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MOTIVATIONS

1 Motivations

Could the BATCH property of a batch process be
utilized for a better control performance?

What is iterative learning control (ILC)

learning is a bridge
between knowledge and experience

e knowledge: modeling, environment, and re-
lated uncertainties

e experience: repetitive operations, previous
{ control efforts, resulting errors}

OBJECTIVE of ILC: to utilize the system
repetitions as the experience to improve the system
control performance even under incomplete knowl-
edge of the system.
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Figure 1: Illustration of Iterative Learning



MOTIVATIONS

Postulates(Arimoto et al. 198)):

P1.

P2.

P3.

P4.
P5.

P6.

Every trial (pass, cycle, batch, iteration, rep-
etition) ends in a fixed time of duration 1" >
0.

A desired output y4(t) is given a priori over

0,T].

Repetition of the initial setting. z(0) = 2V,
for k=1,2,---.

Invariance of the system dynamics.

yr(t) measurable. Tracking error ex(t) =
yq(t) — yr(t) can be utilized to form wug,1(2).

Invertability. For a given y4(¢), 3 a unique
uq(t) that drives the system to produce the

Yya(t).
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Stmple D-type ILC Scheme
(Arimoto et al. 198}):

memory pool t : va(t)
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Figure 2: Block-Diagram of I[terative Learning
Control
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Control Task: to find a recursive control

law

ur1(t) = F(up(t), er(t), up—1(t), ep—1(t), - -,
uk-N+1(t); €r—n+1(t), ery1(t)) (1)

and a function norm || || such that ||eg(¢)| vanishes

as k tends to infinity.

e High-order Scheme;
e D-type or P-type;
o ...

Problems to consider:
e convergence

e robustness
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Stability (or convergence):

For an ILC updating law (1), to guarantee that
for a certain function norm of tracking error ||e(-)||

lexsall < [lexll, for &k =1,2, - (2)
or, in a stronger sense,
||6k—|—1H < HHGkH,fOI‘ k= ]-7 27 T (3)

with a constant 6 € (0,1).

Norms used:

IFll= max | f;|,

1<:<n

1<:<m 4

|Gl= max (D |gi; ),
1=1

In(t)x= sup e [[(t)]],

te[0,N]

where f = [f1, -, fau]? is a vector, G = [gi j]mxn
is a matrix and h(t) (t € [0, N]) is a real function.

Robustness: relaxed P1 - P6.
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Figure 3: A Chemical Batch Reactor

2 Batch Reactor Model

Block diagram:
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Model:
The reaction equations are given as follows:
r  dc — —a.k /
dt _ (1;]_ dC —|_ Q
dx 2nk
! i = —a2kp th VTN (4)
d
¥ = asnkgc
ar  _ dz u
. @ = Heegt e

where ¢ , £y and p are the concentrations of ini-
tiator, monomer and polymer respectively; T is
the temperature inside the reactor ( °K ). Q' is
assumed to be 0 which means that no additional
initiator is added during the reaction, i.e., all reac-
tants have been filled in the reactor at the begin-
ning. Reaction rate constants k;,i € {d,p,t} are
functions of T" where d, p, t represent the phases of
beginning, growing and stopping.
E.

ki = kiO eXp(_R—})7 1= dap7t° (5)
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Challenges:

e track a given trajectory (pattern) in a finite
time (batch duration) interval.

e in a point-wise manner
Iterative Learning Control,

e utilize the system’s repetition to compensate
or reject uncertainties and disturbances and
hence able to track the prescribed trajectory
in a finite interval.

e the control efforts of the current batch incor-
porate the control efforts and tracking errors
of the previous batch.



LEARNING CONTROL SCHEMES

3 Learning Control Schemes

e D-type ILC
e High-order ILC
e P-type plus feedback controller

e P-type CITE: current iteration tracking er-
ror



LEARNING CONTROL SCHEMES

D-type Iterative Learning Scheme

Qit1 = Q; + Kqéi(1), éi@éTd—Tz’ (6)

where K is the learning gain which is to be prop-
erly chosen such that e, — 0 as 2 — oo. The
convergence condition is that

11— CBKy4| < 1 (7)

where B and C are input distribution matrix and
output matrix respectively. In (4), the system in-
put is () and output is 7', hence CB = 1. Ky

should be selected to satisfy the condition | 1 —
Ky ‘< 1.
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High-order Iterative Learning Scheme

WHY HIGH-ORDER?

