

SOLVING APPLIED
MATHEMATICAL PROBLEMS

WITH MATLAB®

C8250_FM.indd 1 9/19/08 4:21:15 PM

This page intentionally left blank

SOLVING APPLIED
MATHEMATICAL PROBLEMS

WITH MATLAB®

Dingyü Xue
YangQuan Chen

C8250_FM.indd 3 9/19/08 4:21:15 PM

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-8250-0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Xue, Dingyu.
Solving applied mathematical problems with MATLAB / Dingyu Xue,

YangQuan Chen.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-1-4200-8250-0
ISBN-10: 1-4200-8250-7
1. Engineering mathematics--Data processing. 2. MATLAB. 3. Numerical

analysis--Data processing. 4. Mathematical optimization--Data processing. I.
Chen, YangQuan, 1966- II. Title.

TA331.X84 2009
510.285’5133--dc22 2008025953

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

C8250_FM.indd 4 9/19/08 4:21:15 PM

www.copyright.com
www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Contents

Preface xi

1 Computer Mathematics Languages — An Overview 1
1.1 Computer Solutions to Mathematics Problems 1

1.1.1 Why should we study computer mathematics language? 1
1.1.2 Analytical solutions versus numerical solutions 4
1.1.3 Mathematics software packages: an overview 5

1.2 Summary of Computer Mathematics Languages 6
1.2.1 A brief historic review of MATLAB 6
1.2.2 Three widely used computer mathematics languages . 7
1.2.3 Introduction to free scientific open-source softwares . . 7

1.3 Outline of the Book . 8
Exercises . 9

2 Fundamentals of MATLAB Programming 11
2.1 Fundamentals of MATLAB Programming 12

2.1.1 Variables and constants in MATLAB 12
2.1.2 Data structure . 13
2.1.3 Basic structure of MATLAB 14
2.1.4 Colon expressions and sub-matrices extraction 15

2.2 Fundamental Mathematical Calculations 16
2.2.1 Algebraic operations of matrices 16
2.2.2 Logic operations of matrices 18
2.2.3 Relationship operations of matrices 19
2.2.4 Simplifications and presentations of analytical results . 19
2.2.5 Basic number theory computations 21

2.3 Flow Control Structures of MATLAB Language 22
2.3.1 Loop control structures 22
2.3.2 Conditional control structures 24
2.3.3 Switch structure . 25
2.3.4 Trial structure . 26

2.4 Writing and Debugging MATLAB Functions 27
2.4.1 Basic structure of MATLAB functions 27
2.4.2 Programming of functions with variable inputs/outputs 30
2.4.3 Inline functions and anonymous functions 31

2.5 Two-Dimensional Graphics 31
2.5.1 Basic statements of two-dimensional plotting 32
2.5.2 Other two-dimensional plotting statements 34
2.5.3 Implicit function plotting and applications 36

v

vi Solving Applied Mathematical Problems with MATLAB

2.5.4 Graphics decorations 36
2.6 Three-Dimensional Graphics 39

2.6.1 Plotting of three-dimensional curves 39
2.6.2 Plotting of three-dimensional surfaces 40
2.6.3 Viewpoint setting in 3D graphs 43

Exercises . 44

3 Calculus Problems 47
3.1 Analytical Solutions to Calculus Problems 47

3.1.1 Analytical solutions to limit problems 48
3.1.2 Analytical solutions to derivative problems 50
3.1.3 Analytical solutions to integral problems 55

3.2 Series Expansions and Series Evaluations 58
3.2.1 Taylor series expansion 59
3.2.2 Fourier series expansion 62
3.2.3 Series . 65
3.2.4 Sequence product . 67

3.3 Numerical Differentiation . 67
3.3.1 Numerical differentiation algorithms 68
3.3.2 Central-point difference algorithm 69
3.3.3 Gradient computations of functions with two variables 71

3.4 Numerical Integration Problems 72
3.4.1 Numerical integration from given data using trapezoidal

method . 72
3.4.2 Numerical integration of single variable functions . . . 74
3.4.3 Numerical solutions to double integrals 77
3.4.4 Numerical solutions to triple integrals 79

3.5 Path Integrals and Line Integrals 80
3.5.1 Path integrals . 80
3.5.2 Line integrals . 81

3.6 Surface Integrals . 83
3.6.1 Scalar surface integrals 83
3.6.2 Vector surface integrals 84

Exercises . 85

4 Linear Algebra Problems 89
4.1 Inputting Special Matrices 90

4.1.1 Numerical matrix input 90
4.1.2 Defining symbolic matrices 94

4.2 Fundamental Matrix Operations 95
4.2.1 Basic concepts and properties of matrices 95
4.2.2 Matrix inversion and generalized inverse of a matrix . 102
4.2.3 Matrix eigenvalue problems 106

4.3 Fundamental Matrix Transformations 109
4.3.1 Similarity transformations and orthogonal matrices . . 109
4.3.2 Triangular and Cholesky decompositions 111
4.3.3 Jordan transformations 114
4.3.4 Singular value decompositions 116

Contents vii

4.4 Solving Matrix Equations . 118
4.4.1 Solutions to linear algebraic equations 118
4.4.2 Solutions to Lyapunov equations 121
4.4.3 Solutions to Sylvester equations 124
4.4.4 Solutions to Riccati equations 125

4.5 Nonlinear Functions and Matrix Function Evaluations 126
4.5.1 Element-by-element computations 126
4.5.2 Matrix function evaluations 127

Exercises . 133

5 Integral Transforms and Complex Variable Functions 137
5.1 Laplace Transforms and Their Inverses 137

5.1.1 Definitions and properties 138
5.1.2 Computer solution to Laplace transform problems . . . 139

5.2 Fourier Transforms and Their Inverses 142
5.2.1 Definitions and properties 142
5.2.2 Solving Fourier transform problems 142
5.2.3 Fourier sine and cosine transforms 144
5.2.4 Discrete Fourier sine, cosine transforms 147

5.3 Other Integral Transforms . 147
5.3.1 Mellin transform . 148
5.3.2 Hankel transform solutions 149

5.4 Z Transforms and Their Inverses 150
5.4.1 Definitions and properties of Z transforms and inverses 150
5.4.2 Computations of Z transform 151

5.5 Solving Complex Variable Function Problems 152
5.5.1 Complex variable functions and mapping visualization 152
5.5.2 Concept and computation of residues 152
5.5.3 Partial fraction expansion for rational functions 155
5.5.4 Inverse Laplace transform using PFEs 159
5.5.5 Computing closed-path integrals 160

Exercises . 162

6 Nonlinear Equations and Numerical Optimization Problems 165
6.1 Nonlinear Algebraic Equations 166

6.1.1 Graphical method for solving nonlinear equations . . . 166
6.1.2 Quasi-analytical solutions to polynomial-type equations 168
6.1.3 Numerical solutions to general nonlinear equations . . 172
6.1.4 Nonlinear matrix equations 174

6.2 Unconstrained Optimization Problems 176
6.2.1 Analytical solutions and graphical solution methods . . 176
6.2.2 Numerical solution of unconstrained optimization using

MATLAB . 178
6.2.3 Global minimum and local minima 179
6.2.4 Solving optimization problems with gradients 181
6.2.5 Optimization problems with bounded constraints . . . 182

6.3 Constrained Optimization Problems 183
6.3.1 Constraints and feasibility regions 184

viii Solving Applied Mathematical Problems with MATLAB

6.3.2 Solving linear programming problems 185
6.3.3 Solving quadratic programming problems 187
6.3.4 Solving general nonlinear programming problems . . . 188

6.4 Mixed Integer Programming Problems 191
6.4.1 Solving mixed integer programming problems 191
6.4.2 Solving binary programming problems 194

6.5 Linear Matrix Inequalities . 195
6.5.1 A general introduction to LMIs 196
6.5.2 Lyapunov inequalities 196
6.5.3 Classification of LMI problems 198
6.5.4 LMI problem solutions with MATLAB 199
6.5.5 Optimization of LMI problems by YALMIP Toolbox . 201

Exercises . 203

7 Differential Equation Problems 207
7.1 Analytical Solution Methods for Special Classes of ODEs . . 208

7.1.1 Mathematical descriptions 208
7.1.2 Analytical solution methods 210
7.1.3 Applications of Laplace transforms 212
7.1.4 Analytical solutions to LTI state-space equations . . . 214
7.1.5 Analytical solutions to special nonlinear differential

equations . 215
7.2 Numerical Solutions to ODEs 215

7.2.1 Overview of numerical solution algorithms 216
7.2.2 Fixed-step Runge-Kutta algorithm and its MATLAB

implementation . 218
7.2.3 Numerical solution to first-order vector ODEs 219
7.2.4 Transforms to standard ODEs 224
7.2.5 Validation of numerical solutions to ODEs 231

7.3 Numerical Solutions to Special Ordinary Differential Equations 232
7.3.1 Solutions of stiff ODEs 232
7.3.2 Solutions of implicit differential equations 235
7.3.3 Solutions to differential algebraic equations 239
7.3.4 Solutions to delay differential equations 241

7.4 Solving Boundary Value Problems 243
7.4.1 Solutions to two-point boundary value problems 243
7.4.2 Solutions to general boundary value problems 245

7.5 Introduction to Partial Differential Equations 247
7.5.1 Solving a set of 1D PDEs 248
7.5.2 Mathematical description to 2D PDEs 249
7.5.3 The GUI for the PDE Toolbox — an introduction . . . 251

7.6 Solving ODEs with Block Diagrams in Simulink 258
7.6.1 A brief introduction to Simulink 258
7.6.2 Simulink — relevant blocks 258
7.6.3 Using Simulink for modeling and simulation of ODEs . 260

Exercises . 263

Contents ix

8 Data Interpolation and Functional Approximation Problems 269
8.1 Interpolation and Data Fitting 270

8.1.1 One-dimensional data interpolation 270
8.1.2 Definite integral evaluation from given samples 273
8.1.3 Two-dimensional grid data interpolation 275
8.1.4 Two-dimensional scattered data interpolation 277
8.1.5 High-dimensional data interpolations 280

8.2 Spline Interpolation and Numerical Calculus 281
8.2.1 Spline interpolation in MATLAB 281
8.2.2 Numerical differentiation and integration with splines 284

8.3 Data Modeling . 287
8.3.1 Polynomial fitting . 287
8.3.2 Approximation by continued fraction expansions 290
8.3.3 Padé rational approximations 292
8.3.4 Curve fitting by linear combination of basis functions . 294
8.3.5 Least squares curve fitting 296

8.4 Signal Analysis and Digital Signal Processing 298
8.4.1 Correlation analysis . 298
8.4.2 Fast Fourier transforms 300
8.4.3 Filtering techniques and filter design 302

Exercises . 306

9 Probability and Mathematical Statistics Problems 309
9.1 Distributions and Pseudo-Random Number Generators . . . 309

9.1.1 Introduction to PDFs and CDFs 309
9.1.2 PDFs/CDFs of commonly used distributions 310
9.1.3 Solving probability problems 317
9.1.4 Random numbers and pseudo-random numbers 318

9.2 Statistics . 319
9.2.1 Mean and variance of random variables 319
9.2.2 Moments of random variables 321
9.2.3 Covariance analysis of multivariate random variables . 322
9.2.4 Multivariate normal distributions 323
9.2.5 Monte Carlo solutions to mathematical problems . . . 324

9.3 Statistical Analysis . 326
9.3.1 Parametric estimation and interval estimation 326
9.3.2 Multivariable linear regression and interval estimation 328
9.3.3 Nonlinear parametric and interval estimations 330

9.4 Statistic Hypothesis Tests . 333
9.4.1 Basic concept and procedures for statistic hypothesis

test . 333
9.4.2 Solving hypothesis test problems in MATLAB 334

9.5 Analysis of Variance and Its Computation 337
9.5.1 One-way ANOVA . 337
9.5.2 Two-way ANOVA . 339
9.5.3 n-way ANOVA . 341

Exercises . 341

x Solving Applied Mathematical Problems with MATLAB

10 Nontraditional Solution Methods 345
10.1 Fuzzy Logic and Fuzzy Inference 346

10.1.1 Classical set theory and fuzzy sets 346
10.1.2 Membership function and fuzzification 349
10.1.3 An interactive membership function editor 351
10.1.4 Building fuzzy inference systems 351
10.1.5 Fuzzy rules and fuzzy inference 353

10.2 Neural Network and Its Applications in Data Fitting Problems 356
10.2.1 Fundamentals of neural networks 357
10.2.2 Graphical user interface for neural networks 364

10.3 Evolution Algorithms and Their Applications in Optimization
Problems . 366
10.3.1 Basic idea of genetic algorithms 366
10.3.2 MATLAB solutions to optimization problems with

genetic algorithms . 368
10.3.3 Particle swarm optimizations 373
10.3.4 Solving optimization problems with GADS Toolbox . . 374
10.3.5 Towards accurate global minimum solutions 377

10.4 Wavelet Transform and Its Applications in Data Processing . 378
10.4.1 Wavelet transform and waveforms of wavelet bases . . 378
10.4.2 Wavelet transform in signal processing problems 383
10.4.3 Graphical user interface in wavelets 386

10.5 Rough Set Theory and Its Applications 388
10.5.1 Introduction to rough set theory 388
10.5.2 Data processing problem solutions using rough sets . . 391

10.6 Fractional-Order Calculus . 395
10.6.1 Definitions of fractional-order calculus 395
10.6.2 Evaluating fractional-order differentiation 400
10.6.3 Solving fractional-order differential equations 405

Exercises . 412

References and Bibliography 415

MATLAB Functions Index 419

Index 425

Preface

Computational Thinking,1coined and promoted by Jeannette Wing of Carnegie
Mellon University, is getting more and more attention. “It represents a
universally applicable attitude and skill set everyone, not just computer sci-
entists, would be eager to learn and use” as acknowledged by Dr. Wing,
“Computational Thinking draws on math as its foundations.” The present
book responds to “Computational Thinking” by offering the readers enhanced
math problem solving ability and therefore, the readers can focus more on
“Computational Thinking” instead of “Computational Doing.”

The breadth and depth of one’s mathematical knowledge might not match
his or her ability to solve mathematical problems. In today’s applied science
and applied engineering, one usually needs to get the mathematical problems
at hand solved efficiently in a timely manner without complete understanding
of the numerical techniques involved in the solution process. Therefore, today,
arguably, it is a trend to focus more on how to formulate the problem in a
form suitable for computer solution and on the interpretation of the results
generated from the computer. We further argue that, even without a complete
preparation of mathematics, it is possible to solve some advanced mathemat-
ical problems using a computer. We hope this book is useful for those who
frequently feel that their level of math preparation is not high enough because
they still can get their math problems at hand solved with the encouragement
gained from reading this book.

Using computers to solve mathematical problems today is ubiquitous.
MATLABr/Simulink is considered as the dominant software platform for
applied math related topics. Sometimes, one simply does not know one’s
problem could be solved in a much simpler way in MATLAB or Simulink.
From what Confucius wrote, “The craftsman who wishes to work well has
first to sharpen his implements,”2 it is clear that MATLAB is the right,
already sharpened “implement.” However, a bothering practical problem is
this: MATLAB documentation only shows “this function performs this,” and
what a user with a mathematical problem at hand wants is, “Given this
math problem, through what reformulation and then use of what functions
will get the problem solved.” Frequently, it is very easy for one to get lost
in thousands of functions offered in MATLAB plus the same amount, if not
more, of functions contributed by the MATLAB users community. Therefore,

1http://www.cs.cmu.edu/afs/cs/usr/wing/www/Computational Thinking.pdf
2Confucius. http://www.confucius.org/lunyu/ed1509.htm.

xi

http://www.cs.cmu.edu/afs/cs/usr/wing/www/Computational_Thinking.pdf
http://www.confucius.org/lunyu/ed1509.htm

xii Solving Applied Mathematical Problems with MATLAB

the major contribution of this book is to bridge the gap between “problems”
and “solutions” through well grouped topics and tightly yet smoothly glued
MATLAB example scripts and reproducible MATLAB-generated plots.

A distinguishing feature of the book is the organization and presentation of
the material. Based on our teaching, research and industrial experience, we
have chosen to present the course materials following the sequence

• Computer Mathematics Languages — An Overview
• Fundamentals of MATLAB Programming
• Calculus Problems
• Linear Algebra Problems
• Integral Transforms and Complex Variable Functions
• Nonlinear Equations and Optimization Problems
• Differential Equations Problems
• Data Interpolation and Functional Approximation Problems
• Probability and Statistics Problems
• Nontraditional Methods
In particular, in the nontraditional mathematical problem solution meth-

ods, we choose to cover some interesting and practically important topics
such as set theory and fuzzy inference system, neural networks, wavelet trans-
form, evolutional optimization methods including genetic algorithms and par-
ticle swarm optimization methods, rough set based data analysis problems,
fractional-order calculus (derivative or integral of non-integer order) problems,
etc., all with extensive problem solution examples. A dedicated CAI (com-
puter aided instruction) kit including more than 1,300 interactive PowerPoint
slides has been developed for this book for both instruction and self-learning
purposes.

We hope that readers will enjoy playing with the scripts and changing
them as they wish for a better understanding and deeper exploration with
reduced efforts. Additionally, each chapter comes with a set of problems to
strengthen the understanding of the chapter contents. It appears that the
book is presenting in certain depth some mathematical problems. However,
the ultimate objective of this book is to help the readers, after understanding
roughly the mathematical background, to avoid the tedious and complex
technical details of mathematics and find the reliable and accurate solutions
to the interested mathematical problems with the use of MATLAB computer
mathematics language. There is no doubt that the readers’ ability to tackle
mathematical problems can be significantly enhanced after reading this book.

This book can be used as a reference text for almost all college students,
both undergraduates and graduates, in almost all disciplines which require
certain levels of applied mathematics. The coverage of topics is practically
broad yet with a balanced depth. The authors also believe that this book will
be a good desktop reference for many who have graduated from college and
are still involved in solving mathematical problems in their jobs.

Apart from the standard MATLAB, some of the commercial toolboxes may
be needed. For instance, the Symbolic Math Toolbox is used throughout

Preface xiii

the book to provide alternative analytical solutions to certain problems. Op-
timization Toolbox, Partial Differential Equation Toolbox, Spline Toolbox,
Statistics Toolbox, Fuzzy Logic Toolbox, Neural Network Toolbox, Wavelet
Toolbox, and Genetic Algorithm and Direct Search Toolbox may be required
in corresponding chapters or sections. A lot of MATLAB functions designed
by the authors, plus some third-party free toolboxes, are also presented in
the book. For more information on MATLAB and related products, please
contact

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098, USA

Tel: 508-647-7000

Fax: 508-647-7101

E-mail: info@mathworks.com

Web: http://www.mathworks.com

The writing of this book started more than 5 years ago, when a Chinese
version3 was published in 2004. Many researchers, professors and students
have provided useful feedback comments and inputs for the newly extended
English version. In particular, we thank the following professors: Xinhe Xu,
Fuli Wang of Northeastern University; Hengjun Zhu of Beijing Jiaotong Uni-
versity; Igor Podlubny of Technical University of Kosice, Slovakia; Shuzhi Sam
Ge of National University of Singapore, Wen Chen of Hohai University, China.
The writing of some parts of this book has been helped by Drs. Feng Pan,
Daoxiang Gao, Chunna Zhao and Dali Chen, and some of the materials are
motivated by the talks with colleagues at Northeastern University, especially
Drs. Xuefeng Zhang and Haibin Shi. The computer aided instruction kit and
solution manual were developed by our graduate students Wenbin Dong, Jun
Peng, Yingying Liu, Dazhi E, Lingmin Zhang and Ying Luo.

Moreover, we are grateful to the Editors, LiMing Leong and Marsha Hecht,
CRC Press, Taylor & Francis Group, for their creative suggestions and profes-
sional help. The “Book Program” from The MathWorks Inc., in particular,
Hong Yang, MathWorks, Beijing, Courtney Esposito, Meg Vuliez and Dee
Savageau, is acknowledged for the latest MATLAB software and technical
problem supports.

The authors are grateful to the following free toolbox authors, to allow the
inclusion of their contributions in the companion CD:

Dr. Brian K Birge, for particle swarm optimization toolbox (PSOt)

John D’Errico, for fminsearchbnd Toolbox

Mr. Koert Kuipers for his BNB Toolbox

Dr. Johan Löfberg, University of Linköping, Sweden for YALMIP

3Xue D and Chen Y Q, Advanced applied mathematical problem solutions using MATLAB,

Beijing: Tsinghua University Press, 2004

http://www.mathworks.com

xiv Solving Applied Mathematical Problems with MATLAB

Mr. Xuefeng Zhang, Northeastern University, China for RSDA Toolbox

Last but not least, Dingyü Xue would like to thank his wife Jun Yang and
his daughter Yang Xue; YangQuan Chen would like to thank his wife Huifang
Dou and his sons Duyun, David and Daniel, for their patience, understanding
and complete support throughout this work.

Dingyü Xue
Northeastern University

Shenyang, China
xuedingyu@mail.neu.edu.cn

YangQuan Chen
Utah State University

Logan, Utah, USA
yqchen@ieee.org

Chapter 1

Computer Mathematics Languages
— An Overview

1.1 Computer Solutions to Mathematics Problems

1.1.1 Why should we study computer mathematics language?

We all know that manual derivation of solutions to mathematical problems
is a useful skill when the problems are not so complicated. However, for a
great variety of mathematical problems, manual solutions are laborious or
even not possible. Thus computers must be employed for solving these prob-
lems. There are basically two ways in solving these problems by computers.
One is to verbally implement the existing numerical algorithms using general
purpose computer languages such as Fortran or C. The other way is to use
specific computer languages with a good reputation. These languages include
MATLAB, Mathematica and Maple. In this book, they are referred to as
the computer mathematics languages. The numerical algorithms can only be
used to handle computation problems by numbers, while for problems like
to find the solutions to the symbolic equation x3 + ax + c = d, where a, c, d
are not given numerical values but symbolic variables, the numerical algo-
rithms cannot be used. The computer mathematics languages with symbolic
computation capabilities should be used instead.

Before systematically introducing the contents of the book, the following
examples are given such that the readers may understand and appreciate the
necessity of using the computer mathematics languages.

Example 1.1 In calculus courses, the concepts and derivation methods are
introduced with an emphasis on manual deduction and computation. If a function

f(x) is given by f(x) =
sin x

x2 + 4x+ 3
, how could one derive

d4f(x)

dx4
manually? Of

course, one can derive it using the methods taught in calculus courses. For instance,
the first-order derivative df(x)/dx can be derived first, the second-order derivative,
third-order derivative and finally fourth-order derivative of the function f(x) can be
evaluated in turn. In this way, even higher-order derivatives of the function can be
derived manually, in theory. However, the procedure is more suitable to be carried
out with computers. With suitable computer mathematics languages, the fourth-
order derivative of the function f(x) can be calculated using a single statement as

1

2 Solving Applied Mathematical Problems with MATLAB

follows:

sinx

x2+4x+3
+4

(2x+ 4) cosx

(x2+4x+3)2
−12

(2x+ 4)2 sin x

(x2+4x+3)3
+12

sin x

(x2+4x+3)2
−24

(2x+ 4)3 cosx

(x2+4x+3)4

+ 48
(2x+ 4) cos x

(x2+4x+3)3
+24

(2x+ 4)4 sin x

(x2+4x+3)5
−72

(2x+ 4)2 sin x

(x2+4x+3)4
+24

sin x

(x2+4x+3)3
.

Of course, with built-in symbolic expression simplification methods, an even

simpler form can be automatically derived for
d4f(x)

dx4
as follows:

(x8+16x7+72x6−32x5−1094x4−3120x3−3120x2+192x+1581)
sin x

(x2+4x+3)5

+ 8(x5 + 10x4 + 26x3 − 4x2 − 99x− 102)
cosx

(x2 + 4x+ 3)4
.

It is obvious that manual derivation could be a tedious and laborious work and

it could be quite complicated. Wrong results may be obtained even with a slightly

careless manipulation of formulae. Thus, even though the results can be obtained,

the results may be suspicious and untrustworthy. If the computer mathematics

languages are used, the tedious and unreliable work can be avoided. For example,

by using MATLAB language, the accurate d100f(x)/dx100 can be obtained in a

second!

Example 1.2 In many fields, the roots of polynomial equations are often needed.
The well-known Abel-Ruffini Theorem states that there is no general solution in
radicals to polynomial equations of degree five or higher. The problems can be
solved numerically using the Lin-Bairstrow algorithm. Now consider a polynomial
equation

s6 + 9s5 +
135

4
s4 +

135

2
s3 +

1215

16
s2 +

729

16
s+

729

64
= 0.

Applying the Lin-Bairstrow method, under double-precision, the roots can be
found as

s1,2 = −1.5056 ± j0.0032, s3,4 = −1.5000 ± j0.0065, s5,6 = −1.4944 ± j0.0032.

Substituting s1 back to the original equation, the error can be found to be

−8.7041 × 10−14 − j1.8353 × 10−15. In fact, all the roots to the above equation

are exactly −1.5, if the symbolic facilities of the computer mathematics languages

are used.

Example 1.3 In linear algebra courses, the determinant of a matrix is suggested
to be evaluated by algebraic complements. For instance, for an n × n matrix, its
determinant can be evaluated from determinants of nmatrices of size (n−1)×(n−1).
Similarly, the determinant of each (n − 1) × (n − 1) matrix can be obtained from
determinants of n−1 matrices of size (n−2)×(n−2). In other words, the determinant
of an n×n matrix can finally be obtained from determinants of 1× 1 matrices, i.e.,
the scalar itself. Thus, it can be concluded that the analytical solutions to the
determinant of any given matrix exists.

In fact, the above mathematical conclusion neglected the computability and fea-
sibility issue. The computation load for such an evaluation task could be extremely
tremendous, which requires (n−1)(n+1)!+n operations. For instance, when n = 20,
the number of floating-point operations (flops) for the computation is 9.7073×1020 ,

Computer Mathematics Languages — An Overview 3

which amounts to 300 years of computation on mainframe computers of a billion
flops per second. Thus, the algebraic complement method, although elegant and
instructive, is not practically feasible. In real applications, the determinants of even
larger sized matrices are usually needed (n ≫ 20), which is clearly not possible to
directly apply the algebraic complement method mentioned above.

In numerical analysis courses, various algorithms have been devised. However,
due to finite precision numerical computation, these algorithms may have numerical
problems when the matrix is close to being singular. For example, consider the
Hilbert matrix given by

H =




1 1/2 1/3 · · · 1/n
1/2 1/3 1/4 · · · 1/(n+ 1)
...

...
...

. . .
...

1/n 1/(n+ 1) 1/(n+ 2) · · · 1/(2n− 1)


 . (1.1)

For n = 20, an erroneous determinant det(H) = 0 could actually be obtained even
if double-precision is used. On the other hand, if computer mathematics language
MATLAB is used, the analytical solution below can be obtained within 0.4 seconds:

det(H)=
1

2377454 · · · 6800000000000000000000000000000000000︸ ︷︷ ︸
225 digits, with some digits omitted

≈4.2062 × 10−224.

Example 1.4 Consider the well-known nonlinear Van der Pol equation

ÿ + µ(y2 − 1)ẏ + y = 0

and when µ is large, i.e., µ = 1000, the conventional numerical algorithms for
solving differential equations such as the standard Runge-Kutta method may cause
numerical problems. Specialized numerical algorithms for stiff ordinary differential
equations (ODEs) should be used instead, rather than the standard Runge-Kutta
methods in numerical analysis courses.

As another example, the first-order delay differential equation (DDE)

dy(t)

dt
= −0.1y(t) + 0.2

y(t− 30)

1 + y10(t− 30)

cannot be solved using the commonly taught algorithms in numerical analysis courses.

The MATLAB function dde23() or block diagram modeling tool Simulink can be

used instead. The details of the methods will be given later in the book (Sec-

tion 7.3).

Example 1.5 Consider the linear programming problem given below

min

x s.t.





2x2+x3+4x4+2x5654

3x1+4x2+5x3−x4−x5662

x1,x2>0,x3>3.32,x4>0.678,x5>2.57

(−2x1 − x2 − 4x3 − 3x4 − x5).

Since the original problem is a linear constrained optimization problem, the ana-
lytical unconstrained method, i.e., setting the derivatives of the objective function
with respect to each decision variable xi to zeros, cannot be used. With linear
programming tools in MATLAB, the numerical solutions can be found easily as
x1 = 19.7850, x2 = 0, x3 = 3.3200, x4 = 11.3850, x5 = 2.5700.

