 2017, 320 pages, ISBN-10: 3110499991. https://doi.org/10.1515/9783110497977

 

 

2016

  1. C. Pozrikidis: The Fractional Laplacian. Chapman and Hall/CRC, 2016, 294 pages, ISBN-10: 1498746152. https://doi.org/10.1201/b19666
  2. C. F. Lorenzo, T. T. Hartley: The fractional trigonometry: With applications to fractional differential equations and science. John Wiley & Sons, 2016, 464 pages, ISBN-10: 9781119139409. https://doi.org/10.1002/9781119139447
  3. S. Chakraverty, S. Tapaswini, D. Behera: Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications. John Wiley & Sons, 2016, 272 pages, ISBN-10: 111900411X. https://doi.org/10.1002/9781119004233
  4. G. A. Anastassiou, I. K. Argyros: Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus. Springer International Publishing, 2016, 116 pages, ISBN-10: 3319336053. https://doi.org/10.1007/978-3-319-33606-0
  5. B.J. West: Fractional calculus view of complexity: Tomorrow’s science. CRC Press, 2016, 285 pages, ISBN-13: 978-1-4987-3800-2. https://doi.org/10.1201/b18911

 

 

2015

  1. C. Li, F. Zeng: Numerical methods for fractional calculus. Chapman and Hall/CRC, 2015, 300 pages, ISBN-10: 1482253801. https://doi.org/10.1201/b18503
  2. R. Martínez-Guerra, C. A. Pérez-Pinacho, G. C. Gómez-Cortés: Synchronization of integral and fractional order chaotic systems: A differential algebraic and differential geometric approach. Springer, 2015, 242 pages, ISBN-10: 3319152831. https://doi.org/10.1007/978-3-319-15284-4_9
  3. Y. Povstenko: Fractional thermoelasticity (Solid Mechanics and Its Applications). Springer, 2015, 253 pages, ISBN-10: 331915334X. https://doi.org/10.1007/978-3-319-15335-3
  4. A. B. Malinowska, T. Odzijewicz, F. M. Torres: Advanced methods in the fractional calculus of variations. Springer, 2015, 148 pages, ISBN-10: 9783319147550. https://doi.org/10.1007/978-3-319-14756-7
  5. T. Kaczorek, K. Rogowski: Fractional linear systems and electrical circuits (Studies in Systems, Decision and Control). Cham, Switzerland: Springer International Publishing, 2015, 254 pages, ISBN-10: 3319113607. https://doi.org/10.1007/978-3-319-11361-6
  6. F. Padula, A. Visioli: Advances in robust fractional control. Chum, Switzerland: Springer, 2015, 176 pages, ISBN-10: 3319109294. https://doi.org/10.1007/978-3-319-10930-5
  7. B. Bandyopadhyay, S. Kamal: Stabilization and control of fractional order systems: a sliding mode approach. Vol. 317. Switzerland: Springer International Publishing, 2015, 200 pages, ISBN-10: 3319086200.  https://doi.org/10.1007/978-3-319-08621-7

 

 

2014

  1. T. M. Atanackovic: Fractional calculus with applications in mechanics: vibrations and diffusion processes. John Wiley & Sons, 2014, 336 pages, ISBN-10: 9781848214170. https://doi.org/10.1002/9781118577530
  2. R. Herrmann: Fractional calculus: an introduction for physicists(2nd Edition). World Scientific, 2014, 500 pages, ISBN-10: 9814551074.  https://doi.org/10.1142/9789814551083_0005

 

2013

  1. S. Cohen, J. Istas: Fractional fields and applications. Heidelberg: Springer, 2013, 284 pages, ISBN-10: 3642367380. https://doi.org/10.1007/978-3-642-36739-7
  2. V. Daftardar-Gejji: Fractional Calculus: Theory and Applications. Narosa, New Delhi, 2013, 232 pages, ISBN-10: 8184873336. (Google books)

