SYSTEM SIMULATION TECHNIQUES WITH MATLAB[®] AND SIMULINK[®]

ii

SYSTEM SIMULATION TECHNIQUES WITH MATLAB[®] AND SIMULINK[®]

Dingyü Xue Northeastern University, China

YangQuan Chen University of California, Merced, USA

WILEY

This edition first published 2014 © 2014 John Wiley & Sons, Ltd

Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

 $MATLAB^{(B)}$ is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB^(B) software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB^(B) software.

Library of Congress Cataloging-in-Publication Data

Xue, Dingyü.

System simulation techniques with MATLAB and Simulink / Dingyü Xue, YangQuan Chen. 1 online resource.
Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
ISBN 978-1-118-69435-0 (Adobe PDF) – ISBN 978-1-118-69437-4 (cPub) – ISBN 978-1-118-64792-9 (cloth)
1. System analysis–Data processing. 2. Computer simulation. 3. MATLAB. 4. SIMULINK. I. Chen, YangQuan, 1966– II. Title.
T57.62
620.00285'53-dc23

2013025348

A catalogue record for this book is available from the British Library.

ISBN: 978-1-118-64792-9

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

1 2014

Contents

Forew	Foreword x		xiii
Prefac	Preface		XV
1		uction to System Simulation Techniques and Applications	1
1.1		ew of System Simulation Techniques	1
1.2	-	pment of Simulation Software	2
	1.2.1	1 5 0	2
	1.2.2	Development of Simulation Software and Languages	4
1.3		ction to MATLAB	5
	1.3.1	5 5 5 1 5	5
	1.3.2	Characteristics of MATLAB	6
1.4		re of the Book	7
	1.4.1		7
	1.4.2		8
	1.4.3	Fonts Used in this Book	8
	Exercis		9
	Referen	nces	9
2	Funda	mentals of MATLAB Programming	11
2.1	MATL	AB Environment	11
	2.1.1	MATLAB Interface	11
	2.1.2	MATLAB On-line Help and Documentation	11
2.2 Data		ypes in MATLAB	13
	2.2.1	Constants and Variables	13
	2.2.2	Structure of MATLAB Statements	13
	2.2.3	Matrix Representation in MATLAB	14
	2.2.4	Multi-dimensional Arrays	15
2.3	Matrix	Computations in MATLAB	16
	2.3.1	Algebraic Computation	16
	2.3.2	Logical Operations	19
	2.3.3	Comparisons and Relationships	20
	2.3.4	Data Type Conversion	20
2.4	Flow St	tructures	21
	2.4.1	Loop Structures	21
	2.4.2		22
	2.4.3	Switches	23
	2.4.4	Trial Structure	23

vi			Contents
2.5	Program	mming and Tactics of MATLAB Functions	23
2.5	2.5.1	Structures of MATLAB Functions	23
	2.5.2	Handling Variable Numbers of Arguments	26
	2.5.3	Debugging of MATLAB Functions	26
	2.5.4	Pseudo Codes	27
2.6		mensional Graphics in MATLAB	27
	2.6.1	Basic Two-dimensional Graphics	28
	2.6.2	Plotting Functions with Other Options	29
	2.6.3	Labeling MATLAB Graphics	30
	2.6.4	Adding Texts and Other Objects to Plots	30
	2.6.5	Other Graphics Functions with Applications	31
	2.6.6	Plotting Implicit Functions	32
2.7	Three-o	dimensional Graphics	33
	2.7.1	Three-dimensional Curves	33
	2.7.2	Surface Plots	35
	2.7.3	Local Processing of Graphics	36
2.8	Graphi	cal User Interface Design in MATLAB	36
	2.8.1	Graphical User Interface Tool – Guide	37
	2.8.2	Handle Graphics and Properties of Objects	38
	2.8.3	Menu System Design	43
	2.8.4	Illustrative Examples in GUI Design	43
	2.8.5	Toolbar Design	48
	2.8.6	Embedding ActiveX Components in GUIs	51
2.9	Accele	rating MATLAB Functions	52
	2.9.1	Execution Time and Profiles of MATLAB Functions	52
	2.9.2	Suggestions for Accelerating MATLAB Functions	53
	2.9.3	Mex Interface Design	55
	Exercis	Ses	60
	Referen	nces	63
3		AB Applications in Scientific Computations	65
3.1	•	ical and Numerical Solutions	66
3.2		ns to Linear Algebra Problems	67
	3.2.1	Inputting Special Matrices	67
		Matrix Analysis and Computation	69
	3.2.3	Inverse and Pseudo Inverse of Matrices	72
	3.2.4	Similarity Transform and Decomposition of Matrices	74
	3.2.5	Eigenvalues and Eigenvectors of Matrices	78
	3.2.6	Solution of Matrix Equations	79
	3.2.7	Nonlinear Matrix Functions	83
3.3		ns of Calculus Problems	85
	3.3.1	Analytical Solutions to Calculus Problems	85
	3.3.2	Numerical Difference and Differentiation	87
	3.3.3	Numerical Integration	89
2.4	3.3.4	Numerical Multiple Integration	90
3.4		ns of Ordinary Differential Equations	91
	3.4.1	Numerical Methods of Ordinary Differential Equations	91
	3.4.2	MATLAB Solutions to ODE Problems	92

