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4.5.1 Padé Approximations and Routh Approximations . . . . . 122
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Chapter 11

Analysis and Design of

Fractional-order Systems

Fractional-order system theory is an active field of research over the last two decades.

In recent years, many progresses have been made in both fractional-order calculus and

fractional-order control. The research on fractional-order control has both theoretical

value and practical perspectives.

The so-called “fractional-order systems” really mean that the order of the systems are

no longer integers, and this is different from all discussed in the book so far. We all know

that dny/dtn represents the nth order derivative of y with respect to t. What happens

if n = 1/2? This was the question a famous French mathematician Guillaume François

Antoine L’Hôpital asked one of the inventors of calculus, Gottfried Wilhelm Leibniz[1–3],

300 years ago. From that time on, researchers began to study fractional-order calculus

problems. Thus, fractional-order calculus is a 300 year-old topic, however, earlier work

focused on pure mathematics. In the 19th century, various definitions on fractional-order

calculus appeared, and it was not until 1960, the first publication on non-integer order

integrator appeared in the field of control[4], however, few attention to the topics were

received. In late 1990’s, fractional-order PID controller appeared[5–7].

The operator Dα is used in this book to describe fractional-order differentiation and

integration. When α > 0, αth order derivative is used, while α < 0 means −αth order

integration, and α = 0 means the original function. This unified notation will be used

throughout the book.

Strictly speaking, “fractional-order” is a misused term. The precise one should be

“non-integer-order”, since the order can either be fractional, or an irrational, or even

complex numbers. For instance, d
√
2y/dt

√
2 means the

√
2th order derivative. However,

the word “fractional-order” was used for a very time among the researchers. In this book,

“fractional-order” is used, however, it actually means “non-integer-order”.

In Section 11.1, various definitions on fractional-order calculus and their MATLAB

implementations are presented. Properties of fractional-order calculus are also presented.

Mittag–Leffler functions and commonly used Laplace transforms in fractional-order

functions are also presented. In Section 11.2, numerical computations of fractional-order

derivatives are presented. Also Mittag–Leffler functions and commonly used Laplace

transforms in fractional-order functions are also presented. Section 11.3 presents the

numerical and analytical solutions of linear fractional-order differential equations. The

fractional-order transfer function is used as an example to demonstrate object-oriented

programming in Section 11.4, where the methods of class creation, overload function

design are all illustrated. With the programming technique, linear fractional-order systems

analysis — stability, time and frequency domain analysis are presented. In Section 11.5,

477
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integer-order approximation to fractional-order operators and fractional-order systems are

presented, and sub-optimal reduction technique are proposed. In Section 11.6, block

diagram-based nonlinear fractional-order system simulation techniques are illustrated. In

Section 11.7, optimal design methods and interface of fractional-order PID controllers for

fractional-order plants are presented.

11.1 Definitions and Numerical Computations in Fractional-order

Calculus

In the development of fractional-order calculus, various definitions were proposed and

applied. The most widely used Cauchy integral formula, Grünwald–Letnikov definition,

Riemann–Liouville definition and Caputo definition are all extended directly from integral-

order calculus. In this section, the definitions and their relationships are given, then the

numerical computation and properties are presented.

11.1.1 Definitions of Fractional-order Calculus

1. Fractional Cauchy integral formula

The formula is extended directly from its integer-order counterpart

Dγ
t f(t) =

Γ(γ + 1)

2πj

∫

C

f(τ )

(τ − t)γ+1
dτ, (11.1)

where C is the closed-path that encircles all the poles of the function f(t), and Dt is the

fractional-order differentiation operator.

2. Grünwald–Letnikov definition

The definition of fractional-order differentiation is

t0Dα
t f(t) = lim

h→0

1

hα

[(t−t0)/h]∑

j=0

(−1)j
(
α
j

)
f(t− jh), (11.2)

where w
(α)
j = (−1)j

(
α
j

)
is the binomial coefficients of (1 − z)α, and it can be obtained

iteratively from

w
(α)
0 = 1, w

(α)
j =

(
1− α+ 1

j

)
w

(α)
j−1, j = 1, 2, · · · . (11.3)

The following formula can be used in calculating fractional-order derivative

t0D
α
t f(t) ≈

1

hα

[(t−t0)/h]∑

j=0

w
(α)
j f(t− jh). (11.4)

If step size h is small enough, Eqn. (11.4) can be used to directly evaluate the

approximate values of fractional-order differentiation. It can be shown that[2] the accuracy

of the definition is o(h).
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3. Riemann–Liouville definition

Fractional-order integral is defined as

t0D
−α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ )

(t− τ )1−α
dτ, (11.5)

where 0 < α < 1, and t0 is the initial instance. Normally t0 = 0, and the notation is

simplified to D−α
t f(t). Riemann–Liouville definition is the most widely used definition in

fractional-order calculus. Especially the subscripts on both sides of D are the lower and

upper bounds in the integral[8].

Fractional-order differentiation can also be defined. Assume that the order α of

differentiation satisfies n− 1 < β 6 n, the differentiation is defined as

t0Dβ
t f(t) =

dn

dtn

[
t0D

−(n−β)
t f(t)

]
=

1

Γ(n−β)

dn

dtn

[∫ t

t0

f(τ )

(t−τ )β−n+1
dτ

]
. (11.6)

4. Caputo definition

The definition of Caputo fractional-order differentiation is

t0D
α
t f(t) =

1

Γ(1− γ)

∫ t

t0

f (m+1)(τ )

(t− τ )γ
dτ, (11.7)

where α = m+ γ, or m = ⌊α⌋ is an integer such that 0 < γ < 1.

Similarly, the Caputo fractional-order integral is defined as

t0D−α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ )

(t− τ )1−α
dτ, α > 0, (11.8)

and it is exactly the same as Riemann–Liouville definition in Eqn. (11.5).

11.1.2 The Relationship of Different Definitions

It can be shown that for a wide class of practical functions, the Grünwald–Letnikov

and Riemann–Liouville definitions are equivalent[2]. In this book, we shall not distinguish

them.

The major differences of Caputo definition and Riemann–Liouville definition are that

the former considers the nonzero initial condition problems. Thus, Caputo definition

is more suitable to deal with fractional-order differential equations with nonzero initial

conditions.

If the initial value of function f(t) is nonzero, and α ∈ (0, 1), compared with the

definitions of Caputo’s and Riemann–Liouville’s, it can be seen that

C
t0D

α
t f(t) =

RL
t0 Dα

t (f(t)− f(t0)), (11.9)

where the fractional-order derivative of constant f(t0) is

RL
t0 Dα

t f(t0) =
f(t0)(t− t0)

−α

Γ(1− α)
. (11.10)
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The relationship of these two definitions are

C
t0D

α
t f(t) =

RL
t0 Dα

t f(t)−
f(t0)(t− t0)

−α

Γ(1− α)
. (11.11)

More generally, if α > 1, denote m = ⌈α⌉, then

C
t0D

α
t f(t) =

RL
t0 Dα

t f(t)−
m−1∑

k=0

f (k)(t0)

Γ(k − α+ 1)
(t− t0)

k−α, (11.12)

and the relationship shown for 0 < α < 1 is just a special case of the formula.

11.1.3 Properties of Fractional-order Calculus

Some of the important properties of fractional-order calculus are summarized below

without proofs[9]

(1) The fractional-order differentiation t0D
α
t f(t) of an analytic function f(t) with

respect to t is also analytic.

(2) If α = n, the fractional-order derivative is identical to integer-order derivative, and

also t0D
0
t f(t) = f(t).

(3) The fractional-order differentiation is linear, i.e., for any constants c, d

t0D
α
t [ cf(t) + dg(t) ] = c t0D

α
t f(t) + d t0D

α
t g(t). (11.13)

(4) Fractional-order differentiation operators satisfy commutative-law, i.e.,

t0D
α
t

[
t0Dβ

t f(t)
]
= t0Dβ

t [ t0Dα
t f(t) ] = t0D

α+β
t f(t). (11.14)

(5) The Laplace transform of the fractional-order derivative is

L [t0Dα
t f(t) ] = sαL

[
f(t)

]
−

n−1∑

k=1

sk[t0Dα−k−1
t f(t) ]

t=t0
. (11.15)

Especially, if the initial values of the function f(t) and its derivatives at t = t0 are

all zero, L [t0Dα
t f(t)] = sαL

[
f(t)

]
. It is the same as the one in integer-order calculus,

and it is the basis of fractional-order transfer functions, for the analysis and design of

fractional-order systems.

11.2 Numerical Computations in Fractional-order Calculus

In this section, numerical computation of Grünwald–Letnikov and Caputo derivatives

of given function f(t) are presented. Also, the computations of the important functions in

fractional-order calculus, the Mittag–Leffler functions are presented.
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11.2.1 Numerical Solutions with Grünwald–Letnikov Definition

With Grünwald–Letnikov definition, the following MATLAB function can be immedi-

ately written to evaluate the fractional-order differentiations[10], which implements directly

Eqn. (11.4).

function dy=glfdiff(y,t,gam)

h=t(2)-t(1); w=1; y=y(:); t=t(:); a0=y(1); dy(1)=0;

if a0~=0 & gam>0, dy(1)=sign(a0)*inf; end

for j=2:length(t), w(j)=w(j-1)*(1-(gam+1)/(j-1)); end

for i=2:length(t), dy(i)=w(1:i)*[y(i:-1:1)]/h^gam; end

The syntax of the function is y1 = glfdiff(y,t,γ) , where y and t are the vectors

composed of sample values of the given function and time, respectively. The vector t

should be evenly spaced. The argument γ is the order. The γth order derivative of y is

returned in y1 vector. If y(t0) 6=0, the first value in the derivative is set to infinity.

Example 11.1. In integer-order calculus, it is known that the derivative function of a

step function is an impulse function, and first-order integral is straight line. The following

statements can be used to calculate the 0.5th order derivative and integral, and the results

are shown in Fig. 11-1.

>> t=0:0.01:5; u=ones(size(t));

y1=glfdiff(u,t,0.5); y2=glfdiff(u,t,-0.5);

plot(t,y1,’-’,t,y2,’--’)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

0.5th
order

integr
al

0.5th order derivative

Fig. 11-1 Fractional derivative and integral of a step function.

It can be seen that the fractional integrals are no longer straight lines, and the

derivatives are no longer impulse functions. Gradual changes are observed in fractional-

order integrals and derivatives. The fractional-order calculus is regarded as having

memories.

Example 11.2. Consider the sinusoidal function f(t) = sin(3t + 1). Its 0.3th order

derivative is shown in Fig. 11-2(a), and the surface plots for the derivatives of different

orders are shown in Fig. 11-2(b).

>> t=0:0.01:5; u=sin(3*t+1); ww=0:0.1:1; Y=[];

y1=glfdiff(u,t,0.3); y2=3^0.3*sin(3*t+1+0.3*pi/2);
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plot(t,y1,’-’,t,y2,’--’), figure

for w=ww, Y=[Y; glfdiff(u,t,w)]; end, surf(t,ww,Y)

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) 0.3th order derivative

0
2

4
6

0

0.5

1
−2

0

2

4

6

(b) surface plots for different orders

Fig. 11-2 Fractional-order differentiation of sinusoidal function f(t) = sin(3t + 1).

The αth order derivative under Cauchy integral formula is 3α sin(3t+1+απ/2). This

derivative curve is also given in Fig. 11-2(a). It can be seen that the major difference

between the two definitions is, in Grünwald–Letnikov definition, the initial values of f(t)

is assumed to be zero for t 6 0. Thus, the function jumped from 0 to sin 1 at time t = 0+.

While in the Cauchy formula, the function at t 6 0 time is still assumed to be sin(3t+1),

thus there is no jump at t = 0+.

It can be seen from the fractional-order derivatives of sinusoidal wave in Fig. 11-

2(b) that gradual changes between sinusoidal and cosine waves are obtained, while in

integer-order calculus, only sinusoidal and cosine waves are obtained. Thus, fractional-

order calculus are more informative than the traditional integer-order calculus.

11.2.2 Numerical Solutions with Caputo Definition

From the relationships of the definitions, the following function can be used to calculate

Caputo derivatives, through Eqn. (11.12).

function dy=caputo(y,t,gam,L,vec)

t0=t(1); dy=glfdiff(y,t,gam); if nargin<=3, L=10; end

if gam>0, m=ceil(gam); if gam<=1, vec=y(1); end

for k=0:m-1, dy=dy-vec(k+1)*(t-t0).^(k-gam)./gamma(k+1-gam); end

yy1=interp1(t(L+1:end),dy(L+1:end),t(2:L),’spline’); dy(2:L)=yy1;

end

The syntax of the function is y1 = caputo(y,t,α,y0,L) , where if α 6 0, the results

of Grünwald–Letnikov are returned directly; If α < 1, the initial value of y(t0) is directly

extracted from vector y. If α > 1, y0 = [y(t0), y
′(t0), · · · , y(m−1)(t0)] should be provided,

where m = ⌈α⌉. In numerical implementation, it is always found that the first few terms

may have large errors, thus it is better to reconstruct the first L terms with interpolation

approaches. The default value of L is 10, however, if the order of differentiation is high, L

should be increased.

Example 11.3. Consider the function f(t) = sin(3t+ 1) studied in Example 11.2.
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It can be seen that at t = 0, the initial value of the function is f(0) = sin 1. The

difference between the two definitions is d(t) = t−0.3 sin 1/Γ(0.7). The following statements

can be used to find the 0.3th order derivatives using Grünwald–Letnikov definition and

Caputo definition, as shown in Fig. 11-3(a). The difference is also shown.

>> t=0:0.01:pi; y=sin(3*t+1); d=t.^(-0.3)*sin(1)/gamma(0.7);

y1=glfdiff(y,t,0.3); y2=caputo(y,t,0.3); plot(t,y1,t,y2,’--’,t,d,’:’)

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

difference

Grünwald–Letnikov
definition

Caputo definition

(a) 0.3th order derivative

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

0 0.5 1 1.5 2 2.5 3
−10

0

10

20

C
0 D

1.3
t y(t)

C
0 D

2.3
t y(t)

(b) 1.3th and 2.3th order derivatives

Fig. 11-3 Differentiation with Caputo definition.

Since C
0 D2.3

t y(t) is to be calculated, the initial values y′(0), y′′(0) are needed. These

values can be obtained with symbolic computation and convert the result back to double

precision variables. The 1.3th and 2.3th order derivatives can also be obtained as shown

in Fig. 11-3(b).

>> syms t; y=sin(3*t+1); y00=sin(1); y10=double(subs(diff(y,t),t,0));

y20=double(subs(diff(y,t,2),t,0)); t=0:0.01:pi; y=sin(3*t+1);

y1=caputo(y,t,1.3,[y00 y10],15); y2=caputo(y,t,2.3,[y00,y10,y20],40);

plotyy(t,y1,t,y2)

11.2.3 Mittag–Leffler Functions and Their Computations

We all know that the exponential function is very important in the solutions of integer-

order systems. Like exponential function in integer-order systems, the so-called Mittag–

Leffler can be regarded as an extension of exponential functions to fractional-order calculus.

1. Mittag–Leffler function with one parameter

The definition is

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
, (11.16)

where α ∈ C. The convergent condition for the infinite series is R(α) > 0.

It is obvious that exponential function ez is a particular case of Mittag–Leffler function,

with α = 1.

E1(z) =

∞∑

k=0

zk

Γ(k + 1)
=

∞∑

k=0

zk

k!
= ez. (11.17)
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Other particular cases of Mittag–Leffler functions can be derived

E2(z) =

∞∑

k=0

zk

Γ(2k + 1)
=

∞∑

k=0

(
√
z)

2k

(2k)!
= cosh

√
z, (11.18)

E1/2(z) =
∞∑

k=0

zk

Γ (k/2 + 1)
= ez

2

(1 + erf(z)) = ez
2

erfc(−z). (11.19)

2. Mittag–Leffler function with two parameters

Two-parameter Mittag–Leffler function can be defined when 1 in the Γ function of the

one-parameter Mittag–Leffler function is substituted by a free variable β

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, (11.20)

where α, β ∈ C, and the convergent conditions for z ∈ C are R(α) > 0 and R(β) > 0.

