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To the best of authors’ knowledge, little work has been focused on the noisy vibro-impact
systems with fractional derivative element. In this paper, stochastic bifurcation of a vibro-impact
oscillator with fractional derivative element and a viscoelastic term under Gaussian white noise
excitation is investigated. First, the viscoelastic force is approximately replaced by damping
force and stiffness force. Thus the original oscillator is converted to an equivalent oscillator
without a viscoelastic term. Second, the nonsmooth transformation is introduced to remove the
discontinuity of the vibro-impact oscillator. Third, the stochastic averaging method is utilized to
obtain analytical solutions of which the effectiveness can be verified by numerical solutions. We
also find that the viscoelastic parameters, fractional coefficient and fractional derivative order
can induce stochastic bifurcation.

Keywords : Stochastic bifurcation; vibro-impact; viscoelastic oscillator; fractional derivative
element.

1. Introduction

Fractional calculus developing in parallel with the
classical calculus has received considerable atten-
tion in recent decades. Many authors have focused
on the dynamical response of fractional systems.
Huang extended the stochastic averaging method

to discuss the stochastic response and stability of
fractional nonlinear systems subject to Gaussian
white noise excitations [Huang & Jin, 2009]. Chen
put forward an innovative bifurcation control
method based upon the fractional-order feedback
controller to control the stochastic jump bifurcation
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of noisy Duffing oscillator. Deng and Zhu devel-
oped a stochastic averaging method for quasi-
Hamiltonian systems under fractional Gaussian
noise [Deng & Zhu, 2016]. Malara and Spanos
addressed the problem of determining the nonlin-
ear response of a fractional plate driven by ran-
dom loads [Malara & Spanos, 2018]. Colinas-Armijo
and Di Paola used two methods to evaluate the
response of a linear viscoelastic material modeled
by the fractional Maxwell model and subject to a
Gaussian stochastic temperature process [Colinas-
Armijo et al., 2018]. Kougioumtzoglou proposed
a new multiple-input/single-output system identi-
fication approach for parameter identification of
fractional oscillators subject to incomplete nonsta-
tionary data [Kougioumtzoglou et al., 2017]. Ma
and Li established a local fractional center man-
ifold for a finite-dimensional fractional ordinary
differential system [Ma & Li, 2016]. In addition,
comprehensive review papers have been completed
by Rossikhin [Rossikhin & Shitikova, 1997, 2010],
Machado [Machado et al., 2011] and Chen [Chen
et al., 2009; Li et al., 2017], respectively.

Vibro-impact systems, as a class of discontin-
uous and strongly nonlinear systems, can exhibit
complicated dynamical behaviors [Luo et al., 2006;
Di Bernardo et al., 2003]. Zhu discussed the stochas-
tic response of a vibro-impact Duffing system under
external Poisson impulses [Rossikhin, 2015]. Xu
explored the stochastic response of an inelastic
vibro-impact system under Gaussian white noise
with the help of equivalent nonlinearization tech-
nique [Xu et al., 2014]. Iourtchenko and Song con-
sidered the stochastic vibro-impact systems with
one or two rigid barrier(s) by numerical simula-
tion [Iourtchenko & Song, 2006]. Kumar investi-
gated the stochastic bifurcations of a Duffing–van
der Pol oscillator under random excitations [Kumar
et al., 2016a, 2016b, 2017]. Nguyen developed a
mathematical model of vibro-impact mobile sys-
tem to predict the progression rate of the system
[Nguyen et al., 2017]. Feng studied the chaotic sad-
dles of a nonlinear vibro-impact system using the
bisection procedure and an improved stagger-and-
step method [Feng et al., 2009]. Two nice overviews
of vibro-impact dynamics have been presented by
Namachchivaya [Namachchivaya & Park, 2005] and
Dimentberg [Dimentberg & Iourtchenko, 2004].

To the authors’ knowledge, little work was
focused on the dynamical systems with fractional
derivative elements. In this paper, we carry out a

bifurcation analysis of a vibro-impact viscoelastic
oscillator with fractional derivative element under
Gaussian white noise excitation.

