Fractional Calculus: A Possible Solution for Non-Fourier Heat Transfer Modeling?

Yanbao Ma

School of Engineering University of California, Merced

Fractional Calculus Day @ UC Merced

June 12, 2013

Outline

- Fourier's law for heat conduction
- > Breakdown of Fourier's law in nanosystems
- Experimental evidence of ballistic heat transfer
- Modeling and numerical reconstruction of heat-pulse experiments
- Fractional calculus for non-Fourier heat transport?
- Summary

Fourier's Law

Joseph Fourier 1768-1830

$$Q = kA \left(\frac{T_1 - T_2}{\Delta x} \right)$$
$$\vec{q} = -k\nabla T$$

Fourier's Law: $\vec{q} = -k\nabla T$

Fourier's law describes the macroscopic heat transport.

There is a lack of rigorous mathematical derivation from first principles.

"Heat, like gravity, penetrates every substance of the universe, its rays occupy all parts of space ... The theory of heat will hereafter form one of the most important branches of general physics ... But whatever may be the range of <u>mechanical theories</u>, they do not apply to the effects of heat. These make up a special order of phenomena, which cannot be explained by the principles of motion and equilibria ... "

----- Jean Baptiste Joseph Fourier

Fick's Law & Fourier's Law Fourier's law: $\vec{q} = -k\nabla T$ "Heat Conduction Is a Can of Worms"

John Maddox, Nature, 1989, Vol. 338, pp 373

Fick's first law: $\vec{J} = -D\nabla\phi$

"A Bigger Can of Worms"

P. C. Malone, Nature, 1991, Vol. 349, pp 373

First Generation of Computer (1940-1959)

Vacuum tube

Micro/Nano Electronics

Thermal Management at Transistor Level

- Each transistor is a heating source.
- Hot spot can be generated without efficient thermal management at transistor level.

Amon CH, et al, Int. J. Heat & Mass Transfer, 2006, Vol. 49, 97-107.

Waste Thermal Energy

- 90% of the world's power generated by heat engine using fossil fuel.
 - Heat engine efficiency: 30%-40%
 - **15 Terawatts of heat is lost to the environment.**
- Energy efficiency in transportation: 20%
 & 700 Gigawatts rejected as waste heat.

Thermoelectric Energy Conversion

Figure of Merit Z: $Z = -\frac{\sigma S^2}{\kappa}$ states of the second states of t

- _____
- **K**: thermal conductivity
- S: Seebeck coefficient

Cronin Vining, Nature 2001, 413, 577-578

Thermoelectric Nano-Materials

Breakdown of Fourier's Law

Geometry-/Size- dependent thermal conductivity → Breakdown of Fourier's law What's the new law for non-Fourier heat transport?

Microscopic Heat Transfer

Lattice vibration

Phonon gas model (Phonon: Quantization of Vibration Energy)

Diffusive Heat Transport:
 System size >> Phonon Mean Free Path
 Ballistic Transport (significant in nanosystems):
 System size ≤ Phonon Mean Free Path (MFP)

Direct Evidence of Ballistic Heat Transfer

Heat-Pulse Experiments at Low Temperatures

11.85°K 1/2 µsec/cm

16.25°K 1/2 µsec/cm

McNelly, PhD. Thesis, 1974

Identification of Thermal Waves

Jackson & Walker, Phys. Rev. B, Vo. 3, 1971; Jackson et al., Phy. Rev. Lett., v 25, 1970

Numerical Reconstruction of Heat-Pulse Experiments

Rogers' Viscous Phonon Gas Model

Navier-Stokes Equation for Fluid Dynamics

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho \vec{u} \cdot \nabla \vec{u} = -\nabla p + \mu \nabla^2 \vec{u} + (\zeta + \frac{1}{3}\mu) \nabla (\nabla \cdot \vec{u})$$

