

HANDBOOK OF DIGITAL TWINS

Edited by **Zhihan Lyu**

Handbook of Digital Twins

Over the last two decades, Digital Twins (DTs) have become the intelligent representation of future development in industrial production and daily life. Consisting of over 50 chapters by more than 100 contributors, this comprehensive handbook explains the concept, architecture, design specification and application scenarios of DTs.

As a virtual model of a process, product or service to pair the virtual and physical worlds, DTs allow data analysis and system monitoring by using simulations. The fast-growing technology has been widely studied and developed in recent years. Featured with centralization, integrity and dynamics, it is cost-effective to drive innovation and performance. Many fields saw the adaptation and implementation across industrial production, healthcare, smart city, transportation and logistics. World-famous enterprises such as Siemens, Tesla, ANSYS and General Electric have built smart factories and pioneered digital production, heading towards Industry 4.0.

This book aims to provide an in-depth understanding and reference of DTs to technical personnel in the field, students and scholars of related majors, and general readers interested in intelligent industrial manufacturing.

Dr Zhihan Lyu is an Associate Professor at the Department of Game Design, Uppsala University, Sweden. He is also IEEE Senior Member, British Computer Society Fellow, ACM Distinguished Speaker, Career-Long Scientific Influence Rankings of Stanford's Top 2% Scientists, Marie Skłodowska-Curie Fellow, Clarivate Highly Cited Researcher and Elsevier Highly Cited Chinese Researcher. He has contributed 300 papers including more than 90 papers on IEEE/ACM Transactions. He is the Editor-in-Chief of Internet of Things and Cyber-Physical Systems (KeAi), an Associate Editor of a few journals including *ACM TOMM*, *IEEE TITS*, *IEEE TNSM*, *IEEE TCSS*, *IEEE TNSE* and *IEEE CEM*. He has reviewed 400 papers. He has received more than 20 awards from China, Europe and IEEE. He has given more than 80 invited talks for universities and companies in Europe and China. He has given 20 keynote speeches at international conferences.

Handbook of Digital Twins

Edited by **Zhihan Lyu**

Front cover image: Gorodenkoff/Shutterstock

First edition published 2024 by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 selection and editorial matter, Zhihan Lyu; individual chapters, the contributors

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright. com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-54607-0 (hbk)

ISBN: 978-1-032-54608-7 (pbk) ISBN: 978-1-003-42572-4 (ebk)

DOI: 10.1201/9781003425724

Typeset in Palatino by codeMantra

Contents

Cor	ntributors	xi
Pa	rt 1 Introduction	
1.	Overview of Digital TwinsZhihan Lyu and Xiaocheng Liu	3
Pa	rt 2 Thinking about Digital Twins	
2.	What Is Digital and What Are We Twinning?: A Conceptual Model to Make Sense of Digital Twins	13
3.	When Digital Twin Meets Network Engineering and Operations	30
4.	Cognitive Digital Twins	51
5.	Structural Integrity Preservation of Built Cultural Heritage: How Can Digital Twins Help? Annalaura Vuoto, Marco Francesco Funari, and Paulo B. Lourenço	66
Pa	rt 3 Digital Twins Technology	
6.	Key Technologies of Digital Twins: A Model-Based Perspective Serge P. Kovalyov	85
7.	A Generic Deployment Methodology for Digital Twins – First Building Blocks	02
8.	Automated Inference of Simulators in Digital Twins	22

vi Contents

9.	Digital Twin for Federated Analytics Applications	. 149
10.	Blockchain-Based Digital Twin Design Esra Kumaş, Hamide Özyürek, Serdar Çelik, and Zeynep Baysal	167
11.	Physics-Based Digital Twins Leveraging Competitive Edge in Novel Markets	185
Pa	rt 4 Digital Twins Design and Standard	
12.	Digital Twin Model Formal Specification and Software Design Yevgeniya Sulema, Andreas Pester, Ivan Dychka, and Olga Sulema	203
13.	Layering Abstractions for Design-Integrated Engineering of Cyber-Physical Systems	. 221
14.	Issues in Human-Centric HMI Design for Digital Twins Vivek Kant and Jayasurya Salem Sudakaran	238
15.	Toward a New Generation of Design Tools for the Digital Multiverse	256
16.	A Service Design and Systems Thinking Approach to Enabling New Value Propositions in Digital Twins with AI Technologies Shaun West, Cecilia Lee, Utpal Mangla, and Atul Gupta	. 274
17.	Tokenized Digital Twins for Society 5.0 <i>Abdeljalil Beniiche and Martin Maier</i>	291
18.	Urban Digital Twin as a Socio-Technical Construct Timo Ruohomäki, Heli Ponto, Ville Santala, and Juho-Pekka Virtanen	308
19.	Design and Operationalization of Digital Twins in Robotized Applications: Architecture and Opportunities	321