The First-order ILC

Consider Suguru Arimoto’s original ILC updat-
ing law

k
uer1(t) = up(t) + Tép(t) =T ) ¢é;(t)

7=0

along the ILC iteration number k direction, which
is in an integral (I) controller form.
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The Third-order ILC

Considering the PID form

k
w1 (t) = kpéy(t)+hr Y é;(O)+kp(éx(t)—ér—1(t))

7=0

will result in the following form of the ILC updat-
ing law

uk_|_1(t) = U (t) + I'eg, (t) + Flék_l(t) + Fgék_g(t).

where I' = kp + k; + kp, I'1 = —kp — 2kp and
I's = kp. This is a high-order iterative learning
controller.

WE CAN SAY:
High-order ILC can be better than the first-

order ILC, i.e., better ILC convergence performance
can be achieved by High-order ILC.
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In general, an N-th order D-type ILC updating
law is

N
Qiv1=Qi+ > Kaéijyi(t) (8)
j=1

where the learning gains should satisty that the
roots of (9) are inside the unit circle.

(1—CBKy,)z }:CBKdz'zo (9)

71=2

where z is one step shifting operator. A sufficient
condition is given by

N
|1-CBKy, |+ | CBKy, |<1. (10)

i=2



LEARNING CONTROL SCHEMES

/\\

P-type Iterative Learning Feedback Control

QI (1) + Q")

Kpe; (t)

Qi—1(t) + Kpei—1(t)

QI (t) + (K, + Kp)ei—1(t)
(11)
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P-type ILC with CITE

Consider the PlI-controller in the ILC iteration
direction as follows:

Qi(t) = k7 Y e;(t) + kpei(t). (12)
=0

Writing (12) in an iterative form, we have

Qi(t) = Qi—1(t) + krei(t) + kp(ei(t) —ei—1(t))
= Qi—l(t) + eri (t) —+ Kplei_l(t) (13)
where K, = k} + k%, K,; = —k’». Updating law

(13) is called as the ILC with Current Iteration
Tracking Error (CITE).
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SIMULATION RESULTS

4 Simulation Results

T(t) and Td(t)

500
480 |-
460 |-
ST Hh"m_q__.""--._
440 S e
Y
420 e
400 -
380 -
360 |-
7 T(1), Kp=5;
340 e —— Td(1), desired temp. profile;
s = - T(1), Kp=10.
P
320 - o
<
300 Al .. 1 L 1 1 1 1 1 1 L
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time t(sec.)

Figure 4: Responses for simple P feedback con-
trollers
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Figure 5: Convergence comparisons for D-type
ILC schemes
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SIMULATION RESULTS
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Figure 6: Convergence comparisons for P-I type
(ILC4+CITE) schemes
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Figure 7: Convergence comparisons for P-PI type
(ILC+4CITE) schemes
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SIMULATION RESULTS
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Figure 8: Convergence comparisons for P-type
scheme
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Figure 9: Convergence comparisons for P-PI type
(ILC+CITE) schemes
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SIMULATION RESULTS
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Figure 10: Converged system states and input (at
the 10th ILC iteration)
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5 Observations

e Suitably designed feedback controller is help-
ful to ILC convergence;

e Higher-order ILC can be better than conven-
tionally used first-order one;

e P-type is effective.

Among the proposed schemes, the CITE P-
type scheme is the most preferable due to its sim-
plicity and effectiveness.
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6 Concluding Remarks

e [terative Learning Control is shown to be ap-
plicable to Batch Process Control.

e Simulations performed for illustration.

Future work:
e validation using a pilot plant.

e exploring various learning gain-tuning meth-
ods.

e convergence analysis under practical limits.
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