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Abstract

Vision-Based Measurements for Dynamic Systems 

and Control

by

Lili Ma, Doctor of Philosophy 

Utah State University, 2004

Major Professor: Dr. Kevin L. Moore 
Department: Electrical and Computer Engineering

This dissertation presents several aspects of the use of vision for dynamic systems and 

control. Vision-based feedback systems have been a central problem in computer vision 

and control for over two decades. However, it is only in recent years that the variations of 

images over time have begun to be used for control. Motivated from a visual servoing task 

of an omnidirectional vehicle, the problem of iterative visual servoing with an uncalibrated 

camera is studied. Then, lens distortion modeling and correction is addressed, where a 

series of experimental results are given that can serve as a general guidance for evaluation 

of the lens distortion correction alone. Next, recent work on perspective dynamic systems 

(PDS), which provides a general framework to discuss vision problems, such as motion 

and depth estimation, using concepts and methods from controls is considered. Focused 

on the estimation problem of a PDS, a linear approximation-based nonlinear observer is 

proposed. The final section of work introduces the idea of iterative learning control of a 

PDS system and presents preliminary results on this problem.

(219 pages)
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N otations

Throughout this dissertation, all entities in this dissertation are assumed to be either 
vectors or matrices, unless otherwise mentioned. The following conventions will be used 
for typesetting mathematics unless otherwise indicated.

1) Scalar: Can be in both lower and upper cases, such as a, k\, Ci, G, M.

2) Matrix: In upper case and non-bold form, such as A , C, H, A.

3) Vector: In lower case and non-bold form, such as x ,y ,  in cases of no confusion. 
Vectors can also be typed in lower case bold form for emphasis, such as b, f , d. The 
reason for this emphasis is these variables will be used throughout this dissertation 
having the same meanings. Vectors can also be represented as V, X.

4) Function: In both lower and upper cases, such as w(-), A(-), X(-).

Notation wise, most variables have only local meanings. Those tha t have the same 
representation throughout this dissertation are listed below.

Variable D escription
w y ŵ p 1

[Xc, Yc[zcf
{ud, vd)

( u ,  v )  

( o i , 1 , j 3 , u 0 , v 0 )  

a. 7  uo 
o /3 Vq 
0 0 1 

(xd, Vd)
O, y)  

r d
r
f
A
n
t  
k  
d

[X

A\in tr

3-D coordinate of a point in world reference frame 
3-D coordinate of a point in camera frame 
Distorted image point in pixels 
Distortion-free image point in pixels 
Five intrinsic parameters of a camera, see (3.6)

Intrinsic matrix of a camera

[%d, Vd, 1 ]T  = A n tr K * >  vdj 1 ]T  
[x, y,  1}T =  X rJju, V,  i f
r 2  rd
r2 = x 2 +

x l  +  yd 
2

Focal length of a camera lens 
Scalar or eigenvalues 
Skew-symmetric matrix 
Translational vector 
Distortion coefficients, see (3.10)
Essential parameters, see (4.65)
Vector in representation of Riccati motion, see (4.43)
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Acronyms

BFCS body-fixed coordinate system

CEF composite energy function (related to ILC)

CSOIS Center for Self-Organizing and Intelligent Systems

CV certainty value (related to HIMM)

DOF degree of freedom

EKF extended Kalman filter

FOG fiber optic gyro

FOV field of view of a camera

GAIC geometric Akaike information criterion

GMDL geometric minimum description length criterion

GRO growth rate operator (related to HIMM)

HIMM histogram in-motion mapping

HOSA higher-order spectral analysis (related to Matlab toolbox)

IBO identifier-based observer (related to PDS)

IIC identical initial condition (related to ILC)

ILC iterative learning control

ICS inertial coordinate system

LAO linear approximation-based observer (related to PDS)

LQG linear quadratic Gaussian

LS least squares
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NN neural network

OCS obstacle cluster strength (related to HIMM)

ODIS omni-directional inspection system, a robot at the CSOIS center

ODV omni-directional vehicle
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1

Chapter 1 

Introduction

1.1 R esearch Problem s

Visual cameras are useful sensors for systems and control since they mimic the human 

sense of vision and allow for non-contact measurement of the environment. Visual feedback 

loops have been adopted in control systems, such as robots operating in factories and robot 

navigation. As shown in fig. 1.1, when a camera is used as a sensor to observe a target, 

the image captured by the camera goes through an image processing module and outputs 

certain information. This information is used by a controller to design the control input to 

the system. Motion of the system results in changes in the image and this whole process 

continues until the control goals are achieved.

InputImage Info Motion
ControlCamera System

Target to 
Observe

Image
Processing

Fig. 1.1: Block diagram of vision, dynamic systems, and control.

In this dissertation, we propose to study several aspects of the use of vision for systems 

and control. Specifically, we consider a series of problems whose evolution is shown in the 

following fist and depicted in fig. 1 .1:

1) Research Problem 1 - Iterative Visual Servoing: This problem is concerned with 

orienting a robot to a desired pose using visual feedback. An example of this problem 

is to align the ODIS (short for Omni-Directional Inspection System) robot at the 

Center for Self-Organizing and Intelligent Systems (CSOIS) 1 with the direction of

l CSOIS is a multidisciplinary research group a t U tah S tate University (USU) th a t focuses on the 
design, development, and implementation of intelligent, autonom ous mechatronic systems [1],
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a parking lot yellow line using an uncalibrated camera. In the ODIS yellow line 

alignment task, the “target to observe” is the parking lot yellow line. The camera 

is installed on ODIS and the information extracted out of an observed image is the 

orientation of the yellow line. This orientation is fed into the controller to calculate 

the movements sent down to ODIS. Because we use an uncalibrated camera, an 

iterative control scheme is implemented in a start-stop manner [2, 3].

2) Research Problem 2 - Camera Calibration: In the ODIS yellow line alignment task 

described above, the iterative scheme is used to work with an uncalibrated camera, 

while a calibrated camera will simplify the task so that it can be performed in a 

non-iterative way. Camera calibration is to estimate a set of parameters, i.e. the 

camera’s intrinsic parameters and distortion coefficients, that describe the camera’s 

imaging process. W ith this set of parameters, a perspective projection matrix can 

directly link a point in the 3-D world reference frame to its projection (undistorted) 

on the image plane. Since virtually all imaging devices introduce a certain amount of 

nonlinear distortion, the observed distorted image needs to be compensated to output 

the corrected image. For the camera calibration problem, the “target to observe” in 

fig. 1.1 is the calibration target. Usually, the camera needs to observe the target at 

several different orientations/positions to estimate the camera parameters uniquely.

3) Research Problem 3 - Perspective Dynamic System (PDS): PDS theory provides a 

theoretical framework to study vision problems, especially 3-D motion estimation. 

Generally speaking, a perspective dynamic system consists of a moving target with 

certain motion dynamics (rigid, affine, Riccati), which is sensed using the homoge­

neous observations made via cameras. With a stationary camera observing a moving 

object, following an affine motion described by:

1'•+T'

1 ~0.ll 012 “ 13 ’

1*t

-bi~

Y(t) = 021 022 “ 23 Y(t) + b2

- m . .on “ 32 “ 3 3 - . b a .
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a typical PDS consists of the above linear dynamic system with the following homo­

geneous output observations:

y i (t) =  X (t) /Z ( t) ,  y2(t) =  Y(t) /Z (t) .  (1.2)

Typical problems in the PDS theory include: 1) 3-D motion estimation: estimation 

of the motion parameters dij(t)  and b{(t) for i , j  = 1 , 2 ,3 and 2) range identification: 

estimation of depth information, such as via nonlinear observers, when the motion 

parameters are known. Define:

y{t) =  [2/i(t),ife(<),lfe( t))T = [X ( t) /Z ( t ) ,Y ( t ) /Z ( t) , l /Z ( t) ]T .

The range identification problem is to estimate Z{t), or its inverse y?,(t), assmning 

yi(t) and y2(t) are available and the motion parameters a%j( t )  and bi(t) for i , j  =

1,2,3 are known. For the 3-D motion estimation and range identification, usually 

calibrated cameras are used to observe certain features on the moving target.

4) Research Problem 4 - Perspective Iterative Learning Control: The objective is to 

develop techniques to control the transient response and tracking performance of 

control systems whose performance is observed by cameras and whose operation 

is repetitive. Iterative Learning Control (ILC) can improve the transient response 

performance of systems that operate repetitively over a fixed time interval [4]. The 

control problem to be discussed is an ILC problem, with perspective observations, 

referred to as perspective ILC hereafter.

1.2 Current State o f the Art

The current state of the art of the research problems listed in section 1.1 is described 

next.

1.2.1 Iterative V isual Servoing

Existing eye-in-hand visual servoing approaches include [5, 6 , 7]: position-based (3- 

D) visual servoing, image-based (2-D) visual servoing, and 2-1/2-D visual servoing. In

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



4

a position-based visual control system, the input of the control law is computed in the 

3-D space. The pose of the target with respect to the camera is estimated from the 

observed features on the image based on a calibrated camera and the knowledge of a perfect 

geometric model of the object. On the other hand, in an image-based control system, the 

input is computed in the 2-D image plane. This usually involves the calculation of an 

image Jacobian which relates the rate of change of the image feature coordinates to the 

rate of change of the 3-D pose parameters. Both the position-based and image-based visual 

servoing approaches experience certain drawbacks. The main drawback of the 3-D visual 

servoing is that there is no control in the image. This implies that the target may leave 

the Field Of View (FOV) of the camera, especially if the robot or the camera is coarsely 

calibrated. Furthermore, a model of the target is needed to compute the pose of the 

camera. 2-D visual servoing does not explicitly need this model. However, the convergence 

is only ensured in a neighborhood of the desired position.

1.2.2 Cam era Calibration

For camera calibration, lens distortion is very important for accurate 3-D measurement 

[8], Among the nonlinear distortions (also called geometric distortions), radial distortion, 

which occurs along the radial direction from the center of distortion, is the most severe 

part [9, lOj. The removal or alleviation of the radial distortion is commonly performed by 

first applying a parametric radial distortion model, estimating the distortion coefficients, 

and then correcting the distortion via an inverse operation. Most of the existing works on 

the radial distortion models can be traced back to an early study in photogrammetry [111 

where the radial distortion is governed by the following polynomial equation [11, 12, 13, 14]:

rd =  r + 5r =  r (1 +  k \r2 +  k%ri + k^r6 -|-----), (1.3)

where fci, fo, &3 , . . .  are the distortion coefficients, r  and rd denote the ideal and the dis­

torted version of radius, either in the camera frame or the image plane. Currently, the 

distortion model in (1.3) is still the most commonly used radial distortion model, typically
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used with only two coefficients. However, when using two coefficients, the inverse of the 

polynomial function is difficult to perform analytically.

Besides the lens distortion compensation methods commonly used in the time domain, 

frequency domain methods have been proposed in [15] to use higher-order correlation 

detection to remove the lens distortion blindly. However, the accuracy of the blindly 

estimated lens distortion is by no means comparable to those based on a calibration target. 

Due to this reason, the blindly lens distortion removal approach can be useful in areas where 

only qualitative results are required.

1.2.3 PD S Theory

Since the 1970’s, a variety of motion estimation algorithms have been developed, 

gaining attention from researchers and scientists in the areas of computer vision, image 

processing, robotics, and control. However, the goal is still far from being reached. Indeed, 

it opens a new and exciting avenue of research in nonlinear system theory. Appropriate 

tools from nonlinear estimation/identification theory are beginning to be exploited and 

only recently have such tools hinted at acceptable solutions [16].

A direct approach to the 3-D motion estimation problem is to formulate it as a non­

linear optimization problem, where classical optimization algorithms, such as the Gauss- 

Newton and the Levenberg-Marquardt optimization methods, can be used to search for the 

optimal solution. Though very accurate, this classical nonlinear method is computationally 

expensive, which prevents it from being applied to real-time applications. Thus, algorithms 

that are based on linearization have become prevalent. Generally, they are formulated as a 

minimization problem that can be solved either by Singular Value Decomposition (SVD) or 

recursively [16, 17, 18, 19]. Recently, exciting results have been published on what is called 

Perspective Dynamic System (PDS) theory, where the system’s observability/identifiability 

property is discussed in a more theoretical way and most of the known results in the com­

puter vision literature are revealed [20, 21]. Besides the rigid motion, nonrigid motions 

such as the affine and Riccati motions can be discussed in this general framework [22].
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For 3-D motion estimation, theoretical analysis has been derived for the identification, 

to the extent possible, of rigid, affine, and Riccati motions. It can be concluded that with 

a single camera observing a single feature point, not all the motion parameters can be 

identified uniquely.

For the range identification problem, nonlinear observers have been constructed for 

the estimation of the depth [23, 24, 25].

1.2.4 Perspective ILC

Iterative learning control, or ILC, is a technique for improving the transient response 

and tracking performance of processes, machines, equipment, or systems that execute the 

same trajectory, motion, or operation over and over. The approach is motivated by the 

observation tha t if the system controller is fixed and if the system’s operating conditions 

are the same each time it executes, then any errors in the output response will be repeated 

during each operation. These errors can be recorded during system operation and can then 

be used to compute modifications to the input signal that will be applied to the system 

during the next operation. That is, in ILC, refinements are made to the input signal after 

each trial until the desired performance level is reached. It is usually assumed implicitly 

that the initial conditions of the system are reset at the beginning of each trial to the 

same value. In describing the technique of ILC, the word iterative is used because of the 

recursive nature of the system, and the word learning is used because of the refinement of 

the input signal based on past performance in executing a task [26]. Most of the current 

ILC algorithms use the encoder readings of the plant as the feedback information In the 

perspective ILC, vision measurement serves as the actual feedback. To date, there axe few 

contribution in the ILC literature where vision feedback is used. Further, there have been 

no contribution that exploits the PDS theory in an ILC problem.

1.3 Contributions of This D issertation

In this dissertation, we present contributions to each of the four areas discussed above. 

The original contributions are summarized below.
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1 ) Iterative Visual Servoing: While most visual servoing approaches require a calibrated 

camera, visual servoing with an uncalibrated camera is pursued in the ODIS yellow 

line alignment problem. The basic idea for ODIS localization is simply the visual 

servoing to the yellow line painted on the ground of the parking lot, where the yellow 

line can be regarded as a landmark for localization. It is assumed that from a map 

the position and orientation of each yellow line are known. The major objective is to 

reset the Fiber Optic Gyro (FOG) so that the FOG drift can be kept small. Since a 

real-time requirement is not critical here, the task can be achieved with an iterative 

scheme using an uncalibrated camera. This work has been published in the IEEE 

International Conference on Robotics and Automation and IFAC World Congress

[2.3].

2) Camera Calibration: Inspired by the polynomial distortion approximation function

(1.3), we have proposed a set of rational functions for both the radial and geometric 

distortion models. Further, we proposed a simplified geometric distortion modeling 

idea that allows different distortion coefficients along the two image axes. A fre­

quency domain lens distortion removal technique was also proposed for the detection 

of cameras that can be better modelled by the simplified geometric distortion model­

ing. In all the distortion models, we emphasize the property of having an analytical 

inverse formula, which is a desirable feature for applications requiring real-time im­

plementation. This work has been published in international conferences and journal 

[27, 28, 29],

3) PDS Theory: For the range identification problem, we have performed preliminary 

comparisons for the applied nonlinear observers. Research efforts have been con­

ducted to apply a recently proposed linear approximation idea for the perspective 

nonlinear observer design and discuss the situation with single homogeneous observa­

tion. This work has been published in the IEEE International Conference on Robotics 

and Automation [30, 31].
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4) Perspective ILC: Our preliminary study shows that, under the condition of Identical 

Initial Condition (IIC), the homogeneous output might be enough to force the states 

of the system to track a desired trajectory. However, when the IIC condition is 

not satisfied, state tracking can not be achieved simply by using the homogeneous 

outputs. It is at this point that the PDS theory can be helpful for the estimation of 

the states.

Aside: Note that during this dissertation research, some efforts were applied to non­

vision-based sensing and perception for dynamic systems and control. For completeness, 

these results are detailed in Appendix A.

1.4 Experim ental Platform s Introduction

In this dissertation, the following experimental platforms have been, or are proposed 

to be, used as the test bed for the sensing and perception algorithms. Figure 1.2 shows the 

ODIS system, which was used for experiments associated with algorithms in chapters 2 

and 3. Figure 1.3 shows the gimbal system described completely in chapter 5. Figure 1.4 

shows the T 2/T 2E  system used for the non-vision-based sensing and perception algorithms 

described in Appendix A.

1.5 R eading the D issertation

The linkage of the four research problems discussed in this dissertation is presented 

by the following application: consider an application scenario where a target is to  track a 

3-D trajectory repetitively and a camera is used for monitoring. Using the “iterative visual 

servoing” scheme, the target can be controlled to first go to the desired initial position. 

W ith a calibrated camera, from the results of “Perspective ILC,” the 3-D tracking can be 

achieved from 2-D observations from the camera. However, if the target tries to track the 

3-D trajectory from its current position directly (which is different from the desired initial 

position), 3-D estimates of the moving target need to be available. In this case, results 

of “range identification of a PDS” can be helpful. In the above described application, the 

motion dynamics of the moving target is assumed known.
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O D IS

Steenng/Drrrt
Assenjbliea

Psamli Cam*?*
As®asbly

ODIS, as shown in the left, is an autonomous robot ca­
pable of surveying a parking lot and investigating the 
undercarriage of a suspicious vehicle. ODIS, short for 
Omni-Directional Inspection System, is 3-3/4-inches 
tall and incorporates IR, sonar, and laser range sen­
sors, three-wheel independent drive and steering, and 
a color camera with transmitter. A fiber-optic gyro 
(FOG) is used in conjunction with wheel odometry for 
navigation. The ODIS velricle has also been designed 
to incorporate a GPS receiver [lj.

For object detection and avoidance, ODIS is equipped 
with three types of ranging sensors. Sonar provides 
ODIS with long-range, wide-angle data. Infrared sen­
sors act as a “safety bumper” to alert ODIS that an 
object is too close. A laser ranging module provides 
very precise medium range data for accurate place­
ment of an object in the operating environment. A 
color camera on a p an /tilt mechanism provides feed­
back to the user through a virtual reality system [lj.

Sosa*. IR, aadLiarSertsoB

Fig. 1.2: The physical and mechanical layout of the ODIS robot.

G im b al

The gimbal system is a 2 Degree-of-Freedom (DOF) 
system. For vision-based tasks, a laser pointer is 
hooked on the gimbal. The projection of the laser ray 
on a 2-D object plane is observed by a stationary cal­
ibrated camera. Information on the observed image 
plane is a homogeneous representation of the motion 
on the object plane. This platform will be used in the 
perspective ILC in chapter 5.

Fig. 1.3: The physical gimbal as the platform for perspective ILC.
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T 2 E

The T2 vehicle, shown in the left, follows a distributed 
processor architecture used by the early T-Series vehi­
cles built at CSOIS. The T2 master node consists of 
a Pentium-class, single-board computer, and it com­
municates with the base station computer via a RF 
LAN, issuing set points to the wheel control nodes. 
The base station computer hosts the Vehicle GUI and 
Path Planner. The navigation node is also a Pentium- 
class single board computer and communicates to the 
master node through the LAN. The navigation node 
handles all communications with GPS and FOG, pro­
cessing this sensor data and sending it to the master 
node for use in odometry and control [lj.

The T2E robot is the T2 robot with enhanced sen­
sor suit. The sensors that are equipped with the T2E 
include a sonar ring, a 2-D laser, and a license plate 
recognition system.

Fig. 1.4: The T2 and T2E vehicles.
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Chapter 2 

Iterative Visual Servoing

This chapter is concerned with the sensing and perception algorithm for robot local­

ization. The sensor being used is a camera-type vision system. This chapter also works as 

the motivation for the study of lens distortion correction to be addressed in chapter 3. The 

robotic platform on which the sensing and perception algorithm has been implemented is 

the ODIS robot described in section 1.4.

The ODIS robot, which has been described in section A .l, is designed to perform under 

car inspection by sending wirelessly captured video frames to the GUI of the base station. 

The working period can be hours long for many parking lots. Therefore, it is important 

for ODIS to be able to localize and estimate its pose with respect to an internal world 

model (map). Although some techniques can be used to improve the FOG accuracy [32], 

the accumulative errors due to FOG and ODIS odometry can be progressively dominant 

and may significantly deflect the mobile robot pose (position and orientation in world 

coordinate system). Therefore, from time to time, localization is essential for a reliable task 

execution of ODIS. Mobile robot localization is an on-going research topic with no unique 

solution [33, 34j since the localization depends on the structure of the environment and 

the sensing capacities of the specific mobile robot. In general, localization is environment 

and robot specific.

In our case, the environment is the car parking area. We can use the laser or sonar 

to do localization based on landmarks such as lamp posts, curbs etc. However, the most 

commonly seen landmarks in the parking area are the yellow lines painted on the ground. 

In this chapter, we use visual servoing to a yellow line in a parking lot to perform the 

localization task. As explained above, the challenge here is that the camera is designed 

for the under car inspection video transmission and within ODIS there is no video capture 

card. Thus, our approach is to capture the video frames, sent wirelessly from the ODIS
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camera transmitter, on the base station computer (ODIS laptop computer) and perform 

the visual servoing to yellow line to achieve ODIS localization by wirelessly sending the 

scripts to ODIS from the base station computer. Therefore, the research efforts reported 

in this chapter can be regarded as a value-added block for ODIS functionality. Based on the 

current architecture of ODIS and the dedicated scripting language [35], an iterative visual 

servoing scheme is developed to align the yellow line painted on the ground of the parking 

lot. The iterative scheme tolerates the uncertain time delay due to the wireless connec­

tions without introducing stability problem due to time-varying delay in real-time visual 

servoing. Experimental results are presented to show that for our specific application, 

the wireless visual servoing technique presented in this chapter is an effective approach to 

robot localization.

In this chapter, a “dynamic image-based look-and-move” approach is used. It is 

“image-based” since errors are computed in the image plane. It is “dynamic look-and- 

move” since the errors determine corrective velocities for the robot. In contrast to most 

image-based approaches, the method here does not require the use of an image Jacobian 

matrix. Further, although the image errors are nonlinearly related to the vehicle position 

errors, with significant coupling between degrees of freedom, convergence to the desired 

position and orientation occurs for virtually any initial condition of interest.

The chapter is organized as follows. Section 2.1 presents the basic idea and implemen­

tation architecture for ODIS wireless visual servoing in some detail, including the feature 

extraction of yellow lines in the image plane. Section 2.2 describes the iterative visual 

servoing controller scheme. Due to the limitations of the current software architecture, 

in section 2.3, a discrete look-and-move controller is currently implemented on the ODIS 

platform. Experimental results are presented in section 2.4. Some concluding remarks 

together with some of our planned further efforts are given in section 2.5.
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2.1 ODIS Localization via W ireless Visual Servoing

This section describes the basic idea and implementation architecture fox ODIS wire­

less visual servoing, together with some implementation details, including the low-level 

yellow line extraction and fitting.

2.1.1 Basic Idea

The basic idea for ODIS localization is simply the visual servoing to yellow lines 

painted on the ground of the parking lot, as illustrated in fig. 2.1. We can regard the 

yellow line of the parking lot as a landmark for localization. It is assumed that from the 

map the position and orientation of each yellow line are known. The command for ODIS 

to perform yellow-line alignment is from the high-level block, e.g., from either planner 

or just a GUI click. The major objective is to reset the FOG after inspection of several 

parking lots so that the drifting can be kept small. Obviously, this can be done via a 

dedicated utility script sent wirelessly from the base station to ODIS. Moreover, unlike the 

image-based path tracking [36, 37, 38], the real-time requirement is not critical here.

m
Fig. 2.1: Basic idea of ODIS visual servoing to yellow lines.

2.1.2 Hardware A rchitecture

Figure 2.2 shows the hardware architecture for the wireless visual servoing for ODIS 

localization. The ODIS laptop is a  Pentium-3 notebook computer with Windows 2000 

installed and a build-in image capture card. The GANZ CM3000 camera unit is a com­

pact module including a small color camera and a video transmitter installed on ODIS.
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The video signal is sent over a 900 MHz transmitter (CVR-1000) to a receiver (CVT-M) 

located at the base station. Both the transmitter and the receiver are made by Coherent 

Communications and operate in several bands within the 902 - 928 MHz range, which 

allows us to operate without interfering with the other onboard modems. By connecting 

the receiver to the video capture card inside the ODIS laptop, live images can be grabbed 

continuously via Microsoft Vision SDK (software development kit). Likewise, through the 

wireless LAN, scripts or commands can be sent to ODIS. Meanwhile, ODIS status and 

position/orientation can be queried from the base station computer. Therefore, a closed 

loop is formed via wireless connections.

ulms Laptop
ODIS Camera 
Wireless RX Wireless Modem

image 
Capture Card

ODIS Camera 
Wireless TX

Fig. 2.2: Hardware architecture of the ODIS wireless visual servoing system.

The signal flow in the above closed-loop system is shown in fig. 2.3. ODIS continuously 

sends live image frames to ODIS laptop (Host). For each image frame, if there is yellow 

line, the yellow line detection function calculates its angle and the starting point in the 

image frame which serves as the output measurement of the visual servoing system. The 

control strategy block compares the measured output with the desired one and constructs 

the corresponding translation and/or rotation commands which are to be sent wirelessly 

down to ODIS. ODIS low-level control subsystems execute these commands (actuation).
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Live Images Yellow Line's Angh 
ancf Sferting Point

Translation and . 
Rotation Commands* Host ODIS

Vehicle
Control

Strategy
Yellow Line 

Detection Function

Fig. 2.3: Signal flow of the wireless visual servoing system.

2.1.3 Software A rchitecture

The Host (ODIS laptop) is based on the WINDOWS 2000 platform. We use Mi­

crosoft Vision SDK to acquire the live images. Microsoft Vision SDK (short for Software 

Development Kit) includes an MFC Application Wizard which is easily used to create 

MFC programs with selected functionalities of the Vision SDK. The resulting programs 

will attach a sequence to an image source and support a second thread capturing images 

in the background. One major feature of Microsoft Vision SDK is that it provides a basic 

image object tha t supports a diversity of pixel formats such as, for color images, RGBA 

pixel types (red, green, blue, and alpha).

Using socket programming, the visual servoing module can be independently capable 

of talking to ODIS bidirectionally. This independent module can be easily integrated into 

the base station GUI or planner as an additional function or utility script. Basically, the 

visual servoing module is triggered by the base station GUI or planner and returns an 

event completion flag and some possible exceptional flags. Central in the module are the 

yellow line detection function and the visual servo algorithm which will be described in 

some detail below.

2.1.4 Yellow Line D etection  Function

The five steps in the yellow line detection function are 1) yellow color separation, 2) 

connected component labelling, 3) maximal region determination - line region mask, 4) 

points for line determination, and 5) line fitting. In step 1), we use RGB components 

to create a difference image by the formula Red + Green - 2 Blue. For each row in the 

difference image, a threshold value is calculated using an average of the minimum and 

maximum difference values in the row. Finally each row is thresholded and the result
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is stored in what we call an enhanced mask. In step 2), connected component labelling 

is applied to find all equivalence classes of connected pixels in a binary image using the 

8-connectivity principle [39]. Taking the enhanced mask as input, the output via the 

connected component labelling is another image called the region map, in which every 

pixel in one connected region is labelled “1” and every pixel in another connected region is 

labelled “2.” In step 3), with a region map obtained in step 2), we choose the region with 

the maximal number of pixels to be what we call the line region mask. Step 4) determines 

the points to form a line for line fitting in step 5). This is done by scanning the line region 

mask from both left and right until reaching the middle. The middle points are used 

to estimate the yellow line parameters such as the angle and the starting point position. 

Finally, in step 5), with the data set obtained in step 4), an isotropic line fitting algorithm 

is used to determine the yellow line parameters: orientation angle and the starting point 

position. Figure 2.4 shows the images at each step of the yellow line detection function 

described above.

Fig. 2.4: Image processing for ODIS visual servoing.

2.2 Control Schem e and Stability Analysis

As part of the CSOIS effort on ODIS, an iterative visual servoing scheme is proposed 

for the robot localization. In this section, a portion of this research is described. This
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material is adapted and in some cases excerpted from [2]. The original idea is credited to 

the first author of [2], However, the implementation of these ideas was a contribution of 

this dissertation. This portion of material is provided for completeness.

2.2.1 P erspective Map

A perspective projection model is assumed for the camera. The projection map is 

given by:

where (x, y) are p ro je c te d  projections on the image plane (not in pixels).

Figure 2.5 illustrates conventions for the camera frame, image plane, and parking lot 

line. Consider a  point in the camera frame with coordinates (X , Y, Z). Now, add the unit 

vector (sin^ ,0 , cosy?) to this point. It can be assumed that — ir/2 < <p < tt/2. The angle 

that the image of this vector makes with respect to the positive y —axis in the image plane 

can be easily derived.

(x,ii) = t { X , Y ) (2 .1)

Image y  y c Camera
Plane 4. A Frame

f

-Y

Parking lot parallel to the Xc-Zc plane

Fig. 2.5: Camera frame, image plane, and parking lot line.

The mapping of the two points, under the perspective projection, are given by:

( X ,Y ,Z )  -  L x ,Y ) , (2 .2 )

(2.3)

Taking the difference of the two image points gives a vector in the image plane

/ ( Z sin ip — X  cos ip, —Y  cos ip). (2.4)
Z (Z  + cos ip)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Note th a t the vector always has a positive y component since Y  < 0 (the camera is above 

the parking lot). The angle of this vector with respect to the positive y -ax is  is then given

where the angle is positive if the vector has a positive a:-component. Note that, based 

on fig. 2.5, the image plane should be visualized with x positive in the left direction, so 

positive 6  is then in the counterclockwise direction.

2.2.2 Proportional Controller

Using the image processing algorithms described earlier to extract the starting point 

and the  direction of a parking lot line, a simple controller (based on intuition) is given by:

where A:,, i =  1,2,3 are positive scalar controller gains, x, X4 are the horizontal coordinates 

of the actual and desired point in the image plane, respectively, y,y<i are the vertical 

coordinates of the actual and desired point in the image plane, respectively, and 6 ,9d are 

the actual and desired angles that the line makes with the positive y —axis in the image,

with the movement of features with respect to the camera, frame.

The motivation behind this controller is clear (see fig. 2.6). If the fine appears too far 

to the left in the image, then the robot should move to the left. If the line appears too high 

in the image, the robot should move forward. Finally, if the line is rotated counterclockwise 

beyond the desired angle in the image, then the vehicle should rotate counterclockwise.

by:
Ztanip — X (2.5)

y /(Z ta n < p -X )* + Y *

Xy    {x 3'd)

Zv =  k2(y -  yd), (2 .6 )

<pv =  h ( 9  -  6>d),

respectively. X v is the X  component of the vehicle’s velocity and is positive when the 

vehicle moves to the left. Zv is the Z  component of the vehicle’s velocity and is positive 

when the vehicle moves forward. <pv is the angular velocity of the vehicle and is positive 

when the vehicle rotates counterclockwise. On the other hand, X, Z, y >  are rates associated
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Fig. 2.6: Variables for kinematic equations. Point A should be understood as on an 
imaginary extension of the line.

Consider the case

xd =  0, Qd = 0. (2.7)

Thus, the desired image is a line which is centered horizontally and oriented vertically. 

Setting x  =  0, y — yd, 0 =  0 in the projection map (2.1) gives desired values:

X  = 0, Z  = f Y / y d, <p = 0. (2 .8 )

Thus, if the image line is in the desired position and orientation, the vehicle must be 

oriented parallel to  the line, and if the line were extended toward the vehicle, the vehicle 

would be located on this extended line.

There are several reasons why it is not clear if the controller will work. First of all, the 

relationship between image and actual positions is related by the perspective map, which 

is nonlinear. More significantly, however, the angle of the line in the image can sometimes 

direct the vehicle to rotate in the wrong direction. Recall that parallel lines in the world 

will map to converging lines in the image. Each of these lines has a different angle with 

respect to the positive y —axis.
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Subsequent sections will demonstrate the surprising result that the controller produces 

asymptotic convergence to the correct orientation and position for virtually any initial 

position and orientation of interest.

2.2.3 Vehicle K inem atic Equations

Figure 2.6 illustrates the important variables involved in the vehicle kinematic equa­

tions. The equations can be derived from the standard relative motion equation for rigid 

bodies:

vb = va + v  x r B / A , (2.9)

where A and B are points on a rigid body, vg is the velocity vector of B, va is the velocity 

vector of A, ui is the angular velocity vector of the body, and rB/A is the relative position 

vector drawn from A  to B. Points A and B axe labelled in fig. 2.6. All calculations will 

be done with respect to the camera frame, vs  =  (A, Z) is the velocity of the point B as

seen in the camera frame. As the vehicle moves with velocity (X v, Zv). the point A on

the line (or its imaginary extension) will appear to move with velocity — (X v, Zv). Thus, 

va = — (XV,Z V). Clearly, rB/A — (X ,Z )  . Finally, the line will appear to rotate about 

the point A in the counterclockwise direction if <p is increasing. Thus, u> has magnitude 

ip and is in the counterclockwise direction when ip > 0 . Note that <p increasing means 

<pv < 0. Substituting these results into the relative motion equation and adding an equation 

corresponding to the previous statement gives the vehicle kinematic equations:

X  =  —X v + ipZ,

Z  — —Zv — <pX, (2.10)

i p  =  - < p v .

2.2.4 Final M odel and Stability Analysis

Combining equations (2.1 - 2.10) gives the following set of differential equations:

X  =  — k^Z  sin~1(-),

Z  =  ~ k2 { f ^  -  Vd) +  A)3A sin _1('), (2 .11)

=  -fc3 sin_1(-),
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where sin-1 (-) denotes sin~1(—7= for short. For easy derivation and simplic-

ity, assume that /  =  1 and y =  — 1 (since the camera is above the parking lot on which 

the yellow line is painted). Equation (2.11) becomes

X  =  - f a ^ - f a Z s i n  x(-),

^  =  k2 ( ^ + y d) + k 3X s m - \ - ) , (2 .12)

-fc3sin *(■),

with sin x(-) denoting sin x( , zta,n^ x  Equation (2.12) has a single equilibrium at
y /  ( Z  ta n  p —X j - j - 1

(0 , - - , 0 )T.
Vd

Let w  =  \X, Z, <jo]7’. The system in equation (2.12) is of the form w  = 3-(w) with the 

equilibrium point wq =  [0, — ̂ ,0 ] T. We ill use Lyapunov’s indirect method to test the 

stability of the equilibrium.

First, we can easily compute

dsin *(•) 
cfov

= ( -1 ,0  ,Z). (2.13)

Then, the linear approximation to the system (2.12) can be written by

where

3 w |w°

- f a Z - feiz 0 k3z 2-
0 - Hz? 0

-  f a 0 ■fa z .
r _ k  _l

Vd fa Vd 0 - %f t
0 - f a  Vd 0

- . fc3 0 k
r Vdr _ k

Vd Vd 0

\ " " 
•yfi

0 -fayd 0

- fa 0 k
Vd  J

I W o

fcl,

fa ~Vd
fa
f a ’

fa
fa
f a '

(2.14)

(2.15)
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The characteristic equation is then

(A -  k2yd) (A2 -  yaX + fa) =  0 ,

whose eigenvalues are

Al =  fayd, A2,3 =
yd̂ yjy'd ~ 4fc3

(2.16)

(2.17)

Given the constraints yd < 0, fa > 0 and fa > 0. all the above three eigenvalues have 

negative real parts. This leads to the following:

T h e o rem  1  (from [2]) I f  yd < 0, fa > 0 and fa > 0 , then the equilibrium (0 , — A-,0)T of
y d

the visually servoed, omnidirectional robot equation (2 .1 2 ) is locally asymptotically stable.

2.3 E x te n d e d  D isc re te-T im e  P ro p o rtio n a l C on tro ller

Due to the hardware architecture (section 2.1.2), currently, the wireless visual servoing 

control scheme is implemented in a start-stop manner or as an iterative controller as 

described by fig. 2.7.

Succeed?