Part 5 Digital Twins in Management	
20. Management of Digital Twins Complex System Based on Interaction	
Vladimir Shvedenko, Valeria Shvedenko, Oleg Schekochikhin, and Andrey Mozokhin	!
21. Artificial Intelligence Enhanced Cognitive Digital Twins Dynamic Building Knowledge Management Gozde Basak Ozturk and Busra Ozen	
22. On the Design of a Digital Twin for Maintenance Plannin Frits van Rooij and Philip Scarf	1g 370
23. Organizational Barriers and Enablers in Reaching Matur	
Digital Twin Technology Päivi Aaltonen, Laavanya Ramaul, Emil Kurvinen, Antero Kutvo and Andre Nemeh	
24. Digital Twin Development – Understanding Tacit Assets . Petra Müller-Csernetzky, Shaun West, and Oliver Stoll	401
25. Digital Twins for Lifecycle Management: The Digital Thr from Design to Operation in the AECO Sector	
Part 6 Digital Twins in Industry	
26. Digital Twins for Process Industries Seppo Sierla	441
27. Digital Twins in the Manufacturing Industry	456
28. Cognitive Digital Twins in the Process Industries	
29. Development of the Digital Twin for the Ultraprecision Diamond Turning System and Its Application Perspective Ning Gou, Shangkuan Liu, David Christopher, and Kai Cheng	?s 498

viii Contents

30.	Conceptualization and Design of a Digital Twin for Industrial Logistic Systems: An Application in the Shipbuilding Industry 515 Giuseppe Aiello, Islam Asem Salah Abusohyon, Salvatore Quaranta, and Giulia Marcon
31.	Digital Twin Applications in Electrical Machines Diagnostics 531 <i>Georgios Falekas, Ilias Palaiologou, Zafeirios Kolidakis, and Athanasios Karlis</i>
32.	Building a Digital Twin – Features for Veneer Production Lines – Observations on the Discrepancies between Theory and Practice
33.	Experiments as DTs
34.	Digital Twins-Enabled Smart Control Engineering and Smart Predictive Maintenance
Pa	rt 7 Digital Twins in Building
35.	3D City Models in Planning Activities: From a Theoretical Study to an Innovative Practical Application
36.	
	Exploiting Virtual Reality to Dynamically Assess Sustainability of Buildings through Digital Twin
37.	of Buildings through Digital Twin
	of Buildings through Digital Twin
38.	of Buildings through Digital Twin

40.	Developing a Construction Digital Twin for Bridges: A Case Study of Construction Control of Long-Span Rigid Skeleton Arch Bridge	37
	Chunli Ying, Long Chen, Daguang Han, Kaixin Hu, Yu Zhang, Guoqian Ren, Yanhui Liu, Yongquan Dong, and Yatong Yuan	
41.	Urban-Scale Digital Twins and Sustainable Environmental Design: Mobility Justice and Big Data)5
Pa	rt 8 Digital Twins in Transportation	
42.	Digital Twins in Transportation and Logistics	25
43.	Digital Twin–Driven Damage Diagnosis and Prognosis of Complex Aircraft Structures	16
44.	Digital Twins and Path Planning for Aerial Inspections	57
Pa	rt 9 Digital Twins in Energy	
45.	Digital Twin Security of the Cyber-Physical Water Supply System	37
46.	Digital Twin in Smart Grid)4
47.	Digital Twins in Graphene Technology	21
48.	Applications of Triboelectric Nanogenerator in Digital Twin Technology	10

x Contents

Pa	rt 10 Digital Twins in Medicine and Life	
49.	Digital Twins in the Pharmaceutical Industry	857
50.	Human Body Digital Twins: Technologies and Applications	872
51.	Digital Twins for Proactive and Personalized Healthcare – Challenges and Opportunities	888

Contributors

Päivi Aaltonen

MORE SIM Research Platform, LUT School of Business and Administration LUT University Lappeenranta, Finland

Islam Asem Salah Abusohyon

Università degli studi di Palermo Palermo, Italy

Sofia Agostinelli

CITERA Research Centre Sapienza University of Rome Rome, Italy

Ashwin Agrawal

Civil and Environmental Engineering Stanford University Stanford, CA

Giuseppe Aiello

Università degli studi di Palermo Palermo, Italy

George Arampatzis

School of Production Engineering and Management Technical University of Crete Chania, Greece

