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Preface

It is well known that the benefits from the wise use of control engineering are numerous
and include improved product/life quality, minimized waste materials, reduced pollution,
increased safety, reduced energy consumption etc. One can observe that the notions of
feedback and control play important roles in most sociotechnological aspects. The phrase
“control will be the physics of the 21st centufyinplies that all engineering students should
take an introductory course on systems control.

It is widely accepted that control is more “engineering” than “science,” but it does
require a firm theoretical underpinning for it to be successfully applied to ever more chal-
lenging projects. This attention to theory in academia has led to discussions through the
years on the “theory/practice Gap” which culminated in a recent special issue l&ERe
Control Systems Magazirfgolume 19, Number 6, 1999).

The development of computer software for control has provided many benefits for
teaching, research, and the development of control systems design in industry. MATLAB
and Simulink® are considered the dominant software platforms for control system analysis
and design, with numerous off-the-shelf toolboxes dedicated to control systems and related
topics. As Confucius said, “The craftsman who wishes to work well has first to sharpen
his implements2 and it is clear that MATLAB provides a suitable implement for control
engineering. The major objective of this book is to provide information on how MATLAB
can be used in control system design by covering many methods and presenting additional
software routines. Many students today view control theory as difficult because of the
mathematics involved in evaluating frequency responses, plotting root loci, and doing the
many other calculations which can be easily accomplished in MATLAB, as shown in this
book. It is therefore our opinion that the educational objective today should be to give
students sufficient knowledge of these techniques to understand their relevance and teach
how to use them correctly without the burden of the calculations which MATLAB can
accomplish.

A distinguishing feature of the book is the organization and presentation of the
material. Based on our teaching, research, and industrial experience, we have chosen
to present the course materials in the following sequence: system models, time and fre-
guency domain analysis, introduction to various model reduction techniques, model-based
control design methods, PID techniques and robust control. In addition, a chapter is in-

1Doer J. C. A new physic®. plenary talk presented at the 40th IEEE Conference on Decision and Control
Orlando, FL, Dec. 2001.
2ntt p: / / www. conf uci us. org/ | unyu/ ed1509. ht m
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cluded on fractional-order control as an alternative for practical robustness trade-offs. MAT-
LAB scripts and plots are extensively used in this textbook to illustrate basic concepts and
examples. A dedicated toolbox called CtrILAB developed by the authors can be used as
an effective teaching and learning aid. CtrILAB was developed to support our objective of
enabling control studies to be done in MATLAB by students with no knowledge of MAT-
LAB, thus avoiding the need to replace less mathematics with the requirement of learning
a programming language (although this is not difficult). CtrlLAB is the most downloaded
package in the Control Systems category in the File Exchange of MATLAB Céhntral.

We hope that readers will enjoy playing with and changing the scripts as they gain
better understanding and accomplish deeper exploration with reduced effort. Additionally,
each chapter comes with a set of problems to strengthen the readers’ understanding of the
chapter contents.

This book can be used as a reference text in the introductory control course for under-
graduates in all engineering schools. The coverage of topics is broad, yet balanced, and
should provide a solid foundation for the subsequent control engineering practice in both
industry and research institutes. For graduates and researchers not majoring in control, this
textbook is useful for knowledge enhancement. The authors also believe that this book will
be a good desktop reference for control engineers.

The writing of this book started in the mid 1990s. In its evolving into the current
form, many researchers, professors, and students have provided useful feedback, comments,
and input. In particular, we thank the following professors: Xinhe Xu, Xingquan Ren,
Yuanwei Jing, Taicheng Yang, Shuzhi Sam Ge, Igor Podlubny, Ivo Petras, Istvan Kollar,
Alain Oustaloup, Jocelyn Sabatier, Blas M. Vinagre, J. A. Tenreiro Machado, and Kevin L.
Moore. Moreover, we are grateful to Elizabeth Greenspan, Acquisitions Editor of the Society
for Industrial and Applied Mathematics (SIAM), for her professional help. The “Book
Program” from The MathWorks Inc. is acknowledged for the latest MATLAB software.

Last, but not least, Dingyu Xue would like to thank his wife Jun Yang and his daughter
Yang Xue; YangQuan Chen would like to thank his wife Huifang Dou and his sons Duyun,
David, and Daniel, for their patience, understanding and complete support throughout this
work. Derek Atherton wishes to thank his wife Constance for allowing him hours of overtime
with many hardworking graduate students which included, in particular, many discussions
with Dingyl when he was at Sussex and the email exchanges or with Dingyi and YangQuan,
which led to this book.

Dingyl Xue Northeastern University, Shenyang, China.
YangQuan CherUtah State University, Logan, UT, USA.
Derek P. AthertonThe University of Sussex, Brighton, UK.

Sht t p: / / www. mat hwor ks. com mat | abcent ral /i ndex. sht m
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Chapter 8

Fractional-Order
Controller: An
Introduction

Using the notion of fractional-order may be a more realistic step because real processes
are generally “fractional” [86]. However, for many real processes, fractionality is very
low. A typical example of a noninteger, (fractional-) order system is the voltage—current
relationship of a semi-infinite lossy resistor and capacitor (RC) line or the diffusion of heat
in a semi-infinite solid, where the heat flay(z) is naturally equal to the semiderivative

of temperaturd (¢) [87], as described by the following simple fractional-order differential
equation (FODE):

d°7 (1)
g5 —40-

Clearly, using an integer-order ordinary differential equation (ODE) description for the
above system may differ significantly from the actual situation. However, the fact that
the integer-order dynamic models are more welcome is probably due to the absence of
solution methods for FODES. Details of past and present progress in the analysis of dynamic
systems modeled by FODEs can be found in [88-95]. For example, PID (proportional
integral derivative) controllers, which have been dominating industrial controllers, have
been modified using the notion of a fractional-order integrator and differentiator. It has
been shown that two extra degrees of freedom from the use of a fractional-order integrator
and differentiator make it possible to further improve the performance of traditional PID
controllers. In addition, the plant to be controlled can also be modeled as a dynamic system
described by an FODE. For fractional-order systems, the fractional controller CRONE was
developed in [96], while [89, 97, 98] presented the’RDntroller and [99] proposed the
PID? controller.

In theory, control systems can include both the fractional-order dynamic system or
plant to be controlled and the fractional-order controller. However, in control engineering,
it is a common practice to consider only the fractional-order controller. This is due to the
fact that the plant model may have already been obtained as an integer-order model in a
classical sense. In most cases, our objective is to apply fractional-order control (FOC) to
enhance system control performance. Therefore, in this chapter we will concentrate on the
scenario in which the controller is fractional-order.

283
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284 Chapter 8. Fractional-Order Controller: An Introduction

This chapter serves as an introduction to the essentials of FOC for control engineering
practice, with an emphasis on how to analyze and realize fractional-order systems using
MATLAB. For a broader introductory coverage of fractional-order calculus and its applica-
tions in engineering, we refer the interested reader to the textbook [100].