4 Solving Applied Mathematical Problems with MATLAB

Applying algorithms in numerical analysis or optimization courses, conventional

constrained optimization problems can be solved. However, if other special con-

straints are introduced, for instance, the decision variables are constrained to be

integers, the integer programming must be used. There are not so many books

introducing softwares that can tackle the integer and mixed-integer programming

problems. If we use MATLAB, the solutions to this example problem are easily

found as x1 = 19, x2 = 0, x3 = 4, x4 = 10, x5 = 5.

Example 1.6 In many other courses of applied mathematics branches, such as

integral transform, complex variable functions, partial differential equations, data

interpolation and fitting, probability and statistics, can you still remember how to

solve the problems after the final exams?

In many subjects, such as electric circuits, electronics, power electron-
ics, motor drive, automatic control theory, more sophisticated examples and
problems are usually skipped due to the lack of introduction of high-level
computer software tools. If computer mathematics languages are introduced
routinely in the above courses, complicated practical problems can be solved
and innovative solutions to the problems can be explored.

1.1.2 Analytical solutions versus numerical solutions

The development of modern sciences and engineering depends heavily on
mathematics. However, the research interests of pure mathematicians are
different from other scientists and engineers. Mathematicians are often more
interested in finding the analytical or closed-form solutions to mathematical
problems. They are in particular interested in proving the existence and
uniqueness of the solutions, and do not usually care much about what the
solutions are. Engineers and scientists are more interested in finding the
exact or approximate solutions to the problems at hand and usually do not
care too much about the details on how the results are obtained, as long as
the results are reliable and meaningful. The most widely used approaches for
finding the approximate solutions are the numerical techniques.

It is quite common to find that analytical solutions do not exist in reality
in many different mathematics branches. For instance, it is well-known that

the definite integral
2√
π

∫ a

0

e−x
2

dx has no analytical solution. To solve the

problem, mathematicians introduce a special function erf(a) to denote it and
do not care what in particular the numerical value is. In order to find an
approximate value, scientists and engineers have to use numerical approaches.

Another example is that the irrational number π has no closed-form solu-
tion. The ancient Chinese astronomer and scientist Zu Chongzhi, also known
as Tsu Ch’ung-chih, found that the value is between 3.1415926 and 3.1415927,
in about A.D. 480. This value is accurate enough in most science and engi-
neering practice. Even with the imprecise value 3.14 found by Archimedes

Computer Mathematics Languages — An Overview 5

in about B.C 250 (?), the solutions to most engineering problems are often
acceptable.

The above discussions hint that an approximate numerical solution is ubiq-
uitous. In many cases, only showing existence and uniqueness of solutions is
not enough. We need to compute the solution using computers. The breadth
and depth of one’s mathematical knowledge might not match one’s ability of
getting mathematical problems solved. In today’s applied science and applied
engineering, one usually needs to get the mathematical problems at hand
solved efficiently in a timely manner without complete understanding of the
numerical techniques involved even in the solution process. Therefore, today,
arguably, it is a trend to focus more on how to formulate the problem in a
form suitable for computer solution and on the interpretation of the results
generated from the computer. Numerical techniques have already been used
in many scientific and engineering areas. For instance, in mechanics, finite ele-
ment methods (FEM) have been used in solving partial differential equations.
In aerospace and control, numerical linear algebra and numerical solutions to
ordinary differential equations have successfully been used for decades. For
simulation experiments in engineering and non-engineering areas, numerical
solutions to difference and differential equations are the core problems. In hi-
tech developments, digital signal processing based on fast Fourier transform
(FFT) has been regarded as a routine task. There is no doubt that if one
masters one or more practical computation tools, significant enhancement of
mathematical problem solving capability can be expected.

1.1.3 Mathematics software packages: an overview

The emerging digital computers fueled the developments of numerical as
well as symbolic computation techniques. In the early stages of the develop-
ment of numerical computation techniques, some well established packages,
such as the eigenvalue-based package EISPACK[1, 2], linear algebra package
LINPACK[3] in the USA, the NAG package by the Numerical Algorithm
Group in the UK, and the package in the well accepted book Numerical
Recipes[4], appeared and were widely used with good user feedback.

The famous EISPACK and LINPACK packages are both specific packages
for numerical linear algebra applications. Originally developed in the USA,
EISPACK and LINPACK packages were written in Fortran. To have a flavor
of how to use the packages, let us consider eigenvalues (WR, WI for their
real and imaginary parts) and eigenvectors Z of an N × N real matrix A.
As suggested by EISPACK, the standard solution method is by sequentially
calling relevant subroutines provided in EISPACK as follows:

1 CALL BALANC(NM,N,A,IS1,IS2,FV1)

2 CALL ELMHES(NM,N,IS1,IS2,A,IV1)

3 CALL ELTRAN(NM,N,IS1,IS2,A,IV1,Z)

4 CALL HQR2(NM,N,IS1,IS2,A,WR,WI,Z,IERR)

5 IF (IERR.EQ.0) GOTO 99999

6 Solving Applied Mathematical Problems with MATLAB

6 CALL BALBAK(NM,N,IS1,IS2,FV1,N,Z)

Apart from the main body of the program, the user should also write a few
lines to input or initialize the matrix A to the above program and return or
display the results obtained by adding some display or printing statements.
Then, the whole program should be compiled and linked with the EISPACK
library to generate an executable program. It can be seen that the procedure
is quite complicated. Moreover, if another matrix is to be solved, the whole
procedure might be repeated, which makes the solution process even more
complicated.

It is good news that the mathematical software packages are continuously
developing, implementing the leading-edge numerical algorithms, providing
more efficient, more reliable, faster and more stable packages. For instance, in
the area of numerical algebra, a new LaPACK is becoming the leading package.
Unlike the original purposes of EISPACK or LINPACK, the objectives of
LaPACK have been changed. LaPACK is no longer aiming at providing
libraries or facilities for direct user applications. Instead, LaPACK provides
support to mathematical software and languages. For example, MATLAB and
a freeware Scilab have abandoned the packages of LINPACK and EISPACK,
and adopted LaPACK as their low-level library support.

1.2 Summary of Computer Mathematics Languages

1.2.1 A brief historic review of MATLAB

In the late 1970’s, Professor Cleve Moler, the Chairman of the Department
of Computer Science at the University of New Mexico found that the solu-
tions to linear algebraic problems using the most advanced EISPACK and
LINPACK packages are too complicated. MATLAB (MATrix LABoratory)
was then conceived and developed. The first release of MATLAB was freely
distributed in 1980. Cleve Moler and Jack Little co-founded The MathWorks
Inc. in 1984 to develop the MATLAB language. At that time, state-space-
based control theory was rapidly developing and a significant amount of
numerical algebra problems needed to be solved. The appearance of MAT-
LAB and its Control Systems Toolbox soon attracted the attention of the
control community. More and more control oriented toolboxes were written
by distinguished experts in different control disciplines, which added higher
reputations to MATLAB. It is true that MATLAB was initiated by numerical
mathematicians but its impacts and innovations were first built by the control
community. Soon it became the general purpose language of control scientists
and engineers. With more and more new toolboxes in many other engineering
disciplines, MATLAB is becoming the de facto standard language of science
and engineering.

Computer Mathematics Languages — An Overview 7

1.2.2 Three widely used computer mathematics languages

There are three leading computer mathematics languages in the world with
high reputations. They are MATLAB of The MathWorks, Mathematica of
Wolfram Research, and Maple of Waterloo Maple. They each have their own
distinguishing merits, for instance, MATLAB is good at numerical computa-
tion and easy in programming, while Mathematica and Maple are powerful in
pure mathematics problems involving symbolics and derivations.

The numerical computation capability of MATLAB is much stronger than
the other two languages. Besides, various nice toolboxes by experts can be
used to tackle the problems with high efficiency. In addition, the symbolic
computation engine in Maple can be used to solve symbolic computation
problems. Thus, the symbolic computation capability of MATLAB is essen-
tially as good as Mathematica and Maple for most mathematical problems.
When the readers have mastered such a computer mathematics language like
MATLAB, the ability of handling mathematical problems could be enhanced
significantly.

1.2.3 Introduction to free scientific open-source softwares

Although many extremely powerful scientific computation facilities have
been provided in the computer mathematics languages such as MATLAB,
Maple and Mathematica, there are certain limitations in their applications in
research and education, for example, they are expensive commercial softwares.
Moreover, some of the core source code are not accessible to the users. Thus
the open-source softwares are welcome in scientific computation as well. Some
influential softwares include:

(i) Scilab Scilab is developed and maintained by INRIA, France. The
syntaxes are very similar with MATLAB. It is a free open-source software
which concentrates in particular on control and signal processing. The
Scicos in Scilab is a block diagram simulation environment similar to
Simulink. The web-page of Scilab is http://www.scilab.org/.

(ii) Octave Octave was conceived in 1988 and first released in 1993. It is
a promising open-source software for numerical computation, initiated
from numerical linear algebra. The earlier objective of the software was
to provide support in education. The web-page of Octave is http://

www.gnu.org/software/octave/.

(iii) Others Some other small-scale numerical matrix computation softwares
such as Freemat and SpeQ are all attractive free softwares. The web-
pages are respectively http://freemat.sourceforge.net/wiki/index

.php/Main Page and http://www.speqmath.com/index.php?id=1.

http://www.scilab.org/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://freemat.sourceforge.net/wiki/index.php/Main_Page
http://freemat.sourceforge.net/wiki/index.php/Main_Page
http://www.speqmath.com/index.php?id=1

8 Solving Applied Mathematical Problems with MATLAB

1.3 Outline of the Book

The book can be used as a reference text or even a textbook of a new course
on scientific computation. The applications of all branches of college math-
ematics can be taught in such a course with broad coverage, which enables
the students view mathematics from a different angle. This will significantly
increase the ability of the students for mathematical problem solutions. The
book can also be used as a reference book for actual mathematical problem
solutions.

The contents of the book are summarized below:
Chapter 1, the current chapter, gives an overview of the development of

MATLAB and other computer mathematics languages.
Chapter 2, “Fundamentals of MATLAB Programming,” introduces briefly

the programming essentials of MATLAB, including data structure, flow con-
trol structures and M-function programming. Two-dimensional and three-
dimensional graphics are also presented. This chapter is the basis for the
materials in the book.

Chapter 3, “Calculus Problems,” covers the problems in college calculus,
from a different viewpoint. The subjects introduced in the chapter include
limits, derivatives and integrals of single-variable and multivariable functions.
Series expansion problems such as Taylor series and Fourier series expansions
as well as series sums and products are covered. Numerical differentiation and
integration or quadrature, are also introduced. Finally MATLAB solutions to
path, line and surface integrals are illustrated.

Chapter 4, “Linear Algebra Problems,” studies linear algebra problems
using both analytical and numerical methods. Special matrices in MATLAB
are first discussed followed by basic matrix analysis, matrix transformation
and matrix decomposition problems. Matrix equation solutions, including
linear equations, Lyapunov equation and Riccati equations, are introduced.
How to evaluate matrix functions is introduced for both the exponential
function and the functions of arbitrary forms.

Chapter 5, “Integral Transforms and Complex Variable Functions,” includes
the solutions to Laplace transform problems and their inverse, Fourier trans-
forms and their variations, Z, Mellin and Hankel transforms. The analysis
of complex variable functions are also introduced, including poles, residues,
partial fraction expansion and closed-path integral problems, all with many
illustrative solution examples.

Chapter 6, “Nonlinear Equations and Optimization Problems,” explores
the search methods for linear equations, nonlinear equations and nonlinear
matrix equations. The unconstrained optimization, constrained optimization
and mixed integer programming problems are demonstrated. Linear matrix
inequality (LMIs) problems are also covered in the chapter.

Chapter 7, “Differential Equations Problems,” mainly covers analytical

Computer Mathematics Languages — An Overview 9

as well as numerical solutions to ordinary differential equations. Different
types of ordinary differential equations, including stiff equations, implicit
equations, differential algebraic equations, delay differential equations and
the boundary valued equations are illustrated. An introduction to partial
differential equations is also given briefly through examples.

Chapter 8, “Data Interpolation and Functional Approximation Problems,”
studies the interpolation problems such as simple interpolation, cubic spline
and B-spline problems. We show that numerical differentiation and inte-
gration problems can be solved with splines. Polynomial fitting, continued
fraction expansion and Padé approximation as well as least squares curve
fitting methods are all covered and illustrated. Fast Fourier transform, signal
filtering and de-noising problems are also studied briefly in this chapter.

Chapter 9, “Probability and Mathematical Statistics Problems,” studies the
probability distributions and pseudo-random number generators first. Statis-
tical analysis to the measured random data is then illustrated. Hypothesis
tests for a few common applications are presented, and the analysis of variance
method is also demonstrated briefly.

Chapter 10, “Nontraditional Solution Methods,” covers a wide variety of
interesting topics, such as traditional set theory, rough set theory, fuzzy
set theory and fuzzy inference system, neural networks, wavelet transform,
evolutional optimization methods including genetic algorithms and particle
swarm optimization methods. Most interestingly, fractional-order calculus
(derivative or integral of non-integer order) problems are introduced with
basic numerical computational techniques and examples.

It appears that the book is presenting in certain depth some mathematical
problems. However, the ultimate objective of this book is to help the read-
ers, after understanding roughly the mathematical background, to avoid the
tedious and complex technical details of mathematics and find the reliable
and accurate solutions to the interested mathematical problems with the use
of MATLAB computer mathematics language. There is no doubt that the
readers’ ability to tackle mathematical problems can be significantly enhanced
after reading this book.

Exercises

1. Install MATLAB on your machine, and issue the command demo. From the
dialog boxes and menu items of the demonstration program, experience the
powerful functions provided in MATLAB.

2. Type the command doc symbolic/diff, and see whether it is possible, by
reading the relevant help information, to solve the problem given in Example
1.1. If the solutions can be obtained, compare the solutions with the results in
the example.

3. Solve the following Lyapunov equation by starting the command

10 Solving Applied Mathematical Problems with MATLAB

lookfor lyapunov

and see whether there is any function related to the keyword lyapunov. If there
is one, say, the lyap function is found, type doc lyap and see whether there is
a way to solve this Lyapunov equation. Check the accuracy of the solution by
back substitution.


8 1 6
3 5 7
4 9 2



X +X




16 4 1
9 3 1
4 2 1



 =




1 2 3
4 5 6
7 8 0



 .

4. Write a simple subroutine which can be used to perform matrix multiplications
in other languages such as the C language. Try to make the code as general
purpose as possible.

5. Write a piece of code in C language which can generate the Fibonacci sequence
defined as a1 = a2 = 1, ak+2 = ak + ak+1, for k = 1, 2, · · · . Generate the
sequence with 50 terms. Observe whether the results are feasible. If there are
serious abnormal problems, are there any possible solutions in C?

Chapter 2

Fundamentals of MATLAB
Programming

MATLAB language is becoming a widely accepted scientific language, es-
pecially in the field of automatic control. In other engineering and non-
engineering disciplines such as economics and even biology, MATLAB is also
an attractive and promising computer mathematics language. In this book,
we shall concentrate on the introduction to MATLAB with its applications
in solving applied mathematics problems. A good working knowledge of
MATLAB language will enable one not only understand in depth the concepts
and algorithms in research but also increase the ability to do creative research
work and apply MATLAB to actively tackle the problems in other related
courses.

As a programming language, MATLAB has the following advantages:

(i) Clarity and high efficiency MATLAB language is a highly integrated
language. A few MATLAB sentences may do the work of hundreds of
lines of source code of other languages. Thus the MATLAB program is
more reliable and easy to maintain.

(ii) Scientific computation The basic element in MATLAB is a complex
matrix of double-precision. Matrix manipulations can be carried out
directly. Numerical computation functions provided in MATLAB, such
as the ones for solving optimization problems or other mathematical
problems, can be used directly. Also symbolic computation facilities
are provided in MATLAB’s Symbolic Math Toolbox to support formula
derivation.

(iii) Graphics facilities MATLAB language can be used to visualize the
experimental data in an easy manner. Moreover, the graphical user
interface is also supported in MATLAB.

(iv) Comprehensive toolboxes and blocksets There are a huge amount
of MATLAB toolboxes and Simulink blocksets contributed by experi-
enced programmers and researchers.

(v) Powerful simulation facilities The powerful block diagram-based
modeling technique provided in Simulink can be used to analyze systems
with almost any complexity. In particular, under Simulink, the control
blocks, electronic blocks and mechanical blocks can be modeled together
under the same framework, which is currently not possible in other

11

12 Solving Applied Mathematical Problems with MATLAB

computer mathematics languages.

In Section 2.1, the fundamental information about MATLAB program-
ming, such as the data types, statement structures, colon expressions and
sub-matrix extraction is introduced. In Section 2.2, the basic operations,
including algebraic, logic and relationship operations, and simplification of
symbolic formulae, and introduction to number theory are presented. The
flow control such as loop structures, conditional structures, switches and trial
structures are introduced in Section 2.3. In Section 2.4, the most important
programming structure — the M-function — is illustrated with useful hints on
high-level programming. In Section 2.5, two-dimensional graphics facilities are
presented, where two-dimensional sketching and implicit function expressions
are illustrated in particular. Three-dimensional graphics are presented in
Section 2.6, where mesh and surface plots can be drawn and the viewpoint
setting facilities are introduced.

2.1 Fundamentals of MATLAB Programming

2.1.1 Variables and constants in MATLAB

MATLAB variable names consist of a letter, followed by any number of
letters, digits, or underscores. For instance, MYvar12, MY Var12 and MyVar12

are valid variable names, while 12MyVar and MyVar12 are invalid ones, since
the first character is not a letter. The variable names are case-sensitive, i.e.,
the variables Abc and ABc are different variables.

In MATLAB, some of the names are reserved for the constants. They can
however be assigned to other values. It is suggested that these names should
not be assigned to other values whenever possible.

• eps — error tolerance for floating-point operation. The default value is
eps= 2.2204 × 10−16, and if the absolute value of a quantity is smaller
than eps, it can be regarded as 0.

• i and j — If i or j is not overwritten, they both represent
√
−1. If they

are overwritten, they can be restored with the i=sqrt(−1) command.

• Inf — the MATLAB representation of infinity quantity +∞. It can also
be written as inf. Similarly −∞ can be written as -Inf. When 0 is
used in denominator, the value Inf can be generated, with a warning.
This agrees with the IEEE standard. For mathematical computation,
this definition has its advantages over C language.

• NaN — not a number, which is often returned by the operations 0/0,
Inf/Inf and others. It should also be noted that NaN times Inf will
return NaN.

• pi — double-precision representation of the circumference ratio π.

Fundamentals of MATLAB Programming 13

• lasterr — returns the error message received last time. It can be a
string variable, with empty string for no error message generated.

• lastwarn — returns the last obtained warning message.

2.1.2 Data structure

Double-precision data type

Numerical computation is the most widely used computation form in MAT-
LAB. To ensure high-precision computations, double-precision floating-point
data type is used, which is 8 bytes (64 bits). According to the IEEE standard,
it is composed of 11 exponential bits, 53 number bits and a sign bit, represent-
ing the data range of ±1.7×10308. The MATLAB function for defining this
data type is double(). In other special applications, i.e., in image processing,
unsigned 8 bit integer can be used, whose function is uint8(), representing
the value in (0, 255). Thus significant memory space is saved. Also the data
types such as int8(), int16(), int32(), uint16() and uint32() can be
used.

Symbolic data type

“Symbolic” variables are also defined in MATLAB in contrast to the nu-
merical variables. They can be used in formula derivation and analytical
solutions of mathematical problems. Before finding analytical solutions, the
related variables should be declared as symbolic, with the syms statement
syms var list var props , where var list is the list of variables to be declared,

separated by spaces. If necessary, the types of the properties of the variables
can be assigned by var props, such as real or positive. For instance, if one
wants to assume that a,b are symbolic variables, the statement syms a b can

be used. Also the statement syms a nonzero can be used to say that a is a

nonzero variable.
The variable precision arithmetic function vpa() can be used to display the

symbolic variables in any precision. The syntax of the function is vpa(A,n)

or vpa(A), where A is the variable to be displayed, and n is the number of

digits expected, with the default value of 32 decimal digits.

Example 2.1 Display the first 300 digits of π.

Solution The following statement can be used directly to display the exact value
of π

>> vpa(pi,300)

and the result is shown as 3.1415926535897932384626433832795028841971693993751

058209749445923078164062862089986280348253421170679821480865132823066470

938446095505822317253594081284811174502841027019385211055596446229489549

303819644288109756659334461284756482337867831652712019091456485669234603

14 Solving Applied Mathematical Problems with MATLAB

4861045432664821339360726024914127.

One may also require large number of digits to be displayed. Also the result

obtained with the statement vpa(pi) is 3.1415926535897932384626433832795.

Other data types

Apart from the commonly used numerical data types in MATLAB, the
following data types are also provided such that

(i) Strings String variables are used to store messages. The syntax of
string is slightly different from that in C; single quotation marks are
used in MATLAB.

(ii) Multi-dimensional arrays Three-dimensional arrays are the direct
extension of matrices. Multi-dimensional arrays are also provided in
MATLAB.

(iii) Cell arrays Cells are extension of matrices, whose elements are no
longer values. The element, referred to as cells, of cell arrays can be of
any data type. For instance, A{i,j} can be used to represent the (i, j)th
term of cell array A.

(iv) Classes and objects MATLAB allows the use of classes in the
programming. For instance, the transfer function class in control can be
used to represent a transfer function of a system in one single variable.
An example of the creation and overload function programming of an
object is given in Section 10.6.

2.1.3 Basic structure of MATLAB

Two types of MATLAB statements can be used:

(i) Direct assignment The basic structure of this type of statement is

variable = expression ,

and expression can be evaluated and assigned to the variable defined in
the left-hand-side, and established in MATLAB workspace. If there is a
semicolon used at the end of the statement, the result is not displayed.
Thus the semicolon can be used to suppress the display of intermediate
results. If the left-hand-side variable is not given, the expression will be
assigned to the reserved variable ans. Thus, the reserved variable ans

always stores the latest statements without a left-hand-side variable.

Example 2.2 Specify the matrix A =



1 2 3
4 5 6
7 8 0


 into MATLAB workspace.

Solution The matrix A can easily be entered into MATLAB workspace, with the
following statement

>> A=[1,2,3; 4 5,6; 7,8 0]

Fundamentals of MATLAB Programming 15

where >> is the MATLAB prompt, which is given automatically in MATLAB. Under
the prompt, various MATLAB commands can be specified. For matrices, square
brackets should be used to describe matrices, with the elements in the same row
separated by commas, and the rows are separated by semicolons. The double matrix
variable A can then be established in MATLAB workspace. The matrix A can be
displayed in MATLAB command window

A =

1 2 3

4 5 6

7 8 0

A semicolon at the end of the statement suppresses the display of such a matrix.
The size of a matrix can be expanded or reduced dynamically, with the following
statements.

>> A=[1,2,3; 4 5,6; 7,8 0]; % assignment is made, however no display
A=[[A; [1 2 3]], [1;2;3;4]]; % dynamically define the size of matrix

Example 2.3 Enter complex matrix B =



1+j9 2+j8 3+j7
4+j6 5+j5 6+j4
7+j3 8+j2 0+j1


 into MATLAB.

Solution Specifying a complex matrix in MATLAB is as simple as with the case
for real matrices. The notations i and j can be used to describe the imaginary unit.
Thus the following statement can be used to enter the complex matrix B

>> B=[1+9i,2+8i,3+7j; 4+6j 5+5i,6+4i; 7+3i,8+2j 1i]

(ii) Function call statement The basic statement structure of function
call is

[returned arguments]=function name(input arguments)

where, the regulation for function names are the same as in variable
names. Generally the function names are the file names in the MATLAB
path. For instance, the function name my fun corresponds to the file
my fun.m. Of course, some of the functions are built-in functions in
MATLAB kernel, such as the inv() function.

More than one input arguments and returned arguments are allowed, in
which case, commas should be used to separate the arguments. For instance,
the function call [U S V]=svd(X) performs singular value decomposition to
a given matrix X, and the three arguments U ,S,V will be returned.

2.1.4 Colon expressions and sub-matrices extraction

Colon expression is an effective way in defining row vectors. It is useful
in generating vectors, and in extracting sub-matrices. The typical form of
colon expression is v=s1:s2:s3 . Thus a row vector v can be established in
MATLAB workspace, with the initial value s1, the increment s2 and the final

16 Solving Applied Mathematical Problems with MATLAB

value s3. If the term s2 is omitted, a default increment of 1 is used instead.
The examples given below illustrate the use of colon expressions.

Example 2.4 For different increments, establish vectors for t ∈ [0, π].

Solution One may select an increment 0.2. The following statement can be used
to establish a row vector such that

>> v1=0: 0.2: pi

and the row vector is then established such that v1 = [0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4,
1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3]. It is noted that the last term in v1 is 3, rather than π.

The following statements can be used to establish row vectors using colon expres-
sions

>> v2=0: -0.1: pi % negative step here means no vector generated
v3=0:pi % with the default step size of 1
v4=pi:-1:0 % the new vector in the reversed order

thus v2 is a 1×0 (empty) matrix, v3 =[0, 1, 2, 3], while v4=[3.142, 2.142, 1.142, 0.142].

The sub-matrix of a given matrix A can be extracted with the MATLAB
statement, and the matrix can be extracted with B=A(v1,v2), where v1

vector contains the numbers in the rows, and v2 contains the numbers of
columns. Thus the relevant columns and rows can be extracted from matrix
A. The sub-matrix can be returned in matrix B. If v1 is assigned to :, all
the columns can be extracted. The keyword end can be used to indicate the
last row or column.

Example 2.5 With the following statements, different sub-matrices can be ex-
tracted from the given matrix A, such that

>> A=[1,2,3; 4,5,6; 7,8,0];

B1=A(1:2:end, :) % extract all the odd rows of matrix A
B2=A([3,2,1],[1 1 1]) % copy the reversed first column to all columns
B3=A(:,end:-1:1) % flip left-right the given matrix A

and the sub-matrices extracted with the above statements are

B1 =

[
1 2 3
7 8 0

]
, B2 =



7 7 7
4 4 4
1 1 1


 , B3 =



3 2 1
6 5 4
0 8 7


 .

2.2 Fundamental Mathematical Calculations

2.2.1 Algebraic operations of matrices

Suppose matrix A has n rows and m columns, it is then referred to as an
n×m matrix. If n = m, then matrix A is also referred to as a square matrix.
The following algebraic operations can be defined:

Fundamentals of MATLAB Programming 17

(i) Matrix transpose In mathematics textbooks, the transpose of ma-
trices is often denoted as AT. For an n ×m matrix A, the transpose
matrix B can be defined as bji = aij , i = 1, · · · , n, j = 1, · · · ,m, thus
B is an m×n matrix. If matrix A contains complex elements, a special
transpose can also be defined as bji = a∗ij , i = 1, · · · , n, j = 1, · · · ,m,
i.e., the complex conjugate transpose matrix B is defined. This kind of
transpose is referred to as the Hermitian transpose, denoted as B = AH.
In MATLAB, A’ can be used to evaluate the Hermitian matrix of A.

The simple transpose can be obtained with A.’. For a real matrix A,
A’ is the same as A.’.

(ii) Addition and subtraction Assume that there are two matricesA and

B in MATLAB workspace, the statements C = A +B and C = A −B
can be used respectively to evaluate the addition and subtraction of
these two matrices. If the matrices A and B are with the same size, the
relevant results can be obtained. If one of the matrices is a scalar, it can
be added to or subtracted from the other matrix. If the sizes of the two
matrices are different, error messages can be displayed.

(iii) Matrix multiplication Assume that matrix A of size n × m and
matrix B of size m × r are two variables in MATLAB workspace, and
the columns of A equal the rows of B, the two matrices are referred

to as compatible. The product can be obtained from cij =
m∑

k=1

aikbkj ,

where i = 1, 2, · · · , n, j = 1, 2, · · · , r. If one of the matrices is a scalar,
the product can also be obtained. In MATLAB, the multiplication of
the two matrices can be obtained with C=A*B . If the two matrices are
not compatible, an error message will be given.

