Haoyu Niu and YangQuan Chen

Smart Big Data in Digital Agriculture Applications

Acquisition, Advanced Analytics, and Plant Physiology-informed Artificial Intelligence

November 6, 2023

Springer

Preface

In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnut, pomegranate, cotton, etc. For instance, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost-effectiveness and near real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability across vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent "complexity" and consequent variability within the agricultural process. Much optimism is vested in the field of artificial intelligence, such as machine learning (ML) and computer vision (CV), where the efficient utilization of big data to make it "smart" is of paramount importance in agricultural research. Central to this learning process lies the intricate relationship between plant physiology and optimization methods. The key to the learning process is the plant physiology and optimization method. Crafting an efficient optimization method raises three pivotal questions: 1.) What represents the best approach to optimization? 2.) How can we achieve a more optimal optimization? 3.) Is it possible to demand "more optimal machine learning," exemplified by deep learning, while minimizing the need for extensive labeled data for digital agriculture?

In this book, the authors have explored the foundations of the plant physiologyinformed machine learning (PPIML) and the principle of tail matching (POTM) framework. They elucidated their role in modeling, analyzing, designing, and managing complex systems based on the big data in digital agriculture. Plant physiology embodies the intricacies of growth, and within this complex system, deterministic and stochastic dynamic processes coexist, influenced by external driving processes characterized and modeled using fractional calculus-based models. These insights better inform the development of complexity-informed machine learning (CIML) algorithms. To practically illustrate the application of these principles, data acquisition platforms, including low-cost UAVs, UGVs, and edge-AI sensors, were designed and built to demonstrate their reliability and robustness for remote and proximate sensing in agricultural applications. Research findings have shown that the PPIML, POTM, CIML, and the data acquisition platforms were reliable, robust, and smart tools for digital agricultural research across diverse scenarios, such as water stress detection, early detection of nematodes, yield estimation, and evapotranspiration (ET) estimation. The utilization of these tools holds the potential to significantly assist researchers and stakeholders in making informed decisions regarding crop management.

Merced, CA, USA, November 2023 Haoyu Niu YangQuan Chen

vi

Acknowledgements

The authors would like to thank Dr. Dong Wang for coordinating the USDA project and providing domain knowledge and comments. The authors also would like to thank Dr. Andreas Westphal for coordinating the UC Kearny project and providing the domain knowledge and comments on nematode detection. Thanks go to Prof. Mukesh Singhal, Prof. Wan Du, Dr. Tiebiao Zhao. Their encouraging, critical, and constructive comments and suggestions increased the value of this monograph. Finally, many graduate and undergraduate researchers helped collect and process data: Dong Sen Yan, Stella Zambrzuski, Andreas Anderson, Allan Murillo, Christopher Currier and Joshua Ahmed. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research.

Part I Why Big Data Is Not Smart Yet?

1	Intr	roduction	3
	1.1	Motivation	3
		1.1.1 What Is Smart Big Data in Digital Agriculture?	4
		1.1.2 Plant Physiology-informed Artificial Intelligence: A New	
		Frontier	5
		1.1.3 Big Data Acquisition and Advanced Analytics	8
	1.2	The Book Objectives and Methods	8
	1.3	Book Contributions	9
	1.4	The Book Outline 10	0
	Refe	erences	1
2	Wh	y Do Big Data and Machine Learning Entail the Fractional	
	Dyn	namics? 15	5
	2.1	Fractional Calculus (FC) and Fractional-order Thinking (FOT) 15	5
	2.2	Complexity and Inverse Power Laws (IPLs) 16	6
	2.3	Heavy-tailed Distributions 18	8
		2.3.1 Lévy Distribution 19	9
		2.3.2 Mittag–Leffler PDF 19	9
		2.3.3 Weibull Distribution 20	0
		2.3.4 Cauchy Distribution 20	0
		2.3.5 Pareto Distribution 20	0
		2.3.6 The α -Stable Distribution	1
		2.3.7 Mixture Distributions 21	1
	2.4	Big Data, Variability and FC 22	2
		2.4.1 Hurst Parameter, fGn, and fBm 23	3
		2.4.2 Fractional Lower-order Moments (FLOMs) 24	4
		2.4.3 Fractional Autoregressive Integrated Moving Average	
		(FARIMA) and Gegenbauer Autoregressive Moving	
		Average (GARMA) 25	5

	2.4.4	Continuous Time Random Walk (CTRW)	26
	2.4.5	Unmanned Aerial Vehicles (UAVs) and Precision Agriculture	26
2.5	Optim	al Machine Learning and Optimal Randomness	27
	2.5.1	Derivative-free Methods	29
	2.5.2	The Gradient-based Methods	29
2.6	What	Can the Control Community Offer to ML?	32
2.7	Case S	Study: Optimal Randomness for Stochastic Configuration	
	Netwo	rk (SCN) with Heavy-tailed Distributions	38
	2.7.1	Introduction	38
	2.7.2	SCN with Heavy-tailed PDFs	39
	2.7.3	A Regression Model and Parameter Tuning	40
	2.7.4	MNIST Handwritten Digit Classification	42
2.8	Chapte	er Summary	43
Refe	rences		45

Part II Smart Big Data Acquisition Platforms

3	Sma	ıll Unm	anned Aerial Vehicles (UAVs) and Remote Sensing	
	Pay	loads .		55
	3.1	The U	AV Platform	55
	3.2	Lightv	veight Sensors	56
		3.2.1	RGB Camera	57
		3.2.2	Multispectral Camera	57
		3.2.3	The Short Wave Infrared Camera	58
		3.2.4	Thermal Camera	58
	3.3	UAV I	mage Acquisition and Processing	59
		3.3.1	Flight Mission Design	59
		3.3.2	UAV Image Processing	60
	3.4	Challe	enges and Opportunities	62
		3.4.1	UAVs	62
		3.4.2	UAV Path Planning and Image Processing	63
		3.4.3	Pre-flight Path Planning	63
		3.4.4	Multispectral Image Calibration	63
		3.4.5	Thermal Camera Calibration and Image Processing	65
		3.4.6	Images Stitching and Orthomosaic Image Generation	66
	3.5	Case S	Study: High Spatial-resolution Has Little Impact on NDVI	
		Mean	Value of UAV-based Individual Tree-level Mapping:	
		Evider	nce from 9 Field Tests and Implications	67
		3.5.1	Introduction	67
		3.5.2	Material and Methods	68
		3.5.3	Results and Discussion	70
		3.5.4	Conclusions and Future Work	73
	3.6	Chapte	er Summary	76
	Refe	erences		77