2. Model and Its Simplification

We consider the vibro-impact viscoelastic system
with fractional derivative element under Gaussian
white noise excitation in the following form

ẍ + Z + εβ1D
αx + εβ2f(x, ẋ)ẋ + ω2

0x

= ε1/2ξ(t), x > 0,

ẋ+ = −rẋ−, x = 0.

(1)

The variables ε, β1, β2 and ω0 are system
parameters; 0 < r ≤ 1 is the coefficient of restitu-
tion factor; ẋ− and ẋ+ are the velocities just before
and after the impact, respectively. ξ(t) is Gaussian
white noise with zero mean and auto-correlation
E[ξ(t)ξ(t + τ)] = 2Dδ(τ). There are many defini-
tions for fractional derivatives [Li & Zeng, 2015;
Ma & Li, 2017, 2018], in this paper, Dαx is defined
as follows

Dαx =
1

Γ(1 − α)
d

dt

∫ t

0

x(t − u)
uλ1

du, (0 < α ≤ 1).

(2)

The following viscoelastic model of Z can be
expressed as:

Z =
∫ t

0
h(t − s)x(s)ds,

where h(t) is the relaxation function which has the
following form

h(t) =
n∑

i=1

βi exp
(
− t

λi

)

= β exp
(
− t

λ

)
.

Without loss of generality, let i = 1. βi and λi are
the general elastic modulus and the relaxation time,
respectively. Then

Z =
∫ t

0
β exp

(
− t − s

λ

)
x(s)ds.

According to [Zhu & Cai, 2011; Ling et al.,
2011], the viscoelastic force Z can be replaced by

1850170-2
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the conservative force and the damping force:

Z =
∫ t

0
β exp

(
− t − s

λ

)
x(s)ds

=
λβ

1 + λ2ω2 (x − λẋ)

= κ1x − κ2ẋ. (3)

Substituting Eq. (3) into the original system (1),
yields

ẍ + εβ1D
αx + [εβ2f(x, ẋ) − κ2]ẋ + ω2

1x

= ε1/2ξ(t), x > 0,

ẋ+ = −rẋ−, x = 0,

(4)

where

ω2
1 = ω2

0 + κ1.

The following transformation [Dimentberg &
Iourtchenko, 2004; Zhuravlev, 1976; Feng et al.,
2008] is introduced to remove the discontinuity in
Eq. (4)

x = x1 = |y|,
ẋ = x2 = ẏ sgn(y),

ẍ = ÿ sgn(y).

(5)

Substituting Eq. (5) into Eq. (4) leads to the fol-
lowing equations:

ÿ sgn(y) + εβ1D
α(|y|)

+ [εβ2f(|y|, ẏ sgn(y)) − κ2]ẏ sgn(y) + ω2
1|y|

= ε1/2ξ(t), t �= t∗, (6a)

ẏ+ = rẏ−, t = t∗, (6b)

in which y(t∗) = 0.
After multiplying Eq. (6a) by sgn(y), we get the

following formulas:

ÿ + εβ1 sgn(y)Dα(|y|)
+ [εβ2f(|y|, ẏ sgn(y)) − κ2]ẏ + ω2

1y

= ε1/2ξ(t)sgn(y), t �= t∗, (7a)

ẏ+ = rẏ−, t = t∗. (7b)

Then, according to [Feng et al., 2009] we can
obtain the equivalent equation without impact term

of the original vibro-impact oscillator (1):

ÿ + εβ1 sgn(y)Dα(|y|)
+ [εβ2f(|y|, ẏ sgn(y)) − κ2]ẏ

+ (1 − r)ẏ|ẏ|δ(y) + ω2
1y

= ε1/2ξ(t) sgn(y). (8)