Rebeca Arista

Industrial System Digital Continuity Specialist at Airbus SAS Leiden, the Netherlands

Zeynep Baysal

Ostim Technical University OSTIM, Turkey

Marcelo Behar

PricewaterhouseCoopers LLP New York, New York

Abdeljalil Beniiche

Optical Zeitgeist Laboratory Institut national de la recherche scientifique Quebec, Canada

Antonio Bono

Department of Computer Science, Modeling, Electronics and Systems Engineering University of Calabria Rende, Italy

Hui Cai

Department of Electrical
Engineering and Information
Technology
Ilmenau University of Technology
Ilmenau, Germany

Serdar Çelik

Ostim Technical University Ostim, Turkey

Marianna Charitonidou

Faculty of Art Theory and History Athens School of Fine Arts Athens, Greece

Dawei Chen

InfoTech Labs Toyota Motor North America Plano, Texas xii Contributors

Long Chen

School of Architecture, Building and Civil Engineering Loughborough University Loughborough, England

YangQuan Chen

University of California Merced Merced, California

Kai Cheng

Brunel University London Uxbridge, England

David Christopher

Brunel University London Uxbridge, England

Chiara Cimino

Associate Professor at University of Turin
Department of Management,
Economics, and Industrial
Engineering
Politecnico di Milano
Milan, Lombardia, Italy

Marianna Crognale

Department of Structural and Geotechnical Engineering Sapienza University of Rome Rome, Italy

Paul M D'Alessandro

Customer Transformation PricewaterhouseCoopers LLP New York, New York

Luigi D'Alfonso

Department of Computer Science, Modeling, Electronics and Systems Engineering (DIMES) University of Calabria Rende, Italy

João Miguel da Costa Sousa

IDMEC, Instituto Superior Técnico Universidade de Lisboa Lisbon, Portugal

Susana Margarida da Silva Vieira

IDMEC, Instituto Superior Técnico Universidade de Lisboa Lisbon, Portugal

Yanning Dai

School of Instrumentation and Optoelectronic Engineering Beihang University Beijing, China

Istvan David

Université de Montréal Montreal, Canada

Melissa De Iuliis

Department of Structural and Geotechnical Engineering Sapienza University of Rome Rome, Italy

José Ferreira de Rezende

Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro, Brazil

Marianne T DeWitt

Customer Transformation PricewaterhouseCoopers LLP New York, New York

Pedro Henrique Diniz

Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro, Brazil Contributors xiii

Leiting Dong

School of Aeronautic Science and Engineering Beihang University Beijing, China

Yongquan Dong

Chongqing Jiaotong University Chongqing, China

Ivan Dychka

Faculty of Applied Mathematics National Technical University of Ukraine Kyiv, Ukraine

Pavlos Eirinakis

Department of Industrial Management and Technology University of Piraeus Piraeus, Greece

Georgios Falekas

Department of Electrical and Computer Engineering Democritus University of Thrace Komotini, Greece

Giuseppe Fedele

Department of Informatics, Modeling, Electronics and Systems Engineering (DIMES) University of Calabria Rende, Italy

André Filipe Simões Ferreira

Hovione Farmaciência S.A. Loures, Portugal

Gianni Ferretti

Automatic Control Cremona campus of the Politecnico di Milano Cremona, Italy

Anselmo Filice

Department of Environmental Engineering, Afference to Department of Informatics, Modeling, Electronics and Systems Engineering (DIMES) University of Calabria Rende, Italy

Martin Fischer

Civil and Environmental Engineering Stanford University Stanford, California

Nikolai Fomin

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences Moscow, Russia

Marco Francesco Funari

Department of Civil and Environmental Engineering University of Surrey Guildford, England

Shuo Gao

School of Instrumentation and Optoelectronic Engineering Beihang University Beijing, China

Gabriele Garnero

Interuniversity Department of Regional and Urban Studies and Planning Università degli Studi di Torino Turin, Italy

Vincenzo Gattulli

Department of Structural and Geotechnical Engineering Sapienza University of Rome Rome, Italy xiv Contributors

Behnam Ghalamchi

Mechanical Engineering California Polytechnique State University San Luis Obispo, California

Ning Gou

Brunel University London Uxbridge, England

Jascha Grübel

Cognitive Science ETH Zurich Zurich, Switzerland

Furkan Guc

University of California Merced Merced, California

Dayalan R. Gunasegaram

CSIRO Manufacturing Geelong, Australia

Atul Gupta

Merative Ann Arbor, Michigan

Mohammed Adel Hamzaoui

Lab-STICC Université Bretagne Sud Lorient Lorient, France

Daguang Han

School of Civil Engineering Southeast University Nanjing, China

Zhu Han

Department of Electrical and Computer Engineering University of Houston Houston, Texas