х

4	The	Edge-AI Sensors and Internet of Living Things (IoLT)	81
	4.1	Introduction 8	81
	4.2	Proximate Sensors	82
		4.2.1 The Spectrometer	82
		4.2.2 A Pocket-sized Spectrometer	82
		4.2.3 A Microwave Radio Frequency 3D Sensor 8	84
	4.3	Case Study: Onion Irrigation Treatment Inference Using A	
		Low-cost Edge-AI Sensor 8	85
		4.3.1 Introduction 8	85
		4.3.2 Material and Methods 8	87
		4.3.3 Results and Discussion	90
		4.3.4 Conclusions and Future Work	93
	4.4	Chapter Summary	93
	Refe	erences	94
5	The	Unmanned Ground Vehicles (UGVs) for Precision Agriculture	97
5	The 5.1	Unmanned Ground Vehicles (UGVs) for Precision Agriculture 9 Introduction	97 97
5	The 5.1 5.2	Unmanned Ground Vehicles (UGVs) for Precision Agriculture 9 Introduction 9 UGV as Data Acquisition Platform 9	97 97 98
5	The 5.1 5.2	Unmanned Ground Vehicles (UGVs) for Precision Agriculture 9 Introduction 9 UGV as Data Acquisition Platform 9 5.2.1 Fundamental Research Questions 9	97 97 98 99
5	The 5.1 5.2	Unmanned Ground Vehicles (UGVs) for Precision Agriculture9Introduction9UGV as Data Acquisition Platform95.2.1Fundamental Research Questions95.2.2Low Barriers to Entry9	97 97 98 99 99
5	The 5.1 5.2	Unmanned Ground Vehicles (UGVs) for Precision Agriculture 9 Introduction 9 UGV as Data Acquisition Platform 9 5.2.1 Fundamental Research Questions 9 5.2.2 Low Barriers to Entry 9 5.2.3 Cognitive Algorithms by Deep Learning 10	97 97 98 99 99 99
5	The 5.1 5.2	Unmanned Ground Vehicles (UGVs) for Precision Agriculture9Introduction9UGV as Data Acquisition Platform95.2.1Fundamental Research Questions95.2.2Low Barriers to Entry95.2.3Cognitive Algorithms by Deep Learning105.2.4Swarming Mechanism of UGVs10	97 97 98 99 99 99 01 02
5	The 5.1 5.2 5.3	Unmanned Ground Vehicles (UGVs) for Precision Agriculture9Introduction9UGV as Data Acquisition Platform95.2.1Fundamental Research Questions95.2.2Low Barriers to Entry95.2.3Cognitive Algorithms by Deep Learning105.2.4Swarming Mechanism of UGVs10Case Study: Build A UGV platform for Agricultural Research	97 97 98 99 99 01 02
5	The 5.1 5.2 5.3	Unmanned Ground Vehicles (UGVs) for Precision Agriculture9Introduction9UGV as Data Acquisition Platform95.2.1Fundamental Research Questions95.2.2Low Barriers to Entry95.2.3Cognitive Algorithms by Deep Learning105.2.4Swarming Mechanism of UGVs10Case Study: Build A UGV platform for Agricultural Research10from A Low-cost Toy Vehicle10	97 97 98 99 99 01 02 03
5	The 5.1 5.2 5.3	Unmanned Ground Vehicles (UGVs) for Precision Agriculture9Introduction9UGV as Data Acquisition Platform95.2.1 Fundamental Research Questions95.2.2 Low Barriers to Entry95.2.3 Cognitive Algorithms by Deep Learning105.2.4 Swarming Mechanism of UGVs10Case Study: Build A UGV platform for Agricultural Researchfrom A Low-cost Toy Vehicle105.3.1 Introduction10	97 97 98 99 99 01 02 03 03
5	The 5.1 5.2 5.3 5.4	Unmanned Ground Vehicles (UGVs) for Precision Agriculture9Introduction9UGV as Data Acquisition Platform95.2.1 Fundamental Research Questions95.2.2 Low Barriers to Entry95.2.3 Cognitive Algorithms by Deep Learning105.2.4 Swarming Mechanism of UGVs10Case Study: Build A UGV platform for Agricultural Researchfrom A Low-cost Toy Vehicle105.3.1 Introduction10Chapter Summary10	97 97 98 99 99 01 02 03 03 04

Part III Advanced Big Data Analytics, Plant Physiology-informed Machine Learning, and Fractional-order Thinking

6	Fun	damentals of Big Data, Machine Learning, and Computer
	Visi	on Workflow
	6.1	Introduction
	6.2	A Fundamental Tutorial: The Cotton Water Stress Classification
		with CNN
		6.2.1 Data Loading
		6.2.2 Data Pre-processing 114
		6.2.3 Train & Test Split
		6.2.4 Creating the Model
		6.2.5 The Model Performance Evaluation 125
	6.3	Chapter Summary 126
	Refe	erences