If β = 1, the two-parameter Mittag–Leffler function is changed to one-parameter Mittag–

Leffler function, i.e.,

Eα,1(z) = Eα(z). (11.21)

Besides, three- and four-parameter generalized Mittag–Leffler functions can also be

defined[11]. A MATLAB function ml func() for the computation of generalized Mittag–

Leffler functions and their integer-order derivatives[5].

function f=ml_func(aa,z,n,eps0)

aa=[aa,1,1,1]; a=aa(1); b=aa(2); c=aa(3); q=aa(4);

f=0; k=0; fa=1; if nargin<4, eps0=eps; end

if nargin<3, n=0; end

if n==0

while norm(fa,1)>=eps0

fa=gamma(k*q+c)/gamma(c)/gamma(k+1)/gamma(a*k+b)*z.^k;

f=f+fa; k=k+1;

end

if ~isfinite(f(1))

if c==1 & q==1

f=mlf(a,b,z,round(-log10(eps0))); f=reshape(f,size(z));

else, error(’Error: truncation method failed’); end, end

else

aa(2)=aa(2)+n*aa(1); aa(3)=aa(3)+aa(4)*n;

f=gamma(q*n+c)/gamma(c)*ml_func(aa,z,0,eps0);

end

The syntax of the function is y= ml func(v,z,n,ǫ) , where z is a vector, and the

vector v can be set to v=α or v= [α,β], to indicate one- or two-parameter Mittag–Leffler

functions. Vector v can also be assigned to a three or four element vector, v= [α,β,γ],

or v= [α,β,γ,c], to indicate three- or four-parameter Mittag–Leffler functions. The

argument n is the order of derivative for the Mittag–Leffler function. The argument ǫ is

the error tolerance. Since truncation algorithm is used in the function, the speed of the

function is relatively fast, however, the values may sometimes become infinite. In this
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case, the mlf() function[12] is embedded to tackle the problem. However, the speed may

become very slow. The output vector y is the Mittag–Leffler function.

Example 11.4. The following statements can be used to draw the Mittag–Leffler function

E1(−t), E3/2,3/2(−t), and E1,2(−t), as shown in Fig. 11-4. The exponential function is also

drawn. It can be seen that E1(−t) is the same as e−t, and the decay rates of the other two

curves are slower than exponential function.

>> t=0:0.1:5; y1=ml_func(1,-t); y2=ml_func([1,2],-t);

y3=ml_func([3/2,3/2],-t); plot(t,y1,t,y2,t,y3)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4
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0.8
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E1(−t)
E1,2(−t)

E3/2,3/2(−t)

Fig. 11-4 Mittag–Leffler function curves.

11.3 Solutions of Linear Fractional-order Systems

Fractional-order systems are the direct extension of integer-order systems. In practical

applications, there are some systems which can only be expressed accurately with

fractional-order differential equations. In this section, analytical solutions for some linear

fractional-order differential equations are first presented, and Mittag–Leffler functions

are normally used to express the analytical solutions. For more linear fractional-order

differential equation, closed-form numerical solution algorithms are presented.

11.3.1 Numerical Solutions of Linear Fractional-order Differential

Equations

The typical form of linear fractional-order differential equation is given by

a1 t0D
η1y(t) + a2 t0D

η2y(t) + · · ·+ an−1 t0D
ηn−1y(t) + an t0D

ηny(t)

= b1 t0D
γ1u(t) + b2 t0D

γ2u(t) + · · ·+ bm t0D
γmu(t),

(11.22)

where bi and ai are real coefficients, and γi and ηi are orders.

Let us consider a simpler differential equation

a1 t0D
η1
t y(t) + a2 t0D

η2
t y(t) + · · ·+ an−1 t0D

ηn−1
t y(t) + anDηn

t y(t) = u(t), (11.23)
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where u(t) is a given function. The Grünwald–Letnikov definition given in Eqn. (11.4)

can be used directly, and the closed-form solution to the original differential equation is

written as

t0D
ηi
t y(t) ≈ 1

hηi

[(t−t0)/h]∑

j=0

w
(ηi)
j yt−jh =

1

hηi


 yt +

[(t−t0)/h]∑

j=1

w
(ηi)
j yt−jh


 , (11.24)

where w
(βi)
0 can be evaluated recursively from Eqn. (11.3). Substitute it back to the original

equation, the closed-form solution of the differential equation can be written as[10]

yt =
1

n∑

i=1

ai

hηi



ut −
n∑

i=1

ai

hηi

[(t−t0)/h]∑

j=1

w
(ηi)
j yt−jh



 . (11.25)

For the differential equation in Eqn. (11.22), the equivalent input u(t) can be calculated

first, then Eqn. (11.25) can be used to solve the numerical solution of the original equation.

The following MATLAB function can be written

function y=fode_sol(a,na,b,nb,u,t)

h=t(2)-t(1); D=sum(a./[h.^na]); nT=length(t);

vec=[na nb]; W=[]; D1=b(:)./h.^nb(:); nA=length(a);

y1=zeros(nT,1); W=ones(nT,length(vec));

for j=2:nT, W(j,:)=W(j-1,:).*(1-(vec+1)/(j-1)); end

for i=2:nT,

A=[y1(i-1:-1:1)]’*W(2:i,1:nA);

y1(i)=(u(i)-sum(A.*a./[h.^na]))/D;

end

for i=2:nT, y(i)=(W(1:i,nA+1:end)*D1)’*[y1(i:-1:1)]; end

The syntax of the function is y= fode sol(a,η,b,γ,u,t) , where time vector t and

input vector u should be given, and y returns the numerical solution, vectors a and η are

the coefficients and orders of output y(t) in the equation, while b and γ are the coefficients

and orders of input signal u(t).

Example 11.5. Consider the linear fractional-order differential equation

D1.6y(t)+10D1.2y(t)+35D0.8y(t)+50D0.4y(t)+24y(t) = D1.2u(t)+3D0.4u(t)+5u(t),

with zero initial conditions. Assume the input u(t) is unit step signal. The following

statements can be used to solve the differential equation, and the solution is shown in

Fig. 11-5.

>> a=[1,10,35,50,24]; na=[1.6 1.2 0.8 0.4 0];

b=[1 3 5]; nb=[1.2 0.4 0]; t=0:0.01:10; u=ones(size(t));

y=fode_sol(a,na,b,nb,u,t); plot(t,y)
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Fig. 11-5 Numerical solution of the different equation under unit step input.

11.3.2 Numerical Solutions of Caputo Differential Equations

If the initial values of the input and output signals are not zero, Caputo definition

should be used, and we refer the fractional-order differential equations as Caputo

differential equations.

Consider the Caputo linear differential equation

an
C
t0D

βn
t y(t) + an−1

C
t0D

βn−1
t y(t) + · · ·+ a1

C
t0D

β1
t y(t) + a0

C
t0D

β0
t y(t) = û(t). (11.26)

For convenience, assume that βn > βn−1 > · · · > β1 > β0 > 0. The right-hand-

side contains only û(t) function. For equations with linear combinations of u(t) and its

derivatives, the right-hand-side û(t) should be calculated first.

If m = ⌈βn⌉, m initial values, y(t0), y
′(t0), · · · , y(m−1)(t0), are expected to uniquely

solve the Caputo differential equations. Thus, the auxiliary variable z(t) can be introduced

z(t) = y(t)− y(t0)− y′(t0) t− · · · − y(m−1)(t0) t
m−1. (11.27)

The initial values of the first (m − 1)th order derivatives of z(t) are zero. Slightly

change the form of the expression yield

y(t) = z(t) + y(t0) + y′(t0) t+ · · ·+ y(m−1)(t0) t
m−1. (11.28)

Since the initial values of z(t) are zeros, C
t0D

βi
t z(t) = RL

t0 Dβi
t z(t). The βith order Caputo

derivative of the polynomial y(t0) + y′(t0) t+ · · ·+ y(m−1)(t0) t
m−1 can be obtained with

the following function

function s=poly2caputo(a,r), syms u tau;

s=int(diff(poly2sym(a,’tau’),ceil(r))/((u-tau)^(r-ceil(r)+1))...

/gamma(ceil(r)-r),tau,0,u);

The syntax of the function is s= poly2caputo(a,β) , where a is the initial condition

vector a = [y(m−1)(t0), · · · , y′(t0), y(t0)], β is the order of differentiation. The returned

variable s is symbolic expression of the polynomial, with independent variable u.

With the compensation function described earlier, the original differential equation
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can be converted to

an
RL
t0 Dβn

t y(t) + an−1
RL
t0 D

βn−1
t y(t) + · · ·+ a1

RL
t0 Dβ1

t y(t) + a0
RL
t0 Dβ0

t y(t)

= û(t)−
n∑

i=0

ai
C
t0D

βi [ y(t0) + y′(t0)t+ · · ·+ y(m−1)(t0)t
m−1 ].

(11.29)

Similar to fode sol() function, the following MATLAB function can be written to

solve Caputo differential equation. Currently, this function can only be used in solving

differential equations with right-hand-side of the equation contains only u(t). The syntax

of the function is y= fode caputo(a,na,y0,u,t) , where u is the sample of the input

signal, and t is the evenly spaced time vector.

function [y,z]=fode_caputo(a,na,y0,u,t)

h=t(2)-t(1); D=sum(a./[h.^na]); nT=length(t); nb=0; b=1;

vec=[na nb]; W=[]; D1=b(:)./h.^nb(:); nA=length(a);

y1=zeros(nT,1); W=ones(nT,length(vec));

for i=1:length(a), u=u-a(i)*subs(poly2caputo(y0,na(i)),’u’,t); end

for j=2:nT, W(j,:)=W(j-1,:).*(1-(vec+1)/(j-1)); end

for i=2:nT,

A=[y1(i-1:-1:1)]’*W(2:i,1:nA); y1(i)=(u(i)-sum(A.*a./[h.^na]))/D;

end

z=y1’; y=z+polyval(y0,t);

Example 11.6. Consider the Caputo linear differential equation

D3.5
t y(t) + 8D3.1

t y(t) + 26D2.3
t y(t) + 73D1.2

t y(t) + 90D0.5
t y(t) = 90 sin t2,

with initial conditions, y(0) = 1, y′(0) = −1, y′′(0) = 2, and y′′′(0) = 3.

The initial condition vector can be entered, and with the following statements, the

Caputo differential equation can be solved, as shown in Fig. 11-6.

>> a=[1,8,26,73,90]; n=[3.5,3.1,2.3,1.2,0.5]; t=0:0.001:10;

u=90*sin(t.^2); y0=[3 2 -1 1]; y=fode_caputo(a,n,y0,u,t); plot(t,y)
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Fig. 11-6 Numerical solutions of Caputo differential equations.
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11.3.3 Some Important Laplace Transforms

In the analytical solution approach presented later, some of the important Laplace

transforms are needed. Here, we list some of the useful formula. All the Laplace transforms

presented later are the variations of the following formula[11, 13]

L −1

[
sαγ−β

(sα + a)γ

]
= tβ−1E γ

α,β (−atα) . (11.30)

For different values of the parameters, the following formula can be derived

(1) If γ = 1, and αγ = β, or β = α, the above formula can be written as

L −1

[
1

sα + a

]
= tα−1Eα,α (−atα) . (11.31)

This formula can be regarded as the analytical solution of the impulse response of the

fractional-order transfer function 1/(sα+a). It can be seen that the essential representation

in fractional-order system is Mittag–Leffler function, just as the exponential function in

integer-order systems.

(2) If γ = 1, and αγ − β = −1, or β = α+ 1, Eqn. (11.30) can be written as

L −1

[
1

s(sα + a)

]
= tαEα,α+1 (−atα) . (11.32)

The formula can be regarded as the analytical solution of the step response of the

transfer function 1/(sα + a). The above equation can also be written as

L −1

[
1

s(sα + a)

]
=

1

a
[ 1− Eα (−atα) ]. (11.33)

(3) If γ = k is an integer, and αγ = β, i.e., β = αk, Eqn. (11.30) is written as

L −1

[
1

(sα + a)k

]
= tαk−1E k

α,αk (−atα) . (11.34)

and the formula can be regarded as the impulse response of 1/(sα + a)k.

(4) If γ = k is an integer, and αγ − β = −1, i.e., β = αk + 1, Eqn. (11.30) can be

written as

L −1

[
1

s(sα + a)k

]
= tαkE k

α,αk+1 (−atα) . (11.35)

which can be regarded as the unit step response of 1/(sα + a)k.

11.3.4 Analytical Solutions of Commensurate-order Linear

Differential Equations

Consider the orders in Eqn. (11.22). If a greatest common divisor α can be found

among the orders, such that the original equation can be written as

a1D
nα
t y(t) + a2D

(n−1)α
t y(t) + · · ·+ anDα

t y(t) + an+1y(t)

= b1D
mα
t v(t) + b2D

(m−1)α
t v(t) + · · ·+ bmDα

t v(t) + bm+1v(t),
(11.36)
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the original differential equation is referred to as commensurate-order differential equations

of the base order α. Denote λ = sα, the original differential equation can be expressed by

the integer-order transfer function of λ. If there is no repeated poles in the system, the

original transfer function can be written as the following form with the partial fraction

expansion technique

G(λ) =
n∑

i=1

ri
λ+ pi

=
n∑

i=1

ri
sα + pi

. (11.37)

From the formula of Laplace transform given in Eqns. (11.31) and (11.32), the

analytical solution of the impulse and step responses of the system can be obtained as

L −1

[
n∑

i=1

ri
sα + pi

]
=

n∑

i=1

rit
α−1Eα,α (−pit

α) , (11.38)

L −1

[
n∑

i=1

ri
s(sα + pi)

]
=

n∑

i=1

rit
αEα,α+1 (−pit

α) . (11.39)

The latter can alternatively written as

L −1

[
n∑

i=1

ri
s(sα + pi)

]
=

n∑

i=1

ri
pi

[ 1− Eα (−pit
α) ]. (11.40)

If the system has repeated poles, Eqns. (11.34) and (11.35) should be used to write

the analytical solutions to impulse and step responses.

Example 11.7. Consider the fractional-order differential equation

D1.2y(t) + 5D0.9y(t) + 9D0.6y(t) + 7D0.3y(t) + 2y(t) = u(t),

with zero initial conditions, where u(t) is the unit step signal. If base order is selected as

λ = s0.3, the transfer function can be written as

G(λ) =
1

λ4 + 5λ3 + 9λ2 + 7λ + 2
.

The following MATLAB statements can be used to find its partial fraction expansion

regarding to λ,

>> num=1; den=[1 5 9 7 2]; [r,p]=residue(num,den)

and the results can be obtained as

G(λ) = − 1

λ+ 2
+

1

λ+ 1
− 1

(λ+ 1)2
+

1

(λ+ 1)3
,

and the Laplace transform of the output signal can be written as

Y (s) =
1

s
G(λ) = − 1

s(s0.3 + 2)
+

1

s(s0.3 + 1)
− 1

s(s0.3 + 1)2
+

1

s(s0.3 + 1)3
.

Thus, the analytical solution to the step input can be obtained as

y(t) = −t0.3E0.3,1.3

(
−2t0.3

)
+t0.3E0.3,1.3

(
−t0.3

)
−t0.6E 2

0.3,1.6

(
−t0.3

)
+t0.9E 3

0.3,1.9

(
−t0.3

)

=
1

2
+

1

2
E0.3(−2t0.3) + E0.3

(
−t0.3

)
−

[
1− E0.3

(
−t0.3

)]2
+

[
1− E0.3

(
−t0.3

)]3
.



June 12, 2014 8:21 World Scientific Book - 9.75in x 6.5in ws-cacsd-eng

Analysis and Design of Fractional-order Systems 491

11.3.5 Analytical Solutions of Linear Fractional-order Differential

Equations

Consider the following (n+ 1)-term fractional-order differential equation

anDβn
t y(t) + an−1D

βn−1
t y(t) + · · ·+ a0D

β0
t y(t) = u(t), (11.41)

with step input. The analytical solution can be written as

y(t) =
1

an

∞∑

m=0

(−1)m

m!

∑

k0+k1+···+kn−2=m

k0>0, ··· , kn−2>0

(m; k0, k1, · · · , kn−2)

n−2∏

i=0

(
ai

an

)ki

t
(βn−βn−1)m+βn+

n−2∑
j=0

(βn−1−βj)kj−1

(11.42)

E (m)

βn−βn−1, βn+
n−2∑
j=0

(βn−1−βj)kj

(
−an−1

an
tβn−βn−1

)
,

where (m; k0, k1, · · · , kn−2) is defined as

(m; k0, k1, · · · , kn−2) =
m!

k0!k1! · · · kn−2!
. (11.43)

It is difficult to write out analytical solutions to a certain system, since the solution

form is too complicated. This method is quite useful in practical problems.

11.4 Modeling and Analysis of Fractional-order Transfer Functions

Consider the linear fractional-order system shown in Eqn. (11.22). If the initial values

of the input signal u(t) and output y(t) and their derivatives are all zero, with Laplace

transform, the fractional-order transfer function when appended a time delay T can be

written as

G(s) =
b1s

γ1 + b2s
γ2 + · · ·+ bmsγm

a1sη1 + a2sη2 + · · ·+ an−1sηn−1 + ansηn
e−Ts. (11.44)

Compared with the integer-order transfer functions, apart from the numerator and

denominator coefficients, the orders can also be declared. Thus, normally four vectors and

a delay constant can be used to describe uniquely the fractional-order transfer function

model in Eqn. (11.44).

Since this model is useful in the analysis and design of linear fractional-order systems,

we can construct a MATLAB class FOTF to describe the model as it is done in TF class,

in Control System Toolbox. When the class is created, overload functions can be written

to implement the modeling, analysis and design tasks, in a simple and straightforward

way.