This chapter is organized as follows. In Sec. 8.1, definitions and properties of
fractional-order calculus are briefly introduced, followed by frequency and time domain
analysis of fractional-order linear systems in Sec. 8.2. Then, in Sec. 8.3 filter approxima-
tions to fractional-order differentiators are introduced using Oustaloup’s recursive scheme
and its refined version. With this filter approximation, using Simulink, a simulation method
for a general nonlinear fractional-order dynamic system is proposed with an illustrative
example. Since the fractional-order controller after finite dimensional approximation is
usually of a very high order, controller order reduction is discussed and demonstrated in
Sec. 8.4. Finally, we present some controller design case studies for fractional-order systems
in Sec. 8.5.

Note that this chapter, like previous chapters, is designed so that the text and illustrative
MATLAB scripts flow in a natural and smooth manner. We hope that this design enables
readers to quickly get started on problem solving. It is worth mentioning that the design of
a MATLAB class for a fractional-order transfer function is demonstrated thoroughly in the
chapter.

8.1 Fractional-Order Calculus and Its Computations

In a letter to Hbpital in 1695, Leibniz raised the following question: Can the meaning of
derivatives with integer order'g(x)/dx" be generalized to derivatives with noninteger
orders, so that in generale ¥? (Here¥% is the set for all complex numbers.) Hopital
was a bit curious about this question and replied with another question to Leibniz: What if
n = 1/2? Leibniz, in a letter dated September 30, 1695, replied: It will lead to a paradox,
from which one day useful consequences will be drawn.

The question raised by Leibniz for a fractional-order derivative has been a topic of
ongoing study in the last 300 years. Several mathematicians contributed to this subject over
the years. People like Liouville, Riemann, and Weyl made major contributions to the theory
of fractional-order calculus. So, the term “fractional-order calculus” is by no means new.
It is a generalization of ordinary differentiation by noninteger derivatives. The subject is as
old as the calculus of differentiation and goes back to the 17th century when Leibniz and
Newton invented calculus. The theory of fractional-order derivatives was developed mainly
in the 19th century. For more information, see [91, 93, 101, 102].

In the development of fractional-order calculus, there appeared different definitions
of fractional-order differentiations and integrations. Some of the definitions extend di-
rectly from integer-order calculus. The well-established definitions include the Cauchy
integral formula, the Grinwald—Letnikov definition, the Riemann—Liouville definition, and
the Caputo definition. The definitions will be summarized first, and then properties will be
given.
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8.1.1 Definitions of Fractional-Order Calculus
Definition 8.1 (Cauchy'’s fractional-order integration formulaThis definition is a general
extension of the integer-order Cauchy formula
'y+1 /(@)
D7 f@t) = . dr, 8.1
10 === | oot (8.2)
where C is the smooth curve encircling the single-valued funcfigi.
Definition 8.2 (Griinwald—Letnikov definitiogn The definition is defined as
lea/m
o7 f6) = lim o Zo (-1’ ( j ) fe—jh. (8.2)
]:
wherew;"‘) = (—1)/ (%) represents the coefficients of the polynoniiat- z)*. The coeffi-
cients can also be obtained recursively from
1
wl® =1, wj."’=<1—“f )wﬁ.“‘)l, j=12.... (8.3)
Based onthe Definition 8.2, the fractional-order differentiation can easily be calculated
from
[(t—a)/h] o [(t—a)/h] @
. i . A~ o .
70 f(0) = lim -5 Z (=1’ ( i ) fa—jh =5 Z w; f@t—jh). (8.4)
j=0 j=0
Assuming that the step siZeis small enough, we see that (8.4) can be used to
evaluate the differentiations of the given function. It can be shown [93] that the accuracy
of the method is @1). Thus, based on the Griinwald—Letnikov definition, the following
MATLAB function can be written to evaluate the fractional-order differentiation [103]:
function dy=gl fdiff(y,t,gam
h=t (2)-t(1); dy(1)=0; y=y(:); t=t(:);
w=1l; for j=2:length(t), w(j)=w(j-1)*(1-(gam+l)/(j-1)); end
for i=2:length(t), dy(i)=w(1l:i)*[y(i:-1:1)]/h"gam end
The syntax of the function i dy,=gl fdi ff (y, ¢, y) , wherey, ¢ are, respectively, the
vectors composed of the samples and the time instances. The time sectmsumed to
be evenly distributedy is the order of fractional-order differentiation. The returned vector
d, is the vector of the fractional-order derivatives.
Definition 8.3 (Riemann—Liouville fractional-order differentiatipyn The fractional-order
integration is defined as
D7f(t) = — t—1)*" dr, 8.5
aZ; " f () F(a)fa( )" f(n)dr (8.5)
S
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where O< a < 1, anda is the initial time instance, often assumed to be zero,d.e=,0.
The differentiation is then denoted &5 f (¢).

The Riemann-Liouville definition is the most widely used definition in fractional-
order calculus. The subscripts on both sidesZofepresent, respectively, the lower and
upper bounds in the integration [104].

Such a definition can also be extended to fractional-order differentiations when the
order satisfiea — 1 < 8 < n. The fractional-order differentiation is then defined as

1 ar T fo
‘r(n—ﬁ)@[ . (r—r)ﬁ*“df] (8.6)

Definition 8.4 (Caputo’s definition of fractional-order differentiatipnCaputo’s definition
is given by

a’ (e
a‘@tﬁf(t)zﬁ I:a@t ( ﬂ)f(t):l

t y(m+1) (T)

FA-y)Jo @—1)
wherea = m + y, m is an integer, and & y < 1. Similarly, Caputo’s fractional-order
integration is defined as

070y (1) = dr, (8.7)

1 Loy

Y _
T =TT b Gt

dr, y <O. (8.8)

It can be shown [93] that for a class of real functions, the fractional-order differenti-
ations from the Grinwald-Letnikov and Riemann—Liouville definitions are identical.

8.1.2 Properties of Fractional-Order Differentiations

The fractional-order differentiation has the following properties [105]:

1. The fractional-order differentiatiayZ f (), with respect ta of an analytic function
f(), is also analytical.

2. The fractional-order differentiation is exactly the same with integer-order one, when
a = nis aninteger. Als@2° f (1) = f(1).
3. The fractional-order differentiation is linear; i.e., for any constants one has

07" [af (1) + bg(D)] = a o} f (1) + b 0 g (1). (8.9)
4. Fractional-order differentiation operators satisfy the commutative-law, and also satisfy
07 |07 1] =02/ |07 f )] = 027 F (1) (8.10)