Contents

••
3/11
VII I

	3.4.3	Conversion of ODE Sets	99
	3.4.4	Validation of Numerical ODE Solutions	101
	3.4.5	Solutions to Differential Algebraic Equations	102
	3.4.6	Solutions to Linear Stochastic Differential Equations	104
	3.4.7	Analytical Solutions to ODEs	107
	3.4.8	Numerical Laplace Transforms in ODE Solutions	108
3.5	Nonlin	ear Equation Solutions and Optimization	110
	3.5.1	Solutions of Nonlinear Equations	110
	3.5.2	Solutions to Nonlinear Equations with Multiple Solutions	113
	3.5.3	Unconstrained Optimization	116
	3.5.4	Linear Programming	117
	3.5.5	Quadratic Programming	118
	3.5.6	General Nonlinear Programming	118
	3.5.7	Global Search Methods in Optimization Problems	120
3.6	Dynam	ic Programming and its Applications in Path Planning	120
	3.6.1	Matrix Representation of Graphs	120
	3.6.2	Optimal Path Planning of Oriented Graphs	121
	3.6.3	Optimal Path Planning of Graphs	123
3.7	Data In	terpolation and Statistical Analysis	124
	3.7.1	Interpolation of One-dimensional Data	124
	3.7.2	Interpolation of Two-dimensional Data	126
	3.7.3	Least Squares Curve Fitting	129
	3.7.4	Data Sorting	129
	3.7.5	Fast Fourier Transform	130
	3.7.6	Data Analysis and Statistics	131
	Exercis		136
	Referen	nces	142
4	Mathe	matical Modeling and Simulation with Simulink	145
4.1		Description of the Simulink Block Library	146
	4.1.1	Signal Sources	147
	4.1.2	Continuous Blocks	148
	4.1.3	Discrete-time Blocks	150
	4.1.4	Lookup Table Blocks	151
	4.1.5	User-defined Functions	151
	4.1.6	Math Blocks	152
	4.1.7	Logic and Bit Operation Blocks	153
	4.1.8	Nonlinearity Blocks	153
	4.1.9	Output Blocks	154
	4.1.10	Signal Related Blocks	155
	4.1.11	Ports and Subsystem Blocks	156
	4.1.12	Commonly Used Blocks	156
	4.1.13	Other Toolboxes and Blocksets	157
4.2		nk Modeling	159
	4.2.1	Establishing a Model Window	159
	4.2.2	Connecting and Simple Manipulation of Blocks	159
	4.2.3	Parameter Modification in Blocks	162