xi

7	A L	ow-cos	t Proximate Sensing Method for Early Detection of
	Nen	natodes	in Walnut Using Machine Learning Algorithms
	7.1	Introd	uction
	7.2	Mater	ial and Methods 129
		7.2.1	Study Area
		7.2.2	Reflectance Measurements with A Radio Frequency Sensor. 129
		7.2.3	Groundtruth Data Collection and Processing
		7.2.4	Scikit-learn Classification Algorithms
		7.2.5	Deep Neural Networks (DNNs) and TensorFlow
	7.3	Result	ts and Discussion
		7.3.1	Data Visualization (Project 45, 2019)
		7.3.2	Performance of Classifiers (Project 45, 2019)
		7.3.3	Performance of Classifiers (Project 45, 2020)
	7.4	Chapt	er Summary
	Refe	erences	
8	Tree	e-level]	Evapotranspiration Estimation of Pomegranate Trees
	Usir	ng Lysi	meter and UAV Multispectral Imagery147
	8.1	Introd	uction
	8.2	Mater	ial and Methods
		8.2.1	Study Site Description
		8.2.2	UAV Image Collection and Processing
	8.3	Result	ts and Discussion
		8.3.1	Determination of Individual-tree K_c from NDVI
		8.3.2	The Spatial Variability Mapping of K_c and ET_c
		8.3.3	Performance of the Individual Tree-level ET Estimation 155
	8.4	Concl	usions
	8.5	Chapt	er Summary
	Refe	erences	
9	Indi	ividual	Tree-level Water Status Inference Using High-resolution
	UAV	/ Therr	nal Imagery and Complexity-informed Machine Learning 163
	9.1	Introd	uction
	9.2	Mater	ial and Methods
		9.2.1	Experimental Site and Irrigation Management
		9.2.2	Ground Truth: Infrared Canopy and Air Temperature 165
		9.2.3	Thermal Infrared Remote Sensing Data
		9.2.4	Complexity-informed Machine Learning (CIML)
		9.2.5	Principle of Tail Matching
		9.2.6	Machine Learning Classification Algorithms
	9.3	Result	ts and Discussion 171
	1.5	931	Comparison of Canopy Temperature Per Tree Based on
		2.5.1	Ground Truth and UAV Thermal Imagery 171
		932	The Relationship Between AT and Irrigation Treatment 171
		1.5.4	The recursion processes are und informed from the internet

xii

		9.3.3	The Classification Performance of CIML on Irrigation	171
	0.4		Treatment Levels	. 171
	9.4 Refe	chapte rences .	er Summary	. 174 . 175
10	Scal	e-awaro	e Pomegranate Yield Prediction Using UAV Imagery and	
	Mac	hine Le	earning	. 179
	10.1	Introdu	uction	. 179
	10.2	Materi	al and Methods	. 181
		10.2.1	Experimental Field and Ground Data Collection	. 181
		10.2.2	UAV Platform and Imagery Data Acquisition	. 181
		10.2.3	UAV Image Feature Extraction	. 183
		10.2.4	The Machine Learning Methods	. 185
	10.3	Result	s and Discussion	. 186
		10.3.1	The Pomegranate Yield Performance in 2019	. 186
		10.3.2	The Correlation between the Image Features and	
			Pomegranate Yield	. 187
		10.3.3	The ML Algorithm Performance on Yield Estimation	. 187
	10.4	Chapte	er Summary	. 189
	Refe	rences .		. 192
Par	t IV	Toward	ls Smart Big Data in Digital Agriculture	
11	Inte	lligent l	Bugs Mapping and Wiping (iBMW): An Affordable	
11	Inte Rob	lligent l ot-drive	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers	. 197
11	Inte Rob	lligent l ot-drive Introdu	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction	. 197 . 197
11	Intel Rob 11.1 11.2	lligent I ot-drive Introdu Existir	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions	. 197 . 197 . 198
11	Intel Rob 11.1 11.2 11.3	lligent l ot-drive Introdu Existir iBMW	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions / Innovation	. 197 . 197 . 198 . 199
11	Intel Rob 11.1 11.2 11.3	lligent 1 ot-drive Introdu Existir iBMW 11.3.1	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions / Innovation Cognitive of Pest Population Mapping and Wiping	. 197 . 197 . 198 . 199 . 200
11	Intel Rob 11.1 11.2 11.3	lligent l ot-drive Introdu Existir iBMW 11.3.1 11.3.2	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions / Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain"	. 197 . 197 . 198 . 199 . 200 . 202
11	Intel Rob 11.1 11.2 11.3	lligent 1 ot-drive Introdu Existir iBMW 11.3.1 11.3.2 11.3.3	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions / Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing	. 197 . 197 . 198 . 199 . 200 . 202 . 202
11	Intel Rob 11.1 11.2 11.3	lligent 1 ot-drive Introdu Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions 'Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW	. 197 . 197 . 198 . 199 . 200 . 202 . 202 . 202
11	Intel Rob 11.1 11.2 11.3	lligent l ot-drive Introdu Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions / Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters	. 197 . 197 . 198 . 199 . 200 . 202 . 202 . 204 . 204
11	Intel Rob 11.1 11.2 11.3	lligent l ot-drive Introdu Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions 'Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters uring Success	. 197 . 197 . 198 . 199 . 200 . 202 . 202 . 204 . 204 . 204 . 205
11	Intel Rob 11.1 11.2 11.3	lligent I ot-drive Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu 11.4.1	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions 'Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters NOW Population Temporal and Spatial Distribution	. 197 . 197 . 198 . 199 . 200 . 202 . 202 . 204 . 204 . 205 . 205
11	Intel Rob 11.1 11.2 11.3	lligent l ot-drive Introdu Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu 11.4.1 11.4.2	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions 'Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters wring Success NOW Population Temporal and Spatial Distribution The Amount of Pesticide Being Used	. 197 . 197 . 198 . 199 . 200 . 202 . 202 . 202 . 204 . 204 . 205 . 205 . 205
11	Intel Rob 11.1 11.2 11.3	lligent l ot-drive Introdu Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu 11.4.1 11.4.2 11.4.3	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions 'Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters nring Success NOW Population Temporal and Spatial Distribution The Amount of Pesticide Being Used The Target Trees Almond Yield	. 197 . 197 . 198 . 199 . 200 . 202 . 202 . 204 . 204 . 205 . 205 . 205 . 206
11	Intel Rob 11.1 11.2 11.3 11.4	lligent l ot-drive Introdu Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu 11.4.1 11.4.2 11.4.3 Chapte	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions / Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters nring Success NOW Population Temporal and Spatial Distribution The Amount of Pesticide Being Used The Target Trees Almond Yield	. 197 . 197 . 198 . 199 . 200 . 202 . 202 . 204 . 205 . 205 . 205 . 206 . 206
11	Intel Rob 11.1 11.2 11.3 11.4 11.5 Refe	lligent I ot-drive Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu 11.4.1 11.4.2 11.4.3 Chapte rences	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions 'Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters rring Success NOW Population Temporal and Spatial Distribution The Amount of Pesticide Being Used The Target Trees Almond Yield	. 197 . 197 . 198 . 199 . 200 . 202 . 202 . 202 . 204 . 205 . 205 . 205 . 205 . 206 . 206
11	Intel Rob 11.1 11.2 11.3 11.4 11.5 Refe A N	lligent I ot-drive Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu 11.4.1 11.4.2 11.4.3 Chapte rences	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions 'Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters nring Success NOW Population Temporal and Spatial Distribution The Amount of Pesticide Being Used The Target Trees Almond Yield er Summary	. 197 . 197 . 198 . 200 . 202 . 202 . 202 . 202 . 202 . 205 . 205 . 205 . 206 . 206 . 206
11	Intel Rob 11.1 11.2 11.3 11.4 11.5 Refe A No	lligent I ot-drive Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu 11.4.1 11.4.2 11.4.3 Chapte rences	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions 'Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters ring Success NOW Population Temporal and Spatial Distribution The Amount of Pesticide Being Used The Target Trees Almond Yield er Summary sive Stem Water Potential Monitoring Method Using Sensor and Machine Learning Classification Algorithms	. 197 . 197 . 198 . 200 . 202 . 202 . 204 . 204 . 205 . 205 . 205 . 206 . 206 . 206
11	Intel Rob 11.1 11.2 11.3 11.4 11.5 Refe A No Prov 12.1	lligent I ot-drive Introdu Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu 11.4.1 11.4.2 11.4.3 Chapte rences	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions 'Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters wring Success NOW Population Temporal and Spatial Distribution The Amount of Pesticide Being Used The Target Trees Almond Yield er Summary sive Stem Water Potential Monitoring Method Using Sensor and Machine Learning Classification Algorithms	. 197 . 197 . 198 . 200 . 202 . 202 . 204 . 205 . 205 . 205 . 206 . 206 . 206 . 206 . 206
11	Intel Rob 11.1 11.2 11.3 11.4 11.5 Refe A No Prov 12.1 12.2	lligent I ot-drive Introdu Existir iBMW 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 Measu 11.4.1 11.4.2 11.4.3 Chapte rences Introdu Materi	Bugs Mapping and Wiping (iBMW): An Affordable en Robot for Farmers uction ng Solutions / Innovation Cognitive of Pest Population Mapping and Wiping iBMW with TurtleBot 3 as "Brain" Real-time Vision Processing Optimal Path Planning Enabled by iBMW Ethical, Cultural and Legal Matters uring Success NOW Population Temporal and Spatial Distribution The Amount of Pesticide Being Used The Target Trees Almond Yield er Summary sive Stem Water Potential Monitoring Method Using Sensor and Machine Learning Classification Algorithms uction	. 197 . 197 . 198 . 200 . 202 . 202 . 204 . 205 . 205 . 205 . 205 . 206 . 206 . 206 . 206 . 206 . 209 . 209 . 210