5. The Laplace transform of fractional-order differentiation is defined as
1=

n—1
Lozerw]=s"2tro1=Y s oz trow] . @1
k=1

In particular, if the derivatives of the functiofiz) are all equal to 0 at= 0, one has
Lo f(O)] =s*ZL[f®)].
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8.2 Frequency and Time Domain Analysis of
Fractional-Order Linear Systems
The fractional-order system is the direct extension of classical integer-order systems. The
fractional-order system is established upon the fractional-order differential equations, and
the fractional-order transfer function of a single variable system can be defined as
bis?t bos?2 e b, s¥m
G(s) = 157+ 0o ¥ O , (8.12)
a1s™ + azs™ + - - - + a, 151 + a, s
whereb;, a; are real numbers and the ordersn; of the numerator and the denominator can
also be real numbers. The analysis of the fractional-order Laplace transformations and their
inverse is very complicated. The closed-form solutions to the problems are not possible in
general.
8.2.1 Fractional-Order Transfer Function Modeling
For the fractional-order transfer function modelin (8.12), it can be seen that if the coefficients
and the orders of the numerator and denominator are given, the model can be established.
Thus, an f ot f " class can be constructed by creating @eot f directory and writing in
the directory arf ot f () function as follows:
function G=fotf(a, na, b, nb)
i f nargin==0,
G a=[]; Gna=[]; Gb=[]; Gnb=[]; G=class(G ' 'fotf’);
elseif isa(a,’ fotf'), G=a;
el seif nargin==1 & isa(a,’ double’), G=fotf(1,0,a,0);
el se,
ii=find(abs(a)<eps); a(ii)=[]; na(ii)=[];
ii=find(abs(b)<eps); b(ii)=[]; nb(ii)=[];
G a=a; G na=na; G b=b; G nb=nb; G=class(G'fotf’);
end
The syntax of the functioni G=f ot f ( a, », b, ¥) , wherea andb are the coefficients of
the denominator and the numerator, respectively, whdedy are the order sequences in
the denominator and the numerator, respectively.
A display function should also be created for frat f class. The file should also be
saved in thed ot f directory such that
function display(G
sN=pol ydi sp(G b, G nb); sD=pol ydi sp(G a, G na); s=" ';
nmemex ([ | engt h(sN), I ength(sD)]); nn=length(sN); nd=length(sD);
di sp([char(s*ones(1,floor((nmnn)/2))) sN), disp(char(’'-'*ones(1,nm));
di sp([char(s*ones(1,floor((nmnd)/2))) sD])
functi on strP=pol ydi sp(p, np)
P=""; [np,ii]=sort(np,’ descend'); p=p(ii);
for i=1:length(p), P=[P,’ + ,nunRstr(p(i)),’ s {",num@str(np(i)),’}']; end
P=P(2:end); P=strrep(P,’s"{0}',’'"); P=strrep(P,’+-"',"-");
P=strrep(P,’ "{1}',""); P=strrep(P,’ +1s’,'+s'); strP=strrep(P,’-1s’,’-s");
if length(strP)>=2, if strP(1l:2)=="1s’, strP=strP(2:end); end,end,
S
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Example 8.1. Suppose that the fractional-order transfer function is given by

—25063 _4

G(s) = .
() = 538501 1 38,242 1 26,1798 1 25,131 1 15

With the following statement, the fractional-order transfer function can be entered into the
MATLAB environment:

>> b=[-2,-4]; nb=[0.63,0]; a=[2 3.8 2.6 2.5 1.5];
na=[ 3.501, 2.42,1.798,1.31,0]; G=fotf(a,na,b,nb)

The display of the fractional-order transfer function is

-25°{0.63}- 4

25" {3.501} +3. 85" {2. 42} +2. 65" { 1. 798} +2. 55" { 1. 31} +1. 5

A functionf ot f () can be written in the® f directory to convert an integer-order
transfer function to afiot f object:

function Gl=fotf (G

n=G nun{1}; d=G den{1}; i1=find(abs(n)<eps); i2=find(abs(d)<eps);
if length(il)>0 & i1(1)==1, n=n(i1(1)+1l:end); end

if length(i2)>0 & i2(1)==1, d=d(i2(1)+1:end); end
Gl=fotf(d,length(d)-1:-1:0,n, Il ength(n)-1:-1:0);

8.2.2 Interconnections of Fractional-Order Blocks

Based on the newly definedot f class, thepl us(), ntimes() andf eedback()
functions can be written as follows:

* Plus function pl us() for block parallel connections:

functi on G=pl us(Gl, &)

a=kron(Gl.a, @.a); b=[kron(Gl.a, &.b), kron(Gl.b,&.a)]; na=[]; nb=[];

for i=1:length(Gl.a), na=[na Gl.na(i)+Q&.na]; nb=[nb, Gl.na(i)+&.nb]; end
for i=1:length(GL.b), nb=[nb GL.nb(i)+G&.na]; end

G=uni que(fotf(a, na, b, nb));

 Multiplication function nt i mes() for block series connections:

function G=ntinmes(Gl, @)

@Q=fotf(&X); a=kron(Gl.a, R.a);

b=kron(Gl. b, @.b); na=[]; nb=[];

for i=1:length(Gl.na), na=[na, GlL.na(i)+Q&.na]; end
for i=1:1ength(Gl. nb), nb=[nb, Gl. nb(i)+Q&.nb]; end
G=uni que(fotf(a, na, b, nb));

 Feedback function f eedback() for block negative feedback connections:

functi on G=feedback(F, H
H=fotf (H);
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b=kron(F. b, H a); a=[kron(F.b, H b), kron(F.a,H a)]; na=[]; nb=[];

for i=1:length(F.b), nb=[nb F.nb(i)+H nb]; na=[na, F. nb(i)+H nb]; end
for i=1:length(F.a), na=[na F.na(i)+H na]; end

G=uni que(fotf(a, na, b,nb));

* Simplification function uni que():

functi on G=uni que(GQ

[a, n] =pol yuni q(G a, G na); G a=a; G na=n;

[ a, n] =pol yuni q(G b, G nb); G b=a; G nb=n;

function [a, an] =pol yuni g(a, an)

[an,ii]=sort(an,’ descend’); a=a(ii); ax=diff(an); key=1;

for i=1:1ength(ax)
if ax(i)==0, a(key)=a(key)+a(key+1); a(key+1l)=[]; an(key+1)=[];
el se, key=key+1; end

end

Other functions should also be designed, suchiasus(), um nus(),inv(),
and the files should be placed in tfa#@ot f directory to overload the existing ones. The
listings of these functions are not given in this text but available from the book’s companion
Website.

Example 8.2. Suppose in the unity negative feedback system, the system models are given
by
0.85s12 + 2 Guls) = 125072 4 155033
11518 4 0813+ 1.9595+ 04 )~ 308
The plant and controller can be easily entered and the closed-loop system can be
directly obtained with the commands

>> Gfotf([1.1,0.8 1.9 0.4],[1.8 1.3 0.5 0],[0.8 2],[1.2 0]);
Ge=fotf(3,[0.8],[1.2 1.5],[0.72 0.33]); H=fotf(1,0,1,0);
GG=f eedback( G Cc, H)

G(s) =

and the result is given by

B 0.9651-92 4 125193 4 245072 4 3,033
 3.352642.452140.96519241.251534 5751341250842 450724 350.33"
It can be seen from the above illustrations that, although the plant and controllers

are relatively simple, an extremely complicated closed-loop model may be obtained. This
makes the analysis and design of the fractional-order system a difficult task.