Iteration > Threshold

End

Start

Calculate Angle and Starting Point

Wait for Some Time till Commands Finish

Iteration ++
Generate Commands and Send Them to ODIS

Fig. 2.7: Iterative visual servoing control scheme.
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The iterative visual servoing controller is a simple proportional controller, given by

A X V — C\ (ud ilj (2.18)

AZv =  Ci (Vd -  v) (2.19)

A ipv = C$ { 6  -  9&) (2 .20)

where (it, v) refers to the conventional image plane coordinates (in pixels in (2.18) - (2 .2 0 )). 

A X  and A Z  are incremental translation distances in X  and Z  direction in the camera frame 

respectively; A ip is the yaw angle increment with respect to the current ODIS orientation; 

the yellow line angle 6  is positive if clockwise with respect to v axis in the image frame; 

Ud and Vd are the desired position in the image plane which correspond to the yellow line 

aligned vertically in the middle of the image plane (i.e., B,i =  0 ); and Cb, Cc, C3 are all 

controller gains which were roughly determined during our tests.

During our implementation of the visual servoing control algorithm described in the 

above, there are several technical details that needed to be addressed. The following listed 

are some of the important issues.

1) Yellow line  searching: Upon receipt of localization command via visual servoing, 

it may happen that the yellow does not lie in the field of view (FOV) of the ODIS 

camera. A routine is designed to automatically locate the yellow line within the FOV 

of camera such that the iterative visual servoing routine can start to work. If there 

is no yellow line found after a 360° trial, then we report an exceptional event to the

2) U p p e r  half-im age p lane  clipping: It may happen that a yellow colored car ap­

pears in the captured image. This will greatly affect the yellow line detection. For­

tunately, since the car image is usually in the upper half of the image plane, simply 

clipping the upper half and using only the lower half plane for yellow line detection 

will solve the “yellow car disturbance problem.”

GUI.
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3) Im age  fram e skipping: Due to the wireless connections, not all video frames have 

good quality. Occasionally, the a frame can be very bad and not usable due to e.g. 

E /M  interference. We set a lower threshold and check the number of yellow pixels 

in the lower half of the image plane and then discard those images containing few 

yellow pixels.

4) M ed ian  filtering: A window buffer is built to store the yellow line parameters and 

a median filter is used to make sure that the “measurement” is not jumping due to 

the wireless connections.

2 .4  E x p e r im e n ta l R esu lts

We performed tests in the parking area near outside the GSOIS “Blue Room.” We 

did not perform any camera calibration and the visual servoing controller gains Cj(j  — 

1,2,3) are determined by experimental trials. Cautious or smaller gains can ensure the 

convergence of the iterative visual servoing process while suffering from slow convergence 

rate. On the other hand, too aggressive or larger gains may oscillate the whole system 

although they may make the convergence faster. A suitable design of the controller gains 

largely depends on the modeling efforts. Systematic and optimal design of the control 

gains or the development of the other control laws for the visual servoing system axe our 

possible future efforts.

We report here a typical wireless visual servoing experimental result. The results are 

summarized in fig. 2 .8  where we can see that the visual servoing errors in the image frame 

converge to near zero as the number of iterations increases. After satisfactory alignment 

to the yellow line with a number of visual servoing control iterations, the ODIS can be 

thought of being localized and then a reset FOG command can be sent to ODIS (the FOG 

is reset to the orientation of the yellow line as given in the assumed world map). Figure 2.9 

shows another experimental result where the ODIS starts at a different initial position.
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Fig. 2.8: Visual servoing errors vs. iteration in the image frame.
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Fig. 2.9: Another example of visual servoing: errors vs. iteration in the image frame.
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2.5 D iscussion and Conclusions

We have presented in this section a simple robot localization technique using a wire­

less visual servoing technique for an autonomous ground vehicle ODIS (omnidirectional 

inspection system) used for under-car inspection tasks in standard parking lot environ­

ment. Based on the current architecture of ODIS and the dedicated scripting language, an 

iterative visual servoing scheme is proposed to align the yellow line of the parking lot. The 

iterative scheme tolerates the uncertain time delay due to the wireless connections without 

introducing stability problems due to the time-varying delays in real-time visual servoing. 

Experimental results were presented to show that for our specific application, the wireless 

visual servoing technique presented is an efficient way for robot localization.

A near future effort is to use “continuous” visual servoing instead of the “iterative 

scheme” presented in this section. To do this, we need to change the interface between 

the scripting command and the Sensor Motion Scheduler (SMS) to receive in real-time the 

time-varying reference signal for tracking purpose. Presently, the SMS only accepts set- 

point commands for motion control. W ith a “reference tracking mode” added to the SMS, 

the “continuous” visual servoing can be done easily. However, in this case, the control 

period and delays will be important and stability issues will be dominant.

The current yellow line alignment method applies an iterative scheme with an uncal­

ibrated camera. If the camera is calibrated before hand, the task can be s im p lified by 

estimating the depth, either via the known motion dynamics of the vehicle, or via the 

known knowledge of the two parallel lines.
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Chapter 3 

Camera Lens D istortion Correction

Chapter 2 describes an iterative visual servoing approach with an uncalibrated camera. 

In this chapter, we consider the problem of lens distortion correction related to camera 

calibration.

3.1 Background Introduction

To use the information provided by a computer vision system, it is necessary to under­

stand the geometric aspects of the imaging process, where the projection from 3-D world 

reference frame to the camera’s image plane (2-D) causes direct depth information to be 

lost so that each point on the image plane corresponds to a ray in the 3-D space [40]. The 

most common geometric model of an intensity imaging camera is the perspective or pinhole 

model (fig.. 3.1 [40]). The model consists of the image plane and a 3-D point 0 ' \  called the 

center or focus of projection. The distance between the image plane and Oc is called the 

focal length and the line through Oc and perpendicular to the image plane is the optical 

axis. The intersection between the image plane and the optical axis is called the principal 

point or the image center. As shown in fig. 3.1, the image of P c is the point at which 

the straight line through Oc and P c intersects the image plane. The basic perspective 

projection [41] in the camera frame is

(x, y) =  ^ ( X c, Y c), (3.1)

where P c =  [Xc, Y c, Z C]T is a 3-D point in the camera frame and p — [x, y}T is its projection 

in the camera frame. In the camera frame, the third component of an image point is always 

equal to the focal length / .  For this reason, we can write p = [x, y]T instead of p  =  [x, y , /]T .

3.1.1 A spects That Real Cameras D eviate from Pinhole M odel

A real camera deviates from the pinhole model in several aspects. The most significant 

effect is lens distortion. Because of various constraints in the lens manufacturing process,
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Y»

Image plane

Optical axis 
——►Z'

Fig. 3.1: The perspective camera model.

straight lines in the world imaged through real lenses generally become curved in the image 

plane. This distortion is almost always radially symmetric and is referred to as the radial 

distortion. The radial distortion that causes the image to bulge toward the center is called 

the barrel distortion, and distortion that causes the image to shrink toward the center is 

called the pincushion distortion [42] (see fig. 3.2). The center of the distortions is usually 

consistent with the image center.

1 1 I

— .

1— ,

L L 1 J

1 ■—’

— —

1 n

Barrel Distortion Pincushion Distortion

Fig. 3.2: The barrel distortion and the pincushion distortion.

The second deviation is the flatness of the imaging media. However, digital cameras, 

which have precisely flat and rectilinear imaging arrays, are not generally susceptible to this 

kind of distortion. Another deviation is that the imaged rays do not necessarily intersect
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at a point, which means there is not a mathematically precise principal point as illustrated 

in fig. 3.3. This effect is most noticeable in extreme wide-angle lenses. But the locus of 

convergence is almost small enough to be treated as a point especially when the objects 

being imaged are large with respect to the locus of convergence.

Incoming Rays

§
Cm
Jj
U-,

Principal Point

Pinhole Model

Incoming Rays

%

Locus of 
Convergence

Lens Camera

Fig. 3.3: Lens camera deviates from the pinhole model in locus of convergence.

3.1.2 Cam era Param eters and Cam era Calibration

Camera parameters are the parameters linking the coordinates of points in 3-D space 

with the coordinates of their corresponding image points. In particular, the extrinsic 

parameters are the parameters that define the location and orientation of the camera 

reference frame with respect to the world reference frame. The intrinsic parameters are the 

parameters necessary to link the pixel coordinates of an image point with the corresponding 

coordinates in the camera frame [41].

Extrinsic Param eters

The extrinsic parameters are defined as any set of geometric parameters that uniquely 

define the transformation between the world reference frame and the camera frame. A 

typical choice for describing the transformation is to use a 3 x 1 vector t  and a 3 x 3 

orthogonal rotation matrix R  such that P c =  R P W +  t. According to  Euler’s rotation 

theorem, an arbitrary rotation can be described by only three parameters. As a result, the 

rotation matrix R  has three degree-of-freedom (DOF) and the extrinsic parameters totally
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have six DOF. Given a rotation matrix R

>11 G2 G3'

R  =  r21 r2 2 r23

-1'31 rS2 r33 J

one m ethod to get the three parameters that uniquely describe this matrix is to extract 

Z Y Z  Euler angles (0a,6b,9c), such that the rotation matrix R  can be calculated by [43]:

R  =  R z{Ba) Ry(0b) R z(Bc (3.2)

with

'cos(Bc) -  sin(0c) O' cos(0b) 0 sin (0b)'

R z { 8  c) = sin(0e) cos(0c) 0 , Ry(0b) — 0 1 0

. 0 0 1 . . -  sin(06) 0 cos(06) .

(3.4)

(3.3)

When sin(#(,) ^  0, the solutions for (8 a,&b,Bc) axe [43]:

6 b =  arctan 2  (y 'r i i  +  rf2, r 33),

8a =  arctan 2  (r23/sin(0& ),ri3/sm (06)),

$c =  arctan 2 (r32/s in (0&), - r 3x/ sin(0b)).

Intrinsic Param eters

The intrinsic parameters are as follows:

1) The focal length / .

2) The parameters defining the transformation between the camera frame and the image 

plane. Neglecting any geometric distortion and with the assumption that the CCD 

array is made of a rectangular grid of photosensitive elements, we have:

x =  - { u  -  uo) sx , 
y  =  - ( V -  v0) s y , (3.5)

with (uq, vo) the coordinates in pixel of the image center and s x , s y the effective sizes 

of the pixel in the horizontal and vertical direction, respectively. Let f x =  f / s x and 

f v — f / s y .  The current set of intrinsic parameters are uo, uq, f x , and f y .
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Fig. 3.4: Skewness of two image axes.

3) The parameter describing the skewness of the two image axes: 7  =  f y tan0. The 

skewness of two image axes is illustrated in fig. 3.4.

4) The parameters characterizing the lens distortion.

P rojection  M atrix

W ith the homogeneous transform and the camera parameters, we can have a 3 x 4 

matrix, called the projection matrix, that directly links a point in the 3-D world reference 

frame to its projection in the image plane. That is [12, 41]:

~XW'
u '

yu) "a 7 u 0

V — 4̂-intr [R | t]
zw

~ 0 P Vo

1 .
1

. 0 0 1

X c

Y°

z c
(3.6)

where (u, v ) is the distortion-free image point on the image plane; the matrix Antn called 

the intrinsic matrix, fully depends on the camera’s five intrinsic parameters ( a . j ,  j3, uq, vq), 

with (a, (3) being two scalars in the two image axes, (uo, vo) the coordinates of the principal 

point, and 7  describing the skewness of the two image axes; [Xc, Yc. ZC}T denotes a point 

in the camera frame which is related to the corresponding point [Xw, Yw, ZW]T in the 

world reference frame by Pc — R Pw + 1 with (R, t)  being the rotation matrix and the 

translation vector. For a variety of computer vision applications where a camera is used as 

a sensor in the system, the camera is always assumed fully calibrated beforehand. From 

equations (3.1) and (3.5), we have

f  Xc
S x  Zc + U0. (3.7)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



32

From equation (3.6), we have

X c
u = a —  + u0, (3.8)

■with scaling factor A =  Z°. From the above two equations, we get a  = —f / s x =  — f x . In 

the same manner, (3 — —f y.

Camera calibration is the process of estimating the camera’s extrinsic parameters, 

intrinsic parameters, and the distortion coefficients. The early works on precise camera 

calibration, starting in the photogrammetry community, use a 3-D calibration object whose 

geometry in the 3-D space was required to be known with a very good precision. However, 

since these approaches require an expensive calibration apparatus, camera calibration is 

prevented from being carried out broadly. Aiming at the general public, the camera cal­

ibration method proposed in [12] focuses on desktop vision system and uses 2-D metric 

information. The key feature of the calibration method in [12] is that it only requires the 

camera to observe a planar pattern at a few (at least three, if both the intrinsic and the 

extrinsic parameters are to be estimated uniquely) different orientations without know­

ing the motion of the camera or the calibration object. Due to the above flexibility, the 

calibration method in [12] is used in this dissertation, where the detailed procedures are 

summarized as: 1) estimation of intrinsic parameters, 2 ) estimation of extrinsic parame­

ters, 3) estimation of distortion coefficients, and 4) nonlinear optimization. The overall 

calibration procedures are illustrated in fig. 3.5.

3.1.3 Radial D istortion

In equation (3.6), (u, v) is not the actually observed image point since virtually all 

imaging devices introduce a certain amount of nonlinear distortion. Among the nonlinear 

distortions, radial distortion, which occurs along the radial direction from the center of 

distortion, is the most severe part [9, 10]. The removal or alleviation of the radial distortion 

is commonly performed by first applying a parametric radial distortion model, estimating 

the distortion coefficients, and then correcting the distortion.
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Nonlinear Optimization with 
Different Distortion Models

Linear Estimation of Intrinsic 
and Extrinsic Parameters

Feature Extractoin of Known 
2-D Calicration Target

Initializatoin of Initial Values 
of Distortion Coefficients 

(As Zero)

Fig. 3.5: Camera calibration procedures.

Lens distortion is very important for accurate 3-D measurement [8 ]. Let (ud, vd) be the 

actually observed image point and assume that the center of distortion is at the principal 

point. The relationship between the undistorted and the distorted radial distances is given 

by:

rd = r + dr , (3.9)

where rd is the distorted radial distance and Sr the radial distortion.

Most of the existing works on the radial distortion models can be traced back to an

early study in photogrammetry [11] where the radial distortion is suggested to be governed

by the following polynomial equation [11, 12, 13, 14]:

rd = r f  (r, k) =  r  (1 +  fo r2 +  for4 + fo r6 H ), (3.10)

where k  =  (fo, fo, fo , . . . )  are the distortion coefficients. It. follows that

xd = x f ( r ) ,  yd = y f{ r ) ,  (3.11)

which is equivalent to

ud -  uo = {u -  ua)f(r), vd -  v0 = (v -  r 0) / ( r) .  (3.12)
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For the polynomial radial distortion model (3.10) and its variants, the distortion is 

especially dominated by the first term and it has also been found that too high an order 

may cause numerical instability [10, 12, 44]. When using two coefficients, the relationship 

between the distorted and the undistorted radial distances becomes [12]

The inverse of the polynomial function (3.13) is difficult to perform analytically, but can 

be obtained numerically via an iterative scheme.

Besides the commonly used radial distortion modeling (3.10), the relationship between 

rd and r  can also be modelled as [45]

To overcome the inversion problem, the above model with two coefficients is studied in 

[29], which is

whose appealing feature lies in its satisfactory accuracy as well as the existence of an easy 

analytical undistortion formula.

Until recently, the most commonly used radial distortion models are still in the poly­

nomial form, though other models, such as the division model [46] and the fish-eye radial 

distortion models (such as the fish eye transform [9]), are available in the literature. A 

rational model in the form of

is proposed in [47] when rd and r  are expressed in the camera frame. However, it is not 

specified clearly in [47] why this model is sought.

In this dissertation, a new class of rational radial distortion models that are functions 

of simple polynomials is proposed. In the full-scale nonlinear optimization, the following 

objective function [12]:

rd =  r (1  +  ki r 2 +  k2 r 4). (3.13)

rd =  r f (r )  = r (1  +  k\r  +  k^r2 +  for3 +  . . .). (3.14)

f ( r )  = 1 +  ki r +  fe2 r 2, (3.15)

N im  n

(3.17)
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is used, where M j  is the j  3-D point in the world frame with Z w =  0; m(A.intr, k, Ri, t*, M j )  

is the projection of point M j  in the ith image using the estimated parameters; k  denotes the 

distortion coefficients; n  is the number of feature points in the coplanar calibration object; 

and iVim1 is the number of images taken for calibration. In [12], the estimation of radial 

distortion is done after having estimated the intrinsic and the extrinsic parameters and 

just before the nonlinear optimization step. So, for different radial distortion models, we 

can reuse the estimated intrinsic and extrinsic parameters. The quantities M j  are known 

during the calibration process. Knowledge of M j  comes from the known calibration target, 

which is a 2-D planar surface in our study. The quantities /?., and t* are not fixed during 

the nonlinear optimization.

3.2 F e a tu re  E x tra c tio n

The calibration method illustrated here uses a planar calibration object shown in 

fig. 3.6, where 64 squares are separated evenly and the side of each square is 1.3 cm.

■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■
Fig. 3.6: Calibration object.

The procedures to extract the feature locations of the above calibration object are 

illustrated in table 3.1. The input image is an intensity image. After thresholding it with a 

certain value (which is 150 in our case), we can get a binary image. The binary image then 

goes through a Connected Component Labelling algorithm [48, 49] that outputs a region

1n  and Nim are chosen to  be n  =  256 and jVjm =  5 in all the experiments performed in this dissertation.
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map, where each class of the connected pixels is given a unique label. For every class in 

the region map, we need to know whether or not it can be a square. In our approach, this 

is done by first detecting the edge of each class and then finding the number of partitions 

of the edge points. If the number of partitions is not equal to four, which means it is not 

a 4-sided polygon, we will bypass this class. Otherwise, we will fit a line using all the 

edge points that lie between each two adjacent partitions and thus get four line fits. The 

final output of this class is the intersections of these four line fits that approximate the 

four corners of each square. After running through all the classes in the region map, if 

the number of detected squares equals to the actual number of squares in the calibration 

object, we will record all the detected corners and arrange them in the same order as for 

the 3-D points in the 3-D space (for a given calibration object, assume Z w — 0, we know 

the exact coordinates of the feature points in world reference frame and we need to arrange 

these feature points in a certain order so that after detecting feature points in the observed 

images, we can have an algorithm to seek the map from a point in the world frame to its 

corresponding projection in the image plane). After detecting five images, we are ready 

for the camera calculation.

Table 3.1: Procedures to Extract Feature Locations 
Threshold input intensity image to make it binary (the threshold is 150)
Find connected components using 8-connectivity method, and output a region map

Loop for every class in the region map
Select the class whose area is <  3000 and >  20 
Binary edge detection of this class 
Find partitions of the detected edge points 
If number of partitions =  4

Line fit between each two adjacent partitions 
Output four line intersections 

End if 
End loop

If the total number of intersections =  4 x number of squares in the calibration object 
Arrange intersections in the same order as points in the world reference frame 

End if
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B inary Im age Edge D etection  (Boundary Finding)

A boundary point of an object in a binary image is a point whose 4-neighborhood or 

8-neighborhood intersects the object and its complement. Boundaries for binary images are 

classified by their connectivity and by whether they lie within the object or its complement. 

The four classifications are: interior or exterior 8-boundaries and interior or exterior 4- 

boundaries [39]. In our approach, we use the interior 8-boundary operator, as shown in 

fig. 3.7, which is denoted by [39]:

b  =  (1 -  (a o N ei)) a, (3.18)

where

1 ) a  is the input binary image.

2) b is the output boundary binary image.

3) Net is the 4-neighborhood: lVej(p (u, v)) = {y : y =  (u ±  j ,  u) or y = (u , v ±  i), i , j  € 

{0 , 1}}-

4) For each pixel p (u , v) in a, p  (u , w) o N e, =  minimum pixel value around p (u , v) in 

the sense of 4-neighborhood.

Fig. 3.7: Objects and their interior 8 -boundary.
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P artition s o f Edge Points

Given a set of points that characterize the boundary of some object, a common ques­

tion is what shape this object is, when we try to use polygons, especially the convex 

polygons, to  denote objects in the real world. The set of points can be the output of some 

range finding sensors, such as laser and sonar. Or, it can come from images captured by 

a camera and is preprocessed by some edge detector, which is just the case we are dis­

cussing. In our problem, we know beforehand that the region of interest is a square and we 

can use the scan fine approximation method [50, 51] to find the partitions. The scan line 

approximation algorithm is described in table 3.2. Figure 3.8 shows an illustration. Fig­

ure 3.9 shows the fitting results using the partitions found by the scan line approximation 

algorithm, where all the input data are the edge points of squares in a real image.

Table 3.2: Scan Line Approximation Algorithm

Problem  D efinition
Assum ption: Object is described using a convex polygon.
Given: A set of data points that have already been sorted in certain order.
F ind : Partitions.

A lgorithm
Scan Line A pproxim ation (start index, end index, data points)

Draw a line connecting the starting point and the ending point 
Calculate the maximum distance each point € [start index, end index] to this line 
If the maximum distance is greater than a predefined threshold 

Record the index of the point that gives the maximum distance

Set end index =  the index of that point that gives the maximum distance 
Scan Line Approximation (start index, end index, data points)

Set start index =  the index of that point that gives the maximum distance 
Scan Line Approximation (start index, end index, data points)

End if

In table 3.2, the algorithm is implemented in a recursive way. When applying this 

algorithm, an important issue is how to decide the threshold. Unfortunately, this threshold 

is application-dependent. In our implementation, we choose 5 ~  10 pixels. The smaller the 

squares or the farther that the camera is away from the calibration object, the smaller the 

threshold should be. Another issue to which we need to pay attention is how to choose the
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(a)

Fig. 3.8: Illustration of scan line approximation algorithm (a) 3 sides (b) 4 sides.

initial starting and ending points. They cannot be on the same side. Otherwise, due to the 

noise in the data, the point whose distance to the line connecting the starting and ending 

points is maximal might not be around the corners. This problem can be solved s i m p l y  by 

first finding the two adjacent points whose maximal distance tha t all other points to this 

line is the biggest.

Fig. 3.9: Fitting results using partitions found by scan line approximation.

Figures 3.10 and 3.11 show two sets of processed images at all steps, where the input 

images are captured by a desktop camera. Notice that in fig. 3.11, in the image titled with 

“Binary Image +  Partition Points,” the triangle in the upper right corner does not show 

in the next step. The reason why this happens is that after finding the partitions, the 

number of partitions does not equal to four and we thus bypass this region.

\ \
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Fig. 3.10: Feature points extraction for desktop images (1).
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Fig. 3.11: Feature points extraction for desktop images (2).

3.3 A nalytical Polynom ial Radial D istortion  M odel

Sections 3.1 and 3.2 have described the general background of camera calibration and 

the preprocessing of the images for the camera calibration. In the following sections, we 

shall focus on lens distortion modeling, with an emphasis on the analytical inverse formula.
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The conventional radial distortion model (3.13) does not have an exact inverse. Ex­

isting methods to overcome the problem of no analytical inverse function include:

1) Using iterative numerical methods.

2) Preparing a table containing the inverse relationship and searching through the table 

for the inverse.

3) Using approximations, such as [52]

rd =  r ( l  +  k\ r2 +  fc2r4) <-+ r — r<i(l -  k ird -  fc2Td) (3.19)

and [46]

rd = r{ 1 +  k ir 2) *-> r = ~ t ~ 2 - (3-20)l +  fci rd

The fitting results given by the above approximations can be satisfactory when the 

distortion coefficients are small values. However, an extra source of error is introduced 

and this will inevitably degrade the calibration accuracy.

The above listed three methods introduce either additional computation time or ad­

ditional approximation errors. Due to these reasons, an analytical inverse function that 

has the advantage of giving the exact undistortion solution is one of the main focus of this 

work. To overcome the shortcoming of no analytical inverse formula, but still preserving

a comparable accuracy, the radial distortion model (3.15) that has the following three

properties has been studied in [29]:

1) This function is radially symmetric around the center of distortion (which is assumed 

to be at the principal point (uq, vq) for our discussion) and it is expressible in terms 

of radius r only.

2) This function is continuous and derivable, hence rd — 0 iff r = 0 within the operating 

range of r .2

2For a higher order polynomial in the form of rd =  r / ( r ) ,  it is obvious th a t r  =  0 => ra =  0. However,
w ithout a  proper hypothesis, there might exist other solutions besides r  =  0 th a t satisfy =  0. To model 
the physical lens distortion, the condition th a t rd =  0 => r  =  0 has to  be ensured w ithin the  operating
range of r.
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3) The resultant approximation of x d is an odd function of x. For example, from (3.15), 

we have
f x d =  x  f(r )  =  x  (1 +  kxr +  k2 r2) ,
1  yd = y f ( r )  = y ( l  + h r +  k2 r2)

It is obvious that x d =  0 iff x — 0. When x d ^  0, by letting k =  yd/xd  =  2//m, we

have y  =  k x  where k  is a constant. Substituting y  —  k x  into the above equation

gives:

1 +  fci\ j  x 1 +  k 2 x 2 +  k2 (x2 +  k 2x 2 )Xd =  x

=  a: +  fci \ / l  +  K2 sgn(x) x 2 + k2( l + k 2 ) x 3, (3.22)

where sgn(x) gives the sign of x  and Xd is an odd function of x. Thus, when interpret­

ing from the relationship between (x y d )  and (x, y) in the camera frame, the radial 

distortion function is to approximate the x,i ^  x  relationship, which is intuitively an 

odd function.

R e m a rk  3.3.1 The radial distortion models discussed in this dissertation belong to the 

category of Undistorted-Distorted model, while the Distorted-Undistorted model also exists 

in the literature to correct the distortion [53]. The radial distortion models can be applied 

to the D- U formulation simply by defining

r =  rd f ( r d).

Consistent results and improvement can be achieved in the above D-U formulation. While 

a D-U formulation relieves us the task of performing undistortion, in some cases, it is 

still desirable to locate the projection of a 3-D point on the image plane knowing its 3-D 

coordinates.

A naly tical R a d ia l U n d is to rtio n

From equations (3.14) and (3.15),

k2 r3 +  k ir 2 +  r -  rd =  0. (3.23)
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By letting a — k i /k 2 , b = l / k 2, and c =  —rd/k2, we have

rs + a r 2 + br + c = 0. (3.24)

Further, let f  = r + a/3. The above equation becomes r 3 + p r  + q = 0, where p = b — a2/ 3 

and q =  2a3/27 — ab/3 +  c. Let A =  ( | ) 2 +  ( | ) 3. If A > 0, there is only one solution; if 

A =  0, then r =  0, which occurs when Sr = 0; if A < 0, then there are three solutions [54]. 

In general, the middle one is what we need, since the first root is at a negative radius and 

the third lies beyond the positive turning point [55, 56]. After r is determined, (u, v) can 

be calculated from (3.12) directly.

3.4 Rationed R adial D istortion M odels

Based on the three criteria listed in section 3.3, a new class of radial distortion models 

(models # 5 ,6 ,7 ,8 ,9 ,10 ) is proposed and summarized in table 3.3, where the other four 

polynomial models (models #1 , 2, 3, 4) are also listed. This class of six new models is 

our original contribution of this dissertation. Using these models, the Xd x  relationship 

complies with the property of being an odd function, as shown in the third column in 

table 3.3.

Clearly, all these functions in table 3.3, except the fimction # 4 , are special cases of 

the following function

t t  \  l  +  K i r  +  K2 r 2
=  i --------------3- (3 -25)1 +  ^3  r  +  K 4  r 3

The function # 4  in table 3.3 is the most commonly used radial distortion function in 

the polynomial approximation category. The other nine functions in table 3.3 are studied 

specifically with the goal to achieve comparable performance with the function # 4  using 

the least amount of model complexity and as few distortion coefficients as possible. Since 

the functions #9 ,10  in table 3.3 begin to show comparable calibration performance to the 

function # 4  (as can be seen later in section 3.6), more complex distortion functions are 

not studied in this dissertation.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



Table 3.3: Distortion Models

# m * Xd =  f(x )

1 1 + k r x ■ (1  +  fcV 1 + c2 x  sgn(x))
2 1 +  k r2 x  ■ (1 +  k (1 +  (?) x2)
3 1 +  fci r + k2 r2 x  ■ (1 +  fci \ / l  +  c2 x sgn(x) +  k2 (1 +  c2) x2)
4 1 +  ki r2 +  k2 r 4 x ■ (1 +  fci (1 +  c2) x 2 +  k2 (1 +  c2)2 x 4)

5

6

7

8

9

10

....... r ..................... ........“  “  ' T"~"............... ...........
1 +  k r  

1
1 +  k v  1 +  c2 x sgn(x)

1 +  k r 2 
1 +  k\ r

1 +  k2 r 2 
1

X 1 +  k (1 +  c2) x 2

l  + k i 'J l  + cP-x sgn{x) 
X 1 +  k2 (1 +  c2) x 2

1 +  fci r  +  k2 r 2 

1 +  k\ r

X j ....... ■
1 +  k i \ / l  +  c2 x sgn(x) +  h% (1 +  c2) x 2 

1 +  fci V l +  c2 x  sgn(x )
1  + k2 r  +  &3 r 2 

1 +  fci r 2

............  '
1 +  k2 y l  + c2x sgn(x) +  fc3 (1  +  c2) x2 

1 +  fci (1 +  c2) X 2
1 +  k2 r +  k3 r 2 1 +  k2 V l +  c2 x sgn(x) + k% (1  +  c2) x2

"With the risk of introducing some confusion, the same symbols k i, fc2, and 
&3 axe used in different models that might have different values.

R adial U ndistortion  o f the R ational M odels

The rational functions listed in table 3.3 are all special cases of the function (3.25). 

Radial undistortion of the proposed rational functions are illustrated in the next using the 

general function (3.25). Prom (3.25), we have

ra = r f( r )  =  r  — (3 26) 
1 +  «3 r + K4 H +  «5 rJ

After simple mathematical derivations,

(rah  -  k2 )r3 +  (rdfc4 -  fci)r2 +  (r<jfc3 -  l ) r  +  rd =  0. (3.27)

By letting
rdk4 ~ h  rdk3 -  1 rd

a = —; , o =  ——-----—, c
rdk5 -  k2 ’ rdk5 -  fc2 ’ rdk5 -  k2 ’ 

we arrive at equation (3.24). Following the procedures described in section 3.3, radial 

undistortion of the general rational function (3.25) can be performed analytically with a 

closed-form solution.
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3.5 P iecew ise  Radial D istortion M odel

Besides the rational distortion functions as listed in table 3.3, a two-segment radial 

distortion function is proposed and illustrated in fig. 3.12, where each segment is a function 

of the form
f / i ( r )  =  a0 +  a i r  +  a2 r 2, for r e [ 0 ,ri]

\  f 2 (r) = bo +  b \r  +  &2 r 2, for r e ( r i , r 2] ’ 
with r \ =  r 2 / 2. We are interested in estimating the coefficients (<zo,ai,a2) and (60, h ,  62)

such th a t the two polynomials are continuous and smooth at the interior point r  =  r\. The

reason for choosing a distortion function similar to (3.15) for each segment is that the radial

undistortion can be performed using the analytical procedures described in section 3.3 with

no iterations.

g(r)

S3

Fig. 3.12: A smooth piecewise function (two-segment).

To ensure that the overall function (3.28) is continuous and smooth across the interior 

point,3 the following six constraints can be applied:

/ i ( 0 ) =  1

n0 +  ai n  +  a2 r \  =  f x 
a x +  2 a 2 JT =  d \  

bo + h n  + b2 r \  =  f i  
b\ +  262 n  = di 

bo + h r 2 + b2 rf  =  f 2

(3.29)

3Besides th e  requirement of continuity and smoothness a t the interior point n ,  th e  estim ated f ( r )  
curve has to  be monotonous to  ensure the uniqueness in the rd <-+ r  relationship in the context of lens 
distortion modeling. However, this additional constraint is not necessary since it is inherent in the physical 
lens to  be modelled.
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where f i  =  / i ( r i )  =  f 2 (n ) , h  =  h ( r 2), and d\ =  / i ( n )  = h (r i) .  By enforcing that the 

two segments have the same value and derivative at the interior point ri, the resultant 

single function is guaranteed to be continuous and smooth over the whole range [0 , r 2]. 

Since each interior point provides four constraints to make the resultant single function 

smooth, in order to estimate the coefficients (ao,ai,a2) and (bo,bi,b2) uniquely, we need 

another two constraints, which are chosen to be /i(0 ) and / h ^ )  in (3.29).

Since the coefficients (ao ,a i,a 2) and (fro, fri, 62) in (3.29) can be calculated uniquely 

from ( / i , d i , / 2) by:

a0 -  1

ai =  ( - 2  -  ndi  +  2 /i)  /  ri
0 2  =  (1  +  n d i  - h ) j r \
&2 =  ( / 2  -  h  +  n d i  -  r2 di) /  ( n  -  r2 ) 2 

fri =  d\ -  2  b2ri 
fro =  f i  -  d m  + b2r{

the radial distortion coefficients that are used in the nonlinear optimization for the piece- 

wise radial distortion model can be chosen to be { f \ , d \ , f 2) with the initial values (1 , 0 , 1) 

(equivalent to k  =  0  for a single distortion function), which has only one extra coefficient 

compared with the single model (3.15). During the nonlinear optimization process, the 

coefficients (0 0 , 0 1 , 0 2 ) and (bo,bi,b2) are calculated from (3.30) in each iteration.

3.6 E xperim ental R esults

A series of experiments have been performed in this section to validate the proposed 

rational and piecewise distortion models. First, the final values of the objective function 

J  defined in (3.17) of three groups of testing images are given in section 3.6.1. The model 

selection problem among the ten models in table 3.3 is further discussed using the geomet­

ric AIC (Akaike Information Criterion) and the geometric MDL (Minimum Description 

Length) criteria [57, 58] (section 3.6.2). Then, we simulate the whole imaging process by 

constructing a virtual camera with known camera parameters and radial distortion (sec­

tion 3.6.3). We generate images with noise of a planar calibration target. At a second time, 

we test if the distortion coefficients are accurately estimated by observing the resultant 

f ( r )  r curves.
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3.6.1 Initial M odel Comparison

For the proposed rational distortion functions (models #5 , 6 , 7, 8 , 9, 10), comparisons 

are first made with the other four polynomial functions (models #1 , 2, 3, 4) based on the 

final values of the objective function J  in (3.17) after nonlinear optimization by the Matlab 

function fminunc, since the common approach to the camera calibration is to perform a 

full-scale nonlinear optimization for all parameters. Using the public domain testing images 

(640 x 480 in pixels) [59], the desktop camera images (320 x 240) [60] (a color camera in 

our CSOIS), and the ODIS camera images (320 x 240) [60] (the camera on ODIS robot 

built in our CSOIS), the final values of J,  the estimated distortion coefficients, and the 

five estimated intrinsic parameters ( a ,  /?, -y, uq , vo), are shown in Tables 3.4, 3.5, and 3.6, 

respectively. The extracted corners for the model plane of the desktop and the ODIS 

cameras are shown in figs. 3.13 and 3.14. As noticed from these images, the two cameras 

both experience a barrel distortion .4 In the experiments, we used the planar calibration 

target shown in fig. 3.6 images were taken for each calibration.

- a « m j

§* » « •» •>  mZ Z Z Z I /  ■■■**■ !.«  . f i l l

Fig. 3.13: Five images of the model plane with the extracted corners (indicated by cross) 
for the desktop camera.

Tables 3.4, 3.5, and 3.6 have the same format. The first column is the model number 

consistent with table 3.3. The second column shows the values of the objective function 

J  defined in (3.17). The third column, the rank, sorts the distortion models by J  in 

a [1-smallest, 10-largest] manner. Prom Tables 3.4, 3.5, and 3.6, we have the following 

observations:

4T h e  plotted dots in the center of each square are only used for judging the correspondence with the 
world reference points.
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Fig. 3.14: Five images of the model plane with the extracted corners (indicated by cross) 
for the ODIS camera.

1) Using the proposed rational models, comparable, or even better, results can be 

achieved compared with the polynomial model #4  in table 3.3, at the cost of in­

troducing an extra distortion coefficient.