12.2.2 Reflectance Measurements with A Radio Frequency Sensor . 211

xiii

	12.2.3 Data Collection and Processing
	12.2.4 Scikit-learn Classification Algorithms
	12.3 Results and Discussion
	12.4 Chapter Summary
	References
13	A Low-cost Soil Moisture Monitoring Method by Using Walabot
	and Machine Learning Algorithms
	13.1 Introduction
	13.2 Material and Methods
	13.2.1 Study Site
	13.2.2 The Proximate Sensor
	13.2.3 Experiment Setup 219
	13.2.4 Data Collection and Processing
	13.3 Results and Discussion 222
	13.3.1 Linear Discriminant Analysis Performance
	13.3.2 Principle Component Analysis Performance
	13.4 Chapter Summary
	References
14	Conclusions and Entrup Descarel 220
14	Conclusions and Future Research
	14.1 Concluding Remarks
	14.2 Future Research Towards Smart Big Data in Digital Agricultural
	Applications
Ind	ex

xiv

1.1	The ML can be classified as supervised, unsupervised, semi- supervised, and Reinforcement Learning (RL) based on whether or not human supervision is included. According to whether or not the ML algorithms can learn incrementally on the fly, they can be classified into online and batch learning. Based on whether or not the ML algorithms detect the training data patterns and create a predictive model, the ML can be classified into instance-based and model-based learning.	6
2.1	Inverse power law (complexity "bow tie"): On the left are the systems of interest that are thought to be complex. In the center panel, an aspect of the empirical data is characterized by an inverse power law (IPL). The right panel lists the potential properties associated with systems with data that have been processed and	
	yield an IPL property. See text for more details.	17
2.2	Complex signals (IPL): Here, the signal generated by a complex system is depicted. Exemplars of the systems are given as the	
• •	potential properties arising from the systems' complexity.	18
2.3	Normalized difference vegetation index (NDVI) mapping of	27
2.4	Data analysis in nature	28
2.5	The 2-D Alpine function for derivative-free methods.	29
2.6	Sample paths. Wei et al. investigated the optimal randomness in	
	a swarm-based search. Four heavy-tailed PDFs were used for	
	sample path analysis. The long steps, referring to the jump length,	
	frequently happened for all distributions, which showed strong	
	heavy-tailed performance.	30
2.7	Gradient descent and its variants.	31
2.8	The integrator model (embedded in $G(z)$). The integrator in the	
	forward loop eliminates the tracking steady-state error for a	22
	constant reference signal (internal model principle (IMP))	32