G(s)

8.2.3 Frequency Domain Analysis of Linear Fractional-Order
Systems

It can be seen that, whem jis used to substitute for the variablen the fractional-order
transfer function model, the frequency domain respafigey) can be easily evaluated.
Thus, the fractional-order Bode diagrams, Nyquist plots, and Nichols charts can be easily
evaluated with the functiobode( ) , which is written as an overload function for thet f

object
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functi on H=bode(G w)

a=G a; eta=G na; b=G b; g=G nb; if nargi n==1, w=l ogspace(-4,4); end

for i=1:1ength(w)

P=b*((sqrt(-1)*w(i))."g."); Qa*((sart(-1)*w(i)). eta.’); HL(i)=P/Q

end

Hl=frd(HLl,w); if nargout==0, bode(Hl); else, H=Hl; end

The syntax of the function i H=bode( G, w) , whereG is the fractional-order
transfer function object and the optional argumeris the frequency vector.

If one wants to draw the Bode diagram, there is no need to return any variable. If
frequency domain response data are needed, the response results can be found in the returned
variableH. The variableH can be used in drawing the Nyquist plot and the Nichols chart
by using nyqui st ( H) and ni chol s( H) , respectively.

8.2.4 Time Domain Analysis of Fractional-Order Systems
The evaluation of the time domain response of a fractional-order systemis more complicated.
Let us consider a special form of a fractional-order differential equation [93]

a1 y(0) + a2 2P y(t) + -+ + an1 9"y (1) + an 2" y (1) = u (1), (8.13)
whereu(t) can be represented by a certain function and its fractional-order derivatives.
Assume also that the output functiotr) has zero initial conditions. The Laplace transform
can be used to find the transfer function

1
G(s) = . (8.14)
ais™ 4+ axs"2 + - - - 4+ a,_18"-1 + g, s
Consider the Grunwald—Letnikov definition in (8.4). The discrete form of it can be
rewritten as
[(t—a)/h] o 1 [(t—a)/h] -
u.@,”’y(t) ~ W Z wjn’ Vi—jh = hT Yt + Z wj”' Yt—jh | » (815)
, Pt
Wherew(ﬁ’ can be evaluated recursively from the formula (8.3). By substituting it into
(8.13), the numerical solution to the fractional-order differential equation can be written as
no[t=a)/h] o
W= a0 a;_ Z i Z w/’h Yi—jh | - (816)
Z =1 h771 j=1 ’

For the general form of the fractional-order transfer function in (8.12), the right-hand
side can equivalently be evaluated first by using the numerical method discussed earlier.
The final solution can be obtained from (8.16). A MATLAB function can be written for the
f ot f object to evaluate the time domain response as follows:

function y=lsim{(Gu,t)
a=G a; eta=G na; b=G b; gamma=G nb; nA=l engt h(a);
h=t(2)-t(1); D=sum(a./[h."eta]); We[]; nT=length(t);
S
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vec=[ eta gamma]; Dl=b(:)./h." gama(:);
yl=zeros(nT, 1); Wones(nT,|ength(vec));
for j=2:nT, Wj,:)=Wj-1,:).*(1-(vec+l)/(j-1)); end
for i=2:nT
A=[y1(i-1:-1:1)]"*W2:i,1:nA); yl1(i)=(u(i)-sum(A *a./[h."eta]))/D
end
for i=2:nT, y(i)=(W2:i,nA+l:end)*D1)’ *[y1(i:-1:1)]; end
The syntax of the function i y=I si m( G, u, t) , where the time vector and the input
vector are defined in the variablesand u, respectively. The returned vectgris the
solution to the equations. If there are more points in the equation, the computation may be
very slow.
An overloadedst ep() function can also be written, based on thed n{) function
given above, as
function y=step(Gt)
u=ones(size(t)); y=lsimGu,t);
if nargout==0, plot(t,y); end
with y=step(G, t) , whereG is anf ot f object, andt should be given as an evenly
distributed time vector. The step response of the system is returned in yector
It is possible to solve the above fractional-order differential equation analytically
by using the Mittag—Leffler function in two parameters, which is a generalization of the
exponential function® The Mittag—Leffler function in two parameters is defined as
oo Zk
Eup(z) = — (a,8>0). 8.17
w.p(2) ;}WM) (@, B> 0) (8.17)
Clearly, € is a particular case of the Mittag—Leffler function [92]:
oo Zk o0 Zk
éal,l(Z)ZZ— =Z— =¢.
= rk+1 = k!
Furthermore, one can get more particular cases for the Mittag—Leffler function in two pa-
rameters, for example,
e -1 sinh(y/z)
&2.1(2) = cosh(/z), 612(2) = . 622(2) = 7\/— (8.18)
£i21(V3) =~ Cerfc(— /) (8.19)
51/21(V/2) = N 7). .
The analytical solution of the-term FODE is given in general form [92] by
1 o0 (=™
Yy ==y = > (ko ki, ... ke2)
M oo M ko-+kg -ty _p=m
ko=0,....k,_2>0
n—2
nZ2 0 g\ Ba=Bu-Dm+But 3 (Bu1—Bk;~1
(—) t =0 (8.20)
i—0 \n
S
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5(7’1) o (_an_ltﬁn_ﬁnl> ,
br=bu-1.But T (Bror= ks n
=

whered;, . (z) is the Mittag—Leffler function in two parameters as defined in (8.17) and

o0

dn (G +n)! y/
& =§ forn=0,1,2,.... 8.21
d yh )»,;L(y) = ITOJ +on+ ) n ( )

&M (y) =

8.3 Filter Approximation to Fractional-Order
Differentiations

It can be seen that the Griinwald—Letnikov definition gives a very good fitting to the

fractional-order derivatives for given functions. However, in control system analysis and
design, the definition is not useful, since the samples of the function should be known. On-
line real-time fractional-order differentiation may be required in control systems. Using

filters is one of the best ways to solve the problems.

8.3.1 Oustaloup’s Recursive Filter

Some continuous filters have been summarized in [105]. Among the filters, the well-
established Oustaloup recursive filter has a very good fitting to the fractional-order dif-
ferentiators [106]. Assume that the expected fitting rang@is ;). The filter can be
written as

/
s+a)k

(8.22)

N
Gr(s) =K ,
f() kl__[Ns—i-a)k

where the poles, zeros, and gain of the filter can be evaluated from (8.23) such that

N+ 3 A—y) KN +3ty)

wp, 2N+1 wp 2N+1
w,/( =wp | — , wp =owp | — , K= wZ. (8.23)
wp wp

With the above algorithm, the following MATLAB functioaust af od() can be written
to design the continuous filter. Thus, thé&) signal can be filtered through the filter and
the output of the filter can be regarded as an approximation t&@ther) signal.

functi on G=oustafod(r, N, wb, wh)

mu=wh/wb; k=-N:'N, w_kp=(rmu)."” ((k+N+0.5-0.5%r)/ (2*N+1)) *wb;

w_k=(rmu) .~ ((k+N+0. 5+0. 5*r)/ (2* N+1) ) *wb;

K=wh"r; G=tf(zpk(-w kp',-wk',K));

The function can be called wit G y=oust af od( y, N, wp, wy) , Wherey is the order

of the differentiation, &/ + 1 is the order of the filter, and the frequency fitting range is
given by (wy, wy,). The filterG ; can be designed such that it may fit very well within the
frequency range of the fractional order differentiator.
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Bode Diagram Step Response
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Figure 8.1. Time and frequency domain comparisons.
Example 8.3. Consider a fractional-order model
_2,063_ 4
G(s) = )
2s3.501+ 3.85242 + 2.6s1~798+ 25131 +15