3. Stochastic Averaging Procedure

Introduce the following transformation [Huang &
Jin, 2009]

y(t) = A(t) cos Ψ(t),

ẏ(t) = −A(t)ω1 sinΨ(t),

Ψ(t) = ω1t + Φ,

(9)

where A, Ψ, Φ are random processes. The equations
for the variables A and Φ are

dA

dt
= εF11(A,Φ) + εF12(A,Φ)

+ ε1/2G11(A,Φ)ξ(t), (10)

dΦ
dt

= εF21(A,Φ) + εF22(A,Φ)

+ ε1/2G21(A,Φ)ξ(t), (11)

where

εF11 =
εβ1 sin Ψ

ω1
sgn(A cos Ψ)Dα(|A cos Ψ|),

εF12 = −A sin2Ψ[εβ2f(|A cos Ψ|,−Aω1 sin Ψ)

−κ2 + (1 − r)|−Aω1 sinΨ|δ(A cos Ψ)],

εF21 =
εβ1 cos Ψ

Aω1
Dα(A cos Ψ),

εF22 = −sinΨ cos Ψ[εβ2f(|A cos Ψ|,−Aω1 sinΨ)

−κ2 + (1 − r)|−Aω1 sinΨ|δ(A cos Ψ)],

G1 = −sinΨ
ω1

sgn(A cos Ψ),

G2 = −cos Ψ
Aω1

sgn(A cos Ψ).

The averaged Itô equation for A(t) is of the form

dA = m(A)dt + σ(A)dB(t), (12)

1850170-3
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where

m(A)= ε

〈
F11 + F12 + D

∂G11

∂A
G11 + D

∂G11

∂Φ
G21

〉
Ψ

,

(13)

σ2(A) = ε〈2DG2
11〉Ψ. (14)

To obtain the explicit expression, the key step
is to simplify the first term of Eq. (13). According
to the definition Eq. (2),

〈εF11〉Ψ =
〈

εβ1A

ω1Γ(1 − α)
sgn(A cos Ψ) sin Ψ

× d

dt

∫ t

0

|cos(Ψ − ω1u)|
uα

du

〉
Ψ

. (15)

Then the cosine function in Eq. (15) can be
replaced by the following Fourier series

|cos θ| = 2
π

+
∞∑

n=1

Bn cos(2nθ), (16)

where

Bn =
4
π

(−1)n

1 − 4n2
.

According to Eqs. (15) and (16) and [Yurchenko
et al., 2017; Yang et al., 2018]

〈εF11〉Ψ = −32εβ1A

π2ω1
sin

απ

2

∞∑
n=1

n2(2nω1)
α−1

(1 − 4n2)2

≈ −32εβ1A

π2ω1
sin

απ

2

15∑
n=1

n2(2nω1)α−1

(1 − 4n2)2
.

The Fokker–Planck–Kolmogorov (FPK) equa-
tion corresponds to Eq. (12) as given by

∂p

∂t
= − ∂

∂A
[m(A)p] +

1
2

∂2

∂A2
[σ2(A)p]. (17)

The boundary conditions for Eq. (17) are

p = c, c ∈ (−∞,+∞) as A = 0,

p → 0,
∂p

∂A
→ 0, A → ∞.

With the help of the aforementioned boundary
conditions, the stationary solution of Eq. (17) is
expected to be

p(A) =
C

σ2(A)
exp

[∫ A

0

2m(s)
σ2(s)

ds

]
, (18)

in which C is the normalization constant. The joint
stationary PDF of the original displacement and
velocity p(x1, x2) and corresponding marginal sta-
tionary PDFs p(x1) and p(x2) can be obtained
according to Eq. (18) and [Huang & Jin, 2009; Yang
et al., 2015; Yang et al., 2017].

4. Example

To assess the accuracy of the proposed method, the
following oscillator is considered.