2.9	Training loss (left); test accuracy (right). It is obvious that for	
	different zeros and poles, the performance of the algorithms is	
	different. One finds that both the $b = -0.25$ and $b = -0.5$ cases	
	perform better than does the stochastic gradient descent (SGD)	
	momentum. Additionally, both $b = 0.25$ and $b = 0.5$ perform	
	worse. It is also shown that an additional zero can improve the	
	performance, if adjusted carefully. (Courtesy of Professor Yuquan	
	Chen)	35
2.10	Training loss (left); test accuracy (right). (Courtesy of Professor	
	Yuquan Chen)	37
2.11	Performance of SCN, SCN-Lévy, SCN-Weibull, SCN-Cauchy and	
	SCN-Mixture. The parameter L is the hidden node number	42
2.12	The handwritten digit dataset example.	43
2.13	Classification performance of SCNs.	44
2.14	Timeline of FC (courtesy of Professor Igor Podlubny).	45
3.1	(a) The QuestUAV 200 UAV. (b) The MK Okto XL 6S12. (c) The	
	DJI S1000. (d) The eBee Classic. (e) The Hover.	55
3.2	The Survey 2 sensors and the reflectance calibration ground target	
	package	57
3.3	The Rededge M is a commonly used multispectral camera.	
	The Rededge M has five bands, which are Blue, Green, Red,	
	Near-infrared, and Red edge. It has a spectral resolution of 1280 $ imes$	
	960 pixel, with a 46° field of view.	58
3.4	The SWIR 640 P-Series, which is a shortwave infrared camera, has	
	also been commonly used for agricultural research. The spectral	
	band is from 0.9 μm to 1.7 μm . The accuracy for the SWIR camera	
	is ± 1 °C. It has a resolution of 640 \times 512 pixels	59
3.5	The thermal camera has a resolution of 640×480 pixels. The	
	spectral band is from 7 μm to 14 μm . The dimension of the thermal	
	camera is 34 mm \times 30 mm \times 34 mm. The accuracy is designed to	
	be ± 2 °C	60
3.6	The user interface of Mission Planner. The example of flight	
	mission was for nematode data collection using UAV for Project 30	
	at UC Kearny Center. See Chapter 7 for more details	61
37	Agisoft Metashane image processing workflow: (a) Align Photos	01
5.7	(b) Build Mesh. (c) Generate orthomosaick	62
38	The UAV image reflectance calibration (\mathbf{a}) A color panel (\mathbf{b}) The	02
5.0	MAPIR target calibration board (c) The Rededge M calibration	
	hoard	64
2.0	The normal and a site at UCDA. The normal strain the second strain the second strain the second strain stra	04
5.9	ne pomegranate study site at USDA. The pomegranate was	
	planted in 2010 with a 5 in spacing between rows and 2.75 m	
	within 1-row tree spacing in a 1.5 na field. There are two large	
	weigning lysimeters located in the center of the field, marked in red	60
	boxes.	68

xvi

3.10	The mean NDVI values of each sampling tree at 60m, 90m, and 120m on May 8^{th} , 2019. The <i>x</i> -axis was the identification number (ID) for sampling trees, 82 in total. The <i>y</i> -axis was the mean NDVI	70
3.11	The mean NDVI values of each sampling tree at 60m, 90m, and 120m on Sep 19^{th} , 2019. The <i>x</i> -axis was the identification number (ID) for sampling trees, 82 in total. The <i>y</i> -axis was the mean NDVI	70
3.12	value for each tree canopy The mean NDVI values of each sampling tree at 60m, 90m, and 120m on Oct 3^{rd} , 2019. The <i>x</i> -axis was the identification number (ID) for sampling trees 82 in total. The <i>y</i> -axis was the mean NDVI	71
3.13	value for each tree canopy	71
3.14	NDVI values for sampling trees at 90 m flight height	72
3.15	90m and 120m on May 8 th , 2019	73
2 16	90m and 120m on Sep 19 th , 2019.	74
5.10	90m and 120m on Oct 3^{rd} , 2019	75
4.1 4.2	The spectrometer EPP2000-VIS-50. The StellarNet EPP2000 Spectrometers are miniature fiber optic instruments for ultraviolet (UV), visisble (VIS), and near-infrared (NIR) measurements in 190 - 1700 nm ranges	82
4.3	consumption and zero warm up time make it highly responsive and extremely efficient, which allows it to perform hundreds of samplings from a small rechargeable battery. The Scio spectrometer works in NIR at wavelengths of 700 - 1100 nm. It can also be integrated into smart phone as an Edge-AI device	83
	model and 6.3 - 8 GHz for the EU/CE mode. The average transmitted energy of both models was below 41dBm/MHz and did not constitute health concerns for the user, nor did it impact the tested tissues.	85
4.4	The princile of Walabot. The sensor uses an antenna array to send radio frequency to the area in front of it, e.g. walnut leaves, and then captures the returning signals (reflectance or response). The citation signals are produced, and the reflectance is then recorded	

4.3	The measurement signal of the radio frequencies reflectance of the walnut leaves using Walabot. The research hypothesis is that the reflectance of walnut leaves will be significantly different towards root-lesion nematode infection levels. The spectral curve obtained from the leaves of walnut trees infected with nematodes could show the characteristic pattern of walnut under nematode stress.	
4.6	For more details of this research work, please refer to Chapter 7 The onion field (image taken by the "Hover" UAV platform). The study field was in the USDA-ARS, San Joaquin Valley Agricultural Sciences Center (36.59 °N, 119.51 °W), Parlier, California. Since 2016, an onion test filed had been set up for research of biomass soil amendments and deficit irrigation. There were three irrigation	86
. –	treatment levels, High, Medium and Low.	87
4.7 4.8	The NIR reflectance measurement of SCIO using smart phone The reflectance measurement of EPP2000-VIS-50. Each onion sampling was measured three times to reduce the likelihood of	88
	errors or anomalous results.	89
4.9	Classifier Comparison (PCA dimension reduction)	91
4.10	Classifier Comparison (LDA dimension reduction)	92
5.1	The toy vehicle	03
5.2	The UGV platform 1	04
6.1	The cotton field experimental layout 1	13
6.2	A 5 \times 5 grid in the case of displaying 25 cotton images 1	16
6.3	Cotton segmentation with morphological image processing	
	(1, 1, (1), T) $(1, 1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$	
	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods: (c) The mask after opening and	
	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in	
	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c)	17
6.4	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c)	.17
6.4	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c)	.17
6.4 6.5	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c).	.17 .19 .23 .24
6.46.56.66.7	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c). 1 A visual demonstration of an image dataset after morphological image processing. 1 The model summary. 1 The training and testing accuracy of the CNN model. 1 The summary of prediction results of the CNN model for original	17 19 23 24
6.4 6.5 6.6 6.7	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c)	17 19 23 24
6.4 6.5 6.6 6.7	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c).(c).1A visual demonstration of an image dataset after morphological image processing.1The model summary.1The training and testing accuracy of the CNN model.1The summary of prediction results of the CNN model for original image dataset at different sampling days. The irrigated" as "1",	17 19 23 24
6.4 6.5 6.6 6.7	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c)	17 19 23 24
6.4 6.5 6.6 6.7	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c)	17 19 23 24 25
6.46.56.66.77.1	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c)	17 19 23 24 25
6.46.56.66.77.1	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c)	17 19 23 24 25
6.46.56.66.77.1	methods. (a) The original UAV-based RGB image; (b) A rough mask image after Otsu's methods; (c) The mask after opening and dilation operations; (d) The cotton canopy image with the mask in (c)	17 19 23 24 25