Since the original orders are all fractional, it may not be easy to design controllers for
them. Thus, a model reduction technique can be considered to reduce the order such that a
low integer-order approximation can be achieved. Suppose that one wants to approximate
the differentiators within the frequency ranggd®3, 10%); the high-order term can also be
approximated as>°01 = 359501 and the integer-order approximation can be obtained as
>> N=4; wl=le-3; w2=1e4; gl=oustafod(0.501, N, wl, w2);

s=tf('s’);

g2=oust af od( 0. 42, N, w1, w2) ; g3=oust af od(0. 798, N, wl, w2) ;

g4=oust af od(0. 31, N, wl, w2) ; g5=oust af od(0. 63, N, wl, w2);

Gl=(-2*g5-4)/(2*s" 3*gl+3. 8*s™ 2*g2+2. 6*s*g3+2. 5*s*g4+1.5) ;
It is found that the order of the approximation reaches 48. The exact Bode diagram and
its 48th-order approximation are shown in Figure 8.1(a). The step responses of the system
is obtained as shown in Figure 8.1(b). With the following MATLAB statements, it can
be seen that the time response of the filter can accurately approximate the fractional-order
derivatives of the system.
>> b=[-2 -4]; nb=[0.63 0]; a=[2 3.8 2.6 2.5 1.5];

na=[3.501 2.42 1.798 1.31 0]; G=fotf(a, na,b, nb);

w=l ogspace( -4, 4,500); H=bode(G w); bode(Gl, H, {1e-4, 1e4d});

figure; t=0:0.004:30; y=step(Gt); step(GL, 30); line(t,y)

The open-loop Nyquist plots and Nichols charts can also be obtained as shown in
Figure 8.2. It can be seen that the Nyquist plot accurately fits the theoretical one, while the
Nichols chart is shifted by 360which means the two are identical:
>> H=bode(G w); nyquist(GH, {1le-4, 1e4});

figure; nichols(GH, {le-4,1e4}); grid
S
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Nyquist Diagram Nichols Chart
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(a) Nyquist plots (b) Nichols plots
Figure 8.2. Comparisons of other frequency domain plots.

8.3.2 A Refined Oustaloup Filter

Here we introduce a new approximate realization method for the fractional-order derivative
in the frequency range of interdst,, w;]. Our proposed method here gives a better approx-
imation than Oustaloup’s method with respect to both low frequency and high frequency.

Assume that the frequency range to be fit is definedeaswy). Within the pre-
specified frequency range, the fractional-order opergftocan be approximated by the
fractional-order transfer function as

1+ 2\
K(s) = - , (8.24)
1+ m

whereO< o <1, s =jw, b> 0, d >0, and

bs \* —ds?+d \*
KGs)=— 1+———) . 8.25
() <da)b) ( + ds? +bwhs) ( )

In the frequency range, < w < wy, by using a Taylor series expansion, we obtain

K(s) = (dbjs;,) (1+ ap(s) + O{((XT_:L)pZ(s) + - ) (8.26)

with
) —ds? +d
§) = ————.
P ds? + bwys

It is then found that

_bs_

ap—o 1+ «
@ (dwp)*b i| ( dwb> . (8.27)

—1 ds
[rap+ 2D 0 | \F i
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Truncating the Taylor series to 1 leads to
dop)®  (1+2\"
s n ) ( d;;b ) . (8.28)
b (1+ ap(s)) + A

Thus, the fractional-order differentiator is defined as

o dap\* ds? + bwys 14 L Tor . (6.29)

b d(1—a)s2 + bwys + da 1+b
wp

Expression (8.29) is stable if and only if all the poles are on the left-hand side of the

complexs-plane. Itis easy to check that expression (8.29) has three poles:
» One of the poles is located athwy, /d, which is a negative real pole sineg > 0,
b>0,d>0;
» The two other poles are the roots of the equation
d(1—a)s? + awps +da =0 (8.30)
whose real parts are negative since @ < 1.
Thus, all the poles of (8.29) are stable within the frequency réamgew;,).
The irrational fractional-order part of expression (8.29) can be approximated by the
continuous-time rational model
N
) 1+ s/a)k
K(s)= lim K I|m . 8.31
(s) = lim Ky(s) = 1‘[ Trs/o0 (8.31)
According to the recursive distribution of real zeros and poles, the zero and pole df rank
can be written as
deon\ 3721 boon \ a1
, wp + wp +
- (== , === } 8.32
o ( b ) o ( d ) (632
Thus, the continuous rational transfer function model can be obtained [107] as
don \* ds? + bwys Noos 1w
s [ =2 I1 k. (8.33)
b d(1— a)s? + bowps + da Pt + wy

Through confirmation by experimentation and theoretical analysis, the synthesis ap-
proximation can obtain the good effect whiga= 10 andd = 9.

Through the approximation method, the fractional-order system may be approximated
as the very high integer-order system. The high integer-order rational transfer function could
be very tedious.

S
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With the above algorithm, a MATLAB functionew _f od() is written
functi on G=new_fod(r, N, wb, wh, b, d)
if nargi n==4, b=10; d=9; end
mu=wh/ wb; k=-N: N, w_kp=(rmu). " ((k+N+0.5-0.5%r)/ (2*N+1)) *wb;
w_k=(mu) .~ ((k+N+0. 5+0. 5*r)/ (2*N+1)) *wb; K=(d*wh/b)"r;
G=zpk(-w_ kp', -w k', K)*tf([d, b*wh, 0], [d*(1-r), b*wh, d*r]);

with the syntax G r=new_f od( y, N, wpy, wp, b, d) .

Example 8.4. Consider a model

s+1
10532 + 18525 4 28807 + 1

whichis afractional-order model. The exact Bode diagram can be obtained witbdieg )
function. The approximations using the Oustaloup filter, and the refined Oustaloup filter,
can be obtained as shown in Figure 8.3(a). The approximations (thenodel are shown
in Figure 8.3(b). It can be seen that the refined method provides a much better fit:
>> b=[1 1]; a=[10, 185,288,1]; nb=[1 0]; na=[3.2,2.5,0.7,0];

w=|l ogspace( -4, 4,200); @D=fotf(a,na,b,nb); H=bode(G0,w);

s=zpk(’'s'); N=4; wl=le-3; w2=1e3; b=10; d=9;

gl=oust af od(0. 2, N, wl, w2); g2=oust afod(0.5, N, wl, w2); al=gil;

g3=oust af od(0. 7, N, wl, w2) ;

Gl=(s+1)/(10*s”3*gl+185*s” 2*g2+288*g3+1);

gl=new_fod(0.2, N, wl, w2, b,d); g2=new fod(0.5, N, wi, w2, b, d);

g3=new_fod(0.7, N wl, w2, b,d); bode(gl,al); figure

&=(s+1)/(10*s" 3*gl+185*s” 2*g2+288*g3+1); bode(H, Gl, &R)

G(s) =

8.3.3 Simulink-Based Fractional-Order Nonlinear Differential
Equation Solutions

From the previous discussions, it can be found that the refined Oustaloup recursive filter
is an effective way to compute the fractional-order derivatives. It should be noted that the

Bode Diagram Bode Diagram
20
— 0
@ 10 o )
g ) T _so Oustaloup’s
o OrOustaloup’s P
S 10 3
= £ -100
-30 refined 150
-40! -200
90 0 -
<« Oustaloup’s
oy ] S -45
g <« refined g
@ 45 g 90
& &
£ £ -135
o Oustaloup’s — 180
164 162 16 1 1" 1064 162 10 16 10"
Frequency (rad/sec) Frequency (rad/sec)
(a) sO-2 fittings (b) Bode diagram comparisons

Figure 8.3. Bode diagram comparisons.
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orders of the numerator and the denominator in the refined Oustaloup filter are the same,
which may cause algebraic loops in Simulink. To avoid the algebraic loops, the filter should
be followed by a low-pass filter, with a crossover frequetagy The constructed block is
shown in Figure 8.4(a).

