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Preface

In the dynamic realm of digital agriculture, the integration of big data acquisition
platforms has sparked both curiosity and enthusiasm among researchers and agri-
cultural practitioners. This book embarks on a journey to explore the intersection of
artificial intelligence and agriculture, focusing on small unmanned aerial vehicles
(UAVs), unmanned ground vehicles (UGVs), edge-Al sensors and the profound im-
pact they have on digital agriculture, particularly in the context of heterogeneous
crops, such as walnut, pomegranate, cotton, etc. For instance, lightweight sensors
mounted on UAVs, including multispectral and thermal infrared cameras, serve as
invaluable tools for capturing high-resolution images. Their enhanced temporal and
spatial resolutions, coupled with cost-effectiveness and near real-time data acquisi-
tion, position UAVs as an optimal platform for mapping and monitoring crop vari-
ability across vast expanses. This combination of data acquisition platforms and
advanced analytics generates substantial datasets, necessitating a deep understand-
ing of fractional-order thinking, which is imperative due to the inherent “complex-
ity” and consequent variability within the agricultural process. Much optimism is
vested in the field of artificial intelligence, such as machine learning (ML) and com-
puter vision (CV), where the efficient utilization of big data to make it “smart” is
of paramount importance in agricultural research. Central to this learning process
lies the intricate relationship between plant physiology and optimization methods.
The key to the learning process is the plant physiology and optimization method.
Crafting an efficient optimization method raises three pivotal questions: 1.) What
represents the best approach to optimization? 2.) How can we achieve a more op-
timal optimization? 3.) Is it possible to demand “more optimal machine learning,”
exemplified by deep learning, while minimizing the need for extensive labeled data
for digital agriculture?

In this book, the authors have explored the foundations of the plant physiology-
informed machine learning (PPIML) and the principle of tail matching (POTM)
framework. They elucidated their role in modeling, analyzing, designing, and man-
aging complex systems based on the big data in digital agriculture. Plant physiology
embodies the intricacies of growth, and within this complex system, deterministic
and stochastic dynamic processes coexist, influenced by external driving processes
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characterized and modeled using fractional calculus-based models. These insights
better inform the development of complexity-informed machine learning (CIML)
algorithms. To practically illustrate the application of these principles, data acqui-
sition platforms, including low-cost UAVs, UGVs, and edge-Al sensors, were de-
signed and built to demonstrate their reliability and robustness for remote and prox-
imate sensing in agricultural applications. Research findings have shown that the
PPIML, POTM, CIML, and the data acquisition platforms were reliable, robust, and
smart tools for digital agricultural research across diverse scenarios, such as water
stress detection, early detection of nematodes, yield estimation, and evapotranspi-
ration (ET) estimation. The utilization of these tools holds the potential to signifi-
cantly assist researchers and stakeholders in making informed decisions regarding
crop management.

Merced, CA, USA, Haoyu Niu
November 2023 YangQuan Chen
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