xviii

7.2	The measurement signal of the radio frequencies reflectance of the walnut leaves using Walabot. The research hypothesis is that the reflectance of walnut leaves will be significantly different towards root-lesion nematode infection levels. The spectral curve obtained from the leaves of walnut trees infected with nematodes could show the characteristic pattern of walnut under nematode stress 131
7.3	The Linear Discriminant Analysis (LDA) was used for data
	visualization, which learned the most critical axes between the classes. The axes were then used to define hyperplane to project
	the high-dimensional training data into two dimensions, which
	gained important insight by visually detecting patterns. The x-axis
	and y-axis had no scale because of hyperplane projection. The
	nematode infection levels were successfully clustered into four
	levels. The color bar values 1, 2, 3, and 4 represented the four
7 /	nematode infection levels from 1 to 4 (low to nign) (lable /.2) 134 The Linear Discriminant Analysis (LDA) was used for three
/.4	dimensional data visualization. The r-axis and v-axis had no scale
	because of hyperplane projection. The nematode infection levels
	were successfully clustered into four levels. The clusters' color was
	related to Fig. 7.3
7.5	A comparison of six classifiers in Scikit-learn on nematode testing
	dataset (Project 45, 2019). A confusion matrix was a summary
	of prediction results on a classification problem. The number of
	divided into classes. The confusion matrix provided an insight not
	only into the errors being made by a classifier but more importantly
	the types of errors that were being made. "True label" meant the
	ground truth of nematode infestation levels. "Predicted label"
	identified the nematode infestation levels predicted by the trained
	model
7.6	There were k models (in this case, $k = 100$). The best accuracy could be as high as 0.0 (meriled as a red dat). The lowest accuracy
	was around 0.58 when the training instances could not represent
	the nematode infection levels dataset very well. The mean accuracy
	was 0.82 for the DNN classier model
7.7	A comparison of six classifiers in Scikit-learn on nematode testing
	dataset (Project 45, 2020). Table 7.8 showed the details of the test
	process of the <i>k</i> -nearest neighbors method
7.8	The test performance of DNN for Project 45, 2020. There were 100
	models and the best accuracy could be as high as 0.88 (marked as
	instances could not represent the nematode infection levels dataset
	very well. The mean accuracy was 0.7 for the DNN classier model 142

xix

8.1	The Pomegranate study site. Field studies were conducted in an experimental pomegranate (<i>Punica granatum L.</i> , cv 'Wonderful') field at the USDA-ARS, San Joaquin Valley Agricultural Sciences Center (36.594 °N, 119.512 °W), Parlier, California, 93648, USA. The pomegranate field was randomly designed into 16 equal blocks, with four replications, to test four irrigation levels. The irrigation volumes are 35%, 50%, 75%, and 100% of ET_c , which was measured by the weighing lysimeter in the field. There were five sampling trees in each block, 80 sampling trees in total, marked with red labels
8.2	Seasonal K_c and NDVI for the tree in lysimeter. The sampling data started on May 8 th and ended on Oct 29 th . The linear relationship had an intercept of 0.6114 and a slope of 1.6493. It also had a high correlation coefficient of 0.8865, indicating a significant correlation between the K_c and NDVI at the individual-tree level during the growing season in 2019
8.3 8.4	The K_c and ET_c maps of May 8 th , 2019
8.5	The boxplot of 100% ET sampling trees vs lysimeter tree. Compared with the lysimeter tree, the linear regression model estimated tree-level ET with an R^2 and mean absolute error (MAE) of 0.9143 and 0.39 mm/day, respectively
9.1	The pomegranate field at the USDA-ARS (36.594°N, 119.512°W). The weighing lysimeter is located in the center of the pomegranate field, marked as a red box. The blue marks are where the 14 IRT sensors were installed
9.2	The IRT sensor was installed 4.5 m above the soil surface, with a FOV of 20°. A quadcopter was used as the low-cost UAV platform (less than \$1000) to collect high-resolution thermal images at the height of 60 m
9.3	(A) All of the UAV thermal images were stitched together to generate the orthomosaick images in Metashape (Agisoft LLC, Russian); (B) To obtain the individual tree canopy images of the 250 sampling trees, the author used the SVM for classifying the tree canopy. (C) Histogram was generated for each tree canopy to check the variability of each tree canopy temperature

