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Abstract: Most of the existing controller tuning methods are based on accurate system model and sensitive to some inevitable
uncertainties and unmeasurable disturbance. Aiming at this problem, a thorough robustness analysis on a typical kind of fractional-
order delay system has been made in this paper. A kind of robust fractional order proportional and derivative controller is proposed
based on phase and gain margins. The tuning methods are demonstrated under different circumstance, namely there is gain vari-
ation, time constant variation, order variation or even multiple parameters variations in system transfer function. Simulation results
show that the closed-loop control system with the proposed controller can achieve both robustness and satisfactory dynamic
performance, and outperform the conventional PID controller in all cases.

1 Introduction

Most real objects and dynamic process models are essentially non-
integer-order (fractional-order, FO) ones [1–5], but some of them
may only contain little fractionality which could be approximated
by integer-order (IO) plants. Most of the time before, the reason of
using IO models was the lack of effective solution algorithms for FO
differential equations [3]. However, this will not be a problem any-
more since the spring up of approximation methods for fractional
derivative and integral operator. From then on, the three hundreds
years old topic, FO calculus, has shown its extraordinary talents in
many fields including science and engineering aspects [2, 6–11].
Among the booming development of FO calculus related research,
controller design based on fractional derivatives and integrals has
achieved several remarkable work [2, 6, 10–13]. FOPID controller
proposed by Podlubny which is an extension of IOPID controller is
one of the most mentionable work in this field [6]. It made the deriva-
tive and integral orders not confine in the domain of integer, so that
the frequency response of controlled system would be adjusted more
continuously and flexibly. There have been several pioneer work
which showed that the FOPID controller outperformed conventional
PID controller by theoretical and practical proving [3, 12, 14–16]. It
has also been verified that the great flexibility of FO operators would
help in achieving better performance and robustness in comparison
with traditional PID controller [12].

There are two key points in controller design, optimal dynamic
control performance and robustness. The former one has always
been the first factor to be taken into account in research field,
because it is more visualized and compelling. However, the latter
one holds the same or even more significant position in practice
on account of some inevitable model uncertainties and environ-
mental disturbance. It has been shown that some controllers were
extremely fragile that the control performance would be affected by
vanishingly small perturbance [17]. Only being optimal in dynamic
performance demand is far from satisfactory because there is always
an implicit assumption in these controller design methods that the
plants are accurate and the controllers are implemented exactly.

Actually, this requirement is very hard to reach in real practice situa-
tions, so that controllers should be able to tolerate some uncertainties
in control loop.

Focusing on robustness analysis, gain and phase margins have
always served as important indicators [18, 19]. Robust PID con-
trollers based on gain and phase margins measure were developed for
stable processes in [18, 19] and unstable processes in [20, 21]. How-
ever, as the development of FOPID controllers, the robust PID/PI/PD
FO controllers have presented more satisfactory performance com-
pared with conventional ones used on both FO plants and IO plants
[11, 22–26]. For example, the Crone controller aiming at gain,
parameters variations and plant uncertainties were put forward in
[22, 23] by Oustaloup, et.al.; Luo and Chen proposed a FO [PD]
controller which could tolerate gain variation for a class of FO sys-
tems [12], and they also designed a FOPD controller for a special
type of motion control system [27]; a kind of FOPI controller tuning
algorithm for robustness to plant uncertainties was given in [24] by
Monje, et.al.; The robust controllability of interval FO linear time
invariant systems was discussed in [25] and verified by illustrative
examples; exploration on robustness of time constant was proposed
by Jin, Chen and Xue [26]. However, most of the above mentioned
work were focused merely on system model gain variation or only
for certain IO plants. But real system plants may contain uncertain-
ties in different parameters at the same time and not confine in IO
plants, so that controller which has the ability of tolerating various
parameters uncertainties is in high demand.

In this paper, we made a thorough robustness analysis of a typ-
ical fractional-order delay system, discussed about how to design
a FOPD controller which is robust to gain variation, time constant
variation, order variation, or even robust to multiple parameters vari-
ations. Each of the above mentioned cases have a simulation example
to show its advantageous robustness to system parameter variation
compared with the conventional PID controller based on ITAE index.