In this section, creation of class, and object-oriented programming technique are

demonstrated first, then based on the class, the modeling and analysis of fractional-order

transfer functions are presented.
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11.4.1 FOTF — Creation of a MATLAB Object

If one wants to create a MATLAB class, a name of the class should be selected. For

instance, for fractional-order transfer function, we selected FOTF as its name. A folder

@fotf should be created for it, and all the files related io the class should be placed in the

folder. Normally for a new class, at least two functions should be written, fotf.m is used

to define the class, and display.m is used to display the class. The programming of the

two functions and other supporting functions are illustrated below:

(1) Defining FOTF class. A function fotf.m should be written and placed in the

@fotf folder. The listing of the function is

function G=fotf(a,na,b,nb,T)

if nargin==0,

G.a=[]; G.na=[]; G.b=[]; G.nb=[]; G.ioDelay=0; G=class(G,’fotf’);

elseif isa(a,’fotf’), G=a;

elseif nargin==1 & isa(a,’double’), G=fotf(1,0,a,0,0);

elseif nargin==1 & a==’s’, G=fotf(1,0,1,1,0);

else, ii=find(abs(a)<eps); a(ii)=[]; na(ii)=[];

ii=find(abs(b)<eps); b(ii)=[]; nb(ii)=[];

if nargin==5, G.ioDelay=T; else, G.ioDelay=0; end

G.a=a; G.na=na; G.b=b; G.nb=nb; G=class(G,’fotf’);

end

The command G=fotf(a,na,b,nb,T) can be used to enter a FOTF object, where

a= [a1,a2,· · · ,an],b= [b1,b2,· · · ,bm], na=[η1,η2,· · · ,ηn] and nb=[γ1,γ2,· · · ,γm]

can be used to represent the coefficients and orders of the numerator and denominator

of the system, and T is the delay constant. If there is no delay in the model, the variable

can be omitted.

Similar to tf() function, function s= fotf(’s’) command can be used to declare

an s operator for the fractional-order model. The command G= fotf(k) can be used to

convert a constant to FOTF object. If G is an LTI object in Control System Toolbox, the

command G= fotf(G) can be used to convert the TF object into an FOTF object.

(2) Writing display function. Another function, display.m, should be written in

that folder, which is used to display the FOTF object, once it is created. The listing of

the function is

function display(G)

strN=fpoly2str(G.b,G.nb); strD=fpoly2str(G.a,G.na);

nn=length(strN); nd=length(strD); nm=max([nn,nd]);

disp([char(’ ’*ones(1,floor((nm-nn)/2))) strN]), ss=[];

T=G.ioDelay; if T>0, ss=[’ exp(-’ num2str(T) ’s)’]; end

disp([char(’-’*ones(1,nm)), ss]);

disp([char(’ ’*ones(1,floor((nm-nd)/2))) strD])

function strP=fpoly2str(p,np)

if isempty(np), p=0; np=0; end

P=’’; [np,ii]=sort(np,’descend’); p=p(ii);

for i=1:length(p), P=[P,num2str(p(i)),’s^’,num2str(np(i)),’+’]; end

P=strrep(strrep(strrep(P,’s^0+’,’+’),’s^1+’,’s+’),’s^1-’,’s-’);

P=strrep(strrep(strrep(P,’+-’,’-’),’+1s’,’+s’),’-1s’,’-s’);
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strP=P(1:end-1); nP=length(strP);

if nP>=2 & strP(1:2)==’1s’, strP=strP(2:end); end

Example 11.8. For the fractional-order transfer function model

G(s) =
0.8s1.2 + 2

1.1s1.8 + 1.9s0.5 + 0.4
e−0.5s,

the following MATLAB commands can be used to directly enter the model. The display

result is displayed as

>> G=fotf([1.1,1.9,0.4],[1.8,0.5,0],[0.8,2],[1.2,0],0.5)

It should be noted that these files must be placed in @fotf folder, and should not be

placed elsewhere. Otherwise, the files cannot be called, and they may affect the existing

MATLAB files with the same names.

(3) Other facilities. Further, apart from the two essential functions fotf.m and

display.m, if we want to access the members in the FOTF object directly with MATLAB,

the following two files are written. With these functions, commands like G.nb and

G.na= [0.1,0.2] are supported

function A=subsasgn(G,index,InputVal)

switch index.subs

case {’a’,’na’,’b’,’nb’,’ioDelay’},
eval([’G.’ index.subs,’=InputVal;’]);

if length(G.a)~=length(G.na) | length(G.b)~=length(G.nb)

error(’Error: field pairs (na,a) or (nb,b) mismatched.’)

else, A=fotf(G.a,G.na,G.b,G.nb,G.ioDelay); end

otherwise, error(’Error: Available fields are a, na, b, na, ioDelay.’);

end

function A=subsref(G,index)

switch index.subs

case {’a’,’na’,’b’,’nb’,’ioDelay’}, A=eval([’G.’ index.subs]);

otherwise,

error(’Error: Available fields are a, na, b, na, ioDelay.’);

end

(4) Conversion function from TF to FOTF object. The following function

should be placed in the @tf folder.

function G1=fotf(G)

[n,d]=tfdata(tf(G),’v’); nn=length(n)-1:-1:0;

nd=length(d)-1:-1:0; G1=fotf(d,nd,n,nn,G.ioDelay);

11.4.2 Interconnections of FOTF Blocks

It has been shown in Chapter 4 that integer-order models can be calculated with +, *

and feedback() functions to process the parallel, series and feedback connection. Similar

to the idea, the following overload functions can be written. These files should be placed

in the @fotf folder. Most of the functions are from the book [5], however, some of them

are modified and extended.
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(1) Multiplications of FOTF blocks. To define the expression G=G1*G2 , the

overload function mtimes() should be written. This function is used to evaluate the series

connection of two FOTF blocks, G1(s) and G2(s), the algorithm is

G(s) = G1(s)G2(s) =
N1(s)N2(s)

D1(s)D2(s)
. (11.45)

The overload function can be written as

function G=mtimes(G1,G2)

G1=fotf(G1); G2=fotf(G2); na=[]; nb=[];

a=kron(G1.a,G2.a); b=kron(G1.b,G2.b);

for i=1:length(G1.na), na=[na,G1.na(i)+G2.na]; end

for i=1:length(G1.nb), nb=[nb,G1.nb(i)+G2.nb]; end

G=simple(fotf(a,na,b,nb,G1.ioDelay+G2.ioDelay));

(2) Adding FOTF blocks. The expression G=G1 +G2 should be described by

the overload function plus() to evaluate the parallel connection of two FOTF blocks, with

the algorithm

G(s) = G1(s) +G2(s) =
N1(s)D2(s) +N2(s)D1(s)

D1(s)D2(s)
. (11.46)

The following overload function is implemented

function G=plus(G1,G2)

G1=fotf(G1); G2=fotf(G2); na=[]; nb=[];

if G1.ioDelay==G2.ioDelay

a=kron(G1.a,G2.a); b=[kron(G1.a,G2.b),kron(G1.b,G2.a)];

for i=1:length(G1.a),

na=[na G1.na(i)+G2.na]; nb=[nb, G1.na(i)+G2.nb];

end

for i=1:length(G1.b), nb=[nb G1.nb(i)+G2.na]; end

G=simple(fotf(a,na,b,nb,G1.ioDelay));

else, error(’cannot handle different delays’); end

(3) Feedback function. The function G= feedback(G1,G2) evaluates the

negative connection of the two FOTF blocks. If the positive structure is used, the forward

path can be converted to −G2, such that negative feedback structure can still be used.

G(s) =
G1(s)

1 +G1(s)G2(s)
=

N1(s)D2(s)

D1(s)D2(s) +N1(s)N2(s)
. (11.47)

The listing of the overload function is

function G=feedback(F,H)

F=fotf(F); H=fotf(H); na=[]; nb=[];

if F.ioDelay==H.ioDelay

b=kron(F.b,H.a); a=[kron(F.b,H.b), kron(F.a,H.a)];

for i=1:length(F.b),

nb=[nb F.nb(i)+H.nb]; na=[na,F.nb(i)+H.nb];

end

for i=1:length(F.a), na=[na F.na(i)+H.na]; end
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G=simple(fotf(a,na,b,nb,F.ioDelay));

else, error(’cannot handle blocks with different delays’); end

(4) Simple supporting functions. Function uminus() is used to evaluate G1(s)=

−G(s), with the syntax G1 =−G ; Function G= inv(G1) is used to evaluate G(s) =

1/G1(s); Function minus() is used to evaluate G(s) = G1(s)−G2(s), with G=G1 −G2 .

Function eq() judges whether two FOTF blocks G1 and G2 equal or not, with

key=G1==G2 , if equal, the returned key is 1.

function G=uminus(G1), G=G1; G.b=-G.b;

function G=inv(G1), G=fotf(G1.b,G1.nb,G1.a,G1.na,-G1.ioDelay);

function G=minus(G1,G2), G=G1+(-G2);

function key=eq(G1,G2), key=0; G=G1-G2;

if length(G.nb)==0 | norm(G.b)<1e-10, key=1; end

(5) Right division. With G=G1/G2 to evaluates G(s) = G1(s)/G2(s)

function G=mrdivide(G1,G2)

G1=fotf(G1); G2=fotf(G2); G=G1*inv(G2);

G.ioDelay=G1.ioDelay-G2.ioDelay;

if G.ioDelay<0, warning(’block with positive delay’); end

(6) Power function. With G=G1^n , the power of G1 can be evaluated, if n is

integer. Otherwise, only the case G1 is a Laplace operator can be handled.

function G1=mpower(G,n)

if n==fix(n),

if n>=0, G1=1; for i=1:n, G1=G1*G; end

else, G1=inv(G^(-n)); end, G1.ioDelay=n*G.ioDelay;

elseif G==fotf(1,0,1,1), G1=fotf(1,0,1,n);

else, error(’mpower: power must be an integer.’); end

(7) Simplification function. With G= simple(G) , the coefficients of numerator

and denominator are collected to simplify the description. Sub-function polyuniq() can

be used to collect coefficients of polynomials. The sub function cannot be called directly.

function G=simple(G1)

[a,n]=polyuniq(G1.a,G1.na); G1.a=a; G1.na=n; na=G1.na;

[a,n]=polyuniq(G1.b,G1.nb); G1.b=a; G1.nb=n; nb=G1.nb;

if length(nb)==0, nb=0; G1.nb=0; G1.b=0; end

nn=min(na(end),nb(end)); nb=nb-nn; na=na-nn;

G=fotf(G1.a,na,G1.b,nb,G1.ioDelay);

function [a,an]=polyuniq(a,an)

[an,ii]=sort(an,’descend’); a=a(ii); ax=diff(an); key=1;

for i=1:length(ax)

if ax(i)==0, a(key)=a(key)+a(key+1); a(key+1)=[]; an(key+1)=[];

else, key=key+1; end

end

Example 11.9. The following commands can be used to express the fractional-order PID

controller Gc(s) = 5 + 2s−0.2 + 3s0.6 into MATLAB workspace

>> s=fotf(’s’); Gc=5+2*s^(-0.2)+3*s^0.6
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Example 11.10. The fractional-order transfer function model

G(s) =
(s0.3 + 3)2

(s0.2 + 2)(s0.4 + 4)(s0.4 + 3)
,

can be entered into MATLAB workspace, with the following MATLAB statements, the

expanded model can be obtained

G(s) =
s0.6 + 6s0.3 + 9

s+ 2s0.8 + 7s0.6 + 14s0.4 + 12s0.2 + 24
.

>> s=fotf(’s’); G=(s^0.3+3)^2/(s^0.2+2)/(s^0.4+4)/(s^0.4+3)

Example 11.11. Assume that typical unity negative feedback control system is

G(s) =
0.8s1.2 + 2

1.1s1.8 + 0.8s1.3 + 1.9s0.5 + 0.4
, Gc(s) =

1.2s0.72 + 1.5s0.33

3s0.8
,

the following statements can be used to enter the model into MATLAB workspace

>> G=fotf([1.1,0.8 1.9 0.4],[1.8 1.3 0.5 0],[0.8 2],[1.2 0]);

Gc=fotf([3],[0.8],[1.2 1.5],[0.72 0.33]); GG=feedback(G*Gc,1)

and the closed-loop model obtained is

G(s) =
0.96s1.59 + 1.2s1.2 + 2.4s0.39 + 3

3.3s2.27+2.4s1.77+0.96s1.59+1.2s1.2+5.7s0.97+1.2s0.47+2.4s0.39+3
.

11.4.3 Analysis of FOTF Objects

1. Stability analysis

The stability assessment of commensurate-order systems can be carried out directly.

If the base order of the commensurate-order system is λ = sα, the stable regions for

the commensurate-order system are shown in Fig. 11-7. If the poles of the system of

λ are located in the stable regions, then the system is stable, otherwise the system is

unstable[14]. For the base order α, the boundaries of stable regions are the straight lines

with slopes of ±απ/2. When the base order is α = 1, the system is of integer-order, and

the stable boundary is changed to the imaginary axis, which agrees well with the cases in

integer-order systems.

-

6

−απ
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α
π

2

I
[
sα

]

R
[
s
α]
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Fig. 11-7 Stable regions for commensurate-order systems.

Based on the idea, the following MATLAB function can be written. The function can

be used to convert FOTF object to commensurate-order system first, and then the poles
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of the system can be evaluated. Although sometimes the order of the commensurate-

order system is extremely high, it can also be processed by MATLAB easily. The syntax

[key,α,ǫ,a1]= isstable(G,a0) can be used to assess the stability of the FOTF object,

where key is one for stable. The argument α returns the base order, ǫ is the error tolerance

in root finding, a1 is the slopes of±απ/2, and a0 is the user selected base order, with default

of 0.01.

function [K,alpha,err,apol]=isstable(G,a0)

if nargin==1, a0=0.01; end

a=G.na; a1=fix(a/a0); n=gcd(a1(1),a1(2));

for i=3:length(a1), n=gcd(n,a1(i)); end

alpha=n*a0; a=fix(a1/n); b=G.a; c(a+1)=b; c=c(end:-1:1);

p=roots(c); p=p(abs(p)>eps); err=norm(polyval(c,p));

plot(real(p),imag(p),’x’,0,0,’o’)

apol=min(abs(angle(p))); K=apol>alpha*pi/2;

xm=xlim; xm(1)=0; line(xm,tan(alpha*pi/2)*xm)

title(’Pole-Zero Map’), xlabel(’Real Axis’), ylabel(’Imaginary Axis’)

Example 11.12. Consider the fractional-order transfer function

G(s) =
−2s0.63 − 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
.

The following statements can be used to enter the model into MATLAB workspace

first, then assess the stability of the system.

>> b=[-2,-4]; nb=[0.63,0];

a=[2,3.8,2.6,2.5,1.5]; na=[3.501,2.42,1.798,1.31,0];

G=fotf(a,na,b,nb); [key,alpha,err,apol]=isstable(G,0.001)

It is obvious that the base order is α = 0.001, the commensurate-order model of the

system can be rewritten as an integer-order transfer function of λ

G(λ) =
−2λ630 − 4

2λ3501 + 3.8λ2420 + 2.6λ1798 + 2.5λ1310 + 1.5
.

The roots of the polynomials of λ can be obtained automatically in the function, as

shown in Fig. 11-8(a). The zoomed plots around the x-axis can be obtained in Fig. 11-8(b).

It can be seen that all the poles of the system are located in the stable regions. Thus, the

system is stable. Since α = 0.001, the polynomial is of 3501th order. It may take some

time to find all the poles.

2. Norms of fractional-order systems

The norms of the systems are important quantities in robust control design. The

evaluation algorithms of the norms of fractional-order systems are illustrated here. The

H2 and H∞ norms of G(s) are defined respectively as

||G(s)||2 =

√
1

2πj

∫ j∞

−j∞
G(s)G(−s)ds, (11.48)

||G(s)||∞ = sup
ω

∣∣G(jω)
∣∣. (11.49)
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Fig. 11-8 Pole positions and stability assessment.

It can be seen that the ‖G(s)‖2 norm can be evaluated through numerical integration

methods, while ||G(s)||∞ norm can be obtained with numerical optimization approaches.

The overload function norm() can be written and placed in the @fotf folder, with the

syntaxes norm(G) and norm(G,inf) . In old versions of MATLAB, the integral()

function can be replaced with quadgk().

function n=norm(G,eps0)

j=sqrt(-1); dx=1; f0=0; if nargin==1, eps0=1e-6; end

if nargin==2 & ~isfinite(eps0) % H∞ norm, find the maximum value

f=@(w)[-abs(freqresp(j*w,G))];

w=fminsearch(f,0); n=abs(freqresp(j*w,G));

else % H2 norm, numerical integration

f=@(s)freqresp(s,G).*freqresp(-s,G)/(2*pi*j);

while (1)

n=integral(f,-dx*j,dx*j);

if abs(n-f0)<eps0, n=sqrt(n); break; else, f0=n; dx=2*dx;

end, end, end

where the low-level frequency response function freqresp() is given by

function H1=freqresp(w,G)

a=G.a; na=G.na; b=G.b; nb=G.nb; j=sqrt(-1); T=G.ioDelay;

for i=1:length(w)

P=b*(w(i).^nb.’); Q=a*(w(i).^na.’); H1(i)=P*exp(-T*w(i))/Q;

end

Example 11.13. Consider the fractional-order model given in Example 11.12. The norms

of the system can be evaluated, and the results are n1 = 2.7168, and n2 = 8.6115.