viii			Contents	
4.3	Model	Manipulation and Simulation Analysis	164	
	4.3.1	Model Creation and Fundamental Modeling Skills	164	
	4.3.2	Model Explorer	165	
	4.3.3	On-line Help System in Simulink	167	
	4.3.4	Output and Printing of Simulink Models	168	
	4.3.5	Simulink Environment Setting	168	
	4.3.6	Debugging Tools of Simulink Models	171	
4.4	Illustra	tive Examples of Simulink Modeling	172	
4.5		ng, Simulation and Analysis of Linear Systems	180	
	4.5.1	Modeling of Linear Systems	180	
	4.5.2	Analysis Interface for Linear Systems	182	
4.6	Simula	tion of Continuous Nonlinear Stochastic Systems	184	
	4.6.1	Simulation of Random Signals in Simulink	184	
	4.6.2	Statistical Analysis of Simulation Results	185	
	Exercis	bes	188	
	Referen	nces	191	
5	Comm	only Used Blocks and Intermediate-level Modeling Skills	193	
5.1	Commo	only Used Blocks and Modeling Skills	193	
	5.1.1	Examples of Vectorized Blocks	193	
	5.1.2	Signals Labeling in Simulink Models	195	
	5.1.3	Algebraic Loop and its Elimination in Simulink Models	197	
	5.1.4	Zero-crossing Detection and Simulation of Simulink Models	201	
5.2	Modeling and Simulation of Multivariable Linear Systems		202	
	5.2.1	Modeling State Space Multivariable Systems	202	
	5.2.2	Multivariable System Modeling with Control System Toolbox	205	
5.3	Nonlinear Components with Lookup Table Blocks			
	5.3.1	Single-valued Nonlinearities	209	
	5.3.2	Multi-valued Nonlinearities with Memories	211	
	5.3.3	Multi-dimensional Lookup Table Blocks	215	
	5.3.4	Code Realization of Static Nonlinearities	216	
5.4	Block I	Diagram Based Solutions of Differential Equations	217	
	5.4.1	Ordinary Differential Equations	218	
	5.4.2	Differential Algebraic Equations	219	
	5.4.3	Delayed Differential Equations	221	
	5.4.4	Switching Differential Equations	224	
	5.4.5	Fractional-order Differential Equations	225	
5.5	-	Block Library	226	
	5.5.1	Output Block Group	227	
	5.5.2	Examples of Output Blocks	229	
	5.5.3	Model Parameter Display and Model Browser	233	
	5.5.4	Gauge Display of Signals	234	
	5.5.5	Digital Signal Processing Outputs	237 238	
5.6	Three-dimensional Animation of Simulation Results			
	5.6.1	Fundamentals of Virtual Reality	238	
	5.6.2	V-realm Software and World Modeling	239	
	5.6.3	Browsing Virtual Reality World with MATLAB	242	
	5.6.4	Virtual Reality World Driven by Simulink Models	243	

Conte	ents		ix
5.7	Subsyst	ems and Block Masking Techniques	245
5.7	5.7.1	Building Subsystems	243 245
	5.7.2	Conditional Subsystems	245
	5.7.3	Masking Subsystems	240
	5.7.4	Constructing Users' Own Block Library	256
	5.7.5	An Illustrative Example: F-14 Aircraft Simulation	250
	Exercis		260
	Referen		264
6	Advand	ed Techniques in Simulink Modeling and Applications	265
6.1		Ind-line Modeling in Simulink	265
	6.1.1	Simulink Models and File Manipulations	265
	6.1.2	Simulink Models and Model Files	266
	6.1.3	Drawing Block Diagrams with MATLAB Commands	267
6.2	System	Simulation and Linearization	272
	6.2.1	Execution of Simulation Process	272
	6.2.2	Linearization of Nonlinear Systems	274
	6.2.3	Padé Approximation to Pure Time Delays	278
6.3	S-functi	ion Programming and Applications	280
	6.3.1	Writing S-functions in MATLAB	281
	6.3.2	Application Example of S-functions: Simulation of ADRC Systems	284
	6.3.3	Level-2 S-function Programming	290
	6.3.4	Writing S-functions in C	293
	6.3.5	Masking an S-function Block	295
6.4	Exampl	es of Optimization in Simulation: Optimal Controller Design Applications	296
	6.4.1	Optimal Criterion Selection for Servo Control Systems	297
	6.4.2	Objective Function Creation and Optimal Controller Design	298
	6.4.3	Global Optimization Approach	301
	Exercise	es	303
	Referen	ices	306
7	Modeli	ng and Simulation of Engineering Systems	307
7.1	Physica	l System Modeling with Simscape	308
	7.1.1	Limitations of Conventional Modeling Methodology	308
	7.1.2	Introduction to Simscape	309
	7.1.3	Overview of Simscape Foundation Library	310
	7.1.4	Conversions of Two Types of Signals	312
	7.1.5	Brief Description of the Simscape Language	315
	7.1.6	Modeling and Simulation of Complicated Electrical Network	316
7.2	*	tion of SimPowerSystems	318
7.3		ng and Simulation of Electronic Systems	322
	7.3.1	Introduction to the SimElectronics Blockset	323
	7.3.2	Modeling of Analogue Electronic Circuits	325
	7.3.3	Modeling of Digital Electronic Circuits	328
	7.3.4	Modeling of Power Electronics Circuits	332
-	7.3.5	Embedding Spice Models in Simulink	333
7.4		ion of Motors and Electric Drive Systems	336
	7.4.1	Simulation of DC Motor Drive Systems	336
	7.4.2	Simulation of AC Motor Drive Systems	341