The rest of this paper is organized as follows: In section 2,
the basic robustness theory is given as well as the formations of
controlled plant and proposed FOPD controller; The detailed tun-
ing rules of the proposed controller aiming at gain variation, time
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constant variation, order variation, and multiple parameter varia-
tion are presented respectively in section 3, 4, 5, 6 with simulation
verification; Finally, the conclusions are made in section 7.

2 FOPD Controller and General Specifications

2.1 The Fractional-Order Plant Considered

In this paper, we discuss a general FO controlled plant which has
been widely used in several research areas, such as biological mate-
rial, cells, tissues and so on [12, 26, 28]. We have also added a delay
term to the model to make it more universal, and it could be set to
zero if not needed. The FO transfer function has the following form:

P (s) =
K

s(Tsα + 1)
e−Ls, (1)

where, K is the plant gain and could be normalize to 1 without loss
of generality, because it could be incorporated in the proportional
gain Kp of the system controller [12]; α is a fractional order which
could be set into an arbitrary; T and L are time constant and delay
of the controlled system respectively.

2.2 The Fractional-Order PD Controller

The FOPD controller proposed in this paper has the most general
form which has been used by numerous researchers. It is also easy to
realize and implement in both simulation and practice. It is depicted
as:

C(s) = Kp +Kds
µ, µ ∈ (0, 2), (2)

in which, Kp,Kd are proportional and derivative coefficients sev-
erally, and µ is the derivative order of the controller. Since there is
already an integrator in the controlled system, so an FOPD controller
is preferred in this paper. FOPD controller is a branch of FOPID, it
also has the advantages of tuning flexibly and has less parameters to
tune.

2.3 Specifications for Robust Controller Design

From the above two subsections which introduced controlled plant
form P (s) and controller form C(s), the system open loop transfer
function could be obtained by:

G(s) = C(s)P (s). (3)

The most classic and reliable specifications for robust controller
tuning are gain and phase margins. According to the basic definition
of gain crossover frequency and phase margin, the proposed robust
FOPD controller should satisfy the following three specifications:

1> Phase margin specification

Arg[G(jω)]|ω=ωc = Arg[C(jω)P (jω)]|ω=ωc = −π + φm,
(4)

where, ωc is the interested gain crossover frequency and φm is the
required phase margin. Note that equation (4) is a definition which
has been used as the controller design specification here.

2> Gain crossover frequency specification
Corresponding to the interested gain crossover frequency point,

the amplitude of the open-loop transfer function should be zero in
logarithmic frequency domain, which means the amplitude should
be 1 at the selected gain crossover frequency:

|G(jω)||ω=ωc = |C(jω)P (jω)||ω=ωc = 1. (5)

3> Robustness to certain parameters variations.
The robustness specification aiming at different parameters under

different circumstance will be given in the following sections.

3 Robust FOPD tuning specification to gain
variation

3.1 Preliminary

First, we substitute equations (1) (2) into equation (3) and obtained:

G(s) =
Kp +Kds

µ

s(Tsα + 1)
e−Ls. (6)

Then time domain transfer functions in equations (1) (2) should
be turned into frequency domain with application of Euler formula
jα = (ej

π
2 )α = cos(απ2 ) + jsin(απ2 ) :

P (jω) =
1

(jω)(T (jω)α + 1)
e−Ljω. (7)

C(jω) = Kp +Kd(jω)µ

= Kp +Kdω
µe

µπ
2 j

= Kp +Kdω
µ cos(

µπ

2
) +Kdω

µsin(
µπ

2
)j. (8)

|P (jω)| = 1√
(Tω1+αsin(απ2 ))

2
+ (ω + Tω1+αcos(απ2 ))

2
=

1√
N
,

(9)
where, N is a substituted symbol which make the following deriva-
tion brief and easy to be understood.