(iv) Matrix left division The left division of the matrices A\B can be

used to solve the linear equationsAX = B. If matrixA is non-singular,

then X = A−1B. If A is not a square matrix, A\B can also be used

to find the least squares solution to the equations AX = B.

(v) Matrix right division The statement B/A can be used to solve the

linear equations XA = B. More precisely, B/A=(A’\B’)’.

(vi) Matrix flip and rotation The left-right flip and up-down flip of a

given matrix A can be obtained with B=fliplr(A) and C=flipud(A)

respectively, such that bij = ai,n+1−j and cij = am+1−i,j . The command

D=rot90(A) rotates matrix A counterclockwise by 90◦, such that dij =
aj,n+1−i.

(vii) Matrix power Ax computes the matrixA to the power x when matrix

A is square. In MATLAB, the power can be evaluated with F =A^x.

(viii) Dot operation A class of special operation is defined in MATLAB.

The statement C=A.*B can be used to obtain element-by-element prod-

18 Solving Applied Mathematical Problems with MATLAB

uct of matrices A and B, such that cij = aijbij . The dot product is also
referred to as the Hadamard product.

Dot operation plays an important role in scientific computation.
For instance, if a vector x is given, then the vector [x5

i] cannot be
obtained with x^5. Instead, the command x.^5 should be used. In
fact, some of the functions such as sin() can also be used in element-
by-element operation.

Dot operation can be used to deal with other problems, for in-
stance, the statement A.^A can be used, with the (i, j)th element then
defined as a

aij

ij . Thus the matrix can be obtained



11 22 33

44 55 66

77 88 00


 =




1 4 27
256 3125 46656

823543 16777216 1


 .

Example 2.6 Consider again the matrix A in Example 2.2. Find all the cubic
roots of such a matrix and verify the results.

Solution The cubic root of the matrix A can easily be found that

>> A=[1,2,3; 4,5,6; 7,8,0]; C=A^(1/3), e=norm(A-C^3)

and it can be found, with an error of e = 8.2375×10−15 , that

C =




0.77179 + j0.6538 0.48688 − j0.015916 0.17642 − j0.2887
0.88854 − j0.072574 1.4473 + j0.47937 0.52327 − j0.49591
0.46846 − j0.64647 0.66929 − j0.6748 1.3379 + j1.0488


 .

In fact, the cubic root of matrix A should have three solutions. The other two
roots can be rotated as Cej2π/3 and Cej4π/3, with the following statements

>> j1=exp(sqrt(-1)*2*pi/3); A1=C*j1, A2=C*j1^2,

norm(A-A1^3), norm(A-A1^3)

and the other two roots, through verification, are

A1 =



−0.9521 + j0.34149 −0.22966 + j0.42961 0.16181 + j0.29713
−0.38142 + j0.80579 −1.1388 + j1.0137 0.16784 + j0.70112
0.32563 + j0.72893 0.24974 + j0.91702 −1.5772 + j0.63425




and

A2 =




0.18031 − j0.99529 −0.25722 − j0.41369 −0.33823 − j0.008436
−0.50712 − j0.73321 −0.3085 − j1.4931 −0.69111 − j0.20521
−0.79409 − j0.082464 −0.91904 − j0.24222 0.23934 − j1.6831


 .

2.2.2 Logic operations of matrices

Logical data was not implemented in earlier versions of MATLAB. The
non-zero value is regarded as logic 1, while a zero value is defined as logic 0.
In new versions of MATLAB, logical variables are defined and the above rules
also apply.

Fundamentals of MATLAB Programming 19

Assume that the matrices A and B are both n×m matrices, the following
logical operations are defined:

(i) “And” operation In MATLAB, the operator & is used to define

element-by-element “and” operation. The statement A & B can then
be defined.

(ii) “Or” operation In MATLAB, the operator | is used to define element-

by-element “or” operation. The statement A | B can then be defined.

(iii) “Not” operation In MATLAB, the operator ~ can be used to define

the “not” operation such that B =~A.

(iv) Exclusive or The exclusive or operation of two matrices A and B

can be evaluated from xor(A,B).

2.2.3 Relationship operations of matrices

Various relationship operators are provided in MATLAB. For example,
C=A > B will perform element-by-element comparison, with the element cij =
1 for aij > bij , and cij = 0 otherwise. The equality relationship can be tested
with == operator, while the other operators >=, ~= can also be used.

The special functions such as find() and all() can also be used to perform
relationship operations. For instance, the index of the elements in C equal to
1 can be obtained from find(C==1). The following commands can be used:

>> A=[1,2,3; 4 5,6; 7,8 0]; % enter a matrix
i=find(A>=5)’ % find all the indices in A whose value is larger than 5

and the indices can be found as i = 3, 5, 6, 8. It can be seen that the function
arranges first the original matrix A in a single column, on a columnwise basis.
The indices can then be returned.

The functions all() and any() can also be used to check the values in the
given matrices. For instance

>> a1=all(A>=5) % check each column whether all larger than 5
a2=any(A>=5) % check each column whether any larger than 5

and it can be found that a1 = [0, 0, 0], a2 = [1, 1, 1].

2.2.4 Simplifications and presentations of analytical results

The Symbolic Math Toolbox can be used to derive mathematical formulas.
The results however are often not presented in their simplest form. The
results should then be simplified. The easiest way of simplification is by the
use of simple() function, where different simplification methods are tested
automatically until the simplest result can be obtained, with the syntaxes

20 Solving Applied Mathematical Problems with MATLAB

s1=simple(s), % try various simplification methods and find the simplest

[s1,how]=simple(s), % return the simplest form and the method used

where s is the original expression, and s1 is the simplified result. The string
argument how will return the method of simplification. Apart from the easy-
to-use simple() function, the function collect() can be used to collect the
coefficients, and function expand() can be used to expand a polynomial. The
function factor() can be used to perform factorization of a polynomial. The
function numden() can be used to extract the numerator and denominator
from a given expression.

Example 2.7 If a polynomial P (s) is given by P (s) = (s+ 3)2(s2 + 3s+ 2)(s3 +
12s2 + 48s + 64), process it with various functions and understand the results
converted.

Solution A symbolic variable s should be declared first, then the full polynomial
can be expressed easily and the polynomial can then be established in MATLAB
workspace. With the polynomial, one can first simplify it with the simple() function

>> syms s; P=(s+3)^2*(s^2+3*s+2)*(s^3+12*s^2+48*s+64)

[P1,m]=simple(P) % a series of simplications made, find the simplest

and one finds that P1 = (s+ 3)2(s+ 2)(s+ 1)(s+ 4)3, with the method m=factor,
which means that factorization method is used to reach the conclusion. Also the
expand() function can be tested

>> expand(P) % expand the polynomial

and the expanded polynomial is s7+21s6+185s5+883s4+2454s3+3944s2+3360s+1152.

The function subs() provided in the Symbolic Math Toolbox can be used
to perform variable substitution, and the syntaxes are

f1=subs(f,x1,x
∗
1) or f1=subs(f,{x1 , x2, · · · , xn},{x∗

1, x
∗
2, · · · , x∗

n})
where f is the original expression. With the statement, the variable x1 in the
original function can be substituted with a new variable or expression x∗1. The
result is given in the variable f1. The latter syntax can be used to substitute
many variables simultaneously.

The function latex() can be used to convert a symbolic expression into a
LATEX-readable string, which can be embedded into a LATEX document.

Example 2.8 For a given function f(t) = cos(at + b) + sin(ct) sin(dt), evaluate
its Taylor expression with the function taylor() and convert the results in LATEX.

Solution A full description on Taylor series expansion will be given in Section
3.2. Here the function taylor() can be used straightforwardly to get the results.
Applying the function latex() to the results, the LATEX can be obtained.

>> syms a b c d t; % declare symbolic variables
f=cos(a*t+b)+sin(c*t)*sin(d*t); % define the function f(t) with taylor()

f1=taylor(f,5); % find first 5 terms in Taylor series
latex(f1) % can be converted to a LATEX string

The results can be embedded into a LATEX document, and through compilation,
the following results can be obtained

Fundamentals of MATLAB Programming 21

f(x) ≈ cos b−at sin b+

(
−a

2 cos b

2
+cd

)
t2 +

a3 sin b

6
t3 +

(
a4 cos b

24
− cd3

6
− c3d

6

)
t4.

Unfortunately, there are no directly usable converters to other word pro-
cessing programs such as Microsoft Word.

2.2.5 Basic number theory computations

Basic data transformation and number theory functions are provided in
MATLAB, as shown in Table 2.1. The following examples are used to illustrate
the functions. Through the example, the readers can observe the results.

TABLE 2.1: Functions for data transformations

function syntax function description

floor() n=floor(x) round towards −∞ for each value in variable x, mathematically
denoted as n = [x]

ceil() n=ceil(x) round towards +∞ for x

round() n=round(x) round to nearest integer for x

fix() n=fix(x) round towards zero for variable x

rat() [n,d]=rat(x) find rational approximation for variable x, and the numerator and
denominator are returned respectively in n and d

rem() B=rem(A,C) find the reminder after division to variable A

gcd() k=gcd(n,m) compute the greatest common divisor for n and m

lcm() k=lcm(n,m) compute the least common multiplier for n and m

factor() factor(n) prime factorization

isprime() v1=isprime(v) check whether each component in v is prime or not. Set the
corresponding value in v1 to 1 for prime numbers, otherwise set
to 0

Example 2.9 For a given data set −0.2765, 0.5772, 1.4597, 2.1091, 1.191,−1.6187,
observe the integers obtained using different rounding functions.

Solution The following statements can be used to round the original vector such
that

>> A=[-0.2765,0.5772,1.4597,2.1091,1.191,-1.6187];

v1=floor(A), v2=ceil(A) % round towards −∞ and +∞ respectively
v3=round(A), v4=fix(A) % round towards 0 and nearest integers

and the integer vectors obtained are v1 = [−1, 0, 1, 2, 1,−2], v2 = [0, 1, 2, 3, 2,−1],

v3 = [0, 1, 1, 2, 1,−2], v4 = [0, 0, 1, 2, 1,−1].

Example 2.10 Assume that a 3 × 3 Hilbert matrix can be specified with the
statement A=hilb(3), perform the rational transformation.

Solution The following statements can be used to find the rational approximation

>> A=hilb(3); [n,d]=rat(A)

and the integer matrices obtained are n =




1 1 1
1 1 1
1 1 1



 , d =




1 2 3
2 3 4
3 4 5



 .

22 Solving Applied Mathematical Problems with MATLAB

Example 2.11 Find the greatest common divisor and least common multiplier
to the numbers 1856120 and 1483720, and find the prime factorization to the least
common multiplier obtained.

Solution Since the values are very large, one should not use the double-precision
representations. The symbolic representations must be used instead. The following
statements can be used

>> m=sym(1856120); n=sym(1483720);

gcd(m,n), lcm(m,n), factor(lcm(n,m))

which yield the greatest common divisor of 1960 and the greatest common multiplier
of 1405082840, whose prime factorization is (2)3(5)(7)2(757)(947).

Here the functions gcd() and lcm() can only be used to deal with two vari-

ables. If more than two variables are expected, nested calls are allowed such that

gcd(gcd(m,n),k) .

Example 2.12 List all the prime numbers in the interval [1, 1000].

Solution The prime numbers can easily be recognized by the function isprime(A).
All the prime numbers less than 1000 can be extracted as shown in Table 2.2.

>> A=1:1000; B=A(isprime(A))

TABLE 2.2: The prime numbers less than 1000

2 29 67 107 157 199 257 311 367 421 467 541 599 647 709 769 829 887 967

3 31 71 109 163 211 263 313 373 431 479 547 601 653 719 773 839 907 971

5 37 73 113 167 223 269 317 379 433 487 557 607 659 727 787 853 911 977

7 41 79 127 173 227 271 331 383 439 491 563 613 661 733 797 857 919 983

11 43 83 131 179 229 277 337 389 443 499 569 617 673 739 809 859 929 991

13 47 89 137 181 233 281 347 397 449 503 571 619 677 743 811 863 937 997

17 53 97 139 191 239 283 349 401 457 509 577 631 683 751 821 877 941

19 59 101 149 193 241 293 353 409 461 521 587 641 691 757 823 881 947

23 61 103 151 197 251 307 359 419 463 523 593 643 701 761 827 883 953

2.3 Flow Control Structures of MATLAB Language

As a programming language, the loop control structures, conditional control
structures, switch structures and trial structures are provided in MATLAB.
These structures are illustrated in this section.

2.3.1 Loop control structures

The loop structures can be introduced by the keywords for or while, and
ended with the end command. The two kinds of loop structures are shown in
Figures 2.1 (a) and (b), respectively.

Fundamentals of MATLAB Programming 23

(i) The for loop structures The syntax of the structure is

for i = v, loop programs body, end

When using the for loop structure, a component in vector v is extracted
and assigned to variable i each time, the loop body can be executed.
Then go back to the for statement, until all the components in v are
used.

extract from vector v

execute the
loop body

all values in
v chosen?

?

?

?

?

-

Yes

No

(a) for loop structure

conditions satisfied?

all values in
v chosen?

/

?
-

U

Yes No

(b) while loop structure

FIGURE 2.1: Illustration of loop structures

(ii) The while loop structures The syntax of the structure is

while (condition), loop structure body, end

The condition expression is crucial in the while loop structure. If it
is true, the loop will be executed, and returned back to the while

command. The loop structure will be executed, until condition becomes
false.

There are differences between the two functions. Examples will be given
below to show the advantages and disadvantages of these structures.

Example 2.13 Compute the sum of

100∑

i=1

i using loop structures.

Solution The for and while loop structures can be used with the following
statements, and the same results can be obtained

>> s1=0; for i=1:100, s1=s1+i; end

s2=0; i=1; while (i<=100), s2=s2+i; i=i+1; end; s1, s2

where it can be seen that the for loop structure is simpler. In fact, the simplest

statement for this problem is sum(1:100) . In the function call, the built-in function

sum() can be used to solve the problem.

24 Solving Applied Mathematical Problems with MATLAB

Example 2.14 Find the minimum value of m such that

m∑

i=1

i > 10000.

Solution It can be seen that it is not possible to solve such a problem with the
for loop structure. However, the structure of while can be used easily to find the
value of m

>> s=0; m=0;

while (s<=10000), m=m+1; s=s+m; end, [s,m] % the value of m is expected

with m = 141 and the sum is s = 10011.

The loop statements can be used in nested format. The statement break

can be used to terminate the loop structure of the current level.
The speed of loop is slow in MATLAB, compared with other programming

languages. Thus the loops should be avoided, and vectorized programming
techniques should be used instead.

Example 2.15 Evaluate the sum of the series1 S =

100000∑

i=1

(
1

2i
+

1

3i

)
.

Solution The execution time can be measured with the statements tic and toc.
The time needed in vectorization is about 0.116 seconds, and the one needed in
loops is 0.443 seconds. Thus the vectorization method is normally faster.

>> tic, s=0; for i=1:100000, s=s+1/2^i+1/3^i; end; toc

tic, i=1:100000; s=sum(1./2.^i+1./3.^i); toc

2.3.2 Conditional control structures

Conditional control structures are the most widely used control structures.
In MATLAB, if · · · end structure, as well as the complicated ones with else

and elseif can be used. The structures can be shown in Figure 2.2.

if (condition 1) % If condition 1 is satisfied, statement group 1 is executed.

statement group 1 % other sub-level if can be nested

elseif (condition 2) % Otherwise, if condition 2 is met, group 2 is executed.

statement group 2

...
... % more conditional control statements

else % if none of the above conditions are satisfied, define defaults.

statement group n+ 1

end

1In order to demonstrate the performance of vectorization, the number of terms are

exaggerated. Normally 20∼30 terms will be adequate for the exact solutions. The

performance of loops was speeded up in new versions of MATLAB. And in version 7.x,

the speed of loop execution is close to the vectorization method.

Fundamentals of MATLAB Programming 25

condition 1

condition 2

condition n

?

? ? ? ?

?

-

?

......

? ? ? ?
?

Yes

Yes

Yes

No

No

No

group 1 group 2 group n group n+ 1

FIGURE 2.2: Illustrations of conditional control structures

Example 2.16 Solve the problem in Example 2.14 again using for and if

statements.

Solution It has been shown in Example 2.14 that the for loop structure is not
suitable for finding the minimum m such that the sum is greater than 10000. The
for loop can be used with if structure to solve the problem.

>> s=0;

for i=1:10000, s=s+i; if s>10000, break; end, end, s

Thus the structure of the program is more complicated than that of the while

structure.

2.3.3 Switch structure

The switch structure is illustrated in Figure 2.3, and the fundamental
structure is

switch switch expression

case expression 1, statements 1

case {expression 2, expression 3,· · · , expression m}, statements 2

...

otherwise, statements n

end

where the crucial part in switch structure is the evaluation of switch expres-

sions. If it matches a value in a case statement, the statements after the
case statement should be executed. Once completed, the switch structure is
terminated.

There exist differences between the switch statements in MATLAB and
in C languages. The following tips should be noted in programming with
MATLAB:

26 Solving Applied Mathematical Problems with MATLAB

· · · · · ·

?

equals to

?

?

?

?

? ? ?

?

? ?? ? ?

?

equals to equals to equals to

· · ·

· · ·

expression 1

switch expression

group 1

expression 2

expression 3

.

.

.
expression m

group 2

otherwise

group n

FIGURE 2.3: Illustrations of switch structures

(i) When the value of the switch expression equals expression 1 , the state-

ment group 1 should be executed. After execution, the structure is
completed. There is no need to introduce a break statement before the
next case.

(ii) If one is checking whether one of several expressions is satisfied, the
expressions must be given in cell format.

(iii) If none of the expressions are satisfied, the paragraph in otherwise

should be executed. It is similar to the default statement in C language.

(iv) The execution results are independent of the orders of the case state-
ment. When there exist two or more case statements having the same
expressions, those listed behind may never be executed.

2.3.4 Trial structure

A brand new trial structure is provided in MATLAB, whose syntax is

try, statement group 1,

catch, statement group 2,

end

Normally, only the statement group 1 is executed. However, if an error
occurs during execution of any of the statements, the error is captured into
lasterror, and the statement group 2 is executed. The new structure is not
available in languages such as C. The trial structure is useful in practical
programming.

Fundamentals of MATLAB Programming 27

2.4 Writing and Debugging MATLAB Functions

Two types of source programs are supported in MATLAB, both in ASCII
format. One of the code is the M-script program, which is a series of MATLAB
statements to be evaluated in sequence, just as the batch files in DOS. The
execution of this type of program is simple, one can simply key in the file name
under the >> prompt. M-scripts process the data in MATLAB workspace, and
the results are returned back to MATLAB workspace. M-scripts are suitable
for dealing with small-scale computations.

Example 2.17 Consider again the problem in Example 2.14. The program can

be used to find the smallest m such that the summation is greater than 10000.

If one wants to find such m’s for the summation greater than 20000 or 30000,

the original program should be modified. This method is quite complicated and

inconvenient. If a mechanism can be established such that the user may define

20000 or 30000 externally, without modifying the original program, the mechanism

is quite reasonable. This kind of mechanism is often referred to as the functions.

M-function is the major structure in MATLAB programming. In practical
programming, M-script programming is not recommended. In this section,
MATLAB functions and some tricks in programming are given.

2.4.1 Basic structure of MATLAB functions

MATLAB functions are led by the statement of function, whose basic
structure is

function [return argument list] =funname(input argument list)

comments led by % sign

input and output variables check

main body of the function

The actual numbers of input and returned arguments can be extracted
respectively by nargin and nargout. In the function call, the two variables
are generated automatically.

If more than one input or returned arguments are needed, they should be
separated with commas in the lists. The comments led by % will not be
executed. The messages in the leading comments can be displayed by the
help command.

From the system view points, the MATLAB functions can be regarded as
a variable processing unit, which receives variables from the calling function.
Once the variables are processed, the results will be returned back to the
calling function. Apart from the input and returned arguments, the other
variables within the function are local variables, which will be lost after

28 Solving Applied Mathematical Problems with MATLAB

function calls. Examples will be given to demonstrate the programming
techniques.

Example 2.18 Consider the requests in Example 2.17. One may choose the input
argument as k, and returned arguments of m and s, where s is the sum of first m
terms. The function can then be written as

1 function [m,s]=findsum(k)

2 s=0; m=0; while (s<=k), m=m+1; s=s+m; end

The previous function can be saved as a function findsum.m. One can then
call such a function for different values of k, without modifying the function. For
instance, if the targeted summation is 145323, the following statements can be used
to find the smallest value of m, which returns m = 539, s1 = 145530.

>> [m1,s1]=findsum(145323)

It can be seen that the calling format is quite flexible, and we may find the

needed results without modifying the original program. Thus this kind of method

is recommended in programming.

Example 2.19 Assume that a MATLAB function is needed in obtaining an
n×m Hilbert matrix2, whose (i, j)th element is hi,j = 1/(i+ j − 1). The following
additional requests are also to be implemented:

(i) If only one input argument n is given in the calling command, a square matrix
should be generated, such that m = n.

(ii) Certain help information to this function is required.

(iii) Check the formats of input and returned arguments.

Solution In actual programming, it is better to write adequate comments, which
are beneficial to the programmer as well as to the maintainer of the program. The
required MATLAB function myhilb() can be written and stored as myhilb.m in the
default MATLAB path.

1 function A=myhilb(n, m)

2 %MYHILB The function is used to illustrate MATLAB functions.

3 % A=MYHILB(N, M) generates an NxM Hilbert matrix A;

4 % A=MYHILB(N) generates an NxN square Hilbert matrix A;

5 %

6 %See also: HILB.

7

8 % Designed by Professor Dingyu XUE, Northeastern University, PRC

9 % 5 April, 1995, Last modified by DYX at 30 July, 2001

10 if nargout>1, error(’Too many output arguments.’); end

11 if nargin==1, m=n; % if one input argument used, square matrix

12 elseif nargin==0 | nargin>2

13 error(’Wrong number of iutput arguments.’);

14 end

2 A function hilb() is provided in MATLAB to create an n × n square Hilbert matrix.

Fundamentals of MATLAB Programming 29

15 for i=1:n, for j=1:m, A(i,j)=1/(i+j-1); end, end

In the program, the comments are led by % sign. To implement the requirement in
item (i), one should check whether the number of input argument is 1, i.e., whether
nargin is 1. If so, the column number m is set to n, the row number, thus a square
matrix can be generated. If the numbers of input or returned arguments are not
correct, the error messages can be given. The double for loops will generate the
required Hilbert matrix.

The on-line help command help myhilb will display the following information

MYHILB The function is used to illustrate MATLAB functions.

A=MYHILB(N, M) generates an NxM Hilbert matrix A;

A=MYHILB(N) generates an NxN square Hilbert matrix A;

See also: HILB.

It should be noted that only the first few lines of information are displayed, while
the author information is not displayed. This is because there is a blank line before
the author information.

The following commands can be used to generate Hilbert matrices

>> A1=myhilb(4,3) % two input arguments yield a rectangular matrix
A2=myhilb(4) % while one input argument yields a square matrix

and the two matrices can then be established as

A1 =




1 0.5 0.33333
0.5 0.33333 0.25

0.33333 0.25 0.2
0.25 0.2 0.16667


 , A2 =




1 0.5 0.33333 0.25
0.5 0.33333 0.25 0.2

0.33333 0.25 0.2 0.16667
0.25 0.2 0.16667 0.14286


 .

Example 2.20 MATLAB functions can be called recursively, i.e., a function may
call itself. Please write a recursive function to evaluate the factorial n!.

Solution Consider the factorial n!. From the definition n! = n(n − 1)!, it can
be seen that the factorial of n can be evaluated from the factorial of n − 1, while
n− 1 can be evaluated from n− 2, and so on. The exits of the function call should
be 1! = 0! = 1. Thus the recursive function can be written as follows, with the
comments omitted.

1 function k=my_fact(n)

2 if nargin~=1, error(’Error: Only one input variable accepted’); end

3 if abs(n-floor(n))>eps | n<0 % judge whether n is a non-negative integer
4 error(’n should be a non-negative integer’);

5 end

6 if n>1 % if n > 1 , recursive calls are used
7 k=n*my_fact(n-1);

8 elseif any([0 1]==n) % 0! = 1! = 1 , the exit of the function
9 k=1;

10 end

It can be seen that, in the function, the judgement whether n is a non-negative
integer is made. If not, an error message will be declared. If it is, the recursive
function calls will be used such that when n = 1 or 0, the result is 1, which can be

30 Solving Applied Mathematical Problems with MATLAB

used as an exit to the function. For instance, 11! can be evaluated with my fact(11),
and the result obtained is 39916800.

In fact, the factorial for any non-negative integer can be evaluated directly with

function factorial(n) , and the kernel of such a function is prod(1:n) .

Example 2.21 Compare the advantages and disadvantages of recursive algorithm
with loop structure in constructing the Fibonacci arrays.

Solution It is for sure that the recursive algorithm is an effective method for a
class of problems. However, this method should not be misused. A counter-example
is shown in this example. Consider the Fibonacci array, where a1 = a2 = 1, and the
kth term can be evaluated from ak = ak−1 + ak−2 for k = 3, 4, · · · . A MATLAB
function can be written for the problem

1 function a=my_fibo(k)

2 if k==1 | k==2, a=1; else, a=my_fibo(k-1)+my_fibo(k-2); end

and for k = 1, 2, the exit can be made such that it returns 1. If the 25th term is
expected, the following statements can be used and the time required is 7.6 seconds.

>> tic, my_fibo(25), toc

If one is expecting the term k = 30, several hours of time might be required. If
the loop structure is used, within 0.02 second, the whole array can be obtained for
k = 100.

>> tic, a=[1,1]; for k=3:100, a(k)=a(k-1)+a(k-2); end, toc

It can be seen that the ordinary loop structure only requires a very short execution

time. Thus the recursive function call should not be misused.

2.4.2 Programming of functions with variable inputs/outputs

In the following presentation, the variable number of input and returned
arguments is introduced, based on the cell data type. It should be mentioned
that most of the MATLAB functions are implemented in this format.

Example 2.22 The product of two polynomials can be evaluated from the conv()
function, based on the algorithm of finding the convolution of two arrays. Write a
function to evaluate directly the multiplications of arbitrary number of polynomials.

Solution Cell data type can be used to write the function convs(), which can be
used to evaluate the multiplication of arbitrary number of polynomials.

1 function a=convs(varargin)

2 a=1; for i=1:length(varargin), a=conv(a,varargin{i}); end

The input argument list is passed to the function through the cell variable varargin.
Consequently, the returned arguments can be specified in varargout, if necessary.
Under such a function, the multiplication of arbitrary number of polynomials can
be obtained. The following statements can be used to call the function

Fundamentals of MATLAB Programming 31

>> P=[1 2 4 0 5]; Q=[1 2]; F=[1 2 3]; D=convs(P,Q,F)

E=conv(conv(P,Q),F) % nested calls are to be used with conv() function
G=convs(P,Q,F,[1,1],[1,3],[1,1])

where the obtained vectors are respectively

E = [1, 6, 19, 36, 45, 44, 35, 30]T,G = [1, 11, 56, 176, 376, 578, 678, 648, 527, 315, 90]T.

2.4.3 Inline functions and anonymous functions

In order to describe simply the mathematics functions, inline functions
can be used. The functions are equivalent to the M-functions. However,
with inline function, it may no longer be necessary to save files. The format
of inline function is fun=inline(function expression,list of variables), where the

function expression is the actual contents of the function to be expressed, and
the list of variables contains all the input variables, with each variable given
as a string. The inline function is useful in the descriptions in differential
equations and objective function given later. The function type accept only
one returned variable. The mathematical function f(x, y) = sin(x2 + y2) can
be expressed as f=inline(’sin(x.^2+y.^2)’,’x’,’y’).

Anonymous function provided in MATLAB 7.x is a brand new type of func-
tion definition, the structure of the function is similar to the inline function,
but it is more concise and easy to use. The syntax of the function is

f=@(list of variables)function contents , e.g., f=@(x,y)sin(x.^2+y.^2)

Note that the variable currently existing in MATLAB workspace can be
used directly in the function. For instance, the variables a and b in MATLAB
workspace can be used in the anonymous function

f=@(x,y)a*x.^2+b*y.^2

to describe the mathematical function f(x, y) = ax2 + by2. If such a function
has been defined, while the variables a, b change after that, the values of those
in the anonymous function will not change, unless it is defined again.