>> a=[2,3.8,2.6,2.5,1.5]; na=[3.501,2.42,1.798,1.31,0];

b=[-2,-4]; nb=[0.63,0]; G=fotf(a,na,b,nb);

n1=norm(G), n2=norm(G,inf)
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11.4.4 Frequency Domain Analysis of FOTF Objects

Consider a fractional-order transfer function G(s). If jω is used to substitute s, through

simple complex number computation, the exact frequency response data can be obtained

directly. The data can be written in the form of the frd() function in the Control System

Toolbox, so that the frequency domain analysis functions such as bode() can be used

to draw frequency domain plots. Overload functions for these can also be written, and

placed in @fotf folder. The listing of the overload function bode() is as follows, with the

supporting function freqresp() as its kernel.

function H=bode(G,w)

if nargin==1, w=logspace(-4,4); end

j=sqrt(-1); H1=freqresp(j*w,G); H1=frd(H1,w);

if nargout==0, bode(H1); else, H=H1; end

Similarly, overload functions for Nyquist plots and Nichols chart are

function nyquist(G,w)

if nargin==1, w=logspace(-4,4); end, H=bode(G,w); nyquist(H);

function nichols(G,w)

if nargin==1, w=logspace(-4,4); end, H=bode(G,w); nichols(H);

Example 11.14. Consider again the fractional-order model in Example 11.12. The

following statements can be used to draw the Body diagram and Nyquist plot as shown

in Figs. 11-9(a) and (b).

>> b=[-2,-4]; nb=[0.63,0]; w=logspace(-2,2);

a=[2,3.8,2.6,2.5,1.5]; na=[3.501,2.42,1.798,1.31,0];

G=fotf(a,na,b,nb); bode(G,w);

figure, w=logspace(-2,4,400); nyquist(G,w); grid
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Fig. 11-9 Frequency domain plots of fractional-order transfer function.

11.4.5 Time Domain Analysis of FOTF Objects

Based on the closed-form solutions of linear fractional-order differential equations, and

its MATLAB implementation in function fode sol(), the overload step response function
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step() and arbitrary input time response function lsim() of the fractional-order transfer

functions can easily be written

function y=step(G,t)

y1=fode_sol(G.a,G.na,G.b,G.nb,ones(size(t)),t);

ii=find(t>G.ioDelay); lz=zeros(1,ii(1)-1);

y1=[lz, y1(1:end-length(lz))];

if nargout==0,

plot(t,y1,t,c_term(G.b,G.nb)/c_term(G.a,G.na),’--’),

title(’Step Response’), xlabel(’Time (Sec)’), ylabel(’Magnitude’)

else, y=y1; end

function c=c_term(a,na) % this function is to find constant term in polynomials

i=find(na==0); c=0; if length(i)>0, c=a(i(1)); end

function y=lsim(G,u,t)

y1=fode_sol(G.a,G.na,G.b,G.nb,u,t);

ii=find(t>G.ioDelay); lz=zeros(1,ii(1)-1);

y1=[lz, y1(1:end-length(lz))];

if nargout==0, plot(t,y1,t,u,’--’),

title(’Step Response’), xlabel(’Time (Sec)’), ylabel(’Magnitude’)

else, y=y1; end

The syntaxes of the two functions are

y= step(G,t), and y= lsim(G,u,t)

where G is the FOTF model, t is an evenly spaced time vector, u is a vector of the input

samples. We tried to make the syntaxes of these overload functions similar to those in the

Control System Toolbox. It should be noted that vector t cannot be omitted here.

Example 11.15. Consider the following fractional-order differential equation

D3.5
t y(t) + 8D3.1

t y(t) + 26D2.3
t y(t) + 73D1.2

t y(t) + 90D0.5
t y(t) = 90 sin t2,

and it can be seen that the fractional-order transfer function is

G(s) =
90

s3.5 + 8s3.1 + 26s2.3 + 73s1.2 + 90s0.5
,

and the input is u(t) = sin t2. The following statements can be used to draw the time

response of the output y(t) as shown in Fig. 11-10, where the solid curve is the output

while the dash plot is the input.

>> a=[1,8,26,73,90]; n=[3.5,3.1,2.3,1.2,0.5];

G=fotf(a,n,90,0); t=0:0.002:10; u=sin(t.^2); lsim(G,u,t);

Similar to other computation problems in MATLAB, the results obtained should be

validated. Smaller step sizes can be tried to seen whether the same results can be obtained.

If the results with smaller step sizes are the same, the results can be accepted, otherwise

the step size should be reduced again. For this example, the results are validated.

11.4.6 Root Locus for Commensurate-order Systems

For commensurate-order systems, if the base order is α, we can let λ = sα, and the

original system can be written as the integer-order model of λ, denoted by G1(λ). Function
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rlocus() in Control System Toolbox can be used to draw the root locus of integer-order

model G1(λ), and superimpose the stability boundaries ±απ/2 on the root locus. Based

on the idea, the overload function rlocus() can be designed. The syntax of the function

is rlocus(G) , where G is a FOTF object.

function rlocus(G)

nx=unique(round(1000*[G.na,G.nb])); nx=nx(nx~=0); nd=max(nx);

for i=1:length(nx), nd=gcd(nd,nx(i)); end

alpha=nd*0.001; na=round(G.na/alpha); nb=round(G.nb/alpha);

b=G.a; den(a+1)=b; den=den(end:-1:1);

b=G.b; num(x+1)=b; num=num(end:-1:1); G1=tf(num,den);

rlocus(G1), xm=xlim; if xm(2)<=0, xm(2)=-xm(1); end

xm(1)=0; line(xm,tan(alpha*pi/2)*xm)

Interactive method in the original rlocus() function is inherited to get the critical

gain of the system with mouse clicks.

Example 11.16. Assume that the fractional-order transfer function is given by

G(s) =
1

s3.5 + 10s2.8 + 35s2.1 + 50s1.4 + 24s0.7
.

It can be seen that the base order is α = 0.7. Let λ = s0.7, the integer-order transfer

function can be written as

G(λ) =
1

λ5 + 10λ4 + 35λ3 + 50λ2 + 24λ
.

The root locus of the fractional-order system can be obtained as shown in Fig. 11-11(a).

Zooming the root locus, the critical gain can be read K = 371, as shown in Fig. 11-11(b).

>> G=fotf([1 10 35 50 24 0],0.7*[5:-1:0],1,0); rlocus(G)

11.4.7 State Space Models of Commensurate-order Systems

If the fractional-order system can be expressed as the commensurate-order transfer

function G(λ) with base order α, the matrices (A,B,C,D) for integer-order model G(λ)

can be obtained, and the state space representation of the fractional-order system can be
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Fig. 11-11 Root locus analysis of fractional-order system.

written as
{

Dαx(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).
(11.50)

The state space models of fractional-order system are not covered in the book. The

interested readers are advised to create their own FOSS class and overload functions.

These tasks are left as a problem.

11.5 Approximation and Reduction of Fractional-order Systems

11.5.1 Oustaloup Filter for Fractional-order Differentiators

The Grünwald–Letnikov definition presented earlier can be used to evaluate accurately

the fractional-order derivatives for given functions. However, there are certain limitations

in control systems. Control systems are always described by block diagrams, for instance,

the input signal to the plant model is often generated by its previous block, i.e., the

controller. Thus, the control signal is not known precisely before numerical derivatives can

be calculated. Thus, block diagram approximations, usually with filters, to the fractional-

order derivative actions are expected.

Normally, filters are classified as continuous and discrete ones, here, continuous filters

to fit the Laplace operator sγ are mainly discussed. It can be seen that fractional-order

derivatives can be approximated by filters.

1. Oustaloup filter approximation

Several filter approximation approaches are summarized in [9], including continued

fraction approximation, Charef approximation[15] and Oustaloup approximation[16]. Here,

only Oustaloup algorithm is presented.

Since pure fractional-order derivative can be represented by straight lines in Bode

diagrams, it is not possible to fit them at the whole frequency range with integer-order

filters. A specific interested frequency interval (ωb, ωh) should be assigned, with the
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continuous transfer function

Gf(s) = K
N∏

k=1

s+ ω′
k

s+ ωk
, (11.51)

where the poles, zeros and gain can be obtained from

ω′
k = ωbω

(2k−1−γ)/N
u , ωk = ωbω

(2k−1+γ)/N
u , K = ωγ

h , (11.52)

with ωu =
√

ωh/ωb. Based on the algorithm, the following MATLAB function can be

written to implement Oustaloup filter. If y(t) is the input signal to the filter, the output

of the filter can be approximately regarded as Dγ
t y(t).

function G=ousta_fod(gam,N,wb,wh)

k=1:N; wu=sqrt(wh/wb); wkp=wb*wu.^((2*k-1-gam)/N);

wk=wb*wu.^((2*k-1+gam)/N); G=zpk(-wkp,-wk,wh^gam); G=tf(G);

with the syntax G= ousta fod(γ,N,ωb,ωh) , where γ is the order of derivative, N is

the order of the filter. The variables ωb and ωh are the lower- and upper-bounds of

the frequency of users’ choice. Normally within the frequency range, the Bode diagram

fractional-order operator are satisfactory, while the fitting outside the range is not. The

algorithm presented here avoided the restriction on ωbωh = 1, the two frequencies can be

selected independently.

In the function, γ can either be positive or negative, for differentiation and integrals.

Also, the absolute values of γ can be larger than 1, for instance, γ = 3.7. However, in this

case, it is suggested to keep −1 < γ < 1, and leave the remaining integers as TF object.

For instance, better to use s3.7 = s3s0.7, or s3.7 = s4s−0.3.

2. Improved Oustaloup filter

In practical applications, the orders of the numerator and denominator are the same,

and if at the boundaries of the frequency the fitting is not good, improved Oustaloup

filters[17] and optimal filter design method[18] can be used. The latter can also be extended

to fit complex orders, however, its implementation is rather complicated.

The following improved Oustaloup filter is presented[17]. The limitations of the filter

is that the order should be between 0 and 1. The improved filter is

sγ ≈
(
dωh

b

)γ (
ds2 + bωhs

d(1− γ)s2 + bωhs+ dγ

) N∏

k=1

s+ ω′
k

s+ ωk
, (11.53)

and the definitions of ωk, ω′
k are the same as in Oustaloup filter. Two adjustable

parameters b, d are introduced, and normally they can be set to b = 10, d = 9. The

MATLAB implementation is given by

function G=new_fod(r,N,wb,wh,b,d)

if nargin==4, b=10; d=9; end, k=1:N; wu=sqrt(wh/wb);

wkp=wb*wu.^((2*k-1-r)/N); wk=wb*wu.^((2*k-1+r)/N);

G=zpk(-wkp,-wk,(d*wh/b)^r)*tf([d,b*wh,0],[d*(1-r),b*wh,d*r]);

3. Filter approximation of high-order fractional-order systems

Based on Oustaloup filter and its improved form, high-order integer-order approx-

imation to fractional-order transfer function, i.e., each fractional-order term can be
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approximated with the filters. Based on the idea, the following MATLAB function is

designed, and placed in the @fotf folder.

function Ga=high_order(G,filter,wb,wh,N)

if nargin==1, filter=’ousta_fod’; wb=1e-3; wh=1e3; N=5; end

Ga=pseudo_poly(G.b,G.nb,filter,wb,wh,N)...

/pseudo_poly(G.a,G.na,filter,wb,wh,N);

Ga=minreal(Ga);

function G1=pseudo_poly(a,na,filter,wb,wh,N), G1=0; s=tf(’s’);

for i=1:length(a), na0=na(i); n1=floor(na0);

if na0>n1, g1=eval([filter ’(na0-n1,N,wb,wh)’]);

else, g1=1; end

G1=G1+a(i)*s^n1*g1;

end

The syntax of the function is G1 = high order(G,filter,ωb,ωh,N) , where G is the

FOTF object, filter can be selected as ’ousta fod’ or ’new fod’. The arguments ωb,

ωh and N are the parameters of the Oustaloup filters. The default values are ωb = 10−3,

ωh = 103, N = 5, and the default filter is Oustaloup filter.

It is interesting to note that if the FOTF object G is, in fact, an integer-order model,

G1 = high order(G) will convert it into a TF object G1.

Example 11.17. Consider high-order fractional-order transfer function

G(s) =
−2s0.63 − 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
.

Selecting frequency interval (ω1, ω2), and suitable order N , the high-order integer-order

approximation can be obtained, with examples s3.501 = s3s0.501. The low-level command

is rather complicated and tedious

>> N=9; w1=1e-3; w2=1e3; g1=ousta_fod(0.501,N,w1,w2); s=tf(’s’);

g2=ousta_fod(0.42,N,w1,w2); g3=ousta_fod(0.798,N,w1,w2);

g4=ousta_fod(0.31,N,w1,w2); g5=ousta_fod(0.63,N,w1,w2);

G1=(-2*g5-4)/(2*s^3*g1+3.8*s^2*g2+2.6*s*g3+2.5*s*g4+1.5)

Alternatively, high order() function can be used directly

>> b=[-2 -4]; nb=[0.63 0]; a=[2 3.8 2.6 2.5 1.5];

na=[3.501 2.42 1.798 1.31 0]; G=fotf(a,na,b,nb);

G2=high_order(G,’ousta_fod’,w1,w2,N); order(G2)

bode(G1,G2); hold on; bode(G); t=0:0.004:30;

figure; y=step(G,t); step(G1,G2,30); line(t,y)

It can be seen that a 45th order integer-order model can be obtained. The exact

Bode diagram and its integer-order approximation can be obtained as shown in Fig. 11-

12(a). It can be seen that the magnitude curves are almost the same in the specified

frequency interval, and the phase difference is 360◦, thus they are effectively the same as

well. For larger frequency intervals, the frequency response fitting are also satisfactory.

Step responses of the fractional-order model and the integer-order approximation can also

be obtained as shown in Fig. 11-12(b). It can be seen that the approximation of step

response is also satisfactory.
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Fig. 11-12 The time and frequency domain comparisons.

11.5.2 Approximations of Fractional-order Controllers

In control system design, the controller obtained may be rather complicated, and may

not be easy to implement. For instance, if [(as + b)/(cs + d)]α term is contained in the

controller, the following procedures can be used in controller approximation:

(1) Generate exact frequency response samples to the fractional-order controller;

(2) Select suitable orders in numerator and denominator for the controller;

(3) Use function invfreqs() to get the frequency response fitting model;

(4) Validate the fitting results. If it is not satisfactory, the orders should be increased in

step (2), or go to step (1) to select again the interested frequency range until a satisfactory

model can be obtained.

Example 11.18. Consider the following fractional-order QFT controller model [5]

Gc(s) = 1.8393

(
s+ 0.011

s

)0.96(
8.8× 10−5s+ 1

8.096 × 10−5s+ 1

)1.76
1

(1 + s/0.29)2
.

The controller is rather complicated, so that approximate integer-order controllers are

expected, with frequency response fitting approach. Since the frd() function in MATLAB

can only be used to deal with integer-order systems, its member variable ResponseData

can be used to complete the computation with non-integer powers. Thus, the frequency

response data of G(s) can be obtained. Function invfreqs() can then be used to get

the fitting model, within the frequency range of ω ∈ (10−4, 100) rad/s, with the following

statements

>> w=logspace(-4,0); G1=tf([1 0.011],[1 0]); F1=frd(G1,w);

G2=tf([8.8e-5 1],[8.096e-5 1]); F2=frd(G2,w);

s=tf(’s’); G3=1/(1+s/0.29)^2; F3=frd(G3,w); F=F1;

h1=F1.ResponseData; h2=F2.ResponseData; h3=F3.ResponseData;

h=1.8393*h1.^0.96.*h2.^1.76.*h3; F.ResponseData=h;

[n,d]=invfreqs(h(:),w,4,4); G=tf(n,d)

The approximate controller obtained is

G(s) =
2.213×10−7s4+1.732×10−6s3+0.1547s2+0.001903s+2.548×10−6

s4+0.5817s3+0.08511s2+0.000147s+1.075×10−9
.

We can use a larger frequency interval (10−6, 102) rad/s to validate the fitting results.
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It can be seen the Bode diagram of the two controllers is shown in Fig. 11-13. It can be

seen that apart from the frequency range at very low frequency, the fitting is satisfactory

in other frequencies. If we want to enhance the fitting results, the number of frequency

samples in step (1) should be increased.

>> w=logspace(-6,2,200); F1=frd(G1,w); F2=frd(G2,w); F=F1;

F3=frd(G3,w); h1=F1.ResponseData; h2=F2.ResponseData;

h3=F3.ResponseData; h=1.8393*h1.^0.96.*h2.^1.76.*h3;

F.ResponseData=h; bode(F,’-’,G,’--’,w)
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Fig. 11-13 Comparisons of fractional-order QFT controller and integer-order approximation.