Arg[P (jω)] = −tan−1
Tωα sin(απ2 )

1 + Tωαcos(απ2 )
− π

2
− Lω. (10)

|C(jω)| =
√

(Kdωµsin(
µπ

2
))

2
+ (Kp +Kdωµcos(

µπ

2
))

2
,

(11)

Arg[C(jω)] = tan−1(
Kdω

µsin(µπ2 )

Kp +Kdωµ cos(µπ2 )
)

= tan−1(
sin(

(1−µ)π
2 ) + Kdω

µ

Kp

cos(
(1−µ)π

2 )
)− (1− µ)π

2
. (12)

So, substitute equations (9), (10), (11), (12) into equtions (4) and
(5) as:

|G(jω)| =

√
(Kdωµsin(µπ2 ))

2
+ (Kp +Kdωµcos(

µπ
2 ))

2

N
= 1.

(13)

Arg[G(jω)] = tan−1(
Kdω

µsin(µπ2 )

Kp +Kdωµ cos(µπ2 )
)

−tan−1
Tωα sin(απ2 )

1 + Tωαcos(απ2 )
− π

2
− Lω = −π + φm. (14)

3.2 Robust Controller Tuning and Numerical Computation
Process w.r.t. Gain Variation

It has already been discussed in [29] that if the bode plot is flat at
the selected crossover frequency, the system will be robust to gain
changes, and the overshoots of corresponding step responses will
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keep almost the same, which is called ’Flat Phase’ specification.
Therefore, the proposed FOPD controller should also satisfy this
specification as:

d(Arg[G(jω)])

dω

∣∣∣∣
ω=ωc

= 0. (15)

According to equation (14), equation (15) could be further
expanded by:

d(Arg[G(jωc)])

dω
=

µωc
µ−1(KdKp ) cos(

(1−µ)π
2 )

(cos(
(1−µ)π

2 ))
2

+ (sin(
(1−µ)π

2 ) + (KdKp )ωcµ)
2

−
αTωc

α−1 sin(απ2 )

(Tωcαsin(απ2 ))2 + (1 + Tωcα cos(απ2 ))2
− L = 0. (16)

Then, assume that

Bz =
Kd
Kp

, (17)

A3 =
αTωc

α−1 sin(απ2 )

(Tωcαsin(απ2 ))2 + (1 + Tωcα cos(απ2 ))2
+ L, (18)

note that Bz should be positive since the system should maintain
stable during control process. Then, equation (16) could be turned
into a simplified format as:

A3ωc
2µB2

z + (2A3ωc
µsin(

(1− µ)π

2
)

−µωcµ−1cos(
(1− µ)π

2
))Bz +A3 = 0. (19)

And equation (14) could be simplified by using equation (17) as:

Arg[G(jω)] = tan−1(
Bzωc

µsin(µπ2 )

1 +Bzωcµ cos(µπ2 )
)

−tan−1
Tωc

α sin(απ2 )

1 + Tωcαcos(
απ
2 )
− π

2
− Lωc = −π + φm. (20)

So far, equations (19) and (20) have only two unknown parame-
ters µ,Bz , therefore, we could solve these two equations to achieve
the value of µ,Bz , and then Kp,Kd could be obtained by equations
(13) and (17).

3.3 Simulation Illustration w.r.t. Gain Variation

Theoretically, equations (19) and (20) could be solved jointly to
obtain the analytical values of µ,Bz . However, the process of solv-
ing these two nonlinear equations will be very complicated and make
little sense, so that we choose using the graphical method which has
already been used in [12, 15, 26, 27] and proved to be a pretty effi-
cient way to get numerical values of the parameters to be achieved.
In this subsection, the plant parameters T, α, L in equation (1) are
chosen as 2, 0.5 and 0.2, respectively. The interested specifications
are set as ωc = 1(rad/s), φm = 70◦. In accordance with equa-
tions (19) and (20), the relationship graphic lines of µ,Bz could
be obtained as shown in Fig. 1. Clearly, the intersection point of
these two lines (µ = 1.115, Bz = 0.29) is the numerical parameter
values we are looking for. Then, Kp = 2.8265,Kd = 0.8197 are
achieved by equations (13) and (17). The bode plot of the designed
open-loop system are shown in Fig. 2. It is verified that the interested
specification ωc = 1(rad/s), φm = 70◦ are fulfilled, and the ’Flat
Phase’ character has been reached at the interest crossover gain fre-
quency. The simulation of fractional-order systems can be referred
to [30].