X

7.5

8 8.1

8.2

		Contents
Modeli	ng and Simulation of Mechanical Systems	346
7.5.1	Simulation of Simple Mechanical Systems	346
7.5.2	Introduction to the SimMechanics Blockset	348
7.5.3	Examples of Mechanical System Simulation	352
7.5.4	Interfacing Simulink with Other CAD Tools	357
Exercis	ies	360
Referen	nces	362
Model	ing and Simulation of Non-Engineering Systems	363
	ng and Simulation of Pharmacokinetics Systems	363
8.1.1	Introduction to Pharmacokinetics	363
8.1.2	Compartment Modeling of Pharmacokinetics Systems	364
8.1.3	Physiologically based Pharmacokinetic Modeling with Simulink	367
8.1.4	Pharmacodynamic Modeling	374
8.1.5	Nonlinear Generalized Predictive Control of Anesthesia	375
Video a	and Image Processing Systems	376
8.2.1	Importing Pictures and Videos into MATLAB	377
8.2.2	Display and Output of Videos and Images	378
8.2.3	Fundamental Blocks for Video and Image Processing	380
8.2.4	Processing of Video and Images through Examples	383
8.2.5	Real-time Processing of Videos and Images	389
Finite S	State Machine Simulation and Stateflow Applications	390
8.3.1	Introduction of Finite State Machines	391

8.3	Finite State Machine Simulation and Stateflow Applications		390
	8.3.1	Introduction of Finite State Machines	391
	8.3.2	Fundamentals of Stateflow	391
	8.3.3	Commonly Used Commands in Stateflow	395
	8.3.4	Application Examples with Stateflow	396
	8.3.5	Describing Flows with Stateflow	408
8.4	Simulation of Discrete Event Systems with SimEvents		408
	8.4.1	Concepts of Discrete Event Dynamic Systems	408
	8.4.2	Introduction to SimEvents	409
	8.4.3	Modeling and Simulation of Queuing Systems	412
	Exercises		416
	References		417

9	Hardw	are-in-the-loop Simulation and Real-time Control	419
9.1	Simulink and Real-Time Workshop		419
	9.1.1	Introduction to Hardware-in-the-loop Techniques	419
	9.1.2	Standalone Code Generation	420
	9.1.3	Real-time Simulation and Target Computer Simulation	422
	9.1.4	Hardware-in-the-loop Simulation with xPC Target	426
9.2	Introduction to dSPACE and its Blocks		429
	9.2.1	Introduction to dSPACE	429
	9.2.2	dSPACE Block Library	430
9.3	Introduction to Quanser and its Blocks		430
	9.3.1	Introduction to Quanser	430
	9.3.2	Quanser Block Library	431
	9.3.3	Plants in Quanser Rotary Series	433

Contents			xi
9.4	Hardwa	are-in-the-loop Simulation and Real-time Control Examples	433
	9.4.1	Mathematical Descriptions of the Plants	433
	9.4.2	Quanser Real-time Control Experimentation	436
	9.4.3	dSPACE Real-time Control Experimentation	438
9.5	Low Cost Solutions with NIAT		
	9.5.1	Commonly Used Blocks in the NIAT Library	440
	9.5.2	Modeling and Simulation of Pendubot Systems	440
	9.5.3	Hardware-in-the-loop Simulation Experiment of Pendubot Systems	445
9.6	HIL Solutions with Even Lower Costs		446
	9.6.1	Arduino Interface Installation and Settings	446
	9.6.2	Applications of Arduino Control	447
	9.6.3	The MESABox	449
	Exercises		450
	References		451
Арро	endix: Fu	nctions and Models	453
Inde	X		459