2012

  1. I. Nourdin: Selected aspects of fractional Brownian motion. Milan: Springer, 2012, 122 pages, ISBN-10: 8847028221. https://doi.org/10.1007/978-88-470-2823-4
  2. Y. Luo, Y. Chen: Fractional order motion controls. John Wiley & Sons, 2012, 454 pages, ISBN-10: 1119944554. https://doi.org/10.1002/9781118387726
  3. M. H. Annaby, Z. S. Mansour: Q-fractional Calculus and Equations. Springer, 2012, 340 pages, ISBN-10: 364230897X. (Google books)
  4. I. Pan, S. Das: Intelligent fractional order systems and control: an introduction. Springer, 2012, 316 pages, ISBN-10: 3642438520. (Google books)
  5. S. Abbas, M. Benchohra, G. M. N'Guérékata: Topics in fractional differential equations. Springer Science & Business Media, 2012, 412 pages, ISBN-10: 1489995471. (Google books)
  6. M. Zubair, M. J. Mughal, Q. A. Naqvi: Electromagnetic fields and waves in fractional dimensional space. Springer Science & Business Media, 2012, 88 pages, ISBN-10: 3642253571. https://doi.org/10.1007/978-3-642-25358-4
  7. J. Klafter, S. C. Lim, R. Metzler: Fractional dynamics: recent advances. World Scientific, 2012, 530 pages, ISBN-13: 978-981-4340-58-8. https://doi.org/10.1142/8087
  8. D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo:  Fractional calculus: models and numerical methods. World Scientific, 2012, 428 pages, ISBN-10: 981-4355-20-8, ISBN-13: 978-981-4355-20-9. (2nd Edition, 2016, 478 pages, ISBN-10: 9813140038, ISBN-13: 978-9813140035.) (Google books)
  9. D. Baleanu, J. A. Machado, A. Luo: Fractional dynamics and control. Springer Science & Business Media, 2012, 309 pages, ISBN-13: 978-1-4614-0456-9. (Google books)

 

 

2011

  1. M. M. Meerschaert, A. Sikorskii: Stochastic models for fractional calculus. Walter de Gruyter, 2011, 391 pages, ISBN-10: 3110258692, ISBN-13: 978-3-11-025869-1. https://doi.org/10.1515/9783110258165
  2. H. Sheng, Y. Chen, T. Qiu: Fractional processes and fractional-order signal processing: techniques and applications. Springer Science & Business Media, 2011, 295 pages, ISBN-10: 1447122321. https://doi.org/10.1007/978-1-4471-2233-3
  3. S. Das, I. Pan: Fractional order signal processing: introductory concepts and applications. Springer Science & Business Media, 2011, 116 pages, ISBN-10: 3642231160. (Google books)
  4. S. Das: Functional fractional calculus. Springer Science & Business Media, 2011, 612 pages, ISBN-10: 3642205445. https://doi.org/10.1007/978-3-642-20545-3
  5. B. L. S. Prakasa Rao: Statistical inference for fractional diffusion processes. John Wiley & Sons, 2011, 280 pages, ISBN-10: 0470665688. (Google books)
  6. M. D. Ortigueira: Fractional calculus for scientists and engineers. Springer Science & Business Media, 2011, 154 pages, ISBN-10: 978940070746-7. https://doi.org/10.1007/978-94-007-0747-4
  7. I. Petráš: Fractional-order nonlinear systems: modeling, analysis and simulation. Springer Science & Business Media, 2011, 218 pages, ISBN-10: 9783642181009. (Google books)
  8. T. Kaczorek: Selected problems of fractional systems theory. Springer Science & Business Media, 2011, 364 pages, ISBN-10: 3642205011. https://doi.org/10.1007/978-3-642-20502-6
  9. V. E. Tarasov: Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer Science & Business Media, 2011, 505 pages, ISBN-10: 3642140025. (google books)
  10. J. S. Leszczyński: An introduction to fractional mechanics. Publishing Office of Czestochowa University of Technology, 2011, 128 pages, ISBN: 978-83-7193-494-0. (google books)
  11. E. R. Scheinerman, D. H. Ullman: Fractional graph theory: a rational approach to the theory of graphs. Dover Publications, 2011, 240 pages, ISBN-10: 0486485935. (google books)