11.5.3 Optimal Reduction Algorithm for Fractional-order Models

To get better reduction model, the error between the original model and reduced model

to the same input signal should be defined, and the target is to minimize the error criterion.

The optimal reduced model can be converted to the minimization of the following objective

function

J = min
θ

∥∥ Ĝ(s)−Gr/m,τ (s)
∥∥
2
, (11.54)

where θ is the vector of undetermined model parameters, i.e.,

θ = [β1, β2, · · · , βr, α1, α2, · · · , αm, τ ]
T
. (11.55)

Since there is delay terms in Eqn. (11.54), Padé approximation is used for them, and

the objective function can be changed to the following norm evaluation form

J = min
θ

∥∥ Ĝ(s)− Ĝr/m(s)
∥∥
2
. (11.56)

There is no analytical solution to the problem, thus numerical optimization technique

can be used. Based on the optimal model reduction algorithm in Chapter 4, we can solve

directly the optimal model reduction problem.

Example 11.19. Consider again the fractional-order transfer function in Example 11.17,

the following commands can be used to get 45th order approximate model



June 12, 2014 8:21 World Scientific Book - 9.75in x 6.5in ws-cacsd-eng

Analysis and Design of Fractional-order Systems 507

>> b=[-2 -4]; nb=[0.63 0]; a=[2 3.8 2.6 2.5 1.5];

na=[3.501 2.42 1.798 1.31 0]; G=fotf(a,na,b,nb);

G1=high_order(G,’ousta_fod’,1e-3,1e3,9); order(G1)

Since the order of the original approximation is too high, model reduction techniques

can be used with MATLAB function opt app() presented in Chapter 4. The third-order

reduced model is obtained as

Gr(s) =
0.6122s2 + 0.6244s + 0.02588

s3 + 0.2014s2 + 0.1972s + 0.01494
.

Comparisons on step responses and Bode diagrams are shown in Figs. 11-14(a) and

(b). It can be seen that the approximate third-order model is very close to that of the

original system. For high frequency magnitude fitting, it appears that the fitting is not

good. However, since logarithmic scale is used, there should not be too much difference.

>> Gr=opt_app(G1,2,3,0); step(G1,Gr,’--’,30);

hold on, step(G,0:0.01:30);

figure; bode(G1,Gr,’--’); hold on; bode(G);
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Fig. 11-14 Time and frequency domain comparisons.

11.6 Simulation Methods for Complicated Fractional-order

Systems

11.6.1 Simulation with Numerical Laplace Transform

It has been shown that inverse Laplace transforms can be used to solve simulation

problems. However, Laplace and inverse Laplace transforms are not always solvable for

complicated systems. For instance, the system with the controller in Example 11.18 cannot

be easily solved. Thus, numerical techniques have to be used instead. The INVLAP()

function is a powerful tool for performing numerical inverse Laplace transforms[19, 20],

with the syntax [t,y]= INVLAP(fun,t0,tf,n) .

The essential input arguments are: fun, which is a string describing the Laplace

transform form F (s), and (t0, tf), which is the time interval, with n points.
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There was a bug in the original code when t0 = 0, and this is fixed in the package of

the book. The remaining input arguments are internal parameters and the use of default

values is suggested. More input arguments can be used in the function call, details can be

found in doc INVLAP.

Example 11.20. Considering a fractional-order transfer function

G(s) =
(s0.4 + 0.4s0.2 + 0.5)√

s(s0.2 + 0.02s0.1 + 0.6)0.4(s0.3 + 0.5)0.6
,

where the input is u(t) = e−0.2t sin t, the Laplace transform of it can be obtained and

converted to a string. The output signal can be obtained as shown in Fig. 11-15. The

execution speed of INVLAP() is extremely fast, the whole process needing only 0.3 s.

>> G=’(s^0.4+ 0.4*s^0.2+0.5)/(s^0.2+0.02*s^0.1+0.6)^0.4/(s^0.3+0.5)^0.6’;

syms t; u=exp(-0.2*t)*sin(t); Y=[’(’ G ’)*’ char(laplace(u))];

[t,y]=INVLAP(Y,0.01,25,1000); plot(t,y)
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Fig. 11-15 Response to complicated fractional-order system.

To further illustrate the topic, suppose that the input signal is given by a set of sample

points. Of course, using the symbolic Laplace transform is not possible for functions given

by sample points. Interpolation, and then numerical integration, should be performed to

find the numerical Laplace transform. Based on the source code of INVLAP(), numerical

Laplace transform functions can be embedded to solve complicated problems. A new

MATLAB function is written, with the syntax

[t,y]= num laplace(fun,t0,tf,n,x0,u0)

where fun is a string describing the transfer function of the system. The extra arguments

x0 and u0, specify the sample points of the input signal. Note that the function is

extremely slow. The listing of the M-function is

function [t,y]=num_laplace(G,t0,tf,nnt,x0,u0)

FF=strrep(strrep(strrep(G,’*’,’.*’),’/’,’./’),’^’,’.^’);

a=6; ns=20; nd=19; t=linspace(t0,tf,nnt);

if t0==0, t=t(2:end); nnt=nnt-1; end % the original bug is fixed here

n=1:ns+1+nd; alfa=a+(n-1)*pi*1j; beta=-exp(a)*(-1).^n; n=1:nd;

bdif=fliplr(cumsum(gamma(nd+1)./gamma(nd+2-n)./gamma(n)))./2^nd;

beta(ns+2:ns+1+nd)=beta(ns+2:ns+1+nd).*bdif; beta(1)=beta(1)/2;
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for kt=1:nnt

tt=t(kt); s=alfa/tt; bt=beta/tt;

U=integral(@(x)interp1(x0,u0,x,’spline’).*exp(-s.*x),...

t0,tf,’ArrayValued’,true);

btF=bt.*eval(FF).*U; y(kt)=sum(real(btF));

end

Example 11.21. If the analytical form of the input function is not known, but instead

only a set of sample points is given, the following statements can be given to calculate the

output signal. After around 30 s, the numerical solution can be found and it is exactly

the same as the one shown in Fig. 11-15. It can be seen from the example that extremely

complicated problems can be solved in this way.

>> x0=0:0.5:25; y0=exp(-0.2*x0).*sin(x0);

[t,y]=num_laplace(G,0,25,200,x0,y0); plot(t,y)

11.6.2 Block Diagram Modeling and Simulation of Linear

Fractional-order Systems

It can be seen from the presentation earlier that the best way to evaluate the fractional-

order derivatives to signals inside the system is to use filters with Oustaloup algorithms

and other similar algorithms. Besides, since the orders of numerator and denominator are

the same in Oustaloup filter and may lead to algebraic loops in simulation, a low-pass

filter can be appended with bandwidth ωh. The Simulink model in Fig. 11-16(a) can be

established to approximate fractional-order differentiation. We can mask the model into

a reusable fractional-order differentiation block. With suitably selected frequency ranges

and order, the block can be used in the block diagram-based modeling of complicated

nonlinear fractional-order systems.

The masked block is given in Fig. 11-16(b). Double click the block, the dialog box is

shown in Fig. 11-16(c). The necessary parameters can be assigned in the dialog box. In

the initialization column in the masking process, the following statements can be specified,

and the labels in the icon can correctly be displayed.

wb=ww(1); wh=ww(2);

if key==1, G=ousta_fod(gam,n,wb,wh); else, G=new_fod(gam,n,wb,wh); end

num=G.num{1}; den=G.den{1}; T=1/wh; str=’Fractional\n’;

if isnumeric(gam)

if gam>0, str=[str, ’Der s^’ num2str(gam) ];

else, str=[str, ’Int s^{’ num2str(gam) ’}’]; end

else, str=[str, ’Der s^gam’]; end

In real simulation processes, the algorithms ode15s or ode23tb are recommended, since

the model is likely to be stiff equations. The following examples are used to demonstrate

of fractional-order differential equations.

Example 11.22. Consider the linear fractional-order differential equation studied in

Example 11.15, expressed as

D3.5
t y(t) + 8D3.1

t y(t) + 26D2.3
t y(t) + 73D1.2

t y(t) + 90D0.5
t y(t) = 90 sin t2.
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Fig. 11-16 Design of fractional-order differentiator block.

Let z(t) = D0.5
t y(t), the original model can be rewritten as

z(t) = sin t2 − 1

90

[
D3

t z(t) + 8D2.6
t z(t) + 26D1.8

t z(t) + 73D0.7
t z(t)

]
.

Simulink model for the differential equation can be established, as shown in Fig. 11-17.

After simulation, the output signal can be obtained and it is exactly the same as the one

obtained in Example 11.15.

Out1
1
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1/90

Gain2

73

Gain1

26

Gain

8

Fractional
Int  s^{−0.5}

Fractional
Der  s^0.7

Fractional
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Fractional
Der  s^0.6

Fcn

90*sin(u[1]^2)

Derivative2

du/dt

Derivative1

du/dt

Derivative

du/dt

Clock

Fig. 11-17 Simulink representation for the linear fractional-order model (c11fode1.mdl).

Two more masked blocks are established for the package of the book, one for fractional-

order transfer function, and the other for fractional-order PID controller. These blocks

can be used directly in Simulink as shown in Fig. 11-18(a).

Approximate fPID controller

Fractional−order
PID controller

Approximate FOTF model

Fractional−order
transfer function

(a) fractional-order blocks (c11mblks.mdl)

Out1
1

Fcn

90*sin(u^2)
Clock

Approximate FOTF model

Fractional−order
transfer function

(b) linear model (c11mlin1.mdl)

Fig. 11-18 Simulink library for fractional-order linear blocks.
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The code for the Initialization pane of the Approximate FOTF model block can be

expressed as

if strcmp(class(na),’fotf’), G=na;

else

if length(na)~=length(a),

errordlg(’Error’,’Mismatch on the denominator’)

end

if length(b)~=length(nb),

errordlg(’Error’,’Mismatch on the denominator’)

end

G=fotf(a,na,b,nb);

end

if kFilter==1, str=’ousta_fod’; else, str=’new_fod’; end

wb=ww(1); wh=ww(2);

G0=high_order(G,str,wb,wh,N); [numG,denG]=tfdata(G0,’v’);

Example 11.23. With the Approximate fractional-order transfer function block, the

Simulink model for the differential equation in Example 11.15 can be established as shown

in Fig. 11-18(b). Double click the Approximate fractional-order transfer function block, the

parameters of the system can be entered as shown in Fig. 11-19. Alternatively, if the FOTF

object G is established in MATLAB workspace, we can simply enter G in the Orders of

denominator edit box. It can be seen that the model is much simpler than the one in the

previous example. Simulation result with the new model is exactly the same as the one in

the previous example.

Fig. 11-19 Parameter dialog box for the FOTF block.
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11.6.3 Block Diagram Modeling and Simulation of Nonlinear

Fractional-order Systems

For complicated nonlinear fractional-order systems, the overload functions step(),

lsim() and the numerical inverse Laplace transforms cannot be used. Block diagram-

based modeling and simulation strategies are more important. Here, the modeling and

simulation methods are illustrated through an example.

Example 11.24. Consider the following nonlinear fractional-order differential equation

3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
+

∣∣2D0.7y(t)
∣∣1.5 + 4

3
y(t) = 5 sin 10t.

Based on the equation, the explicit form of the y(t) signal is written as

y(t) =
3

4

[
5 sin 10t− 3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
−

∣∣2D0.7y(t)
∣∣1.5

]
.

A Simulink model can be constructed as shown in Fig. 11-20(a). It can be seen from

the simulation model that the accuracy of the simulation results are to some extent, related

to the specifications of the filters. Different frequency intervals and filter orders may affect

the simulation results. Simulation results for different frequency intervals and filter orders

are obtained in Fig. 11-20(b). It can be seen that all the curves agree well.

y(t)
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(a) Simulink model (c11mfod2.mdl)
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(b) simulation results

Fig. 11-20 Simulink model and simulation results.

11.7 Design of Optimal Fractional-order PID Controllers

11.7.1 Optimal Design of PIλDµ Controllers

The structures of the fractional-order PID controllers are different from the PID

controllers studied in Chapter 8. The fractional PIλDµ model can be expressed as

Gc(s) = Kp +
Ki

sλ
+Kds

µ. (11.57)

In the illustration shown in Fig. 11-21, the orders of integral and differentiation are
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used as the two axes. It can be seen that the conventional PID-type controllers are

just a few specific points on the order planes. However, the orders of the controllers

in fractional-order PID controllers can be relatively arbitrarily chosen. Normally with

stability considerations, 0 < λ, µ < 2. Because there are two more parameters to tune

than the conventional PID controller, the fractional-order PID controllers are usually more

flexible, and may expect better performances[21].

(a) conventional PID

-

6

-

6µ µ

(b) fractional-order PIλDµ

λ λ

PD PID

P PI

O

PD PID

P PI

O

µ=1

λ=1

µ=1

λ=1

Fig. 11-21 Illustration of fractional-order PID controllers.

From loop shaping point of view, the slopes in Bode magnitude plots are multiples

of 20 dB/dec in integer-order systems, while in fractional-order systems there is no such

restrictions. Thus, the shape can be arbitrarily shaped. For instance, at the places around

the crossover frequency, the slope of the magnitude plot can be assigned to very small

values, such that the robustness of the closed-loop system can be increased.

Example 11.25. For the given fractional-order plant model

G(s) =
1

s2.6 + 2.2s1.5 + 2.9s1.3 + 3.32s0.9 + 1
,

it might be difficult to design a PID controller. Thus, there are some attempts to

approximate the model with FOPDT model Gp(s) = ke−Ls/(Ts+1), so that the methods

in Chapter 8 can be used to design PID controllers. For instance, Wang–Juang–Chan

algorithm [22] can be used to design optimal ITAE criterion PID controller

Kp =
(0.7303 + 0.5307T/L)(T + 0.5L)

K(T + L)
, Ti = T + 0.5L, Td =

0.5LT

T + 0.5L
. (11.58)

It can be seen that the FOPDT model can be obtained with

>> N=5; w1=1e-3; w2=1e3; s=fotf(’s’);

G=1/(s^2.6+3.3*s^1.5+2.9*s^1.3+3.32*s^0.9+1);

G0=high_order(G,’ousta_fod’,w1,w2,N); Gr=opt_app(G0,0,1,1)

The reduced model can be obtained as Gr(s) = 0.1836e−0.827s/(s + 0.1836). Then a

PID controller can be designed with the following statements

>> L=Gr.ioDelay; [n,d]=tfdata(Gr,’v’); K=n(2)/d(2); T=d(1)/d(2);

Ti=T+0.5*L; Kp=(0.7303+0.5307*T/L)*Ti/(K*(T+L));

Td=(0.5*L*T)/(T+0.5*L); s=tf(’s’); Gc=Kp*(1+1/Ti/s+Td*s),

w=logspace(-4,4,200); C=fotf(Gc);
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H=bode(G*C,w); bode(G0*Gc,’-’,H,’--’); figure;

t=0:0.01:20; step(feedback(G0*Gc,1),20),

y=step(feedback(G*C,1),t); hold on; plot(t,y,’--’)

The PID controller can be designed as Gc(s) = 3.9474 (1 + 1/(5.8232s) + 0.3843s).

Under such a controller, the open-loop Bode diagram and closed-loop step response can

be obtained as shown in Figs. 11-22(a) and (b). It can be seen that the two systems are

quite close.
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Fig. 11-22 Fractional-order PID control results.

Example 11.26. Consider the plant model in the previous example. Now the searching

algorithm can be used to design optimal PIλDµ controller. The following MATLAB

function can be written to describe the objective function

function fy=fpidfun(x,G,t,key)

s=fotf(’s’); C=x(1)+x(2)*s^(-x(4))+x(3)*s^(x(5));

dt=t(2)-t(1); y=step(feedback(G*C,1),t); e=1-y;

if key==1, fy=dt*sum(t.*abs(e)); else, fy=dt*sum(e.^2); end

disp([x(:); fy].’)

where in the last statement, the intermediate results can be obtained. The function has

three additional arguments, G is the FOTF plant model, t is the evenly spaced time vector,

and key is the criterion, with 1 for ITAE criterion, otherwise for ISE criterion.

Assume the terminate time is 10 s, and assume the parameters of the PIλDµ controller

are all smaller than 10, and the orders are in the interval (0, 2). The function

fminsearchbnd() is recommended to find optimal PIλDµ controller

>> xm=zeros(5,1); xM=[10; 10; 10; 2; 2];

x0=[Kp,Kp/Ti,Kp*Td,1,1].’; t=0:0.01:20;

x=fminsearchbnd(@fpidfun,x0,xm,xM,[],G,t,1)

s=fotf(’s’); Gc1=x(1)+x(2)*s^(-x(4))+x(3)*s^(x(5));

step(feedback(G*Gc1,1),t);

y=step(feedback(G*C,1),t); hold on; plot(t,y,’--’)

The optimal controller is Gc(s) = 10 + 2.3088s−0.9877 + 8.9811s0.4286 . The step

responses of the systems under this controller and the one obtained in the previous example,
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are obtained as shown in Fig. 11-23. It can be seen that the fractional-order PID controller

is better than the integer-order controller.
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Fig. 11-23 Comparisons of different PID controllers.