2) For each category of models, either polynomial or rational, they generally follow the 

trend that the more complex the model, the smaller the fitting residual J .

3) W hen the distortion is significant, the performance improvement using complex mod­

els becomes more obvious.

The comparison based on J  in Tables 3.4, 3.5, and 3.6 might not be fair since the 

distortion models use different numbers of distortion coefficients. Due to this concern, more 

simulations and discussions are presented in sections 3.6.2 and 3.6.3 for the validation of the 

proposed rational models regarding their accuracy improvement and stability. Our main 

point is to emphasize that, by applying the rational functions, comparable accuracy can 

be achieved without sacrificing the property of having an analytical undistortion function.

To make the results repeatable by other researchers for further investigation, we 

present the options we use for the nonlinear optimization:

op tions = o p tim se t( ‘D isp lay ’ , ‘i t e r 1, ‘L argeScale’ , ‘o f f ’ , ‘MaxFunEvals' ,  

8000, ‘TolX1, 1CT5, ‘TolFun’ , 10~5, ‘M axlter’ , 120).

3.6.2 D istortion M odel Selection

Classical criteria that are used in computer vision to assess the accuracy of calibration 

includes the radial distortion as one part inherently [42]. However, the idea to chose among
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Table 3.4: Comparison Results Using Microsoft Images

# J Rank Final Values of k Final Values of (a, j ,  u0, P, v0)
1 180.5714 9 -0.0984 - - 845.305 0.191 303.572 845.262 208.439
2 148.2789 8 -0.1984 - - 830.742 0.216 303.948 830.798 206.557
3 145.6592 6 -0.0215 -0.1566 - 833.650 0.207 303.984 833.686 206.555
4 144.8802 3 -0.2286 0.1905 - 832.486 0.204 303.960 832.515 206.581
5 185.0628 10 0.1031 - - 846.130 0.192 303.507 846.082 208.694
6 147.0000 7 0.2050 - - 831.086 0.213 303.964 831.136 206.517
7 145.4682 5 -0.0174 0.1702 - 833.397 0.207 303.968 833.432 206.556
8 145.4504 4 0.0170 0.1725 - 833.384 0.206 303.971 833.419 206.544
9 144.8328 2 1.6457 1.6115 0.4054 830.941 0.204 303.957 830.970 206.583
10 144.8257 1 1.2790 -0.0119 1.5478 831.737 0.204 303.957 831.766 206.592

Table 3.5: Comparison Results Using Desktop Images

# J  (x 103) Rank Final Values of k Final Values of (a 7, u0 ,P ,vQ)
1 1.0167 9 -0.2466 - - 295.573 -0.819 156.610 288.876 119.852
2 0.9047 8 -0.2765 - - 275.595 -0.666 158.201 269.230 121.525
3 0.8033 7 -0.1067 -0.1577 - 282.564 -0.619 154.491 275.901 120.092
4 0.7790 1 -0.3435 0.1232 - 277.144 -0.573 153.988 270.558 119.810
5 1.2018 10 0.3045 - - 302.233 -1.023 160.560 295.676 120.744
6 0.7986 6 0.3252 - - 276.252 -0.578 154.797 269.706 120.323
7 0.7876 5 -0.0485 0.2644 - 279.506 -0.588 154.173 272.882 119.956
8 0.7864 4 0.0424 0.2834 - 279.326 -0.587 154.116 272.704 119.921
9 0.7809 3 0.5868 0.5271 0.5302 275.831 -0.573 153.999 269.282 119.819
10 0.7800 2 0.2768 -0.0252 0.6778 276.450 -0.573 153.991 269.885 119.809

Table 3.6: Comparison Results Using ODIS Images

# J  (x 103) Rank Final Values of k Final Values of (a 7, «o, P, vo)
1 0.9444 9 -0.2327 - - 274.266 -0.115 140.362 268.307 114.391
2 0.9331 8 -0.2752 - - 258.319 -0.516 137.215 252.685 115.930
3 0.8513 6 -0.1192 -0.1365 - 266.085 -0.367 139.919 260.313 113.241
4 0.8403 3 -0.3554 0.1633 - 260.765 -0.274 140.058 255.148 113.172
5 1.0366 10 0.2828 - - 278.021 -0.028 139.594 271.927 116.299
6 0.8676 7 0.3190 - - 259.494 -0.430 139.125 253.869 113.961
7 0.8450 5 -0.0815 0.2119 - 264.403 -0.350 140.052 258.680 113.144
8 0.8438 4 0.0725 0.2419 - 264.134 -0.342 140.109 258.420 113.112
9 0.8379 1 1.2859 1.1839 0.7187 259.288 -0.282 140.293 253.704 113.007
10 0.8383 2 0.4494 -0.0124 0.8540 260.937 -0.280 140.243 255.317 113.056
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candidate models the one that gives the smallest residual does not work, because a model 

with more degrees of freedom might always be chosen since it is more likely to yield a 

smaller residual. To compare the distortion models fairly, the over-fit caused by more 

degrees of freedom in the distortion model needs to be compensated. Due to the above 

concern, a comparison that is solely based on the fitting residual of the full-scale nonlinear 

optimization, as performed in section 3.6.1, is not enough.

Model selection is one of the central subjects of statistical inference. In [57], two 

widely adopted criteria for statistical model selection, Aka,ike’s AIC and Rissanen’s MDL, 

have been generalized to be GAIC and GMDL for the geometric fitting such that the 

generalized GAIC and GMDL can be helpful for geometric problems considered in the 

computer vision. The GAIC and GMDL of a model S  are defined as [57, 58]:

GAIC(S) =  J(S)  +  2  (dD +  p)£2, (3.31)

and

GMDL(S) =  J(S)  -  (dD +  p)e2lo g (e /i)2, (3.32)

where J ( S ) is the fitting residual when data of size D are fitted to the model S. p is the 

degree of freedom (DOF) of the model S. d = m  — s with in the dimension of the observed 

data and s the co-dimension of the model. L  is a reference length, which is taken to be 

the image width in [58], e is the noise level in the data set.

In the context of lens distortion modeling, in order to apply the GAIC and GMDL, 

the noise level e needs to be known. An unbiased estimate of e can be obtained from the 

most commonly used candidate model (3.13), denoted by S°,  as [57, 581:

where p° is the DOF of the model S'0.

Naturally, interests arose about using the MDL criterion, since it is regarded by many 

as superior to the AIC criterion for statistical inference. It was thus anticipated that a 

criterion like MDL would outperform the geometric AIC for geometric fitting, too [57].
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However, it has been reported in [57] that the above anticipation is negative. In this ex­

periment, both the GAIC and GMDL are applied to validate the proposed model relevance, 

with results shown in table 3.7. The first column denotes the model number consistent 

with table 3.3. The quantities under “GAIC” and “GMDL” are the calculated values using 

(3.31) and (3.32), respectively, where an unbiased estimate of e is obtained from the most 

commonly used candidate model (3.13). To calculate the GMDL, the reference length L is 

chosen to be the width of the image [58]. That is, L is chosen to be 640, 320, and 320 for 

the public, the desktop, and the ODIS images. To facilitate an easy comparison, the rank 

that sorts the ten models by the GAIC and GMDL criteria in a [1-smallest, 10-largest] 

manner are provided as subscripts associated with each quantity.

Table 3.7: Model Selection Using the GAIC and GMDL Criteria

#
Public (L =  640) D esktop (L  =  320) ODIS (L =  320)

GAIC GMDL(103) GAIC(103) GMDL(104) GAIC(103) GMDL(104)
1 471.0120s 2.3734s 2.5784s 1.0411s 2.6289s 1.1014s
2 438.7195,tr 2.3411s 2.46633 1.0299s 2.6176s 1.1003s
3 436.3266g 2.34025 2.36617 1.02057 2.5371e 1.0929 6
4 435.5476; 2.3394; 2.3418; 1.0181; 2.5261s 1.0918;

5 475.5034i0 2.3779;0 2.7634;0 1.0596;0 2.721110 1.1106;o
6 437.44067 2.33982 2.36025 1.0193s 2.55217 1.09377
7 436.13565 2.3400^ 2.35045 1.0189,* 2.53085 1.0923s
8 436.1178^ 2.34003 2.3492^ 1.0188s 2.5296^ 1.0921g
9 435.72693 2.34117 2.34503 1.0190s 2.5250; 1.09234
10 435.7198g 2.3411s 2.3441s 1.01893 2.52542 1.09245

Table 3.7 deserves careful observation. For the three groups of testing images, the 

GAIC criterion generally favors the models # 4 ,7 ,8 ,9,10 (though not necessarily in the 

same order), more than the other five models. When using the GMDL criterion, other than 

selecting models # 7 ,8 ,9 ,10 for the desktop and the ODIS camera, for the public image, 

it favors the models # 3  and 6 . In fact, this phenomenon is not surprising, since when the 

distortion is not significant, it is natural that the advantage gained by using more complex 

models can not be paid off. Further, the penalty for one degree of freedom is heavier in the
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GMDL than in the GAIC (see (3.31) and (3.32)). Thus, the GAIC is more faithful to the 

data than  the GMDL, which is more likely to choose a degenerate model [57]. In summary, 

the proposed rational functions, at least the functions # 7 ,8 ,9,10, provide comparable 

alternatives to the commonly used model # 4  concerning the calibration accuracy and the 

property of having analytical inverse formulae. Notice that, in the comparison performed 

in table 3.7, the model # 4  is treated as the ground tru th  model.

3.6.3 Evaluation of D istortion Only

The GAIC and GMDL based model selection, as presented in section 3.6.2, uses 

the fitting residual after the nonlinear optimization process with the extra DOF in the 

distortion model being compensated. In this section, we want to imagine the measurements 

that involve the distortion only. This is based on the idea that if the distortion coefficients 

are accurately estimated, the resultant / ( r )  *-> r  curves should be close to the true curve. 

Since the true values of the intrinsic parameters and the distortion coefficients are by no 

means exactly known from a manufactured camera as used in sections 3.6.1 and 3.6.2, we 

construct a virtual camera via simulation to evaluate the distortion calibration. Besides, 

we also consider how the initial values of the intrinsic and extrinsic parameters affect the 

final selection of the distortion model.

When constructing the virtual camera, we assume that the camera has the following 

parameters:

1) Intrinsic matrix:

f260 -0.2741 140.05811

Aintr =  0 255.1489 113.1727 (3.34)

0 0 1

2) Distortion model: f ( r )  =  1 — 0.3554 r2 +  0.1633 r4.
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3) Extrinsic matrix:

"-1.89 2.83 -1.95 12.16 -12.64 -31 .90 '

-1.26 2.94 -1.29 10.39 -16.31 -33.44

-1.51 2.78 -1.53 13.03 -12.09 -24.50

-1.46 2.81 -1 .47 12.88 -13.07 -27.26

.-0 .80 2.59 -0 .74 11.16 -11.69 -23.99.

where each row in (3.35) denotes the transformation between the camera and the 

world coordinate system, and where the first three elements in each row in R T  denote 

the Z Y Z  Euler angles (see equations (3.2 - 3.4)). The remaining three elements 

denote the translational vector. The matrix R T  has five rows to simulate the usage 

of five images for the camera calibration. The distortion model selected in the form 

of (3.13) is due to its common usage and acceptance. The simulated camera is close 

to the ODIS camera shown in table 3.6.

First, consider the influence of different initial values for the final distortion model 

selection. While different methods using the same data set might give different initial 

values, what we simulate here uses the same method to obtain the initial values, but with 

corrupted simulated images. The simulated calibration process is performed when noise 

levels of 0, 0.25, 0.5, and 0.755 are applied to the ideal simulated (ud, Vd) th a t is calculated 

using the assumed camera parameters in (3.34) and (3.35). For each noise level, five sets 

of corrupted images are generated, where each set contains five images for the calibration. 

We average the five sets of calibration results and use the average for comparison.

Since we are mainly interested in how the initial values influence the final selection 

of the distortion model, detailed values of and k are not given. Only

the model numbers in a sorted manner are presented in table 3.8, under the above four 

different noise levels using the GAIC and the GMDL criteria, where the GMDL quantities 

are written in an Italian format.

sThe noise is generated using the M atlab comm and randn(-) multiplied w ith the corresponding noise 
level.
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Quantities in table 3.8 show a similar trend as already shown in table 3.7, in the sense 

that the GAIC criterion shows a consistent selection of the rational models # 7 ,8 ,9,10 

among the top five models (not necessarily in the same order). However, when using the 

GMDL criterion, as the noise level increases, that is, as the initial values deviate from 

their “true values,” the GMDL criterion chooses models # 3 ,6  over #9 ,10  to be among the 

top five. Again, this is due to the tendency in the GMDL to select a degenerate model of 

less coefficients, model # 6  (one coefficient) over # 4  (two coefficients) and model #3  (two 

coefficients) over models # 9 ,1 0  (three coefficients).

Table 3.8: Model Selection of the Simulated Camera

N oise
Level <__

M odel #
Better Worse

0
4 10 9 8 7 6 3 2 1 5

4 1 0 9 8 7 6 3 2 1 5
4 10 9 8 7 3 fi 2 1 5

0.25
4 8 7 10 y 6 8 2 1 5

0.50
4 10 9 8 7 3 6 2 1 5
6 4 8 7 8 1 0 9 2 1 5

0.75
4 8 7 9 10 3 6 2 1 5
6 4 8 7 8 1 0 9 2 1 5

*The rows written in the Italian format are the GMDL 
values. Others are the GAIC values.

I t is interesting to see from table 3.8 that as the noise level increases, the GMDL 

criterion would not even choose the model #4 , though this is the assumed “true” model 

with noise corruption. A possible explanation of this phenomenon is that, when the fea­

ture extraction could not guarantee certain precision, the camera parameters can not be 

estimated accurately.

The resultant / ( r )  *-> r curves are illustrated in fig. 3.15 under noise level 0.25 (Fig 3.15 

(a)) and 0.75 (Fig 3.15 (b)), respectively. In each figure, the / ( r )  r curves of models 

# 3 ,4 ,6 ,7 ,8 ,9 ,10 are plotted. It can be observed that the plotted curves are very close to 

each other and also to the true curve. In fig. 3.15, each curve is not specifically labelled since
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the main purpose here is to demonstrate the stability property of using different distortion 

models, rather than selecting one specific model qualitatively from these / ( r )  r  curves.

0.9

07

0.6
0.3 0.5 0.6 0.7 0.80 0.1 0.4

1.2

0.9

0.8

0.7

0.6
0 0.1 0.2 0.3 0.4 0.5 D.6 0.7 0.8

(a) (b)

Fig. 3.15: f ( r )  +-> r curves for the simulated camera using the models # 3 , 4 ,6 ,7 ,8 ,9,10 in 
table 3.3.

Until this point, it is safe to claim that the proposed class of rational functions provide 

an alternative for the commonly used rational distortion model (3.13), as fax as both 

the calibration accuracy and the optimization stability are concerned. It is also worth 

mentioning that whether a certain distortion model best represents a lens distortion is 

indeed camera-dependent. Thus, it is not surprising that for some cameras, the proposed 

rational functions might out outperform their polynomial counterparts.

3.6.4 Regarding P iecew ise M odel

Experiments similar to those performed in sections 3.6.1, 3.6.2, and 3.6.3 were also 

conducted for the piecewise model (3.28), where the values of the objective function J , 

along with the GAIC and the GMDL values, axe shown in Tables 3.9 and 3.10, respectively. 

Comparing the entries in Tables 3.9 with the corresponding elements in Tables 3.4 ~  3.6
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and table 3.10 with table 3,7, focusing on models # 9 ,106, we can observe that the piecewise 

model has a similar performance with the models #9 ,10  in table 3.3.

Table 3.9: Objective Function J  of the Piecewise Model

Images J Distortion Coefficients Intrinsic Param eters (a ,^ ,u0, f5,v0)
Public 144.8874 0.9908 -0.0936 0.9653 831.7068 0.2047 303.9738 831.7362 206.5670

Desktop 782.5865 0.9387 -0.2695 0.8066 277.4852 -0.5757 154.0058 270.9052 119.7416
ODIS 838.5678 0.9410 -0.2563 0.8270 261.9485 -0.2875 140.2521 256.3134 113.0856

Table 3.10: GAIC and GMDL Quantities of the Piecewise Model

M odel
Public (L = 640) Desktop (L = 320) ODIS (L = 320)

GAIC GMDL(103) GAIC(103) GMDL(104) GAIC(103) GMDL(104)
Piecewise 435.7814 2.3411 2.3466 1.0192 2.5257 1.0924

3.6.5 D iscussions

This section presents some discussions regarding the advantage of the proposed piece- 

wise and rational radial distortion models and how to extend these ideas to include tan­

gential distortion.

1) W h y  new  m odels? The traditional model (3.13) has been widely used in the 

radial distortion modeling due to its accuracy and its physical basis. Though it is 

also widely admitted that this model has no analytical undistortion formula, the 

disadvantage has not been emphasized since people tend to think that this problem 

can be solvable by the three methods listed at the beginning of section 3.3. The main 

purpose of this work is to study alternative distortion functions, either polynomials 

or simple functions of the polynomials, with least amount of model complexity and 

as few distortion coefficients as possible, to achieve a comparable (or even better) 

calibration accuracy compared with the most commonly used radial distortion model

6The models # 9 ,1 0  in table 3.3 use the same number of distortion coefficients as the piecewise model 
(three coefficients).
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(3.13), with an additional appealing property of having analytical closed-form inverse 

formula. This additional appealing property might be achieved at the cost of adding 

one extra distortion coefficient.

2) H ow  to  e x te n d  to include tangential distortion? Though the distortion dis­

cussed is mainly focused on radial distortion modeling, it is worthy pointing out that 

the  class of rational functions can also be applied to model geometric lens distortions 

by:

Xd = x  f (r,  kx), yd = yf {r ,  k2), (3.36)

where f (r,  k) can be any function in table 3.3. Notice that when k i =  k2, the 

above equation reduces to the radial distortion modeling. The geometric distortion 

modeling in (3.36) allows the use of two different sets of distortion coefficients to 

model the distortions along the two image axes. Equation (3.36) denotes a lumped 

distortion model that aims to include all the nonlinear distortion effects.

Using quantities referring to the image plane (in pixels), lens distortion on the image 

plane can be modelled by: [61]

(Ud «o) — (u uq) / ( r uv, kuvi),
(3.37)

(vd ~ vo) = ( v -  v0) f ( r uv, kuv2), 

where / ( r uv, k ^ i^ )  can be chosen to be any of the available distortion functions. 

Blind detection of lens simplified geometric distortions are presented in section 3.7 

where f ( r uv, k uvi) and f ( r uv, kuv2 ) are chosen to be the following rational functions 

[27]:

f i r  u v i& u v l)  =  ^ 2 ~ 11 +  &UV1 ruv ^  ^
/ ( r uv) kuv2) =  j ~2~ 1 

1 +  K v2 7'uv
for its fewer number of distortion coefficients and the property of having analytical 

geometric undistortion formulae. From equations (3.37) and (3.38), we have

(ud -  u0)2( 1 +  fcuvUuv) 2 +  (vd -  «o)2(l +  kuv2 f a v ) 2 =  f uv, (3.39)

with r uv = r2v . The above equation is a quadratic function in f uv, thus having 

analytical inverse formula.
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We have proposed a new class of rational radial distortion models and a two-segment 

piecewise polynomial distortion model. The appealing part of these distortion models 

is th a t they preserve high accuracy together with easy analytical undistortion formulae. 

Performance comparisons are made between this class of new rational models and the 

existing polynomial models, based on an initial observation of the fitting residue, the 

GAIC and GMDL criteria, and evaluation of the distortion only. Experiments results were 

presented to show that this new class of rational distortion models can be quite accurate 

and efficient, especially when the actual distortion is significant.

3.7 B lind  D etection  of Camera Lens G eom etric D istortions

The existing camera calibration and lens distortion compensation techniques require 

either explicit calibration target, whose 2-D or 3-D metric information is available [12], 

or an environment rich in straight lines [9]. The above mentioned techniques are suitable 

for situations where the camera is available. For situations where direct access to the 

imaging device is not available, such as when down loading images from the web, a so- 

called blind lens removal technique has been exploited based on frequency domain criterion 

[15]. The fundamental analysis is based on the fact that lens distortion introduces higher- 

order correlations in the frequency domain, where the correlations can be detected via 

tools from Higher-Order Spectral Analysis (HOSA). However, it has been reported that 

the accuracy of blindly estimated lens distortion is by no means comparable to those based 

on calibration targets. Due to this reason, this approach can be useful in areas where only 

qualitative results are required [15].

3.7.1 Frequency Dom ain B lind Lens D etection

In this section, higher-order spectral analysis is first reviewed, which provides the 

fundamental criterion for the blind lens distortion removal technique [15, 62]. The basic 

approach of the blind lens distortion removal exploits the fact that lens distortion in­

troduces higher-order correlations in the frequency domain, which can be detected using 

HOSA tools.
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3.7 .1 .1  B ispectral Analysis

Higher-order correlations introduced by nonlinearities can be estimated by higher- 

order spectra [62]. For example, third-order correlations can be estimated by bispectrum, 

which is defined as

B(u> 1,^ 2) =  E{F{i^\)F(oj2 )F*(oji +W2)}, (3.40)

where £{■} is the expected value operator and F ( lo)  is the Fourier transform of a stochastic 

one-dimensional signal in the form of

OO

F(w)  =  E  (3.41)
fc =  — OO

F* denotes the usual complex conjugate transpose. Notice that the bispectrum of a real 

signal is complex-valued. Since the estimate of the above bispectrum has the undesired 

property th a t its variance at each bi-frequency (o q ,^ )  is dependent of the bi-frequency, a 

normalized bispectrum, called the bicoherence, is exploited, which is defined to be [15, 62]

h 2 ,  . , .  \   __________________ \ B 2 {u>u uJ2 ) \_______________ , .

( 11 2) E { \ F ( uji) F ( u}2)\2}  E { \ F ( lui +nJ2)|2} ' ( }

The above bicoherence can be estimated as

k » U V , ) =  , ..................................................................................................................................... ( 3 .4 3 )

y zI2k l-Ffc(kd)£fc(w2)l2i  Lk \pk{ui + w2)|2

which becomes a real-valued quantity. As a measure of the overall correlations, the follow­

ing quantity is employed in [15]

L / 2 L /2  . „  .

h  E  E  s • (3-«)
ciij——L / 2  0J2= —L / 2  

where L  is the dimension of the input one-dimensional signal.

3.7.1.2 B lind Lens Rem oval A lgorithm

Consider a signal fd{x) that is a distorted version of f (x)  according to

/dO ) =  f ( x (  1 +  kx2)), (3.45)
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with k controlling the amount of distortion. It has been shown in [151 that correlation 

introduced by the nonlinearity is proportional to the distortion coefficient «, where the 

quantity (3.44) is chosen as the measure of the correlation. Now, consider the inverse 

problem of recovering f ( x )  from fd{x). It is only when k is properly estimated that the 

inverted f ( x )  contains a least amount of nonlinearities, in which case f (x)  holds a minimum 

bicoherence.

Based on the above discussion, an intuitive algorithm applied for the blind lens dis­

tortion removal is listed in the following [15]:

1) Select a range of possible values for the distortion coefficients k .

2) For each k, perform inverse undistortion to fd{x) yielding a provisional undistortion 

function f K(x).

3) Compute the bicoherence of f K{x).

4) Select the k that minimizes all the calculated bicoherence of the undistorted signals.

5) Remove the distortion using the distortion coefficient obtained from step 4).

3.7.2 E x p e rim en ta l R esu lts

In this section, we first verify that the blind lens removal technique, which is based 

on the detection of higher-order correlations in the frequency domain, can be used for the 

detection and compensation for lens distortion. This verification is via the comparison 

of the calibration coefficients of the blind removal technique with those calibrated by a 

planar-target based calibration method [12]. Though, the calibration results by the blind 

removal technique are by no means comparable to those based on a calibration target, the 

results shown in section 3.7.2.1 have reasonable accuracy, at least for applications where 

only qualitative performance is required.

The existing blind lens distortion removal method only considered a single-coefficient 

radial distortion model, as described in (3.46). In section 3.7.2.2, we show that cameras, 

which axe more accurately modelled by different distortion coefficients along the two image
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axes, can also be detected using higher-order correlations. As an example, the simplified 

geometric distortion modeling with the distortion function (3.38) is applied. Using a single­

coefficient to describe the distortion along each image axis, totally two coefficients are 

used in (3.38). One reason for choosing the function (3.38) is for its fewer number of 

distortion coefficients that reduces the whole optimization duration. Another advantage is 

in tha t equation (3.38) has analytical geometric inverse formula, which further advances 

the optimization speed.

3.7.2.1 Verification of Blind Lens C om pensation Using Calibrated Cameras

Comparisons between the distortion coefficients calibrated by the blind removal tech­

nique with those obtained by the target-based calibration method have been performed in 

[15] using the distortion function # 2  in table 3.3, with distortion coefficient in the image 

plane. More specifically, the distortion is

Uiuv ~  Uiv(l i~ Miv ruv). (3.46)

where r uv and kuv denote the radius and distortion coefficient corresponding to the image 

plane. rdUv denotes the distorted version. The above distortion modeling is used because 

the blind distortion removal technique currently does not consider the calibration of the 

camera intrinsic parameters. Thus, the lens distortion that is defined using quantities 

corresponding to the image plane is straightforward. Similar comparison is given here via 

two calibrated cameras, the desktop and the ODIS cameras, using the distortion function 

(3.46), along with the function (3.38) with kuvi =  fcUV2 for the radial distortion. We think 

that this double verification is needed since lens nonlinearity detection using higher-order 

spectral analysis is a recent development.

Original images of the desktop and the ODIS cameras are shown in fig. 3.16 (se­

lected from fig. 3.13). Using the single-coefficient radial distortion model (3.38) (with 

kuvi — fcuv2 )j the blindly compensated images of the two cameras are shown in fig. 3.17. 

An image interpolation operator is applied during the lens distortion compensation, since 

the observed original images are shrunk due to the negative distortion coefficients. The
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undistorted images are only plotted in gray-level to illustrate the lens compensation re­

sults.7 Comparing fig. 3.16 with fig. 3.17, it can be observed that lens distortion is reduced 

significantly, though not completely and perfectly.

* * « « « « * *
« A u a a

* * * * * *
* « » tf V « * *

(a) Two Images of die Model Plane for die Desktop Camera
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J* b  0  0  a  b  ■_*

(a) Two 1 s o f  the Model Plane for the ODIS Camera

Fig. 3.16: Two sample images of the model plane with the extracted corners (indicated by 
cross) for the desktop and ODIS cameras.

Using the planar calibration target shown in fig. 3.6, the desktop and ODIS cameras 

have been calibrated in section 3.4 using the planar-based camera calibration technique 

described in [12]. However, the calibrated camera parameters in [27, 61] are in the normal­

ized camera frame, while the blind removal technique deals with distortions in the image 

plane directly. A transformation between the lens distortion coefficients in the camera 

frame and those in the image plane is thus needed for a comparison purpose.

A rough transformation is illustrated in the following using the obtained intrinsic 

parameters from the planar-target based calibration technique. From equation (3.6), we

7The image interpolation operator currently applied is an average operator around each un-visited 
pixel in the com pensated image. The resultant undistorted images might have noise and blur due to this 
simple operator.
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(a) Distortion Compensated Desktop Images
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(b) Distortion Compensated ODIS Images

Fig. 3.17: Blindly radially compensated desktop and ODIS images with distortion function
(3.38) with fcuvx =  fcUv2 -

have ( u  — u q )  =  a x  +  j y ,  ( v  —  v q ) — f l y .  Assuming that

7  «  0, a  «  0,  (3.47)

for a coarse approximation and using a single-coefficient radial distortion model (3.46), we 

have

rduv — ruv =  & rxy ■ (3.48)

The relationship between /cuv and fcxy can be determined in a straightforward manner to 

be

fcuv =  fcxy/a2. . (3.49)

In this section, blind lens distortion compensation is implemented via Matlab using 

higher-order spectral analysis toolbox following the procedures listed in section 3.7.1.2. 

However, instead of using equation (3.44) as the objective function to minimize, the max­

imum value of bicoherence is used in our implementation as the measurement criterion for

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



64
nonlinearity, which is8

1 i f  27rWl /o rnN
jr ’ L  ) ’ (3 ' 50)

for an input image of dimension L\  x L2 .

Comparison of the distortion coefficients obtained from the blind removal and the 

target-based [12] calibration techniques is shown in table. 3.11 using the functions (3.46) 

and (3.38) with fcuv 1 =  kav2 . It can be observed that, despite the deviation of the blindly 

calibrated results from those based on calibration targets, there is a consistency about the 

trend qualitatively. Notice that the distortion coefficients under the “Target” column in 

table 3.11 are obtained via approximations, where of course more precise transformations 

can be achieved without applying the assumptions in (3.47). However, since currently 

the blind removal method considers only the lens distortion (no calibration of the center 

of distortion), precise comparison can not be achieved even with precise calculation from 

the side of the target-based algorithm. Generally, the comparison can only be performed 

“quantitatively,” though the blind removal technique does provide another quantitative 

criterion for evaluating the calibration accuracy.

Table 3.11: Comparison of Lens Distortion Coefficients of the Blind Removal Technique 
and the Target-Based Algorithm

Eqn. Cam era
Blind Technique (10 6) Target

(10- 6)Values Mean

(3.46)
Desktop -[3.5,4.5,3.5,4.5,1.5] -3.5 -3.73

ODIS -[3.5,2.5,2.5,3.5,3.5] -3.1 -4.13

(3.38)*
Desktop [5,6 ,5,5,1] 4.4 4.27

ODIS [5,3,4,5,4] 4.2 4.75
Tuvi =  fcuv2 for modeling the radial distortion.

One issue in the implementation is how to select the searching range for an image. 

While an image normalization method is commonly applied, in our simulation, the search­

ing range is determined based on the image’s dimension and the observed judgement of

®The reason to  use the criterion in (3.50) is more experimental. In our simulations, distortion coeffi­
cients obtained via the average sum criterion in (3.44) deviates from the previously calibrated coefficients 
significantly. However, when using the maximum bicoherence criterion (3.50), close and reasonable calibra­
tion results can be obtained for both the desktop and the ODIS cameras.
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radial or pincushion distortions in a non-normalized way. This is the reason why in ta­

ble 3.11, all the distortion coefficients are very small values. More specifically, consider

the radial distortion function (3.46) with the maximum possible distortion at the image 

boundary. Let r  =  rmax and =  p r max, where rmax is defined to be rmax =  \ JUq + v‘ q on 

the image plane and the subscript uv is dropped for simplicity. We have

fcuv =  (p — l ) / r m ax- ( 3 .5 1 )

For the desktop and ODIS images, the dimension of the images is 320 x 240 in pixels. 

Further, the distortion experienced by these two cameras is a barrel distortion with ra < r. 

Focusing on the barrel distortion by considering p £ [0, g, f , 1], we have

( —6.25 x 10~6, when p — §, 
fcuv =  < (3.52)

(  0 , when p —  1.

The initial searching range for the distortion coefficients when using the radial distortion

function (3.46) is chosen to be within [-4.5 x 10“ 6 ~  3.5 x 10-6] with a step size 10~6.

Similarly, for the radial distortion function (3.38) with fcuvi =  fcUV2 , we have

fcuv =  ( — ~  l ) / r max> ( 3 .5 3 )

and
( 8.3 x 10~6, when p == | ,  

fcuv =  < ( 3 .5 4 )
( 0 , when p — 1 .

The initial searching range when using function (3.38) is [0 ~  9 x 10~6].

Relative values of J  as defined in (3.50) of the five ODIS images using the distortion 

functions (3.46) and (3.38) with fcuvi =  fcuv2 are shown in figs. 3.18 and 3.19. The relative 

J  values equal to their corresponding values minus the minimum value in this group.

3.7.2.2 B lind  D etection  and Com pensation o f Lens G eom etric N onlinearity

Besides the radial distortion modelling, a simplified geometric distortion modelling

method has been developed in equation (3.36). A straightforward question is whether the 

higher-order correlation detection in the frequency domain can help for the detection of
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Fig. 3.18: Relative J  values of the ODIS images using function (3.46).
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Fig. 3.19: Relative J  values of the ODIS images using function (3.38).

geometric distortions, instead of just the radial one. The above problem is pursued in the 

next, where we first describe our conclusion. That is, the blind lens removal technique helps 

to detect the possible geometric distortion of a camera. By allowing the two distortion 

coefficients along the two image axes to be searched separately in two regions, the blindly 

calibrated lens distortion coefficients manifest noticeable difference for cameras that have 

been reported to be more accurately modelled by a geometric distortion modelling method.
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Again using the two calibrated desktop and the ODIS cameras, the blindly calibrated 

distortion coefficients fcuvi and /cuv2 using the rational distortion function (3.38) are shown 

in table 3.12, where the difference between the two distortion coefficients is significant for 

the ODIS camera, which has been studied in [61] to be better modelled by a geometric 

distortion model than a radial one. It is also observed that this difference between distortion 

coefficients along the two image axes is exaggerated using the blind removal technique.

Table 3.12: Blind Detection of Geometric Distortion

D esk top  (10 6)
[k u v l 1 &uv2]

O D IS (1 0 - 6)
[^ u v li k Uv2]

D isto rtio n
Coefficients

[6.16,5.28] 
[2.64,4.40] 
[5.28,6.16]
[2.64.3.52]
[5.28.3.52]

[2.64.6.16]
[4.40.6.16] 
[2.64,4.40]
[5.28.6.16]
[3.52.6.16]

M ean [4.40,4.57] [3.70,5.81]

In our implementation, geometric undistortion is implemented using equation (3.38) 

for each slice passing through the image center, which is chosen to be 1 2° apart for each 

image9. After (u,v)  are derived from {u^Vd] and (fcuvi, feUv2), where the (Awi, fcUV2) are 

determined through the searching procedures, r uv is calculate from (u, v) and the image 

center (which is assumed to be the center of distortion in the context of blind lens distortion 

removal technique). Nonlinearity detection using bicoherence is performed on this one­

dimensional signal r uv, which are basically the same procedures as used in the blind removal 

of radial distortion.

Due to the available knowledge of the distortion coefficients for the two sets of images 

using the radial distortion modeling with function (3.38) fin kuvi =  fcuv2, when p e r f o r m in g 

the detection for possible geometric distortions, the searching ranges are chosen to be 

around the distortion coefficients already determined in the radial case.

9Four images are reported to  be enough to ou tpu t unbiased distortion coefficients |15j. In this experi­
ment, five images for each cam era are used.
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C oncluding Rem arks and Discussions

The higher-order correlation based technique is a promising method to detect lens 

nonlinearities in the absence of the camera. Besides the commonly used single-coefficient 

polynomial radial distortion model, blind detection of the geometric distortion was ad­

dressed in this section. Using the quantitative measurement criterion defined in the fre­

quency domain, the difference between the two sets of distortion coefficients along the 

two image axes can be used to qualitatively detect cameras that are better modelled by a 

geometric distortion modelling method.

3.8 Sum m ary

This chapter addresses lens distortion modeling functions. Rational functions and 

piecewise smooth functions that are either simple polynomials (and their derivations) or 

functions of polynomials are proposed. Extensive and detailed experimental results are 

presented for the model evaluation and selection. The various experiments presented in 

section 3.6 can serve as a general guidance for evaluation of distortion calibration alone.

Using a calibrated camera, vision tasks can be simplified and straightforward. 3- 

D motion estimation and range identification of a perspective dynamic system will be 

addressed in chapter 4.
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Chapter 4 

P erspective D ynam ic System s and Observer Design

Using the geometry and kinematics of the environment is a basic technique used by 

humans as they successfully accomplish tasks such as walking, driving, and recognizing 

and grasping objects. Emulation of this human skill has been one of the principal goals 

of artificial intelligence research, starting from the early 1970’s; that is, to build machines 

that recognize the shape and motion of objects within the environment [16]. Since the 

1970’s, a variety of motion estimation algorithms have been developed, gaining attention 

from researchers and scientists in the areas of computer vision, image processing, robotics, 

and control. W ith the aid of fast and inexpensive computers, vision algorithms that can 

run in real-time are feasible and find application in robot navigation, medical imaging, 

and video conferencing. Even though motion estimation is not a new topic, interest in 

this field is increasing. Current research is aimed at making robust, accurate, and efficient 

algorithms that are able to detect multiple rigid motions in the presence of occlusions and 

discontinuities with as few a prior assumptions as possible [63]. Moreover, 3-D motion 

estimation of nonrigid motions begins to be addressed [20, 21, 22, 64], However, the goal 

is still far from being reached. Indeed, it opens a new and exciting avenue of research 

in nonlinear system theory. Appropriate tools from nonlinear estimation/identification 

theory are beginning to be exploited and only recently have such tools hinted at acceptable 

solutions [16].