 

 

2010

  1. A.C. J. Luo, V. Afraimovich: Long-range Interactions, Stochasticity and Fractional Dynamics: Dedicated to George M. Zaslavsky (1935—2008). Springer Science & Business Media, 2010, 311 pages, ISBN-10: 3642123422. https://doi.org/10.1007/978-3-642-12343-6
  2. C. A. Monje, Y. Chen, B. M. Vinagre, et al.: Fractional-order systems and controls: fundamentals and applications. Springer Science & Business Media, 2010, 415 pages, ISBN-10: 1849963347. (Google books)
  3. K. Diethelm: The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer Science & Business Media, 2010, 264 pages, ISBN-10: 9783642145735. (Google books)
  4. F. Mainardi: Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. Imperial College Pr, 2010, 347 pages, ISBN-10: 1848163290. https://doi.org/10.1142/9781848163300
  5. R. Caponetto, G. Dongola, L. Fortuna, I. Petras: Fractional order systems: modeling and control applications. Vol. 72. World Scientific, 2010, 200 pages, ISBN-10: 9814304190. https://doi.org/10.1142/7709
  6. D. Baleanu, Z. B. Güvenç, J. A. Tenreiro Machado: New trends in nanotechnology and fractional calculus applications. New York: Springer, 2010, 531 pages, ISBN-10: 9048132924.

https://link.springer.com/content/pdf/10.1007/978-90-481-3293-5.pdf

2009

  1. S. Rostek: Option Pricing in Fractional Brownian Markets (Lecture Notes in Economics and Mathematical Systems). Springer, 2009, 152 pages, ISBN-10: 3642003303. https://doi.org/10.1007/978-3-642-00331-8
  2. M. Klimek: On Solutions of Linear Fractional Differential Equations of a Variational Type. Publishing Office of Czestochowa University of Technology, 2009, 244 pages, ISBN-10: 837193422X. (Amazon)

 

2008

  1. F. Biagini, Y. Hu et al.: Stochastic calculus for fractional Brownian motion and applications. Springer Science & Business Media, 2008, 330 pages, ISBN-10: 9781852339968. (Google books)
  2. Y. Mishura: Stochastic calculus for fractional Brownian motion and related processes. Vol. 1929. Springer Science & Business Media, 2008, 416 pages, ISBN-10: 3540758720. https://doi.org/10.1007/978-3-540-75873-0
  3. S. Das: Functional Fractional Calculus for System Identification and Controls. Springer, 2008, 260 pages, ISBN-10: 3642091784. https://doi.org/10.1007/978-3-540-72703-3

 

2007

  1. J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado: Advances in fractional calculus: Theoretical Developments and Applications in Physics and Engineering. Vol. 4. No. 9. Dordrecht: Springer, 2007, 552 pages, ISBN-10: 9781402060410. https://www.springer.com/us/book/9781402060410  https://www.jstor.org/stable/20454159

 

2006

  1. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo: Theory and applications of fractional differential equations. Vol. 204. Elsevier Science Limited, 2006, 540 pages, ISBN-10: 0444518320. https://doi.org/10.1016/s0304-0208(06)x8001-5
  2. R. L. Magin: Fractional calculus in bioengineering. Redding: Begell House, 2006, 684 pages, ISBN-10: 1567002153.

http://www.begellhouse.com/fr/books/1d26309e2180507f,191e554a15da03bf.html

 

2005

  1. R. A. Hibschweiler, T. H. MacGregor: Fractional Cauchy Transforms. Chapman and Hall/CRC, 2005, 272 pages, ISBN 10: 1584885602. https://doi.org/10.1201/9781420034875
  2. A. Khare: Fractional statistics and quantum theory. World Scientific, 2005, 316 pages, ISBN-10: 9812561609. https://doi.org/10.1142/9789812567758
  3. G. M. Zaslavsky: Hamiltonian chaos and fractional dynamics. Oxford University Press on Demand, 2005, 436 pages, ISBN-10: 0199535485. (Google books)