An optimal PID controller tuned based on ITAE index is also
employed here to make comparison. For fair comparison, the sys-
tem controlled by PID controller is also required to have the same
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Fig. 1: Numerical solution plot of µ,Bz w.r.t. gain variation
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phase margin and similar ωc with the system controlled by FOPD
controller

The parameters of the conventional PID controller are Kp =
6.994,Ki = 0.1876,Kd = 2.6929, ωc = 2.3(rad/s).

The step responses of the system controlled by the proposed
robust FOPD controller and PID controller are shown in Fig. 3 with
±20% gain variation ( the desired value is 100%, +20% is 120%,
−20% is 80%). The performance of the responses do not have much
difference, however, the overshoots of the step responses remain
almost the same under gain changes in Fig. 3(a), but they change
more in Fig. 3(b).

4 Robust FOPD tuning specification to time
constant (T ) variation

The inaccuracy in system model will not only appear in gain but also
appear in other parameters. Therefore, merely robust to gain change
is far from satisfactory controller tuning algorithm. We discussed
FOPD tuning specifications w.r.t. gain variation in last section, and
in this section, the proposed FOPD controller would have the abil-
ity to tolerate both gain and time constant changes. However, the
time constant changes will also bring about changes in crossover
frequency [26].
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4.1 Robust Controller Tuning and Numerical Computation
Process w.r.t. Time Constant (T) Variation

Different from gain variation, the proposed FOPD controller should
be robust to both changes in gain and time constant, so the follow-
ing specification should be fulfilled to reach the robust requirement
compared with equation (16):

∂ |G(jω)|
∂ω

∣∣∣∣
(ωc,T0)

∆ω +
∂ |G(jω)|

∂T

∣∣∣∣
(ωc,T0)

∆T = 0,

∂Arg[G(jω)]

∂ω

∣∣∣∣
(ωc,T0)

∆ω +
∂Arg[G(jω)]

∂T

∣∣∣∣
(ωc,T0)

∆T = 0. (21)

And if the robust controller is asked to satisfy both equations in
(21), it is equal to fulfil the equation as:

∂|G(jω)|
∂ω

∂|G(jω)|
∂T

∣∣∣∣∣
(ωc,T0)

=

∂Arg[G(jω)]
∂ω

∂Arg[G(jω)]
∂T

∣∣∣∣∣
(ωc,T0)

= −∆T

∆ω
, (22)

where, ∂Arg[G(jω)]/∂ω has already been achieved in equation
(16). And,

∂Arg[G(jω)]

∂T
= −

ωα sin(απ2 )

(1 + Tωα cos(απ2 ))2 + (Tωαsin(απ2 ))2
,

(23)

∂ |G(jω)|
∂ω

=
1

2
Kp(

D

N
)−

1
2 ·

(

[
2B2

zµω
2µ−1 + 2Bzµω

µ−1 cos(µπ2 )
]
N −D(∂N∂ω )

N2
), (24)

where, D = 1 +B2
zω

2µ + 2Bzω
µ cos(µπ2 ), and (∂N/∂ω) =

T 2(2 + 2α)ω2α+1 + 2ω + 2T cos(απ2 )ωα+1(2 + α), and

∂ |G(jω)|
∂T

=
1

2
Kp(

D

N
)−

1
2 −D(

∂N

∂T
), (25)

where,(∂N)/(∂T ) = 2ω2+2αT + 2ω2+α cos(απ2 ).
Therefore, substitute equations (16), (23), (24), (25) into equation

(22) obtained:
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Fig. 4: Numerical solution plot of µ,Bz w.r.t. T variation

(2M1µω
2µ−1 −M2ω

2µ)B2
z + (cos(

(1− µ)π

2
)µωµ−1

+2µM1ω
µ−1cos(

µπ

2
)− 2M2ω

µcos(
µπ

2
))Bz −M2 = 0, (26)

where, M1 = (N(∂Arg[G(jω)]/∂T ))/(∂N/∂T ) and M2 =
((∂Arg[G(jω)]/∂T ) · (∂N/∂ω))/(∂N/∂T ) +A3.