ẍ + a1D
αx + Z + (−b1 + b2x

2 + b3ẋ
2)ẋ + ω2

0x

= ξ(t), x > 0,

ẋ+ = −rẋ−, x = 0,
(19)

where a1, b1, b2, b3 and ω0 are constants, ξ(t) is
Gaussian white noise with intensity 2D. The cor-
responding equivalent stochastic oscillator without
impact term is of the following form based on what
has been discussed in Sec. 2:

ÿ + a1 sgn(y)Dα(|y|) + [−b4 + b2y
2 + b3ẏ

2

+ (1 − r)|ẏ|δ(y)]ẏ + ω2
1y

= sgn(y)ξ(t), (20)

where

b4 = b1 + κ2,

ω2
1 =

λ2ω2
0 − 1 +

√
(1 + λ2ω2

0)
2 + 4βλ3

2λ2
.

The averaged drift and diffusion coefficients
are

m(A) = −1
8
b2A

3 − 3
8
b3ω

2
1A

3 + b5A +
D

2Aω2
1

,

(21)

σ2(A) =
D

ω2
1

, (22)

in which

b5 =
b4

2
− (1 − r)ω1

π

− 32a1

π2ω1
sin

απ

2

15∑
n=1

n2(2nω1)
α−1

(1 − 4n2)2
.

1850170-4
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So, the stationary solution of oscillator (20) is
of the form

p(A) =
Cω2

1A

D
exp

[
b5ω

2
1

D
A2

−
(

b2ω
2
1

16D
+

3b3ω
4
1

16D

)
A4

]
,

p(x1, x2) =
Cω1

πD
exp

[
b5ω

2
1

D

(
x2

1 +
x2

2

ω2
1

)

−
(

b2ω
2
1

16D
+

3b3ω
4
1

16D

)(
x2

1 +
x2

2

ω2
1

)2
]
.

4.1. Effectiveness of the proposed
approach

In this section, different levels of control parameters
b2, b3 and noise intensity D are considered to verify
the reliability and accuracy of the proposed tech-
nique. System parameters are fixed to be b1 = 0.09,
a1 = −0.01, α = 0.5, λ = 1.0, β = −0.01, ω0 = 1.0,
r = 0.95. The blue solid lines are theoretical pre-
dictions while discrete dots are numerical results in
the following figures, respectively.

First, noise intensity D = 0.16 is fixed. Dif-
ferent levels of control parameters b2 and b3 are
considered then. Figure 1 gives the theoretical and
numerical results of the probability density func-
tions of amplitude, displacement and velocity for
different control parameter b2, Fig. 2 gives the
results for different parameter b3. It can be seen
that the theoretical results agree well with those
from numerical results. It is also shown that the
effects of these two parameters b2 and b3 on the
system response are the same.

Then, to scrutinize the effect of the noise inten-
sity D, here, control parameters b2 = 0.09 and
b3 = 0.09 are fixed. Figure 3 gives the theoreti-
cal and numerical results of the probability density
functions of amplitude, displacement and velocity
for different noise intensity D. It can also be found
that the theoretical results and numerical results
are coincident. So, the reliability and accuracy of
the proposed technique are verified by Figs. 1–3.

4.2. Stochastic bifurcation analysis

In this paper, stochastic bifurcation refers to
stochastic P-bifurcation which occurs when the
shape of the stationary probability density function
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Fig. 1. Probability density functions of amplitude, displace-
ment and velocity for different control parameter b2.

changes from unimodal to bimodal. This section
focuses on the analysis of stochastic bifurcation phe-
nomenon induced by viscoelastic parameters, frac-
tional coefficient and fractional derivative order.