2.5 Two-Dimensional Graphics

Graphics and visualization are the most significant advantages of MATLAB.
A series of straightforward and simple functions are provided in MATLAB for
two-dimensional and three-dimensional graphics. Experimental and simula-
tion results can be easily interpreted in graphical form. In this section, the
two-dimensional graphics functions will be illustrated.

32 Solving Applied Mathematical Problems with MATLAB

2.5.1 Basic statements of two-dimensional plotting

Assume that a sequence of experimental data is acquired. For instance, at
time instances t = t1, t2, · · · , tn, the function values are y = y1, y2, · · · , yn.
The data can be entered to MATLAB workspace such that t = [t1, t2, · · · , tn]

and y = [y1, y2, · · · , yn]. The command plot(t,y) can be used to draw the

curve for the data. The “curve” is in fact represented by poly-lines, joining
the sample points.

It can be seen that the syntax of the function is quite straightforward. In
actual applications, the plot() function can also be called in other extended
ways.

(i) t is still a vector and y can be expressed by a matrix such that

y =




y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn


 .

The same function can also be used to draw m curves, with each row of
matrix y corresponding to a curve.

(ii) t and y are both matrices, and the sizes of the two matrices are the
same. The plots between each row of t and y can be drawn.

(iii) Assume that there are many pairs of such vectors or matrices, (t1, y1),
(t2, y2), · · · , (tm, ym), the following statement can be used directly to
draw the corresponding curves.
plot(t1,y1, t2,y2, · · · , tm,ym)

(iv) The line types, line width and color information of the curves can sepa-
rately be specified with the command
plot(t1,y1, option 1 , t2, y2, option 2 , · · · , tm,ym, option m)

where the available options are shown in Table 2.3. The combina-
tions of the options are also allowed. For instance, the combination
’r-.pentagram’ indicates the red dash dot curve, with the sampling
points marked by pentagrams.

After the curves are drawn, the command grid on can be used to add

grids to the curves, while the grid off command may remove the grids. Also

hold on command can reserve the current current axis. Other plot() function

can be used to superimpose curves on top of the existing ones. hold off

command may remove the holding status.

Example 2.23 Draw the curve of y = sin(tan x) − tan(sin x) in the interval
x ∈ [−π, π].

Solution The curve of f(x) can be drawn easily with the following statements

>> x=[-pi : 0.05: pi]; % specify the vector with a step-size of 0.05

Fundamentals of MATLAB Programming 33

TABLE 2.3: Options in MATLAB plotting commands

line type line color markers

opts meaning opts meaning opts meaning opts meaning opts meaning

’-’ solid ’b’ blue ’c’ cyan ’*’ ∗ ’pentagram’ I

’--’ dash ’g’ green ’k’ black ’.’ dotted ’o’ ©

’:’ dotted ’m’ magenta ’r’ red ’x’ × ’square’ �

’-.’ dash-dot ’w’ white ’y’ yellow ’v’ ∇ ’diamond’ ♦
’none’ none ’^’ △ ’hexagram’ A

’>’ ⊲ ’<’ ⊳

y=sin(tan(x))-tan(sin(x)); % evaluate the function values
plot(x,y) % draw the curve

and the curve in Figure 2.4 (a) can be obtained.

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

(a) with the default step-size of 0.05

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

(b) improved curve with variable-step-sizes

FIGURE 2.4: Two dimension curve for the given function

It can be seen from the curve that it is rather sluggish over the intervals x ∈
(−1.8,−1.2) and x ∈ (1.2, 1.8), since the step-size 0.05 is too large for these intervals.
The step-size for these intervals should be selected smaller such that

>> x=[-pi:0.05:-1.8,-1.801:.001:-1.2, -1.2:0.05:1.2,...

1.201:0.001:1.8, 1.81:0.05:pi]; % with variable-step-size
y=sin(tan(x))-tan(sin(x)); % evaluate the function
plot(x,y) % draw the curve

The modified curve of the function is given in Figure 2.4 (b). It can be seen that the

curve is significantly improved in the new plot. Alternatively, for the whole interval,

a fixed step-size of 0.001 can be selected.

Example 2.24 Please draw the saturation function y =

{
1.1sign(x), |x| > 1.1

x, |x| 6 1.1
.

Solution It is obvious that one can create a vector of x, then for each point,
construct an if clause to calculate the value of y. An alternative way is to use

34 Solving Applied Mathematical Problems with MATLAB

vectorized format to evaluate the function values. With the following statements,
the segmented function can be drawn as shown in Figure 2.5.

>> x=[-2:0.02:2]; % generate the x vector
y=1.1*sign(x).*(abs(x)>1.1) + x.*(abs(x)<=1.1); plot(x,y)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

FIGURE 2.5: Segmented saturation function

Even more simply, the command plot([-3,-1.1,1.1,3],[-1.1 -1.1 1.1 1.1])

can be used to draw the saturation poly-lines.

In MATLAB graphics, each curve or the axis is an object, and the window
is another object. The properties of the objects can be assigned by set()

function, or extracted by get() function. The syntaxes of the two functions
are

set(handle,’p name 1’,p value 1,’p name 2’,p value 2, · · ·)
v=get(object, ’p name’)

where p name and p value are respectively the names and values of the cor-
responding properties. These two functions are very useful in graphical user
interface programming.

2.5.2 Other two-dimensional plotting statements

Apart from the standard Descartes coordinate curves, MATLAB also pro-
vides other special two-dimensional graphical functions, and the common syn-
taxes of the functions are given in Table 2.4. In the functions, parameters x,
y are respectively the horizontal and vertical axis data, and c the color options.
The parameters ym, yM are the vectors of lower- and upper-boundaries in
error plots. The functions are demonstrated through the following examples.

Example 2.25 Draw the polar plots for functions ρ = 5 sin(4θ/3) and ρ =
5 sin(θ/3).

Solution A vector θ can be constructed first, over the interval θ ∈ (0, 6π), then

Fundamentals of MATLAB Programming 35

TABLE 2.4: Other two-dimensional plotting functions

general syntax explanation general syntax explanation

bar(x,y) two-dimensional bar chart comet(x,y) comet trajectory

compass(x,y) compass plot errorbar(x,y,ym,yM) errorbar plot

feather(x,y) feather plot fill(x,y,c) filled plot

hist(y,n) histogram loglog(x,y) logarithmic plot

polar(x,y) polar plot quiver(x,y) quiver graph

stairs(x,y) stairs plot stem(x,y) stem plot

semilogx(x,y) x-semi-logarithmic plot semilogy(x,y) y-semi-logarithmic plot

the function value vector ρ can be calculated. With the polar() function, the polar
plots can be drawn as shown in Figures 2.6 (a) and (b).

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180

(a) ρ = 5 sin(4θ/3)

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180

(b) ρ = 5 sin(θ/3)

FIGURE 2.6: Polar plots

>> theta=0:0.01:6*pi; rho=5*sin(4*theta/3); polar(theta,rho)

figure; rho=5*sin(theta/3); polar(theta,rho)

Example 2.26 Draw the sinusoidal curve with different functions in different
areas of the graphics window.

Solution The following commands can be used to draw the expected curves as

shown in Figure 2.7, where function subplot(n,m,k) can be used to divide the

graphics window into several parts, with n, m respectively the total numbers of
rows and columns, and k indicates the serial of the area.

>> t=0:.2:2*pi; y=sin(t); % generate the data for plots
subplot(2,2,1), stairs(t,y) % partition the graphics window
subplot(2,2,2), stem(t,y) % stem plot in upper-right portion
subplot(2,2,3), bar(t,y) % bar chart in lower-left portion
subplot(2,2,4), semilogx(t,y) % semilogx in lower-right portion

36 Solving Applied Mathematical Problems with MATLAB

0 2 4 6 8
−1

−0.5

0

0.5

1

0 2 4 6 8
−1

−0.5

0

0.5

1

(a) stairs() function (b) stem() function

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

10
0

−1

−0.5

0

0.5

1

(c) bar() function (d) semilogx() function

FIGURE 2.7: Different representations of the same function

2.5.3 Implicit function plotting and applications

For an implicit equation f(x, y) = 0, the relationship between x and y
cannot be explicitly formulated. Thus the conventional plot() function
cannot be used. The MATLAB function ezplot() can be used to draw the
implicit function curve
ezplot(implicit function expression)

The following example is used to demonstrate the use of the function.

Example 2.27 Draw the curve of the implicit function

f(x, y) = x2 sin(x+ y2) + y2ex+y + 5 cos(x2 + y) = 0.

Solution From the given function, it can be seen that the analytical explicit
solution of x-y relationship cannot be found. Thus the plot() function cannot be
used for such a function. The following MATLAB statements can be used to draw
the implicit function as shown in Figure 2.8 (a).

>> ezplot(’x^2 *sin(x+y^2) +y^2*exp(x+y)+5*cos(x^2+y)’)

The above functions selected automatically the x range, the range can be enlarged
with the following statements, with the implicit curve shown in Figure 2.8 (b).

>> ezplot(’x^2 *sin(x+y^2) +y^2*exp(x+y)+5*cos(x^2+y)’,[-10 10])

2.5.4 Graphics decorations

The graphics window with editing tools is shown in Figure 2.9. The user
may choose to apply text and arrows to the plots. Local zooming and 3D
view point settings are also provided in the plots. For instance, a subset of
LATEX commands can be used to add mathematical formula to the plots.

Fundamentals of MATLAB Programming 37

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(a) default curves

−10 −5 0 5 10
−10

−5

0

5

10

(b) curves within larger area

FIGURE 2.8: Curves of implicit functions

FIGURE 2.9: MATLAB graphics window with editing tools

In the graphics editing interface, there are three parts, with the left part
corresponding to the View → Figure Palette menu item, where arrows and text
can be added to the curve. 2D and 3D axes can also be added to the curve.
The bottom part of the window corresponds to the Property Editor menu item,
which allows the selections of color, line styles or fonts to the selected objects.
The right part of the window corresponds to the View → Plot Browser menu
item, which allows the user to add new data or superimpose new curves.

An example of a typical graphics display under the view-point change is
shown in Figure 2.10, where 2D curve is displayed under a 3D framework.

LATEX is a well established scientific type-setting system, and a subset of
its mathematical symbols are supported in MATLAB. One may use them to

38 Solving Applied Mathematical Problems with MATLAB

−5

0

5

−1

−0.5

0

0.5

1
−1

0

1

X: −3.3444

Y: 0.20145

sinx

FIGURE 2.10: 3D representations of 2D curves

superimpose formula to the plots.

(i) The symbols are led by the backslash signs \, and the available symbols
are listed in Table 2.5.

TABLE 2.5: TEX compatible commands in MATLAB

c TEX c TEX c TEX c TEX

α \alpha β \beta γ \gamma δ \delta
ǫ \epsilon ε \varepsilon ζ \zeta η \eta

lower- θ \theta ϑ \vartheta ι \iota κ \kappa
case λ \lambda µ \mu ν \nu ξ \xi
Greeks o o π \pi ̟ \varpi ρ \rho

ι \iota κ \kappa ̺ \varrho σ \sigma
ς \varsigma τ \tau υ \upsilon φ \phi
ϕ \varphi χ \chi ψ \psi ω \omega

upper- Γ \Gamma ∆ \Delta Θ \Theta Λ \Lambda
case Ξ \Xi Π \Pi Σ \Sigma Υ \Upsilon
Greeks Φ \Phi Ψ \Psi Ω \Omega

ℵ \aleph ′ \prime ∀ \forall ∃ \exists
common ℘ \wp ℜ \Re ℑ \Im ∂ \partial
maths ∞ \infty ∇ \nabla √ \surd ∠ \angle
symbols ¬ \neg

∫
\int ♣ \clubsuit ♦ \diamondsuit

♥ \heartsuit ♠ \spadesuit
binary ± \pm · \cdot × \times ÷ \div
maths ◦ \circ • \bullet ∪ \cup ∩ \cap
symbols ∨ \vee ∧ \wedge ⊗ \otimes ⊕ \oplus
relat- 6 \leq > \geq ≡ \equiv ∼ \sim
ional ⊂ \subset ⊃ \supset ≈ \approx ⊆ \subseteq
maths ⊇ \supseteq ∈ \in ∋ \ni ∝ \propto
symbols | \mid ⊥ \perp

← \leftarrow ↑ \uparrow ⇐ \Leftarrow ⇑ \Uparrow
arrows → \rightarrow ↓ \downarrow ⇒ \Rightarrow ⇓ \Downarrow

↔ \leftrightarrow l \updownarrow

Fundamentals of MATLAB Programming 39

(ii) Superscripts and subscripts are represented by ^ and respectively. For
instance, a 2^2+b 2^2=c 2^2 represents a2

2 + b22 = c22. If more than one
symbol is used in the superscript, they should be written within the {
and } signs. For instance a^Abc gives aAbc, while a^{Abc} gives aAbc.

LATEX scientific type-setting system is widely used in the academic world.
Interested readers may further refer to Reference [5].

2.6 Three-Dimensional Graphics

2.6.1 Plotting of three-dimensional curves

The two-dimensional function plot() can be extended to a three-dimensional
(3D) curve drawing with the new plot3() function, whose syntaxes are

plot3(x,y,z)

plot3(x1,y1, z1, option 1 ,x2, y2, z2, option 2 , · · · ,xm, ym, zm, option m)

where the options are the same as shown in Table 2.3.
Similar to other 2D curve drawing functions, the functions stem3(), fill3()

and bar3() can also be applied to 3D curves.

Example 2.28 Draw the curve of the parametric equations

x(t) = t3 sin(3t)e−t, y(t) = t3 cos(3t)e−t, z = t2, where t ∈ [0, 2π].

Solution A time vector t can be established first, then the vectors x,y, z can
be computed. The 3D curve can be drawn with the plot3() function, as shown in
Figure 2.11 (a). It should be noted that dot operations are used in the evaluations.

>> t=0:.1:2*pi; % establish the t vector, with dot operation
x=t.^3.*sin(3*t).*exp(-t); y=t.^3.*cos(3*t).*exp(-t); z=t.^2;

plot3(x,y,z), grid % 3D curve drawing

−2
−1

0
1

2

−2

0

2
0

10

20

30

40

(a) 3D curve plots

−2
−1

0
1

2

−2

0

2
0

10

20

30

40

(b) superimposed with the plot with stem3()

FIGURE 2.11: Three-dimensional plots

The stem3() function can be used to obtained the plot in Figure 2.11 (b),
superimposed by the 3D curve.

40 Solving Applied Mathematical Problems with MATLAB

>> stem3(x,y,z); hold on; plot3(x,y,z), grid

2.6.2 Plotting of three-dimensional surfaces

If function z = f(x, y) is given, the 3D surface of the function can be drawn.
One can generate mesh grid data in the x-y plane, with the meshgrid()

function. The function values z can be obtained. The functions mesh() and
surf() can be used to draw the 3D mesh plots and surface plots. The syntaxes
of the functions are

[x,y]=meshgrid(v1, v2) % mesh grid generation

z= ..., for instance z=x.*y % z matrix computation

surf(x,y,z) or mesh(x,y,z) % mesh and surface plots

where v1 and v2 are the scales in the x and y axes. The 3D surface can also
be drawn with the surfc(), surfl() and waterfall() functions. Also the
contour() and contour3() functions can be used to draw 2D and 3D contour
plots.

Example 2.29 Consider the function z = f(x, y) = (x2 − 2x)e−x
2−y2−xy. Select

in the x-y plane an area and draw the 3D plots.

Solution One may use the meshgrid() function to specify the mesh grids on the
x-y plane. The values of the function can be evaluated directly for the matrix z.
The mesh plot can be drawn as shown in Figure 2.12 (a).

>> [x,y]=meshgrid(-3:0.1:3,-2:0.1:2);

z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y); mesh(x,y,z)

−2

0

2

−2

0

2

−0.5

0

0.5

1

1.5

(a) mesh() plot

−2

0

2

−2

0

2

−0.5

0

0.5

1

1.5

(b) surf() plot

FIGURE 2.12: Mesh and surface plots of a given function

If one uses surf() function to replace the mesh() function, the corresponding
surface plot can be obtained as shown in Figure 2.12 (b).

>> surf(x,y,z) % surface plot

3D surface plots can be decorated by shading command, and the options flat

and interp can be used. The decorations are shown in Figures 2.13 (a) and (b)
respectively.

Fundamentals of MATLAB Programming 41

−2

0

2

−2

0

2

−0.5

0

0.5

1

1.5

(a) shading flat

−2

0

2

−2

0

2

−0.5

0

0.5

1

1.5

(b) shading interp

FIGURE 2.13: 3D surfaces decorated by the shading command

Other functions, such as waterfall(x, y, z) and contour3(x, y, z,30) can be

used to draw 3D plots as shown in Figures 2.14 (a) and (b).

−2

0

2

−2

0

2
−1

−0.5

0

0.5

1

1.5

(a) waterfall() plots

−2

0

2

−2

0

2
−1

−0.5

0

0.5

1

1.5

(b) contour3() plots

FIGURE 2.14: Other 3D representations

Example 2.30 Display graphically z = f(x, y)=
1√

(1 − x)2 + y2
+

1√
(1 + x)2 + y2

.

Solution The following statements can be used to draw the 3D surface of the
function, as shown in Figure 2.15 (a).

>> [x,y]=meshgrid(-2:.1:2);

z=1./(sqrt((1-x).^2+y.^2))+1./(sqrt((1+x).^2+y.^2));

surf(x,y,z), shading flat

In fact, there are problems around the (±1, 0) points, where the function values
tend to infinity. Thus variable-step-size mesh grids can be constructed, and the new
3D surface can be obtained as shown in Figure 2.15 (b).

>> xx=[-2:.1:-1.2,-1.1:0.02:-0.9,-0.8:0.1:0.8,0.9:0.02:1.1,1.2:0.1:2];

yy=[-1:0.1:-0.2, -0.1:0.02:0.1, 0.2:.1:1];

[x,y]=meshgrid(xx,yy);

42 Solving Applied Mathematical Problems with MATLAB

−2
−1

0
1

2

−2

0

2
0

5

10

15

(a) fixed-step-size

−2
−1

0
1

2

−1

0

1
0

5

10

15

(b) variable-step-size

FIGURE 2.15: Three-dimensional surfaces under different grids

z=1./(sqrt((1-x).^2+y.^2))+1./(sqrt((1+x).^2+y.^2));

surf(x,y,z), shading flat; zlim([0,15])

Example 2.31 Assume that a piecewise function is described below[6]

p(x1, x2) =





0.5457 exp(−0.75x2
2 − 3.75x2

1 − 1.5x1), x1 + x2 > 1

0.7575 exp(−x2
2 − 6x2

1), −1 < x1 + x2 6 1

0.5457 exp(−0.75x2
2 − 3.75x2

1 + 1.5x1), x1 + x2 6 −1.

Show the function in a three-dimensional surface.

Solution Selecting x = x1 and y = x2, the function value can be evaluated
with the if statements, however the process could be very complicated. Thus the
piecewise function configuration statements based on relational operations can be
used to evaluate the functions as follows

>> [x,y]=meshgrid(-1.5:.1:1.5,-2:.1:2);

z= 0.5457*exp(-0.75*y.^2-3.75*x.^2-1.5*x).*(x+y>1)+...

0.7575*exp(-y.^2-6*x.^2).*((x+y>-1) & (x+y<=1))+...

0.5457*exp(-0.75*y.^2-3.75*x.^2+1.5*x).*(x+y<=-1);

surf(x,y,z), xlim([-1.5 1.5]); shading flat

and the three-dimensional surface can be shown in Figure 2.16.

−1.5
−1

−0.5
0

0.5
1

1.5

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

FIGURE 2.16: Surface of a piecewise function with two variables

Fundamentals of MATLAB Programming 43

2.6.3 Viewpoint setting in 3D graphs

In the MATLAB 3D graphics facilities, viewpoint setting functions are
provided, which allows the user to view the plot from any angle. Two ways
are provided: one is the toolbar facility in the figure window, and the other
is the view() function.

An illustration to the definition of the viewpoint is given in Figure 2.17 (a),
where the two angles α and β can be used to define uniquely the viewpoint.
The azimuth α is defined as the angle between the projection line in x-y plane
with the negative y-axis, with a default value of α = −37.5◦. The elevation β
is defined as the angle with the x-y plane, with a default value of β = 30◦.

y

x

z

azimuth α

elevation β

view point

negative
y-axis

(a) definition of viewpoints

−1.5
−1

−0.5
0

0.5
1

1.5
−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

(b) 3D surface after viewpoint change

FIGURE 2.17: Viewpoint settings of three-dimensional surfaces

The function view(α,β) can be used to set the viewpoint, where the angles

α and β are the azimuth and elevation angles respectively. For instance, the
setting view(0,90) shows the planform, while view(0,0) and view(90,0)

show the front view and the side elevation respectively.
For instance, one may change the viewpoint in the three-dimensional surface

display shown in Figure 2.16. One may set α = 20◦, and β = 50◦, the
following statements can be used and the results shown in Figure 2.17 (b) can
be obtained.

>> view(20,50), xlim([-1.5 1.5]) % set the range of x-axis

Example 2.32 Consider again the surface plot in Example 2.29. View the surface
from different angles.

Solution The surface plots from different viewpoints can be obtained using the
following statements, as shown in Figure 2.18.

>> [x,y] = meshgrid(-3:0.1:3,-2:0.1:2);

z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y);

subplot(221), surf(x,y,z), view(0,90); % planform

44 Solving Applied Mathematical Problems with MATLAB

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

−2
0

2

−2

0

2

−0.5

0

0.5

1

1.5

FIGURE 2.18: Surface view from different angles

subplot(222), surf(x,y,z), view(90,0); % side elevation
subplot(223), surf(x,y,z), view(0,0); % front view
subplot(224), surf(x,y,z), % 3D surface plot

Exercises

1. In MATLAB environment, the following statements can be given
tic, A=rand(500); B=inv(A); norm(A*B-eye(500)), toc

Run the statements and observe results. If you are not sure with the com-
mands, just use the on-line help facilities to display information on the related
functions. Then explain in detail the statement and the results.

2. Suppose that a polynomial can be expressed by f(x) = x5 + 3x4 + 4x3 + 2x2 +

3x+6. If one wants to substitute x by
s− 1

s+ 1
, the function f(x) can be changed

into a function of s. Use the Symbolic Math Toolbox to do the substitution
and get the simplest result.

3. Input the matrices A and B into MATLAB workspace where

A =




1 2 3 4
4 3 2 1
2 3 4 1
3 2 4 1


 , B =




1 + j4 2 + j3 3 + j2 4 + j1
4 + j1 3 + j2 2 + j3 1 + j4
2 + j3 3 + j2 4 + j1 1 + j4
3 + j2 2 + j3 4 + j1 1 + j4


 .

It is seen that A is a 4 × 4 matrix. If a command A(5, 6) = 5 is given, what
will happen?

4. For a matrixA, if one wants to extract all the even rows to form matrixB, what
command should be used? Suppose that matrix A is defined by A =magic(8),
establish matrix B with suitable statements and see whether the results are
correct.

Fundamentals of MATLAB Programming 45

5. Implement the following piecewise function where x can be given by scalar,
vectors, matrices or even other multi-dimensional arrays, the returned argument
y should be the same size as that of x. The parameters h and D are scalars.

y = f(x) =





h, x > D
h/Dx, | x |6 D
−h, x < −D

6. Evaluate using numerical method the sum S = 1+2+4+· · ·+262+263 =

63∑

i=0

2i,

the use of vectorized form is suggested. Check whether accurate solutions can
be found and why. Find the accurate sum using the symbolic computation
methods.

7. Write an M-function mat add() with the syntax
A=mat add(A1,A2,A3,· · ·)

In the function, it is required that arbitrary number of input arguments Ai are
allowed.

8. A MATLAB function can be written whose syntax is
v=[h1, h2, hm, hm+1, · · · , h2m−1] and H=myhankel(v)

where the vector v is defined, and out of it, the output argument should be an
m×m Hankel matrix.

9. From matrix theory, it is known that if a matrix M is expressed as M =
A +BCBT, where A, B and C are the matrices of relevant sizes, the inverse
of M can be calculated by the following algorithm

M
−1 =

(
A +BCBT

)−1

= A
−1 −A−1

B
(
C

−1 +BT
A

−1
B
)−1

B
T
A

−1

The matrix inversion can be carried out using the formula easily. Suppose that
there is a 5 × 5 matrix M , from which the three other matrices can be found.

M =




−1 −1 −1 1 0
−2 0 0 −1 0
−6 −4 −1 −1 −2
−1 −1 0 2 0
−4 −3 −3 −1 3



, A =




1 0 0 0 0
0 3 0 0 0
0 0 4 0 0
0 0 0 2 0
0 0 0 0 4




B =




0 1 1 1 1
0 2 1 0 1
1 1 1 2 1
0 1 0 0 1
1 1 1 1 1



, C =




1 −1 1 −1 −1
1 −1 0 0 −1
0 0 0 0 1
1 0 −1 −1 0
0 1 −1 0 1



.

Write the statement to evaluate the inverse matrix. Check the accuracy of
the inversion. Compare the accuracy of the inversion method and the direct
inversion method with inv() function.

10. Consider the following iterative model
{
xk+1 = 1 + yk − 1.4x2

k

yk+1 = 0.3xk

with initial conditions x0 = 0, y0 = 0. Write an M-function to evaluate the
sequence xi, yi. 30000 points can be obtained by the function to construct the
x and y vectors. The points can be expressed by a dot, rather than lines. In

46 Solving Applied Mathematical Problems with MATLAB

this case, the so-called Hénon attractor can be drawn.

11. A regular triangle can be drawn by MATLAB statements easily. Use the loop
structure to design an M-function that, in the same coordinates, a sequence of
regular triangles can be drawn, each by rotating a small angle from the previous
one.

12. Select suitable step-sizes and draw the function curve for sin (1/t), where t ∈
(−1, 1).

13. For suitably assigned ranges of θ, draw polar plots for the following functions.
(i) ρ = 1.0013θ2 , (ii) ρ = cos(7θ/2),
(iii) ρ = sin(θ)/θ, (iv) ρ = 1 − cos3(7θ)

14. Find the solutions to the following equations using graphical methods and verify
the solutions. {

x2 + y2 = 3xy2

x3 − x2 = y2 − y

15. Draw the 3D surface plots for the functions xy and sin(xy) respectively. Also
draw the contours of the functions. View the 3D surface plot from different
angles.

16. In graphics command, there is a trick in hiding certain parts of the plot. If the
function values are assigned to NaNs, the point on the curve or the surface will
not be shown. Draw first the surface plot of the function z = sin xy. Then cut
off the region that satisfies x2 + y2

6 0.52.

Chapter 3

Calculus Problems

The calculus established by Isaac Newton and Gottfried Wilhelm Leibniz is
fundamental to many branches of sciences and engineering. In traditional
calculus courses, limits, differentiations, integrals, series expansions such as
Taylor series and Fourier series expansions for single-variable and multivari-
able functions are the main topics discussed. The analytical solutions to these
problems can be obtained by the direct use of the corresponding functions
provided by the Symbolic Math Toolbox of MATLAB which will be discussed
in Section 3.1. The Taylor series expansions for single- and multivariable
functions as well as the Fourier series expansions are discussed in Section
3.2. Moreover, the series summation and product problems are discussed.
Sections 3.5 and 3.6 present methods for path integrals, line integrals and
surface integrals. Most of the materials presented in this chapter are symbolic-
based, which cannot be solved using conventional computer programming
languages such as C for average users. Computer mathematics languages
such as MATLAB should be used instead.

In many scientific and engineering researches, the analytical solutions to
calculus problems may face difficulties, since the original functions may not be
given explicitly. For problems with measured data, numerical differentiations
and integrals should be applied accordingly. They are illustrated in Sections
3.3 and 3.4, respectively. Alternative solutions to the same numerical calculus
problems using spline interpolation are given in Chapter 8.

As an extension to the traditional (integer-order) calculus, non-integer-
order or fractional-order calculus, will be discussed in Chapter 10.

For readers who wish to check the detailed explanations of calculus, we
recommend the free textbooks [7, 8].

3.1 Analytical Solutions to Calculus Problems

The Symbolic Math Toolbox of MATLAB can be used directly in solving
the limit problems, the differentiation problems, and the integral problems.
Using the methods presented in this section, the readers will be equipped with
the ability in solving ordinary calculus problems directly by computers.