Based on the above idea, an optimal fractional-order PID controller design function

can be designed for linear fractional-order plants

function [Gc,x,y]=fpidtune(G,type,t,key,x0,xm,xM,ff)

if nargin==7, ff=optimset; ff.MaxIter=50; end

x=fminsearchbnd(@fpidfuns,x0,xm,xM,ff,G,t,key,type);

[y,Gc]=fpidfuns(x,G,t,key,type);

The syntax of the function is

[Gc,x,y]= fpidtune(G,type,t,key,x0,xm,xM,ff)

where G is the FOTF plant model, type is the expected controller type, with options

’fpid’, ’fpi’, ’fpd’, ’fpidx’, and ’pid’, with ’fpidx’ for PIDµ controller with integer

integral. The argument t is the evenly spaced time vector, key is the type of criterion, with

options ’itae’, ’ise’, ’iae’ and ’itse’, with ’itae’ recommended. The definitions of

variables x0, xm, xM are the same as defined earlier. Variable ff is the optimization

control template, and it can be omitted.

For different types of fractional-order controllers and criteria, the supporting MATLAB

function describing the objective function can be written as

function [fy,C]=fpidfuns(x,G,t,key,type), s=fotf(’s’);

switch type

case ’fpid’, C=x(1)+x(2)*s^(-x(4))+x(3)*s^(x(5));

case ’fpi’, C=x(1)+x(2)*s^(-x(3));

case ’fpd’, C=x(1)+x(2)*s^x(3);

case ’fpidx’, C=x(1)+x(2)/s+x(3)*s^x(4);

case {’pid’,’PID’}, C=x(1)+x(2)/s+x(3)*s;

end

dt=t(2)-t(1); y=step(feedback(G*C,1),t); e=1-y;

switch key

case {’itae’,’ITAE’}, fy=dt*sum(t.*abs(e));

case {’ise’,’ISE’}, fy=dt*sum(e.^2);

case {’iae’,’IAE’}, fy=dt*sum(abs(e));

case {’itse’,’ITSE’}, fy=dt*sum(t.*e.^2);
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otherwise, error(’Error: available criteria are itae, ise, iae, itse.’)

end

disp([x fy])

Since this is an open structure with switch commands, other controller structures and

criteria selections can be added to the source code directly by the readers, if necessary.

Example 11.27. Consider again the problem in Example 11.26. The optimal fractional-

order PID controller can be obtained directly with the following MATLAB function, and

the results are exactly the same as the ones in the previous example.

>> s=fotf(’s’); G=1/(s^2.6+3.3*s^1.5+2.9*s^1.3+3.32*s^0.9+1);

xm=zeros(5,1); xM=[10; 10; 10; 2; 2]; x0=[1;1;1;1;1].’;

t=0:0.01:20; [Gc,x]=fpidtune(G,’fpid’,t,’itae’,x0,xm,xM)

The following statements can also be used to design the optimal PID controller

>> xm=zeros(3,1); xM=[10; 10; 10]; x0=[1;1;1].’;

t=0:0.01:20; [Gc1,x]=fpidtune(G,’pid’,t,’itae’,x0,xm,xM)

step(feedback(G*Gc,1),t); hold on; step(feedback(G*Gc1,1),t);

with an optimal conventional PID controller Gc1 = 9.9945+1.5107/s+9.1101s. The closed-

loop step responses under the two controllers are shown in Fig. 11-24. It can be seen that

the closed-loop response under PIλDµ controller is much better than the conventional PID

controller for the fractional-order plant model.
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Fig. 11-24 Comparisons of different PID controllers.

If the plant model and controller model are both approximated with Oustaloup filters,

the following statements should be specified, and integer-order closed-loop model, usually

of extremely high order (for this example, a 43th order closed-loop model is obtained, with

7th order Oustaloup filter), can be obtained. The closed-loop step response of the high

order integer-order system is almost the same as the one obtained in Fig. 11-24.

>> Gc0=high_order(Gc,’ousta_fod’,1e-3,1e3,7);

G0=high_order(G,’ousta_fod’,1e-3,1e3,7); G1=feedback(G0*Gc0,1);

order(G1), step(G1,t); hold on; step(feedback(G*Gc,1),t)

Gc10=high_order(Gc1); step(feedback(G0*Gc10,1),t)

Example 11.28. The fractional-order PID control system is modeled with Simulink as

shown in Fig. 11-25. When the parameters in the plant and fractional-order PID controller
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are specified, simulation results can be obtained. It can be seen that the control results

are exactly the same as the one obtained in the previous example.

Out1

1

Step Scope
Approximate fPID controller

Fractional−order
PID controller

Approximate FOTF model

Fractional−order
transfer function

Fig. 11-25 Fractional-order PID controller system (file name: fPID simu.mdl).

11.7.2 OptimFOPID — An Optimal Fractional-order PID

Controller Design Interface

Based on the algorithms presented earlier, a graphical user interface, OptimFOPID,

is designed. This function can be used to design optimal fractional-order PID controllers

with user interface[23].

The plant model G in FOTF format should be entered into MATLAB workspace

first. Then type optimfopid command at MATLAB prompt. The user interface shown

in Fig. 11-26 will be displayed. Click Plant model, the model G can be loaded into the

interface. Then the controller type, object function type and terminate simulation time

should be selected in the interface. Clicking Optimize button will invoke the optimal

controller design process, and finally the optimal controller can be obtained in Gc, in

MATLAB workspace. Clicking Closed-loop response button will show the step response of

the closed-loop system.

Example 11.29. Consider the plant model

G(s) =
1

0.8s2.2 + 0.5s0.9 + 1
,

The following procedures can be used to design optimal fractional-order PID controller.

(1) Type optimfopid command to invoke the interface.

(2) Enter the FOTF model G into MATLAB workspace, and click Plant model to load

the model into the interface.

>> G=fotf([0.8 0.5 1],[2.2 0.9 0],1,0)

(3) Set the upper bounds of the controller parameters to 15, and terminate time at

8. It should be noted that the upper bounds of controller parameters may affect the final

search results.

(4) Click the Optimize button to initiate the optimization process, and the optimal

fractional-order controller can be obtained, and for this example, the optimal vector is

x = [ 6.5954 15.7495 11.4703 0.9860 1.1932 ].

The controller model can be written as

Gc(s) = 6.5954 +
15.7495

s0.986
+ 11.4703s1.1932 .

(5) Click Closed-loop response to draw the closed-loop step response of the system, as

shown in Fig. 11-27(a). Since the order of integrator is very close to 1, PIDˆmu item from
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Fig. 11-26 Optimal fractional-order PID controller design interface.

the controller type listbox can be selected, and optimal PIDµ controller can be designed.

The result is very close to the one obtained by PIλDµ controller.

>> t=0:0.01:8; y=step(feedback(G*Gc,1),t); plot(t,y)
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Fig. 11-27 Comparisons of optimal fractional-order and integer-order PID controllers.

If the PID item from the Controller Type listbox is selected, and then if Optimize button

is clicked, the optimal integer-order PID controller can be designed, and the closed-loop

step response can be obtained as shown in Fig. 11-27(b). It can be seen that for this

example, the results of fractional-order PID controller is better than the integer-order one.

For linear fractional-order plant models, the OptimFOPID interface can be used to
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directly design fractional-order PID controllers in a user friendly manner. There are also

limitations in the interface. For instance, in the current version, the plant should not

contain time delays. Also, controllers with actuator saturation cannot be processed.

11.8 Problems

(1) Assume that the fractional-order differential equation is [2]

0.8D2.2
t y(t) + 0.5D0.9

t y(t) + y(t) = 1, y(0) = y′(0) = y′′(0) = 0,

find the numerical solutions. If orders 2.2 and 0.9 are approximated by integers 2 and

1, the original differential equation can be approximated by integer-order differential

equation. Please compare the approximation results.

(2) With the code for Mittag–Leffler functions, verify the following

(i) Eα,β(x) + Eα,β(−x) = 2Eα,β(x
2), (ii) Eα,β(x)− Eα,β(−x) = 2xEα,α+β(x

2),

(iii) Eα,β(x) =
1

Γ(β)
+ Eα,α+β(x), (iv) Eα,β(x) = βEα,β+1(x) + αx

d

dx
Eα,β+1(x).

(3) Two filter approximation approaches are proposed in the chapter on fractional-order

derivatives. Please compare the two filters for the following fractional-order system,

in frequency and step response fitting.

G(s) =
s+ 1

10s3.2 + 185s2.5 + 288s0.7 + 1
.

(4) Analyze the stability of the closed-loop system, and draw Bode diagram and closed-

loop step response for the following system.

G(s) =
s1.2 + 4s0.8 + 7

8s3.2 + 9s2.8 + 9s2 + 6s1.6 + 5s0.4 + 9
, Gc(s) = 10 +

9

c0.97
+ 10s0.98.

(5) Draw root locus for the following fractional-order plant models and find the critical

gains of them.

(i) G1(s) =
s1.5 + 9s+ 24s0.5 + 20

3s2 + 16s1.5 + 9s+ 20s0.5
, (ii) G2(s) =

s+ 1

10s3.2 + 185s2.5 + 288s0.7 + 1
.

(6) With reference to the FOTF class definition and overload function programming

methods, please define a FOSS class for state space representation of commensurate-

order systems, and write suitable overload functions. Write out FOTF and FOSS

conversion functions. The transfer functions in Problem 5 can be used to validate

the class.

(7) Consider the complicated plant models

G(s) =
(s0.2 + 3s0.1 + 3)0.6

s0.7(s0.1 + 2)0.5(s0.4 + 2)0.3
.

It is obvious that FOTF class cannot be used to handle the plant model. Thus, the

overload bode() function cannot be used directly. Please draw the Bode diagram of

the system through low-level commands.

(8) Please consider the following fractional-order control system with
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G(s) =
1

s0.5(s0.2 + 2)0.7
e−1.3s, with Gc(s) = 0.8 +

2

s0.45
+ 0.6s0.3.

Again the FOTF class cannot be used to handle the closed-loop system representa-

tion. Please try to draw the unit step response of the closed-loop system through

numerical inverse Laplace transform approach.

(9) Solve the following nonlinear fractional-order differential equation with zero initial

conditions, where f(t) = 2t+ 2t1.545/Γ(2.545).

D2x(t) + D1.455x(t) + [D0.555x(t) ]
2
+ x3(t) = f(t).

(10) For the fractional-order model

G1(s) =
5

s2.3+1.3s0.9+1.25
, G2(s) =

5s0.6 + 2

s3.3+3.1s2.6+2.89s1.9+2.5s1.4+1.2
,

please find integer-order approximations, and find out the suitable order of the filters.

Find also a suitable reduced order model, and compare frequency domain and step

response of the reduced order systems.

(11) Find suitable low-order approximations to the following fractional-order models, and

compare frequency domain fitting results.

(i) G(s) =
25

(s2 + 8.5s + 25)0.2
, (ii) G(s) =

562920(s + 1.0118)0.6774

(s2 + 54.7160s + 590570)0.8387
.

(12) Design optimal integer-order PID controller and PIλDµ controller, and observe the

control results.

G(s) =
5s0.6 + 2

s3.3 + 3.1s2.6 + 2.89s1.9 + 2.5s1.4 + 1.2
.

(13) Consider the fpidfuns() function. If the following controller and criterion are used,

please extend the function

Gc(s) = Kp

(
1 +

Ki

s

)(
1 +

Kds

Ts+ 1

)
, I =

∫ ∞

0

t2e2(t)dt.

(14) Extend the OptimFOPID interface, such that more optimization algorithms can be

used, to design optimal PIλDµ controllers with global optimization algorithms.

(15) Consider the following uncertain fractional-order plant model G = b/(as0.7+1), with

nominal values a = b = 1, approximate the plant model with integer-order transfer

function, and design robust optimal H∞ controller, and observe control results with

simulation methods for a ∈ (0.2, 5), and b ∈ (0.2, 1.5).
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A
abs, 32, 36, 128, 129, 154, 156, 168
acker, 275, 280
adapt sim, 415, 416
addmf, 433
addrule, 434
addvar, 433
aic, 139
all, 24
angle, 497
any, 24, 32, 156
apolloeq*, 79, 80
are, 69
arx, 135, 136, 137, 139, 142, 143
assignin, 72, 281–283, 286, 468, 469
augtf, 373, 374, 375, 378–383, 386, 397
augw, 373
axes, 54, 55
axis, 37, 45, 194

B
balreal, 108, 132
bar, 37, 38, 236
bar3, 41
bass pp*, 275
bode, 190, 192, 267, 268, 270, 365, 376,

397, 499, 504
branch, 374
break, 28, 29, 72, 84, 164, 310, 313, 498

C
c10bp pid.mdl*, 447
c10funun*, 468

c10mfzpid.mdl*, 443
c10mga1*, 464
c10mhebb*, 445
c10mmras.mdl*, 410
c10mrbf.mdl*, 451
c10plant.mdl*, 451
c10shebb.mdl*, 445
c11fode1.mdl*, 510
c2d, 105, 106, 107, 115, 177, 192, 229
c2eggui1*, 49
c2eggui2*, 52
c2eggui4*, 55
c6mcompc.mdl*, 228
c6mdde3.mdl*, 234
c6mloopa.mdl*, 239
c6mmulr.mdl*, 232
c6mnlrsys.mdl*, 236
c6mtimv.mdl*, 230
c6mtimva.mdl*, 233
c7mmopt.mdl*, 309
c7optm1*, 281, 282
c7optm2*, 282, 283
c7optm3*, 283
c8mantiw.mdl*, 324
canon, 162, 163
caputo*, 482, 483, 487
care, 272
ceil, 26, 482, 487
char, 172, 492
chol, 65
chrpid*, 335
class, 492, 511
cmpc, 423, 424
collect, 25, 118
comet, 37
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comet3, 76, 225

compass, 37

cond, 65

contour, 42

contour3, 42

conv, 13, 33, 126, 128, 130, 267, 326, 334,
413, 417, 421

convs*, 33

crosscorr, 141

ctrb, 157, 158, 275, 276

ctrbf, 159

D
d2c, 106, 107, 115, 142

dcgain, 129, 174, 325, 326

dec2mat, 391–393, 395

decouple*, 310, 311

decouple pp*, 313

defuzz, 433

det, 13, 62, 63

dhinf, 382

diag, 273, 280, 299, 364

diff, 172, 483, 487, 495

dimpulse, 415

diophantine eq*, 412, 413, 417

disp, 88, 129, 245, 246, 250, 492, 514, 516

display*, 492

dlinmod, 241

dlqr, 272

dlyap, 68

doc, 30, 508

double, 393, 394, 395, 483

dsolve, 80, 81, 172

E
eig, 63, 153–155, 273, 276, 299

eq*, 495

error, 31, 32, 68, 162, 253, 256, 257, 440,
446, 448, 449, 484, 493

errorbar, 37

errordlg, 54, 257, 511

eval, 54, 388, 493, 504, 509

evalfis, 434

evalin, 72

exp, 39, 41, 42, 44, 70, 71, 74, 83

expand, 25, 27

expm, 66, 166, 167, 169, 182

eye, 68, 113, 115, 120, 121, 156, 162, 168,
273, 301, 304, 305, 313, 379, 381, 392,
415

ezplot, 39, 70, 74, 171, 182, 464

F
factor, 25, 26, 27, 63
factorial, 32
faddf, 201
fdly, 201
feasp, 391, 392, 395
feather, 37
fedmunds, 304, 306, 307
feedback, 153–155, 184, 194, 229, 268
feedbacksym*, 112, 118
fgersh, 199
fget, 305, 307
figure, 76, 78, 123, 125, 126, 129–133,

141, 191, 192, 235, 236, 268, 269, 307,
364, 365, 367, 376, 379, 383, 385, 397,
404, 424–426, 482, 514

fill, 37
fill3, 41
find, 24, 174, 199, 257, 267, 388, 467, 492,

500
findop, 240
findsum*, 30, 31
finv, 201
fix, 26, 495, 497
fliplr, 23, 156, 508
flipud, 23
floor, 26, 32, 492, 504
fmincon, 83, 84, 282, 283, 464
fminsearch, 82, 129, 282, 498
fminsearchbnd, 82, 514, 515
fminunc, 82
fmul, 201, 202
fmulf, 201
fodblk.mdl*, 510
fode caputo*, 488
fode sol*, 486, 500
folipd*, 342, 343
fotf*, 492, 493–501, 504, 511, 514, 515
fourier, 86
fPID simu.mdl*, 517
fpidfun*, 514
fpidfuns*, 515
fpidtune*, 515, 516
frd, 142, 201, 499, 505, 506
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freqresp*, 498, 499
fsolve, 71, 72
funm, 66
fuz pid*, 440
fuzzy, 435