Due to the large volume of available algorithms, there is a need to classify them into 

appropriate categories based on certain criterion such that the whole literature becomes 

more organized. One objective of this chapter is to fulfill this need so as to help new 

researchers interested in this field get a full sense of the literature before devoting time to 

any particular direction.
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Criteria for classification of existing algorithms can include many possible candidates, 

such as motion models (none, rigid, affine, Riccati), camera models (perspective, weak- 

perspective, orthographic), number of frames used (two, multiple, recursive), estimation 

capability of multiple motions, linear or nonlinear, time-domain or frequency-domain, and 

feature-based (point, line, curve, snake, region) or optical flow. 1 Classification has been 

made in [65] using the feature-based/optical flow criterion, where the optical flow method 

is based on assumptions about the image intensity while the feature-based method uses a 

relatively sparse set of two-dimensional features that are extracted from the images.

A very good tutorial of 2-D motion estimation algorithms is presented in [6 6 ], where 

different models, estimation criteria, and searching strategies are listed briefly. It also 

clarifies the difference between 2-D and 3-D motion estimation. While the purpose of 

3-D motion estimation is to recover the motion parameters of a moving object in the 

3-D world space, 2-D motion estimation considers only the corresponding movement on 

the image plane. 2-D motion estimation uses certain estimation criterion and searching 

strategies to track the movement on the image plane using image processing approaches. 

Motion dynamics on the image plane can thus be obtained. The corresponding 3-D motion 

parameters can be further estimated uniquely, or to a certain group of action [2 0 . 21 ], using 

the available 2-D motion parameters. In this way, 2-D motion estimation can be regarded 

as one step for the 3-D motion estimation.

A review of 3-D motion and structure estimation algorithms using feature correspon­

dence is presented in [67], where three categories of problems are considered, depending on 

whether the correspondence is 3D-3D, 2D-3D, or 2D-2D. While 3D-3D feature correspon­

dence has application in robot navigation when the robot is equipped with range sensors, 

and 2D-3D correspondence is applicable to camera calibration and pose estimation tasks, 

the main focus of our work is on the 3-D motion estimation using 2D-2D correspondence,

xIn the com puter vision literature, a  distinction is often made between 2-D m otion and optical flow. 
O ptical flow does not correspond to  the 2-D velocity field unless very special conditions are satisfied, such 
as no illum ination changes [65]. In  this section, “optical flow” is used to  refer to apparent motion, which is 
calculated using low-level image descriptors such as intensity.
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since this is all the information available from the image sequences without any prior 

assumptions, such as depth and physical size of the object.

The classification criterion used in [67] is based on the type of mathematics used in 

the algorithms. Following [67!, in this section, classification of the existing 3-D motion esti­

mation algorithms is made based on the formulation of the problem and the mathematical 

tools applied. We show that most of the existing 3-D motion estimation algorithms, or at 

least the algorithms reviewed in this section, are formulated in a way that finally come to 

the form of an optimization problem, either linear or nonlinear. Throughout this section, 

the problem in concern is to estimate 3-D motion of a moving object with a single sta­

tionary calibrated2 camera under the perspective projection, unless otherwise stated. For 

the cases when the camera is moving while the object is stationary, or both the camera 

and the object are moving, the problem formulation is briefly discussed at the end of this 

section (section 4.8).

4.1 General N otation  and M otion  M odels

Referring to the perspective projection in fig. 3.1 and equation (3.6), in this section, 

we adopt a loose distinction between (xj, yi) and (uj, u,), where the subscript j denotes the 

ith feature point, since their relationship is represented by the linear transform via Aintr, 

which is not the key issue in motion estimation, where we: are mainly concerned with the 

nonlinearity introduced by the perspective projection during the normalization process.

For 3-D motion estimation, early works focused on 3-D rigid motion. Recently, re­

searchers have begun to discuss nonrigid motions, either by representing it as a combination 

of rigid motion and some deformations [6 8 ], or by assuming some simple models, such as

2Cam era calibration includes the calibration of a  cam era’s intrinsic param eters and its lens distortion 
compensation.
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affine and Riccati motions, where Riccati motion is represented by [22

T -X2 l  
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- f i /2 h 0 0 0 '

F  = 0 h 0 h h 0

. 0 0 h 0 h h .
When F  — 0, equation (4.1) represents an affine motion. Furthermore, if F  = 0 and the 

matrix A  in (4.1) is skew-symmetric, that is, when

" 0  Wi U)2 ~

A =  fi =  — w\  0 n>3 , (4,2)

. — W2 —UI3 0

the Riccati motion becomes a rigid motion.

The problem of 3-D motion estimation is to estimate the position and orientation of 

the object via observations on the image plane. Existing algorithms have been carried 

out in two subcategories, where one category performs direct calculation of (R, t) (as in 

sections 4.2.1 ~  4.2.5), while the other assumes certain motion dynamics, such as the 

general Riccati motion (4.1), and identifies the corresponding motion parameters (as in 

section 4.2.6 and 4.3).

4.2 3-D M otion  E stim ation  Techniques

A direct approach to the 3-D motion estimation problem is to formulate it as a non­

linear optimization problem, where classical optimization algorithms, such as the Gauss- 

Newton and the Levenberg-Marquardt optimization methods, can be used to search for the 

optimal solution. Though very accurate, this classical nonlinear method is computation­

ally expensive, which prevents it from being applied to real-time applications. Algorithms
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that are based on linearization become prevalent. Generally, they are formulated as a 

minimization problem that can be solved either by SVD (Singular Value Decomposition) 

or recursively [16, 17, 18, 19]. Recently, exciting results have been published on the per­

spective dynamic system theory, where the system’s observability/identifiability property 

is discussed in a more theoretical way and most of the known results in the computer 

vision literature are revealed [20, 21]. Besides the rigid motion, nonrigid motions such as 

the affine and Riccati motions are discussed in this general framework [22].

In this section, we assume that a set of suitable features on the image plane, point 

features (N  feature points) or active contour [17], have been extracted and the correspon­

dences of these features between consecutive frames are established. Further, the features 

are always assumed to be within the field of view (FOV) of the camera.

4.2.1 N onlinear O ptim ization Form ulation

Assume that an object is undergoing a rotational and translational motion described 

by (R, t). At time instant t, for the i-th point,

A [itj, V t . 1] — A int r  Qi  ■ (4.3)

At time instant t  + 1,

/ ~Ui' \

A' < — Alintr C/j — A ;ntr ( R  Qi +  t) — A jntr A ^A oitr Vi +  t

. 1 . V . 1 - /

Consider a set of 2-D displacement vectors

—.
.”1 > e

i 1si

1 ... t> I 1— I cS2 1

for i = 1 , . . . ,  N.

(4.4)

(4.5)

To calculate the displacement vectors in (4.5), the camera’s intrinsic matrix Aintr in (4.3) 

and (4.4) can be simplified as
' a  7  O'

(4.6)

' a 7 O '

Â -intr 0 P 0

. 0 0 1 .
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since we are interested in the displacement on the image plane. To illustrate the basic idea 

of the algorithm, consider a simple case when 7  =  0 . Using the intrinsic matrix A jntr in

(4.6), equation (4.4) becomes

/ ' u f

A; < — Ajntr A-RAjnJr Vi 4~ t

. 1 . . 1 . /
...

t S3 0 O 1

/

0 / 3  0 A R

. 0  0 1 . V

Thus, we have

‘A u {
£<11

1 /a  0 O'

0 1/(3 0

0 0 1
Uirn  +  a/(3vir12 +  a r 13 +  a t \ / X

j3/auir2\ +  Vir22 +  /3r23 +  (3 t2/X

Uirzi/a + Vir32/l3 + r33 + tz / \

r i n m  +  a /P  Vjri2 +  a  r 13 +  a  f 1 /X 
Uirsi/a +  u;r32/  (3 + r 33 +  t3/  A 

a / /3 U i r 21 +  V i r 22  + / 3 r 23  + ,3  t 2 / X

’ Ui~ ' t l ' \

Vi + t2

. 1 . M - /

(4.7)

i / a  +  Vir32/(3 +  r 33 +  t 3/X 
Let ji = [ti,t2 , t 3 ,u}i,uj2 ,uj3}. By eliminating A from (4.7), we can obtain a nonlinear

equation in the following form for the z-th point |69]:

fi(fJ-) = fi(h,t2,t3,Ui,L>2,V3) = 0 , 

whose solution is in the form of

(X t l ,X t 2 ,X t s :Wl,U)2 ,UJ3),

(4.8)

(4.9)

where the scalar A indicates the ambiguity in the translational components. A  detailed 

equation of (4.8) can be found in [69] with 7  =  0 . When 7 / O ,  a similar nonlinear equation 

can be derived but with more complexity.

Generally speaking, the nonlinear minimization approach suffers from the initial value 

selection problem. In order to solve the nonlinear equations robustly, an initial guess al­

gorithm is proposed in [69], where the optimal solution is guaranteed due to the initial

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



75

values determined using a weak-perspective projection model.3 and an image coordinate 

normalization technique. The initial guess algorithm proposed in [69] decouples the trans­

lational parameters from the rotational ones, so tha t robust initial values for the solution 

of the original nonlinear problem can be obtained easily. This proposed nonlinear solver 

is shown to have a better performance compared with the Total Least Squares (TLS) and 

Least Squares (LS) methods in [70, 71] that are presented in section 4.2.2.

4.2.2 L in ear L S /T L S  A lgorithm s

The classical LS problem considers the presence of noise only in the observation vector 

b (in the form of M x =  b) and it minimizes the error ||M x -  b|[2- The LS problem can 

be recast in the following form

min IMI2 , e € R m.
b + e  €range{M }

In many cases, it is more appropriate to assume that the error is also present in the M  

matrix (in the form of [M + E] x  =  b + e). This problem is known as the TLS problem, 

which can be recast as

min || [E j e] ||p, e e  Mm, E  e  E mxn.
b + e  £range{M + i£}

Let us consider the case of a 3-D moving object and a. stationary camera tracking the 

scene. Suppose a 3-D point undergoes the transformation

[X f , Yf.,  Z f f  =  R  [ X I  Y f ,  Zf \T + 1.

~Xi~ ' X V  z ? ' x i - x f / z r

. Vi _ -  Yi / Z i -

1

M . J t i z f .
" A  Xi

f--
--- t> s? t

....

s11

3W eak-perspective projection is an approxim ation to th e  perspective cam era model. W eak-perspective 
projection is valid when the object is close to  the optical axis of the cam era and the depths of all feature 
locations are roughly equal to the principle depth, conventionally chosen to  be the depth  of the origin of 
the object [63] Under the weak-perspective projection, the projection on the image plane is modelled as 
Xi =  sX,  yi = s Y ,  where s is a  scale factor.
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If we assume that 1) the translation component t 3 along the Z  direction is much smaller 

than the Z{ s, 2) the rotation components {u)i,lo2 ,oj3) are small (less than 5°), and 3) the

field of view of the camera is small, we can write (18, 72]:
r t l  -  Xitz

' A  x ^

i

<
i

Z t
<2 -  Vita 

Zf

+  LOiXiUi -  oj2(1 +  Xi )  +  U)3yi  

-  Xiyi +  w i(l +  yf) -  uj3Xi

Eliminating Z f  from the above equation leads to the following linear equation

M  0 =  0,

where

and

0  =  [01, . . . , 0 c,]T = [il, *2, *3, *3^3,
tlU>2 +  t 2 L O l , t i U J 3 +  t 3 U ) i , t 2 UJ3 + t 3 UJ2}T ,

M

A y i

I%<

- A r i — A x n

A x i y i - A y i x i  ■ ■ A  x n Vn  -  A  y ^ X N

- ( 1  +  2/?) - ( 1 + V at)

- ( 1  +  ®?) i—
> 

+
 

Ijj
lO

- ( X i + V l ) - ( x n  +  Vn )

x i y i XNVN

Xl Xn

Vi VN

Moreover, the elements of 0 are subject to the following constraints

0105 . 0204
07 =

02 01 
0 1 0 6  , 0304
03 01

0 206 0305
=  —  1-

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

03 02

Equation (4.12) can be formulated as a LS problem since the right hand side is not 

exactly zero. It can also be solved as a TLS problem when the error in the M  matrix in 

(4.14) is considered. After formulated as a LS/TLS problem, the solution of parameter 0 

is based on the SVD of a combined data matrix as described in 118, 70, Tl].
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The shortcoming of the above SVD-based method lies in its sensitivity to noise [71]. 

In real data, there are multiple sources of noise. In general, three kinds of errors should 

be considered [18]:

1) The measurement noise: noise in the extraction of feature points.

2) The approximation error: in the formulation of M 8  = 0, the right hand side is not 

exactly zero.

3) The quantization noise.

In [18], two schemes are proposed to tackle the measurement noise problem. First, 

a recursive robust scheme is introduced to reject outliers from the data set based on the 

residuals information. The basic idea is the introduction of a weight for every measurement, 

where the weight reflects the confidence of the system to this particular measurement. 

Recursively, using the residual information of the system, the weights are stabilized and 

only the good measurements are held to complete the estimation process. The above 

weighting scheme can be further improved by generating a number of smaller sub-matrices 

M j  that are formed by randomly selecting rows from the M  matrix. Using more sub­

matrices, the probability that two of them contain sufficiently low percentage of outliers is 

increased so that the algorithm will yield estimate 6  close to 6 . Therefore, if two estimates 

from two different sub-matrices lie close to each other, it is more likely that they are close 

to the true value 6 .

4.2.3 U sing  E p ip o la r C o n s tra in ts

“Vision in the loop” raises new and interesting problems of a system theoretic flavor, 

such as analysis and control of new classes of dynamic systems. Crucial issues in the use 

of vision as a sensor in the control systems are, for example, nonlinear observability and 

identifiability in a projective geometric framework as well as estimation and control on 

peculiar topological manifolds [16].

Fbllowing the perspective dynamic system theory in [20, 73], in which the feasibility 

of motion and structure estimation is assessed, instead of studying motion estimation for a
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known structure as in the above-cited references (where a planar surface structure is usually 

assumed), motion estimation for unknown structure is studied in [16, 74. 75i, where the 

visual motion estimation problem is formulated in terms of identification of a nonlinear 

implicit system with parameters on a topological manifold, i.e., the essential manifold. The 

formulation using the essential manifold has the advantage that the estimation of motion 

is decoupled from the estimation of structure of the object being viewed, and therefore it 

is possible to handle occlusions in a principled way.

The formulation of motion estimation problems on the essential manifold is described 

briefly in the following. First, the essential matrix E ss is defined as

E ss = { S R  \ R e  5 0 (3 ) ,5  = (tA) e so(3)} c 1)3 x 3 (4.16)

where A is the wedge product and so(3) is a group of skew-symmetric matrices.4

For any given rigid motion (i?, t) e  S E ( 3), there exists an essential matrix Q defined

by:

Q = ( tA)R .  (4.17)

Given the essential matrix Q in (4.17), the inverse problem of finding (R, t) can be achieved 

by the following map defined between E ss and R6 [16]:

'!> : E s, x 50(3 ) I3 x R3,

Q
■ ±  IIQII ^.3 ■ ' t '

U R z ( ± ^ ) V t _ .R .
(4.18)

where U, V  are defined by the SVD of Q = U E VT; U. 3 is the third column of U, and 

R z (n/2)  is a rotation of n/2  about the axis [0 ,0 ,1]T. Note that the map $  defines t  with a 

sign ambiguity. However, this ambiguity can be resolved in the context of the visual motion 

estimation by imposing the positive depth constraint, which means that each visible point

4Definitions of 5 0 (3 ) , 5 F (3 ) , and so(3): 5 0 (3 )  =  { R  £  K3x3 : R R r  = I , d e t R  =  ±1}, S E { 3) 
{(p, R)  : p  £ M3, R  £  5 0 (3 )} , and so(3) =  {5 6  R 3x3 : S T — —5}. The wedge product of a  3 x 1 vector is

0 —t3 t2
defined by tA =  t 3 0 — t i

- t 2 t i  0
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lies in front of the viewer. Thus, a unique mapping is established between (R, t)  and Q. 

The problem of estimating (R,  t )  can be achieved indirectly by estimating Q first.

The well-known e s s e n tia l c o n s tra in t  or the e p ip o la r  c o n s tra in t  is [16]

m f ( t  A(Rmj))  = 0 ,  Vz =  l , . . . , lV ,  (4-19)

where m!i =  [x(, z/(]T and m* =  [x ,̂ j/*]T are the z-th normalized feature point in the camera 

frame at time instant £+1 and t, respectively. Using the definition of Q in (4.17), equation 

(4.19) becomes

m'^'Qrri i=  0, Vi =  1, ...,1V. (4.20)

Now, estimating the motion amounts to identifying the model

( Q m i f m ' = 0 , Q £ Ess.
(4.21)

y i = m i  + Vi. Vi =  1 , . . .  ,1V, Vi £ N(Q,Ru), 

where N(0,Rv)  denotes Gaussian noise with zero mean and covariance Rv. From (4.20), 

we have
[x'x, x'y, x', y'x, y'y, y', x, y, 1]

[ Q 1 I 1Q 12 ,  Q 13 , Q 2 I ,  Q 2 2 ,  Q 23,  Q a i , Q 32; Q 3 3 }1 — 0 .

When having N  feature points, we can stack them to form a N  x 9 matrix X,  thus giving

‘41m'(t),m(t)(3 (i ) =  0. (4.23)

Finally, the visual motion estimation problem is characterized as

Q(t  +  1) =  Q(t) + a>(£), Q £ E SS: u>(t) £ N ( 0 , Ru),

0 =  X m 'W M vQ W '  (4.24)
yi =  rrii +  Vi, V i  == 1, . . . ,  N, £ N ( 0 , Rv).

In this way, the 3-D structure of the scene is removed from the model, ending up with a

nonlinear implicit dynamic model for the (measured) projective coordinates of the visible

features with motion as unknown parameters constrained on E ss.

A modification of the scheme in [18] is applied to the motion estimation of video coding

in [76] and better performance is achieved in the sense of reliability to noisy measurements.

T  „  (4 -2 2 )
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4.2.4 Lie G ro u p  F orm alism

A 3-D rigid motion tracking algorithm for objects with known 3-D structures using 

active contour, the snake,5 is proposed in [17], where a Lie group formalism is used to cast 

the motion computation problem into simple geometric terms so that tracking becomes a 

simple optimization problem solved by means of iterative re-weighted least squares. This 

approach also takes advantage of the aperture problem (that the component of motion of 

an edge, tangent to itself, is not observable locally). It yields a significant benefit since 

the search for intensity discontinuities in the image sequence can be limited to a one 

dimensional path that lies along the edge normal h  and thus has a linear complexity in 

the search space. Computing the motion is done by minimizing the squared error between 

the transformed edge position and the actual edge position (in pixels) in the least squares 

sense.

Rigid motion of the camera relative to the object between consecutive frames can be 

represented by a Euclidean transformation of the form [17]

R  t  ’

.0  0 0 1 .

The M  matrix forms a 4 x 4 matrix representation of the group S E ( 3) of rigid body motions 

in the 3-D space, which is a 6-D Lie Group. The generators of the Lie group are typically 

taken as translations in the x, y, and z directions and rotations about the x, y, and 2 axes, 

represented by the following six matrices:

M (4.25)

01

0 0 1'

01

0 0

1o

0 0 0 0 0 0 -1 0

II

<
5 7) II

0 0 0 0 0 1 0 0

1 O 0 0 0. _° 0 0 0.

5 Snake is a  deformable contour th a t  moves under a  variety of image constraints (which tend  to  be 
local) and object-m odel constraints. The snake algorithm seeks optim al contours by incorporating the 
local strengths of the edges and their spatial distribution into its energy functional. The nam e of snake 
comes from th e  resemblance between the active contour and snake as it moves.
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'0 0 0 o' ' 0 0 1 o'

0 0 0 1 0 0 0 0
g 2 = , G5 =

0 0 0 0 -1 0 0 0

_0 0 0 0_ _ 0 0 0 0_
"0 0 0 o' '0 -1 0 o'

0 0 0 0 1 0 0 0
g 3 = , G6 =

0 0 0 1 0 0 0 0

_0 0 0 0_ _0 0 0 0_

Using the above six Lie group operators, M  can be obtained via the exponential map

[17]

M  = eaiGi, (4.26)

which can be approximated by:

M  = I  4- a iGl . (4.27)

The problem now becomes how to derive a*, which is done using the standard least-squares 

algorithm.

Let / /  describe the magnitude of the edge normal motion tha t would be observed in 

the image at the £-th sample point for the i-th group operator, and d the distance to the 

actual edge position, the process to derive a* is performed by minimizing the squared error

between the transformed edge position and the actual edge position (in pixels). That is,

the objective function is chosen to be

J  =  -  a , / / ) 2, (4.28)
f

where

= (4-29)
f ?

is the LS solution [17].
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4.2.5 N eural N etw ork-Based Estim ation

Since 1990’s, Neural Networks (NN) have been proposed to solve the motion estima­

tion problem [6 8 , 77, 78, 79]. The NN methods presented in [6 8 , 77, 781 use 3-D point 

correspondences. They can estimate 3-D rigid motions [77, 78j, as well as nonrigid [6 8 ]. 

The inputs to the NN are the components of the feature points. If the feature points are 

also the corners of certain patterns, such as triangles utilized in [6 8 ], additional constraints 

(i.e., the equal distance constraint between two points for rigid motion) can be applied. 

The weights of the NN can be updated with the delta updating rule [80] using the errors 

between the actual outputs of the NN and the extracted feature locations in the next time 

instant. For the nonrigid motion in [68 ], motion is decomposed into a global rigid motion 

and a set of local nonrigid deformations, which are coupled with the global motion at 

every time instant. While the global motion can be described using standard rigid motion 

parameters, the local deformation motion of interest is a combination of rotations along 

arbitrary axes with arbitrary angles, distortions in arbitrary directions, and expansions or 

contractions in arbitrary directions.

A NN model is introduced in [791 that estimates the 3-D rigid motion parameters of 

an object using 2-D motion vectors. Equal distance constraints are also applied to vertices 

of each triangle. Compared with [78], the NN scheme in [79] produces better 3-D motion 

estimation.

4.2.6 E xtended  K alm an F ilter Approach

The 3-D motion estimation algorithms reviewed so far estimate (R, t)  directly. In this 

section, the object is assumed to follow a rigid motion dynamics, i.e., the general Riccati 

motion (4.1) with a skew-symmetric A  matrix and F  =  0, such tha t nonlinear observers, 

such as Extended Kalman Filter (EKF), can be used to estimate the states of a nonlinear 

system, where the states can be chosen to include the motion parameters and positions.

A brief description of the Kalman filter is given first. Given a discrete linear system

x k+i =  Fk x k +ujk, u>k ~  N{0, R uj), ^
yk = H k x k + vk, vk ~  AT(0,iC),
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where x k is the state, ivk represents the process noise, and vk models the measurement 

noise, the Kalman filter optimally estimates x k , represented by x k, by minimizing the 

following weighted mean-squared error

E  [(x k -  x k)TL (xk -  ifc)] , (4-31)

where L is any symmetric nonnegative definite weighting matrix. This is the so-called 

Linear Quadratic Gaussian (LQG) problem, since the dynamic system is linear, the per­

formance cost function is quadratic, and the random processes are Gaussian [81]. As stated 

in [81], the principal uses of linear filtering theory are for solving nonlinear problems. Now, 

for a discrete nonlinear system

x k+i = f { x k, k )+ u j k , tok ~  N(0, Ru,), (4.32)

Vk =  h{xk, k ) + v k, vk ~  N(0, Ru), (4.33)

where h(-) represents the perspective projection, the problem is to find an estimate x k 

for x k, based on yk. Since both f { x k, k ) and h(xk, k) are nonlinear, the EKF is used and 

linearization of f ( x k, k ) and h(xk,k)  is performed about an estimated trajectory, defined

as [81]:
[i] _  df ( x,  k )

" \X—Xk'>
dx  (4.34)

rr[ l  ] _ d H x , k )   ̂ j

dx ix=£k‘
For the 3-D rigid motion estimation and assuming N  feature points, the following set

of states is chosen in [19]:

^  Y  X  Y  Z  A"i~tv Yi ^ n  Z i ^ n
s it) = I4 '35)

where constant translational speed ( X , Y , Z )  and constant rotational speed (wi, W2 -,ws) 

are assumed. [X, Y, Z]T is the origin of the object-centered coordinate system and q  =  

fell <?2 j ©i ©]T is the quaternion representation of rotation .'3 As can be seen from the states

6Q uaternion is another representation of rotation m atrix. Unlike Euler angles, quaternion gives a global 
representation of S O ( 3), the group of ro tation  m atrix, a t the cost of using four numbers instead of three to 
represent a rotation. A quaternion is defined as: (go, <2i, 92, <J3)T =  (cos(0/2), (ni ,  m ,  713) sin(# /2))T , where 
n =  (n i , n 2 ,ns,)T represents the unit axis of rotation and 8 represents th e  angle of rotation. One advantage 
of using quaternion is th a t the tim e-propagation is much simpler than  the analogous system  for propagating 
Euler angles.
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in (4.35), all the positions and translational components are homogeneous in 1 /Z,  which 

means tha t the depth information is not recovered. For the states chosen in (4.35), the 

time derivative of s(t) is also a function of s(t) [19], denoted by f ( s ( t )) here. Using Gtu>t 

to represent either random or un-modelled deterministic deviations from the given plant 

model, we have

s(t) = f (s( t) )  +  Gtojt , (4.36)

whose discrete model fits in the form of (4.32). The output measurement can also be 

described as a function of the states plus some measurement noise. Combined with (4.36), 

this problem formulation is appropriate for solution with an iterative EKF (IEKF) [19j.

The value of the recursive approaches is that they usually require less computation 

time for each new set of data (each new image, for example). State estimates are con­

tinuously computed indexed to the current time, based on all past data, and can readily 

extrapolate the state estimates ahead in time to aid in preprocessing the next set of data. 

A modification of the IEKF in [19] is proposed in [82], where in addition to the image 

plane coordinates, the image plane velocity is also available. Thus, the output measure­

ment function will be doubled in size and improvements can be expected in the estimation 

of velocity states, in the reduction of large initial estimation errors, and in the tracking of 

abrupt object maneuvers. A complete and detailed implementation of the Kalman-filter 

based algorithm is described in [83, 84], which runs on a personal computer.

The EKF is based on the linearization about an estimated trajectory. However, for the 

vision-based motion estimation problem, geometric structures of a perspective system will 

be lost if studied via linearization. Moreover, the EKF is much complicated since a priori 

knowledge of the noise distribution is required. Due to the above mentioned problems, 

efforts have been made towards other nonlinear observers for the perspective dynamic 

system, which are presented in the next section.

4.3 P erspective D ynam ic System  Approach

Besides the commonly assumed rigid motion discussed in the above sections, nonrigid 

motions, such as the affine and Riccati motions, have been discussed in the perspective
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dynamic system (PDS) framework, which refers to a linear system with homogeneous ob­

servation function. The PDS has been found to be a good control theoretic framework for 

the motion estimation problems where CCD cameras are used as sensors. The motion esti­

mation problem becomes an identification problem of a PDS. W ithin the PDS framework 

and assuming a planar surface structure, theoretical analysis shows that, for the general 

Riccati motion, motion parameters can only be identified up to a group of action, where 

the resultant homogeneous output remains the same. The perspective dynamic system 

theory (PDS theory) not only reveals some existing knowledge in the computer vision, but 

also provides a theoretical analysis about which motion parameter can be identified and 

to what extent.

Using the PDS formulation, nonlinear observers applicable to the PDS [20, 23, 85, 8 6 , 

87] have been used to estimate the states of a PDS, uniquely or to the extent possible, 

for simple cases when the object is undergoing some special motions, such as the rigid 

and pure rotational motions as described in section 4.3.2. For the general affine or Riccati 

motions, recent results on canonical forms of the PDS show that the parameters in the 

canonical forms can be identified uniquely using an EKF [8 8 , 89, 901. In order to estimate 

all the motion parameters uniquely, research has been carried out in the directions of using 

multiple cameras, integrating vision with range data, and using active vision system, which 

are discussed in section 4.8.

A PDS is described by [64]:

x  =  Ax  + Bu, y =  [Cx], (4.37)

where the projective observation function is defined as

(4.38)
X [Cx],

where [Cx] is the homogeneous line spanned by the nonzero vector Cx  £ Rm. The set B 

is defined as

B =  {x : Cx — 0}. (4.39)
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As seen from (4.37) and (4.38), the PDS is a linear dynamic system with a homogeneous 

observation function.

An example of the PDS when the object is moving according to an affine motion can 

be described as:

- x  (fy-

n t )

a n 0 -1 2 a 1 3 ~

1><1

-&r

«21 0 2 2 0 -2 3 Y{t) + h

a 31 «32

A

0 3 3 - s - h -
b

u( f) , (4.40)

with u(t) =  1 , C  =  /:!x3■ and the outputs y(t) defined to be

y(t) = [yi,y2]T =  [ x ( t ) / z ( t ) ,Y ( t ) / z ( t ) } T , (4.41)

where [X(t), Y(t) ,  Z(t))T denotes the 3-D position of the moving object in the camera 

centered 3-D space and (yi (t) ,y2 (t)) is its projection in the camera frame that can be 

derived from the corresponding observations on the image plane.

Basic issues of the PDS are the observability, identifiability, and controllability prob­

lems that are briefly listed in the following [20, 21. 22, 64]:

1) Observability: Assuming that A  is known, estimate the initial state

X o  =  [ X ( 0 ) , P ( 0 ) , Z ( 0 ) ] T  

up to a homogeneous line from the output homogeneous observation function y(t).

2) Identifiability: Assuming that A  is unknown and the output y(t) for t > 0 is given, 

identify A  to the extent possible with Xo up to a homogeneous line.

3) Controllability: Transmit from one state to another in the apparent motion on the 

image plane.

Since the main focus of this section is on the estimation/identification of motion parame­

ters, the controllability problem is only stated without further discussion.
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4.3.1 B ack g ro u n d  T h eo ry

Using the PDS concept, theoretical analysis has been facilitated to the question about 

which motion parameters are identifiable and to what extent. Moreover, the 3-D motion 

estimation problem can be formulated into a parameter identification problem of a PDS 

and the formulation is independent of the data measured. The data measured from the 

image plane can be either brightness pattern (image intensity) or features such as points, 

lines, and curves [21, 91]. In this way, the optical flow and feature-based methods for the 2- 

D motion estimation is unified as one step in the 3-D motion estimation. In the following, 

we will review the analysis on the identifiable parameters, but leave the discussion on 

identification to section 4.3.2.

Consider the following planar surface undergoing a Riccati motion in (4.1):

p X  + qY  + s Z  + 1 =  0. (4.42)

We can have
r p 2'

PQ
■p' 7 r 'P '

Q = h ~ A t Q

,s . - h . . s _

P

where
'bi h 3̂ 0 0 0

0 bi 0 h 0

. 0 0 bi 0 b2 h

and the detailed derivation is shown in Appendix B.2. Equation (4.43) is called shape 

dynamics in (21], which is a dynamic system describing the motion and shape parameters. 

Further, let

X  = X \ f W \ ,  Y  =  Yi /W \ ,  Z  = Z \ /W \ ,  (4.44)
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We can have

and [221

p  =  p / w , q =  q / w , s =  s / w .

" x r ' x r

Xr ( A  bN Xi

Zi \fr  ̂ 0/ Zi

_Wi_ A _WK

x X

~p' ' V~

q f - A t  - f \ q
s

o

II
s

U! - A T w

(4.45)

(4.46)

(4.47)

Derivations of the above two equations are similar and are presented in Appendix B.2. 

Both of equations (4.46) and (4.47) can be taken as the state equation for a PDS, where 

the outputs are the homogeneous observations of either the state (X , Y, Z ) or the shape 

parameters ( p , q , s , w ) .  Notice that equations (4.46) and (4.47) share a similar structure.

Analysis on the identifiable parameters are based on the following homogeneous ob­

servation function

' Z ! ‘ A 0 0 O '

Z2 = 0 A 0 0

-2 3 - . 0 0 A 0 .

(4.48)

X ;[

Yi 

Zi

Wl
x

which forms a PDS with the motion dynamics in (4.46), expressed in a compact form as

X(t)  =  A X ( t ) ,  Z ( t ) = C X ( t ) .  (4.49)

Due to the homogenization in the output observation function, (A,C, X(0))  that produces 

the same output Z  is not unique. The non-uniqueness in {A.C, X(Q)) is given by the 

following group of action Q [21]:
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(4.50)

(4.51)

(4.52)

( P , A , C , X o) ^  { P A P - \ C P ~ l , P X b),

(A, A, C, X q )  i—> (A, AC, X q ) ,

(9, A, C, XQ) ^  {91 + A,  C, X0).

This is because, using the actions in (4.50)~(4.52), the resultant outputs are:

(4.50) : Z{t)  =  (C P ~ l ) e.PAP~Xt {P X q ) = (CP-1) P e ^ P -1  ( P X q )  =  ( C e At Xq),

(4.51) : Z(t)  = X{CeAtX0),

(4.52) : Z{t) = C e6I+At XQ =  C e ^ e -44 A0 =  eei{C eM X0 ),

which remain invariant compared with the output of the original PDS in (4.49).

Based on Q, the following theorem has been proposed to analyze the dimensions of 

the orbit of motion and shape parameters [641.

T heorem : Consider the homogeneous dynamic system (4.49). For a generic choice 

of the matrix A  and the state vector A (0 ), the set of all triplets that produce the same 

output as given by (4.48) is described by:

(P A P -1 , AiCP-1 , P X { 0)), (4.53)

where Ai is a nonzero real number and P  is a nonsingular matrix of the form
p n  0 0 0

0 p n  0 0

0  0 p n  0
P -1  = (4.54)

_ P 4 1  P 4 2  P 4 3  P 4 4 . .

Using the above theorem and denoting v =  (p4i,P 42,P43), the scaling on the matrix 

A in (4.49) is given by:

bv  +  v h l
A

b

f T

A +

E l i  i
p n
p n
P 4 4

P l l

PllfT _  ^ vbv
P 4 4  P 1 1 P 4 4

(4.55)

- X - -X -

Y

_ Z .

Y

_ Z .

P 4 4 / P 11

1 - p41 Y  _  PAgyr _  P43 v 
Pll pll p 11
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Note that the above equation denotes a 4-parameter orbit parameterized by

( P 4 i /P n ,  P 42 / P 11 , P 4 3 / P U ,  P u / P n ) -

Equation (4.55) is a general description of the parameter orbit for the Riccati motion. 

In the following, two special cases are listed:

1 ) When A  is skew-symmetric as in (4.2), (4.55) reduces to a 1-parameter orbit:

A  A,

P 11
f  T t y M f- r  (4_56)

P44

[ X , Y , Z \  ^  [X, Y, 2] —  .
P l l

2) When A  is skew-symmetric as in (4.2) and b  =  —f , (4.55) reduces to a sign ambiguity:

(wi ,w 2 ,ws) 1— > (wi ,w 2 ,w 3),

(hi,b2 , h )  k— ± ( h , b 2 ,b3), (4.57)

( X , Y , Z )  ± ( X , Y , Z ) .

The above discussion provides theoretical analysis about the identifiable parameters, 

from which it can be concluded that, using vision information from a single stationary cam­

era, motion parameters can only be identified up to certain orbit, which is a 4-parameter 

orbit for the Riccati motion and a 1-parameter orbit for the rigid motion. Based on the

group action Q in (4.50)~(4.52), canonical forms for the PDS are introduced in [8 8 , 89, 90],

where it is shown that parameters in the canonical form can be identified uniquely using 

an EKF.