With the mask facilities provided in Simulink, the fractional-order differentiator block
can be built, as shown in Figure 8.4(b). Double click the fractional-order differentiator block
to display the dialog box in Figure 8.4(c), which allows the user to enter parameters into the
refined Oustaloup filters:

wo=w\( 1) ; wh=wM 2); G=new_fod(gam n, wb, wh, 10, 9);
numeG nun{ 1}; den=G den{1}; T=1/wh; str="Fractional\n’;
if isnuneric(gam
if ganr0, str=[str, 'Der s”' nun2str(gam ];
else, str=[str, '"Int s°{’ nunBstr(gam '}']; end
el se, str=[str, 'Der s"gam]; end

In practical simulation processes, the model established could be made up of stiff
systems. Thusyde15s or ode23tb algorithms should be selected to ensure high efficiency
and accuracy. Examples will be given to demonstrate the solutions of FODEs.

Example 8.5. Consider the nonlinear FODE described by

3@0‘9y(t)
3+0.2998y(1) + 0.9292y (1)

1.5
+ (2@0-7y(t)) + gy(t) — 55sin(100).

It can be seen that solving the original FODE is very complicated. From the original
equation, the output signalz) can explicitly be expressed as

32%% 1)
3+ 0.2998y (1) + 0.9202y(r)

3 15
=7 [5 Sin(10r) — - ‘2@‘%(;)‘ } .
A Simulink model can then be established from the above equations, as shown in Fig-
ure 8.5(a). It can be seen from the model that each fractional-order differentiator can be
modeled with the above designed block. In Figure 8.5(b), the simulation results are shown,
with different parameters of the refined Oustaloup filter.

num(s 1 Subsystem [mask)
num(s)
Inl den(s) T.s+l Outl
Transfer Fen Transfer Fenl Lasneter s
Deriwative order gamma
. ) .o
(a) fractional-order filter
Frequency range [wb, wh]
[[0. 001, 1000]
Fractional Apprizmation order
Der s”0.9 [+
(1):4 | Cancel | Help | |
(b) masked block (file: c7mfode.mdl)

(c) Dialog box of fractional-order differentiators
Figure 8.4. Fractional-order differentiator block design.
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——D

Outl

y(® | Fractional
Der s70.9

Fractional
™ Der s%0.8

Fractional
™ Der 5%0.2

> Fractional d -2
Der s"0.7 > abs(u)"1.

Fcn -25
0

05 1 15 2 25 3 35 4

(a) Simulink model (file: c7mfod2.mdl) (b) simulation results

Figure 8.5. Simulink modeling and results of a nonlinear FODE.

It can be seen that the results are the same, and the only exception is the combination
of wp, = 0.001, w, = 100Q N = 2. However, even with this rough approximation, the
error is still acceptable.

8.4 Model Reduction Techniques for Fractional-Order
Systems

It has been shown that if the integer-order approximation is used to fit the fractional-order
transfer function models with the use of the refined Oustaloup recursive filter, the order of
the final system could be extremely high. Thus, a low-order approximation to the original
problem can be found using the optimal model reduction method.

Recall the expected reduced-order model given by

Bis" + -+ Brs + Brya e TS
st ars™ L a1 o '

Grim,(s) = (8.34)
An objective function for minimizing the>-norm of the reduction error signaft) can be
defined as

J = min Hé(s) — Grjme(s) (8.35)

)2’
whered is the set of parameters to be optimized such that

0=1I[B1,....8,01,...,0n, T]. (8.36)

For an easy evaluation of the criteridnthe delayed term in the reduced-order model
G/m,z(s) can be further approximated by a rational funct@yy,, (s) using the Padé ap-
proximation technique [47]. Thus, the revised criterion can then be defined by

J = min H@(s) - Gr/m(s)Hz (8.37)

and the#f,-norm computation can be evaluated recursively using the algorithmin [108]. The
functionopt _app() discussed in Sec. 3.6 can still be used for fractional-order systems.
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Table 8.1. Comparisons of different order combinations.

r| m Reduced-order model Error

0.0314%2 — 0.8141s — 0.07206
2| 3 0.2286
s34+ 0.31682 + 0.258% + 0.02703

_ 2 .
| 4 0.01192 — 23215 — 2.035 0.2308
s4 + 287853 +9.2422 4 7.36% + 0.7634

_ 2_ _
| g 4.93252 — 0.8602 — 0.00386 0.1342
$5 4+ 5.7415% + 2.79453 + 1.59652 + 0.3134 + 0.001448

—2.327x 10%s2 — 4059 — 1821
2| 6 0.1342
s64+47195+4+2.709x 10454+ 1.318x 10453 +7534°2+147%+6.831

Step Response Bode Diagram
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Figure 8.6. Comparisons of the reduced-order models.

Example 8.6. Consider again the high-order fractional-order transfer function given in
Example 8.3, where a 48th-order model was obtained, and with the refined Oustaloup
filter, a 58th-order model can be obtained. Using optimal reduction techniques for different
order combinations, the reduced-order models can be found as shown in Table 8.1. It can
be seen that th&/5(s) model is the best one. The step responses and Bode diagrams are
compared in Figure 8.6. It can be seen that the approximation is satisfactory. It should
be noted that in the code, tlpt _app() function may be called several times since the
original model should be used in these cases.

>> N=4; wl=le-3; w2=1e3; s=tf(’'s’); gl=new fod(0.501, N,wl, w2, 9, 10);
g2=new_f od(0. 42, N, w1, w2, 9, 10); g3=new_f od(0. 798, N, wl, w2, 9, 10) ;
g4=new_f od(0. 31, N, wl, w2, 9, 10); g5=new_fod(0. 63, N, wl, w2, 9, 10) ;
G=(-2*g5-4)/(2*s” 3*gl+3. 8*s” 2*g2+2. 6*s*g3+2. 5*s*g4+1. 5) ;

G 1l=opt _app(G 2,3,0);norm G G 1), G 2=opt_app(G 2,4,0); norn( G G 2)
G 3=opt _app(G 2,5,0); G 3=opt_app(G 2,5,0,G3); norm G G 3)

G 4=opt _app(G, 2,6,0); G4=opt_app(G 2, 6,0, G4);

G 4=opt _app(G 2,6,0,G4); nornm(G G 4)

step(GG1,G2,G3,G4,30); figure; bode(GG1l, G2, G3 G4
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300 Chapter 8. Fractional-Order Controller: An Introduction

8.5 Controller Design Studies for Fractional-Order
Systems

From the analysis given previously, it can be seen that the behaviors of fractional-order
controllers may be different from their integer-order counterparts. For instance, if the
widely used PID controller is considered, its fractional-order versié®PIlcontroller can

be expressed by [99]

K;
Ge(s) =Kp+ — + Kgs*. (8.38)
s

In the illustration in Figure 8.7, the fractional-order PID controller is explained, with
the horizontal axis as the order of the integrator and the vertical axis the order of the
differentiator. It can be seen that the ordinary PI (proportional plus integral), PD, and PID
controllers are special cases of the fractional-order PID controller since the valuasof
u can be selected freely, which adds two more degree of freedom to the controller design. It
has been shown that the control behavior of the best fractional-order PID controller is quite
superior to the best conventional PID controller in some applications [109].