47

48 Solving Applied Mathematical Problems with MATLAB

3.1.1 Analytical solutions to limit problems

Limits of single-variable functions

Assume that the function to be analyzed is f(x), the limit is defined as

L = lim
x→x0

f(x) (3.1)

where x0 can be either a given value or infinity. For certain functions, the left
or right limit can be defined as

L1 = lim
x→x−

0

f(x), or L2 = lim
x→x+

0

f(x) (3.2)

where the former means to approach the point x0 from the left-hand side
which is referred to as the left limit problem. The latter is referred to as the
right limit problem. The limit problems summarized above can be solved by
the use of the limit() function, where

L=limit(fun,x,x0) % calculate the limit

L=limit(fun,x,x0,’left’ or ’right’) % the one-sided limit

To use the functions in Symbolic Math Toolbox, symbolic variables such
as x should be declared first. Then, the limit function fun can be expressed.
If x0 is ∞, one can assign it to inf. If the one-sided limit is required, the
’left’ or ’right’ option should be specified. The following examples are
used to demonstrate the use of the limit() function in MATLAB.

Example 3.1 Solve the limit problem lim
x→∞

x
(
1 +

a

x

)x
sin

b

x
.

Solution For this problem, one should first declare the variables a, b and x as
symbolic variables. Then the function can be defined and the limit() function can
be called directly to solve the problem, which returns L = eab.

>> syms x a b; f=x*(1+a/x)^x*sin(b/x); L=limit(f,x,inf)

Example 3.2 Solve the one-sided limit problem lim
x→0+

ex
3

− 1

1 − cos
√
x− sin x

.

Solution With the limit() function, the one-sided limit can easily be solved, with
the limit of 12.

>> syms x; limit((exp(x^3)-1)/(1-cos(sqrt(x-sin(x)))),x,0,’right’)

One can further verify the above problem graphically over a proper range of
interest. For instance, if the interval (−0.1, 0.1) is considered, the function over the
interval can be drawn in Figure 3.1.

>> x=-0.1:0.001:0.1; y=(exp(x.^3)-1)./(1-cos(sqrt(x-sin(x))));

plot(x,y,’-’,[0],[12],’o’)

It can be seen that the limit of the original problem is also 12.

Calculus Problems 49

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
11.998

12

12.002

12.004

12.006

12.008

12.01

12.012

12.014

12.016

FIGURE 3.1: The curve of the function around x = 0

>> syms x; limit((exp(x^3)-1)/(1-cos(sqrt(x-sin(x)))),x,0)

Consider again the original problem. The aim of the original one-sided limit

requirement ensures that the expression under the square root is positive. In fact,

for imaginary variables, one can still find from the Euler’s formula that cos jα =

(eα + e−α)/2. Thus the one-sided limits for the function are the same for this

example, which further verifies that the original function is continuous around x = 0

as also seen from Figure 3.1.

Limits of multivariable functions

The limit problems for multivariable functions can also be solved with the
MATLAB function limit(). For instance, the limit to the function f(x, y)

L = lim
x→x0
y→y0

f(x, y) (3.3)

can be solved by the nested use of the limit() function. For example,

L1=limit(limit(fun,x,x0),y,y0) or L1=limit(limit(fun,y,y0),x,x0)

where x0 and y0 can be either constants or functions of another variable, for
instance x→ g(y). In the latter case, the order of the function call cannot be
changed.

Example 3.3 Solve the limit problem lim
x→1/

√
y

y→∞

e−1/(y2+x2) sin2 x

x2

(
1 +

1

y2

)x+a2y2
.

Solution The problem can easily be solved with the following MATLAB scripts

>> syms x y a; f=exp(-1/(y^2+x^2))*sin(x)^2/x^2*(1+1/y^2)^(x+a^2*y^2);

L=limit(limit(f,x,1/sqrt(y)),y,inf)

which yields L = ea
2

.

50 Solving Applied Mathematical Problems with MATLAB

3.1.2 Analytical solutions to derivative problems

Derivative and high-order derivatives

If the function is known, the function diff() can be used to calculate its
derivatives. The syntaxes of the diff() function are

y=diff(fun,x) % find the derivative

y=diff(fun,x,n) % evaluate the nth order derivative

where fun is the symbolic expression of a given function; x is the symbolic
independent variable; n is the order of the derivative to be taken.

Example 3.4 Compute
d4f(x)

dx4
for a given function f(x) =

sin x

x2 + 4x+ 3
.

Solution It should be noted that this is the first example given at the beginning
of the book. The derivatives can easily be obtained with the following MATLAB
functions. The variable x should be declared as a symbolic variable first, then the
function diff() can be called to find the first-order derivative.

>> syms x; f=sin(x)/(x^2+4*x+3); f1=diff(f)

The readability of the results directly obtained may not be very high. It is
suggested that the results should be converted with the use of pretty() function,
or by latex() function. The latter can be used to convert the result into the form
in the well-known LATEX string, the best scientific documentation system. Under

LATEX, the result can be better displayed as
cos x

x2 + 4x+ 3
− sin x (2x+ 4)

(x2 + 4x+ 3)2
. It can

be seen that the quality of LATEX display is far better than the one obtained in
MATLAB. In the later description, the LATEX display will be extensively used to
increase the readability.

The original function and the first-order derivative function can easily be obtained
and their respective curves are shown in Figure 3.2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

0

0.1

0.2

0.3

0.4

f(t)

df(t)/dt

FIGURE 3.2: The curves of the original function and its derivative

>> x1=0:.01:5; y=subs(f,x,x1); y1=subs(f1,x,x1); plot(x1,y,x1,y1,’:’)

Calculus Problems 51

The fourth-order derivative can be simply calculated from

>> f4=diff(f,x,4)

and the result is displayed in LATEX

sinx

x2+4x+3
+4

(2x+ 4) cosx

(x2+4x+3)2
−12

(2x+ 4)2 sin x

(x2+4x+3)3
+12

sin x

(x2+4x+3)2
−24

(2x+ 4)3 cosx

(x2+4x+3)4

+ 48
(2x+ 4) cos x

(x2+4x+3)3
+24

(2x+ 4)4 sin x

(x2+4x+3)5
−72

(2x+ 4)2 sin x

(x2+4x+3)4
+24

sin x

(x2+4x+3)3
.

From the above simplified results, it is clear that the direct use of the function
simple() is not sufficient for this example. For the given example, it can immedi-
ately be found that one may extract the terms sin x and cos x from the results and
the coefficients for these terms can be simplified separately such that

>> collect(simple(f4),sin(x)), collect(simple(f4),cos(x))

The even more concise results can be obtained shown as follows:

d4f(x)

dx4
= 8(x5 + 10x4 + 26x3 − 4x2 − 99x − 102)

cos x

(x2 + 4x+ 3)4
+

(x8+16x7+72x6−32x5−1094x4−3120x3−3120x2+192x+1581)
sin x

(x2+4x+3)5
.

The differentiation function diff() can easily be used to find high-order deriva-
tives. For instance, the 100th order derivative of the same function can be found
within one second.

>> tic, diff(f,x,100); toc

Partial derivatives of multivariable functions

There is no direct function which can be used in finding the partial deriva-
tives in MATLAB. The function diff() can actually be used instead. For
instance, if a function f(x, y) with two variables is defined, the partial deriva-
tive ∂m+nf/(∂xm∂yn) can be evaluated by the nested use of the diff()

function as follows:
f=diff(diff(fun,x,m),y,n) , or f=diff(diff(fun,y,n),x,m)

Example 3.5 Find the partial derivatives of z = f(x, y) = (x2 − 2x)e−x
2−y2−xy

function and investigate the function further using graphical method.

Solution The partial derivatives ∂z/∂x and ∂z/∂y can be evaluated easily using

>> syms x y; z=(x^2-2*x)*exp(-x^2-y^2-x*y);

zx=simple(diff(z,x)), zy=diff(z,y)

and the mathematical representations of the derivatives are

∂z(x, y)

∂x
= −e−x

2−y2−xy(−2x+ 2 + 2x3 + x2y − 4x2 − 2xy)

∂z(x, y)

∂y
= −x(x− 2)(2y + x)e−x

2−y2−xy.

Within the rectangular region where x ∈ (−3, 3), y ∈ (−2, 2), mesh grids can be
defined and the partial derivatives can be obtained numerically over the mesh grids.
The three-dimensional surface of the original function is shown in Figure 3.3 (a)

52 Solving Applied Mathematical Problems with MATLAB

>> [x0,y0]=meshgrid(-3:.2:3,-2:.2:2);

z0=subs(z,{x,y},{x0,y0}); % substituting the two variables
surf(x0,y0,z0), axis([-3 3 -2 2 -0.7 1.5]) % three-dimensional surface

From the partial derivatives obtained, the numerical solutions at the mesh grids
can be evaluated. The function quiver() can then be used to draw attractive curves,
and the curves can be superimposed over the contour of the original function with
the following statements, as shown in Figure 3.3 (b).

>> contour(x0,y0,z0,30), hold on % contours of the function
zx0=subs(zx,{x,y},{x0,y0}); zy0=subs(zy,{x,y},{x0,y0});
quiver(x0,y0,zx0,zy0) % draw the attractive curves

−2

0

2

−2

0

2

−0.5

0

0.5

1

1.5

(a) three-dimensional surface

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) contours with gradients

FIGURE 3.3: Graphical interpretation of the functions with two variables

Example 3.6 For a given function with three independent variables x, y and z such

that f(x, y, z) = sin(x2y)e−x
2y−z2 , find the partial derivative ∂4f(x, y, z)/(∂x2∂y∂z).

Solution The following MATLAB statements can be given to solve this problem

>> syms x y z; f=sin(x^2*y)*exp(-x^2*y-z^2);

df=diff(diff(diff(f,x,2),y),z); df=simple(df)

the results can be obtained as

−4ze−x
2y−z2

[
cos x2y − 10yx2 cos x2y + 4x4y2 sin x2y + 4x4y2 cosx2y − sin x2y

]
.

Jacobian matrix of multivariable functions

Assume that there are n independent variables, and m functions defined as





y1 = f1(x1, x2, · · · , xn)
y2 = f2(x1, x2, · · · , xn)

...
...

ym = fm(x1, x2, · · · , xn).

(3.4)

Calculus Problems 53

The partial derivative ∂yi/∂xj for each combination of i and j can be
represented in the matrix form as

J =




∂y1/∂x1 ∂y1/∂x2 · · · ∂y1/∂xn
∂y2/∂x1 ∂y2/∂x2 · · · ∂y2/∂xn

...
...

. . .
...

∂ym/∂x1 ∂ym/∂x2 · · · ∂ym/∂xn


 (3.5)

and such a matrix is referred to as the Jacobian matrix. Jacobian matrices are
quite useful in many research areas, such as robotics and image processing. Ja-
cobian matrix can be obtained using the jacobian() function of the Symbolic
Math Toolbox directly. The syntax of the function is J=jacobian(y,x) , where

x is the vector of independent variables, and y is the vector of multivariable
functions.

Example 3.7 Consider that the functions for coordinate transformation are
defined as x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ. Find the Jacobian
matrix of these functions.

Solution Three independent variables can be declared and the three functions
can then be expressed. The following statements can be used to find the Jacobian
matrix

>> syms r theta phi; x=r*sin(theta)*cos(phi);

y=r*sin(theta)*sin(phi); z=r*cos(theta);

J=jacobian([x; y; z],[r theta phi])

The Jacobian matrix is obtained as

J =




sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0


 .

Partial derivatives of implicit functions

Assume that an implicit function is defined as f(x1, x2, · · · , xn) = 0. The
partial derivative ∂xi/∂xj among the independent variables can be obtained
using the following formula

∂xi
∂xj

= −

∂

∂xj
f(x1, x2, · · · , xn)

∂

∂xi
f(x1, x2, · · · , xn)

. (3.6)

Since the derivatives of f with respect to xi and xj can easily be obtained
separately with the function diff(), the partial derivative of ∂xi/∂xj can be

obtained directly using the MATLAB functions F=-diff(f,xj)/diff(f,xi).

Example 3.8 Consider again the implicit function f(x, y) = (x2−2x)e−x
2−y2−xy =

0. Evaluate ∂y/∂x.

54 Solving Applied Mathematical Problems with MATLAB

Solution It can be found from (3.6) that the partial derivative ∂y/∂x can be
obtained with the following statements

>> syms x y; f=(x^2-2*x)*exp(-x^2-y^2-x*y);

simple(-diff(f,x)/diff(f,y))

The result is
2x− 2 − 2x3 − x2y + 4x2 + 2xy

x (x− 2) (2y + x)
.

Derivatives of parametric equations

When the function y(x) is given as parametric equations y = f(t), x = g(t),

the kth order derivative of the function
dky

dxk
can be calculated using the

following formula

dy

dx
=
f ′(t)

g′(t)
d2y

dx2
=

d

dt

(
f ′(t)

g′(t)

)
1

g′(t)
=

d

dt

(
dy

dx

)
1

g′(t)
...

dny

dxn
=

d

dt

(
dn−1y

dxn−1

)
1

g′(t)
.

(3.7)

Using the recursive calling structure, the following MATLAB function can
be written to implement the above algorithm and the function should be
placed in the @sym directory

1 function result=paradiff(y,x,t,n)

2 if mod(n,1)~=0, error(’n should positive integer, please correct’)

3 else

4 if n==1, result=diff(y,t)/diff(x,t);

5 else, result=diff(paradiff(y,x,t,n-1),t)/diff(x,t);

6 end, end

Example 3.9 For the parametric equations y =
sin t

(t+ 1)3
, x =

cos t

(t+ 1)3
, find

d3y

dx3
.

Solution From the above parametric equations, the derivative can be found by

>> syms t; y=sin(t)/(t+1)^3; x=cos(t)/(t+1)^3;

f=paradiff(y,x,t,3); [n,d]=numden(f); F=simple(n)/simple(d)

The results can be simplified into the following form:

d3y

dx3
=

−3(t+ 1)7[(t4 + 4t3 + 6t2 + 4t − 23) cos t− (4t3 + 12t2 + 32t + 24) sin t]

(t sin t+ sin t+ 3 cos t)5
.

Calculus Problems 55

3.1.3 Analytical solutions to integral problems

In calculus, integral problems are often described mathematically as
∫
f(x) dx,

∫ b

a

f(x) dx,

∫
· · ·
∫
f(x1, x2, · · · , xn) dxn · · · dx2dx1 (3.8)

where function f(·) is referred to as the integrand. The first integral is referred
to as the indefinite integral, while F (x) is referred to as the primitive function.
The other two integrals are respectively referred to as the definite integral
and multiple integrals. To solve the integral problems, according to calculus
courses, one has to select, largely by experience, the integration methods,
such as integration by substitution, or integration by parts, or others. Thus,
solving integral problems could be a tedious task.

Indefinite integrals

The int() function provided in the Symbolic Math Toolbox of MATLAB
can be used to evaluate the indefinite integrals to given functions. The syntax
of the function is F=int(fun,x), where the integrand can be described by fun.
If only one variable appears in the integrand, the argument x can be omitted.
The returned argument is the primitive F (x). In fact, the general solution to
the indefinite integral problem is F (x) + C, with C an arbitrary constant.

For any integrable functions, the use of the function int() can reduce the
complicated work such that the primitive function can be obtained directly.
However, for symbolically non-integrable functions, the int() function may
not give useful results. In this case, numerical methods have to be used
instead.

Example 3.10 Consider the function given in Example 3.4. The diff() function
can be used to find the derivative of f(x). If the indefinite integral is made upon
the results, check whether the original function can be restored.

Solution The original function can be defined and the integral can be taken on
the first-order derivative such that

>> syms x; y=sin(x)/(x^2+4*x+3); y1=diff(y); y0=int(y1)

the result is then
sin x

2(x+ 1)
− sin x

2(x+ 3)
. It can be seen that the result restores the

original function.
Now consider taking the fourth-order derivative to the original function by ap-

plying int() four times in a nested way as follows:

>> y4=diff(y,4); y0=int(int(int(int(y4)))); simple(y0)

and the result is
sin x

(x+ 1) (x+ 3)
, which is still the same as the original function.

Example 3.11 Show that
∫
x3 cos2 ax dx =

x4

8
+

(
x3

4a
− 3x

8a3

)
sin 2ax+

(
3x2

8a2
− 3

16a4

)
cos 2ax+C.

56 Solving Applied Mathematical Problems with MATLAB

Solution The following MATLAB statements can be used:

>> syms a x; f=simple(int(x^3*cos(a*x)^2,x))

and the simplified results can be obtained as

1

16a4

[
4a3x3 sin (2ax) + 2a4x4 + 6a2x2 cos (2ax) − 6 ax sin (2ax) + 3 − 3 cos (2ax)

]
.

It can be seen that the result is not the same as the one on the right-hand side.
Let us check the difference. Using the following scripts

>> f1=x^4/8+(x^3/(4*a)-3*x/(8*a^3))*sin(2*a*x)+...

(3*x^2/(8*a^2)-3/(16*a^4))*cos(2*a*x);

simple(f-f1) % difference is taken and simplified

after simplification, the difference is −3/(16a4) which is not zero. However, fortu-

nately, since the difference between the two primitive functions is a constant, it can

be included into the final constant C. Thus the original equation can be proved.

Example 3.12 Consider the two integrands

f(x) = e−x
2/2, and g(x) = x sin(ax4)ex

2/2.

They are all known to be not integrable. Compute the integral to the two functions.

Solution Let us consider the integral to the first integrand f(x) = e−x
2/2. The

following MATLAB functions can be used

>> syms x; int(exp(-x^2/2))

and the result obtained is erf(
√

2)/
√

2π. Since the original integrand is not in-

tegrable, a function erf(x) =
2√
π

∫ x

0

e−t
2

dt is introduced. Thus the “analytical”

solution to the original problem can be obtained.
The second integrand can be tested under the int() function. The following

MATLAB statements

>> syms a x; int(x*sin(a*x^4)*exp(x^2/2))

result in the following returned warning message, which means that the explicit
solutions cannot be obtained.

Warning: Explicit integral could not be found.

> In sym.int at 58

ans =

int(x*sin(a*x^4)*exp(1/2*x^2),x)

Computing definite and infinite integrals

The definite integrals and infinite integrals are also part of calculus. For
instance, although the function erf(x) is defined previously, the integral of a
particular value of x cannot be obtained analytically. In this case, definite
integrals, in cooperation with numerical methods, can be obtained. The
function int() can be used to evaluate the definite and infinite integrals.
The syntax of the function is I=int(fun,x,a,b), where x is the independent

Calculus Problems 57

variable, (a, b) is the integral interval. For infinite integrals, the arguments a
and b can be assigned to -Inf or Inf. Also if no exact value can be obtained
directly, the vpa() function can be used to evaluate the solutions numerically.

Example 3.13 Consider the integrands given previously in Example 3.12. When
a = 0, b = 1.5 (or ∞), evaluate the values of the integral.

Solution The following statements can be used in solving the definite and infinite
integral problems

>> syms x; I1=int(exp(-x^2/2),x,0,1.5)

vpa(I1,70), I2=int(exp(-x^2/2),x,0,inf)

where I1 =
√
π/2 erf[3/(2

√
2)], and the high-precision numerical solution to the defi-

nite integral is I1 =1.0858533176660165697024190765422650425342362935321563267

2991722930853. The analytical solution to the infinite integral is I2 =
√
π/2.

Example 3.14 Solve the definite integral problems for functional boundaries

I(t) =

∫ e−2t

cos t

−2x2 + 1

(2x2 − 3x+ 1)2
dx.

Solution The function int() can be used in solving definite integrals and the
following statements can be used

>> syms x t; f=(-2*x^2+1)/(2*x^2-3*x+1)^2;

I=simple(int(f,x,cos(t),exp(-2*t))),

and the results can be expressed as

I(t) = − (2e−2t cos t− 1)(e−2t − cos t)

(e−2t − 1)(2e−2t − 1)(cos t− 1)(2 cos t− 1)
.

Computing multiple integrals

Multiple integral problems can also be solved by using the same MATLAB
function int(). Generally speaking, usually the inner integrals should be
carried out first and then outer integrals. However, the sequence of integrals
should be observed. In each integration step, the int() function can be used.
Thus sometimes in certain integration steps, the inner integral may not yield
a primitive function, which results in no analytical solution to the overall
integral problem. If the sequence of integrals can be changed, analytical
solutions may be obtained. Numerical solutions to multiple integral problems
will be presented in Section 3.4.3.

Example 3.15 Compute the multiple integrals

∫
· · ·
∫
F (x, y, z) dx2dydz where

the integrand F (x, y, z) is defined as

−4ze−x
2y−z2

[
cos x2y − 10yx2 cos x2y + 4x4y2 sin x2y + 4x4y2 cosx2y − sin x2y

]
.

Solution In fact, the above F (x, y, z) function was obtained by taking partial
derivatives to the function f(x, y, z) defined in Example 3.6. Thus taking inverse
operations in this example should restore the same primitive function.

58 Solving Applied Mathematical Problems with MATLAB

One may integrate once with respect to z, once to y and twice to x. The following
results can be obtained through simplification

>> syms x y z;

f0=-4*z*exp(-x^2*y-z^2)*(cos(x^2*y)-10*cos(x^2*y)*y*x^2+...

4*sin(x^2*y)*x^4*y^2+4*cos(x^2*y)*x^4*y^2-sin(x^2*y));

f1=int(f0,z); f1=int(f1,y); f1=int(f1,x); f1=simple(int(f1,x))

with the primitive function sin(x2y)e−x
2y−z2 , which is exactly the same as the

function defined in Example 3.6. Now if one alters the order of integration, i.e.,
change the order to z → x→ x→ y

>> f2=int(f0,z); f2=int(f2,x); f2=int(f2,x); f2=simple(int(f2,y))

the result becomes 2
e−x

2y−z2 tan
(
x2y/2

)

1 + tan2 (x2y/2)
. The primitive function obtained does

not look the same as the original function in Example 3.6. If one simplifies the

difference between the two functions, i.e., simple(f1-f2), it can be seen that the

difference is 0, which means that the two functions are identical.

Example 3.16 Compute the definite integral

∫ 2

0

∫ π

0

∫ π

0

4xze−x
2y−z2dzdydx.

Solution The following statements can be given to calculate the triple definite
integral

>> syms x y z

int(int(int(4*x*z*exp(-x^2*y-z^2),x,0,2),y,0,pi),z,0,pi)

and the results obtained are

pi*Ei(1,4*pi)*(1/pi-1/pi*exp(-pi^2))+pi*log(pi)*(1/pi-1/pi*exp(-pi^2))+

pi*eulergamma*(1/pi-1/pi*exp(-pi^2))+2*pi*log(2)*(1/pi-1/pi*exp(-pi^2))

where eulergamma is the Euler constant γ, Ei(n, z) =

∫ ∞

1

e−ztt−n dt is an exponen-

tial integral. The integrand is not integrable analytically. However, numerical solu-

tions can be found. Thus the accurate numerical solution to the original problem can

be found from vpa(ans) command and the integral value is 3.10807940208541272.

3.2 Series Expansions and Series Evaluations

Taylor series expansions to functions with a single variable and multiple
variables will be discussed in this section. The Fourier series expansion to
given functions are also to be discussed. Summations and products of series
are illustrated.

Calculus Problems 59

3.2.1 Taylor series expansion

Taylor series expansion of single-variable functions

The Taylor series expansion about the point x = 0 can be written as

f(x) = a1 + a2x+ a3x
2 + · · · + akx

k−1 + o(xk) (3.9)

where the coefficients ai can be obtained from

ai =
1

i!
lim
x→0

di−1

dxi−1
f(x), i = 1, 2, 3, · · · . (3.10)

The expansion is also referred to as the Maclaurin series. If the Taylor series
expansion is made about the x = a point, the series can then be written as

f(x) = b1 + b2(x− a) + b3(x − a)2 + · · · + bk(x − a)k−1 + o[(x − a)k] (3.11)

where the bi coefficients can be obtained from

bi =
1

i!
lim
x→a

di−1

dxi−1
f(x), i = 1, 2, 3, · · · . (3.12)

Taylor series expansion can be obtained by the use of the taylor() function,
provided in the Symbolic Math Toolbox. The syntaxes of the function are

taylor(fun,x,k) % Taylor series about x = 0 point

taylor(fun,x,k,a) % Taylor series expansion about the x = a point

where fun is a symbolic expression of the original function and x is the
independent variable. If there is only one independent variable in fun, x
can be omitted. The argument k is the number of terms required in the
expansion, with a default number of terms of 6. If an extra argument a is
given, the expansion is then made about the x = a point. The Taylor series
expansion solutions are demonstrated in the following examples.

Example 3.17 Consider again the function f(x) = sin x/(x2 + 4x + 3) given in
Example 3.4. Find the first 9 terms of Taylor series expansion about x = 0 point.
Consider also the series expansions about points x = 2 and x = a.

Solution The following statements can be used to specify the given function.
The first 9 terms of Taylor series expansion can be obtained using the following
statements

>> syms x; f=sin(x)/(x^2+4*x+3); y1=taylor(f,x,9)

and the result is

f(x) =
1

3
x− 4

9
x2+

23

54
x3− 34

81
x4+

4087

9720
x5− 3067

7290
x6+

515273

1224720
x7− 386459

918540
x8+· · · .

In classical calculus courses, no analysis had been made upon the fitting quality
of the finite number of terms approximation for a given function, since there were
no ready tools available. With the use of MATLAB, the original function as well as
the finite term Taylor series approximation can be comapred graphically as shown
in Figure 3.4 (a).

60 Solving Applied Mathematical Problems with MATLAB

0 0.2 0.4 0.6 0.8 1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(a) over interval (0, 1)

0 0.1 0.2 0.3 0.4 0.5

0

0.02

0.04

0.06

0.08

(b) interval (0, 0.5)

FIGURE 3.4: Finite term Taylor series approximation

>> ezplot(f,[0,5]), hold on; ezplot(y1,[0,5])

It can be seen that the fitting over the specified interval (0,1) is not satisfactory
in the sense that when t is close to 1, the fitting is very poor. Thus 9 terms of
Taylor series expansion for the original function are not enough. If the interval
is changed to (0, 0.5), the fitting quality is shown in Figure 3.4 (b) which is good
enough. Thus with the graphical facilities in MATLAB, the fitting qualities can be
examined easily.

Now consider the Taylor series expansion about the point x = 2. The series can
be derived using the following statement:

>> taylor(f,x,9,2)

Since the expansion is lengthy, only first five terms are shown here

f(x) ≈ sin 2

15
+

(
cos 2

15
− 8 sin 2

225

)
(x−2)−

(
127 sin 2

6750
+

8 cos 2

225

)
(x−2)2

+

(
23 cos 2

6750
+

628 sin 2

50625

)
(x−2)3 +

(
− 15697

6075000
sin (2) +

28

50625
cos (2)

)
(x− 2)4 .

If one wants to find the series expansion about the x = a point, Taylor series
expansion can still be derived using similar statements

>> syms a; taylor(f,x,9,a)

Here only the first three terms are shown

sin a

a2 + 3 + 4a
+

[
cos a

a2 + 3 + 4a
− (4 + 2a) sin a

(a2 + 3 + 4a)2

]
(x− a) +

[
− sin a

(a2 + 3 + 4a)2

− sin a

2(a2+3+4a)
−
(
a2 cos a+3 cos a+4a cos a−4 sin a−2a sin a

)
(4+2a)

(a2+3+4a)3

]
(x−a)2.

Example 3.18 Expand the sinusoidal function y = sin x into Taylor series, and
compare the approximation quality for different terms.

Solution In order to find out the relationship between the fitting quality and the
number of terms used, the loop structure should be used. The following statements
can be issued to solve the problem, where the fitting curves shown in Figure 3.5 can
be obtained.

Calculus Problems 61

−6 −4 −2 0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

n = 10

n = 6

n = 8n
=

12

n
=

1
4

FIGURE 3.5: Taylor series approximation to given sinusoidal functions

>> x0=-2*pi:0.01:2*pi; y0=sin(x0); syms x; y=sin(x);

plot(x0,y0), axis([-2*pi,2*pi,-1.5,1.5]);

for n=[8:2:20]

p=taylor(y,x,n), y1=subs(p,x,x0); line(x0,y1)

end

For fewer terms, the satisfactory fitting interval is small. If the number of terms
is increased, the satisfactory fitting interval will also increase. For instance, if one
selects n = 16, the fitting is satisfactory over the interval (−2π, 2π). The first 20
terms in the Taylor series expansion are obtained as

sin x ≈ x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 − 1

39916800
x11 +

1

6227020800
x13

− 1

1307674368000
x15 +

1

355687428096000
x17 − 1

121645100408832000
x19.