xii

Foreword

It is a pleasure for me to write a foreword for this book by Dingyü Xue and YangQuan Chen. Dingyü came to the University of Sussex in 1988 to study for his DPhil with me. At the time, computing, relating to control engineering, was starting to move from Fortran to MATLAB, first on terminals connected to a central mainframe computer and then to standalone desktop machines. Digital simulation languages, which had replaced analog computers, were also heading in the same direction. The original version of MATLAB used on the mainframe was written in Fortran, followed by the much faster C version a few years later. One great advantage of MATLAB was that its fundamental data type was the matrix, the concept of which I first came across in the now little known language APL. APL was a very efficient coding language, so much so that a fair comment would be that it required as many lines of commenting as coding for a person to understand a program, and it also required a special keyboard. Other major features of MATLAB were the very good graph plotting facilities and the tools available for providing an excellent graphical user interface for a program. The graphical features provided for programming and for the display of results in Simulink were also a major improvement over the features of existing digital simulation languages.

In the early days of MATLAB, I had several general programs on the mainframe computer which used a question and answer interface and gave the output as a printed plot of points. Dingyü, in doing his research, developed a deep understanding of MATLAB and the capabilities of the GUI, one eventual result of which was the program CtrlLAB which is freely available from the MathWorks library. The genesis of this was a program described in my 1962 doctoral dissertation written in Manchester Autocode, which used paper tape to provide the data input and the values of points as output. Intermediate stages had seen its coding in APL and MATLAB using a question and answer format. Dingyü has therefore used MATLAB and Simulink avidly for the past 25 years, including, I suspect, most of the versions issued over that period. He has spent thousands of hours writing new code and modifying existing routines to be compatible, or to take advantage of new features in the changing versions of MATLAB and Simulink. I have known YangQuan Chen – whom Dingyü first met in Singapore about twenty years ago – for the past ten years. Since they first met, they have cooperated a lot with their complementary research interests being united by their use of MATLAB and Simulink.

This book is therefore written by two people who have had a wealth of first-hand experience of using MATLAB/Simulink in control engineering research and teaching its use to students in China and the USA in both mathematical and control-related courses for over two decades. Also, much of the material has been available in earlier versions of the book in Chinese, where it has been extremely well received, and it is used at many universities. Feedback from these publications has provided suggestions for improvements which have been incorporated here.

The coverage of the book is such that it provides a basic introduction to the use of MATLAB/ Simulink before going on to address their usage in many facets of mathematics and engineering. After

Foreword

covering the general aspects of programming and computation in MATLAB, details of applications in many areas of scientific computation are given, covering areas such as differential equations and optimization. Chapters 3–6 are primarily devoted to Simulink, starting from consideration of the functions of the various blocks and continuing to describe a variety of applications covering topics such as linear and nonlinear system simulations, multivariable systems, vectorized blocks, output blocks, the animation of results, linearization of nonlinear systems, S-functions and optimization in simulations. Chapter 7 discusses the more specific engineering application blocks for electronic systems, electrical drive systems and so on, that are available in Simscape, and in chapter 8 some simulation applications for non-engineering systems, image processing and finite state machines are described which show the wide applicability of modeling and simulation techniques.

I'm sure that this book with its many examples and problems will prove a major asset to you, the reader, in learning the simulation capabilities of MATLAB/Simulink, but as Dingyü and YangQuan would no doubt confirm, the only way to really learn is by the hard work of "doing". So attempt the exercises and also design your own to possibly clarify certain points and gain greater understanding.

Derek P Atherton Professor Emeritus University of Sussex, UK March 2013

xiv

Preface

As Confucius has said, "*The mechanic, who wishes to do his work well, must first sharpen his tools*", so MATLAB/Simulink is the right tool to solve problems in the field of systems simulation. It can free the scientist and engineer from tedious, laborious and error-prone work in low-level computer programming, and it is obvious that by the use of MATLAB and Simulink, the efficiencies of researchers can be significantly improved. In communities such as systems simulation and control engineering, MATLAB/Simulink is the de facto international computer language, and the importance of such a tool is being taught in universities worldwide.