If the loop shaping technique is considered, it can be seen that the Bode magnitude
diagrams is no longer restricted tokiB/decade slopes. Thus the shape of the loop transfer
function can be set freely for better performance and robustness. In this section, several
examples will be given to show the design of an integer-order controller and fractional-order
controller for fractional-order plants.

Example 8.7. For a plant model

1
526+ 22515 4 29513 1 332509 + 1°

G(s) =

if an integer-order PID controller is expected, it is quite natural to first find an FOPDT
approximate model,

—Ls
Ts+1

and then design a PID controller for the FOPDT model. The designed controller can then
be used in closed-loop control of the fractional-order plaryt). For instance, the Wang—
Juang—Chan algorithm [69] in Sec. 6.3.4 can be used to design a PID controller for an

G,(s) =k

PD controller PID controller

Pl controller 2

Figure 8.7. Fractional-order PID controller.
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FOPDT model with an optimum ITAE criterion:
(0.73034 0.5307/L)(T + 0.5L) 0.5LT
= , I,=T+05L, Ty=———_ (839
P K(T + L) p=1 4=7080 39
The following statements can be used to extract the FOPDT model from the approxi-
mated high-order plant model:
>> N=4; wl=le-3; w2=1e3; s=tf(’'s’);
gl=new fod(0.6, N, wl, w2, 9, 10); g2=new fod(0.5, N,wl, w2, 9, 10);
g3=new_fod(0. 3, N, wl, w2, 9,10); g4=new_fod(0.9, N, wi, w2, 9, 10);
G=1/ (s~ 2*gl+2. 2*s*g2+2. 9*s*g3+3. 32*g4+1); G =opt_app(GO0, 1, 1)
The reduced plant model is then
G, (s) = ——— g 0b1%
8= 01702
The PID controller can be designed such that
>> K=0.1702/0.1702; T=1/0.1702; L=0.612;
Ti =T+0. 5*L; Kp=(0.7303+0.5307*T/L)*Ti/(K*(T+L));
Td=(0.5*L*T)/ (T+0.5*L); Gc=Kp*(1+1/ Ti/s+Td*s),
The integer-order PID controller is designed as
1 1.61452 + 5.55¢ + 0.8979
G =47960( 1+ ———— +0.3076 | = .
c(s) ( t 56315 ) s
Under such a controller, the closed-loop step response is obtained as shown in Figure 8.8. It
can be seen that the integer-order PID controller can still be used in the fractional-order plant
control. The control results are satisfactory. Itis also seen that the high-order approximation
to the closed-loop system is very accurate:
>> Gef=fotf(1,1,[1.614 5.55 0.8979],[2,1,0]); Hfotf(1,0,1,0);
a=[1 2.2 2.9 3.32 1]; an=[2.6,1.5,1.3 0.9 0]; 0=fotf(a,an,1,0);
GG=f eedback( Gcf *@0, H); t=0:0.005: 15;
st ep(feedback(G CGc,1),t); hold on, step(feedback(®@*CGcf,H),t);
Example 8.8. Consider a fractional-order plant model
G(s) = 10
VT 22
where the ordew is an undetermined parameter, within the intewvat (1.2, 1.6). The
nominal value of the variable igp = 1.4. In order to get a low-order robust controller, a
relatively smaller value aV can be selected, for instan@é,= 2. The following statements
can be used to approximate the original model by integer-order approximation such that
>> N=2; wl=le-3; w2=1e3; s=tf(’'s’);
gl=oustafod(0.4, N, wl, w2); G=1/(s*gl+2.2);
S
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Step Response
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Figure 8.8. Integer-order PID control of fractional-order plant.

Select weighting functionsy(s) = 100/(s + 1) and wz(s) = 10/(0.01s 4+ 100). The
optimal #, controller can be designed such that

>> WL=100/ (s+1); WB=100/(0.01*s+100); Gc=m xsyn(G WL, [], WB);
The controller can be designed as

7187020%s + 1000 (s + 144.3)(s + 8.265)(s + 0.1116
(s + 0.006921(s2 + 1.73s + 2.388)
(s + 9499 (s + 9975 (s + 346.4)(s + 27.46)
(s +1.738 (s + 1)(s + 0.1096 (s + 0.006918

Ge(s) =

Under such a controller, the open-loop Bode diagrams and the closed-loop step response
are obtained as shown in Figures 8.9(a) and (b), respectively:

>> f1=figure; bode(GCc); hold on
f2=figure; step(feedback(GCc,1),0.1); hold on
for a=[0.2:0.05:0.6]
gl=oust af od(a, 4, wl, W2) ; Gl=1/(s*gl+2.2);
figure(fl); bode(Gl*Cc);
figure(f2); step(feedback(Gl*Gc, 1),0.1)
end

Example 8.9. Consider again the fractional-order plant model in Example 8.7. The integer-
order approximation can be obtained such that

>> N=4; wl=le-3; w2=1000; s=tf(’'s’);
gl=oust af od(0. 6, N, wl, w2); g2=oust af od(0.5, N, wl, w2);
g3=oust af od(0. 3, N, wl, w2); g4=oustafod(0.9, N, wl, w2)
G=1/ (s™ 2*gl+2. 2*s*g2+2. 9*s*g3+3. 32*g4+1) ;

Using the integer-order model, the Simulink model for optimal controller design with
an integer-order PID controller is established as shown in Figure 8.10(a). A saturation
actuator with limits5 is also included in the Simulink model.
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Bode Diagram
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Figure 8.9. Time and frequency domain analysis under robust controller.
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(a) Simulink model (file: c8mfpid2.mdl)
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Figure 8.10. Optimal PID controller design for fractional-order plant.

It can be found by using the Optimal Controller Designer (OCD) program that
the parameters of the PID controller akg, = 147681007 K; = 1.35636077K,; =
230639271. Under such a controller, the optimum step response of the closed-loop system
can be obtained as shown in Figure 8.10(b). It can be seen that the controller obtained with
the OCD is much better than the one obtained in Example 8.7. Also the control action is
restricted within the specific range.