XX

9.4	The correlation between the canopy temperature per tree measured
	by the IRT sensors and UAV thermal camera. The coefficient
	of determination (R^2) was 0.8668, which indicated that the
	difference between the ground truth and UAV thermal camera
	was acceptable. The method was reliable for monitoring tree-level
	canopy temperature 170
95	The AT was significantly higher in the 35% irrigation treatment
9.5	then the 100% irrigation treatment on different days. The values of
	AT descrete des the invitation in control of the finding encodered
	A fuereased as the infiguron increased. This muting emphasized
0.6	the importance of irrigation on the tree canopy temperature response. 1/2
9.6	The summary of prediction results using histogram information
	on the tree-level irrigation treatment inference. "True label"
	meant the ground truth of ET_c based irrigation treatment levels.
	"Predicted label" identified the irrigation treatment levels predicted
	by the trained model. To simplify the visualization, 30% and 50%
	ET irrigation were labeled as "0", denoting low-level irrigation;
	75% and 100% ET irrigation were labeled as "1", which meant
	high-level irrigation
9.7	The test performance for the histogram dataset. The t-distributed
	stochastic neighbor embedding (TSNE) method was used for
	data visualization, which learned the most critical axes between
	the classes. The axes were then used to define the hyperplane to
	project the high dimensional training data into two dimensions
	which acting important insight by visually detecting netterns. The
	which gamed important insight by visually detecting patterns. The
	x-axis and y-axis had no scale because of hyperplane projection.
	The irrigation treatment levels were successfully clustered into
	low-level (blue) and high-level (green) 175
10.1	
10.1	The pomegranate field was randomly designed into 16 equal
	blocks, with four replications, to test four irrigation levels. The
	irrigation volumes are 35%, 50%, 75%, and 100% of ET_c , which
	was measured by the weighing lysimeter in the field
10.2	There were five sampling trees in each block, 80 sampling trees in
	total, marked with red labels 182
10.3	The pomegranate yield performance at the individual tree level in
	2019. For the 35% irrigation treatment, the total fruit weight per
	tree was 23.92 kg, which produced the lowest yield. For the 50%
	irrigation treatment, the total fruit weight per tree was 27.63 kg.
	For 75% and 100% irrigation treatment, the total fruit weight per
	tree was 29.84 kg and 34.85 kg, respectively
104	The correlation between the vegetation indices and vield 188
10.1	The contention of the regenation marces and freid

10.5	The "Decision Trees" method training process. The "Decision Trees" usually uses a white box model, which means the explanation for the condition is easily explained by Boolean logic if a given situation is observable in a model. As shown here, the "Decision Trees" ML model started at the root node, if the NDVIre value were less than 0.334, the prediction process would move to the leaf child node. In this case, the model would predict that the input was a low-yield pomegranate tree. A node's gini attribute measures its impurity: a node is "pure (gini = 0)" if all the training instances it applies are from the same class
10.6	The comparison of the eight different ML classifiers on individual tree level yield prediction. "True label" meant the ground truth of the yield. "Predicted label" identified the individual tree yield predicted by the trained model. The value 0 meant the low yield; value 1 meant the high yield
11.1	The iBMW workflow. The iBMW is an intelligent robot which can recognize and classify the NOW by using deep learning neural networks. By using swarming mechanism, several iBMWs can scout in orchard together to realize pest population mapping in a large scale. Based on the mapping analysis, the iBMWs can determine which areas are at the greatest risk and whether wiping
	treatment is needed
11.2 11.3	Concept iBMW.201Road detection by Jetson TX2.203
12.1	This study was conducted in a walnut orchard at Merced, CA, 95340, USA (37.47°N, 120.45°W). There were three types of spacing treatment, $22' \times 22'$, $26' \times 26'$, and $30' \times 30'$. The region of interest was marked with the red box. To determine the SWP of a walnut tree, midday SWP was measured by using a pressure
12.2	chamber weekly from May to September 2018

xxii

13.1	Radio Frequency reflectance. The Walabot Developer is a
	programmable 3D sensor that uses radio frequency to see through
	the soil and creates a reflectance image within one second
13.2	Walabot data collection. The experiment was conducted in the
	MESA Lab. The soil was sampled in an almond field near the lab
	and was divided into 3 cups
13.3	LDA results for soil moisture measurement. There were five
	different soil moisture levels with different colors, "Dry," "Wet1,"
	"Wet2," "Wet3," and "WetTotal", which meant the soil sampling
	was saturated. LDA classifiers firstly reduced the original
	dimension to 2 components. Different colors meant different soil
	moisture levels and the axes of the figure were dimensionless. The
	LDA could classify the five different levels of soil moisture in
	different areas of the coordinate, so that the LDA could classify the
	soil moisture with an state-of-art performance
13.4	PCA results for soil moisture measurement. "WetTotal" points
	were on the left and right sides of the image. The "Wet3" and
	"Wet2" data points did not drop in the same area. The reason
	might be that the PCA could not detect the features difference
	from the data. Similar to LDA, the PCA classifiers firstly reduced
	the original dimension to 2 components. Then, each classifier was
	tested against reduced dimensionality data with the component as 2 226

xxiii

List of Tables

2.1	The 10 Vs of big data	22
2.2	Variability in multiple research topics.	23
2.3	General second-order algorithm design. The parameter ρ is the	
	loop forward gain; see text for more details	34
2.4	General third-order algorithm design, with parameters defined by	
	Equation (2.39)	36
2.5	The continuous time fractional-order system.	36
2.6	SCNs with key parameters.	40
2.7	Performance comparison of SCN models on regression problem	41
2.8	Performance comparison between SCN, SCN-Lévy and SCN-Cauchy.	43
<u> </u>		
3.1	The specifications of "Hover". The quadcopter is equipped with	
	high efficient power system, including T-Motor MN3508 KV380	
	motor, 1552 folding propeller and Foxtech Multi-Pal 40A OPTP	
	ESC, to ensure long flight time.	56
3.2	Orthomosaic images generation workflow in Agisoft Metashape	61
3.3	The UAV flight schedule. The UAV flight height was 60 m, 90	
	m, and 120 m to acquire different high-resolution multispectral	
	imagery. Data was collected successfully for three different days,	
	5-8-19, 9-19-19, and 10-3-19	69
3.4	Entropy was used in the quantitative analysis and evaluation	
	of image information, because it provided better comparison of	
	the image details. Higher value of entropy meant more detailed	
	information in the image.	76
11	The specifications of spectrometer EDD2000 VIS 50	83
4.1	The specifications of spectrometer Scio	8/
4.2	Top 5 performing classifiers using PCA and MI P and their grid	04
4.3	search parameters	92
		92
5.1	Specifications of several UGVs and the proposed Personal UGV	100