In the next section, several nonlinear observers are reiuewed for the identification task 

for the rigid and pure rotational motions.
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4.3.2 A pplicable N onlinear Observers for PD S

The PDS theory is a mathematical formulation that reveals known results in com­

puter vision and allows exploitation of much more difficult situations, such as the nonrigid 

motion estimation problem. After revealing the non-uniqueness nature in identifying the 

motion parameters, this section reviews several nonlinear observers, applicable to the PDS, 

that actually carry out the identification task.

Pure R otational M otion:

For a class of PDS in the form

[X, Y ,  Z]T — A  [X , Y, Z ]T, y — [C x], with m  = n, (4.58)

where n  are m  are the dimensions of the states and outputs as defined in (4.38), the 

problem of identifying parameters of the above PDS is equal to the problem of identifying 

parameters of the following Riccati equation: for the PDS in (4.58), we can have

V =  A ( y ) 0 , (4.59)

with

M y )  =

Zl

v  Z n _ l

-[yjVi, ■ ■ ■ ,yjVn-\]-
For example, when n = m  =  3, by letting y\ = X j Z , =  Y/Z ,  we have the following

2-D Riccati equation

j  y i  =  <3.122/2 -  y i { a 3i y i  +  <3322/2 ) +  2/1 ( “ 11 -  <133) +  ^13

\  2/2 =  0212/1 _  2/2 (0312/1 +  0322/2 ) +  2/2 (0 2 2  -  0 3 3 ) +  023

which can be written in the form of (4.59) with

’2/1 2/2 1 0 0 0 - yi2 - 2/12/2 "

(4.60)

M y )  =
0  0  0  2/1  2/2  1  - 2/ 1 2 /2  - 2/2

8 =  [ o i l  -  0 3 3 , O12, 0 1 3 , 0 2 1 , 022  “  O33, ffl2 3 , O31, 0 3 2 ]T

(4.61)
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It is observed from the 0 in the above equation tha t the parameters an,  <222, and a33 can 

only be identified to the extent (an  — 033) and (022 — 033)-

For the Riccati equation (4.59), when the motion parameters are constant, the follow­

ing full-state observer can be used to estimate the states of the PDS [20, 85, 92):

where H  is any Hurwitz matrix whose eigenvalues are in the open left half of the complex

symmetric matrix. When the parameters are not constant, but varying according to a law 

that is a linear function of the parameters and a possible nonlinear function of the states 

of the system, a full-state observer constructed in [2 0 ] can be used to estimate 6 .

Persistent Excitation (PE), a concept in the theory of identification and adaptive 

control, turns out to be the sufficient and necessary condition for the convergence of the 

identification error of the observer in (4.62) to zero. For the case with time varying motion 

parameters, the applied observer in [2 0 ] is also convergent under a suitable condition that 

is given by a generalization of the PE condition [20, 85].

R ig id  M otion :

Consider the planar- surface (4.42) undergoing a Riccati motion in (4.1) under the 

perspective projection, where the outputs are taken as

y = H(y  -  y) +  A{y)9 
§ = - A TP{y  -  y),

(4.62)

plane, P  is the positive definite solution of H TP  + P H  — —Q, and Q is a positive definite

yi =  X /Z ,  y2 =  Y/Z. (4.63)

The optical flow dynamics on the image plane takes the form

where

4  =  «2i -  b2p

(4.64)

(4.65)

d& =  (a22 -  a33) -  b2q +  b3s 
d7 = b3p -  a3i 

k d8 = b3q -  a 32
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and the parameters

(4.66)

are called the essential parameters of the optical flow dynamics [211. Detailed derivation 

of the optical flow dynamics in (4.64) is shown in Appendix B.2.

The identification task for the rigid motion can be performed via the above essential 

parameters. Let us rewrite the optical flow dynamics (4.64) as

i 0' m ' i 0 2/1 2/2

. y i . 0 i 0 0

Ux mM
f  f

ViV:i vh
f  '  /  J-

d. (4.67)

w(y)

Combined with d  =  </>(d), where </>(•) is a function of d, we have [8 6 . 93]

y = w(y)d,  d  =  </>(d).

The above system fits into the form of the following nonlinear system

±i — wt ( x i ,u ) x 2 + <t>(xi,u),
±2 =  g ( x i , x 2 ,u), 
y = xi,

(4.68)

(4.69)

where the matrix wT (xi ,u)  and the vector g ( x i , x 2 ,u) are nonlinear functions of their 

arguments. For the class of nonlinear systems in (4.69), a discontinuous nonlinear state 

estimator, called the Identifier Based Observer (IBO), can be applied for the state estima­

tion [23, 93j. Applying the IBO to (4.68), y, d  can be estimated .7 However, the motion 

parameters a jj  for i . j  — 1,2,3 and 6, for 2 — 1,2,3 can not be extracted from d exactly 

for a general motion. In the special case of a rigid motion, the essential parameters of the 

optical flow dynamics (4.65) become a set of eight nonlinear equations with eight parame­

ters, commonly known as the recovery equation. The recovery equation has two solutions 

and the use of shape dynamics results in the recovery of the correct alternative [21, 94].

7Though the correspondence problem between a  set of feature points in the image sequence has been 
assumed to  be established, the estim ation of y  in (4.67), together w ith the states in (4.35) estim ated by 
the IEK F approach, helps to  track features over tim e to  reduce the search region.
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R igid M otion E stim ation w ith  A ctive V ision System:

In the last few years, the observability of perspective linear systems has been system­

atically studied in the literature and it is noted that without input, it is never possible 

to recover the norm of the state. However, with a proper input, the state estimation can 

be made possible [87, 95]. An optimal state observer is proposed in [87] for systems with 

multiple homogeneous outputs of the following form

x = A(u)x  +  b(u) + G(u)d.
(4.70)

ajyj  =  Cj{u)x +  dj(u) + rij, j  =  (1 ,2 , . . . ,  m}, 

where d denotes the disturbance and rij denotes the measurement noise for the j- th  obser­

vation function. By assuming that A,G ,C j  are constant matrices (denoted by A,G,Cj)  

and letting

b{u) =  B u ,  dj(u) =  Dj u ,

equation (4.70) reduces to

x  =  Ax  +  B u  +  Gd, , ,
aj-tjj =  CjX  +  D jU  +  rij, j  =  { 1, 2 , . . . ,  m } ,

which is the PDS in (4.37) with disturbance and measurement noise. The state estimation 

problem of the system in (4.70) is formulated in a deterministic setting by searching for the 

value of the state that is most compatible with the dynamics, in the sense that it requires 

the least amount of noise to explain the measured output [87]. Under an appropriate ob­

servability assumption that depends only on the motion of the camera, the state observer 

proposed in [87] is globally convergent to the correct position and orientation in the ab­

sence of noise. When there is noise, the magnitude of the estimation error is essentially 

proportional to the magnitude of the noise [87, 96].

The work in [87, 96] is taken one step further in [97] to incorporate a set of quadratic 

constraints for the states. The main reason to consider state constraints is to take into 

account that some elements of the state are known to lie in a given manifold. For example, 

in the rigid motion case, part of the state of the perspective system is a rotation matrix 

that lies in 50(3). The estimator proposed in [87, 97] requires the camera’s linear and
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angular velocities, which can be reasonably assumed known in applications such as robot 

navigation, where the motion of the camera is determined by the applied control signals.

Using the observer proposed in [87, 97], rigid motion estimation is obtained in a setup 

where a  camera attached to the body frame seeks several fixed feature points in the inertial 

frame, which serves as a scheme for robot localization. The states estimated are related to 

the nine rotational and three translational components.

4.3.3 R an g e  Id en tifica tio n  w ith  K now n M otion  P a ra m e te rs

Besides the identification problem to estimate the unknown 3-D motion parameters, 

research is also oriented to the range identification problem with known motion parameters. 

For y(t) = [yi(t),y2 (t) ,y3 (t)]T =  [X{t) /Z( t) ,Y(t )/Z(t ) ,  l /Z(t )]T , the derivative of y{t) 

under a general Riccati motion is:

' m{t)  =  ai3 +  (an  -  aS3 )y1 +  a 12y2 -  anVi ~  a32y.1l/2 +  ( h  -  hyi)V 3 

< y2 (t) =  a23 +  a2iyi  +  (a22 -  a33)y2 -  a31yiy2 -  a32y% +  (b2 -  b3y2 )y3 . (4.72)

. m(t)  =  -(a3 iy i +  a32y2 +  a33)y3 -  b3yl  -  ( f i y i  +  f 2y2 +  / 3)

The range identification (depth estimation) problem is to estimate Z(t),  or its inverse y3(t),

assuming y\{t) and y2 {t) are available and the motion parameters fori , j  = 1,2,3

and for i — 1,2,3 are known.

For the depth estimation problem, some nonlinear observers have been proposed in

the literature 123, 24, 25]. Preliminary comparisons of some of the nonlinear observers

will be presented in section 4.4. The challenge in the 3-D motion estimation lies in the

identification of unknown motion parameters. If the motion parameters can be identified

exactly, depth information can be recovered using the nonlinear observers reviewed in this

section.

4.4 C o m p ara tiv e  S tu d y  o f E x is ting  P e rsp ec tiv e  O bservers

In the 3-D motion estimation reviewed in section 4.3, there are basically two sub­

categories of identification problems. One category is to estimate the parameters of the
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motion dynamics of the moving object. The other is to recover the depth information 

assuming that the motion parameters are already known. The solutions to the first class 

of problems can be resolved via algorithms such as nonlinear optimisation formulations [69], 

linear least squares/total least squares approximations [18], nonlinear observers [20, 23, 83], 

and the application of epipolar constraints [16]. Using image sequences from a single 

camera, it is well-known that for rigid motion, the rotation parameters can be estimated 

uniquely, but the translational parameters can only be estimated up to a depth ambiguity 

when the physical size of the target is not available. Though multi-view cameras, such 

as stereo cameras and multi-cameras operating asynchronously, can be used to recover 

the depth information, in this work, we stick to the single camera setup and focus on 

nonlinear observer techniques that have been applied to this particular nonlinear system, 

the perspective dynamic system (PDS). In addition to the affine motion in (4.40), the 

more general Riccati motion (4.1) has been discussed in [24, 25], which introduces no more 

difficulty in the observer design.

4.4.1 P erspective Nonlinear Observers

The nonlinear observers that have been applied to the PDS for the range estimation 

problem include:

1) The identifier-based observer (IBO) proposed in [23] that is motivated from the 

adaptive control theory and is suitable for the class of nonlinear systems in (4.69).

2) The state observer (SMO) in [24], which is a combination of the sliding mode control 

method (SMC), the adaptive method, and the discontinuous observer techniques.

3) The Range Identification Observer (RIO) in [25], which facilitates Lyapunov-based 

analysis and is motivated from the recent disturbance observer results [98].

The above three observers can all be applied to the Riccati motion and extended to 

n-dimensional cases. The IBO and SMO are similar in that they try  to compensate the
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bounded items (bi — fayCje^ for i = 1 ,2  to assure that the errors |ei| and je21, which are 

defined to be

ei = y i -  2/1, e2 =  2/2 -  fa, (4.73)

are very small. The RIO is less complex compared with the IBO and SMO by not investi­

gating the structure of (bi — h3j/i)e3 - For the general Riccati motion, the derivative of y(t) 

is in (4.72). It is based on the above equation that the three observers are formulated.

4 .4 .1 .1  IB O

Obviously, (4.72) is in the form of (4.69). After applying the observer in [23], the IBO 

for the PDS takes specifically the following form:

'Vl
= GH

'ex'
+

‘ 61 -  b3yP
2/3 +

Oi3 + (nil — «-3s)2/i + 0122/2 " '0312/1 + 0322/12/2’

-fa. .e2. .62 — &3?/2. ,a23 + a2 i2/i + (a22 — <133)2/2 . -a312/12/2 + °322/2 -

2/3 = - G 2[h -  &3S/1, h  ~ hy-i]P

fa(4 ) = M
2/3 ( t j  )

ei

e2J
-  (a3iyi +  0322/2 + 033)2/3 -  hV3 ~ ( A 2/i + A 2/2 + A )  ’

l l w ( * D I I

where the sequences of t; are defined as

ti =  min { t : t  > f j_ 1 and > 7 M}.

(4.74)

(4.75)

and the matrix P  is a positive definite solution of the Lyapunov equation H TP + P H  =  — Q, 

In (4.75), scalar M  is an assumed upper bound for the state estimate j|i/3 (t)jj and 7  is a 

fixed constant scalar with 7  > 1 . The G in (4.74) is a constant scalar gain. Notation wise, 

all the observer parameters correspond to their specific observers, i.e., G or 7  do not have 

a global meaning.

The observability assumption of the above IBO is del,ailed as [23]:

O bservab ility  C o n d itio n  o f IBO : The regressor matrix wT(x\ ,u)  is piecewise smooth 

and uniformly bounded together with its first time derivative and there exist positive 

constants r, (5 such that

rt+p 

it

rt+p
J  w(x i( t ) ,u ( t ) )  w (x i ( t ) ,u ( t ) )  dr > p/31 (4.76)
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for all 0 < p <  r with I  being the identity matrix.

The IBO is recursive and guaranteed to converge in an arbitrarily large but bounded 

set of initial conditions. Further, the convergence is exponential, though the rate of con­

vergence depends on the choice of initial conditions.

4.4.1.2 SMO

For the perspective dynamic system (4.40), (4.41) and defining e$ =  yz — ys, the SMO 

is formulated as [24j:

■fix'
_

' A i(f )  e i / ( | e i |  +  5 i ) '

+

1 cr i 8* M
$3 +

" 013 +  ( o i l  -  0 3 3 )2/1 +  0122/2" '0312/? +0322/12/2"

-V2 - . A2 (t)  e 2 /( |e 2 | +  52 ) , .6 2  -  632/2 . .023  +  0212/1 +  (o22 -  0 3 3 )2/2 . . 0312/12/2 +  0322/3  -

2/3 =  a[bi  -  632/1 , 62  -  632/2 ]

m t )  =  M'

Ai (t) e i / ( | e i ]  +  5 i)  

A2(t) e2/ ( |e2| +  <S2).
(0312/1 +  0323/2 +  0 3 3 )2/3 -  6 3 ^ 3  -  ( / m  +  h y 2  +  f 3)

(4 .77)

where Ax (t) and A2 (t) are adaptively updated by:

*'<*> = { 0 ,'

X2 (t) — ^  ^ a 2 le2 l’ if le21 > 242

a i|e i |,  i f |e i |> 2 (5 i 
otherwise

(4.78)

0 , otherwise

The design parameters a , ax, a 2 , (5i, and 52 in (4.77) and (4.78) are all positive scalar 

constants.

The SMO is constructed based on the following three assumptions: 1) the parameters 

aij ( t ) , i , j  = 1 ,2 ,3  and h(t) , i  =  1,2,3 are known bounded functions of time t; 6j(f) are 

piecewise differentiable and have bounded derivatives, 2) £ 3(t) >  0, and 3) the output y\{t) 

and j/2 (i) are bounded. The second and the third assumptions are reasonable by referring 

to the practical system.

O bservability Condition o f SMO: Suppose tha t there exist positive constants /?, p 

such that
r t+ p

J  ((h  -  h y i ( r ) ) 2 +  ((62 -  h y 2 (T))2) dr > (3 (4.79)

for all t > 0. Then, for given <5i > 0 and S2 > 0, there exist To > 0 and a function 

e(u,  v) > 0 such that |e3 (f)| < e(<5i, 82) for all t  > Tq.
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The key idea of e\)2(f) decreasing to a small regions around 0 is based on the “equiv­

alent control method.” That is, for a system z(t) — v(t) -  N  sign(z(t)) with |u(t)| <  N,  

z(t) —> 0 as f —> oo. Further, for the SMO, e |(f) is proved to decrease exponentially if it is 

not very small.

4.4.1.3 RIO

The RIO in [2-5] is relatively simple in the observer design and it does not utilize the

specific structure of (bi — bzyfjez for i — 1,2. Let

f i  = (bi — 632/1) yz, / 2 =  (62 -  632/2) 2/3- (4.80)

Then ex =  y x -  y x = f y  -  / 1 , e2 ^  2/2 -  2/2 =  h  ~ f ' 2 - The estimates f y  and / 2 are designed 

to be:

I f y  = +  “ i ) / i  +  7 i sign (ex) +  a ^ e i  ^  ^
I  / 2 =  - ( fcs2 +  OL2) h  +  72 sign (e2) H- a 2/es2e2 ’

where ksi . ay, and 7 \ for i =  1,2 are all positive scalars. Using the estimates fy and / 2, y%

can be calculated by:

=  f i  +  f i ______  / , 82>
3 (b-y ~  632/1)2 +  (62 -  63J/2)2

Based on the structure of (4.82), the following observability condition must be satisfied. 

O bservability Condition o f  RIO:

(61 -  bzyi) 2 +  (62 -  h y 2 ) 2 > 0 for all t. (4.83)

The RIO facilitates a Lyapunov-based analysis that is less complex than the sliding

mode based analysis, such as the SMO. Using the RIO, the 3-D task space coordinates of 

the feature point can be identified asymptotically.

R e m a rk  4.4.1 To avoid chattering caused by the discontinuous terms sign(ej) for i = 1,2 

in (4-81), sign(ej) are modified as ei/(|ej| +5i) in our simulation to compare with the other 

two observers.
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Table 4.1: Design Parameters of Existing Perspective Observers

P a ra m e te r D escrip tio n

IB O
M Upper bound of the srate estimate y%
G Determine the converging speed

(H,P) Matrices that satisfy Lyapunov equation

SM O

M Upper bound of the state estimate y$
Oti Determine the speed to update Ai
Si Determine the estimation precision
a Determine the converging speed

R IO
ksi> Related to the transient response

l i Determine the converging speed
Si Related to the smoothness and precision

4 .4 .1 .4  O bserver P a ra m e te rs

The functions of the design parameters of the three observers are summarized in 

table 4.1 with i =  1,2.

4.4.2 S im u la tion  R esu lts  a n d  D iscussions

In this section, our simulation results for the three nonlinear observers (IBO, SMO, 

RIO) are presented. In the original papers of IBO and SMO [23, 24], simulation results 

are presented for the affine motion (f =  0 in (4.72)). The simulations performed here are 

for both the affine and the Riccati motions.

Two specific examples are performed in [24] using Matlab for the SMO observer, where 

the two examples are:

1) E xam ple  1: Time invariant motion dynamics [24]

- x ( t y ' —0 .2 0.4 -0 .6 ' ' 0.5 '

Y(t) = 0.1 -0 .2  0.3 Y (t) + 0.25

. 0.3 -0 .4  0.4 . . 0.3 .
i m Y{  0) Z(0)}T = [1 1.5 2.5]
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2) E xam ple  2: Time varying motion dynamics [24]

x ( t y - 0 —2n 0- - x ( t y 0

Y ( t ) = 27r 0 0 Y ( t ) + 0

m . .  0 0 0. _27TCOS(27rf)_

[X(0) Y(0) Z(0)]T = [1 1 2}T .

In our simulation, the above two examples are used along with

f  =  [0.001, 0.001, -0.001]7' (4.86)

for an extension to the estimation of the Riccati motion. The reason for choosing this 

small f  is the lack of guidance for selecting f  such that the outputs are bounded. For 

all the observer simulations, the initial conditions of [yi(0 ), 2/2(0 ), 2 /3 (0 ) ]T  are chosen to be 

[ y i ( 0 ) ,  2/2 ( 0 ) ,  l]r . Further, the observer design parameters listed in table 4.1 are tuned such 

that all the observers are compared based on a similar converging speed in the absence of 

noise along with acceptable performance in the presence of noise.

The parameters chosen for the three observers are:

• IBO: M  = 1 0 , G =  10 , 7  =  1 , H  = I 2x2 , P  =  - / 2x2./2 .

• SMO: M  = 10, a  =  5, a i  =  a 2 =  10, f t =  8 2 =  0.2, Ai(0) =  A2 (0) =  1.

• RIO: 71 =  y2 — 30, ks 1 — k s2 =  5, a\  =  a 2 =  5.

Figures 4.1 and 4.2 present the simulations results of the three observers for the above 

two examples with f  =  0 and the f  in (4.86). From fig. 4.1, it is observed that with f  =  0 

and f  /  0, the estimation errors e% for the affine and Riccati motions decrease with a 

similar pattern. This phenomenon is also true for the second example, as can be seen in 

fig. 4.2. The reason for this similarity may due to the small values of f. Furthermore, 

a nonzero f  in the Riccati motion only introduces one more term — ( / 1J/1 + f 2 y2 +  is) in 

(4.72). Since the outputs y\ and y2 are available signals, theoretically, there should not be 

big differences as long as the states are bounded.
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Example 1 + Affine Mnlion + No Noise E omple 1 + Riccati Motion + No Noisa

-0 .2

- RiO

Fig. 4.1: Simulation results of e3 for the three observers for Example*.

Example 2 ■'-Affine Motion + No Noise Example 2 + Riccati Motion + No Noise

-0.6, -0.5,

IBOIBO

Fig. 4.2: Simulation results of e3 for the three observers for Example2 (RIO can not be 
applied to this example, as can be seen from fig. 4.3).

In fig. 4.2, the simulation results of RIO for the Example2 are not plotted because the 

error e3 explodes at the time instances when 63(f) = 0 periodically, as can be seen from 

fig. 4.3. This is explained by the observability condition of RIO, which does not allow 

(&i — bsyi ) 2 +  (&2 — Hy2 ) 2 to be zero at any time.

R e m a rk  4.4.2 The simulation results of IBO and SMO are not exactly the same as those 

presented in (2 f j  when exactly the same motion dynamics, the same initial conditions, and 

the same observer parameters are applied. In [24], the ideal plant is violated with 1% noise. 

However, in our simulation, it is either ideal or with certain amount of uniform noise.

Figures 4.4 and 4.5 show the observer performances in the presence of uniform noise 

to the order of ICR3 and ICR2, respectively. It is observed that when the noise level reaches
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IBO: Example 2 + Riccati Motion + No Noise5
5
4

3
2

t

0

-1

Fig. 4.3: Simulation results of e3 for Example2 using RIO.

10-2 , all the three observers could not give satisfactory estimates, where the RIO appears 

to be even worse.

Example 1 + Mine Motion + Noise Level = 10'3

0.1

0
-0 iff 
-0.2

-0.3 fi
•fl.d

■0.5
-0 .6  r

-0.7Q 5 10 15 20 25 30 35 40

Example 2 + Affine Motion + Noise Leire! ~ 10

0.1

0 

-0.1 

-0 .2 

-0.3 
-0.4 f- 
-0.5 
-0.80 2 4 6 B 10 12 14 15 18 20

Fig. 4.4: Examples with noise level =  10  3.

In our study, we found tha t the RIO, which is simpler in the structure, does not 

perform as well as the other two observers studied in this dissertation. First, the RIO 

can not be applied to the Example2 . Second, a careful examination of fig. 4.1 for the 

Examplei shows that ea of the RIO fluctuate around the 12-th second, which is due to 

the fast changing of f i  and f i  and the slow catching of f \  and f i  designed in (4.81), as 

can be seen from fig. 4.6. Finally, in the presence of noise, RIO experiences more obvious 

performance degradation compared with the other two observers.
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Example 1 + Affine Motion + MoisB Level = 10'̂
- SMO
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example 2 +• Affine Motion + Noise Levei - 10*
— IBO- • SMO

W ! i M i
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Fig. 4.5: E xam ples^ with noise level =  10 —2

Example 1 + Affine Motion + No Noise
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\V V :■ j!

\ X  f f
_ _  t,
-  • hhal .

V V, /-'!;

\ \

I

\ j
10 11 12 13 14

Fig. 4.6: f i }2 and / i ^  of IBO for Example^

4.5 Range Identification for Perspective D ynam ic System s U sing Linear A p­
proxim ation

For a general nonlinear system, observer design methods fall into the following cate­

gories:

1) Assuming bounded or local/global Lipschitz conditions.

2) Lyapunov-based design.

3) Linear approximation-based technique.
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4) Via transformations [99].

The IBO and SMO observers discussed in section 4.4 belong to the first category, while 

the RIO belongs to the second. In this section, perspective nonlinear observer design is 

pursued in the linear approximation category, where the nonlinear system is approximated 

by a sequence of Linear Time-Varying (LTV) subsystems. Observer design of the original 

nonlinear system reduces to the observer design of this sequence of LTV subsystems, al­

lowing the use of well-known linear techniques [100, 101]. The approach presented in this 

section is an original contribution of this dissertation.

The section is organized as follows. Section 4.5.1 introduces the linear approximation 

technique and applies this technique to the range identification problem. For each ap­

proximation subsystem of the original PDS, observer design is carried out using the LTV 

observer in [102], whose detailed procedures are presented in section 4.5.2. Section 4.6.2 

presents simulation results of the linear approximation-based observer with comparisons 

among several other perspective nonlinear observers for the range identification problem. 

Finally, section 4.7.5 concludes the section.

4.5.1 Linear A pproxim ation Technique

A recently developed method for replacing a nonlinear system by a sequence of LTV 

approximations is briefly described, where the sequence of LTV subsystems converges on 

any compact time interval, uniformly in time, to the solution of the original nonlinear 

system under the condition of local Lipschitz.

4.5.1.1 Introduction  to  Linear A pproxim ation Technique

Consider the following nonlinear system

with r(0) =  xq £ Mn. The sequence of LTV approximations is introduced as [100, 101

x(t) = A{x)x(t)  +  B(x)u(t)  
y( t) =  C{x)x(t),

(4.87)

=  A(xo)x^( t )  +  B(xo)u[°](t), 

x ^ ( t )  — A(x^~^ ( t ) )x^ (t) +  R(x^_ 1l(t))uW(t), 

x[°](t) =  X Q ,  for 2 =  0, rW(t) =  X q , for i > 1.

(4.88)
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Using the above linear approximations, global convergence is guaranteed in the sense that if 

the solution of the original nonlinear system exists and is bounded in the interval [0, r] C R, 

then the sequence of LTV approximations converges uniformly on [0, r] to the solution of 

the original nonlinear system as i —» oo [101 j.

4.5.1.2 L inearization of PD S

From now on, we use the vector variable x  to denote the state vector in (4.72) to 

be consistent with the general nonlinear system (4.87). After changing the variables, the 

dynamics (4.72) can be rewritten in the form of (4.87) as:

' o i l  — Qi(t)  a i 2  b\ -  b$xi

i ( t )  =  0,21 «22 — Ql(t)  &2 — h X 2

0 0 -  bsX3-

x(f) +  [a i3 023 0]

B T (x)

y(t) =
1 0 0

(4.89)

x(t), x(0) =  X q ,

C{x)

with

Qlit)  = 033 +  O31X1 +  032X0 . (4.90)

Applying the linear approximation idea described in section 4.5.1.1, the nonlinear system 

(4.89) can be replaced by a sequence of linear approximations specifically of the form:

■M(t) =

/o[®~ 1]a n  -  Q 1 a i 2 h  -  b3x[

021 022 -  Qi  ^ b2 ~  63X3 11

0  0  - Q lr 1] -  b3x [t 1]

xW(t) +  [ o i 3 023  0]J

B T {t)

-W(t) =

A(xll 11 (0 ) 
1 0  0

0  1 0

G{t)
(4.91)

where xl_ 1̂ (t) =  xq for i = 0, Q$(t) = 033 +  a3ix ^  +  032X2^ and B(t)  and C(t) are 

constant matrices.
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4.5.2 Observer D esign  for LTV System s

Using the sequence of LTV approximations in (4.88), the observer design of the orig­

inal nonlinear system can be converted to the observer design of this sequence of LTV 

subsystems. In [100], the state estimation of each LTV subsystem is performed using the 

algorithm in [102] due to its simplicity in implementation. For the range identification 

problem in concern, the LTV observer in [102] is temporarily adopted to illustrate the idea 

in this section. Other LTV observer techniques can also be applied.

4.5.3 LTV O bserver for Each Approxim ation Subsystem

Consider (4.91) and assume temporarily that and y^( t )  are known signals for

the z-th approximation subsystem. Each approximation subsystem can be regarded as a 

stand alone LTV system in the form

x(t) =  A(t)x(t)  +  B(t)u( t ), 
y(t) = C(t)x(t),

where A(t)  =  (t)) is available since a;t*_1l(f) is assumed known. B(t)  and C{t) are

constant matrices and u(t) =  1. Based on these assumptions, the following sequence of 

LTV observers can be constructed as in [100] using the observer design algorithm of [1021 

for the sequence of LTV subsystems:

x  =  F x ^ \ t )  +  G(xo)y[°}(t) + B(xo)u^( t ) ,

x \ t )  =  FS^%\ t )  +  G ( x ^ 1^)y(L\ t )  +  jB(a;t*_1])izM(f), (4.93)

[ xl°](0 ) =  x q , for 2 =  0 , a;^(0 ) =  x q , for i > 1 ,

with

a;M(t) — P(t) x^( t ) ,  for i > 0, (4.94)

where P(t) is a Lyapunov transformation to be designed. The matrices B, G, and F  can

be calibrated from P ( t ) as to be shown in equations (4.100), (4.103), and (4.105).

In the following, detailed LTV observer design procedures in [102! are given for each 

LTV subsystem of a PDS. The readers are strongly recommended to refer |102| for notations 

and algorithms.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



108

Using the same variables as in [102], for the i-th subsystem, the observability matrix

is

(4.95)

where

m ( t )  = c ( t )  = 

>[*-!]
N 2 (t) = C{t)A(t)

1 0 0

0 1 0 

012 J i - l ] (4.96)
Oil ~  Qi  012 6 1 - 63*1

021 022 -  Q i 62 -  634 ,_1] .

If N{t ) is of full rank and if one row of say the first row, is always linearly independent

with the two rows of IVi(t) for all t G [0, 00], we can form a matrix N(t)

m

0

whose inverse exists with the following form:

1

N ~ \ t )  =  0

1

0

0

0

(4.97)

b i  - b 3 X \F o r

0

1 

- 0 1 2

b i ~ b 3 x [ '

(4.98)

It has been noticed that the observability indices are n  1 =  2 and ri2 =  1. A Lyapunov 

transformation P{t) can be constructed as

Pit)  =  [A(t)a  1 -  di, a i, a 2], (4.99)

where a\  and a 2 are the 2-nd and the 3-rd column of N ~ l (t), respectively.

After getting P(t)  and following the algorithm procedures in [102], we have the fol­

lowing steps:

1 ) Obtain A(t), B(t),  C(t):

m  =  p - i {t) (A(t)P(t) -  p(t)),

Bi t)  = p - ^ t )  Bi t )  = P - H m a n ,  a 23, 0]T, (4.100)

C{t) = Ci t)P i t ) .
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Prom (4.100), the calculation of A(t)  requires the calculation of P(t). If N(t)  is a 

constant matrix, a\  and c*2 are constant vectors. Then, P(t)  becomes 

which contains at most In this case, the calculation of P(t)  only requires (t)

besides (f). However, if ai  is not constant, but having terms of we are in

a more complex situation to calculate xtl_1J(f). Notice that in the linear approximation 

framework, the input signal to the i-th subsystem has no analytical formula, which

is different from the situation when A(t) ,B(t) ,  C(t ) in (4.92) has analytical formulae of t, 

where the matrix P(t)  is also in an analytical form and its derivative P{t) can be calculated 

straightforward.

To calculate ^ “ ^(t), more information is needed besides xl4-1^ )  and x^~ This 

is because:

d 4*-i]
dt

d
dt

(t)}-,

"ai3_

A i x ^ - ^ x ^ i t )  + 023

. 0 .

(4.101)

=  A i x ^ x ^ i t )  + A i x ^ x ^ i t ) .

In the above equation, the calculation of A{x'(l̂ 21) requires x^~2\ t ) .  Thus, the input to 

each LTV subsystem for the range identification problem include x^~2\ t )  and ±[4_2J(t), as 

well as x^~^(t)  and ±[*- 1J(t).

2 ) Choose the desired eigenvalues (Ax, A2 , A3). The resulting coefficients of the char­

acteristic polynomial are (Po,Pi,P2 ) in the form of
n

JJ(A  — A i) — \ n +  /3n_ xAn 1 +  • ■ • + /3iA +  /?o -
i—1

3) Obtain G(t):

G(t) = (A2 ~ A 3 +  A i )C l 1,

where

(4.102)

(4.103)

A 2 = [A(:,1), A(:,3)], Cx =  [C(:, 1 ), C(:, 3)],

'0 0 - ~Po O'

A3 — 0 1 , A4 = Pi 0

.0 0 . -P2 0 .

(4.104)
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and where A(:, i ) and C(: , j ) denote the i-th and the j -th column of A(t)  and C(t), respec­

tively.

4) F(t): Using the above design procedures, F(t)  becomes

' - A )  1 O ’

F(t) = - p i  0 1 . (4.105)

.-/%  0  0 .

4.5.3.1 C om m ents on A vailability of Signals

In the LTV observer (4.93), it is assumed that xo, and j/W (£) are known signals

for the z-th approximation subsystem. Unfortunately, the signals xo,x^~^(t)  and y^( t )  

are unknown from the original nonlinear system (4.89). If xq, A(x),  B(x)  are all assumed 

known, all the information of the original nonlinear system is available and there is no 

need to construct an observer. In other words, the fundamental nature of an observer is 

corrupted using the “observer” in (4.93).

Then, how can the linear approximation technique help for the observer design of an 

original nonlinear system? For the PDS in (4.89), C(x)  is a constant matrix. Outputs 

of the sequence of LTV subsystems will converge to the actual output y(t) of the original 

nonlinear system. That is:

lim j/W(f) =  y(t), as i CO. (4.106)

By replacing yM(t) with y(t) and x^  1J(t) with x^  1l(f), we construct the following se­

quence of LTV observers, which we call LAO for an abbreviation of Linear Approximation 

Observer:

x  \ f )  =  F i ^ ( f )  +  G(x'0) y(t) + Bu(t) ,

LAO x (t) = F x [A{t) + G { x ^ ) y { t )  + B u ( t ) ,  

xt°l(0 ) =  x'0, for i = 0 , xW(0 )

(4.107)

x'0, for i > 1 ,
with

fW(t) =  p(t)  x^ (t), for i > 0 ,

where u(t) and y(t) are the input and output of the original nonlinear system (4.89). 

(t) is the state estimation from the (i-l)-th subsystem.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



I l l

In (4.107), the state estimate is denoted by fW(t) as an abuse of the variable. It is 

worth emphasizing that xM(i) is not the estimate of a;M(f), but the estimate of state x(t) 

of the original nonlinear system. Besides, the initial conditions of each LTV subsystem are 

chosen to be x ' Q , which is different from x q . A s noticed, based on the linear approximation 

techniques, a sequence of observers needs to be constructed. Fortunately, this drawback is 

not that severe due to the modularity feature of each observer.

R e m a rk  4.5.1 The application of the L T V  observer in [102] requires the L T V  system to 

be uniformly observable (N ( t ) is invertible) and have a lexicographic basis (one row in A ^f) 

in (4-96) must always be able to form a 3 x 3 nonsingular• matrix with N\(t)).  Obviously, 

the above observability condition of the L T V  observer imposes restrictions on the overall 

LAO observer. L T V  observers that have less restricted observability conditions, possibly 

with only mild Lipschitz requirement, thus need to be investigated and applied. Due to 

the above mentioned restriction, the L T V  observer in [102] is only temporarily applied to 

illustrate the main point. That is, after applying the linear approximation technique, the 

observer design of a nonlinear system can be reduced to the conventional observer design 

of a sequence of L T V  systems.

The linear approximation-based observer can be applicable to general nonlinear sys­

tems that satisfy the mild local Lipschitz condition for linear approximation, not just a 

special class of nonlinear systems, as for which the IBO, SMO, and RIO are designed. 

Further, for a PDS with possible more general nonlinear imaging surface, this LAO can 

still be applied.

4 .5.4 D iscussions

1) M u s t B(x)  a n d  C(x)  in  (4.87) b e  c o n s ta n t m atrices?