Equations (20) and (26) also have only two unknown parameters
µ,Bz whose numerical solutions could be obtained by graphical
methods, and then Kp,Kd could be obtained from equations (13)
and (17).

4.2 Simulation Illustration w.r.t. Time Constant Variation

In this case, the plant parameters in equation (1) are T =
0.1, α = 0.5, L = 0.1, and the interest specifications are ωc =
5(rad/s), φm = 70◦. According to the graphical plot of the inter-
section of the relationship lines ofBz , µ based on equations (20) and
(26) in Fig. 4, the proposed FOPD controller parameters are got as
Kp = 2.9695,Kd = 0.5403, µ = 1.3596. The bode plot of the sys-
tem controlled by FOPD controller is shown in Fig. 5, and it satisfies
the required specifications at interest crossover frequency.

Comparison of unit step responses of system with pro-
posed FOPD controller and conventional PID controller (Kp =
2.5329,Ki = 0.5136,Kd = 0.5528, ωc = 4.6(rad/s)) are pro-
vided in Fig. 6 respectively w.r.t. time constant T variation from 80%
to 120%. As expectation, Fig. 6(a) shows advantages in both robust-
ness and settling time compared with Fig. 6(b), the step responses
have almost no change when time constant varies from 80% to
120%.

5 Robust FOPD Tuning Specification to
Fractional Order (α) variation

5.1 Robust Controller Tuning and Numerical Computation
Process w.r.t. Fractional Order (α) Variation

There is another important parameter in the controlled plant in
equation (1), the fractional order α, and we will discuss the FOPD
controller design specifications aiming at this parameter in this
section. It has to be noted that α affects a lot in bode plot shaping
as well as other control performance. Almost the same as the spec-
ifications listed in the last section, apart from the basic limitations
in equations (4) and (5), another specification aiming at α change
would be:
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(b) Step rensponses with PID controller w.r.t. time constant variation
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Fig. 6: Step responses with FOPD and PID controllers w.r.t. T
variation

∂ |G(jω)|
∂ω

∣∣∣∣
(ωc,α0)

∆ω +
∂ |G(jω)|

∂α

∣∣∣∣
(ωc,α0)

∆α = 0,

∂Arg[G(jω)]

∂ω

∣∣∣∣
(ωc,α0)

∆ω +
∂Arg[G(jω)]

∂α

∣∣∣∣
(ωc,α0)

∆α = 0. (27)

And similarly, it is equal to:

∂|G(jω)|
∂ω

∂|G(jω)|
∂α

∣∣∣∣∣
(ωc,α0)

=

∂Arg[G(jω)]
∂ω

∂Arg[G(jω)]
∂α

∣∣∣∣∣
(ωc,α0)

= −∆α

∆ω
, (28)

where, ∂Arg[G(jω)]/∂ω and ∂ |G(jω)| /∂ω have been given in
equations (16) and (24),

∂ |G(jω)|
∂α

=
1

2
Kp(

D

N
)−

1
2 (
−D(∂N∂α )

N2
), (29)

where, ∂N/∂α = 2T 2ω2+2α ln(ω) + 2ω2+α ln(ω)T cos(απ2 )−
πω2+αT sin(απ2 ).

∂Arg[G(jω)]

∂α
=

−
Tωα ln(ω) sin(απ2 ) + Tωα(π2 ) cos(απ2 ) + (α2 )T 2ω2α

(Tωα sin(απ2 ))2 + (1 + Tωαcos(απ2 ))2
.

(30)

Similarly, substitute equations (16), (24), (29), (30) into equation
(28) and we got:

(2Q1µω
2µ−1 −Q2ω

2µ)B2
z + (cos(

(1− µ)π

2
)µωµ−1

+2µQ1ω
µ−1 cos(

µπ

2
)− 2Q2ω

µ cos(
µπ

2
))Bz −Q2 = 0, (31)

where, Q1 = (N(∂Arg[G(jω)]/∂α))/(∂N/∂α) and Q2 =
((∂Arg[G(jω)]/∂α) · (∂N/∂ω))/(∂N/∂α)) +A3. Clearly, equa-
tions (20) and (31) could get graphical plot of relationships of µ,Bz
, and equations (13) and (17) will work in getting the values of
Kp,Kd.