Taylor series expansion of multivariable functions

The Taylor series expansion of a multivariable function f(x1, x2, · · · , xn) is

f(x1, · · · , xn) = f(a1, · · · , an)+[
(x1 − a1)

∂

∂x1
+ · · · + (xn − an)

∂

∂xn

]
f(a1, · · · , an)+

1

2!

[
(x1 − a1)

∂

∂x1
+ · · · + (xn − an)

∂

∂xn

]2
f(a1, · · · , an) + · · ·+

1

k!

[
(x1 − a1)

∂

∂x1
+ · · · + (xn − an)

∂

∂xn

]k
f(a1, · · · , an) + · · · ,

(3.13)

where (a1, · · · , an) is the center point of Taylor series expansion. In order
to avoid misunderstanding, the terms can be regarded as the derivatives
of function fun. Then the function evaluation can be made to the point
(a1, a2, · · · , an). There is no existing function provided in the Symbolic Math
Toolbox of MATLAB. However, the mtaylor() function in Maple can be
used instead. The Taylor series expansion to multivariable functions can be
obtained from

62 Solving Applied Mathematical Problems with MATLAB

F=maple(’mtaylor’,fun,’[x1 , · · · , xn]’,k) % about the origin

F=maple(’mtaylor’,fun,’[x1 =a1, · · · , xn=an]’,k) % about (a1, · · · , an)
where k−1 is the highest degree in the expansion, and fun is the multivariable
function. It should be noted that the quotation marks cannot be omitted
since the information within the quotation marks will be passed to the Maple
function directly.

Example 3.19 Consider again the function z = f(x, y) = (x2 − 2x)e−x
2−y2−xy

shown in Example 3.5. Find its Taylor series expansion.

Solution The following statements can be used to get the Taylor series expansion
about the origin

>> syms x y; f=(x^2-2*x)*exp(-x^2-y^2-x*y);

F=maple(’mtaylor’,f,’[x,y]’,9); collect(F,x) % collect the polynomial

whose mathematical representation is

f(x, y) = −1

6
x8 +

(
−1

2
y +

1

3

)
x7 +

(
−y2 + y +

1

2

)
x6 +

(
−7

6
y3 + 2y2 − 1 + y

)
x5

+

(
−y4 − 1 − 2y +

7

3
y3 +

3

2
y2

)
x4 +

(
2 + 2y4 − y − 1

2
y5 + y3 − 3y2

)
x3

+

(
2y + 1 +

1

2
y4 − 1

6
y6 − 2y3 − y2 + y5

)
x2 +

(
−2 − y4 + 2y2 +

1

3
y6

)
x.

If one wants to expand the original function about x = 1, y = a point, the
following statements can be used

>> syms a; F=maple(’mtaylor’,f,’[x=1,y=a]’,5);

and the expansion can be found as

f(x, y) = −e−1−a−a2 − e−1−a−a2 (−2 − a) (x− 1) − e−1−a−a2 (−2a− 1) (y − a)+
[
−e−1−a−a2

(
1 + 2a+

a2

2

)
+ e−1−a−a2

]
(x− 1)2 −

e−1−a−a2 (5a+1+2a2) (y−a) (x−1)− e−1−a−a2
(
−1

2
+2a+2a2

)
(y−a)2+· · · .

In fact, the Maple function mtaylor() can also be used in evaluating the Taylor
series expansion for single variable functions. The function call is almost as simple
as taylor() function

>> F=maple(’mtaylor’,f,’[x=a]’,5);

and the result obtained is

f(x, y) = (a2−2a)e−a
2−y2−ay +

[
(a2−2a)(−2a−y) + (2a−2)

]
e−a

2−y2−ay (x−a)+
[
(a2−2a)(−1+2a2+2ay+y2/2) + 1 + (2a−2) (−2a−y)

]
e−a

2−y2−ay(x−a)2 + · · · .

3.2.2 Fourier series expansion

Consider a periodic function f(x) defined over the interval x ∈ [−L,L].
The function is with a period of T = 2L. For the function defined on other

Calculus Problems 63

intervals, it can be extended to periodic functions such that f(x) = f(kT+x),
where k is an arbitrary integer. A given function f(x) can be expressed as an
infinite series such that

f(x) =
a0

2
+

∞∑

n=1

(
an cos

nπ

L
x+ bn sin

nπ

L
x
)

(3.14)

where




an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx, n = 0, 1, 2, · · ·

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx, n = 1, 2, 3, · · · .

(3.15)

Such a series is referred to as the Fourier series and an, bn are referred to
as Fourier coefficients. If the function is defined over x ∈ (a, b), it can be
found that L = (b − a)/2. One may introduce a new variable x̂ such that
x = x̂+L+a, the function f(x̂) can be mapped into the symmetrical interval
(−L,L). Fourier series can be established for the new transformed function.
Then the variable substitution x̂ = x − L − a can be used to map the series
back to the function of x.

There is no existing function for Fourier series expansion provided in MAT-
LAB and Maple. Thus based on the above formula, the following MATLAB
function can be prepared and placed in the @sym directory

1 function [A,B,F]=fseries(f,x,p,a,b)

2 if nargin==3, a=-pi; b=pi; end

3 L=(b-a)/2; if a+b, f=subs(f,x,x+L+a); end

4 A=int(f,x,-L,L)/L; B=[]; F=A/2;

5 for n=1:p

6 an=int(f*cos(n*pi*x/L),x,-L,L)/L;

7 bn=int(f*sin(n*pi*x/L),x,-L,L)/L; A=[A, an]; B=[B,bn];

8 F=F+an*cos(n*pi*x/L)+bn*sin(n*pi*x/L);

9 end

10 if a+b, F=subs(F,x,x-L-a); end

The syntax of the function is [A,B,F]=fseries(f,x,p,a,b), where f is

the given function; x is the independent variable; p is number of the terms
required in the expansion and (a, b) is the interval for x. If a, b arguments are
omitted, the default interval [−π, π] will be used. The returned arguments A,
B contain the Fourier coefficients, F is the Fourier series expansion obtained.
Similar to the analytical function fseries(), the numerical version can also
be written easily.

Example 3.20 Find the Fourier series expansion to the function y = x(x−π)(x−
2π), where x ∈ (0, 2π).

Solution The Fourier series for the given function can easily be expressed

>> syms x; f=x*(x-pi)*(x-2*pi); [A,B,F]=fseries(f,x,12,0,2*pi)

64 Solving Applied Mathematical Problems with MATLAB

where the first 12 terms in the Fourier series are as follows:

f(x) = 12 sin x+
3 sin 2x

2
+

4 sin 3x

9
+

3 sin 4x

16
+

12 sin 5x

125
+

sin 6x

18
+

12 sin 7x

343

+
3 sin 8x

128
+

4 sin 9x

243
+

3 sin 10x

250
+

12 sin 11x

1331
+

sin 12x

144
.

From these results, the analytical form can be summarized as f(x) =

∞∑

n=1

12

n3
sinnx.

The first 12 terms in the Fourier series expansion and the original function can
be graphically compared as shown in Figure 3.6 (a) with the following statements

>> ezplot(f,[0,2*pi]), hold on, ezplot(F,[0,2*pi])

0 1 2 3 4 5 6

−10

−5

0

5

10

(a) over interval (0, 2π)

−2 0 2 4 6 8

−10

−5

0

5

10

(b) a larger interval (−π, 3π)

FIGURE 3.6: Accuracy of finite term Fourier series approximation

If one wants to further examine the approximation over a larger interval x ∈
(−π, 3π), the following statements should be used

>> ezplot(f,[-pi,3*pi]), hold on, ezplot(F,[-pi,3*pi])

and the curves are shown in Figure 3.6 (b). It can be seen that over the (0, 2π)

interval the fitting is quite good. In other regions, since the Fourier series is made

upon the assumption that it is periodically extended, thus it cannot approximate

the original function in other intervals at all.

Example 3.21 Now consider a square wave defined over the interval (−π, π),
where y = 1 when x > 0, and y = −1 otherwise. Expand the function using Fourier
series and observe how many terms in the function may give good approximation.

Solution Since in symbolic expressions inequality cannot be used, the square
wave can be expressed as f(x) = |x|/x. In this way, the numerical and analytical
expressions in Fourier series can be obtained for different terms in the expression.
The curves can be obtained as shown in Figure 3.7 (a).

>> syms x; f=abs(x)/x; % square wave definition
xx=[-pi:pi/200:pi]; xx=xx(xx~=0); xx=sort([xx,-eps,eps]); % remove 0
yy=subs(f,x,xx); plot(xx,yy), hold on % draw the original function

Calculus Problems 65

for n=1:20

[a,b,f1]=fseries(f,x,n); y1=subs(f1,x,xx); plot(xx,y1)

end

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

(a) over interval (−π, π)

−8 −6 −4 −2 0 2 4 6 8
−1.5

−1

−0.5

0

0.5

1

1.5

(b) a larger interval (−2π, 2π)

FIGURE 3.7: Approximation of square wave by Fourier series

It can be seen that when 10 terms are used, the approximation is satisfactory.
Even if the number of terms increases, the fitting accuracy may not be improved
significantly. A finite Fourier series of the original function can be obtained by

>> [a,b,f1]=fseries(f,x,14); f1

and the expansion can be written as

f(x) ≈ 4
sin x

π
+

4 sin 3x

3π
+

4 sin 5x

5π
+

4 sin 7x

7π
+

4 sin 9x

9π
+

4 sin 11x

11π
+

4 sin 13x

13π

which can further be summarized as f(x) =
4

π

∞∑

k=1

sin(2k − 1)x

2k − 1
.

Again the Fourier series expansion is established upon the assumption that it is
periodically extended over the original function, thus the fitting in other intervals
may be incorrect, as shown in Figure 3.7 (b).

>> xx=[-2*pi:pi/200:2*pi]; xx=xx(xx~=0); xx=sort([xx,-eps,eps]);

yy=subs(f,x,xx); plot(xx,yy), y1=subs(f1,x,xx); line(xx,y1)

3.2.3 Series

The function symsum() provided in the Symbolic Math Toolbox can be
used to evaluate the finite and infinite series with known general terms. The
syntax of the function is S=symsum(fk,k,k0,kn), where fk is the general term

of the series, k is the independent term, and k0 and kn are the initial and final
terms of the series, respectively. They can be set to inf for infinite series.
The series can be written as

S =

kn∑

k=k0

fk. (3.16)

66 Solving Applied Mathematical Problems with MATLAB

If there is only one independent variable defined in fk, the variable k can be
omitted in the function call.

Example 3.22 Compute the finite sum S = 20 +21 +22 + · · ·+262 +263 =
63∑

i=0

2i.

Solution Numerical solution to the problem can be found from

>> format long; s=sum(2.^[0:63])

with s = 1.844674407370955×1019 . Since the data type of double is used, only
16 digits can be reserved. Thus the exact result cannot be obtained under double-
precision scheme. The function symsum() can be used to solve the problem

>> syms k; symsum(2^k,0,63)

where s1 = 18446744073709551615 can be obtained. The problem can even be

solved with a simpler command sum(sym(2).^[0:63]) , and the same result can be

obtained. The method can be extended to calculate for more terms, for instance, it
is possible to calculate the sum to 201 terms

>> s2=symsum(2^k,0,200)

and s2 =3213876088517980551083924184682325205044405987565585670602751. The

exact solution cannot possibly be obtained using the double-precision data type.

Example 3.23 Compute the infinite series

S =
1

1 × 4
+

1

4 × 7
+

1

7 × 10
+ · · · + 1

(3n− 2)(3n+ 1)
+ · · · .

Solution With the use of the symbolic function

>> syms n; s=symsum(1/((3*n-2)*(3*n+1)),n,1,inf)

the sum result s = 1/3 can be obtained. The same problem can be tried using
numerical method with double data type. For instance, if 10,000,000 terms are
selected to be added up, the following statements can be used directly

>> m=1:10000000; s1=sum(1./((3*m-2).*(3*m+1))); format long; s1

and the sum is s1 = 0.33333332222165. It can be seen that although a very large

number of terms are selected with much long time consumed, there still exists

unavoidable difference and the error reaches 10−6 level. It can be seen that when

m = 107, the value of the general term is around 10−15, thus it seems that the

additional error in the summation may not be very large. In fact, since double-

precision data type is used, some of the terms may not be added to the S variable.

Thus even though more terms are used in the summation, the accuracy cannot be

further increased.

Example 3.24 Evaluate the infinite series with an extra variable x.

J = 2

∞∑

n=0

1

(2n+ 1)(2x+ 1)2n+1
.

Calculus Problems 67

Solution In the examples studied earlier, numerical methods can be used to find
the approximate solutions. If in the general term, extra independent variables are
involved, numerical methods can no longer be used. Symbolic method has to be
used to solve the problem. For instance, the sum can be evaluated with

>> syms n x; s1=symsum(2/((2*n+1)*(2*x+1)^(2*n+1)),n,0,inf);

simple(s1)

and the infinite sum is s1 = ln[(x+ 1)/x].

Example 3.25 Solve the limit problem with the series

lim
n→∞

[(
1 +

1

2
+

1

3
+

1

4
+ · · · + 1

n

)
− lnn

]
.

Solution So far, the series and limit problems have been discussed and illustrated
separately. For this mixed problem, the following MATLAB statements can be used
to solve it, where the finite sum should be made first using symsum(1/m,m,1,n)

>> syms m n; limit(symsum(1/m,m,1,n)-log(n),n,inf)

and eulergamma can be obtained, i.e., the Euler constant γ can be obtained whose
value can be evaluated with vpa(ans) such that γ = 0.57721566490153286060651209.

It should be noted that in the computation, one should not evaluate the infinite

sum before limit. Otherwise the original problem cannot be correctly solved.

3.2.4 Sequence product

The computation of sequence product

b∏

n=a

f(n) is not directly supported in

MATLAB. We can call Maple function product() from MATLAB to solve
the product problem. The syntaxes of the function are
maple(’product(fun, n=a..b)’) or maple(’product’,fun,’n=a..b’)

Example 3.26 Calculate the sequence product

∞∏

i=2

(
1 − 2

i(i+ 1)

)
.

Solution The sequence product is simply 1/3 .

>> syms i; maple(’product’,1-2/i/(i+1),’i=2..Inf’)

3.3 Numerical Differentiation

If the original function is symbolically given, the analytical solutions to the
differentiation problem can be obtained directly with the MATLAB built-in
function diff(). The 100th order derivative can be obtained within seconds.
However, in some applications where the original function is not known, only

68 Solving Applied Mathematical Problems with MATLAB

experimental data are given, the analytical or symbolic methods cannot be
used. In this case, numerical methods must be used to get the derivatives
from the experimental data. There is no dedicated function available in
solving numerical differentiation problems in MATLAB. Thus, simple numer-
ical algorithms are presented in this section with detailed implementation
of the algorithms together with examples on how to solve the numerical
differentiation problems in MATLAB.

3.3.1 Numerical differentiation algorithms

Assume that there is a set of measured data (ti, yi) with evenly distributed
time instances ti = i∆t, i = 1, · · · , N , and the sampling period is ∆t. The
approximate derivative of the function can be defined as

y′i ≈
∆yi
∆t

; y′i =
yi+1 − yi

∆t
+ o(∆t). (3.17)

This formula is also referred to as the forward difference algorithm.
Similarly, backward difference formula is defined as

y′i ≈
∆yi
∆t

; y′i =
yi − yi−1

∆t
+ o(∆t). (3.18)

From calculus, it is known that when ∆t → 0, the forward and backward
formula can be used to solve analytically the differentiation problem. However,
unfortunately, in practical applications, the condition ∆t → 0 cannot be
satisfied. When the value of ∆t is large, the accuracy of the differentiation
cannot be guaranteed. So other improved numerical differentiation algorithms
should be considered. For instance, the central-point algorithm can be used.
The first-order derivative can also be defined as

y′i ≈
∆yi
∆t

; y′i =
yi+1 − yi−1

2∆t
. (3.19)

Denote f̃ ′(x) =
f(x+ ∆t) − f(x− ∆t)

2∆t
. From Taylor series expansion, the

above method can further be written as

f̃ ′(x) =
f(x) + ∆tf ′(x) + ∆t2f ′′(x)/2! + ∆t3f ′′(ξ)/3! + o(∆t4)

2∆t
−

f(x)−∆tf ′(x)+∆t2f ′′(x)/2!−∆t3f ′′(ξ)/3!+o(∆t4)

2∆t

=f ′(x)+
∆t3

3!
f ′′(ξ).

(3.20)

It can be shown that the precision of the numerical approximation algorithm
of first order differentiation is o(∆t2). High-order differentiation formulae can

Calculus Problems 69

be similarly derived as follows:

y′′i ≈ yi+1 − 2yi + yi−1

∆t2

y′′′i ≈ yi+2 − 2yi+1 + 2yi−1 − yi−2

2∆t3

y
(4)
i ≈ yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2

∆t4
.

(3.21)

There is yet another set of central-point difference algorithms with even
higher accuracy of o(∆t4), defined as follows:

y′i ≈
−yi+2 + 8yi+1 − 8yi−1 + yi−2

12∆t

y′′i ≈ −yi+2 + 16yi+1 − 30yi + 16yi−1 − yi−2

12∆t2

y′′′i ≈ −yi+3 + 8yi+2 − 13yi+1 + 13yi−1 − 8yi−2 + yi−3

8∆t3

y
(4)
i ≈ −yi+3 + 12yi+2 − 39yi+1 + 56yi − 39yi−1 + 12yi−2 − yi−3

6∆t4
.

(3.22)

3.3.2 Central-point difference algorithm with MATLAB
implementation

The numerical differentiation algorithm given in (3.22) has the error level
of o(∆t4) which can be used to solve numerical differentiation problems with
higher numerical accuracy. Even when ∆t is not too small, good approxima-
tion can still be expected due to its error level. Based on the algorithm, a
MATLAB function is prepared as follows:

1 function [dy,dx]=diff_ctr(y,Dt,n)

2 yx1=[y 0 0 0 0 0]; yx2=[0 y 0 0 0 0]; yx3=[0 0 y 0 0 0];

3 yx4=[0 0 0 y 0 0]; yx5=[0 0 0 0 y 0]; yx6=[0 0 0 0 0 y];

4 switch n

5 case 1

6 dy = (-diff(yx1)+7*diff(yx2)+7*diff(yx3)-diff(yx4))/(12*Dt); L0=3;

7 case 2

8 dy=(-diff(yx1)+15*diff(yx2)-15*diff(yx3)+diff(yx4))/(12*Dt^2);L0=3;

9 case 3

10 dy=(-diff(yx1)+7*diff(yx2)-6*diff(yx3)-6*diff(yx4)+...

11 7*diff(yx5)-diff(yx6))/(8*Dt^3); L0=5;

12 case 4

13 dy = (-diff(yx1)+11*diff(yx2)-28*diff(yx3)+28*diff(yx4)-...

14 11*diff(yx5)+diff(yx6))/(6*Dt^4);L0=5;

15 end

16 dy=dy(L0+1:end-L0); dx=([1:length(dy)]+L0-2-(n>2))*Dt;

The syntax of the function is [dy,dx]=diff ctr(y,∆t,n), where y is the

vector containing measured data for evenly distributed points, and ∆t is the

70 Solving Applied Mathematical Problems with MATLAB

sampling period. The argument n specifies the order of derivatives. The
returned arguments dy is the derivative vector computed, while the argument
dx is the corresponding vector of independent variables. It should be noted
that the two vectors are a few points shorter than the original y vector.

Example 3.27 The function defined in Example 3.4 is still used in the demonstra-
tion of the algorithm. Since the original function is known, the analytical solution
can be obtained for comparison. Sample data of the function can be generated from
the function, and with the help of the data, the derivatives of the first- up to the
fourth-order can be calculated and the results can be compared with the analytical
solutions.

Solution An evenly spaced vector x is generated first. Since the original function
is known, the analytical solutions to derivatives can be obtained. Then, if one sub-
stitutes the vector x into the obtained analytical functions, the theoretical derivative
vectors can be obtained for comparison.

>> h=0.05; x=0:h:pi; syms x1; y=sin(x1)/(x1^2+4*x1+3);

yy1=diff(y); f1=subs(yy1,x1,x); % get the contrast data analytically
yy2=diff(yy1); f2=subs(yy2,x1,x); yy3=diff(yy2); f3=subs(yy3,x1,x);

yy4=diff(yy3); f4=subs(yy4,x1,x);

From the data points yi generated above, the first-order up to the fourth-order
derivatives from the data can be calculated easily with the function diff ctr() and
the results are shown in Figure 3.8, together with the exact solutions. It can be seen
that one may not observe the difference.

−0.5

0

0.5

−1

−0.5

0

0.5

0 1 2 3
0

1

2

3

0 1 2 3
−15

−10

−5

0

FIGURE 3.8: Comparisons of derivatives of different orders

>> y=sin(x)./(x.^2+4*x+3); % generate the data to be used
[y1,dx1]=diff_ctr(y,h,1); subplot(221), plot(x,f1,dx1,y1,’:’);

[y2,dx2]=diff_ctr(y,h,2); subplot(222), plot(x,f2,dx2,y2,’:’)

[y3,dx3]=diff_ctr(y,h,3); subplot(223), plot(x,f3,dx3,y3,’:’);

[y4,dx4]=diff_ctr(y,h,4); subplot(224), plot(x,f4,dx4,y4,’:’)

Calculus Problems 71

Quantitative studies for the fourth-order derivative show that the maximum error
between the exact results and the calculated results is as small as 3.5025×10−4 .

>> norm((y4-f4(4:60))./f4(4:60))

3.3.3 Gradient computations of functions with two variables

Consider the function z(x, y) with two variables representing a 3D surface.
The function gradient() can be used to calculate the gradients for the
function. The syntax of the function is [fx,fy]=gradient(z), where the

“gradients” fx and fy thus calculated are not the actual gradients, since the
coordinates x and y are not considered. If the matrix z is obtained, the gra-
dients can be obtained using the following statements fx=fx/∆x, fy=fy/∆y ,

where ∆x and ∆y are respectively the step-sizes for x and y.

Example 3.28 Consider the function given in Example 3.5. Assume that the
mesh grid data can be generated. Compute the gradients of the original function
and analyze the error.

Solution The data can be generated using the following statements. The gradients
here are obtained from the data rather than from the analytical function. The 3D
attractive curves can also be drawn as shown in Figure 3.9 and it should be the
same as the one in Figure 3.3 (b).

>> syms x y; z=(x^2-2*x)*exp(-x^2-y^2-x*y);

[x0,y0]=meshgrid(-3:.2:3,-2:.2:2); z0=subs(z,{x,y},{x0,y0});

[fx,fy]=gradient(z0); fx=fx/0.2; fy=fy/0.2;

contour(x0,y0,z0,30); hold on; quiver(x0,y0,fx,fy)

The error surface is shown in Figure 3.9 where it can be seen that in most regions,
the errors are relatively small. In other areas, the errors are large. This means that
the spacing in the grid is too large to provide accurate gradient information. In
order to reduce the error, the step-size should be reduced.

−2

0

2

−2

0

2
0

0.02

0.04

0.06

0.08

(a) ∂z/∂x

−2

0

2

−2

0

2
0

0.02

0.04

0.06

0.08

0.1

(b) ∂z/∂y

FIGURE 3.9: Error surface of the gradient of function with two variables

72 Solving Applied Mathematical Problems with MATLAB

>> zx=diff(z,x); zx0=subs(zx,{x,y},{x0,y0});

zy=diff(z,y); zy0=subs(zy,{x,y},{x0,y0});

surf(x0,y0,abs(fx-zx0)); axis([-3 3 -2 2 0,0.08])

figure; surf(x0,y0,abs(fy-zy0)); axis([-3 3 -2 2 0,0.11])

If the spacing in grids is reduced both by half, the following statements can be
used and the new error surface can be calculated again as shown in Figure 3.10. It
can be observed that the error is also reduced compared to Figure 3.9.

−2

0

2

−2

0

2
0

0.02

0.04

0.06

0.08

(a) ∂z/∂x

−2

0

2

−2

0

2
0

0.02

0.04

0.06

0.08

0.1

(b) ∂z/∂y

FIGURE 3.10: The error surface with reduced spacing in mesh grids

>> [x1,y1]=meshgrid(-3:.1:3,-2:.1:2); z1=subs(z,{x,y},{x1,y1});

[fx,fy]=gradient(z1); fx=fx/0.1; fy=fy/0.1;

zx1=subs(zx,{x,y},{x1,y1}); zy1=subs(zy,{x,y},{x1,y1});

surf(x1,y1,abs(fx-zx1)); axis([-3 3 -2 2 0,0.08])

figure; surf(x1,y1,abs(fy-zy1)); axis([-3 3 -2 2 0,0.1])

3.4 Numerical Integration Problems

3.4.1 Numerical integration from given data using
trapezoidal method

Definite integral of the function with a single variable is defined as

I =

∫ b

a

f(x) dx. (3.23)

It is known that if the integrand f(x) is theoretically not integrable, even
with the powerful computer program, the analytical solutions to the problem
cannot be obtained. Thus numerical solutions to the problems should be
pursued instead. Numerical computation of an integral of single-variable
function is also known as quadrature. There are various numerical quadrature
algorithms to solve the integration problem. The widely used algorithms
include the trapezoidal method, the Simpson’s algorithm, the Romberg’s

Calculus Problems 73

algorithm, etc. The basic idea of the algorithms is to divide the whole interval
[a, b] into several sub-intervals [xi, xi+1], i = 1, 2, · · · , N , where x1 = a and
xN+1 = b. Then the integration problem can be converted to the summation
problem as follows:

∫ b

a

f(x) dx =

N∑

i=1

∫ xi+1

xi

f(x) dx =

N∑

i=1

∆fi. (3.24)

The easiest method is to use trapezoidal approximation to each sub-interval.
The numerical integration can be obtained by the use of trapz() function,
whose syntax is S=trapz(x,y), where x is a vector, and the number of rows

of matrix y equals the number of the elements in vector x. If the variable y is
given as a multi-column matrix, the numerical integration to several functions
can be evaluated simultaneously.

Example 3.29 Compute the definite integrals to the functions sin x, cos x, sin x/2
within the interval x ∈ (0, π) using the trapezoidal algorithm.

Solution The vector for horizontal axis is generated first and from it, the values
of different functions can be evaluated such that the numerical integration can be
obtained

>> x1=[0:pi/30:pi]’; y=[sin(x1) cos(x1) sin(x1/2)]; S=trapz(x1,y)

and the results are S = [1.99817196134365, 0, 1.99954305299081].

Since the step-size is selected as h = π/30 ≈ 0.1 which is considered as quite

large, there exist errors in the results. In Section 8.1.2, the algorithm will be used

with interpolation method to improve the quality of numerical integration results.

Example 3.30 Compute

∫ 3π/2

0

cos 15x dx with various step-sizes.

Solution Before solving the problem, the following statements can be used to
draw the curves of the integrand as shown in Figure 3.11. It can be seen that there
exists strong oscillation in the integrand.

>> x=[0:0.01:3*pi/2, 3*pi/2]; % the vector is assigned to ensure that
y=cos(15*x); plot(x,y) % the 3π/2 point is included

The theoretical solution to the problem is 1/15. For different step-sizes, h =
0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, the following statements can be used in
solving approximately the integrals. The relevant results are given in Table 3.1.

>> syms x, A=int(cos(15*x),0,3*pi/2)

h0=[0.1,0.01,0.001,0.0001,0.00001,0.000001]; v=[]; H=3*pi/2;

for h=h0,

x=[0:h:H,H]; y=cos(15*x); I=trapz(x,y); v=[v; h,I,1/15-I];

end

It can be seen that when the step-size h reduces, so does the integral accuracy.

For instance, if the step-size is selected as h = 10−6, 11 digits can be preserved in

74 Solving Applied Mathematical Problems with MATLAB

0 1 2 3 4 5
−1

−0.5

0

0.5

1

FIGURE 3.11: The plot of the integrand f(x) = cos 15x

TABLE 3.1: Step-size selection and computation results

step integral error time (s) step integral error time (s)

0.1 0.053891752 0.0127749 0.000 0.0001 0.066666654 1.25×10−8 0.008

0.01 0.0665417 0.000125 0.005 10−5 0.06666667 1.25×10−10 0.033

0.001 0.066665417 1.25×10−6 0.241 10−6 0.066666667 1.25×10−12 8.357

the result. Thus for this example, it takes as long as eight seconds for computation.