When the original nonlinear system is rewritten in the form

=  A ( : +  B { x ^ ) u ,  ^
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the designed LAO in (4.107) works when the matrix B{x)  is not constant, as will be 

shown in one of the examples in section 4.6.2. In this case, the observer design follows 

the same procedures in jl02j. However, when the matrix C(x) is not constant, the 

designed LAO fails since a simple substitute of yW(t) with y(t) is not correct. Thus, 

linear approximation based nonlinear observers for more general nonlinear systems 

with a non-constant C(x) matrix needs to be investigated further.

2) W hy x^(t) and fW(f) are not the same?

From the two sets of approximations in (4.88) and (4.107), it is obvious that x^( t )  

and xM(i) are not the same. However, the appealing converging pattern of the LAO 

observer as illustrated in fig. 4.11 needs more study.

3) M ust th e  m otion param eters in th e  original nonlinear system  be constant 

scalars for the application of LAO?

For example, for the PDS,

x  =  Ax  +  b, y — [xi /x  3 ,X2 / x 3}t , (4.109)

must dij  and bj for i , j  =  1,2,3 are all constant scalars? The answer is No. If 

the motion parameters are not constant scalars, but varying according to a law, the 

whole design procedures are the same, since the time-varying feature in the motion 

parameters can be handled by the LTV observer. One example is going to be shown 

in section 4.6.2.

4) R elationship  w ith  linear approximation:

The LAO observer in (4.107) can also be regarded as a sequence of LTV approx­

imations of the original nonlinear system, which is similar to the approximations 

described in equation (4.88) at this point. The difference between these two sets of 

approximations is shown in fig. 4.7. The approximations in (4.88) require the initial 

state xq of the nonlinear system. In other words, it approximates a completely known
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nonlinear system, since the structure and the system parameters are already assumed 

known. The proposed LAO observer, though motivated directly by the approxima­

tion idea, does not require a knowledge of x q . The LAO observer approximates a 

partially known nonlinear system, whose structure and the parameters are known 

but with an unknown initial state, by applying a sequence of LTV observers.

Original Nonlinear System
u(t) y(t)

(a) Bank's Linear Approximations (b) LAO 

Fig. 4.7: Linear approximations of a nonlinear system.

4.5.5 S im u la tio n  R esu lts

Simulation results of the LAO observer are presented along with three other perspec­

tive nonlinear observers, the IBO [23], SMO [24], and RIO [25], for a PDS system when 

the target is moving according to the following affine motions:8

8Throughout th is dissertation, the m otion dynamics th a t  are used to  tes t the perspective nonlinear 
observers are from the two examples in [24], except the two motions in the following, which is due to  the 
reason described in R em ark 4.5.1
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1) M otioni:

■A" ■-0.2301 0.4043 -0.5769- ' X ' ' 0.5 '

Y = 0.1276 -0.3003 0.2839 Y + 0.25

_Z_ . 0.2450 -0.4247 0.4319 . . Z . . 0.3 .
[X0!Fo,Zo]t  =  [0.4,0.6,1.0]7’.

(4.110)

2 ) M o tio n :

x - --1.7073 -0.6368 -1.0540- - x - - 0.5 '

Y = 0.2279 -1.0026 -0.0715 Y + 0.25

Z . . 0.6856 -0.1856 0.2792 _ _Z . . 0.3 .
(4.111)

6 0.2792 J  i Z j  L 0.3 .
[X0 ,Y 0 , Z 0]T = [0.4,0.6,1.0]t .

In this section, the linear approximation technique is first implemented to verify/show, 

via example, how the x ^ ( t )  signals in (4.88) converge to the state x(t) of the nonlinear 

system. Secondly, detailed experimental results are presented for the LAO observer’s 

convergence using the two motions in (4.110) and (4.111), where we again emphasize that 

the state estimates a;M(f) in (4.107) converge to the actual state x(t) of the nonlinear 

system, not the xW(f) in (4.88). Finally, performance comparisons of our LAO with the 

other three perspective nonlinear observers are presented.

4.5.5.1 Sim ulation Validation of Linear Approxim ation Technique

Given a nonlinear system (4.87), if all the information about the system is known, i.e., 

its initial condition, its structure, its parameters, and its input, then a sequence of LTV 

subsystems can be formed, as illustrated in fig. 4.8. In each subsystem of the sequence, 

it receives xt*_1J(f) signal from its previous block such that the matrices A(x[*_ 1l(f)), 

(f)), C(:r[*~1](f)) can be determined. In this way, each subsystem becomes a LTV

system.

Using M o tio n i, the states xM(i) for i — 1,2,3 are shown in fig. 4.9. It is observed 

that the convergence pattern of ajM(f) to x( t ) is up and down around x(t), and finally 

converges to x(t).
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Xn -0- 1] -0-1]o-l]-0 - 1]

Fig. 4.8: A sequence of LTV subsystems of a. nonlinear system.

x ,1’1 for i =  0  to  9 x v :| for i =  0  to 9 x y : for i =  0 to 9
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Fig. 4.9: x ^ 2 3 (f) of (4.91) under M o tio n i without noise.

4 .5 .5 .2  P e rfo rm an ce  S tu d y  o f LAO O bserver

A block diagram of the LAO observer is shown in fig. 4.10, where the inputs to each 

observer module include: 1) the actual output of the original nonlinear system, 2 ) the 

control input, and 3) P( t ) ,F ( t ), B( t) ,G( t ) calculated using x^~^(t) ,  x  ̂ ^(f) and possibly 

x ^ 2\ t )  signals. The “LTVObs” frmction, implemented by a S-function in Matlab 

Simulink due to its demanding matrix manipulations, calculates the P( t ) ,F ( t ), B(t), G(t) 

matrices in equations (4.99), (4.100), (4.103), and (4.105). W ith the above calculated 

matrices, the other part of the LTV observer module outputs the state estimates according 

to (4.94).

Under M o tio n i and M o tio n ,  the LAO observer is tested in the cases of no noise and 

with uniform noise bounded by ± 1 0 ~ 2 with two different initial conditions x '0 = [0 , 0 , 0]7 

and Xq = [—1 ,2 ,1]T. In this section, only simulation results with x '0 =  [0,0,0]r  are 

presented to save space and maintain clarity. The design parameters for the LAO observer 

are Ax = —1, A2 — —2, A3 =  —3. That is, Pq =  6 , /?i =  11, fh — 6 .

In fig. 4.11, x ^ 2 3 (f) for i = 0 , . . . ,  9 are plotted together with their true state trajec­

tories for the ideal case of no noise. To extensively test the LAO observer, the simulation
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D ifferent Initial C o n d itio n .

LTVObi 4 —
O riginal N onlinear System

LTVObs

LTVObsy  x"+dot

L T V  O bserver M odule. LTVObsy  x"+dM

Fig. 4.10: Matlab simulation block diagram of the LAO observer.

time is set to be 80 seconds. It is observed that as i increases, x ^ 2 3 (t) reach £ 1,2,3(£) 

closer and closer. The LAO is also tested when the output is corrupted with uniform noise 

bounded by ±10~~2, as shown in fig. 4.12. Compared with fig. 4.11, x ^ 2 3 (t) in fig. 4.12 are 

more noisy, but still show good convergence to their true trajectories.

State estimates o f X i(t) for i =  0 to 9 State estimates o f x2(t) for i = 0 to 9

■jsr
(b>(a)

State estimates o f x3(t) for i = 0 to 9
1.S

0.5

Q

( C )

Fig. 4.11: 2 3 (t) under M o tio n i without noise.

The above simulations are also performed using M o tio n ,  where the corresponding 

results are shown in figs. 4.13 and 4.14, respectively. The simulation time is set to be 

20  seconds due to the simple varying pattern of the system’s outputs.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



117
State estimates of x ((t) for i = 0 to 9

0.2

0

-0.2

-0.4

-0.6

•Q.B
ID 30 50 70 BO0

State estimates of x2(t) for i = 0 to 9
1.4

1.2

0.6

0.5

04

0.2

0
-0.2

-04

State estimates of x3(t) for i = 0 to 9
1 5

85

0

•0.5

•1
-15

(a) (b) (c)

Fig. 4.12: 2 3 (t) under M o tio n i with uniform noise bounded by ±10~2.
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Fig. 4.13: ^ 1 2  3 ( 0  under M o t io n  without noise.
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Fig. 4.14: £ 1 2  3 ( 0  under M o t io n  with uniform noise bounded by ±10 2.

4.5.5.3 Com parison A m ong Perspective N onlinear Observers

At the last part of our simulations, a comparison between the LAO and the other 

three perspective nonlinear observers is performed using the two motions in (4.110) and

(4.111), where the simulation results are shown in figs. 4.15 and 4.16, respectively. In these
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comparisons, we use x '0 =  [0,0,0]T. The observer parameters for the other three observers 

are the same as those in section 4.4.2.

x3 -  estim ate o f  x3 without noise x3 -  estim ate o f  x3 w ithout noise
i ■ ■ ! ! 2 -T Ig o  ]

-----SMO
- - - RIO

.. i .. -i__
:

V.
’^ 1

(a)
x3 -  estim ate o f  x3 with uniform noise

■ : I----
(-

. . . . . . . .

....... ....... ....... i
i

i
.......!

i r  i i ;. . ;r i l  L i  i i i I
0 1D 20 30 40 SO 60 70 80

(C)

(b)

x3 -  estim ate o f  x3 with uniform  noise

--SMO--- RIO
i i

i : .....;......

i; _

0 2 4 6 8 10 12 U  16 18 20

(d)

Fig. 4.15: Comparison of LAO with the other three perspective nonlinear observers under 
M o tio n i with xo — [0.4,0.6,1.0]T and x '0 =  [0,0,0]T: (a, b) without noise; (c, d) with 
uniform noise bounded by ± 10~2.

x3-estim atc o f  x3 w ithout noise x3-estim ate o f  x3 w ith uniform  n

0 2 6 10 12 16 10 204 8 H

--  IBO--  SMO-... 210A.0

...... ..... .....

L -
......

..-.1.....
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I

! i
i i

(a) (b)

Fig. 4.16: Comparison of LAO with the other three perspective nonlinear observers under 
M o tio n 2 with xo = [0.4,0.6,1.0]T and x ’0 = [0,0,0]T: (a, b) without noise; (c, d) with 
uniform noise bounded by ± 1 0 ~2.
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Figures 4.15 and 4.16 show the state estimation error, 2 3 (f) -  2 3 (t), for all the four 

observers. Note tha t in figs. 4.15 and 4.16, is taken as 2 (f) for the LAO observer.

In fig. 4.15, the plots in (a) and (b) are the comparisons among the four observers in the 

ideal case of no noise, while (c) and (d) show the comparison in the presence of uniform 

noise bounded by ±10-2 . Similarly, in fig. 4.16, (a) shows the results without noise and (b) 

with uniform noise. Notice that a different simulation time? (80 seconds) is used in fig. 4.15 

for the LAO for an extensive testing of its performance. From figs. 4.15 and 4.16, it can 

be observed tha t the LAO observer has a slower converging speed than the other three 

observers designed specifically for the PDS. Though different observer design parameters 

might result in different converging speed, it is not surprising that the LAO, which is based 

on the linear approximation technique applicable to more general nonlinear systems, would 

not perform as well as the perspective nonlinear observers designed specifically for a PDS, 

as the other three observers in comparison.

4.5.6 C onclud ing  R em ark s

In this section, a recently developed linear approximation technique, which replaces 

a general nonlinear system (satisfying local Lipschitz condition) by a sequence of linear 

time-varying (LTV) approximations, is used for the design of a state observer for the range 

identification of a perspective dynamic system (PDS). Using the linear approximation idea, 

state estimation of the original nonlinear system is reduced to a state estimation of a se­

quence of LTV subsystems, where standard linear methods can be applied. Since the 

linear approximation-based observer is applicable to a broad class of nonlinear systems, 

when applied to the range identification problem, it has a slower converging speed com­

pared to several other nonlinear observers designed specifically for a PDS. Moreover, the 

observability conditions of the LTV observer imposes a restriction on the resultant overall 

observer. LTV observers with less restricted condition thus need to be investigated and 

applied in this linear approximation framework. However, the LAO observer proposed in 

this section has a straightforward application to PDS with more general setup, e.g., with 

a general imaging surface as in certain omnidirectional vision systems.
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4.6 R ange Identification for Perspective Dynamic: System  w ith  Single Homo­
geneous Observation

In this section, we consider the range identification problem with a single homogeneous 

observation. That is, when either y\{t) or 1/2 (0  is known, instead both of them. Consider a 

special situation, as shown in fig. 4.17, when an object is moving on a plane P1OP2 , whose 

projection on the image plane is a line P1P2 that has either a constant y \ (t ) or a constant 

7/2 ( t ) -  H'  3/2 (f) is a constant, y 2 =  0. The range identification problem becomes to identify 

y2 (t) and 3/3 (t) using yi(f) .9 The above discussion serves as a motivation to investigate the 

range identification problem for a PDS with single homogeneous observation. However, in 

the following sections, 3/2 (f) will be treated as unavailable, not necessarily be restricted as 

a constant. This discussion is an original contribution of this dissertation.

> X Camera Frame

Image Plane

Object Moving on 
a Plane

Z

Fig. 4.17: Illustration of PDS with single observation function.

4.6.1 N onlinear Observers for P D S  w ith  Single H om ogeneous Observation

Range identification for a PDS using (3/1 (t) and y%(t)) has been discussed in the pre­

vious sections. In the case of single homogeneous observation using only yi(t), range iden­

tification can be solved by a direct application of IBO since the IBO observer is designed 

for a class of nonlinear systems in the form of (4.69). Further, based on a resemblance in

9The case to  estim ate yi( t )  and 1/3(4) using 3/2(4) is similar.
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the constructions of IBO and SMO for the case of full homogeneous observations (when 

both yi{t) and y2 (t) are available), a modified SMO can be used for the single observation 

case. However, extension/modification of the RIO observer for the single observation case, 

though possible, is not straightforward and will not be pursued in this section.

4 .6 .1 .1  D irec t A p p lica tio n  o f IB O

Range identification with single homogeneous observation can be solved by a direct 

application of the IBO observer, which has been applied to estimate y3 (t) in [23] when 

both yi (t) and y2 (t) are available. The dynamic system (4.72) can be rewritten in the 

form of (4.69) as

'®13 +  ( a i l  -  a 3 3 )2 /i  +  a i 2 V 2  -  0312/1 ~  0321/ 11/2 '

.a23 +  0212/1 +  (022 -  a33)y2 -  asiViVi -  0322/2 .

"2/1" 61 “  632/1
= 2/3 +

.2/2, 62 -  631/2.
wT([yi,V2]T)

2/3 =  —(0312/1 +  0322/2 +  033)2/3 -  632/31V  /
g([y i,V2]Tm)

(4.112)

and

2/1 =  [012 ~  0322/1, 61 -  631/1] 
V   ...

wT(yi)

2/2 

2/3 J
+ [013 + (ail -  a33)yi -  a3xyf\,

' -------------------------------- v -------------------------------- '

4>{yi)
' 2/2 ' 'Same as 2/2 in (4.72)'

.2/3 _ Same as y3 in (4.72) _

(4.113)

respectively. Define
g{yiAv2,ŷ \T)

ei — 2/1 — 2/1, e2 =  ?/2 -  2/2 , e3 — y3 -  y3. (4.114)

The constructed IBO observer for the case when (2/1 ( i), 1/2 (^)) are available is shown in 

(4.74) and in the following when only y\(t) is available:

' m
yi = G H  e\ +  [012 -  a32yi, h  -  631/1] +  [oi3 +  (an  -  033)2/1 -  a31yf] ,

IBO :
yi

'3/2*
-  - G 2

012 -- 032 2/1
P e i  +

.»3. .  h ~ - 632/1 _

L 2/3

023 +  0211/1 +  (022 -  033)1/2 

- ( 0312/1 + a32y2 +  033)1/3 _

-0311/12/2 -  032̂ 2 + (62 -  631/2)2/3 

- h y £
(4.115)
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under the corresponding observability conditions

AminM[yi(t), 2/2 (*)]r ) wT ({yi(t), y2 (t)]T)} > £ > 0, (4.116)

and

Amin{w(i/i(t)) wT {yi(t)} > e > 0, (4.117)

where Amin denotes the smallest eigenvalue of a matrix. Notation wise, all the observer

parameters correspond to their specific observers, i.e., G or 7  do not share a global meaning.

The two observability conditions in (4.116) and (4.117) are of the same level of com­

plexity. Substituting

wT {[yi, y2]T) =  [bi -  b3 yi,b2 -  h y 2]T , 

wT (yi) = [ai2 -  0322/1, b\ -  632/1],

into (4.116) and (4.117), we have

Amin{(61 — 63I/1)2 +  (62 -  b3y2)2} > 0 , (4.118)

and
ra2

Amin{
a ab

} > 0, (4.119)
ab b2

with a = a \ 2 — a32y\ and b = b \ — b3 y \ . The above two conditions are equivalent to

(61 -  632/1)2 +  (62 -  b3 y2 ) 2 > 0 , ^
(61 -  b3y i ) 2 +  (a12 -  0322/1)2 > 0 ,

which are obviously of the same complexity.

Proof of IBO, the observer in (4.115) for the single homogeneous observation case, 
yi

is omitted from here since it is a direct application of the IBO, with its detailed proof 

provided in [23|.

4.6.1.2 D irect M odification o f SMO

The SMO observer proposed in [24] has been applied to the state estimation of (4.72) 

when both yi(t)  and y2 (t) are available. When only yi(t) is available, the following observer,
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which is based on a modification of the SMO and a resemblance between SMO and IBO, 

can also be used for the state estimation of j/2 (f) and 1/3 (t):

Vi
AiQQei 
|ei| +  <Si

+ [ai2 -  0322/1 , h  -  h y i ]
2/2 

2/3 J
+  [013 +  ( a i l  -  033) 2/1 ~  0312/ 1]  ,

SMO :
2/1

~V2~ — rv
ai2 -  “322/1 Ai(t)ei a23 + a2iVi + (“22 -  “33)2/2

- 2/3 _
— Lx

_ bi -  h y i  _ |ei| +<5i . - ( “312/1 + “322/2 + “33)2/3 _
- “ 312/12/2 ^  “ 322/2 +  (62 -  h m ) h  

~hV3

where Ai(t) is adaptively updated by:

Ai(i) =
2 a'1 |ei|, i f |e i |> 2 5 1,

(4.121)

(4.122)
0 , otherwise,

with observability condition similar to that in (4.117).

The modified SMO observer SMO in (4.121) achieves extremely similar performance
yi

to IBO using properly chosen observer parameters. However, its proof of convergence is 
VI

not as straightforward.

4.6.2 Sim ulation R esu lts

The range identification observers IBO and SMO in (4.115) and (4.121) for single
Vl Vl

homogeneous observation are tested via Matlab simulations using the first example in [24], 

where the target is moving according to the affine motion in (4,84). In our simulations, 

the observer parameters are chosen to be

G =  10, H  = 1, P  =  -1 /2 , M  =  10, 7  =  1 , 
a  =  5, Ai(0) =  1, m  = 10, Si = 0 .2 , M  = 10, 7  =  1 ,

for the IBO and SMO, respectively, with initial conditions 
y 1 yi

(4.123)

2/i(0) =  2/i(0) =  X(Q)/Z(0) = 0.4, 
[2/2 (0 ) ,2/3 (0 )] € { [ - 1 , - 1], [0,0], [1 , 1]}.

(4.124)

Since the SMO has an extremely close performance to that of IBO, simulation results are
Vl Vl

only presented for the IBO.
V l
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Fig. 4.18: State estimation using IBO with [1/2 (0 ), 1/3 (0 )] =  [—1, —1].
yi
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Fig. 4.19: State estimation using IBO with [1/2(0 ), $3 (0 )] =  [0, 0].
yi

First, simulation results are presented in figs. 4.18, 4.19, and 4.20 for IBO with the
y 1

observer parameters (4.123) and initial conditions (4.124) in the ideal case with no noise.

After 15 seconds, the estimations of //2 (f) and 1 /3 (i) converge to their true values.

Next, comparison between IBO and IBO, the observers in (4.74) and (4.115), in the
y 1+2/2 yi

case of full and single observations is shown in fig. 4.21 for the ideal case of no noise with ini­

tial conditions [#i(0), 1/2 (0 ), 1/3 (0 )] =  [0,0,0] for full observations and [i/i(0), 1/2 (0 ), 1/3(0 )] =

A
------  true value
— - estim ation „

i i
10 15 20 25 30 35 41

■ ............... r...........
------  true value
— - estimation-

l i l i
10 15 20 25 30 35 4!

true value 
— - estimation

true value 
-  - estimation

true value 
-  - estimation

i i i i i ! i
0 5 1D 15 20 25 30 35 4

true va ue
e s t i m a t i o n
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Fig. 4.20: State estimation using IBO with [$2 (0 ), 2/3(0 )] =  [1, 1].
yi

[Jsl(0)/Z(0),0, 0] for single. It is observed from fig. 4.21 that IBO for the single case has a
Vl

less converging speed than tha t of IB O .
yi+V2

e3 =  y3 -  estim ation  o f y3 (without noise)

0.4
y1 only

yt0.3

0.2

*0.2

-0.3

4) .4

Fig. 4.21: Estimation error comparison between IBO and IBO in the ideal case of no noise.
3/1+3/2 yi

Finally, the observers in IBO and IBO are compared for their robustness to noise,
V 1 + V 2  V l

where observer performance is shown in fig. 4.22 with uniform noise bounded by ±10-2 .

W ith a lagging converging performance similar to that in fig. 4.21, IBO achieves estimation
Vl

accuracy comparable to that of IBO after 15 seconds. For fair comparison, in the compar-
V 1 + V 2

isons shown in figs. 4.21 and 4.22, same/similar observer parameters are used: M, G, 7  are
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the same; (H, P) are chosen to be (1, -1 /2 )  for IBO and ( h x 2 , —-^2x2/2) for IBO, where
yi 2/1+222

12x2 denotes the identity matrix of dimension two.

e3 = y3 - estimation of y3 (uniform noise level = 1tr2)
0.4

—  y1 only
0.3

0.2

-0.2

-0.3

-0.4

-0 5

Fig. 4.22: Estimation error comparison between IBO and IBO in the presence of uniform
2/1 + 2/2 2/1

noise bounded by ±10-2 .

From the above three-step simulation studies, it can be concluded that IBO, as well as
2/1

SMO, can achieve satisfactory estimation performance with single observation function. It 
2/1

is unsurprising tha t their convergence speed is not as fast as those with full observations.

However, in the presence of noise, the SMO using single homogeneous observation manifests
yi

similar robustness performance compared to SMO using full observations.
2/1 + 2/2

4.6.3 C oncluding Rem arks

For a perspective dynamic system (PDS) with single homogeneous observation func­

tion, the range identification problem was discussed using nonlinear observers previously 

used for the full observation case. Our simulation results show that convergence speed 

of the observer for the single observation case is slower than those with full observations. 

However, both observers have similar robust performance.

4.7 P erspective System s w ith  M ore G eneral Projection  Surfaces

Conventional video cameras have limited fields of view that make them restrictive in a 

variety of vision applications, including autonomous navigation, remote surveillance, video
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conferencing, and scene recovery. Existing devices typically use a photographic camera or 

a video camera, in conjunction with an off-the-shelf lens. This configuration allows the 

device to view the world through a relatively small solid angle subtended from the center 

of projection of the lens. To enhance the field of view (FOV), omnidirectional/panoramic 

imaging sensors that have big, close to hemi-spherical FOV axe under developments [103]. 

However, it is desirable that the entire imaging system still possesses a single effective 

viewpoint to enable the generation of pure perspective images from a sensed scene [104], 

More specifically, images that adhere to perspective projection are consistent with the way 

we observe scenes. Further, available works in computational vision that assume linear 

perspective projection can be applied for processing [105].

Current technologies to achieve wide FOV are illustrated in table 4.2, where the dis­

advantages of each technology are briefly listed in the followings:

1) Rotating camera: It requires moving parts and precise positioning. A serious draw­

back lies in the total time to obtain an image with enhanced FOV.

2) Cluster of cameras: Centers of projections reside inside each individual camera. Con­

sequently, the entire imaging system does not have a unique effective viewpoint.

3) Fish-eye lens: It is difficult to design a fish-eye lens that ensures that all the incoming 

rays intersect at a single point to yield a fixed viewpoint. Using two fish-eye lens 

that each provides a hemi-spherical FOV requires perfect seaming.

4) Catadioptric camera: Incorporate reflecting surfaces (mirrors) into conventional imag­

ing system.

Table 4.2: Technologies to Achieve Wide Fields of View

Rotating Camera Cluster of Cameras Fish-eye Lens Catadioptric Lens

0 <■’ (
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Though different difficulties exist in the above categorized technologies to construct 

powerful omnidirectional imaging systems, it is clear that imaging systems that have al­

ready been applied, or to be used in the future, are not restricted to the camera-type 

vision system, where the imaging surface is a 2-D plane perpendicular to the optical axis. 

While efforts are being carried on towards the construction of different candidates of om­

nidirectional vision systems, in this section, we disregard the physical construction issue, 

but focus on the 3-D motion and range identification problems based on the constructed 

omnidirectional systems, whose imaging surfaces are not necessarily a plane perpendicular 

to the optical axis, but can be a 3-D sphere, an ellipsoid, a paraboloid, and etc.

Currently, motion and range identification problems discussed in the perspective dy­

namic system (PDS) framework are regarding 3-D information observed via a conventional 

camera-type imaging system. In this section, the imaging surface is extended to a general 

plane, a 3-D sphere and ellipsoid, and a paraboloid surface. We assume that the discussed 

omnidirectional systems have a single center of projection such that the images observed 

preserve linear perspective geometry. Further, throughout this section, parameters of the 

imaging surface are assumed known.

The section is organized as follows. Sections 4.7.1 and 4.7.2 discuss the range iden­

tification and motion estimation problems with planar and ball-shape imaging surfaces. 

Section 4.7.3 addresses these two problems via observations on a paraboloid, where the re­

sulting PDS does not preserve an affine form such that most existing perspective observers 

that are applicable for range identification problem via observations from a traditional 

camera-type vision system cannot be applied directly. Section 4.7.4 presents our simula­

tions studies for the range identification problem when using a general planar surface, a 

sphere, and an ellipsoid as discussed in sections 4.7.1 and 4.7.2. Finally, section 4.7.5 con­

cludes the section. The ideas in this section is our original contribution of this dissertation.
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4.7.1 PD S w ith  General Planar Im aging Surface

In a PDS system, the projection of a 3-D point [X , Y, Z]T can only be observed up to 

a homogeneous line. That is

X p = Zp X /Z ,  Yp =  Zp Y /Z ,  (4.125)

where the subscript p denotes the projection on the imaging surfaces. An arbitrary planar 

surface, as shown in fig. 4.23, can be described by its normal vector n =  [m, n 2, n3\T and 

a point on the plane. To simplify derivations, the point on the planar imaging surface is 

chosen to be [0,0,1] without loss of generality. Thus, for any point [Xp,Yp, Zp]T on the 

planar imaging surface, we have

niXp  +  ri2Yp + n3(yp -  1) =  0, (4.126)

where we further assume n3 ^  0 to enforce the imaging surface facing toward the Z  axis.

Prom equations (4.125) and (4.126), we can easily get

X p = ri3X/Lpi, Yp = n ^ Y /h p\, Zp -  n^Z/hpx, (4.127)

where Lpi =  n \ X  +  n2Y  +  n^Z  and the subscript pi denotes the planar surface.

£Xr’Yr’ZrJ2^

(0,0 ,1)

Fig. 4.23: Simulation results of 63 for the three observers for Examplei-

4.7.1.1 R ange Identification w ith  K nown M otion Param eters

Since n% is known (parameters of the imaging surface are assumed known in this 

section), we can choose y(t), the observations of the PDS, to be y(t) =  [yi, 2/2 , y$\T with

yi =  X/Lpi, y2 =  y/Lpl, y3 =  1/Ppi, (4.128)
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where (j/i, yi) are measurable from the imaging surface and j/3 contains the range informa­

tion to estimate. Prom the above equation, [X , Y, Z)T can be calculated as

X  = — Y  = — Z  =  1 ~ n i m  n2m
2/3 2/3 nays

(4.129)

Under the choice of y(t) = [2/1,2/2,2/3]T ^  in (4-128) and the assumption that the 

object is moving according to the affine motion in (4.40), the derivative of y(t) is

. 2/ 2 .

a i 3 / n \  . r i 2
—— h (an -  «i3 P a m  + (ai2 -  ai3 — mns n3 n3
 h (a21 -  a23 — )yi  + (a22 -  &23 pa)V2n 3 n3 n3

2/3,
’ - P W l  -  P2V W 2 ' ~h -  p m '

+ +
- p m m  -  P22/2- M -  P02/2.

(4.130)

2/3 = ~ ( p m  +  P2V2 + Pa)ya ~  P02/3,

where

Pa ns W al3, po ni
(4.131)

Pi =  Z)i=l ni a il “  n lP3, P2 =  S L l  a*2 ^  «2P3- 

When Zp =  1 as for the traditional camera-type vision system, n\ = 112 =  0 and n3 = 

1- (po,Pi,P2 ,p 3) reduces to (&3, a3i ,a 32 ,a 33) and y(f) becomes (4.72), which is the PDS 

already presented in the above sections [23, 24, 106].

The dynamic system (4.130) still fits into the form of (4.69). In this way, state 

estimation of the perspective dynamic system (4.130) can be carried out using the IBO.

4.7.1.2 M otion E stim ation  v ia  O ptical Flow

Assuming that we have a planar textured surface described by

Z  = p X  +  qY + r, (4.132)

that always faces the vision system without any occlusion and every point on the surface 

moves according to the affine motion in (4.40), the optical flow dynamics10 on the imaging

10The optical flow dynamics is a tim e varying dynamic system described via the coordinates on the 
imaging surface.
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surface is of the form (4.64), with

d\ = (ai3 +  c i) /n 3, d2 =  (a23+  c2) /n 3,
d3 =  (an  -  ai3— -  pz) -  (po +  — ),n3 rn 3

,  n i ­di = a\2 -  ai3 gci,
n f  -  ( 4 . 1 3 3 )

d§ =  a2i -  a23- -----PC2:

d% =  (a22 -  a23 — -  p3) -  (<?c2 +  — ),n3 r n 3
, ~Po , ~Pod7 = p  pi, d8 =  <7 P2ir r

where

p =  p + — , q =  g +  — , Cj =  —, for i = 1,2,3. (4.134)
n3 n3 r

Again, for the case Zp = 1, di ~  d8 reduces to those in (4.65).

Motion parameter identification can be carried out in a two-step mode, where the first

step is to estimate dpi =  [di, d2, . . . ,  d%]T, called the essential parameters in |21|, and the

second is to calculate motion parameters from dpi. To identify dpi, we can either stack

a 8 x 8 matrix using four feature points or formulate into the following nonlinear system

using one feature point:

V = w{y) dpi, dpi =  0(dpi), (4.135)

such that the IBO observer in [28] can again be applied.

For a rigid motion, the equations in (4.133) are eight equations with eight parameters 

(wq, W2 , w3, c i , c2, c3, p, q), commonly known as the recovery equations. It has been reported 

that (w\,W2 ,vjz) can be identified uniquely, while (iq,&2,b3) can only be estimated up to 

a scalar containing the depth ambiguity [21].

R em ark  4.7.1 Using the general planar imaging surface (4-126), the output observation 

function y(t) can also be chosen as

[X/Lpi, Y/Lpi, Z j ipi, l / i p,]T. (4.136)

With the above choice o fy ( t) ,  for the range identification formulation, the resulting y(t)

shares the same structure as those in (4 -1 4 1 ); with / s ( 0  replaced by Y)k=i 'Hi=iniaik Vk
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and gs(-) by n fa . The resulting PDS system also fits into the form of (4-69) such that

the IBO can be applied for the state estimation. For the motion parameter identification 

problem, essential parameters of the optical flow dynamics will have several more elements 

satisfying certain constraints. The reason that we choose y(t) in the form of (4-130) for a 

planar imaging surface is to emphasize the extension of existing works in [21 j.

4.7.2 P D S  w ith  Ball-Shape Im aging Surfaces

Consider a spherical imaging surface as shown in fig. 4.24, where the center of the 

sphere and the radius R  are assumed to be [0,0,0]T and R  = 1 without loss of generality. 

Any point [Xp, Yp, Zp]T on the imaging surface satisfies

X 2 + Y 2 +  Z l  =  1. (4.137)

Prom equations (4.125) and (4.137), we have

X p = X / h s, Yp =  y /L s, -  Z /L s, (4.138)

where Ls =  VX 2 + Y 2 + Z 2 and the subscript s denotes the spherical imaging surface.

(0,0,1)

Fig. 4.24: A spherical imaging surface centered at origin with radius 1.

4 .7.2.1 R ange Identification w ith  K nown M otion  Param eters

By letting y(t) =  [yi, 2/2 , y3, y i} T  to be

2/1 =  X / h s, y2 = Y / Ls, y3 =  Z /L s, y4 =  1/LS, (4.139)
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where (3/1, 2/212/3) are observable from the imaging surface and 3/4 contains the range infor­

mation to estimate, [X, Y, Z]T can be calculated as

X  =  2/1/ 2/4 , Y  = 122/ 2/4 , Z  = 2/3/y 4. (4.140)

The derivative of y(t) is:

(4.141)

(4.142)

f  Pk = E i= l akiVi ~  Vk / s ( ' )  +  [h -  Vk9s{-)} 2 /4 ,

\  2/4 =  —2/4[/s(-) +2/4&(•)],

for fc =  1,2,3, where

/ s ( ’) — S i = l  a iil/? +  I  +  aj i ) y iV j ;

ffs(') =  X)i=l biVi-

Equation (4.141) is again in the form of (4.69) and the IBO can be applied for the state 

estimation.

Rem ark 4.7.2 For the range identification problem using a spherical imaging surface, 

the output y{t) in the choice of (4-139) facilitates the application of the IBO observer for 

the state estimation of the resulting PDS. Unlike the case of a planar imaging surface, 

where the required term Z /L p\ to calculate (y i ,y2) can be derived via Z /L p\ =  (1 — n\y\  — 

n 2y2 )/ri3 , which is a linear function o fy i  and 3/2 - When using a spherical imaging surface 

as in (4-137), Z /L s can not be written as a linear function of the measurable states. The 

introduction of ys = Z /L s into y(t) makes the resulting PDS remain in the form of (4-69).

4.7.2.2 M otion  E stim ation via Optical Flow

Derivation of the optical flow on the spherical imaging surface follows the idea de­

scribed in section 4.7.1.2. Assuming a planar texture structure in (4.132), we have

Z/Fs = p X / L s +  q Y /Ls + r /L s => 1/LS =  (3/3 -  py1 -  qy2)/r. (4.143)

By substituting 1/4 =  (2/3 ~~ PVi — <1 9 2 )/ r  into equation (4.141), y^ in (4.141) for k = 1,2,3 

becomes
3 3

Vk = Y l  akiVi -  2Ik /„(■) +  [Ck -  Vk 02/i](2/3 -  pyi -  q y 2 ) , (4.144)
i~ 1 i=1
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where c*, =  b^/r  as defined in (4.134).

For the rigid motion, an = 0 and (aij + aji)\i^j = 0 for i , j  — 1,2,3. Thus, / s(-) =  0. 

yk for k =  1,2,3 reduces to equation (4.145),

in' '  322 223 0 223 -  2/i 1/3 -2212/2223 -a/i yi - 2/1 + 2/1 2/12/2 2/12/2223
2/2 = —2/1 0 223 -yi2222/3 223 -  2/22/3 2/22/3 2/1322 -22i + 2/12/i ■ • ■ 2/12/22/3

_ 223 _ 0 -221 -322 -2/iyl -y22/3 2/3 -  22! 2/1223 2/12/22/3 -2/2 + 2/22/3 _
w ( y )

[  W l W2 W 3 Cl C 2  c 3 p c i  PC2 PC3 qC\ qC2 qC3 ]

where the elements of d s satisfy the following four constraints:

j  j  ^ 5  j  j  ^ 6  ,  ,  r f e  ,  j  ^ 6
(xg 07 , CZ9 d'Y ; (xji <xlO t 5 ^12 1̂0 * •

CL 4 U4 C14 CL 4

(4 .145)

(4.146)

Similar to the identification of dpi in (4.133), d s can be estimated either by SVD-based

method or the IBO. After d s is identified, we have eight motion parameters (wi,w2,W3 ,

ci,c2,c3,p,q)  appearing in twelve equations satisfying four constraints, and the motion 

parameters can be calculated out.