5.2 Simulation Illustration w.r.t. Fractional Order (α)
Variation

The values of µ,Bz are also got from the graphical plots intersec-
tion shown in Fig. 7 according to equations (20) and (31) with plant
model parameters T = 1, α = 1.5, L = 0.1 in equation (1). The
selected crossover frequency is ωc = 1(rad/s), φm = 70◦, and
the proposed controller tuning parameters are Kp = 1.5996,Kd =
1.2956, µ = 1.6862. The bode plot in Fig. 8 verifies the accuracy
of the system controlled by FOPD controller. Compared with gain
and time constant discussed in above sections, order α plays a
more important role in system identification, and it affects a lot
in the shape of system responses to different set-points. There-
fore, we tried more variation conditions in this case and chose
±10%,±20% variation in α to test the robustness of the proposed
controller in Fig. 9(a). Comparison is also made with traditional
PID controller (Kp = 0.8062,Ki = 0.2085,Kd = 1.3125, ωc =
0.82(rad/s)) in Fig. 9(b). The robustness of the system controlled
by FOPD controller in Fig. 9(a) is comparatively good with little
change during α varied in different scopes, and the settling time
is relatively smaller compared with that of PID controller. Never-
theless, the weak robustness of the system step responses with PID
controller in Fig. 9(b) are hard to be accepted as well as the longer
settling time. It is also seen that the bigger the parameter variation
is, the more advantages the system responses controlled by the pro-
posed FOPD controller will have. Therefore, robust FOPD controller
still outperforms PID controller.

6 Robust FOPD Tuning Specification to Multiple
Parameters (K,T, α) Variations

6.1 Robust Controller Tuning and Numerical Computation
Process w.r.t. Multiple Parameters (K,T, α) Variations

In this section, we proposed a FOPD controller which could be
robust to multiple parameters (K,T, α) variations have already been
discussed above. Similar to the controller tuning specifications stated
in the above sections, the controller should satisfy three limitations
listed in section 2. But different from the other three kinds of robust
FOPD controller, the robustness specification in this case would be
more complicate since it cannot be integrated into one equation
as equation (22) or equation (28). Both of the phase and margins
functions have three terms as:
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Fig. 7: Numerical solution plot of µ,Bz w.r.t. α variation
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(a) Step responses with FOPD controller w.r.t. α variation
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(b) Step responses with PID controller w.r.t. α variation
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Fig. 9: Step responses with FOPD and PID controllers w.r.t. α
variation

∂ |G(jω)|
∂ω

∣∣∣∣
(ωc,α0,T0)

∆ω +
∂ |G(jω)|

∂T

∣∣∣∣
(ωc,α0,T0)

∆T

+
∂ |G(jω)|

∂α

∣∣∣∣
(ωc,α0,T0)

∆α = 0,

∂Arg[G(jω)]

∂ω

∣∣∣∣
(ωc,α0,T0)

∆ω +
∂Arg[G(jω)]

∂T

∣∣∣∣
(ωc,α0,T0)

∆T

+
∂Arg[G(jω)]

∂α

∣∣∣∣
(ωc,α0,T0)

∆α = 0. (32)

Unfortunately, these two equations above are extremely compli-
cated to solve and can’t be transferred into a simplified version, even
graphical plots can’t guarantee to find a result. In this case, we tried
to solve this question in an alternative way. Since both of the right
sides of the equations above are zero, we turned each of the equations
into two parts and solved them one by one like:

∂ |G(jω)|
∂ω

∣∣∣∣
(ωc,α0,T0)

∆ω = 0, (33)

∂Arg[G(jω)]

∂ω

∣∣∣∣
(ωc,α0,T0)

∆ω = 0, (34)

∂ |G(jω)|
∂T

∣∣∣∣
(ωc,α0,T0)

∆T +
∂ |G(jω)|

∂α

∣∣∣∣
(ωc,α0,T0)

∆α = 0,

(35)

∂Arg[G(jω)]

∂T
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(ωc,α0,T0)

∆T +
∂Arg[G(jω)]

∂α

∣∣∣∣
(ωc,α0,T0)

∆α = 0.

