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Fourier’s Law

Joseph Fourier
1768-1830
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Fourier’s Law: q k T  


 Fourier’s law describes the macroscopic heat transport.
 Th i l k f i h i l d i i f There is a lack of rigorous mathematical derivation from 
first principles. 

“Heat, like gravity, penetrates every substance of the
universe, its rays occupy all parts of space … The theory
of heat will hereafter form one of the most importantof heat will hereafter form one of the most important
branches of general physics … But whatever may be the
range of mechanical theories, they do not apply to the
effects of heat. These make up a special order of
phenomena, which cannot be explained by the principles
of motion and equilibria … ”
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of motion and equilibria …
------- Jean Baptiste Joseph Fourier



Fick’s Law & Fourier’s Law

q k T  


Fourier’s law:
“Heat Conduction Is a Can 

f W ”of Worms”
John Maddox, Nature, 1989, Vol. 338, pp 373

J D   


Fick’s first law:

“A Bigger Can of Worms”
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P. C. Malone, Nature, 1991, Vol. 349, pp 373



First Generation of Computer 
(1940-1959)

First Generation of Computer 
(1940-1959)( )( )

Vacuum tube
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Micro/Nano Electronics Micro/Nano Electronics 

Courtesy of  Robert  Chau from Intel Co.
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Thermal Management  at Transistor LevelThermal Management  at Transistor Level

• Each transistor is a heating source.
• Hot spot can be generated without efficient 

thermal management at transistor level. 
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Amon CH, et al,  Int. J. Heat & Mass Transfer, 2006, Vol. 49, 97-107. 



Waste Thermal EnergyWaste Thermal Energy

 90% of the world’s power generated by 
h t i i f il f lheat engine using fossil fuel.

Heat engine efficiency: 30%- 40% g y
15 Terawatts of heat is lost to the 
environmentenvironment.

 Energy efficiency in transportation: 20%
& 700 Gigawatts rejected as waste heat.
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Thermoelectric Energy Conversion Thermoelectric Energy Conversion 

Figure of Merit Z:

2S SZ  



σ: electrical conductivity

κ: thermal conductivity



κ:  thermal conductivity
S:   Seebeck coefficient

TIME / 31 March 2008 / 1010

Cronin Vining, Nature 2001, 413, 577-578



Thermoelectric Nano-MaterialsThermoelectric Nano-Materials

Huang et al,  ACS Nano,  2009, v3, 721 Jeong et al,  J. Appl. Phy,  2012, v111, 093708
Schwab, Nature,  2000, v404, 974-977
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Breakdown of Fourier’s LawBreakdown of Fourier’s Law

Geometry-/Size- dependent 
thermal conductivitythermal conductivity 

Breakdown of Fourier’s law
What’s the new law for non-

Fourier heat transport?Fourier heat transport? 
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Microscopic Heat Transfer

Lattice vibration Phonon gas model
(Phonon: Quantization of 

Vib ti E )Vibration Energy)
 Diffusive Heat Transport:  

System size >> Phonon Mean Free Path 
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y
 Ballistic Transport (significant in nanosystems):   

System size £ Phonon Mean Free Path (MFP)



Direct Evidence of 
Ballistic Heat Transfer
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Heat-Pulse Experiments at Low Temperatures

(a) (c)(b)

(f)(d) (e)

(h)(g) (i)(h)(g) (i)
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Identification of Thermal Waves

Pure NaF Very Pure NaF

Second 
sound

Ballistic longitudinal pulse  Ballistic transversal pulse 

TIME / 31 March 2008 / 1616Jackson & Walker, Phys. Rev. B, Vo. 3, 1971;Jackson et al.,  Phy. Rev. Lett., v 25, 1970

Ballistic longitudinal pulse  Ballistic transversal pulse 



Numerical Reconstruction of 
Heat-Pulse ExperimentsHeat-Pulse Experiments
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Rogers’ Viscous Phonon Gas Model
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Navier-Stokes Equation for Fluid Dynamics 
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mg: the first viscosity,  zg: the second viscosity
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Rogers, Physical Review B, Vol. 37,  p1440-1457, 1971



Numerical Reconstruction of 
Heat-Pulse Experimentseat u se pe e ts

McNelly, PhD. Thesis, 1974
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Hybrid Phonon Gas Model
(Mixture of Longitudinal & Transverse Phonons)

 Mixture theory of longitudinal and Transversal 
phonons in <100> crystallographic direction:

2 ,    2l t l tE E E q q q   
  

 Di i  l ti hi  f  f l it di l h  (  d l) Dispersion relationship of  of longitudinal phonons (gray model):
1 5 1,   
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 Dispersion relationship of transversal phonons (Rogers’model):
3 6l N R lc c  
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Numerical Methods  
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Comparison of Arrival Time of Heat 
Pulses in Very Pure NaFy

2nd Sound

TA

LA
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Reconstruction of Heat-Pulse 
Experiments in Pure NaF

Comparison of detected heat
pulses at x = 1 T* = 9 6K

Comparison of detected heat pulses
at x = 1 T* = 13Kpulses at x = 1, T = 9.6K. at x = 1, T = 13K.

Comparison of 
detected heat pulses 
at x = 1, T* = 25.5K. 
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Non-Fourier Heat Conduction Models

Energy equation: 0e q
t


  




Evolution equation for heat flux:
1. Fourier’s Law: 

(Infinite speed of propagation & fail for ballistic phonons)
q k T 
Evolution equation for heat flux:

( p p p g p )

2. Cattaneo-Vernotte model: 
(Allow 2nd sound propagation but fail for ballistic phonons)

R
q q k T
t

 
   






(Allow 2 sound propagation but fail for ballistic phonons)
3. Guyer-Krumhansl model:

2+ ( 2 ( ))Nkq q k T q q
       

 
 

(Prediction of second sound: tN Ü tR, fail for ballistic 
phonons)
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Non-Fourier Heat Conduction Model Based 
on Fractional Derivative ?

1. Fourier’s Law: q k T 


2. Fractional derivative for Non-Fourier’s heat 
conduction model:

q

?aq k T  
 ?q k T

q q k
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SummarySummary
 A Ballistic-Diffusive Phonon Hydrodynamic 

(BDPH) model was developed for ballistic-
diffusive phonon transport. 

 The model is validated by comparing against The model is validated by comparing against 
heat pulse experiments. 

 Seek the possibility of developing non-Fourier 
heat conduction model based on fractional 
calculus.
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Thank you!Thank you!
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