If the step-size is further reduced, the computational effort demanded will be too

high to be accepted.

3.4.2 Numerical integration of single variable functions

In traditional numerical analysis courses, several other numerical algorithms
are usually explored for single variable functions. For instance, the approxi-
mate solutions ∆fi to the numerical integration problem can be solved with
the Simpson’s algorithm within the [xi, xi+1] interval

∆fi ≈
hi
12

[
f(xi)+4f

(
xi+

hi
4

)
+2f

(
xi+

hi
2

)
+4f

(
xi+

3hi
4

)
+f(xi+hi)

]

(3.25)
where hi = xi+1 − xi. Based on the algorithm, a function quad() is provided
in MATLAB to implement the variable-step-size Simpson’s algorithm. The
syntax of the function is

[y,k]=quad(fun,a,b) % evaluate definite integral

[y,k]=quad(fun,a,b,ǫ) % ibid with user-specified error

where fun can be used to specify the integrand. It can either be an M-file
saved in fun.m file, or an anonymous function or an inline function. The
syntax of such a function should be y=fun(x). The arguments a and b
are the lower- and upper-bounds in the definite integral, respectively. The
argument ǫ is the user specified error tolerance, with a default value of 10−6.
The argument k returns the number of integrand function calls. With the
information provided, the function quad() can be used directly to solve the

Calculus Problems 75

numerical integration problem.

Example 3.31 For the integral erf(x) =
2√
π

∫ x

0

e−t
2

dt, which was shown not

integrable, compute the integral using numerical methods.

Solution Before finding the numerical integration of a given function, the inte-
grand should be specified first. There are three ways for specifying the integrand.

(i) M-function The first method is to express the integrand using a MATLAB
function, where the input argument is the variable x. Since many x values
need to be processed simultaneously, x vector can finally be used as the input
argument, and the computation within the function should be expressed in
dot operations. An example for expressing such a function is shown as

1 function y=c3ffun(x)

2 y=2/sqrt(pi)*exp(-x.^2);

The function can be saved as c3ffun.m file.

(ii) Inline function The integrand can also be described by the inline func-
tion, where the input argument x should be appended after the integrand
expression. The integrand in this example can be written as

>> f=inline(’2/sqrt(pi)*exp(-x.^2)’,’x’);

(iii) Anonymous function Anonymous function expression is an effective
way for describing the integrand. The format of the function is even more
straightforward than the inline expression. The integrand can be expressed
by the anonymous function as follows:

>> f=@(x)2/sqrt(pi)*exp(-x.^2);

It should be pointed out that the anonymous function expression is the fastest
among the three. The drawbacks of the representation are that it can only return one
argument, and function evaluations with intermediate computations are not allowed.
Thus the anonymous function is used throughout the book whenever possible. If
anonymous function cannot be used, the M-function description will be used.

When the integrand has been declared by any of the above three methods, the
quad() function can be used to solve the definite integral problem

>> f=@(x)2/sqrt(pi)*exp(-x.^2); % anonymous function expression
[I1,k1]=quad(f,0,1.5) % evaluate the integration
[I2,k2]=quad(@c3ffun,0,1.5) % Alternatively M-function can be used

and I1 = I2 = 0.96610518623173, with 25 function calls. In fact, the high-precision
solution to the same problem can be obtained with the use of Symbolic Math Toolbox

>> syms x, y0=vpa(int(2/sqrt(pi)*exp(-x^2),0,1.5),60)

where y0 = 0.96610514647531071393693372994990579499622494325746147328575.
Comparing the results obtained above, it can be found that the accuracy of

the numerical method is not very high. This is due to the default setting of the
error tolerance ǫ. One may reduce the value of ǫ to find solutions with higher
accuracy. However, over-demanding in expected accuracy may lead to the failure of
computation due to possible singularity problems

>> [y,k2]=quad(f,0,1.5,1e-20) % high-precision is expected but failed

76 Solving Applied Mathematical Problems with MATLAB

and a warning message is given, with an unreliable result y=0.96606, k2 =10009.

Warning: Maximum function count exceeded; singularity likely.

> In quad at 100

A new function quadl() is provided in MATLAB. The syntax of the func-
tion is exactly the same as the quad() function. The effective Lobatto algo-
rithm is implemented in the function which is much more accurate than the
quad() function.

Example 3.32 Consider the above example. Let us try to use the quadl()

function to solve numerically the same problem and observe how the precision can
be increased.

Solution Using quadl() function the following results can be obtained. Compared
with the analytical solution, it can be found that the accuracy may reach 10−16 level.
Although the pre-specified 10−20 error tolerance cannot be reached with double-
precision computation, the solution is accurate enough for most applications

>> [y,k3]=quadl(f,0,1.5,1e-20), e=abs(y-y0)

and it can be found that y = 0.96610514647531, e = 6.4×10−17 , k3 = 1098.

Example 3.33 Compute the integral of a piecewise function

I =

∫ 4

0

f(x) dx, where f(x) =





ex

2

, 0 6 x 6 2
80

4 − sin(16πx)
, 2 < x 6 4.

Solution The piecewise function is displayed in filled curve in Figure 3.12. It can
be seen that the curve is not continuous at x = 2 point.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

FIGURE 3.12: Filled plot of the integrand

>> x=[0:0.01:2, 2+eps:0.01:4,4];

y=exp(x.^2).*(x<=2)+80./(4-sin(16*pi*x)).*(x>2);

y(end)=0; x=[eps, x]; y=[0,y]; fill(x,y,’g’)

Calculus Problems 77

With the use of relationship expressions, the integrand can be described and the
functions quad() and quadl() can be used respectively to solve the original problem

>> f=@(x)exp(x.^2).*(x<=2)+80*(x>2)./(4-sin(16*pi*x));

I1=quad(f,0,4), I2=quadl(f,0,4)

and it is found that I1 = 57.76435412500863, I2 = 57.76445016946768.
It can be seen from the obtained two results that there is a significant difference

from the two methods. In fact, the original problem can also be divided into
∫ 2

0
+
∫ 4

2
.

The analytical solution function int() can then be used to find the analytical
solutions to the original problem

>> syms x; I=vpa(int(exp(x^2),0,2)+int(80/(4-sin(16*pi*x)),2,4))

with I = 57.764450125053010333315235385182.
Compared with the analytical solutions, the results obtained by the quad() func-

tion may have large errors. If one divides the interval into two sub-intervals, there
still exist errors. It can be concluded that quad() is not a good method to use. Let
us try the quadl() function. Furthermore, the control options can be assigned such
that even more accurate solutions can be obtained

>> f1=@(x)exp(x.^2); f2=@(x)80./(4-sin(16*pi*x));

I1=quad(f1,0,2)+quad(f2,2,4), I2=quadl(f1,0,2)+quadl(f2,2,4)

I3=quadl(f1,0,2,1e-11)+quadl(f2,2,4,1e-11) % with error tolerance

the results are I1 =57.764442889, I2=57.76445012538, and I3 =57.764450125053.

Example 3.34 Compute again the integral defined in Example 3.30.

Solution From the fixed-step algorithm demonstrated in Example 3.30, it can be
found that only when the step-size is selected to be a very small value, the high
accuracy can be achieved. However, with the help of variable-step algorithms, the
original problem can be solved within a much shorter time and with much higher
accuracy.

>> f=@(x)cos(15*x); tic, S=quadl(f,0,3*pi/2,1e-15), toc

It can be found that S = 0.06666666666667, and the elapsed time is 0.43 seconds,
much faster than the fixed-step method. If quad() function is used, with error
tolerance specified, the same warning and erroneous results are obtained.

Thus it can be concluded that the variable-step Lobatto algorithm of integrals

has much more advantages over the fixed-step method taught in numerical analysis

courses.

3.4.3 Numerical solutions to double integrals

Now consider the double integrals defined over a rectangular region

I =

∫ yM

ym

∫ xM

xm

f(x, y) dxdy (3.26)

and the function dblquad() can be used to solve this type of problem, with
the syntaxes

78 Solving Applied Mathematical Problems with MATLAB

y=dblquad(fun,xm,xM,ym,yM) % double integral

y=dblquad(fun,xm,xM,ym,yM,ǫ) % with given error tolerance

It should be noted that the number of calls to the integrand is not returned
in this function. The users may set a global counter to check it when necessary.

Example 3.35 Compute the double definite integral

J =

∫ 1

−1

∫ 2

−2

e−x
2/2 sin(x2 + y) dxdy.

Solution With the anonymous function to describe the integrand, the double
integral can be evaluated numerically from the following statements

>> f=@(x,y)exp(-x.^2/2).*sin(x.^2+y);

y=dblquad(f,-2,2,-1,1),

and the result is y = 1.57456866245358.

Unfortunately, the MATLAB function cannot be used in solving the double
integral problem defined over a non-rectangular region as

I =

∫ xM

xm

∫ yM(x)

ym(x)

f(x, y) dydx. (3.27)

A free toolbox, the Numerical Integration Toolbox (NIT) developed by
Howard Wilson and Bryce Gardner can be downloaded from MathTools’s
website1. The function gquad2dggen() in the toolbox can be used to solve
the numerical integration problem defined in (3.27). The syntaxes of the
function are

J=quad2dggen(fun,F lower,Fupper,xm,xM) % double integral

J=quad2dggen(fun,F lower,Fupper,xm,xM,ǫ) % integral with error control

where ǫ is the error tolerance. This value can control the error in computation.
However, if it is selected too small, significant amount of computational efforts
will be required. In the function, three other MATLAB functions, i.e., the
integrand and the inner upper- and lower-bound functions, are required to
solve the problem.

It should be noted that the order of the integration is made with respect to
x first then to y. If the user wants to integrate with respect to y first, the order
x, y in the function should be changed first, before integration can be carried
out. An illustrative example will be given to demonstrate this phenomenon.

Example 3.36 Compute the double definite integral

J =

∫ 1

−1/2

∫ √
1−x2/2

−
√

1−x2/2

e−x
2/2 sin(x2 + y) dydx.

1Download address: http://www.mathtools.net/files/net/nittbx.zip

http://www.mathtools.net/files/net/nittbx.zip

Calculus Problems 79

Solution One can first integrate with respect to y, then to x, and then the inner
bounds yM(x) and ym(x) can be defined. The following statements can then be used.
Please note that the order of integration should be swaped first

>> fh=@(x)sqrt(1-x.^2/2); fl=@(x)-sqrt(1-x.^2/2); % inner bounds
f=@(y,x)exp(-x.^2/2).*sin(x.^2+y); % order swaped
y=quad2dggen(f,fl,fh,-1/2,1,eps),

and the value of integration can be found as y = 0.41192954617630. Now consider
the analytical method

>> syms x y

i1=int(exp(-x^2/2)*sin(x^2+y),y,-sqrt(1-x^2/2),sqrt(1-x^2/2));

int(i1,x,-1/2,1) % warning message given

and the following warning is displayed, after some time

Warning: Explicit integral could not be found.

> In sym.int at 58

ans =

int(2*exp(-1/2*x^2)*sin(x^2)*sin(1/2*(4-2*x^2)^(1/2)),x = -1/2..1)

and it can be seen that no explicit solution exists for this problem. One can get
the high-precision numerical method with vpa(ans,70), the result can be written as
.4119295461762951196517599401760134672761827128252391627415959533602675.

It can be seen that the numerical solutions are very accurate.
If the original integral problem is changed to

J =

∫ 1

−1

∫ √
1−y2

−
√

1−y2
e−x

2/2 sin(x2 + y) dxdy

the analytical problem cannot be used to find the results, even with the help of
vpa() function. However, if the numerical method is used

>> fh=@(y)sqrt(1-y.^2); fl=@(y)-sqrt(1-y.^2); % inner bounds
f=@(x,y)exp(-x.^2/2).*sin(x.^2+y); % integrand
I=quad2dggen(f,fl,fh,-1,1,eps),

which yields I = 0.53686038269795, which is different. For numerical methods,

the numerical integration results will not be affected by whether the integrand is

theoretically integrable or not.

3.4.4 Numerical solutions to triple integrals

The triple definite integral over the 3D rectangular region is given by

I =

∫ xM

xm

∫ yM

ym

∫ zM

zm

f(x, y, z) dzdydx; (3.28)

the problem can be solved with the triplequad() function whose syntax is
I=triplequad(fun,xm,xM,ym,yM,zm,zM,ǫ,@quadl)

where fun describes the integrand. The argument ǫ can still be used in
controlling the accuracy of the integration, with a default value of 10−6.
In order to increase the accuracy, smaller error tolerance can be assigned.

80 Solving Applied Mathematical Problems with MATLAB

The extra function @quadl can be used to implement the integration for
single variable functions. It can also be assigned to @quad or any other user
functions.

Example 3.37 Compute the triple integral in Example 3.16
∫ 2

0

∫ π

0

∫ π

0

4xze−x
2y−z2dzdydx.

Solution The anonymous function is used to specify the integrand. Thus the
following statements can be used to compute the triple integral

>> f=@(x,y,z)4*x.*z.*exp(-x.*x.*y-z.*z);

I=triplequad(f, 0,2, 0,pi, 0,pi, 1e-10,@quadl)

and I = 3.108079402072966.

NIT Toolbox can be used to solve multiple integral problems with other
hyper-rectangular regions. For instance, the quadndg() function can be used
for these problems. However, if the integration regions are not hyper rectan-
gular regions, there are no existing implemented MATLAB functions available
for numerical triple integrals.

3.5 Path Integrals and Line Integrals

Surprisingly, path integrals and line integrals cannot be solved by the
existing MATLAB or Maple functions. In this section, the concepts and
integration method for path and line integrals are summarized first and then
solutions to these problems will be demonstrated through examples.

3.5.1 Path integrals

Path integrals are originated from the evaluation of the total mass of a
spatial wire with unevenly distributed density. Assume that the density of a
path l is f(x, y, z). Then the total mass of the wire can be evaluated from the
following equation

I1 =

∫

l

f(x, y, z) ds (3.29)

where ds is the arc length at a certain point. Thus this kind of integral is also
known as the integral with respect to arc. If f(x, y, z) ≡ 1, i.e., the density is
evenly distributed and equals unity, the total length of the wire is calculated.

If the variables x, y and z are given respectively by parametric equations
x = x(t), y = y(t), z = z(t), they can be substituted into the f(·) function,

Calculus Problems 81

and the differentiation of the arc can be written as

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt, or simply ds =
√
x2
t + y2

t + z2
t dt.

(3.30)
Then, the path integral can be converted into an ordinary integral with respect
to t

I =

∫ tM

tm

f [x(t), y(t), z(t)]
√
x2
t + y2

t + z2
t dt. (3.31)

For the integrand with two variables, f(x, y), it can also be converted into
ordinary integrals. Therefore, the solutions to the path integral problem can
be solved with MATLAB using the previously described procedures.

Example 3.38 Compute

∫

l

z2

x2 + y2
ds, where the path l is defined as x =

a cos t, y = a sin t, z = at, with 0 6 t 6 2π and a > 0.

Solution The following statements can be used for this path integral problem:

>> syms t; syms a positive; x=a*cos(t); y=a*sin(t); z=a*t;

dx=diff(x,t); dy=diff(y,t); dz=diff(z,t);

I=int(z^2/(x^2+y^2)*sqrt(dx^2+dy^2+dz^2),t,0,2*pi)

and the result is I =
8
√

2

3
π3a.

Example 3.39 Compute

∫

l

(x2 + y2) ds where path l is defined as the positive

direction curve encircled by the paths y = x and y = x2.

Solution The following statements can be used to draw the two paths shown in
Figure 3.13.

>> x=0:.001:1.2; y1=x; y2=x.^2; plot(x,y1,x,y2)

It can be seen that the original integration problem can be divided into two sub-
integration problems. Thus the following statements can be used to add the two
sub-integrations up to get the final solutions

>> syms x; y1=x; y2=x^2; I1=int((x^2+y2^2)*sqrt(1+diff(y2,x)^2),x,0,1);

I2=int((x^2+y1^2)*sqrt(1+diff(y1,x)^2),x,1,0); I=I2+I1

and I = −2

3

√
2 +

349

768

√
5 +

7

512
ln
(
−2 +

√
5
)
.

3.5.2 Line integrals

Line integral problems are originated from physics, where the total work
is done by the force ~f(x, y, z) along a spatial curve l. This kind of integral
problem can be expressed as

I2 =

∫

l

~f(x, y, z) · d~s (3.32)

82 Solving Applied Mathematical Problems with MATLAB

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

FIGURE 3.13: Illustration of the integration paths

where ~f (x, y, z) = [P (x, y, z), Q(x, y, z), R(x, y, z)] is a row vector. The differ-
entiation of the line d~s is a column vector. If the line can be described by a
parametric equation of t such as x(t), y(t), z(t), with t ∈ (a, b), the vector d~s
can then be written as

d~s =

[
dx

dt
,

dy

dt
,

dz

dt

]T
dt. (3.33)

The dot product of two vectors can be carried out directly and the line
integrals can be re-defined as an ordinary integral as follows:

I2 =

∫ b

a

[P (x, y, z), Q(x, y, z), R(x, y, z)]

[
dx

dt
,

dy

dt
,

dz

dt

]T
dt (3.34)

which can be solved by using MATLAB.

Example 3.40 Compute the integral

∫

l

x+ y

x2 + y2
dx− x− y

x2 + y2
dy, where the line

l is defined as the positive circle given by x2 + y2 = a2, a > 0.

Solution If one wants to evaluate the line integral, the circle can be interpreted
as the parametric equations x = a cos(t), y = a sin(t) for 0 6 t 6 2π. Thus
the following statements can be used to calculate the line integral, with the result
I = 2π.

>> syms t; syms a positive; x=a*cos(t); y=a*sin(t);

F=[(x+y)/(x^2+y^2),-(x-y)/(x^2+y^2)]; ds=[diff(x,t);diff(y,t)];

I=int(F*ds,t,2*pi,0) % positive circle, clockwise, t from 2π to 0

Example 3.41 Compute the line integral

∫

l

(x2 − 2xy) dx+ (y2 − 2xy) dy, where

the line l is defined as the parabolic curve y = x2 (−1 6 x 6 1).

Solution In fact, the equations given are already the parametric equations of x.
The derivative of x with respective to x is 1. The following statements can be used
to solve the line integral problem, with the result I = −14/15.

Calculus Problems 83

>> syms x; y=x^2; F=[x^2-2*x*y,y^2-2*x*y]; ds=[1; diff(y,x)];

I=int(F*ds,x,-1,1)

3.6 Surface Integrals

Two types of surface integrals are considered in this section, the scalar type
and the vector type. The definitions and solutions to the problems will be
summarized first followed by the detailed solution procedures with MATLAB
script-based examples.

3.6.1 Scalar surface integrals

The scalar-type surface integrals are defined as

I =

∫∫

S

φ(x, y, z) dS (3.35)

where dS is the differentiated area. Thus this kind of integral is also referred
to as the surface integrals with respect to area. If φ(x, y, z) ≡ 1, the area of
the surface can be computed.

Let the surface S be defined by z = f(x, y). The original surface integral
can be converted into a double integral over the x-y plane, such that

I =

∫∫

σxy

φ[x, y, f(x, y)]
√

1 + f2
x + f2

y dxdy (3.36)

where σxy is the integration region, which is an ordinary double integral
problem.

Example 3.42 Compute

∫∫

S

xyzdS, where the integration surface S is defined

as the region enclosed by the four planes x = 0, y = 0, z = 0, and x + y + z = a,
where a > 0.

Solution Denote the four planes by S1, S2, S3, and S4. The original surface integral

can be calculated using

∫∫

S

=

∫∫

S1

+

∫∫

S2

+

∫∫

S3

+

∫∫

S4

. Considering the planes

S1, S2, S3, since the integrands are all 0, only the integral on the S4 should be
considered. The plane S4 can mathematically be described as z = a− x− y. Then,
the following statements can be used to evaluate the surface integral

>> syms x y; syms a positive; z=a-x-y;

I=int(int(x*y*z*sqrt(1+diff(z,x)^2+diff(z,y)^2),y,0,a-x),x,0,a)

which gives I =
√

3a5/120.

84 Solving Applied Mathematical Problems with MATLAB

If the parametric equations for the surface are given by

x = x(u, v), y = y(u, v), z = z(u, v), (3.37)

the surface integral can then be obtained using the following formula

I =

∫∫

Σ

φ[x(u, v), y(u, v), z(u, v)]
√
EG− F 2 dudv (3.38)

where

E = x2
u + y2

u + z2
u, F = xuxv + yuyv + zuzv, G = x2

v + y2
v + z2

v. (3.39)

Example 3.43 Compute the surface integral

∫∫
(x2y+zy2) dS, where the surface

S is defined as the surfaces composed of x = u cos v, y = u sin v, z = v, 0 6 u 6

a, 0 6 v 6 2π.

Solution The following statements can be used to calculate the integrals

>> syms u v; syms a positive;

x=u*cos(v); y=u*sin(v); z=v; f=x^2*y+z*y^2;

E=simple(diff(x,u)^2+diff(y,u)^2+diff(z,u)^2);

F=diff(x,u)*diff(x,v)+diff(y,u)*diff(y,v)+diff(z,u)*diff(z,v);

G=simple(diff(x,v)^2+diff(y,v)^2+diff(z,v)^2);

I=int(int(f*sqrt(E*G-F^2),u,0,a),v,0,2*pi)

and the result is I =
1

8
π2
[
2a
(
a2 + 1

)3/2 − a
√
a2 + 1 − arcsinh a

]
.

3.6.2 Vector surface integrals

The second category of surface integral is also referred to as the surface
integrals in vector fields. Suppose the integrand is given by a row vector ~Γ =
[P,Q,R], while d~V is given by a column vector d~V = [dydz, dxdz, dxdy]T,
the mathematical description to the problem is

I =

∫∫

S+

~Γ · d~V =

∫∫

S+

P (x, y, z) dydz +Q(x, y, z) dxdz +R(x, y, z) dxdy,

(3.40)
where the positive surface S+ is defined with z = f(x, y). The surface integral
problem can then be converted into the scalar surface integral problem

I =

∫∫

S+

[P (x, y, z) cosα+Q(x, y, z) cosβ +R(x, y, z) cos γ] dS (3.41)

where z is replaced by f(x, y), and

cosα =
−fx√

1 + f2
x + f2

y

, cosβ =
−fy√

1 + f2
x + f2

y

, cos γ =
1√

1 + f2
x + f2

y

.

(3.42)

Calculus Problems 85

Thus, the
√

1 + f2
x + f2

y term may cancel the relevant term in (3.36), and

the surface integral can be written as

I =

∫∫

σxy

−Pfx dxdy −Qfy dxdz +R dydz. (3.43)

If the surface is described by the parametric equations in (3.37), the follow-
ing equations can be obtained

cosα=
A√

A2+B2+C2
, cosβ=

B√
A2+B2+C2

, cos γ=
C√

A2+B2+C2

(3.44)
where A = yuzv − zuyv, B = zuxv − xuzv, C = xuyv − yuxv. Then from the
converted scalar surface integral (3.41), it can be found that the denominator

in (3.44) cancels the
√
EG− F 2 term. Thus the vector surface integral can

be simplified as the following standard double integral

I =

∫ vM

vm

∫ uM(v)

um(v)

[AP (u, v) +BQ(u, v) + CR(u, v)] dudv. (3.45)

Example 3.44 Compute the surface integral

∫∫
x3dydz, where the surface S is

defined as the positive side of the ellipsoid surface
x2

a2
+
y2

b2
+
z2

c2
= 1.

Solution The parametric equations can be introduced such that x = a sin u cos v,

y = b sin u sin v, z = c cosu, and
(
0 6 u 6

π

2

)
, (0 6 v 6 2π). The following state-

ments can be used to compute the surface integral, with the result I = 2πa3cb/5.

>> syms u v; syms a b c positive;

x=a*sin(u)*cos(v); y=b*sin(u)*sin(v); z=c*cos(u);

A=diff(y,u)*diff(z,v)-diff(z,u)*diff(y,v);

I=int(int(x^3*A,u,0,pi/2),v,0,2*pi)

Exercises

1. Compute the following limit problems:

(i) lim
x→∞

(3x + 9x)
1
x
, (ii) lim

x→∞
(x+ 2)x+2(x+ 3)x+3

(x+ 5)2x+5

2. Compute the following double limit problems:

(i) lim
x→−1
y→2

x2y + xy3

(x+ y)3
, (ii) lim

x→0
y→0

xy√
xy + 1 − 1

, (iii) lim
x→0
y→0

1 − cos
(
x2 + y2

)
(
x2 + y2

)
ex

2+y2

3. Compute the derivatives of the following functions:

86 Solving Applied Mathematical Problems with MATLAB

(i) y(x) =

√
x sin x

√
1 − ex, (ii) y(t) =

√
(x− 1)(x− 2)

(x− 3)(x− 4)

(iii) atan
y

x
= ln(x2 + y2), (iv) y(x) = − 1

na
ln
xn + a

xn
, n > 0

4. Compute the 10th order derivative of the function y =
1 −√

cos ax

x (1 − cos
√
ax)

.

5. In calculus courses, when the limit of a ratio is required, where both the
numerator and the denominator tend to 0 or ∞, simultaneously, L’Hôpital’s
law can be used, i.e., to evaluate the limits of derivatives of numerator and

denominator. Verify the lim
x→0

ln(1 + x) ln(1 − x) − ln(1 − x2)

x4
by the consecutive

use of L’Hôpital’s law, and compare with the results directly obtained.

6. For parametric equation

{
x = ln cos t
y = cos t− t sin t

, compute
dy

dx
and

d2y

dx2

∣∣∣∣
t=π/3

.

7. Assume that u = cos−1

√
x

y
. Verify that

∂2u

∂x∂y
=

∂2u

∂y∂x
.

8. For a given function

{
xu+ yv = 0

yu+ xv = 1
, compute

∂2u

∂x∂y
.

9. Assume that f(x, y) =

∫ xy

0

e−t
2

dt. Compute
x

y

∂2f

∂x2
− 2

∂2f

∂x∂y
+
∂2f

∂y2
.

10. Given a matrix f (x, y, z) =

[
3x+ eyz

x3 + y2 sin z

]
, compute its Jacobian matrix.

11. Compute the following infinite integrals:

(i) I(x) = −
∫

3x2 + a

x2 (x2 + a)2
dx, (ii) I(x) =

∫ √
x(x+ 1)√

x+
√

1 + x
dx

(iii) I(x) =

∫
xeax cos bx dx, (iv) I(t) =

∫
eax sin bx sin cx dx

12. Compute the definite integrals and infinite integrals

(i) I =

∫ ∞

0

cosx√
x

dx, (ii) I =

∫ 1

0

1 + x2

1 + x4
dx

13. For the function f(x) = e−5x sin(3x+ π/3), compute

∫ t

0

f(x)f(t+ x) dx.

14. For different values of a, compute the integral I =

∫ ∞

0

cos ax

1 + x2
dx.

15. Show that for any function f(t),

∫ b

a

f(t) dt = −
∫ a

b

f(t) dt.

16. Solve the following multiple integral problems:

(i)

∫ 2

0

∫ 1

0

√
4 − x2 − y2 dydx, (ii)

∫ 3

0

∫ 3−x

0

∫ 3−x−y

0

xyz dzdydx

(iii)

∫ 2

0

∫ √
4−x2

0

∫ √
4−x2−y2

0

z(x2 + y2) dzdydx

(iv)

∫ 7/10

0

∫ 4/5

0

∫ 9/10

0

∫ 1

0

∫ 11/10

0

√
6 − x2 − y2 − z2 − w2 − u2 dwdudzdydx

17. Compute the Fourier series expansions for the following functions, and compare

Calculus Problems 87

graphically the approximation and exact results, using finite numbers of terms:

(i) f(x) = (π − |x|) sin x, − π 6 x < π, (ii) f(x) = e|x|, − π 6 x < π,

(iii) f(x) =

{
2x/l, 0 < x < l/2

2(l − x)/l, l/2 < x < l
, where l = π.