 

2004

  1. A. M. F. Ohashi: Evolution equations driven by a fractional white noise in spaces of abstract stochastic distributions. UNICAMP, 2004, 25 pages. http://143.106.77.95/sites/default/files/rel_pesq/rp44-04.pdf

 

2003

  1. E. B. Bajalinov: Linear-fractional programming theory, methods, applications and software. Vol. 84. Springer Science & Business Media, 2003, 425 pages, ISBN-10: 1461348226. https://doi.org/10.1007/978-1-4419-9174-4
  2. B.J. West, M. Bologna, P. Grigolini: Physics of fractal operators. Springer, 2003, 354 pages, ISBN 0-387-95554-2. https://doi.org/10.1063/1.1650234

 

2001

  1. H.M. Ozaktas, Z. Zalevsky, M. Alber Kutay: The fractional fourier transform with applications in optics and signal processing. John Wiley, 2001, 513 pages, ISBN-13: 987-0471963462. (google books)

 

 

2000

  1. R. Hilfer: Applications of fractional calculus in physics. World Scientific, 2000, 472 pages, ISBN-10: 9810234570. https://doi.org/10.1142/9789812817747

 

1998

  1. I. Podlubny: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, 1998, 340 pages, ISBN-10: 0125588402. https://doi.org/10.1016/s0076-5392(99)x8001-5
  2. A. I. Barros: Discrete and fractional programming techniques for location models. Springer Science & Business Media, 1998, 180 pages, ISBN-10: 1461368243. https://doi.org/10.1007/978-1-4615-4072-4

 

 

1997

  1. N. K. Bliev: Generalized analytic functions in fractional spaces. Vol. 86. CRC Press, 1997, 160 pages, ISBN-10: 0582288614. (google books)
  2. I. V. Novozhilov: Fractional analysis: Methods of motion decomposition. Springer Science & Business Media, 1997, 232 pages, ISBN-10: 1461286670. (Google books)
  3. A. Carpinteri, F. Mainardi: Fractals and fractional calculus in continuum mechanics. Vol. 378. Springer, 1997, 348 pages, ISBN-10: 321182913X. https://doi.org/10.1007/978-3-7091-2664-6

1996

  1. B. Rubin: Fractional integrals and potentials. Chapman and Hall/CRC, 1996, 424 pages, ISBN-10: 0582253411. (Google books)
  2. T. Runst, W. Sickel: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Walter de Gruyter, 1996, 560 pages, ISBN: 3-11-015113-8. (Google books)

 

1995

  1. T. Chakraborty, P. Pietiläinen: The quantum Hall effects: integral and fractional. Vol. 85. Springer Science & Business Media, 1995, 302 pages, ISBN-10: 354058515X. (Google books)

 

1993

  1. V. S. Kiryakova: Generalized fractional calculus and applications. CRC press, 1993, 360 pages, ISBN-10: 0582219779. (Google books)
  2. K. S. Miller, B. Ross: An introduction to the fractional calculus and fractional differential equations. Wiley-Interscience, 1993, 384 pages, ISBN-10: 0471588849. http://www.citeulike.org/group/14583/article/4204050
  3. S. G. Samko, A. A. Kilbas, O. I. Marichev: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, 1993, 1006 pages, ISBN 2881248640. http://www.citeulike.org/group/14583/article/1428686

 

1990

  1. F. Wilczek: Fractional statistics and anyon superconductivity. World scientific, 1990, 460 pages, ISBN-10: 9810200498. https://doi.org/10.1142/0961

 

1974

  1. K. B. Oldham, J. Spanier: The fractional calculus theory and applications of differentiation and integration to arbitrary order. Dover Publications, 1974, 234 pages, ISBN-10: 0486450015. https://doi.org/10.1016/s0076-5392(09)x6012-1

Created 4/8/2019. Credits: Lihong Guo, YangQuan Chen, Richard L. Magin.