Although MATLAB itself was developed and advocated by mathematicians, it was in fact first acknowledged by researchers in the engineering community, and in particular, by the researchers in the field of control engineering. The development of MATLAB and Simulink received a significant amount of innovative contribution from scholars and researchers in the field of control engineering. Already, a significant number of toolboxes and blocksets are oriented to control problems. MATLAB itself has extremely strong capabilities for solving problems in scientific computation and system simulation, with its handy graphical facilities and integrated simulation facilities. It is being used by researchers in more and more engineering and other scientific fields, and it has huge potential and great applications possibilities in related fields.

The authors have been consistently using MATLAB in education and scientific research since 1988, and have had some of their MATLAB packages added to MATLAB Central. A significant amount of first-hand knowledge and experience have been accumulated.

The first author started introducing MATLAB into education more than twenty years ago, and has tried to instruct students in the use such tools. For instance, the book "Computer-aided control systems design — MATLAB languages and applications" published by Tsinghua University Press was regarded as the first of its kind and one of the best in China and has been cited by tens of thousands of journal papers and books. The second author has had more than ten years of experience of scientific research and education in universities in the United States, after his work in industry. He has built up a lot of experience in MATLAB/Simulink based simulation as well as hardware-in-the-loop simulation and real-time design of control systems. Two other books have also been written by the authors and introduced into English world, concentrating on, respectively, the fields of automatic control and scientific computation.

The first edition of this present book was published by Tsinghua University Press in Chinese in 2002, and the second edition was published there in 2011. It has been used as a textbook and reference book by many universities in China. With evolution of MATLAB, Simulink and related products, a lot of new material and innovative work has emerged. It is not possible to cover all the material in one book, so the material here was carefully chosen, and tailored to meet the demands of engineering students and researchers in the relevant disciplines. The current shape of this book was finalized in the course at the Northeastern University, China, and also by offering seminars and

xvi	Preface

series lectures at Utah State University in the USA, at Baosteel Co. Ltd and at Harbin Institute of Technology in China. Based on the programming and educational experiences of over twenty years, the authors have finally debuted the book to the English-speaking world, and we feel sure that this book will be welcomed by readers worldwide.

The educational work in this book, together with other related educational work, was directed and encouraged by the former supervisors, Professors Xingquan Ren and Xinhe Xu of Northeastern University, China, and Professor Derek P Atherton at Sussex University, UK. It was them who guided the first author into the field of system simulation and, in particular, into the paradise of MATLAB/Simulink programming and education.

A lot of suggestions were received during the preparation of related books, and among them, the authors are in particular grateful for the help given by Professor Hengjun Zhu of Beijing Jiaotong University, the late Professor Jingqing Han of the Institute of System Sciences of Academia Sinica, Professor Xiaohua Zhang of Harbin Institute of Technology, China, and Professor Igor Podlubny of the University of Kosice, Slovakia.

Fruitful discussions with colleagues Drs Feng Pan, Dali Chen, Ying Wei, Jianjiang Cui, Liangyong Wang, Zheng Fang resulted in some new ideas and materials in this book, and Zhuo Li in proofreading an early draft of the book. The Chapter 9.6 was based on contribution of MESA LAB Ph.D. students Brandon Stark, Zhuo Li and Brendan Smith of UC Merced.

We wish to thank editorial staffs of Wiley: Tom Carter, Project Editor; Paul Petralia and **Anne Hunt**. Copyediting by Paul Beverley is particularly appreciated!

This book was supported by the MathWorks Book Program, and MATLAB, Simulink and related products can be acquired from

MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098 USA

Tel:+01-508-647-7000, and FAX: +01-508-647-7101

Email: info@mathworks.com, Webpage: http://www.mathworks.com

Last but not least, the authors are grateful to their family members for the understanding and support during the years of working. Dingyü Xue would like to thank his wife, Jun Yang, and daughter Yang Xue, and YangQuan Chen would like to thank his wife, Huifang Dou, and his sons Duyun, David and Daniel.

Dingyü Xue, Northeastern University, China YangQuan Chen, University California, Merced, USA