(36)
Make clear of these four equations by merging the last two into

one asïijŽ

∂|G(jω)|
∂T

∂|G(jω)|
∂α

∣∣∣∣∣
(ωc,α0,T0)

=

∂Arg[G(jω)]
∂T

∂Arg[G(jω)]
∂α

∣∣∣∣∣
(ωc,α0,T0)

= −∆α

∆T
.

(37)
Note that all the terms of equation (37) has been given in equa-

tions (23), (25), (29), (30), and if ωc, α0, T0 are fixed constants,
there will be no unknown parameters in it. So that equation (37)
would only be a test condition for parameters get for the proposed
controller. To sum up, there are three limitations should be reached,
equation (4), (33) and (34) respectively. The detailed formulation of
equations (4) and (34) have already been given in equations (20) and
(16), and equation (33) could be turned into:

(2µω2µ−1N − (
∂N

∂ω
)ω2µ)B2

z + [2µωµ−1Ncos(
µπ

2
)

−2(
∂N

∂ω
)ωµcos(

µπ

2
)]Bz − (

∂N

∂ω
) = 0, (38)

where, ∂N/∂ω has been given in equation (24). However, there are
three equations to be solved, equations (16), (20) and (38), so that
we turned ωc into a tuning parameter as well, and under this cir-
cumstance, ω,Bz , µ are the parameters to be achieved. After the
above derivation, this problem can be finally worked out by solving
equations (16), (20), (38) by graphical method, and then, values of
Kp,Kd will be achieved by solving equations (13), (17).

6.2 Simulation Illustration w.r.t. Multiple Parameters
(K,T, α) Variations

Different from other cases, we have three equations in this case,
and can’t guarantee to have an intersection in a two dimensional
plot. Therefore, we first made Bz in equation (38) explicit and sub-
stituted it into equation (20) , and got the graphical plot with two
lines of relationship of ωc, µ with the intersection (µ = 1.47, ωc =
2.81(rad/s)) as shown in Fig. 10 with parameters setting as T =
0.5, α = 0.5, L = 0.5, φm = 70◦. The proposed parameters are got
as Kp = 2.9777,Kd = 1.39, µ = 1.297. When these values are
substituted back into equation (37) , they matched the equality. Fig.
11 shows the bode plot of the system controlled by the proposed
controller, and it satisfies the required specifications at the crossover
frequency got from the graphic plot in Fig. 10.

Compared the system step responses with proposed FOPD con-
troller in Fig. 12(a) to that with PID controller (Kp = 3.3205,Ki =
1.056,Kd = 3.1369, ωc = 2.56(rad/s)) in Fig. 12(b), the former
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Fig. 11: Bode plot w.r.t. multiple parameter variation

one outperforms the latter one both in robustness and settling time.
It means that the proposed controller still work well with multiple
parameters changes in the system.

It has to be noted that all the FOPD controllers proposed under
different circumstance meet control system stability limitation, and
they could also be applied to IO system with α set to 1. Since delay
term L will not exist if we do derivation of phase margin, so we did
not discuss about the robustness w.r.t. delay in this paper, and it will
be one of our further research topics on robustness control of FO
plants.

7 Conclusion

This paper proposes a kind of FOPD controller tuning method
which is robust to different parameter variation of a typical kind of
fractional-order plant based on phase and gain margin specifications.
Tuning algorithms under four different circumstance namely gain
variation, time constant variation, order variation as well as multiple
parameters variations have been given, and numerical results were
got based on graphical method which made the controller param-
eters simply to achieve. The advantages in robustness as well as
dynamic performance of the proposed FOPD controller are demon-
strated from the comparison of the closed-loop step responses with
conventional PID controller based on ITAE index. Furthermore, the
FOPD controller will also work on integer-order plant by simply
setting the order to an integer. Future research efforts may include
the other kinds of robust controller e.g. FOPID design for general
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(b) Step responses with PID controller w.r.t. multiple parameter variation
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Fig. 12: Step responses with FOPD and PID controllers w.r.t.
multiple parameter variation

processes, the application and implementation problems of the pro-
posed controller design algorithm in practical systems, determining
the position and the width of the flat phase.
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