4.7.2.3 P D S  w ith  E llipso id  Im ag ing  Surface

A spherical imaging surface can be further extended to an ellipsoid, such as charac­

terized by:
y 2  x s 2  nr2

+  ^  =  i. (4.147)
r l r2 r3

The projection on the ellipsoid satisfies

Xp =  X /L e, Xp =  Y /L e, Zp =  Z /L e, (4.148)

z\ j  ■y-2 t/'2 >72
where Le =  A ^  and the subscript e denotes the ellipsoid. Similar to the caseV rl r2 r3
of a spherical imaging surface, y(t) = [yi, y2, 2/3 , 2/4]T can be chosen as

Vi =  X /L e, y2 =  T /L e, y% =  Z j Le, y4 =  1/Le.

After similar mathematical manipulations as those in (4.141), we can have 

f Vk = E ;= l akiVi -  Vk /e(-) +  [bk -  Vk 9e(-)}y4,

[94 = —S/4[/e(’) +  2/4 5e(-)],

(4.149)

(4.150)
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where k =  1,2,3 and

/e(-) -  E L i  Tty? +  + y ) y w i  +  ( ^  +  ^ ) y i y 3 +  ( ^  +  ^ 22/3 ,
i  1 2  1 3  2 3

5e(-) =  E i= i T̂ y*-
i

For the 3-D motion estimation, the optical flow dynamics on the imaging surface takes 

the form

(4.151)

Vk = ~ ykfe(') +
i= 1

E c i
Vi

i= l
(y-i -  pyi -  qy2) . (4.152)

for k — 1,2,3. For rigid motion, the essential parameters of the optical flow remains the 

same as d s in (4.145). The corresponding w(y) matrix will be slightly more complex than 

that in (4.145).

4.7.3 P D S  w ith  P a rab o lo id  Im ag ing  Surface

In this section, we consider a paraboloid imaging surface characterized by:

7  — v 2 _j _  v 2Z j p  — YVj, - f -  I p  , (4.153)

which is illustrated in fig. 4.25. Using the above function, a 3-D point is projected onto

[X,Y,Z]

Fig. 4.25: A paraboloid imaging surface centered at [0,0,0]5

the imaging surface as

=  X Z / L P&, Yp = Y Z j Lpa, Zp =  Z 2/U (4.154)

where Lpa =  X 2 +  Y 2 and the subscript pa denotes the paraboloid
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For the range identification, the output y(t) can be chosen to be y(t) — [2/1,2/2,2/3 - Vi]T = 

[Xp, Yp, Z p, l /L pa]T, where (2/1-2/2-2/3) are observable and 2/4 contains the range informa­

tion to estimate. The procedure to derive y(t) is the same as those performed in sec­

tions 4.7.1 and 4.7.3. However, in the derivations of 1/1 ,2/2 , 2/3 , w e  need the quantities 

X/Lpa, F/Lpa, Z/Lpa, which can not be written as linear functions of 2/1,2/2, 2/3, as can be 

seen in the following:

X / L p a  =  j / i V W s / 3 ,  y / L p a  =  2/2V W 2/3 , Z / L p a  =  y / y m -  (4.155) 

Denote y5 = X /L pa, y6 =  Y / Lpa, yi  =  Z /L pa, we have

2/1 =  Y L l  ° 1  iVi +  “ 3 1 1 ;  +  “ 3 2 ^  +  a 332/l “  2 j / l  / p a ( ’ )  +  (&3 ~  2 & l2 / l) / /5  -  2fo22/l2/6 +  &12/7,

O 2
2/2 =  E i = l  a 2 i2 /i +  a 31 +  ° 3 2 ^  +  0332/2 -  2 j /2 / p a ( ' )  ~  2&1J/22/5 +  (&3 “  2&22/2)t/S +  h l f t ,

2/3 =  2  [ E L l  “ 3 i2 /i “  2/3 / p a ( - )  ^  &12/32/5 “  &22/32/6 +  &32/v] ,

2/4 =  - 2 2 /4  [ / p a ( ' )  +  0232/2 +  &12/5 +  ^ J / s ]  ,

with

(4.156)

/p a ( ' )  — O i l —  +  (0 2 1  +  0 x2 ) ^  ^  +  0 2 2 “  +  0132/1- ( 4 .1 5 7 )
2/3 2/3 2/3

In the above derivations, the following entries have been used:

^  _  2/12/2 X 2 _  y2 T 2 _  y\ (4.158)
h p a  2/3 h p a  1/3 L p a  2/3 

It can be observed that equation (4.156) is no longer in the form of (4.69). Thus, 

the IBO observer that can be applied for the range identification using the 3-D planar 

and ball-shape imaging surfaces as discussed in sections 4.7.1 and 4.7.2 can not be applied 

directly in the case of a paraboloid imaging surface.

For the 3-D motion estimation and assuming that a feature point is on the plane 

Z  = p X  +  qY  +  r, we have

z 2/ Lpa =  (p X Z  + q Y Z  + r Z ) / Lpa => Z / Lpa =  ^(y3 - p y i  - q w ) .  (4.159)

In a similar manner as in (4.159), we have

X  _  y i(y s - p y i  -  qyi) Y  _  y2(y3 - p y i  -  qy%)
hpa 2'2/3 hpa ry3

(4.160)
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Substituting equations (4.159) and (4.160) into y i , t / 2 , and y$ in (4.156), we can arrive at a 

similar equation as (4.145) using a 12 x 1 essential parameter satisfying the four constraints 

in (4.146). The final equation is omitted from here due to its straightforward derivation.

4.7.4 S im u la tion  R esu lts

In this section, simulations results are presented for the range identification problem 

when the imaging surfaces are a traditional camera-type plane (at Zp = 1), a general plane, 

a sphere, and an ellipsoid. Among several existing nonlinear observers applicable to the 

range identification problem, the IBO proposed in [23] that is suitable for a general nonlin­

ear system in the form of (4.69) is used in our simulations due to its easy implementation 

and extension. The state observer proposed in [24] has a similar performance compared to 

the IBO observer.

The specific affine motion used in our simulation is the affine motion in (4.84) with 

initial values [X(0), T(0), Z(0)] =  [0.4,0.6,1]. Choosing the observer parameters to be 

M  = 10, G =  10,7  =  1, the range identification errors for ys in (4.72) and (4.130), 

and z/4 in (4.141) and (4.150), when using a camera type imaging surface Zp =  1, a 

general plane with n  =  [1,1,1]T, a spherical surface with radius 1, and an ellipsoid with 

r \  =  1, r f  =  2, rf  =  3, are shown in fig. 4.26. In the simulations shown in fig. 4.26, 

we apply a relative uniform noise of level 10“ 3 to the system output according to y(t) = 

y*(t) + \y*(t)\ • noiseJevel-randn(length(y(t))), where y*(t) denotes the ideal system output 

and y(t) simulates the observed one.11 Prom fig. 4.26 it can be seen that when using 

different imaging surfaces, the applied IBO observer still shows consistent convergence for 

the state estimation.

4.7.5 C onclud ing  R em ark s

In this section, the imaging surface of a vision surface is generalized to several 3-D sur­

faces, i.e., a plane, a sphere, an ellipsoid, and a paraboloid. The difference in the imaging

1:1length(-) and randn(-) axe M atlab functions giving the length of a vector and random  entries of 
norm al d istribution w ith mean zero, variance one and standard  deviation one.
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—  Camera
— - Plane
—  Ball 
  Ellipsoid

J  I  I I I I !_0 1 2 3 4 5 6 7

(a) Noise Level =  10
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—  Plane

Ellipsoid

0  1 2 3 4 5 6 7

(b) Noise Level =  10

Fig. 4.26: Range identification under general imaging surfaces.

surface affects how the output is chosen, affects the design or utilization of range identifi­

cation observers, and affect the optical flow dynamics on the imaging surfaces. Since we 

assume that the omnidirectional systems still possess a single center of projection such that 

the images observed preserve linear perspective geometry, the underlying nature of per­

spective projection is not changed. Further, the basic idea to perform range identification 

and 3-D motion estimation remains the same.

However, different imaging surfaces result in slightly different system structure of the 

PDS. When the resulting PDS system no longer preserves an affine form, range identifica­

tion can not be carried out directly via most of the existing nonlinear observers.

4.8 E stim ation  w ith  Unique Solution

In the setup of a stationary camera observing a moving object, it can be concluded 

that even for the rigid motion, depth ambiguity is always there. Of course, if either the 

physical size of the moving object or the depth information at one time instant is given, 

depth can be recovered uniquely. Further, to identify the motion and/or shape parameters 

to a unique orbit, ideas of using a pair of cameras that operate in parallel and possibly 

asynchronously, and integrating vision with range sensor, have been proposed in [22, 107| 

and [108. 109, 110, 111], respectively.
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Using two cameras, the basic strategy is to compute the ambiguity surfaces for each 

camera, intersect, the two surfaces and show that generally the intersection is always a 

point. In [22j, the relative transformation between the two cameras is assumed to be 

known.

Integration of vision with range sensors, such as a laser, has been discussed for two 

cases in [108] that depends on the time the laser is applied: 1) the laser is applied after 

the camera’s task and is only applied at one time instant and 2) the laser is applied for a 

time period after the camera’s task. When the range data is integrated with vision, range 

information provides an additional observation function. A summary table presented in 

[108, 1091 shows that, with a laser, the dimension of the unobservable space is reduced. 

If the laser is applied in a time interval, motion parameters can be identified uniquely. 

Theoretical formulation of 3-D motion estimation using vision and range information is 

discussed in [108, 109]. Actual implementation using EKF is presented in [110, 111], where 

some guidelines have been given about under what conditions the EKF is more likely to 

converge than the others. Among the three motions studied, which are moving sideways, 

moving away, and moving towards the plane, the better movements are usually moving 

sideways with a distance “big enough” [110].

Though the problem discussed in this section mainly focuses on 3-D motion estimation 

of a moving object using a single stationary camera, we will briefly discuss the cases when 

the camera is moving while the object is stationary, or both the camera and the object are 

moving. Motion estimation problem can be simplified when we assume that the motion 

of the camera is available, such as the camera’s linear and angular velocities assumed in 

[87, 97], at least referring to the camera’s own coordinate system.

For the cases when using an active vision system for the range identification with 

known motion parameters, the problem is only slightly different, as summarized in table 4,3, 

where the subscribe o refers to the object dynamics and c refers to the camera. When both 

the camera and the object are stationary, a feature point on the object is only observable 

up to a homogeneous line. It is thus labelled as “None” to indicate the ambiguity in depth.
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When the camera is moving while the object is stationary, since the positions of the camera 

are assumed known, depth of a feature point can be derived simply by a triangulation, as 

shown in fig. 4.27 but with known (R, t). The case for a stationary camera observing 

a moving object has been the focus of this chapter and its depth can be estimated via 

the nonlinear observers described in section 4.3.2. When both the camera and the object 

are moving, and assuming known motion parameters of the object (the initial state is 

unknown) and all information of the camera, information observed on the image sequence 

is a homogenization of the displacement of the state of the object and the state of the 

camera. Relative positions between the camera and the object can be derived.

Table 4.3: Range Identification with Known Motion Parameters Using Single Camera

O bject M oving
Xo — A 0Xq ~b b0

O bject N ot M oving

Cam era M oving
x c -  A cx c +  bc 
y = \x0 -  x c\
To estimate x 0z

Object position achievable 
via triangulation, as shown 
in ftg. 4.27

Cam era N ot M oving y =  [x0]
To estimate x0s

None

Parameter identification of a motion dynamics for the above four cases are also dis­

cussed in table 4.4. When the object is stationary, it is basically the corresponding range 

identification problems discussed in table 4.3. 3-D motion estimation with active vision 

system has shown to recover the norm of the motion parameters of a rigid motion [87, 961, 

which are not identifiable using a single stationary camera. For the general Riccati mo­

tion, estimating motion parameters uniquely with an active vision is the subject of further 

research.

In summary, methods towards the unique estimation of motion parameters in the 3-D 

motion estimation include:

1) Using multiple cameras:

a) Stereo vision type: Need correspondence between features between cameras to 

estimate the depth information.
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Table 4.4: 3-D Motion Estimation for Unknown Motion Parameters Using Single Camera

O bject M oving O bject N ot M oving

Cam era M oving
For rich motion, be able 
to recover the norm of 
rigid motion

Depth estimation, same as 
the corresponding case 
in table 4.3

Cam era N ot M oving
Can not recover the norm 
of the states using 
a single camera

None

Fig. 4.27: Object location determined via triangulation for a stationary point using moving 
camera.

b) Multiple cameras operating asynchronously: Estimate the parameter orbit in­

dividually and seek the intersection of the orbits.

2) Integration vision with range data: Laser is applied at one time instant or a period 

after the camera to provide additional observation function.

3) Active vision system: Assume motion of the camera is known, such as its linear and 

angular velocities.

4) Assuming constraints in the features observed: Use more features or features of 

certain types.

We end our discussion by considering several applications. For obstacle avoidance 

for mobile robot navigation where the robot is equipped with a vision system, both the
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obstacle and the camera can be moving. This fits into the category of “Camera Moving 

+ Object Moving.” For the case of “Camera Moving + Object Not Moving,” an example 

application is video surveillance of overhead power line and pipe lines, where the camera is 

used to detect the defects. In industrial manufacturing, the camera(s) can be fixed, while 

the targets to observe can be stationary or moving depending on the task.

4.9 Sum m ary

3-D motion estimation and range identification problems using camera-type vision 

systems are reviewed in this chapter. Nonlinear observers that are applicable to the 

range/depth /state  estimation of a PDS system have been compared. Based on a recently 

proposed linear approximation idea, a linear approximation-based perspective nonlinear 

observer was proposed in section 4.5, which can be applied to a slightly more general non­

linear systems than the existing perspective nonlinear observers. Besides using the full 

homogeneous outputs for state estimation, single homogeneous output has been shown to 

achieve similar, but slower, converging pattern in section 4.6. Finally, the motion esti­

mation and range identification problems on more general imaging surfaces were briefly 

introduced in section 4.7.
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Chapter 5 

Iterative Learning Control for PD S

In chapter 4, we discussed the 3-D motion and range identification problems of a PDS 

system. In this chapter, iterative learning control (ILC) of a PDS will be addressed, with 

some preliminary simulation results given in section 5.2. Finally, Section 5.3 describes an 

actual feasible experimental platform.

5.1 Introduction o f ILC

Iterative learning control, or ILC, is a technique for improving the transient response 

and tracking performance of processes, machines, equipment, or systems that execute the 

same trajectory, motion, or operation over and over. The approach is motivated by the 

observation that if the system controller is fixed and if the system’s operating conditions 

are the same each time it executes, then any errors in the output response will be repeated 

during each operation. These errors can be recorded during system operation and can then 

be used to compute modifications to the input signal that will be applied to the system 

during the next operation. That is, in ILC, refinements are made to the input signal after 

each trial until the desired performance level is reached. It is usually assumed implicitly 

that the initial conditions of the system are reset at the beginning of each trial to the 

same value. In describing the technique of ILC, the word iterative is used because of the 

recursive nature of the system, and the word learning is used because of the refinement of 

the input signal based on past performance in executing a task [26]. Most of the current 

ILC algorithms use the encoder readings of the plant as the feedback information. In the 

perspective ILC, vision measurement serves as the actual feedback. To date, there are few 

contribution in the ILC literature where vision feedback is used. Further, there have been 

no contribution tha t exploits the PDS theory in an ILC problem.
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5.2 ILC C ontrol o f PD S

Iterative learning control of both linear and nonlinear systems has been studied in the 

literature. When the global Lipschitz condition is assumed, either in the system dynamics 

or in the control mechanism, the conventional contraction mapping method can be applica­

ble. The contraction mapping method allows us to completely ignore the system dynamic 

part and most ILC schemes proposed so far are of simple linear type. To widen the learning 

control framework under which ILC can handle broader classes of system nonlinearities, 

such as local Lipschitz continuous ones, the use of Composite Energy Function (CEF) has 

been proposed in [112]. Motivated from the Lyapunov function, the CEF ILC updating 

law includes a term similar to the Lyapunov function and a term to capture the learning 

process in the iteration domain.

Consider an object that is moving along a 3-D trajectory iteratively in the 3-D space 

whose motion is observed via a camera-type vision system. This problem is basically an ILC 

control problem of a PDS system. The first question in concern is whether the observations 

on the image plane, a 2-D projection trajectory, suffices to refine the 3-D motion trajectory. 

Our preliminary study shows that the homogeneous output information from the image 

plane can help to improve the system performance, under the precondition that the initial 

position of the plant (the moving target) is identical with the desired position. The above 

precondition is referred to as the Identical Initial Condition (IIC) in the ILC literature, 

which has caused a lot criticism yet remains an important condition for most ILC schemes.

The next question is if this IIC condition can be relaxed and at what expenses. From 

chapter 4, when the motion parameters of a 3-D moving object are known, perspective 

nonlinear observers can be applied to estimate the system states from its homogeneous 

outputs. An intuitive idea is to estimate the system’s states, based on which the ILC 

scheme can be built. However, this requires one additional assumption: that the motion 

parameters of the PDS are exactly known. So far, we have not arrived at a conclusion 

on the observer-based ILC control of a PDS system, which will be included in the future 

investigations.
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5.2.1 Problem  Formulation  

D efin ition 5.2.1 General Perspective ILC Formulation: 

Given.

1) Object moving according to a known motion.

2) Desired observed trajectory (ud, Vd) on the image plane of a stationary camera.

3) Calibrated camera whose parameters, such as the camera’s intrinsic parameters, dis­

tortion coefficients, and focal length, are known.

Task: Track (ud(t), Vd( t ) ) ,  along with the 3-D desired trajectory, on the image plane and 

the desired path on the object plane in the presence of uncertainties, where uncertainties 

could arise from calibration of the camera, measurements on the image plane, and about 

controlling the plant.

A dditional Condition: With or without the identical initial condition (IIC).

5.2.2 Prelim inary Study

The problem formulation in Definition. 5.2.1 states the general problem regarding the 

ILC control of a PDS system. In the section, some preliminary simulation results are given 

in the ideal situation of no noise with or without the IIC condition. These simulation results 

show that, with the assumption of the identical initial condition, the homogeneous output 

information can be enough to make the moving object track a desired 3-D trajectory. 

Consider a 2-D PDS system described as follows:

1) Motion Dynamics:

' x(t) ’ an ai2 -x(ty
I ■&r

jw . L 021 0-22 . Y(t)_
2) Homogeneous Output:

y{t) =  [yi(t)} =  {X(t)/Y (t)\ ,  (5.2)

where the output is assumed to be available from a calibrated 1-D camera.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



146

The specific problem is to control the plant to track a desired 2-D trajectory using in­

formation y(t) =  X ( t ) /Y ( t ) ,  which is the information directly available from the image 

plane.

Before theoretically proving the feasibility, the following simulations are conducted 

that give an intuitive idea of the problem. Let the motion parameters [a*j .  b3} for i, j  = 1,2 

in (5.1) be

A-
<221 ®22_ . 0.1 —Cl.2_

(5.3)

(X d(0),Yd(0)) = (X(0),Y(0))  =  (0.15,0.2).

The desired 2-D trajectory is generated by a sinusoidal input Udit) =  sin(f). Suppose for 

the first iteration, u\(t) is taken as the step input u\(t) =  1. Apply the following ILC 

updating law

Uk+i(t) =  uk{t) +  ki e(t) +  fc2 e(t),

a n  ai2 ‘-0 .1 0.3 '

. <221 (222 _ 0.1 -0 .2  _

’ h '0 .15 '
B  = 5

M . 0.2 .

e(f) =  Vd(t) -  yk(t),
(5.4)

where k\ and fc2 are chosen to be

k i — k2 = -0 .4 . (5.5)

Notice that the learning rates in (5.5) are chosen by trial and error. Detailed procedures 

to get the proper learning rate need to be investigated and this will be included in the 

future investigations.

Figure 5.1 shows the results of the 41 iterations. The two plots in the first row of 

fig. 5.1 show the homogeneous output yi(t) and the 2-D desired trajectory with those of 

the first iteration using u\{t) — 1, where the desired curves are plotted in red and the 

actual in blue. The second row in fig. 5.1 show the corresponding plots after 41 iterations 

with the ILC updating law (5.4) using learning rates (5.5). It can be observed that the 

ILC updating law in (5.4) helps to make the system output, along with the 2-D states, to 

track their desired values.
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Perspective Output 2D Trajectory
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Fig. 5.1: Simulation results of the ILC control of a 2-D PDS system (under IIC).

Remember that the results shown in fig. 5.1 are under the condition of IIC. When 

the IIC condition is not satisfied, that is (JQ(0), Fd(0)) ^  (X (0).y (0)), will the tracking 

of the output j/i (t) guarantee the tracking of the 2-D states? An intuitive thinking of this 

question gives the answer “no,” which is supported by the simulation results shown in 

fig. 5.2 with (X (0),T (0)) =  (1.2,0.9).

From fig. 5.2, it can be observed that, using the ILC updating law (5.4), when the 

IIC condition cannot be satisfied, tracking in the perspective output cannot guarantee the 

tracking the 2-D states. That is, in this case, only the ratio Y ( t ) /X ( t )  tracks the desired 

one, instead of X (t)  and Y ( t ) track Xd(t) and Yd(t) individually, as can be seen from the 

“2D Trajectory” in fig. 5.2 after the ILC iterations. W ith or without the IIC condition, 

the ||efc||2 =  ||U d  —  V k h  both show a monotone convergence in fig. 5.-3.
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Perspective Output 2D Trajectory
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Fig. 5.2: Simulation results of the ILC control of a 2-D PDS system (without IIC).
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r/fcH2 with or without the IIC condition.
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5.2.3 P ro o f

Sections 5.2.1 and 5.2.2 give the simulation results of the ILC control of a 2-D PDS 

system. In this section, a proof of the convergence of the ILC control law (5.5) for a PDS 

system is presented.

From [113], we have the following Corollary:

C oro lla ry  5.2.1 Suppose that the plant is described by:

where Cs is a constant matrix, B s{t) depends on the state variable x that is bounded, and 

ait.x )  satisfies the condition

x(t) = aft, x ) +  B s(t)u(t) 

y{t) = Csx(t),
(5.6)

a ( t ,x i) -  a (t ,x2)|| < ||a=i -  a:2||. (5.7)

Define

ek(t) = Vd(t) -  Vk{t) (5.8)

and the following learning control scheme

vk(t) =  A c{t)vk{t) +  B c(t)ek(f), 

wk(t) =  Cc(t)vk(t) +  Dc{t)ek(t) 

uk+i(t) = uk(t) + wk(t),

(5.9)

is to be applied to this plant. Then, if

\\Im ~ CsB s(t)Dc(t)\\ < 1, WG[0,T] , (5.10)

holds, the error defined by (5.8) converges to zero in the sense of

ek+i(t)\\q < M M * ) (5.11)

where Irn denotes the m-dimensional identity matrix, 0 < &o < L and q > 0. The above

equation implies

I M * ) l l g  a s  k-+oo. (5.12)
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Before using the above corollary in the proof, we first calculate the derivative of

which is in the form of (5.6). Thus, in order to prove that the ILC updating law (5.4) 

makes the system (5.1) converge in the sense of (5.11), we only need to show that the ILC 

updating law in (5.4) is equivalent to, or a special case of, that in (5.9) with the efc(f) 

defined in (5.8).

Compare (5.9) with (5.4). By letting

a stationary camera (illustrated in fig. 5.4). To test the idea that, under the IIC condition, 

tracking in the system’s states can be guaranteed by the tracking in its homogeneous 

observations on the image plane of the camera, we can put a desired trajectory on the 

wall. The goal is to control the gimbal such tha t the hooked laser pointer tracks the 

attached path on the wall.

The ILC control via vision-feedback information has been partially validated in [114]. 

In [1141, the stationary camera is required to be placed parallel to the 2-D projection plane, 

which is the wall in our experimental setup. In this section, we are discussing the situation 

that the camera can be placed not so restrictively.

y{t) = (yi( t) ,y2(t)) from (5.1) and (5.2):

yi = ai2 +  (an  -  a 22)yi -  a 2iy? +  (h  -  b2yi)y2u{t), 

m  =  - ( a 22 +  a 2iyi)y2 -  b2y2 u(t),
(5.13)

Substituting the symbol y with x  in the above equation, we have:

x\  =  a n  +  (ail -  022)2:1 -  a2xx \  +  (bi -  b2x i ) x 2 u(t) 

x 2 = — (a22 +  a21yi)x2 -  b2x j  u(t),
(5.14)

y(t) =  [ 1 0]

A c(t) — 0, Bc(t)Cc(t) =  fci, Dc{t) = k2. (5.15)

the applied ILC updating law in (5.4) is a special form of (5.9). Thus, we can be sure that

(5.4) will work.

5.3 E xperim ental Setup

A feasible experimental setup available is a 2-D gimbal system, as shown in fig. 1.3. 

We put a laser pointer on the gimbal system, whose projection on the wall is observed by
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Gimbal
2DOF

Camera Frame

Fig. 5.4: Experimental setup for perspective ILC using gimbal system.

5.4 Sum m ary

This chapter discusses the iterative learning control (ILC) of a perspective dynamic 

system (PDS). Our preliminary study shows that, under the identical initial condition 

(IIC), tracking in the homogeneous outputs assures tracking in the system’s states. How­

ever, when the IIC condition is violated, the above statement is no longer true. PDS-based 

state estimation might be helpful for the task of tracking in the system’s states. This 

remains our future research problem.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



152

Chapter 6 

Conclusions

6.1 C ontributions

The specific contributions are listed in the order of appearance:1

1) Wireless iterative visual servoing using an uncalibrated camera.

2) Camera lens distortion modehng and correction:

— A class of rational functions for radial distortion modeling.

— Piecewise smooth idea applied to radial distortion modeling.

— Evaluation and validation of distortion calibration using the geometric AIC 

and/or geometric MDL criteria, the idea that straight lines have to be straight, 

and the calibrated distortion curves.

— Simplified distortion modeling.

— Blind removal of lens geometric distortion using higher order spectral analysis.

3 )  Perspective theory and perspective nonlinear observers for the range identification 

problem:

— Literature review of existing 3-D motion estimation algorithms.

— Comparative study of existing perspective nonlinear observers for the range 

identification problem.

— Linear approximation-based nonlinear observers applicable to the range identi­

fication problem.

1In addition to  these vision-based contributions, Appendix A  also contributes a specific idea for 
laser/sonar fusion for H IM M  and describes our im plem entation of tem plate-based object recognition.
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— Range identification with single homogeneous observation.

— Extension of camera-type imaging surface to general planar and spherical imag­

ing surfaces.

4) Perspective ILC:

— Vision system serves as actual feedback to iterative learning control problem.

— Tracking in the homogeneous output can guarantee the tracking in the system’s 

states under the assumption of identical initial condition.

— The calibrated camera can be placed flexibly.

6.2 Future D irections

Some of the future directions of the research topics concerned in this dissertation 

have been described in the corresponding chapters. In this section, we emphasis on the 

Perspective Dynamic Systems (PDS) and Iterative Learning Control of the PDS system, 

which have not been solved completely in this dissertation, and also not in the literature.

6.2.1 Perspective D ynam ic System s

The 3-D motion estimation and range identification problems described in chapter 4 

is mainly focused on the PDS framework. However, only the range identification problem 

is extensively studied. 3-D motion estimation has not been performed. Besides, all the 

results presented are simulations. The application of the described algorithms to on-line 

real image sequences needs to be carried out. Moreover, as already mentioned in section 4.5, 

detailed concerns about the LAO observer include:

1) Design of less restrictive LTV observers.

2) Application of the proposed LAO observer to single homogeneous PDS system.
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6.2.2 P erspective ILC

Section 5.2 provides a preliminary study of the ILC control of a PDS system. The 

following issues are very important and need to be considered. However, these will only 

be included in our future investigations:

1) Regarding the IIC condition: Will the perspective observer discussed in chapter 4 

help for the ILC control of the PDS when the condition of IIC is not satisfied?

2) Regarding the learning rates: The learning rates specified in (5.5) for the PDS system 

(5.3) are simply obtained by trial and error. Theoretical procedures need to be 

provided.

3) Regarding the ILC updating law: Theoretically, for a system of relative degree one, 

an ILC updating law in the form of

Uk+i(t) =  uk(t) +  k(yd(t) -  yk{t))

is enough. However, during our simulation, we found that an additional term of 

(yd(t) — Vk(t)) helps to improve the tracking performance. Some analysis needs to be 

carried out on this issue.

4) Regarding uncertainty: The ILC scheme is well-known to be useful at the existence 

of measurement noise and model uncertainties. The preliminary simulation results in 

section 5.2.2 is conducted under the ideal case of no noise, which is far from an actual 

application situation. The ILC control of a PDS system needs to be considered in 

the existence of measurement noise.

5) Regarding camera calibration: On the so far discussed vision-based control tasks, we 

all assume that the camera has been calibrated perfectly beforehand. However, when 

the camera is not properly calibrated, what is its influence on the resulting control 

performance?
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6) Regarding experimental verification: The preliminary study presented in chapter 5 is 

only based on simulations. Experimental verification using the gimbal system shown 

in fig. 1.3 needs to be carried out.
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A ppendix A  

N on-V ision-Based Sensing and Perception

A .l  Tem plate M atching

As part of the CSOIS effort on ODIS, a template matching approach was used for 

obstacle recognition from laser data. In this section, a portion of this research is described. 

This material is adapted and in some cases excerpted from [115, 116]. The original ideas 

are credited to the first author of [115, 116]. However, the implementation of these ideas 

was a contribution of this dissertation.

A .1.1 R obot P latform  Introduction

The Utah State University Omnidirectional Inspection System is a small, man-portable 

mobile robotic system that can be used for autonomous or semi-autonomous inspection 

under vehicles in a parking area [35, 115, 1171. Customers for such a system include mil­

itary police and other law enforcement and security entities [118]. The robot features 1) 

three “smart wheels” 1119, 120] in which both the speed and direction of the wheel can be 

independently controlled through dedicated processors; 2) a vehicle electronic capability 

that includes multiple processors; and 3) a sensor array with a laser, sonar and IR sen­

sors, and a video camera. A unique feature in ODIS is the notion of the “smart wheel”

[119] developed by CSOIS, which has resulted in the so-called T-series of Omni-Directional 

Vehicles (ODV) [120]. W ith the ODV technique, the robots can achieve complete control 

of the vehicle’s orientation and motion in a plane, thus making the robots almost holonomic 

- hence “omnidirectional.”

ODIS employs a novel parameterized command language for intelligent behavior gen­

eration [35]. A key feature of the ODIS control system is the use of an object recognition 

system that fits models to sensor data. These models are then used as input parameters to 

the motion and behavior control commands [115]. Figure 1.2 shows the mechanical layout
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of the ODIS robot. The robot is 9.8 cm tall and weighs approximately 20 kgs. The me­

chanical subsystem of the ODIS vehicle is based on three omnidirectional wheel assemblies 

mounted within a stressed-skin chassis, which also contains the vetronics subsystem, the 

battery and power distribution subsystem, sensors, and a camera gimbal subsystem. The 

ODIS vetronics architecture includes seven different processing nodes: the Master Node, 

three Sensor Nodes, the Camera Node, and three Wheel Nodes. A user interface is main­

tained through two independent wireless communications links, one connecting the master 

node to an external joystick and a second that connects the master node to the Planner 

Node, Planner GUI, and Vehicle GUI, all of which reside off-vehicle. There are two types 

of sensing functions on ODIS. For navigation ODIS uses a combination of GPS, a fiber op­

tic gyro (FOG), and odometry based on wheel encoder measurements. For environmental 

sensing, ODIS uses three types of sensors. Ten ultrasonic sensors are used together with 

thirty-two infrared (IR) sensors and one laser distance measurement sensor. The system 

also has a camera node to control the camera pan /tilt mechanism that is used to point the 

camera relative to the vehicle. However, the camera is currently designed for the under car 

inspection video transmission to a base station computer not intended for decision-making 

or control. For more detailed description, see [3-5, 115, 117].

Figure A .l shows the behavior control architecture that has been developed. Starting 

from the “inside out,” the control architecture contains two inner motion-control loops. 

The inner most loop is the wheel-level control, which acts to drive each smart wheel to 

its desired steering and drive speed set-points. The wheel-level controller uses simple 

PID control algorithms. Around the inner loop is the path-tracking controller. This 

loop derives the set points need by the wheel-level control in order to force the vehicle 

to follow a desired path in space, where a path is defined as an arc in inertial space 

(with a prescribed velocity along the arc) and an associated vehicle yaw motion. The 

path-tracking controller uses a newly-developed spatial tracking control algorithm that is 

described in more detail in [121]. Finally, the behavior controller, using object locations 

determined by the object manager, determines x, y, and yaw path command set points
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to be given to the path-tracking controller. The behavior controller implements what is 

called a delayed commitment strategy, whereby scripts are instantiated with sensor data at 

run-time. A more detailed discussion of the delayed commitment approach can be found 

in [35], including discussion of the specifics of the parameterized command language and 

the signal flow through the system.

EimMwat witat
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W heel-L evel C o n tro lle r

/ I  Hs
V ehile

Drim

M otion  
S ensor s

O b jec t
M a n a g e r Environm ental

Sensors

Path-Tracking
Controller

Behavior
Controller

Fig. A.l: The behavior control system architecture of ODIS.

A .1.2 O bject M anager

In the remainder of this section, we focus on the most critical component in the 

architecture: the object manager. The object manager block shown in fig. A .l is the 

primary computational engine of the delayed commitment strategy [115, 116].

A .1.2.1 Problem  D efin ition

The problem that the object manager solves is described as follows:

Given:

1) Sensor commands that instruct ODIS to scan known or unknown objects.

2) Sensor data that has been processed through the navigation system and transformed 

into global coordinates.
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3) Parameterized object models that constrain the shape and relationship among objects 

and sub-objects.

Find: An instantiation of an object model (and individual object with associated 

sub-objects).

Such that: The error between the sensor data and the model is minimized.

A .l .2.2 B asic Approach

The approach that is used in the object manager is parameterized model fitting with 

constraint propagation. Thus, our overall strategy can also be described as one of model- 

based sensing. In our approach, knowledge of the anticipated objects is incorporated into 

the object creation process in two principal ways.

First, the command scripts include sensor commands that directs the sensors to scan 

for objects that are anticipated due to the structure of the task. For example, when 

approaching a known parking stall (from the original map), an acquired command will be 

included in the script that directs ODIS to look in the stall. This command will include 

a unique symbol, such as CAR01, which, if a car is detected, will be bound to the newly 

created object. This variable binding enables the newly detected object to the referenced 

later in the script for specifying paths relative to the object or for acquiring corresponding 

sub-objects, such as wheels.

Second, the object recognition process includes default models of the anticipated ob­

jects such as cars, tires and curbs. In this way, the anticipated shape, orientation and 

relative position of these objects can be used to constrain the search for an actual object 

when processing the actual sensor data. For example, by using a model of a car, once two 

sides have been detected using sonar data, the position of all four tires can be postulated 

and then actively searched for using the onboard laser.

A .1.2.3 O bject M anager Overview

Figure A.2 gives an overview of the object manager. There are three sub-systems that 

directly connect with the object manager. The off-board planner sends known objects
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to the object manager when the user loads a map into the GUI. This enables the object 

manager to account for sensor data originating from already known objects (such as curbs 

or posts in the parking lot). Once new objects have been acquired by the object manager, 

they are sent to the planner for use in formulating new plans and for display on the user’s 

GUI.