First, we discuss the stochastic bifurcation
induced by viscoelastic parameter λ. The system

1850170-5
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Fig. 2. Probability density functions of amplitude, displace-
ment and velocity for different control parameter b3.

parameters are taken to be b1 = 0.032, b2 = 0.004,
b3 = 0.004, a1 = −0.01, α = 0.5, β = −0.03,
ω0 = 1.0, D = 0.01, r = 0.955. Figure 4 gives
the joint stationary probability density p(x1, x2) of
displacement and velocity for different viscoelastic
parameter λ. In order to better understand the

stochastic bifurcation, the corresponding section
graphs are presented in Fig. 5. An inspection of
these two figures clearly indicates that at λ =
0.9, the joint stationary probability density has
one peak and the corresponding section graph is
unimodal. At λ = 0.1, the shape of the joint
stationary probability density changes to crater-like
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Fig. 3. Probability density functions of amplitude, displace-
ment and velocity for different control parameter D.
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(a)

(b)

Fig. 4. The joint stationary probability density p(x1, x2) of
displacement and velocity for different λ. (a) λ = 0.9 and
(b) λ = 0.1.

structure and the corresponding section graph is
bimodal. This phenomenon indicates that stochas-
tic P-bifurcation takes place as λ decreases from
0.90 to 0.10.

Second, we explore the stochastic bifurcation
induced by viscoelastic parameter β. The system
parameters are taken to be b1 = 0.032, b2 = 0.004,
b3 = 0.004, a1 = −0.01, α = 0.5, λ = 1.0, ω0 = 1.0,
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x 2)
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Fig. 5. Section graphs of stationary probability density
p(x1, x2) when x1 = 0.3 for different λ.

(a)

(b)

Fig. 6. The joint stationary probability density of displace-
ment and velocity for different β. (a) β = −0.03 and (b)
β = −0.001.

D = 0.01, r = 0.955. Figure 6 gives the joint sta-
tionary probability density p(x1, x2) for different
viscoelastic parameter β. Figure 7 shows the corre-
sponding section graphs. Based on the same analy-
sis, stochastic bifurcation takes place as viscoelastic
parameter β increases from −0.03 to −0.001.

Third, we explore the stochastic bifurcation
induced by fractional coefficient a1. The system
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Fig. 7. Section graphs of stationary probability density
p(x1, x2) when x1 = 0.3 for different β.
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(a)

(b)

Fig. 8. The joint stationary probability density of displace-
ment and velocity for different fractional coefficient a1. (a)
a1 = −0.001 and (b) a1 = −0.03.

parameters are taken to be b1 = 0.032, b2 = 0.004,
b3 = 0.004, α = 0.3, λ = 1.0, β = −0.01, ω0 = 1.0,
D = 0.01, r = 0.952. Figure 8 gives the joint sta-
tionary probability density p(x1, x2) for different
fractional coefficient a1. Figure 9 shows the corre-
sponding section graphs. Based on the same analy-
sis, stochastic bifurcation takes place as fractional
coefficient a1 decreases from −0.001 to −0.03.
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Fig. 9. Section graphs of stationary probability density
p(x1, x2) when x1 = 0.3 for different a1.

(a)

(b)

Fig. 10. The joint stationary probability density of displace-
ment and velocity for different fractional order α. (a) α = 0.1
and (b) α = 0.9.

In the end, we explore the stochastic bifurca-
tion induced by fractional derivative order α. The
system parameters are taken to be b1 = 0.032, b2 =
0.004, b3 = 0.004, a1 = −0.01, λ = 1.0, β = −0.01,
ω0 = 1.0, D = 0.01, r = 0.952. Figure 10 gives
the joint stationary probability density p(x1, x2) for
different fractional derivative order α. Figure 11
shows the corresponding section graphs. Based on
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Fig. 11. Section graphs of stationary probability density
p(x1, x2) when x1 = 0.3 for different fractional order α.
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the same analysis, stochastic bifurcation takes place
as fractional derivative order α increases from 0.1
to 0.9.

5. Conclusions

We discussed the stochastic bifurcation of a vibro-
impact oscillator with fractional derivative element
and a viscoelastic term under Gaussian white noise
excitation. The original oscillator is converted to
an equivalent oscillator without a viscoelastic term.
The stochastic averaging method and the nons-
mooth transformation are utilized to obtain the
analytical solutions the effectiveness of which can
be verified by numerical solutions. We also discussed
the stochastic bifurcation phenomenon induced by
the viscoelastic parameters, fractional coefficient
and fractional derivative order.
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