G
ga, 463
gamma, 482–484, 487, 508
gaopt, 463, 465, 468
gaoptimset, 463, 464
gcbo, 51
gcd, 26, 27, 497, 501
gcf, 49
get, 37, 49, 54
getDelayModel, 100, 116
getfopdt*, 325, 326, 327, 334, 335
getlmis, 391, 392, 393, 395
getopinfo, 240
gevp, 391
glfdiff*, 481, 482, 483
gpc 1a*, 430
gram, 158, 160
grid, 35, 54, 76, 184, 185, 190–192, 499
grpbnds, 400, 401
guide, 46, 56

H
h2syn, 378
han td*, 253
hankel, 123, 275, 393
heaviside, 171
help, 12, 25, 31, 223, 382
high order*, 504, 507, 511, 513, 516
hilb, 26, 62
hinflmi, 396, 397
hinfsyn, 378, 379–383, 385, 386, 397
hist, 37, 236
hold, 41, 70, 74, 137, 179, 182, 192, 228,

268, 269, 416, 507, 514, 516

I
iddata, 137, 139, 143
idinput, 141, 142, 143
ifourier, 86
ilaplace, 86, 87, 169–171, 173, 176
ilc lsim*, 459, 460, 461

imag, 199, 200, 298, 497
image, 245, 246
impulse, 175, 180
imread, 56, 246
inagersh*, 199, 200–202, 299–301
initial, 181
inline, 33
int, 166, 167, 182, 487
int2str, 388
integral, 498, 509
interp1, 482, 509
intstable*, 155
INVLAP, 507, 508
inv, 12, 64, 66, 68, 120–122, 162, 164,

165, 199, 202, 275, 299–301, 305, 310,
313, 325, 395, 431, 495

invfreqs, 142, 505
ipdctrl*, 341
isa, 492
isfinite, 325, 484, 498
isnumeric, 509
isprime, 26
isstable, 153, 154, 497
iztrans, 88, 170–172

K
kalman, 361, 365, 367
kron, 68, 494

L
laplace, 86, 169, 170, 173, 508
lcm, 26, 27
leadlagc*, 267, 268–270
length, 33, 72, 124, 129, 162, 168, 201,

236, 240, 257, 267, 494, 495
line, 35, 410, 497, 501, 504
linearize, 241, 242
linmod, 241, 242
linmod2, 241
linprog, 84, 466
linspace, 236, 508
lmiterm, 391, 392, 393, 395
lmivar, 391, 392, 395
loglog, 37
logspace, 142, 192, 200, 299–301, 304,

368, 403, 499, 505, 506, 513
lpshape, 400, 403
lqg, 363, 364
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lqr, 272, 273, 280, 365, 367, 368
lsim, 137, 142, 143, 180, 181, 277, 500
lsqcurvefit, 84, 85, 325
ltrsyn, 367, 368
ltru, 367
ltry, 367
lu, 65
luenberger*, 164, 165
lyap, 68, 158
lyap2lmi*, 388, 389
lyapsym*, 68

M
margin, 195, 196, 269, 325, 330, 331, 334
mat2dec, 392, 393
max, 72, 269, 282, 283, 326, 431, 459, 492,

501
mesh, 41, 42
meshgrid, 42, 44
mfedit, 433
mfrd*, 201, 202, 299–301, 304, 305
min, 199, 299, 495, 497
mincx, 391, 393
minreal, 109, 143, 155, 280, 310, 313,

383, 504
minus*, 495
mksys, 373
ml func*, 484, 485
mlf, 484, 485
modred, 132
more sol*, 72, 73, 74
mpc, 425, 426
mpccon, 422, 423
mpcsim, 422, 423
mpctool, 426
mpower*, 495
mrdivide*, 495
mtimes*, 494
multi step*, 257
mv2fr, 199, 200–202
mvss2tf, 197
my fact*, 32
my fibo*, 32
myhilb*, 31, 32

N
nargin, 31, 50, 68, 72, 112, 128, 199, 267,

298, 484, 492, 499, 504

new fod*, 503, 509
newfis, 433
nichols, 190–192, 499
nnbp pid*, 447
nnrbf pid*, 449
nntool, 443
nonlin, 286
norm, 63, 68–70, 72, 74, 85, 165, 166, 310,

313, 392, 484, 497, 498
normGeomSelect, 462
null, 67
num laplace*, 508, 509
num2str, 253, 256, 492, 509
numden, 25, 110
nyquist, 54, 189, 190, 192, 194, 197, 365,

367, 499

O
obsvsf*, 279, 280
ocd*, 284, 286
ode15s, 75, 78
ode23, 75
ode45, 75, 76–80
odeset, 75, 80
ohklmr, 133
ones, 143, 282, 283, 298, 306, 307, 415,

430, 450, 481, 486, 488
open system, 211
operspec, 240
opt app*, 128–131, 325, 343, 507, 513
opt fun*, 129
optimfopid*, 517
optimpid*, 352
optimset, 72, 84, 85, 282, 515
order, 504, 507, 516
orth, 65
ousta fod*, 503, 504, 509, 513

P
pade, 126, 129, 186
pade app*, 123, 126
pademod*, 123, 124
paderm*, 126, 179, 186
patternsearch, 462, 469
pcode, 34
pfshape, 400, 403
pid, 321, 323
pid tuner*, 338
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pidstd, 321, 322, 323, 328, 335, 341–343
pidtool, 345
pidtune, 344, 354, 357
pinv, 64, 67
place, 275, 276, 278
plot, 34, 35, 36, 55, 74, 76, 79, 85, 137,

181, 192, 200, 230, 235
plot3, 41
plotbnds, 400, 401
plotnyq, 199
plotstep, 421, 422
plottmp, 398, 401
plotyy, 483
plus*, 494
polar, 37
pole, 153
poly, 63, 107, 275
poly2caputo*, 487, 488
poly2sym, 110, 176, 487
poly2tfd, 421, 422, 424
polyfit, 85
polyval, 64, 85, 488, 497
polyvalm, 64, 313
pretty, 80, 118
pso Trelea vectorized, 469
psuediag*, 298, 300
pzmap, 152, 153, 154

Q
quadgk, 498
quadprog, 84
quiver, 37

R
rand, 71, 72, 164, 446, 469
randn, 415
rank, 63, 67, 157, 158, 164
rat, 26
readfis, 434, 438
real, 156, 199, 200, 298, 497, 509
reg, 279
rem, 26
reshape, 68, 256, 448, 450, 484
residue, 490
return, 129
rlocus, 182, 183–188, 501
rls ident*, 255
roots, 13, 497

rossler*, 76
rot90, 23, 123
roulette, 462
round, 26, 484, 501
routhmod*, 124, 125
rref, 67
rziegler*, 334

S
satur non*, 250
schmr, 132
sdpvar, 393, 394, 395
sectbnds, 400, 401
semilogx, 37, 38, 305, 307
semilogy, 37
set, 37, 49, 50, 51, 54, 56, 98, 141, 174,

394, 395
setdiff, 156
setlmis, 391, 392, 395
shading, 44
sigma, 202
sigmaplot, 202, 203
sign, 250, 253, 448, 481
sim, 223, 226, 228, 230, 233, 281–283,

286, 410, 425, 426, 468, 469
sim observer*, 277, 278
simple, 25, 63, 80, 81, 87, 88, 112, 167,

495
simset, 223, 230, 233
simsizes, 251, 253, 256, 257, 430
simulannealbnd, 462
sin, 23, 33, 267, 278, 325, 328, 459, 464,

481
sisobnds, 399, 401
sisotool, 290, 291, 293, 348, 354
size, 68, 70, 72, 164, 199, 249, 298, 310,

381, 382, 388
smat2ss*, 375
solve, 13, 70
solvesdp, 393, 394, 395
sort, 492, 495
sprintf, 250
sqrt, 87, 129, 173, 199, 253, 267, 325, 415,

418, 498, 503
ss, 99, 100, 104, 106–109, 113–115, 132,

179
ss augment*, 168, 169
ss2ss, 156, 162, 165
sscanform*, 162, 163
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ssdata, 381, 382
st contr*, 417, 418
staircase wave.mdl*, 257
stairs, 37, 38, 141, 228, 416, 422, 424
std tf*, 312, 313
stem, 37, 38, 76, 421
stem3, 41
step, 129, 130, 132, 175, 176–180, 184,

194, 226, 242
strcmp, 511
strrep, 492, 508
subplot, 38, 45, 200, 226, 299, 300, 305,

307, 416, 424, 460
subs, 25, 70, 167, 171, 176, 182, 483, 488
subsasgn*, 493
subsref*, 493
sum, 27, 28, 164, 168, 446, 450, 459, 486,

488, 509, 514, 515
surf, 42, 44, 45, 174, 482
surfc, 42, 60
surfl, 60
svd, 65
sym, 19, 26, 62, 66–68, 112, 169, 170
sym2poly, 110
sym2tf*, 110
syms, 63, 66, 67, 70, 80, 81, 86, 87, 118,

166, 169, 170, 172, 181
sys2smat*, 374, 375, 386, 397

T
tan, 35, 328, 497, 501
tf, 97, 98, 102, 103, 104, 106–108, 113,

176
tf2sym*, 110
tfd2step, 421, 422, 424
tfdata, 98, 313, 493, 511, 513
timmomt*, 122, 123, 126
totaldelay, 128
tournSelect, 462
trace, 63
trim, 240
tzero, 204

U
ufopdt*, 343, 344
uigetfile, 56
uminus*, 495
unpck, 396, 397

ureal, 375, 376, 384
usample, 375, 376

V
varargin, 33, 49, 50
view, 44, 45
vpa, 19, 62

W
warning, 495
waterfall, 60
writefis, 434

X
xlim, 44, 305, 307, 497
xor, 24

Y
ylim, 182, 190

Z
zero, 153
zeros, 73, 74, 100, 106, 107, 109, 122, 124,

168, 256, 306, 307, 326, 388
ziegler*, 328, 329, 331, 332, 335
zoom, 56
zpk, 101, 104, 109, 124, 129, 132, 163,

229, 241, 268, 280, 364, 382, 403, 503
ztrans, 88, 170, 171
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A
A-MIGO algorithm, see approximate MI-

GO algorithm, 349
A/D converter, 524, 525, 531
Abel theorem, 175
ACC benchmark problem, 540, 541, 543
Ackermann algorithm, 275
activation function, 443, 449
ActiveX, 56, 57
actuator saturation, 217, 230, 283, 320,

350, 353, 354, 445, 519
additional parameter, 250, 254–257, 261
additive uncertainty, 376, 377
AIC, 139, 140
AIRC model, 543
Akaike information criterion, see AIC
algebraic simplification, 119–121
analytical solution, 13, 19, 62, 67, 68, 74,

80, 81, 86, 88, 105, 152, 153, 166, 167,
277, 281, 485, 489–491, 506

anonymous function, 33, 71, 72, 75, 77,
82, 83, 85

anti-windup, 323, 324, 353
approximate differentiator, 324, 411
approximate MIGO algorithm, 348, 349
Arduino, 12, 523, 533–537
artificial intelligence, 407
ARX model, 135, 138
augmentation, 167
augmented system, 168, 169, 369, 371,

373–375, 379
auto-regressive exogenous model, see ARX

model
autocorrelation function, 141

automatic tuning, 10, 263, 293, 294, 319

B

back-propagation algorithm, 444, 447

backward Euler algorithm, 322

balanced realization, 108, 131

base order, 490, 496, 497, 500, 501

basic set of solutions, 67, 89

Bass–Gura algorithm, 274

benchmark problem, 12, 91, 473, 539–543

bilinear transform, see also Tustin trans-
form, 25, 105, 380, 381

binomial, 13, 478

bisection method, 58

block diagram, 6, 7, 11–13, 95, 116, 117,
119, 209, 210, 219, 225, 233, 243, 502,
509, 539

block library, 11, 210, 211, 249, 250, 524,
534

Bode diagram, 52, 123, 130, 133, 188–196,
263, 264, 503, 504, 506, 514

BP, see back-propagation algorithm

C

Caputo definition, 478–483, 487, 488

Cauchy integral formula, 478

characteristic equation, 182, 186, 187, 274

Chien–Hrones–Reswick algorithm, 319,
335, 336

Cholesky decomposition, 65

closed-loop model reduction, 380

commensurate-order, 490, 496, 497, 500–

551
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502, 519

complementary sensitivity function, 372,
405

complimentary sensitivity function, 372

conditional structure, 18, 27, 28

connection matrix, 119, 120

constrained MPC design, 423, 424

constrained optimization, 81–84, 357, 423,
425, 463, 544

constraint, 82, 83, 271, 281–283, 387, 388,
390, 393, 399, 400, 422–425, 427–430,
465, 466

continuous model identification, 141, 142

Control Desk, 523–525, 531, 532

Control System Toolbox, 8, 68, 108, 110,
112, 114, 126, 137, 151–203, 209, 213,
216, 219, 226, 263, 272, 275, 290, 321,
322, 344, 345, 349, 352, 354, 361, 373,
390, 425, 492, 499–501

controllability, 11, 61, 62, 108, 151, 152,
157–160, 276

controllability Gramian, 108, 158

controllable staircase form, 160, 162, 163

controller reduction, 10

controls, 47, 51, 75, 531, 532

covariance matrix, 360, 361, 363

critical gain, 151, 183, 185–187, 501, 502

crossover frequency, 263–266, 269, 270

curve fitting, 61, 81, 84, 85, 325

D
d-step ahead, 413, 414, 419
D/A converter, 525, 531

dead zone, 13, 218, 219

decoupling, 11, 178, 188, 202, 264, 297,
307, 308, 310–314

defuzzification, 433, 434

describing function, 210, 237

determinant, 62, 63, 88

diagonal dominant, 189, 200–202, 297–
301, 316

Diophantine equation, 411–413

discrete Lyapunov equation, 68

discrete Riccati equation, 69, 272

discrete-time PID controller, 213, 322

discrete-time state space, 95, 104, 105, 153

discrete-time transfer function, 95, 103,
104, 106, 134, 142, 146, 170, 184, 192,

229

discretization, 105, 177

disturbance, 155, 194, 195, 235, 276, 308,
320, 359, 360, 363, 364, 377, 398, 409,
412, 416, 432, 534, 540

disturbance rejection, 339, 399

dominant mode method, 125

dSPACE, 12, 523–525, 531–533

dual, 160, 161

dynamic compensation matrix, 301

dynamic decoupling, 263, 313

dynamic matrix, 419, 420

E

eigenvalue, 4, 63, 64, 151–153, 161, 198,
199, 276, 298, 388

eigenvector, 4, 63, 161, 298

Euler algorithm, 75

explicit ODE, 75

F

F-14 aircraft model, 539, 540, 543

feasible solution, 83, 328, 388, 465

feedback connection, 110, 111, 113, 493

final value, 232

first-order plus dead-time, see FOPDT

fixed-step algorithm, 221, 236, 530

FOLIPD plant, 342

FOPDT plant, 319, 324, 326–328, 336,
338, 341, 343, 344, 513

forgetting factor, 144, 416, 461

FOTF class, 491–501, 504, 511, 514, 515,
517

fractional-order calculus, 477

Caputo definition, see ∼
Cauchy integral formula, see ∼
Grünwald–Letnikov definition, see ∼
Riemann–Liouville definition, see ∼

full-rank matrix, 63, 157, 160, 164, 275,
384

fully decoupled, 306, 311, 543

fuzzy inference, 407, 432–438, 441

Fuzzy Logic Toolbox, 217, 433, 434

fuzzy PID controller, 439–442

fuzzy set, 407, 432–435
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G

gain margin, 195, 196, 326

GAOT, 353, 462, 463

Gaussian disturbance, 361, 365

Gaussian white noise, 235

generalized eigenvalue problem, 388, 390

generalized inverse, 64

generalized Lyapunov equation, see also
Sylvester equation, 68

generalized minimum variance, 417

generalized predictive control, 11, 429–432

Genetic Algorithm Optimization Toolbox,
see GAOT

genetic algorithm, 356, 407, 462–468, 470

Gershgorin circles, 198–200, 207, 299

Gershgorin theorem, 198, 207

Global Optimization Toolbox, 353, 462,
463, 466

GPC, see generalized predictive control

gradient, 463

Gramian, 131, 132, 158

graphical user interface, 10, 17, 37, 45–57,
137, 421, 441, 517

Grünwald–Letnikov definition, 478–483,
486, 502

GUI, see graphical user interface, 535

H

H2 norm, 165, 498

Hankel matrix, 59, 274

Hankel norm, 133

hardware-in-the-loop, 523, 524, 529, 533

Arduino, see ∼
dSPACE, see ∼
Quanser, see ∼

Hardy space, 9, 359

Heaviside function, 171

Hebb learning algorithm, 444

Hermitian matrix, 64, 387

Hermitian transpose, 22, 65

heuristic control, 418

HIL, see hardware-in-the-loop

H∞ norm, 9, 165, 390, 392, 394, 497, 498

Hurwitz criterion, 151, 152

hyper stability, 409

I
IAE, 336, 337, 339
identification, see system identification
ILC, see iterative learning control
implicit differential equation, 259
implicit function, 39, 70
impulse response, 179, 180, 418, 489
incremental PID controller, 323, 447
individual, 462
initial condition, 81, 90, 181, 487
input–output stability, 155
integral criterion, 261, 284