Richard Heininger

Business Informatics-Communications Engineering Johannes Kepler University Linz, Austria

Anca-Simona Horvath

Research Laboratory for Art and Technology Aalborg University Aalborg, Denmark

Kaixin Hu

Smart City and Sustainable Development Academy Chongqing Jiaotong University Chongqing, China

Thomas Ernst Jost

Business Informatics-Communications Engineering Johannes Kepler University Linz, Austria

Nathalie Julien

Lab-STICC Université Bretagne Sud Lorient Lorient, France

Eric Guiffo Kaigom

Computer Science and Engineering Frankfurt University of Applied Sciences Frankfurt, Germany

Kostas Kalaboukas

Gruppo Maggioli Santarcangelo di Romagna, Greece Contributors xv

Vivek Kant

Human Factors and Sociotechnical Systems Studios IDC School of Design Indian Institute of Technology Bombay Mumbai, India

Athanasios Karlis

Department of Electrical and Computer Engineering Democritus University of Thrace Komotini, Greece

Dimitris Kiritsis

Sustainable Manufacturing Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne, Switzerland

Zafeirios Kolidakis

Department of Electrical and Computer Engineering Democritus University of Thrace Komotini, Greece

Mariusz Kostrzewski

Warsaw University of Technology Faculty of Transport Warszawa, Poland

Serge P. Kovalyov

Institute of Control Sciences of Russian Academy of Sciences Moscow, Russia

Esra Kumaş

Ostim Technical University Ostim, Turkey

Emil Kurvinen

Materials and Mechanical Engineering Research Unit, Machine and Vehicle Design University of Oulu Oulu, Finland

Antero Kutvonen

LUT School of Engineering Science LUT University Lappeenranta, Finland

Cecilia Lee

Royal College of Art London, United Kingdom

Alberto Leva

Automatic Control at Politecnico di Milano Milan, Italy

Shangkuan Liu

Brunel University London Uxbridge, England

Xiaocheng Liu

School of Computer Science and Technology Qingdao University Qingdao, China

Yanhui Liu

Southwest Jiaotong University Chengdu, China

Stavros Lounis

ELTRUN E-Business Research Center, Department of Management Science and Technology Athens University of Economics and Business Athens, Greece xvi Contributors

Paulo B. Lourenço

Department of Civil Engineering University of Minho Minho, Portugal

Jinzhi Lu

Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne, Switzerland

Zhihan Lyu

Department of Game Design Uppsala University Uppsala, Sweden

Martin Maier

Optical Zeitgeist Laboratory Institut national de la recherche scientifique Quebec, Canada

Utpal Mangla

Telco Industry & EDGE Clouds IBM Toronto, Canada

Giulia Marcon

University of Palermo Palermo, Italy

Roman V. Meshcheryakov

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences Moscow, Russia

Andrey Mozokhin

Department of Automated Systems of Process Control of SMGMA Group Moscow, Russia

Petra Müller-Csernetzky

Design Management and Innovation Lucerne School of Engineering and Architecture Lucerne, Switzerland

Ahsan Muneer

School of Business and Management LUT University Lappeenranta, Finland

Andre Nemeh

Strategy and Innovation Rennes School of Business Rennes, France

Tobias Osterloh

RWTH Aachen University Aachen, Germany

Busra Ozen

Department of Civil Engineering Aydin Adnan Menderes University Aydin, Turkey

Gozde Basak Ozturk

Department of Civil Engineering Aydin Adnan Menderes University Aydin, Turkey

Hamide Özyürek

Department of Business Administration Ostim Technical University Ostim, Turkey

Ilias Palaiologou

Department of Electrical and Computer Engineering Democritus University of Thrace Komotini, Greece Contributors xvii

Andreas Pester

Faculty of Informatics and Computer Science The British University in Egypt Cairo, Egypt

Heli Ponto

Forum Virium Helsinki Oy Helsinki, Finland

Panagiota Pouliou

CITA – Center of Information Technology and Architecture KADK Copenhagen, Denmark

Salvatore Quaranta

Università degli studi di Palermo Palermo, Italy

Laavanya Ramaul

School of Business and Management LUT University Lappeenranta, Finland

Guoqian Ren

College of Architecture and Urban Planning Tongji University Shangai, China

Stefano Rinaldi

Department of Information Engineering University of Brescia Brescia, Italy

Jürgen Roßmann

Electrical Engineering RWTH Aachen University Aachen, Germany

Christian Esteve Rothenberg

University of Campinas Campinas, Brazil

Jože Martin Rožanec

Information and Communication Technologies Jožef Stefan International Postgraduate School Ljubljana, Slovenia