Evolution Equation for Heat Flux:

$$\frac{\partial \vec{q}}{c_1^2 \partial t} = \frac{1}{3} \nabla E - \frac{\vec{q}}{c_1^2 \tau_R} + \left[\mu_g \nabla^2 + (\zeta_g + \frac{1}{3} \mu_g) \nabla (\nabla \cdot) \right] \left(\frac{\vec{q}}{e} \right)$$
$$\mu_g = \frac{1}{3} e \tau_N, \ \zeta_g = \frac{\tau e (1 - c_2^2 / c_1^2)}{(1 - i\omega\tau)}, \ \tau^{-1} = \tau_N^{-1} + \tau_R^{-1}$$

 μ_{g} : the first viscosity, ζ_{g} : the second viscosity

Rogers, Physical Review B, Vol. 37, p1440-1457, 1971

Numerical Reconstruction of Heat-Pulse Experiments

Rogers, Physical Review B, Vol. 37, p1440-1457, 1971

Hybrid Phonon Gas Model (Mixture of Longitudinal & Transverse Phonons)

Mixture theory of longitudinal and Transversal phonons in <100> crystallographic direction:

$$E = E_l + 2E_t, \quad \vec{q} = \vec{q}_l + 2\vec{q}_t$$

Dispersion relationship of of longitudinal phonons (gray model):

$$k_{lr} = \frac{\omega}{c_l}, \quad k_{li} = \left(\frac{1}{3\tau_N} + \frac{5}{6\tau_R}\right) \frac{1}{c_l}$$

Dispersion relationship of transversal phonons (Rogers'model):

$$\frac{1}{3}k_t^2 = \omega^2 \frac{1 + \frac{\tau}{\tau_R} - i\left(\omega\tau - \frac{1}{\omega\tau_R}\right)}{1 - 3i\omega\tau}$$

Numerical Methods

$$f(0,t) = \sum_{j=0}^{\infty} b_j e^{i(-\omega_j t)}$$

$$f(x,t) = \sum_{j=0}^{\infty} b_j e^{i(k_j x - \omega_j t)}$$

Comparison of Arrival Time of Heat Pulses in Very Pure NaF

Reconstruction of Heat-Pulse Experiments in Pure NaF

2

at x = 1, T^{*} = 13K.

Comparison of detected heat pulses

Comparison of detected heat pulses at x = 1, T^{*} = 25.5K.

Experimental

⁶ t^{*} (μSEC)

8

Numerical

Journal paper under review

.

Non-Fourier Heat Conduction Models

- **Energy equation:** $\frac{\partial e}{\partial t} + \nabla \cdot \vec{q} = 0$
- Evolution equation for heat flux:
 - **1.** Fourier's Law: $\vec{q} = -k\nabla T$

(Infinite speed of propagation & fail for ballistic phonons)

2. Cattaneo-Vernotte model: $\left(\tau_R \frac{\partial \vec{q}}{\partial t} + \vec{q} = -k\nabla T\right)$

(Allow 2nd sound propagation but fail for ballistic phonons)

3. Guyer-Krumhansl model: $\begin{array}{l} \partial \vec{q} \\ \partial \vec{t} \\ + \frac{\vec{q}}{\tau_R} = -\frac{k}{\tau_R} \nabla T \\ + \frac{k\tau_N}{5} (\nabla^2 \vec{q} + 2\nabla (\nabla \cdot \vec{q})) \\
\end{array}$ (Prediction of second sound: $\tau_N \ll \tau_R$, fail for ballistic

phonons)

Non-Fourier Heat Conduction Model Based on Fractional Derivative ?

- **1. Fourier's Law:** $\vec{q} = -k\nabla T$
- 2. Fractional derivative for Non-Fourier's heat conduction model:

$$\vec{q} = -k\nabla^a T?$$

Summary

- A Ballistic-Diffusive Phonon Hydrodynamic (BDPH) model was developed for ballisticdiffusive phonon transport.
- The model is validated by comparing against heat pulse experiments.
- Seek the possibility of developing non-Fourier heat conduction model based on fractional calculus.

Thank you!