Planner
Known Objects

New objects

Real Sensor Data Sensor
Processor

Object Manager

o - 2
I  tO 
g l

Default Model 
Based Polygons

Create and Update Objects

Behavior
Controller

Fig. A.2: Object manager architecture.

The sensor processor is responsible for executing sensor commands (described earlier), 

collecting raw sensor data from the IR, sonar and laser, and filtering and transforming the 

relative data into globally referenced data suitable for processing by the object manager. 

The final interface is with the behavior controller, where queries about objects in the 

environment are serviced. It is this interface that enables commands such as “translate(3, 

line.bisect Jace (CAR01))” to be converted into exact paths, by resolving (at run time) 

the “line_bisectTace (CAR01)” into a line in space, that can in turn  be passed to the path 

controller.
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A .1.2 .4  O bject M anager A lgorithm s

Currently all models are parameterized polygons, where the parameters determine the 

shape, scale, rotation and translation of the polygon. Associated with the parameters is 

a set of constraints that consist of linear equations and equalities among the values and 

bounds on the values. In this way, relationships among parameters of the object and among 

the object and its corresponding sub-objects can be described and utilized during fitting. 

An example of a linear constraint equality would be that the back tires of a car are parallel 

to the side face of a car. An example of a bound would be tha t the tires cannot exceed 

the car polygon and that the front tires can be rotated relative to the back tires by only a 

small angle. This paragraph is adapted and in some cases excerpted from 1115. 116].

The process of fitting a polygon model is illustrated in figs. A.3 and A.4 using real 

laser data and simulated data, respectively. Notice how only points that are not accounted 

for by other objects are included in the set. First, a convex hull is computed around 

the points and possible corner points identified. Second, all possible lines are fit using 

the points that lie between each of the possible corners. Third, a dynamic programming 

approach is used to  find the minimum error sequence of lines around the shape through a 

process of consolidation of lines (and elimination of corners). It is here that known angle 

constraints between faces of the polygon are applied to identify the best fitting corners of 

the polygon. This paragraph is adapted and in some cases excerpted from 1115, 116j.

" V  "i,

Fig. A.3: Rectangle model fitting algorithm using real laser data.

Once the polygon has been fit to the data, the paramet ers of this polygon are extracted 

(such as width, length and rotation) and propagated through the constraints to fix or
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Fig. A.4: Rectangle model fitting algorithm using simulated points.

further constrain other parameters. It is in this way that the system can predict the 

location of a car’s tires from its body, determine the orientation of the car, or determine 

the front from the back of a car. This paragraph is adapted and in some cases excerpted 

from [115, 116].

Finally, the fit model is used to create a new object (and associated sub-objects) that 

are placed in the object manager’s database and associated with the named variable from 

the sensor commands (such as CAR01). In this way, future path commands can refer to 

the properties of CAR01 to determine paths. This paragraph is adapted and in some cases 

excerpted from [115, 116].

Besides the dynamic model-based fitting algorithm described in this section, we have, 

as our fitting tools, other circle or ellipse fitting algorithms, such as algebraic circle fit, 

circle fit with known radius, ellipse fit, plane fit, and 3-D corner fit algorithms that are 

documented in [122, 123].

A .1.2.5 D iscussion  and Conclusions

This section has described a small, man-portable mobile robotic system that can be 

used for autonomous or semi-autonomous inspection under vehicles in a parking area. The 

mechanical and vehicle electronic capabilities of the robot have been described, as has 

the functional approach to behavior generation. A detailed discussion of ODIS’s object 

recognition system was given. This system fits models to sensor data. These models are 

then used as input parameters to the motion and behavior control commands.
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A .2 R ange Sensors for O bstacle Avoidance

Range sensors, such as sonar, IR, and laser, have been widely used for obstacle avoid­

ance. In the multi-robot security system described in [124], the T2E robot (in fig. 1.4) 

is to be deployed to work together with one or more ODIS robots to provide a variety 

of security functions for parking areas, both autonomously and semi-autonomously. The 

ODIS is designed to perform under-vehicle inspection of cars, while the T2E serves as 

a “marsupial mothership” for general surveillance and protection of ODIS. As soon as a 

mission1 starts its execution, various reactive agents in the system, namely, the safety and 

obstacle avoiding agent and the localizing agent, start acting. This section focuses on the 

safety and obstacle avoiding agent (for simplicity, we call it the safety agent hereafter), 

whose main function is to help the system analyze and estimate the dynamics of objects in 

the environment in a “better” way, so as to prevent the robot from running into dangers or 

being a danger itself to others. To accomplish this task satisfactorily, the robot T2E needs 

to be able to deal with a dynamic environment and must have capabilities such as motion 

detection and obstacle avoidance. For a simple start, we assume that no one, including 

people, objects, and cars, will hurt the robot by intention, which means no one will try to 

hurt or chase the robot deliberately and endlessly. This assumption does not imply that 

the environment is always safe. The environment is still dynamic and there are still risks 

that the robot needs to watch out for, e.g., an un-cautious driver or a child. However, 

the risks are reduced to a reasonable level that the robot can handle. More precisely, 

this assumption allows us to begin with a simple and reliable algorithm for a moderately 

dynamic environment rather than shooting for a highly complex algorithm directly. Thus, 

the initial task becomes to develop necessary algorithms based on the available sensors so 

that the robot will not run into objects and cause damage to both itself and the objects. 

The basic idea is to fuse all the sensor data from the sonars and the 2-D laser into a local 

map that always accompanies the robot, and make decisions based on this map. In this 

way, the task is decomposed into two subtasks: Map Building and Decision Making.

A  mission is a set of high-level tasks issued by the user, to  be executed by the system.
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The inputs and output of the safety agent are shown in fig. A. 5, where the inputs can 

include a world map (to match with sensor data for unknown objects) and the current 

executing path/mission (for decision making). Other inputs to the safety agent are: 1) 

sensor data: data from 26 sonars and the 2-D laser in Body-Fixed Coordinate System 

(BFCS); 2) feedback information: the robot’s position and orientation (yaw) in the Inertial 

Coordinate System (ICS); and 3) the robot’s velocity vector in the BFCS. In the stage of 

map building, the robot uses its position, orientation, and the on-board sensor data to 

build a continuously updated map. Using this map, the safety agent will invoke a reactive 

behavior, if it judges a need, based on the robot’s velocity vector. The output of the safety 

agent is a throttle value corresponding to different decisions. This throttle is sent to the 

Supervisory Task Controller (STC) of the robot, described in [124], which is responsible for 

the successful realizations of a mission, to decide the robot’s actual velocity by multiplying 

the throttle with the desired velocity.

Sonar Data

Map Decision
M ak in g

M a p
Building

Laser Data ♦  Throttle

Position +YaW'

Velocity Vector

World Map
Path/Mission

Fig. A.5: Flow chart of the safety agent.

There are two commonly used map building techniques: the Histogramic In-Motion 

Mapping (HIMM) and the Bayesian method. Both of these are grid-based. The Bayesian 

method updates all the grids inside a sector for each sonar reading in a probabilistic 

way and the HIMM only updates grids on the sonar axis. According to the performance 

comparison of these two methods [125], the Bayesian method is more accurate and the 

HIMM has significant computational advantages. Though the HIMM algorithm itself is 

well-suited to model inaccurate and noisy range-sensor data by nature, existing works
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only focus on sonar data without further investigation of the issues that might arise when 

trying to fuse sonar data with other kinds of sensor data. In [125], it is even said that the 

HIMM is limited to sonars. This section discusses some issues that are encountered in our 

application to build a HIMM map for collision avoidance with both the sonar and the laser 

data. The fundamental causes of these issues along with their possible solutions are also 

discussed.

A. 2.1 H IM M  M ap B uilding

The map-building algorithm presented here is a modified HIMM that not only deals 

with sonar data, but also 2-D laser data, which is much more accurate and reliable. One 

question thus arises as to how to fuse these two kinds of sensor data together. They can 

either be built into one map or two independent maps. We choose to build these two 

kinds of sensor data into one map, based on the intuition that one map is computationally 

inexpensive. The map built by HIMM is not a global map. Using the same notation as 

in the HIMM papers [126, 127, 128. 129, 130, 131], it is called an active window and is 

always associated with the robot as the robot moves around.

The 26 sonars on T2E are the SRF04 sonars that offer ranging information from 

approximately 3 cm to 3 m with the beam pattern shown in fig. A.6 [1321. In order to fully 

protect the robot, 3 sonars are placed in the front, 3 on the back, 6 on either side, and 2 

on the 4 corners. In this way, 100% sensing coverage of 1.8m and 80% coverage of 2.1m 

around the robot are achieved by only sonars, as shown in fig. A.7. The typical scanning 

time of sonars is approximately 100 ms for obtaining a full panorama.

Next, laser scanners have become more and more important for mobile robots in 

mapping [133, 134], navigation [135], and detection/tracking of moving objects [136, 137]. 

The 2-D scanning laser tha t has been selected is the SICK IM S 221-30206 outdoor scanning 

system, whose typical sensing range is 30 m with 10% reflectivity [138]. The laser has a 

maximum scanning angle of 180° and a response time of as low as 13 ms based on angle 

resolution of the scan. This laser has also been used successfully on previous. The sensing 

coverage of this 2-D laser is shown in fig. A.8, where a sensing range of 5 m is used only
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Fig. A.6: Beam pattern of the SRF04 sonars on T2E (in inch).
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Fig. A.7: 100% and 80% sensing coverage around T2E (in meter).

for illustration. Because of the shape of T2E and the positions and sensing ranges of the 

equipped sensors, the size of the active window is chosen to be 10 x 15 m2 and each grid 

is 0.1 x 0.1 m2.

Fig. A.8: Typical laser coverage (radius is 5 m in this illustration).

Using HIMM [126. 127], each grid has a Certainty Value {CV) that can be incremented 

or decremented by sensor data. The C V  is used to indicate how likely the grids are to be 

occupied by objects. The C V s are increased or decreased by sensor data until predefined
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maximum or minimum values are reached. Using the same thresholds in the HIMM papers, 

CVmax is chosen to be 15. Similarly, CVmin is 0. The sonar data updating rule we use 

follows the ideas in [126, 127. 128. 129, 130, 131]. The laser data updating rule we use is 

our original contribution and is due to laser’s accuracy. One important idea of the map 

building algorithm implemented in T2E is that we only rely on the sensor data to update 

the map. More specifically, we only rely on the sensor data to increase the C V s of the 

grids occupied by an obstacle and decrease the C V s when, the obstacle is moving away.

H IM M  M ap Building w ith  Sonars

In a typical HIMM updating rule, only one grid is incremented by a positive value 

(S+) for each sonar range reading until a predefined maximum value is reached. The one 

that is incremented is the one that corresponds to the measured distance and lies on the 

sonar axis. All the grids that lie on the axis but are closer than the measured distance are 

incremented by a negative value (S~) [126, 127].

Q.G 
0 A 
0.2 

0 
-0 .2  

■0.4

0 0.2 0.4 0.S 0.6 1 1.2 1.4 1.5 1.8 2

Fig. A.9: Sonar data updating rule.

H IM M  M ap B uilding w ith  2-D  Laser

The updating rule for the 2-D laser data is similar to the case for sonar data. However, 

different values are used for increment (L+ ) and decrement (L~). The reason why the same 

updating rule can be applied to 2-D laser is because of laser da ta’s high resolution (±10 

mm).

The 2-D laser is mounted at a height of approximately 1.1 m on T2E to detect the 

bumpers of cars in the parking lot. As the robot executes a mission, e.g. a “sweep” mission

I 1 "

j

I

I
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to sweep the whole parking lot, the 2-D laser is always tilted up and down to be able to 

detect objects lower than the height of the 2-D laser. Thus, even though the HIMM map 

is a 2-D map, it is actually a representation of 3-D information. We only rely on the sensor 

data to update the map. Simply applying the above laser updating rule may cause trouble 

when there is a small object in the way. As the 2-D laser “looks” down, the laser “sees” the 

object and the C V s of corresponding grids get incremented; however, as the laser “looks” 

up, the laser fails to “see” the object and the C V s of the previously incremented grids 

get decremented. When this process goes on, the output decision of the safety agent will 

oscillate between STOP/SLOW  and RESUME (refer to table A.2 for the decision logic). 

To overcome this problem, we deliberately introduce some delays when the decision needs 

to transmit from STOP -v  RESUME, SLOW -> RESUME, and from STOP -► SLOW. 

In this way, the robot will only issue a RESUME when the obstacle moves away and no 

longer in the way.

G rowth R ate O perator

The Obstacle Cluster Strength (OCS) is defined to be the sum of the squares of 

all C V s of an potential obstacle, though other definitions are feasible, but with different 

parameters and thresholds. In order to detect an object in time, the OCS should be built 

quickly. To avoid the scattering effect caused by in-motion sampling (which means when 

the robot is moving, sensor data is likely to scatter around the obstacle), a Growth Rate 

Operator (GRO) is applied to each range reading as it is projected onto the map. The 

GRO makes the increment of the certainty value of a certain grid faster when the neighbors 

of the grid have high C V s, which is done by convoluting CVij with a GRO mask. A 3 x 3 

GRO mask is shown in table A.I. Adding the usual increment I + (L+ or S +), the new 

C V  is CVlj =  C V j  + I+ + E m = - i  Wp,qCVi+Ptj+g [126, 127], The disadvantage of GRO is 

that low-certainty areas adjacent to high-certainty areas build up to high C V s, resulting 

in a tendency to represent obstacles larger than they really are [126, 127]. Instead of using 

the fixed weight 0.5 for all adjacent neighbors, saturation can be applied to slow down the 

response of the system.
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Table A.l: 3 x 3  GRO Mask

0.5 0.5 0.5
0.5 1.0 0.5
0.5 0.5 0.5

P rojection  from  Previous M ap

At any time instance, we have a previous map associated with the robot at the last 

position, containing all the processed sensing information so far within the active window. 

Along with this previous map, we have the most recent data set tha t is assumed to be 

collected at the current robot position. We first process the current data set within the 

current active window and then project the previous map into this current one. We call 

this method the map projection method. To do the projection, we simply calculate each 

grid center in the previous map and project it into the corresponding grid in the current 

active window if it is within this current active window. Doing it this way is different from 

keeping a rotation buffer of the past several sets of sensor data and using them to build 

the map around the robot at any time instance, which is computationally complex. This 

is because not only the locations detected by a sensor reading need to be processed, but all 

the grids on the axis connecting the detected locations and the sensor positions must be 

processed. The rotation buffer method will result in one grid being visited multiple times 

because of the intensity of laser data and the accuracy of both laser and sonar data, which 

are smaller than the grid size.

However, the map projection method has one significant disadvantage that will make 

the obstacles appear much larger even in the ideal case when there are no errors in the robot 

positions. This is shown in fig. A. 10, where the robot is initially at 0 and the obstacle is at 

3.2 (units are om itted in this illustration). Suppose the robot performs several consequent 

movements toward the obstacle with both its actual movements and measurements equal to 

0.4 in all of the steps. The process of grids updating is illustrated in fig. A. 10, where part 1) 

uses truncation operator and part 2) uses rounding-to-the-nearest. The grid marked with 

“S” indicates result from sensor data. Similarly, “P ” indicates result from map projection.
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The two graphs in fig. A. 10 show that whether using truncation or rounding-to-the-nearest, 

the simple map projection method has a tendency to make the obstacles grow very quickly. 

To overcome this problem, we first build the map using the current data set and then do 

the projection from the previous map. When we do the projection, for each grid in the 

previous map that has a non-zero C V  (CVpre), after finding its projection in the current 

map, we search a neighborhood of this new location to see if there are grids whose C V  

is not equal to zero. If yes, we use CVwe to update the certainty value of this neighbor: 

otherwise, we use CVpre to update the certainty value of the grid after projection. In 

this way, the representation of obstacles in the resulting HIMM map depends more on the 

current data set than the projection and the projection works as a supplement to some 

degree.

0 2 0 2
(a) (b)

Fig. A. 10: Illustration of errors introduced in the map projection. 2 3

2O bstacle position is 3.2, actual movement =  measurem ent =  0.4

3 (a) is by truncation  and (b) is by rounding-to-the-nearest

A .2.2 E xperim ental R esults

In order for the HIMM map to work properly, the robot is supposed to have “eyes” 

that can keep on watching its surroundings and each grid has a chance to be updated. 

This is the reason why the HIMM algorithm is well-known to work more accurately when
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the robot is moving instead of standing still [126]. Actually this imposes no restrictions on 

the laser, because of the laser da ta’s accuracy, high intensity, and the coarse grid size, all 

of which lead to the fact that the laser data updating rule can cover all the grids it “sees” . 

But for sonars, if the robot is not moving, only grids on the sonar axis have the chance to 

be updated, which is an introduced “bias” . In this case, because of the sonar da ta’s sparse 

nature and the simple sonar data updating rule, if partial sonars happen to have erroneous 

readings, no other sonar readings can be used as complement or correction. As a result, 

there might be false detections, such as a detected obstacle does not actually exist, or an 

existing obstacle is not detected.

In the experimental setup shown in fig. A. 11, there is a wall in front of the robot and 

many other static objects, such as tables and cylinder, are to the right of the robot about 

0.8 m away. The left part of the robot is mainly an open area with the operator sitting 

4.5 m away.

1

u p

Fig. A .ll: Experimental setup.

The HIMM maps built by the sonar and laser data are shown in fig. A. 12 when the 

robot moves toward the wall (not exactly perpendicular to the wall) and is stopped by the 

safety agent around 1 m away from the wall. Since the wall totally cuts off the sensing range 

of all sensors, it is enough to plot only the 10 x 10 m2 map that is a partial representation 

of the original 10 x 15 m2 map. In fig. A.12, the dots forming a rectangle around the center 

indicate the sonar positions, which is also the robot boundary. The other dots are one set 

of laser readings and the circles are one set of sonar readings from the 26 sonars. In the 

implementation, sensor readings tha t are outside a reasonable and necessary sensing range 

are not considered (sonar: [0.16,4] m, laser: [0.2,50] m).
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The HIMM maps being built are sufficient for collision avoidance. However, they are 

not very accurate. This is mainly due to the erroneous sonar readings, for which reason, 

the use of sonar is often confined to collision avoidance rather than exact mapping [133!.

8 10 0
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Fig. A. 12: The 10 x 10 m2 HIMM maps built when T2E moves toward a wall in an indoor 
room.

Besides the GRO operator, another reason that objects will appear larger is the error in 

the robot position. Even though the HIMM map is built in the BFCS, the projection from 

the previous map still uses the robot position in the ICS. If the accumulative error in robot 

position becomes greater than half of the grid size, even for static object, its representation 

in the HIMM map by sensor readings will be different from its representation by projection. 

While this problem has no adverse effect when the robot goes toward the obstacles and 

needs to stop or slow down, it does have effect when the obstacles move away and the 

path is cleared, in which case the new sensor readings should be able to decrease the 

C V s of the girds originally occupied by the obstacles. As mentioned before, this requires 

all the grids have chances to be updated, which again emphasizes the assumption that 

the robot is moving instead of standing still. Furthermore, this imposes a more rigorous 

requirement for the decision making strategy discussed next, that is, the decision making 

strategy should be able to skip sparse isolated grids with low C V  s.
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A .2.3 D ecision M aking Strategy

The decision making strategy includes choosing decision regions, deciding whether or 

not there are obstacles inside the decision regions, and applying decision logic to decide if 

any action is needed.

C hoose D ecision R egions B ased on th e  V elocity Vector

The decision regions are determined by the robot’s desired velocity vector in the BFCS. 

Both its magnitude and direction are of importance. As shown in fig. A. 13, given a velocity 

vector v, a rectangle box ABE]  £'2  is calculated as the stop region. Similarly, E 2E 1F1F2 

is the slow region. These two rectangles are calculated in a same manner, but based on 

different scalars. E 1E 2 is perpendicular to the direction of v. The distance from the center 

of the robot to the center of E 1E 2 is proportional to the magnitude of v. The size A B  is 

chosen such that the rectangle A B E 1E 2 will enclose the robot no m atter what orientation 

the robot is currently holding. In this way, we can treat the robot as a point-size robot, 

eliminating the consideration for its shape and orientation. When the scalars are too large 

such that the points E\Eq, or F1F2 are outside the active window, we will only consider 

the part that lies inside to check if the robot needs to stop or slow down.
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Fig. A. 13: Decision making based on the velocity vector.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



191

Is there obstacle inside a region?

The decision about whether or not there is obstacle inside one decision region is based 

on the following three factors: 1) number of potential obstacles inside the given region; 2) 

OCS of the largest potential obstacle; and 3) number of grids that are occupied by the 

largest potential obstacle. The potential obstacles are ordered by their OCS and the largest 

potential obstacle is the one with the highest OCS. To do this, we first loop through each 

grid that lies inside the given region and apply the 8-connectivity idea in image processing 

to group individual grids into potential obstacles, keeping track of the OCS and the number 

of grids occupied by each potential obstacle [39].

The final decision logic to tell if there is obstacle inside a given region is: output “yes” 

if the following three conditions are all true:

1) Number of potential obstacles >  a predefined threshold OBSTACLE J3XIST_NUMBER.

2) OCS of the largest potential obstacle >

a predefined threshold OBSTACLEJ3XIST_THRESHOLDJVOTE.

3) Number of grids occupied by the largest potential obstacle >

a predefined threshold OBSTACLEJ3XIST_THRESHOLD_AREA.

The task to  decide if there is obstacle inside a given region is not a trivial one. It is 

always a trade-off between fast response and reliability. To be fast, we can either decrease 

the thresholds or change the logic to be based on only one condition, rather than three; to 

be reliable, we would like to output “yes” when several conditions are met simultaneously. 

Due to the fact that there are unavoidable erroneous sensor readings, decisions that are 

made on relatively smaller thresholds will frequently output false alarms. The procedure 

to find a suitable logic along with the corresponding thresholds is a process of trial-and- 

error and we cannot claim that the logic we have used is an optimal one. However, during 

the testing, we do get the understanding that the C V  always plays an important role in 

making the right decision.

The thresholds we choose are:

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



192

1) OBSTACLE_EXIST_NUMBER =  1.

2) OBSTACLE_EXIST_THRESHOLD_VOTE =  200.

3) OBSTACLEJ3XIST_THRESHOLD_AREA =  1.

Taking the above thresholds, the decisions turn out to rely on the OCS of the largest 

potential obstacle only. This is reasonable because it is normal to have just one obstacle 

(at least in our parking lot application) and this obstacle just occupies one grid, e.g. a pole. 

However, the other two concerns are still helpful for further testing and other applications 

with finer grids.

D ecision Logic

The decision logic and the throttle values are shown in table A.2. Currently, the T2E 

robot operates in a STOP-RESUME manner. If the robot judges a need to issue STOP 

or SLOW commands, it has to wait till the obstacles move away to issue a RESUME. 

The obstacles can be dynamic. But currently, the robot does not have the capability to 

response in a “smarter” way, which will require the robot to have such abilities as motion 

detection and obstacle avoidance. The state machine that illustrates all the transitions is 

shown in fig. A. 14, where R_STOP denotes the region to check for STOP and R_SLOW 

for SLOW.

Table A.2: Decision Logic

Situation Decision Throttle
Nothing is in the way NONE
Something (Sth) is no longer in the way RESUME 1.0
Sth is in the way and very close to robot STOP 0.0
Sth is in the way and near the robot SLOW 0.5

A .2.4 Param eters Thresholds via Testing

In the implementation, there are many parameters/thresholds tha t need to be tuned 

via exhaustive testing. The parameters/thresholds used in T2E are listed in table A.3 for
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Sth in R..STOP

Sth in R_SLOW 
Nothing in R_STOP

Sth in R_SLOW
Nothing in R_STOP

STOP j»
Sth in R_STQP

Nothing in R_STOP and Nothing in R_SLOW

NONE

SLOW
Nothing in R  STOP
M5[rSOEgW-» RESUME

Fig. A. 14: State machine illustrating transitions among all states.

the purpose of being helpful to others who are applying HIMM to their own applications. 

Special consideration should be given to the case when different sensors with totally dif­

ferent kinds of firing mechanisms are fused together. The tuning of the two important 

parameters / ‘ and / does not fit in with the common sense that the more accurate the 

sensor is, the higher the I +. Besides the sensor’s resolution, other factors include the fir­

ing rate and the intensity of the sensor data. When two kinds of sensors have the same 

coverage, the resulting HIMM map comes to depend heavily on the sensor with higher 

increment and firing rate.
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Table A.3: Thresholds via Testing

P a ra m e te rs /T h re sh o ld s V alue
STOP-SCALAR 2.0
SLOW-SCALAR 3.0
SONAR_PLUS S+ 5
SONAR_MINUS S~ -2
LASER-PLUS L+ 4
LASER-MINUS L~ -2

c v min 0

CVmax 15
GRO_WINDOW_SIZE 2
OBSTACLE-EXIST-NUMBER 1
OBSTACLE-EXIST-THRESHOLD-VOTE 200
OBSTACLE-EXIST-THRESHOLD-AREA 1
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A .2.5 D iscussion  and Conclusions

The HIMM algorithm can work as a good platform for fusion of different kinds of sensor 

data, as long as other readings from other sensors have sensor models. The application 

of the simple sonar updating rule to 2-D laser is direct due to the high resolution of the 

2-D laser, but may cause several problems for compatible cooperation. In order for the 

HIMM algorithm to work accurately, proper tuning of the parameters (examples are listed 

in table A.3) are required. In our application of the HIMM algorithm, the T2E robot can 

operate reliably in a STOP-RESUME manner in a dynamic parking lot environment at a 

typical speed of 0.75 m/second after exhaustive tuning of these parameters and thresholds.

Sensing systems with vision alone, or with discontinuous firing of range sensors, can 

also perform the job, with the advantage of alleviating the use of many range sensors and 

mimicking human beings, who use vision systems to estimate relative depth.
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A ppendix B 

Derivations

B .l  D erivations Supporting 3-D M otion E stim ation  in Section 4.2

N onlinear O ptim ization Form ulation W hen 7 ^ 0

When 7  ^  0 and using the intrinsic matrix in (4.6), equation (4.4) becomes

' V / W;' \

A' -  A A iM -1 Vi + t

.  1 . \ _ 1 . )

A A R

1 /a  —7 /(a/S) O'

0 1/(3 0

0 0 1

~Ui~ \

Vi ~h t

. 1 .

( > 11 n  2 n 3' ' U i / a -  7 /(aj3)vi~ 1 l

\

\ A 2̂1 r-23 Vi/13 + f2/A

\ .^31 V32 r-33- 1 -i3/A. /

=  A

1 © 0 1

A 0 0

. 0  0 1 .

ru (ui /a -  7 / (a/3)) + n 2Vi/(3 + n 3 + t i/A 

r2i (u i /a  -  7 /(a/?)) +  r22Vi/(3 +  r2 3 + t 2/X 

. r 3 i ( u i / a - i / ( a / 3 )) + r32Vi/(3 +  r 33 +  f3/A_

D erivation o f Equation (4.12)

From (4.11)
1

z t

{ f t i  -  x;f3)Ay;

[AXi -  -jUiXiyi +  w2( /  + ~jr)~ M 'W l/t f t i  -  xitz). Then,

( f t -2 -  y ^ )
1 X-

Ax; -  -jLUiXiVi +  iX2{ f  +  - j -) -

1 y ■
+  UJi{f +  -j-) -  W3X; ( f h  -  X ; t 3 )

= t 2f  Ax; -  t 2uiXiyi +  t 2u 2 { f 2 + x f)  -  t2uj3fyi

1  X ?
- t 3A x i y i  +  t 3u j i - X i y f  -  f 3w2 ( /  +  - j - ) y i  +  * 3 ^ ?  

/  J
- t iu 2Xiyi +  tiw i( / 2 +  y2) -  titozfxi
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X y ?

+t3uj2 j x 2i yi -  t 3w1( f  +  + t 3u>3x 2.

That is,

0 =  f A y i h  -  fA x { t 2 +  {Axiyi -  AyiXi)t3

- ( / 2 +  v h h m  -  ( / 2 +  x 2 )t2io2 ~  (x 2 +  y f )t3u 3 

+Xiyi(tiw 2 +  t2uJi) +  fx i{ tiw 3 +  t 3ux) +  f y i ( t2cv3 + t3u>2),

which can be written in the form of (4.12) for the i-th point.

B .2 D erivations for the P D S Theory i n  Section 4.3

Given the Riccati dynamics (4.1) with (4.42), (4.44), and (4.4-5), prove equations 

(4.43), (4.46), and (4.47).

D erivation o f Equation (4.43)

Denote X  =  [X, Y, Z]T . R-om p X  + qY + s Z + 1 =  0, X TP  =  - 1  =► X TP  +  X TP  = 0. 

Thus,

- X TP  = X TP  = (AX +  b  +  F X ) TP  =  X t A t P  +  b  TP  +  X TF TP. (B.l) 

First, consider b7 P;

b TP  = [bi b2 63]  [p q s]T =  —(pX  +  qY  +  sZ )(b ip + b 2q + 6 3 s)
'P' 'bip2 +  b2pq + b3ps~

[X  Y  Z] Q (b\p + b2q + b3 s) =  - X T hpq  + b2f  + b3qs

. s . .bips + b2qs + b3 s2.

pq
'bi b2 b3 0 0 0  -

X T 0 bi 0 b2 b3 0

. 0 0 bi 0 h b3.
qs

s2 . 
(B.2)
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Then, consider X TF TP:

X t F t P

- X 2 - T
■fl 0 0 -

X Y /2 f l 0

X Z h 0 h

Y2 0 h 0

Y Z 0 h h

. Z 2 . . 0 0 f i  -

> ' 'P~

Q = ( f1X  + f 2Y  + f 3Z){X ,Y ,Z \ Q

_s _ _s.

= (f i X  + f 2Y  + h Z ) ( p X  + qY + sZ) = X T ?. 

From (B.l), (B.2), and (B.3), P = -  f  -  ATP  +  BP.

(B.3)

D eriv a tio n  o f E q u a tio n  (4.46)

Because p X  +  qY + sZ  + 1 =  0, we have \p, q, s, 1] [Xi, V), Z\, W\]T =  0. Denote 

X i =  [X1; Yi, Z X]T, we have:

P TX i  +  Wi  =  -[p , q, s} X i  =  (fT +  P TA  -  P TB T) X i . (B.4)

In a similar manner as (B.3), we get —P TB TX \  =  P T b  F /i. So, (B.4) becomes P TX i + 

Wi =  P^-AXj +  P TbW i + fTX i. That is X  = A X .

D eriv a tio n  o f E q u a tio n  (4.47)

Let X  =  [X, Y, Z]T . From p X  + qY + sZ  + l = 0, we have [X, Y, Z, 1 ] [p , g, s,  w]T = 1. 

Thus,
' P I  p '

(B.5)

'V ' P '

X T q + w = - ( X TAT + b T + X TF T ) q

. s . _s_

In a similar manner as (B.3), we get X TF T {p, q, s]T =  X~r f  w. So, (B.5) becomes

'P 'P~ 'P '

X T q + w = -XtAt q -  X TSw -  b T q
. s . -5- , s  _

(B.6)

Thus, V  =  - A TP.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



199

D erivation of O ptical Flow Dynam ics

Given the Riccati dynamics (4.1) and (4.42), (4.45), prove tha t under the perspective 

projection y% =  X /Z ,  y2 — Y /Z ,  where the focal length /  is assumed to be 1, the optical 

flow dynamics is of the form (4.64).
x z  — z x

Proof: From y\ = f X / Z , y\ = f  ----- • So

in x z - z x  x  x z
7  ~  z '2 ~~z~~zz

a n X  +  a n Y  +  a13Z  + fa + f i X 2 +  f 2X Y  +  f 3X Z  
Z  

a3 i X  + o32F  +  a ^ Z  + b3 + h X Z  +  / 2F  Z  +  f 3 Z 2 
- V i

=  a n y i  +  0122/2 +  « i 3 +  fa /Z  -  2/1(0312/1 +  0322/2 +  033  +  fa jZ)

—  o i 3 +  ( a n  -  0 3 3 ) 1 / 1  +  0 1 2 2 / 2  -  0 3 1 2 / 1  ~  <3.322/11/2 +  ~ g ( f a  ~  faVi)- (B-7)

Since p X  + qY  +  s Z  +  w — 0, we have ^  =  - ~ ( p y i  + g 2/2 +  s). So, (B.7) becomes 

yi—j  =  ( o i 3 -  fas)  +  j a n  -  033 -  faP +  fas}yi  +  ( a i 2 -  faq)y2

d i  dz  d j

+  (fap -  a 3i) y \  +  (faq -  a 32) 2/12/2- (B.8)
' ---------------V---------------' -----------------' ---------------V---------------'

d j  ds

In a similar manner, we can have (d2, dg, d§).

B.3 Supporting 3-D Im aging Surfaces in Section 4.7  

D erivation of E quation (4.130)

1 Z  1
' ■ ' z  =  —  [ ( « i ^ + ^ 2 ^  +  o 3Z )  -  ( n i X +  n 2y ) ]  => —  =  — (1 -  n i y i  -  n 22/2 ),

7I3 L/p] 77-3

d  , 1 . - 1  , ,  d  , 1 .

■’■yi ~  d t { x T ^ ] ~  K i + d t ^

=  ( a n X  +  oi 2F  +  a i 3Z  +  6i ) / L pi -  2/i(pi2/i +  P22/2 +  P 3 +  P02/3)

=  0112/1 +  0122/2 +  0 1 3  — (1  -  n i y i  -  n 22/2) +  fa y3  -  2 / i(p i2 /i  +  P22/2 +  P 3 +  P02/3)
n 3

=  —  +  ( a n  -  0 1 3 —  -  P3)yi +  (0 1 2  -  0 13 —  )y2 - -  PlVi -  P2VW2 +  {fa -  P o 2/ l ) j / 3)
n 3 n 3 n 3

w h e r e  (po, p \ ,  p 2 , p 3) a r e  d e f in e d  in  (4 . 1 3 1 ).
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D erivation o f Equation (4.133)

The basic idea of deriving (4.133) is to replace the y3 term in (4.130) by

1
2/3

which is calculated in the following:

Z =  pX  +  qY +  r 
1

n i X  +  n-YY + nzZ '

[n\X  +  m Y  +  n$Z — (n \X  +  n^Y)} =  p X  +  qY +  r 
n  3
1 m  ri2 1

  — y i ----------y2 = vyi  +  gy2 +-r --------------------  --------
n 3 n3 n 3 n i X + n ^ Y + n z Z

1 1 1
n \ X  +  n-̂ Y +  n^Z r n3 

with p = p +  ^  and q =  q + ^  as defined in (4.134).

D erivation o f Equation (4.141)

2/4 =

Vk

X X  + Y Y  + Z Z  
~  (X 2 +  Y 2 + Z 2 ) 3/ 2

X ( a n X  + 012E  +  CL13Z  +  b\) + Y(a  21X  +  C122Y  +  (I23Z  +  62)
( X 2 + Y 2 + Z 2 ) 3/ 2 

Z(a 31X  +  a ^ Y  +  (I33Z  +  63) 

( X 2 + Y 2 + Z 2)3/2
a n X 2 +  ( I2 2Y 2 +  CL33Z2 +  (012 +  a 2 i ) X y  +  (a i 3 +  a 3 i ) X .Z

( X 2 + Y 2 + Z 2 ) 3 / 2 

(fl 23 +  fl3 2 )E  ̂  +  ( 61X  +  b 2 Y  +  63^ )

+  (X 2 + Y 2 + Z 2 ) 3/ 2

3

~ t y ^  a a v l  +  ( f l l2 +  021)2/12/2 +  ( a i 3 +  031)2/12/3 +  (f l23 +  fl3 2 ) 2/22/3 ]2/4 

i = l

+(&i?/i + 622/2 + 632/3)y|
3 „ 3

=  “ 2/4 ^  ' aay% +  r, ^  ' (aij + QjijyiUj

ak \X  +  dkzY  +  a^zZ +  6fe

V X 2 +  Y 2 +  Z 2
+  2)k

2/4

VA
for k =  1 , 2 ,3

3

Y . a^  + \

3

1 d k iV i ~ Vk Y ' j ( a iJ a ii)V iV 3 +

i —1 i = l
h - V k Y ^
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