7.1	Nematode numbers per gram of root in rootstock genotypes examined by Walabot measurements (Project 45, 2019). "RLN per gram of root" meant the root-lesion nematode number per gram of root extracted in laboratory procedures
7.2	The classification of the nematode infestation levels (Project 45, 2010)
73	The performance of classification methods (Project 45, 2019) 136
74	The k-nearest neighbors performance (Project 45, 2019) 136 The k-nearest neighbors performance (Project 45, 2019) 136
7.5	The classification of the nematode infestation levels (Project 45, 2020). "RLN per gram of root" meant the root-lesion nematode
	number per gram of root that was extracted in laboratory procedures. 139
7.6	Nematode numbers per gram of root in rootstock genotypes
	examined by Walabot measurements (Project 45, 2020). "RLN per
	gram of root" meant the root-lesion nematode number per gram of
	root that was extracted in laboratory procedures. "ID" is a short
77	The performance of electric methods (Project 45, 2020) 140
1.1 7 0	The performance of classification methods (Project 45, 2020) 140 The k pagrest paighbors performance (Project 45, 2020) 140
7.0	The k-hearest heighbors performance (Froject 45, 2020)
8.1	ET estimation using UAV platforms
83	Flight missions at the USDA in 2019. The UAV flight missions
0.5	were configured by using the MissionPlanner (Ardunilot USA)
	The flight altitude was set up as 60 m. The overlapping of UAV
	images was set up as 80% forward and 70% by the side
9.1	The classification performance of CIML algorithms on irrigation
	treatment levels at individual tree level. All the methods showed
	a state-of-art performance, with an overall accuracy of 87%. The
	"Naive Bayes" had the highest accuracy of 0.90
10.1	UAV image features used in this study 183
10.1	The "Decision Tree" performance on yield prediction "NA" stands
10.2	for "Not available".
10.3	The performance of ML methods on vield prediction
12.1	The stem water potential of walnut leaves. There were 16 sampling
	trees, which had unique ID numbers. For example, "20-4" meant
	the fourth tree on row 20. Each sampling tree was measured five
	times to reduce the likelihood of errors or anomalous results 212
12.2	The SWP levels of walnut leaves. Based on the SWP range, the
	walnut trees were classified into three levels

List of Tables

	12.3	The performance of classification methods. The accuracy of the	
		"Support Vector Machine" was 0.62. The "Random Forest" also	
		had a low prediction accuracy of 0.60. The "AdaBoost," "Nearest	
		Neighbors," and "Neural Network" had an accuracy of 0.60, 0.65,	
		and 0.62, respectively.	213
	12.4	The "Decision Trees" performance on SWP prediction. In the	
		analysis as "Decision Tree" for the SWP Level 1, the trained model	
		predicted the test data was in the range of Level 3. Therefore, the	
		prediction accuracy (F1-score) of Level 1 was zero. The model	
		successfully classified 22 out of 25 samplings in Level 2. For the	
		Level 2, the model had performance with an F1-score of 0.92. For	
		the Level 3, the model classified 9 out of 10 samplings. The overall	
		prediction accuracy of the trained model was 0.78	215
-	13.1	Soil samplings. All the soil samplings were from the same spot in	
		the almond field to make sure they are homogeneous. The soil was	
		dried out to make sure all the 3 cups of soil were at the same lowest	
		moisture level. The weights of three cups of dry soil were 632	
		grams, 630 grams, and 634 grams. 6 g or 8 g water was added in	
		every cup each time (10 times in total) to increase the soil moisture	
		until the soil moisture was saturated.	220
-	13.2	Classifiers accuracy. The best classifiers were "Nearest Neighbors,"	
		"Gaussian Process," "Decision Tree," "Random Forest," "Neural	
		Net," and "Naive Bayes" with an accuracy of 95%. The "QDA"	
		was with 90% accuracy. The "Linear SVM" and "AdaBoost" were	
		worst with 55% accuracy	222
-	13.3	The LDA Methods. Several LDA methods were used for soil	
		moisture classification.	223
	13.4	The PCA Methods.	225

Acronyms

AI	Artificial Intelligence
ANN	Artificial Neural Network
ARS	Agricultural Sciences Center
BRDF	Bidirectional Reflectance Distribution Function
CIMIS	California Irrigation Management Information System
CIML	Complexity-informed Machine Learning
CNNs	Convolutional Neural Networks
CRP	Calibrated Reflectance Panel
DEM	Digital Elevation Model
DLS	Downwelling Light Sensor
DN	Digital Number
DNNs	Deep Neural Networks
DOY	Day of Year
DTD	Dual Temperature Difference
ET	Evapotranspiration
FOV	Field of View
GPS	Global Positioning System
GPU	Graphics Processing Unit
HRMET	High Resolution Mapping of ET
ID	Identity
IoLT	Internet of Living Things
IR	Infrared
JPG	Joint Photographic Experts Group
LAI	Leaf Area Index
LDA	Linear Discriminant Analysis
MAE	Mean Absolute Error
METRIC	C Mapping Evapotranspiration with Internalized Calibration
ML	Machine Learning
MLP	Multi-layer Perceptron
NDVI	Normalized Difference Vegetation Index
NIST	National Institute of Standards and Technology

Acronyms

NIR	Near Infrared	
OSEB	One Source Energy Balance	
PA	Precision Agriculture	
PCA	Principal Component Analysis	
PDF	Probability Distribution Function	
POTM	Principle of Tail Matching	
PPIML	Plant Physiology-informed Machine Learning	
QDA	Quadratic Discriminant Analysis	
RGB	Red, Green, and Blue	
RMSE	Root Mean Square Error	
RSEB	Remote Sensing Energy Balance	
SCN	Stochastic Configuration Network	
SEBAL	Surface Energy Balance Algorithm for Land	
SGD	Stochastic Gradient Descent	
SVM	Support Vector Machine	
SWIR	Short-wave Infrared	
TIR	Thermal Infrared	
TSEB	Two-source Energy Balance	
TSEB-PT Priestley-Taylor TSEB		
UAVs	Unmanned Aerial Vehicles	
UGVs	Unmanned Ground Vehicles	
US	United States	
USDA	United States Department of Agriculture	
VIS	Visable	

xxx

Part I Why Big Data Is Not Smart Yet?