Timo Ruohomäki

Forum Virium Helsinki Oy Helsinki, Finland

Jussi Salakka

Mechanical Engineering Oulu University Oulu, Finland

Ville Santala

Forum Virium Helsinki Oy Helsinki, Finland

João Afonso Ménagé Santos

Hovione Farmaciência S.A.; IDME, Instituto Superior Técnico Universidade de Lisboa Lisbon, Portugal

Jyrki Savolainen

School of Business and Management LUT University Lappeenranta, Finland

Philip Scarf

Cardiff Business School Cardiff University Cardiff, Wales

Oleg Schekochikhin

Department of Information Security Kostroma State University Kostroma, Russia xviii Contributors

Elena F. Sheka

Institute of Physical Researches and Technology of the Peoples' Friendship University of Russia Moscow, Russia

Muhammad Shoaib

Information Systems Department, King Saud University Politecnico di Milano Milan, Italy

Valeria Shvedenko

LLC T-Innovatic St. Petersburg, Russia

Vladimir Shvedenko

Federal Agency for Technical Regulation and Metrology ROSSTANDART

The Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences (VINITI RAS)

Moscow, Russia

Seppo Sierla

Aalto University Espoo, Finland

Xinya Song

Department of Electrical
Engineering and Information
Technology
Ilmenau University of Technology
Ilmenau, Germany

Christian Stary

Business Informatics-Communications Engineering Johannes Kepler University Linz, Austria

Nenad Stojanović

Nissatech Innovation Centre Germany

Oliver Stoll

Lucerne School of Engineering and Architecture Lucerne, Switzerland

Jayasurya Salem Sudakaran

Human Factors and Sociotechnical Systems Studios, IDC School of Design Indian Institute of Technology Bombay Mumbai, India

Olga Sulema

Computer Systems Software Department National Technical University of Ukraine Kyiv, Ukraine

Yevgeniya Sulema

Computer Systems Software
Department
National Technical University of
Ukraine
Kyiv, Ukraine

Eugene Syriani

Department of Computer Science and Operations Research Université de Montréal Montreal, Canada

Lavinia Tagliabue

University of Turin Turin, Italy Contributors xix

Chenyu Tang

Department of Engineering University of Cambridge Cambridge, England

Gloria Tarantino

Università degli Studi di Torino | UNITO · Dipartimento Interateneo di Scienze, Progetto e Politiche Del Territorio Politecnico di Torino Turin, Italy

Frits van Rooij

IDE Americas Inc. Carlsbad, California Salford Business School University of Salford Salford, England

Sai Phanindra Venkatapurapu

Customer Transformation PricewaterhouseCoopers LLP New York, New York

Jairo Viola

University of California Merced Merced, California

Juho-Pekka Virtanen

Forum Virium Helsinki Oy Helsinki, Finland

Annalaura Vuoto

Department of Civil Engineering University of Minho Minho, Portugal

Dan Wang

Department of Computing The Hong Kong Polytechnic University Hong Kong, China

Jiaqi Wang

School of Instrumentation and Optoelectronic Engineering Beihang University Beijing, China

Jie Wang

Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing, China School of Nanoscience and Technology University of Chinese Academy of Sciences China

Bianca Weber-Lewerenz

Faculty of Civil Engineering RWTH Aachen University Aachen, Germany

Shaun West

Lucerne School of Engineering and Architecture Lucerne University of Applied Sciences and Arts Lucerne, Switzerland

Dirk Westermann

Department of Electrical
Engineering and Information
Technology
Ilmenau University of Technology
Ilmenau, Germany

Chunli Ying

School of Architecture, Building and Civil Engineering Loughborough University Loughborough, England xx Contributors

Yatong Yuan

China Construction Fifth Engineering Bureau Guangdong, China

Jiayue Zhang

Department of Mechanical
Engineering
State Key Laboratory of Tribology
Tsinghua University
Shenyang Architectural and Civil
Engineering Institute
Tsinghua University
Beijing, China

Xiaochen Zheng

Sustainable Manufacturing (ICT4SM) Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland

Yu Zhang

Shenyang Jianzhu University Shenyang, China

Xuan Zhou

School of Aeronautic Science and Engineering Beihang University Beijing, China

Yifei Zhu

Shanghai Jiao Tong University Shanghai, China