IAE criterion, see IAE
ISE criterion, see ISE
ITAE criterion, see ITAE

integral separation, 12, 323, 477–483
intelligent control, 10, 11, 407
internal delay, 100, 104, 108, 114–116,

153, 179, 201, 213, 226, 453
internal stability, 155
internal state, 109, 157, 159
inverse Laplace transform, 86, 87, 169, 507
inverse matrix, 12, 64
inverse Nyquist array, 151, 196–198, 200–

202, 263, 297–301
inverted pendulum, 316, 526, 542
IPD plant, 341
ISE, 127, 128, 288, 289, 336, 353, 354, 514
ITAE, 281, 285–289, 309, 336, 337, 353,

354, 469, 513
iterative learning control, 455–461

J
Jordanian canonical form, 161, 163
Jordanian matrix, 162
Jury table, 151, 153, 154

K
Kalman decomposition, 160, 161
Kalman filter, 2, 5, 359–361, 363–366, 368
Kronecker product, 303

L
Laplace transform, 61, 86–88, 96, 97, 103,

107, 128, 169, 174, 180, 321, 477, 480,



June 12, 2014 8:21 World Scientific Book - 9.75in x 6.5in ws-cacsd-eng

554 Modeling, Analysis and Design of Control Systems in MATLAB and Simulink

489–491, 502
inverse Laplace transform, see ∼
numerical inverse Laplace transform,

see ∼
numerical Laplace transform, see ∼

lead–lag compensator, 11, 263–267, 269,
270, 281, 282, 293, 294, 314

least squares, 23, 84, 85, 92, 135, 144, 254,
255, 303, 304, 325

limit cycle, 237
linear quadratic, 11, 270–272, 281, 315,

359, 360, 390
linear quadratic criterion, 9, 272
linear time invariant, see LTI
linearization, 210, 237, 239, 241, 242, 350,

543
LMI Toolbox, 377
load disturbance, 320
loop shaping, 348, 372, 373, 377, 382, 384,

402, 513
loop structure, 27, 32, 84, 139, 267, 331,

409
loop transfer recovery, see also LTR, 359,

360, 366
Lorenz equation, 90, 260
LQG, see linear quadratic Gaussian
LTI, 96, 99, 105, 107, 108, 112, 114, 152,

165, 175, 179, 180, 201, 213, 226, 350,
352, 373
discrete-time state space, see ∼
discrete-time transfer function, see ∼
multivariable system, see ∼
SS object, see ∼
state space, see ∼
TF object, see ∼
transfer function, see ∼
zero–pole–gain, see ∼
ZPK object, see ∼

LTR, see also loop transfer recovery, 366–
368

LU decomposition, 13, 65
Luenberger canonical form, 161, 163–165
Luenberger observer, 2
Lyapunov equation, 66–68, 128, 158, 160

discrete Lyapunov equation, see ∼
generalized Lyapunov equation, see

Sylvester equation
Lyapunov inequality, see ∼

Lyapunov inequality, 388, 394
Lyapunov Theorem, 152, 388

M
M-circle, 189, 190, 193
M-function, 18, 30–34, 71, 72, 75, 76, 82,

83, 250, 251, 256, 261, 508
M-sequence, see PRBS, 134, 141
Maclaurin series, 122, 126
masked block, 11, 210, 243–249, 257, 441,

447, 449, 509, 510
MATLAB toolboxes

Control System Toolbox, see ∼
Fuzzy Logic Toolbox, see ∼
Genetic Algorithm Optimization

Toolbox, see ∼
Global Optimization Toolbox, see ∼
LMI Toolbox, see ∼
Model Predictive Control Toolbox,

see ∼
Multivariable Frequency Design Tool-

box, see ∼
Neural Network Toolbox, see ∼
Optimization Toolbox, see ∼
Particle Swarm Optimization Tool-

box, see ∼
QFT Toolbox, see ∼
Robust Control Toolbox, see ∼
Signal Processing Toolbox, see ∼
System Identification Toolbox, see ∼

matrix equation, 61, 66, 72–74, 122
maximum principle, 281
measurement noise, 155, 320, 359, 360,

363
membership function, 433, 435–437
memory, 19, 457
MESA Box, 536, 537
MFD Toolbox, 197, 199–201, 304
MIGO algorithm, 348
minimum realization, 109, 121, 147, 161,

280
minimum sensitivity problem, 9, 405
minimum variance, 411, 414, 415, 417, 471
Mittag–Leffler function, 477, 480, 483–

485, 489
mixed sensitivity problem, 371, 379, 382
Model Predictive Control Toolbox, 420,

422, 424, 426, 541, 543
model predictive control, 11, 217, 407, 418,

422, 424–428, 430, 452, 471, 544
constrained MPC design, see ∼
dynamic matrix, see ∼



June 12, 2014 8:21 World Scientific Book - 9.75in x 6.5in ws-cacsd-eng

Index 555

Model Predictive Control Toolbox,
see ∼

unconstrained MPC design, see ∼
model reduction, 121–134, 289, 380, 506,

507

model reference adaptive control, 407–410,
454, 455

Moore–Penrose generalized inverse, 64

motor encoder, 525

MPC, see model predictive control

MRAS, see model reference adaptive sys-
tem, 408

multi-rate system, 226, 231, 232

multi-valued nonlinearity, 237–239

multiplicative uncertainty, 376, 377

Multivariable Frequency Design Toolbox,
see MFD Toolbox, 8

multivariable model identification, 142,
143

multivariable system, 102, 105, 113, 121,
177, 180, 196, 200, 202, 204, 226, 301,
309

N

negative definite matrix, 387

negative feedback, 112, 118, 199, 218, 494

Neural Network Toolbox, 8, 443, 451, 454

neural network, 407, 442–455

Nichols chart, 151, 190–193, 195, 206, 207,
402, 499

nodal equation, 120

nominal system, 383, 399, 400, 428

nominal value, 375, 376, 471, 520

non-integer order, 477

non-minimal phase, 349, 381, 415

nonnegative definite matrix, 69

nonzero initial condition, 151, 181, 213,
479

norm, 359, 369, 370, 390, 459–461, 497,
498, 506

null space, 67

numerical inverse Laplace transform, 507,
512, 520

numerical Laplace transform, 507–509

Nyquist plot, 52, 151, 189, 190, 192, 193,
207, 325, 326, 330, 331, 365, 366, 368,
369, 499

O
object-oriented, 3, 8, 12, 46, 47, 424, 477,

491
objective function, 82, 83, 127–129, 165,

281, 282, 284–286, 288, 289, 352, 353,
355

observability, 11, 61, 62, 108, 151, 152,
157, 159, 160

observability Gramian, 108, 160
observable staircase form, 160
observer, 9, 11, 157, 160, 263, 270, 276–

280, 314, 359, 360, 377
observer-based, 11, 263, 270, 279, 280, 362,

404
OCD, 263, 284, 285, 287–289, 296, 297,

308–310, 351, 352, 467–470
ODE, see also ordinary differential equa-

tion, 74, 96
operating point, 239–241, 259, 420, 543
optimal PID controller, 11, 286–288, 319,

336–338, 351–356, 468, 516, 544
OptimFOPID, 517–519
Optimization Toolbox, 8, 83, 84, 353, 463,

464
optimization

constrained optimization, see ∼
linear programming, see ∼
quadratic programming, see ∼
unconstrained optimization, see ∼

OptimPID, 11, 319, 351–356, 470, 544
order selection, 139
ordinary differential equation, see also

ODE, 61, 74–81, 86, 166, 175, 209
analytical solutions, see ∼
Caputo equation, see ∼
Euler algorithm, see ∼
fractional-order differential equation,

see ∼
implicit differential equation, see ∼
numerical algorithm, see ∼
Runge–Kutta algorithm, see ∼
stiff equation, see ∼

orthogonal, 65
Oustaloup filter, 502–506, 509, 516
overload, 20, 68, 179, 189, 424, 477, 491,

493, 494, 499, 501, 512, 519
overshoot, 166, 175–177, 183, 264, 266,

268, 282, 283, 295, 296, 320, 323, 331,
333, 335, 336, 341, 345, 347
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P
Padé approximation, 122–128, 179, 186,

187, 226, 241, 506
parallel connection, 110, 111, 201, 493, 494
parallel PID controller, 321, 322
parallel searching, 407, 463, 466
parameter optimization method, 9, 263,

296, 297, 302–308, 316
partial fraction expansion, 490
partial pole placement, 276
particle swarm algorithm, 11, 407, 408,

462, 467, 470
Particle Swarm Optimization Toolbox,

353, 356, 466
pattern search, 466, 469, 470
performance index, 271, 412, 420, 430
phase margin, 195, 206, 263–268, 347, 359,

364, 404
PID controller, 11, 212, 244, 249, 286,

319–356, 407
anti-windup, see ∼
approximate MIGO algorithm, see ∼
automatic tuning, see ∼
discrete-time Ziegler–Nichols tuning,

see ∼
fractional-order PID controller, see ∼
fuzzy PID controller, see ∼
incremental PID controller, see ∼
integral separation, see ∼
MIGO algorithm, see ∼
optimal PID controller, see ∼
OptimPID, see ∼
parallel PID controller, see ∼
PID-type ILC, see ∼
PID Tuner, see ∼
refined Ziegler–Nichols tuning, see ∼
standard PID controller, see ∼
Ziegler–Nichols tuning, see ∼

PID-type ILC, 457–461
piecewise nonlinearity, 237, 238, 249, 261
pole placement, 5, 11, 263, 270, 273–276,

312, 313, 315
Ackermann algorithm, see ∼
Bass–Gura algorithm, see ∼
partial pole placement, see ∼
robust pole placement, see ∼

pole–zero excess, 96
population, 462–464, 468
positive definite matrix, 65, 377, 388, 394

positive feedback, 111, 186, 187
PRBS, 141–143
proper system, 96
pseudo code, 34

pseudo inverse, 64
pseudo random binary sequence, see PRB-

S
pseudo-diagonalization, 263, 297, 298, 300
pseudo-random binary sequence, 141

PSOt, see Particle Swarm Optimization
Toolbox

PWM signal generator, 524

Q
QFT, see also quantitative feedback theo-

ry, 397–404, 505, 506
QFT Toolbox, 9, 397–399

quadratic equation, 69
quantitative feedback theory, see also

QFT, 11, 360, 397

R
radial basis function, 449
ramp response, 180
rank, 61–63, 65, 67, 157, 276
RBF, see radial basis function

real-time control, 143, 217, 283, 385, 523,
525, 529–531, 533

realizable system, 96
recursive algorithm, 32, 122, 128, 412, 456

recursive identification, 143, 144, 254, 255,
408, 415, 430

reduced row echelon form, 67
reference model, 341, 408–411, 422
refined PID controller, 332–334

refined Ziegler–Nichols tuning rule, 333,
334

relative order, 96, 411, 459
repeated eigenvalue, 66, 162

repeated poles, 163, 170, 490
return difference, 198, 366, 404
Riccati differential equation, 271, 272
Riccati equation, 69, 73, 272, 273, 315,

361, 362

Riemann–Liouville definition, 478, 479
rise time, 175, 177, 295, 296
Robust Control Toolbox, 8, 132, 363, 367,
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373, 375, 377, 378, 381, 382, 385, 390–
393, 396

robust pole placement, 275

robust stability, 369, 372, 399–401
robustness, 9, 359, 366, 398, 513

root locus, 2, 11, 52, 151, 182–188, 263,
291, 292, 501

Routh approximation, 124, 125

Routh criterion, 152

Runge–Kutta algorithm, 75

S
S-function, 144, 216, 250–257, 430, 440,

441, 445, 447, 449, 523

sampling interval, 98, 103–106, 227, 425,
427, 428, 440, 448

saturation, 35, 235, 250, 320

Schur complement, 389, 391

Schur decomposition, 132, 133, 272
self-tuning, 10, 11, 407–409, 411, 412, 414–

417
semi-positive definite matrix, 360–362

sensitivity function, 366, 372, 399, 405

separation principle, 362, 363

series connection, 110, 118, 201, 259
series controller, 264, 320

servo system, 175, 264, 281, 284, 289, 339,
354, 447, 455, 524, 541–543

set-point, 118, 323, 333, 335, 337, 416, 425,
427, 428, 446, 534, 535

settling time, 166, 176, 177, 205, 282, 295,
321

Sigmoid function, 444

signal flow graph, 119, 120

signal generator, 232, 254, 256

Signal Processing Toolbox, 8
similarity transform, 64, 108, 156, 164

simulation parameter, 221–223, 428

Simulink, 376, 409, 411, 414, 421, 426
single-valued nonlinearity, 237–239

small gain theorem, 369

SS object, 100, 102, 114, 162, 373, 453

stability, 11, 61, 62, 124, 125, 151, 152,
405, 409, 477, 496, 497, 513

Hurwitz criterion, see ∼
input–output stability, see ∼
internal stability, see ∼
Jury criterion, see ∼

Routh criterion, see ∼
stability margin, see ∼
stable boundary, see ∼

stability margin, 364, 365

stable boundary, 400, 401, 496, 498

staircase waveform, 257, 354, 355, 453,
454, 460

standard PID controller, 321, 332

standard transfer function, 264, 312, 313,
405, 409

state feedback, 157, 263, 270, 272–276,
278–280

state space equation, 96, 156, 157, 250,
252, 255, 272, 275, 361, 369, 378, 392,
541, 543

state transition matrix, 61, 89

static nonlinearity, 210, 238, 239, 250

steady-state error, 175, 323, 342, 349, 454,
455

steady-state value, 174, 175, 281, 289, 296,
320, 326, 438

step response, 127, 171, 174–180, 324–326

stiff differential equation, 75, 77, 509

stochastic system, 210, 236

sub-optimal model reduction, 127–134

sub-optimal reduction, 128, 130, 131, 133,
134, 327, 339, 478

subspace, 159–161

superposition theorem, 181

switch structure, 29

switching system, 210, 226, 234, 235

Sylvester equation, 66, 68

Sylvester matrix, 412

symmetrical matrix, 68, 69, 158, 271, 387,
388, 391, 392, 395

System Identification Toolbox, 139, 217

system identification, 11, 134–144, 453

Akaike information criterion, see AIC

ARX model, see ∼
continuous model identification, see

∼
least squares, see ∼
multivariable model identification,

see ∼
order selection, see ∼
PRBS signal, see ∼
recursive algorithm, see ∼

system matrix, 301, 374, 375, 385, 396, 404
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T

template, 398–401, 515

terminate time, 75, 175, 271, 272, 285,
286, 288, 289, 354, 355, 357, 427, 469,
514, 517

TF object, 98, 373, 492, 504

threshold, 234, 443

time domain response, 181, 207

time moment, 122, 123, 126

time varying system, 210, 226, 230–233,
350, 354, 397, 523

tracker–differentiator, 252, 254, 261

tracking error, 281, 372, 457, 459, 460

training, 443, 444, 452, 454, 455

transfer function, 86, 96–98, 105, 107–111,
114, 120

discrete-time transfer function, see ∼
fractional-order transfer function, see

∼
standard transfer function, see ∼

transfer function matrix, 102, 107, 108,
113, 115, 120, 121

trial structure, 18, 27, 29

triangular decomposition, see also triangu-
lar decomposition, 65

Tustin transform, see also bilinear trans-
form, 105, 106, 381

two degree-of-freedom controller, 404

two-port system, 371–375, 377–379, 405

U

ultimate gain, 326, 329

uncertain system, 360, 372, 373, 375, 376,
383, 384, 398–401, 404, 438

uncertainty, 360, 372, 377, 384, 397, 398,
456

additive uncertainty, see ∼
multiplicative uncertainty, see ∼

unconstrained MPC design, 420, 422, 423

unconstrained optimization, 61, 81, 82,
420, 422, 423, 425, 462, 463, 467

unit circle, 153, 154, 185, 190, 195

unity negative feedback, 114, 115, 153, 154,
173, 182, 496

universe, 433–435, 441

unstable FOPDT model, 343

V
variable precision algorithm, 19
variable-step algorithm, 75, 221, 222

W
weighting matrix, 9, 144, 271–273, 280,

281, 360, 365, 366, 386
white noise, 211, 360, 414, 471, 539
WinCon, 523, 525, 530
working cycle, 455–461

Y
Youla parameterization, 9, 386

Z
z transform, 11, 86–88, 103, 170
zero initial condition, 103, 172, 486
zero–pole–gain model, 11, 96, 100, 101,

104, 105, 107, 109, 152, 176
Ziegler–Nichols method, 9, 319, 328–333,

335, 336
ZPK object, 101, 124