18. Obtain the Taylor series expansions for the following functions, and compare
graphically the approximation and exact results with finite numbers of terms:

(i)

∫ x

0

sin t

t
dt, (ii) ln

(
1 + x

1 − x

)
, (iii) ln

(
x+

√
1 + x2

)
, (iv) (1+4.2x2)0.2,

(v) e−5x sin(3x+ π/3) expansions about x = 0 and x = a points respectively.

(vi) f(x, y) =
1 − cos

(
x2 + y2

)
(
x2 + y2) ex

2+y2
expansion about x = 1, y = 0 point.

19. Compute the first n term finite sums and infinite sums.

(i)
1

1 × 6
+

1

6 × 11
+ · · · + 1

(5n− 4)(5n+ 1)
+ · · ·

(ii)

(
1

2
+

1

3

)
+

(
1

22
+

1

32

)
+ · · · +

(
1

2n
+

1

3n

)
+ · · ·

20. Compute the following limits:

(i) lim
n→∞

[
1

22 − 1
+

1

42 − 1
+

1

62 − 1
+ · · · + 1

(2n)2 − 1

]
,

(ii) lim
n→∞

n

(
1

n2 + π
+

1

n2 + 2π
+

1

n2 + 3π
+ · · · + 1

n2 + nπ

)

21. Show that cos θ + cos 2θ + · · · + cosnθ =
sin(nθ/2) cos[(n+ 1)θ/2]

sin θ/2
.

22. For the following tabulated measured data, evaluate numerically its derivatives
and definite integral.

xi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

yi 0 2.2077 3.2058 3.4435 3.241 2.8164 2.311 1.8101 1.3602 0.9817 0.6791 0.4473 0.2768

23. Evaluate the definite integral

∫ π

0

(π−t) 1
4 f(t)dt, f(t)=e−t sin(3t+1) numerically.

Also evaluate the integration function F (t) =

∫ t

0

(t − τ)
1
4 f(τ) dτ numerically

for different sample points of t, such that t = 0.1, 0.2, · · · , π, and draw the F (t)
plot.

24. Evaluate numerically the following multiple integral problems. It should be
noted that there are no analytical solutions to these problems. Therefore, the
obtained numerical results should be double-checked by varying step sizes or
default accuracies.

(i)

∫ 2

0

∫ e−x2/2

0

√
4 − x2 − y2 e−x

2−y2 dydx

(ii)

∫ 2

0

∫ √
4−x2

0

∫ √
4−x2−y2

0

z(x2 + y2) e−x
2−y2−z2−xz dzdydx

88 Solving Applied Mathematical Problems with MATLAB

(iii)

∫ 1

0

∫ 2

0

∫ xy

0

∫ u

0

e6−x2−y2−z2−u2

dudzdydx

25. Compute the gradient of the measured data for a function of two variables.
Assume that the data were generated by the function f(x, y) = 4 − x2 − y2.
Generate the data and verify the results of gradient with theoretical results.

0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 4 3.96 3.84 3.64 3.36 3 2.56 2.04 1.44 0.76 0

0.2 3.96 3.92 3.8 3.6 3.32 2.96 2.52 2 1.4 0.72 −0.04

0.4 3.84 3.8 3.68 3.48 3.2 2.84 2.4 1.88 1.28 0.6 −0.16

0.6 3.64 3.6 3.48 3.28 3 2.64 2.2 1.68 1.08 0.4 −0.36

0.8 3.36 3.32 3.2 3 2.72 2.36 1.92 1.4 0.8 0.12 −0.64

1 3 2.96 2.84 2.64 2.36 2 1.56 1.04 0.44 −0.24 −1

1.2 2.56 2.52 2.4 2.2 1.92 1.56 1.12 0.6 0 −0.68 −1.44

1.4 2.04 2 1.88 1.68 1.4 1.04 0.6 0.08 −0.52 −1.2 −1.96

1.6 1.44 1.4 1.28 1.08 0.8 0.44 0 −0.52 −1.12 −1.8 −2.56

1.8 0.76 0.72 0.6 0.4 0.12 −0.24 −0.68 −1.2 −1.8 −2.48 −3.24

2 0 −0.04 −0.16 −0.36 −0.64 −1 −1.44 −1.96 −2.56 −3.24 −4

26. Compute the following path and line integrals:

(i)

∫

l

(x2 + y2) ds, l: x = a(cos t+ t sin t), y = a(sin t− t cos t), for 0 6 t 6 2π

(ii)

∫

l

(yx3 + ey) dx+ (xy3 + xey − 2y) dy, where l is given by the upper-semi-

ellipsis of a2x2 + b2y2 = c2.

(iii)

∫

l

y dx − x dy + (x2 + y2) dz, l: x = et, y = e−t, z = at, 0 6 t 6 1, for

a > 0.

(iv)

∫

l

(ex sin y − my)dx + (ex cos y − m) dy, where l is defined as the closed

path from (a, 0) to (0, 0), then with the upper-semi-circle x2 + y2 = ax.

27. Compute the surface integrals, where S is the bottom side of the semi-sphere

z=
√
R2−x2−y2.

(i)

∫

S

xyz3 ds, (ii)

∫

S

(x+ yz3) dxdy.

References and Bibliography

[1] Garbow B S, Boyle J M, Dongarra J J, et al. Matrix eigensystem routines
— EISPACK guide extension, Lecture notes in computer sciences, volume 51.
New York: Springer-Verlag, 1977

[2] Smith B T, Boyle J M, Dongarra J J, et al. Matrix eigensystem routines –
EISPACK guide, Lecture notes in computer sciences, volume 6. New York:
Springer-Verlag, second edition, 1976

[3] Dongarra J J, Bunsh J R, Moler C B. LINPACK user’s guide. Philadelphia:
Society of Industrial and Applied Mathematics, 1979

[4] Press W H, Flannery B P, Teukolsky S A, et al. Numerical recipes, the art
of scientific computing. Cambridge: Cambridge University Press, 1986. Free
textbook at http://www.nrbook.com/a/bookcpdf.php

[5] Lamport L. LATEX: a document preparation system — user’s guide and
reference manual. Reading MA: Addision-Wesley Publishing Company, second
edition, 1994

[6] Xue D. Analysis and computer aided design of nonlinear systems with
Gaussian inputs. D.Phil. thesis, Sussex University, U.K., 1992

[7] Strang G. Calculus. Free textbook at http://ocw.mit.edu/ans7870/

resources/Strang/strangtext.htm: Wellesley-Cambridge Press, 1991

[8] Dawkins P. Calculus I, II, & III. http://tutorial.math.lamar.edu/pdf/

CalcII/CalcI Complete.pdf; http://tutorial.math.lamar.edu/pdf/Calc

II/CalcII Complete.pdf; http://tutorial.math.lamar.edu/pdf/CalcIII/
CalcIII Complete.pdf, 2007

[9] Hefferon J. Linear algebra. Saint Michael’s College, USA: Open source
textbook at http://joshua.smcvt.edu/linearalgebra/, 2006

[10] Meyer C D. Matrix analysis and applied linear algebra. Philadelphia:
Society for Industrial and Applied Mathematics. Free at http://www.matrix

analysis.com/DownloadChapters.html, 2001

[11] Dawkins P. Linear algebra. http://tutorial.math.lamar.edu/pdf/LinAlg

/LinAlg Complete.pdf, 2007

[12] Moler C B, Van Loan C F. Nineteen dubious ways to compute the exponential
of a matrix. SIAM Review, 1979, 20:801–836

[13] Huang L. Linear algebra in systems and control theory. Beijing: Science Press,
1984 (in Chinese)

[14] Mauch S. Advanced mathematical methods for scientists and engineers. Open
source textbook at http://www.its.caltech.edu/~sean/ applied math.pdf,
2004

415

http://www.nrbook.com/a/bookcpdf.php
http://tutorial.math.lamar.edu/pdf/CalcIII/CalcIII_Complete.pdf
http://tutorial.math.lamar.edu/pdf/CalcIII/CalcIII_Complete.pdf
http://joshua.smcvt.edu/linearalgebra/
http://www.matrixanalysis.com/DownloadChapters.html
http://www.matrixanalysis.com/DownloadChapters.html
http://tutorial.math.lamar.edu/pdf/LinAlg/LinAlg_Complete.pdf
http://tutorial.math.lamar.edu/pdf/LinAlg/LinAlg_Complete.pdf
http://www.its.caltech.edu/%CB%9Csean/applied_math.pdf
http://ocw.mit.edu/ans7870/resources/Strang/strangtext.htm
http://ocw.mit.edu/ans7870/resources/Strang/strangtext.htm
http://tutorial.math.lamar.edu/pdf/CalcII/CalcI_Complete.pdf
http://tutorial.math.lamar.edu/pdf/CalcII/CalcI_Complete.pdf
http://tutorial.math.lamar.edu/pdf/CalcII/CalcII_Complete.pdf
http://tutorial.math.lamar.edu/pdf/CalcII/CalcII_Complete.pdf

416 Solving Applied Mathematical Problems with MATLAB

[15] Boyd S, Vandenberghe L. Convex optimization. Cambridge University
Press, 2004. Free textbook at http://www.stanford.edu/~boyd/cvxbook/

bv cvxbook.pdf

[16] Boyd S, Ghaoui L El, Feron E, et al. Linear matrix inequalities in
systems and control theory. Philadelphia: SIAM books, Volume 15 of Stud-
ies in Applied Mathematics. Free textbook at http://www.stanford.edu/

~boyd/lmibook/lmibook.pdf, 1994

[17] Mittelmann H D. Decision tree for optimization software. http://plato.

asu.edu/guide.html, 2007

[18] Nelder J A, Mead R. A simplex method for function minimization. Computer
Journal, 1965, 7:308–313

[19] Willems J C. Least squares stationary optimal control and the algebraic
Riccati equation. IEEE Transactions on Automatic Control, 1971, 16(6):621–
634

[20] The MathWorks Inc. Robust control toolbox user’s manual, 2007

[21] Löfberg J. YALMIP: a toolbox for modeling and optimization in MATLAB.
Proceedings of IEEE International Symposium on Computer Aided Control
Systems Design. Taipei, 2004, 284–289

[22] Chipperfield A, Fleming P. Genetic algorithm toolbox user’s guide. Depart-
ment of Automatic Control and Systems Engineering, University of Sheffield,
1994

[23] Ackley D H. A connectionist machine for genetic hillclimbing. Boston, USA:
Kluwer Academic Publishers, 1987

[24] Goldberg D E. Genetic algorithms in search, optimzation and machine
learning. Reading, MA: Addison-Wesley, 1989

[25] Henrion D. A review of the global optimization toolbox for Maple, 2006.
http://www.laas.fr/~henrion/Papers/mapleglobopt.pdf

[26] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes
in C, second edition. Cambridge University Press. Free textbook at
http://www.nrbook.com/a/bookcpdf.php, 1992

[27] Dawkins P. Differential equations. http://tutorial.math.lamar.edu/pdf/DE
/DE Complete.pdf, 2007

[28] Fehlberg E. Low-order classical Runge-Kutta formulas with step size control
and their application to some heat transfer problems. Technical Report 315,
NASA, 1969

[29] Forsythe G E, Malcolm M A, Moler C B. Computer methods for mathematical
computations. Englewood Cliffs: Prentice-Hall, 1977

[30] Bogdanov A. Optimal control of a double inverted pendulum on a cart.
Technical Report CSE-04-006, Department of Computer Science & Electrical
Engineering, OGI School of Science & Engineering, OHSU, 2004

[31] Shampine L F, Thompson S. Solving DDEs in MATLAB. Applied Numerical
Mathematics, 2001, 37(4):441–458

[32] Shampine L F, Kierzenka J, Reichelt M W. Solving boundary value problems
for ordinary differential equation problems in MATLAB with bvp4c, 2000

http://www.stanford.edu/%CB%9Cboyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/%CB%9Cboyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/%CB%9Cboyd/lmibook/lmibook.pdf
http://www.stanford.edu/%CB%9Cboyd/lmibook/lmibook.pdf
http://www.laas.fr/%CB%9Chenrion/Papers/mapleglobopt.pdf
http://www.nrbook.com/a/bookcpdf.php
http://plato.asu.edu/guide.html
http://plato.asu.edu/guide.html
http://tutorial.math.lamar.edu/pdf/DE/DE_Complete.pdf
http://tutorial.math.lamar.edu/pdf/DE/DE_Complete.pdf

References and Bibliography 417

[33] The MathWorks Inc. SimuLAB, a program for simulating dynamic systems,
user’s guide, 1990

[34] The MathWorks Inc. Simulink user’s manual, 2007

[35] Xue D, Chen Y Q. MATLAB/Simulink based system simulation techniques.
Beijing: Tsinghua University Press, 2002 (in Chinese)

[36] Moler C B. Numerical computing with MATLAB. MathWorks Inc, 2004

[37] Wikipedia. List of numerical analysis topics. http://en.wikipedia.org/

wiki/List of numerical analysis topics, 2008

[38] Lancaster L, Salkauskas K. Curve and surface fitting: an introduction.
London: Academic Press, 1986

[39] Xue D. Model reduction techniques and applications. Shenyang, China:
Lecture Notes of Northeastern University, 1996

[40] Bosley M J, Lees F P. A survey of transfer function derivations from higher-
order state-variable models. Automatica, 1972, 8:765–775

[41] The MathWorks Inc. Signal processing user’s guide, 2007

[42] Grinstead C M, Snell J L. Grinstead and Snell’s introduction to prob-
ability. The CHANCE Project: Open source textbook at http://math.

dartmouth.edu/~prob/prob/prob.pdf, 2006

[43] StatSoft Inc. Electronic statistics textbook. Tulsa, OK: StatSoft. Electronics
textbook at http://www.statsoft.com/textbook/stathome.html, 2007

[44] Landau D P, Binder K. A guide to Monte Carlo simulations in statistical
physics. Cambridge University Press, 2000

[45] Conover W J. Practical nonparametric statistics. New York: Wiley, 1980

[46] Lu X. Applied statistics. Beijing: Tsinghua University Press, 1999 (in
Chinese)

[47] Cody R P, Smith J K. Applied statistics and the SAS programming language.
Prentice Hall, fifth edition, 2006

[48] The MathWorks Inc. Statistics toolbox user’s manual, 2007

[49] Weisstein E W. Goldbach conjecture. From MathWorld — A Wolfram Web
Resource. http://mathworld.wolfram.com/GoldbachConjecture.html

[50] Zadeh L A. Fuzzy sets. Information and Control, 1965, 8:338–353

[51] Hagan M T, Demuth H B, Beale M H. Neural network design. PWS Publishing
Company, 1995

[52] Houck C R, Joines J A, Kay M G. A genetic algorithm for function
optimization: a MATLAB implementation, 1995

[53] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE
International Conference on Neural Networks. Perth, Australia, 1995, 1942–
1948

[54] Birge B K. PSOt, a particle swarm optimization toolbox for MATLAB.
Proceedings of the 2003 IEEE Swarm Intelligence Symposium. Indianapolis,
2003, 182–186

http://math.dartmouth.edu/%CB%9Cprob/prob/prob.pdf
http://math.dartmouth.edu/%CB%9Cprob/prob/prob.pdf
http://www.statsoft.com/textbook/stathome.html
http://mathworld.wolfram.com/GoldbachConjecture.html
http://en.wikipedia.org/wiki/List_of_numerical_analysis_topics
http://en.wikipedia.org/wiki/List_of_numerical_analysis_topics

418 Solving Applied Mathematical Problems with MATLAB

[55] Trelea I C. The particle swarm optimization algorithm: convergence analysis
and parameter selection. Information Processing Letters, 2003, 85(6):317–325

[56] Clerc M, Kennedy J. The particle swarm: explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation, 2002, 6(1):58–73

[57] Pawlak Z. Rough sets — theoretical aspects of reasoning about data. Boston,
USA: Kluwer Academic Publishers, 1991

[58] Zhang X F. Research and program development of rough set data analysis
system. Master’s thesis, Northeastern University, 2004 (in Chinese)

[59] Hilfer R. Applications of fractional calculus in physics. Singapore: World
Scientific, 2000

[60] Podlubny I. Fractional differential equations. San Diego: Academic Press,
1999

[61] Petráš I, Podlubny I, O’Leary P. Analogue realization of fractional order
controllers. Fakulta BERG, TU Košice, 2002

[62] Oustaloup A, Levron F, Nanot F, et al. Frequency band complex non integer
differentiator: characterization and synthesis. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 2000, 47(1):25–40

[63] Xue D, Zhao C N, Chen Y Q. A modified approximation method of
fractional order system. Proceedings of IEEE Conference on Mechatronics
and Automation. Luoyang, China, 2006, 1043–1048

[64] Podlubny I. The Laplace transform method for linear differential equations of
the fractional order. Proceedings of the 9th International BERG Conference.
Kosice, Slovak Republic (in Slovak), 1997, 119–119

[65] Podlubny I. Fractional-order systems and PIλDµ-controllers. IEEE Transac-
tions on Automatic Control, 1999, 44(1):208–214

[66] The MathWorks Inc. Fuzzy logic toolbox user’s manual, 2007

	Cover
	Title Page
	Copyright
	Contents
	Preface
	1 Computer Mathematics Languages — An Overview
	1.1 Computer Solutions to Mathematics Problems
	1.1.1 Why should we study computermathematics language?
	1.1.2 Analytical solutions versus numerical solutions
	1.1.3 Mathematics software packages: an overview

	1.2 Summary of Computer Mathematics Languages
	1.2.1 A brief historic review of MATLAB
	1.2.2 Three widely used computer mathematics languages
	1.2.3 Introduction to free scientific open-source softwares

	1.3 Outline of the Book
	Exercises

	2 Fundamentals of MATLAB Programming
	2.1 Fundamentals of MATLAB Programming
	2.1.1 Variables and constants in MATLAB
	2.1.2 Data structure
	2.1.3 Basic structure of MATLAB
	2.1.4 Colon expressions and sub-matrices extraction

	2.2 Fundamental Mathematical Calculations
	2.2.1 Algebraic operations of matrices
	2.2.2 Logic operations of matrices
	2.2.3 Relationship operations of matrices
	2.2.4 Simplifications and presentations of analytical results
	2.2.5 Basic number theory computations

	2.3 Flow Control Structures of MATLAB Language
	2.3.1 Loop control structures
	2.3.2 Conditional control structures
	2.3.3 Switch structure
	2.3.4 Trial structure

	2.4 Writing and Debugging MATLAB Functions
	2.4.1 Basic structure of MATLAB functions
	2.4.2 Programming of functions with variable inputs/outputs
	2.4.3 Inline functions and anonymous functions

	2.5 Two-Dimensional Graphics
	2.5.1 Basic statements of two-dimensional plotting
	2.5.2 Other two-dimensional plotting statements
	2.5.3 Implicit function plotting and applications
	2.5.4 Graphics decorations

	2.6 Three-Dimensional Graphics
	2.6.1 Plotting of three-dimensional curves
	2.6.2 Plotting of three-dimensional surfaces
	2.6.3 Viewpoint setting in 3D graphs

	Exercises

	3 Calculus Problems
	3.1 Analytical Solutions to Calculus Problems
	3.1.1 Analytical solutions to limit problems
	3.1.2 Analytical solutions to derivative problems
	3.1.3 Analytical solutions to integral problems

	3.2 Series Expansions and Series Evaluations
	3.2.1 Taylor series expansion
	3.2.2 Fourier series expansion
	3.2.3 Series
	3.2.4 Sequence product

	3.3 Numerical Differentiation
	3.3.1 Numerical differentiation algorithms
	3.3.2 Central-point difference algorithm
	3.3.3 Gradient computations of functions with two variables

	3.4 Numerical Integration Problems
	3.4.1 Numerical integration from given data using trapezoidal method
	3.4.2 Numerical integration of single variable functions
	3.4.3 Numerical solutions to double integrals
	3.4.4 Numerical solutions to triple integrals

	3.5 Path Integrals and Line Integrals
	3.5.1 Path integrals
	3.5.2 Line integrals

	3.6 Surface Integrals
	3.6.1 Scalar surface integrals
	3.6.2 Vector surface integrals

	Exercises

	4 Linear Algebra Problems
	4.1 Inputting Special Matrices
	4.1.1 Numerical matrix input
	4.1.2 Defining symbolic matrices

	4.2 Fundamental Matrix Operations
	4.2.1 Basic concepts and properties of matrices
	4.2.2 Matrix inversion and generalized inverse of a matrix
	4.2.3 Matrix eigenvalue problems

	4.3 Fundamental Matrix Transformations
	4.3.1 Similarity transformations and orthogonal matrices
	4.3.2 Triangular and Cholesky decompositions
	4.3.3 Jordan transformations
	4.3.4 Singular value decompositions

	4.4 Solving Matrix Equations
	4.4.1 Solutions to linear algebraic equations
	4.4.2 Solutions to Lyapunov equations
	4.4.3 Solutions to Sylvester equations
	4.4.4 Solutions to Riccati equations

	4.5 Nonlinear Functions and Matrix Function Evaluations
	4.5.1 Element-by-element computations
	4.5.2 Matrix function evaluations

	Exercises

	5 Integral Transforms and Complex Variable Functions
	5.1 Laplace Transforms and Their Inverses
	5.1.1 Definitions and properties
	5.1.2 Computer solution to Laplace transform problems

	5.2 Fourier Transforms and Their Inverses
	5.2.1 Definitions and properties
	5.2.2 Solving Fourier transform problems
	5.2.3 Fourier sine and cosine transforms
	5.2.4 Discrete Fourier sine, cosine transforms

	5.3 Other Integral Transforms
	5.3.1 Mellin transform
	5.3.2 Hankel transform solutions

	5.4 Z Transforms and Their Inverses
	5.4.1 Definitions and properties of Z transforms and inverses
	5.4.2 Computations of Z transform

	5.5 Solving Complex Variable Function Problems
	5.5.1 Complex variable functions and mapping visualization
	5.5.2 Concept and computation of residues
	5.5.3 Partial fraction expansion for rational functions
	5.5.4 Inverse Laplace transform using PFEs
	5.5.5 Computing closed-path integrals

	Exercises

	6 Nonlinear Equations and Numerical Optimization Problems
	6.1 Nonlinear Algebraic Equations
	6.1.1 Graphical method for solving nonlinear equations
	6.1.2 Quasi-analytical solutions to polynomial-type equations
	6.1.3 Numerical solutions to general nonlinear equations
	6.1.4 Nonlinear matrix equations

	6.2 Unconstrained Optimization Problems
	6.2.1 Analytical solutions and graphical solution methods
	6.2.2 Numerical solution of unconstrained optimization using MATLAB
	6.2.3 Global minimum and local minima
	6.2.4 Solving optimization problems with gradients
	6.2.5 Optimization problems with bounded constraints

	6.3 Constrained Optimization Problems
	6.3.1 Constraints and feasibility regions
	6.3.2 Solving linear programming problems
	6.3.3 Solving quadratic programming problems
	6.3.4 Solving general nonlinear programming problems

	6.4 Mixed Integer Programming Problems
	6.4.1 Solving mixed integer programming problems
	6.4.2 Solving binary programming problems

	6.5 Linear Matrix Inequalities
	6.5.1 A general introduction to LMIs
	6.5.2 Lyapunov inequalities
	6.5.3 Classification of LMI problems
	6.5.4 LMI problem solutions with MATLAB
	6.5.5 Optimization of LMI problems by YALMIP Toolbox

	Exercises

	7 Differential Equation Problems
	7.1 Analytical Solution Methods for Special Classes of ODEs
	7.1.1 Mathematical descriptions
	7.1.2 Analytical solution methods
	7.1.3 Applications of Laplace transforms
	7.1.4 Analytical solutions to LTI state-space equations
	7.1.5 Analytical solutions to special nonlinear differential equations

	7.2 Numerical Solutions to ODEs
	7.2.1 Overview of numerical solution algorithms
	7.2.2 Fixed-step Runge-Kutta algorithm and its MATLAB implementation
	7.2.3 Numerical solution to first-order vector ODEs
	7.2.4 Transforms to standard ODEs
	7.2.5 Validation of numerical solutions to ODEs

	7.3 Numerical Solutions to Special Ordinary Differential Equations
	7.3.1 Solutions of stiff ODEs
	7.3.2 Solutions of implicit differential equations
	7.3.3 Solutions to differential algebraic equations
	7.3.4 Solutions to delay differential equations

	7.4 Solving Boundary Value Problems
	7.4.1 Solutions to two-point boundary value problems
	7.4.2 Solutions to general boundary value problems

	7.5 Introduction to Partial Differential Equations
	7.5.1 Solving a set of 1D PDEs
	7.5.2 Mathematical description to 2D PDEs
	7.5.3 The GUI for the PDE Toolbox — an introduction

	7.6 Solving ODEs with Block Diagrams in Simulink
	7.6.1 A brief introduction to Simulink
	7.6.2 Simulink — relevant blocks
	7.6.3 Using Simulink for modeling and simulation of ODEs

	Exercises

	8 Data Interpolation and Functional Approximation Problems
	8.1 Interpolation and Data Fitting
	8.1.1 One-dimensional data interpolation
	8.1.2 Definite integral evaluation from given samples
	8.1.3 Two-dimensional grid data interpolation
	8.1.4 Two-dimensional scattered data interpolation
	8.1.5 High-dimensional data interpolations

	8.2 Spline Interpolation and Numerical Calculus
	8.2.1 Spline interpolation in MATLAB
	8.2.2 Numerical differentiation and integration with splines

	8.3 Data Modeling
	8.3.1 Polynomial fitting
	8.3.2 Approximation by continued fraction expansions
	8.3.3 Padé rational approximations
	8.3.4 Curve fitting by linear combination of basis functions
	8.3.5 Least squares curve fitting

	8.4 Signal Analysis and Digital Signal Processing
	8.4.1 Correlation analysis
	8.4.2 Fast Fourier transforms
	8.4.3 Filtering techniques and filter design

	Exercises

	9 Probability and Mathematical Statistics Problems
	9.1 Probability Distributions and Pseudo-Random Number Generators
	9.1.1 Introduction to PDFs and CDFs
	9.1.2 PDFs/CDFs of commonly used distributions
	9.1.3 Solving probability problems
	9.1.4 Random numbers and pseudo-random numbers

	9.2 Statistics
	9.2.1 Mean and variance of random variables
	9.2.2 Moments of random variables
	9.2.3 Covariance analysis of multivariate random variables
	9.2.4 Multivariate normal distributions
	9.2.5 Monte Carlo solutions to mathematical problems

	9.3 Statistical Analysis
	9.3.1 Parametric estimation and interval estimation
	9.3.2 Multivariable linear regression and interval estimation
	9.3.3 Nonlinear parametric and interval estimations

	9.4 Statistic Hypothesis Tests
	9.4.1 Basic concept and procedures for statistic hypothesis test
	9.4.2 Solving hypothesis test problems in MATLAB

	9.5 Analysis of Variance and Its Computation
	9.5.1 One-way ANOVA
	9.5.2 Two-way ANOVA
	9.5.3 n-way ANOVA

	Exercises

	10 Nontraditional Solution Methods
	10.1 Fuzzy Logic and Fuzzy Inference
	10.1.1 Classical set theory and fuzzy sets
	10.1.2 Membership function and fuzzification
	10.1.3 An interactive membership function editor
	10.1.4 Building fuzzy inference systems
	10.1.5 Fuzzy rules and fuzzy inference

	10.2 Neural Network and Its Applications in Data Fitting Problems
	10.2.1 Fundamentals of neural networks
	10.2.2 Graphical user interface for neural networks

	10.3 Evolution Algorithms and Their Applications in Optimization Problems
	10.3.1 Basic idea of genetic algorithms
	10.3.2 MATLAB solutions to optimization problems with genetic algorithms
	10.3.3 Particle swarm optimizations
	10.3.4 Solving optimization problems with GADS Toolbox
	10.3.5 Towards accurate global minimum solutions

	10.4 Wavelet Transform and Its Applications in Data Processing
	10.4.1 Wavelet transform and waveforms of wavelet bases
	10.4.2 Wavelet transform in signal processing problems
	10.4.3 Graphical user interface in wavelets

	10.5 Rough Set Theory and Its Applications
	10.5.1 Introduction to rough set theory
	10.5.2 Data processing problem solutions using rough sets

	10.6 Fractional-Order Calculus
	10.6.1 Definitions of fractional-order calculus
	10.6.2 Evaluating fractional-order differentiation
	10.6.3 Solving fractional-order differential equations

	Exercises

	References and Bibliography