Due to the robustness of the PID controllers, the errors in the controller parameters
may not cause any problem in the control results. For instance, if we had the erroneous
parametersK, = 1000Q K; = 1, K; = 2500, where the errors reach 35%, the control

results would be as shown in Figure 8.11(a). It can be seen that the system responses are

almost the same with the optimal PID controller:
>> Kp=10000; Ki=1; Kd=2500;

[t,x,y]=sinm(’c8nfpid2’, [0, 10]);
Assume that plant model is changed to
2

G(s)=

control results are as shown in Figure 8.11(b). It can be seen that, although the plant models

plot(t,y(:,2))

526455154 4513453250941
where the parameters are all perturbed. If the erroneous PID controller is still used, the
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Figure 8.11. The robustness of the PID controller.

change significantly, the PID controller can still behave perfectly. This demonstrates the
robustness of the PID controller in fractional-order plant models:

>> G=2/ (s” 2*gl+b*s*g2+4*s*g3+5. 32*g4+1) ;
[t,x,y]=sim(’ c8nfpid2’,[0,10]); plot(t,y(:,2))

Problems

1. Assume that a fractional-order linear differential equation is given by
0.8222y(1) + 0.52°%y(t) + y(t) = 1,

with initial valuesy(0) = y’(0) = y”(0) = 0. Solve numerically the FODE. If the
order of 2.2 is approximated by 2, and 0.9 is approximated by 1, the original fractional-
order differential equation can be approximated by an integer-order system. Compare
the accuracy of the approximated integer-order systems.

2. For afractional-order model given by

5

(@. Gls) = §23 4+ 1.3s09 4+ 125

and
5506 +2

533 + 31526 4 2.89519 4 2.5¢14 4 1.2

approximate the fractional-order models with low-order integer-order models, and
compare the accuracy of the frequency and time domain fittings. Discuss what order
combination is most suitable for the original model.

b). G(s) =

3. Suppose that the plant model is

1
§2642.251542.951343.32509+1"

G(s)=
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and an integer-order PID controller is
1.61452 + 5.555 + 0.8979
G.(s) = .
N
Find the closed-loop fractional-order model.

4. Write a function to find the solutions to the FODE using the algorithm in (8.17)—
(8.21), and compare the results with the Griinwald—Letnikov definition approach and
the block diagram algorithm.

5. Consider the linear FODE given by

o
t “x(t 1) =1,
Px() + <1+2/\> D%x(t) + x(1)
wherex = 0.5, ¢ = 0.25 andx(0) = 0. Solve the equation numerically.

6. Find a good approximation &7 with the revised Oustaloup filter and see whi¢h
can best fit the fractional-order differentiator.

7. Solve the following nonlinear FODE with the block diagram algorithm wii®) = O:

2
Z2x(t) + M5 (1) + [90-555x(t)] +x3(t) = sint.
8. For the plant model
5506 4 2
Gs) = 33 26 19 14 ’
§33 + 31546 + 28919 4 25514 4+ 1.2
design an integer-order PID controller and observe the control results.
9. For the fractional-order model
G = b
CasOT+ U
design an#, controller which can tolerate the parameter changes in the fractional-
order model, for instance, € (0.2, 5) andb € (0.2, 1.5).
e



2007/
pages



Appendix

CtrILAB: A Feedback
Control System Analysis
and Design Tool

A.1 Introduction
A.1.1 What Is CtrILAB?

CtrlLAB, a MATLAB-based toolkit with an integrated graphical user interface (GUI), was
designed by the authors for solving the modeling, analysis, and design problems in SISO
(single input—single output) feedback control systems. It is developed from the old Control
Kit by the authors [110]. CtrlLAB has become a flexible and powerful tool for both teaching
and engineering design and requires minimum user effort. It can be used as a companion
to this book.

CtrILAB, written and tested under MATLAB v4.2, was first made public on the
MathWorks anonymous ftp site as a user-contributed MATLAB program. Since then, much
useful feedback has been received. Over the years, CtrlLAB has been greatly improved. It
has already been used as a CAl (computer aided instruction) tool in control courses at many
universities worldwide. The latest version of CtrILAB can also run under other versions
of MATLAB, including MATLAB R2007b. It is still freely downloadable from MATLAB
Central at

htt p: // ww. mat hwor ks. conf mat | abcentral /i ndex. shtm

Currently, CtrlLAB is the most downloaded tool under the Controls and Systems Modeling
file exchange category at MATLAB Central.
The main facilities provided by CtrILAB are

» model entry, including Simulink model entry;

» model display;

» state space realizations;

» model reduction using various algorithms;

 system analysis in frequency and time domains;

« graphical display with figure editing and manipulation;
» a GUI matrix processor and editor;

307
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308 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool

« many controller design modules such as the model-based approaches (lead-lag, LQ
(linear quadratic) optimal, pole-placement, etc.); PID (proportional integral derivative)
parameter setting and PID tuning schemes; and robust controller design approaches
(such as LQG (linear quadratic Gaussian), LQG/LTR (loop transfer recovity),

Hoo, €tC.).

A.1.2 Installation and Requirements

Withthe downloadedt r | | ab. zi pfile, unzipitto adirectory usingi nZi p orpkunzi p
software. Before running CtrILAB, the directory of CtrILAB should be added to the MAT-
LAB path. This can be set with thiéle | Set Path menu item in the MATLAB command
window.

CtrILAB is written for the PC Windows platform; however, it should also be able to
run on other platforms. Although CtrILAB has not been fully tested on other platforms,
with a MATLAB version newer than 4.2c, the cross platform compatibility will be much
better than what was experienced under MATLAB version 4.2c. We believe that CtrILAB
can run on any current version of other platforms with little modification.

A.1.3 Execution of CtrILAB

To run CtrlLAB, simply type ctrl | ab under the MATLAB prompt, and a GUI with
menus will pop up, as shown in Figure A.1. The user must first enter or to define the
models, which include the plant, the controller, and the feedback element. The default
models for the latter two are all unity. The possible time delay may also be specified. With
the specified models, the analysis and design tasks can be performed.

Menus and dialog boxes are provided to invoke relevant functions to fulfill the user’s
own analysis and design tasks. Note that all the functions provided in CtrILAB can be
accessed through the efficient and user friendly GUI. There is no need to call these functions

¥ CtrlLAE Feedback Contrel Systems Laboratory

File Model Analysis Design Help

D= 2] Bo| | ni| N AL 5t] im| =]

Figure A.1. The GUI of CtrILAB.
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manually. CtrILAB is designed for linear feedback control system analysis and design using
only mouse clicks and numeric key strokes. Great effort has been made in CtrILAB to
minimize the user involvement in the analysis and design of feedback control systems.
A.2  Model Entry and Model Conversion

A.2.1 Transfer Function Entry

To quickly enter a default model, the user can click one of the model icons in the block
diagram shown in Figure A.1, and CtrlLAB will check whether the model exists in the work
space. If it does not exist, a dialog box, shown in Figure A.2, will appear by default, which
allows the user to enter the system model by specifying the numerator and denominator,
respectively, in the appropriate edit boxes.

The transfer function model can be entered in two ways. The first is by entering
the standard MATLAB vectors in descending order of the Laplace complex vatiable
The second is by representing the polynomials in a “natural way.” These two methods
are demonstrated in Table A.1. It can be seen that for the factorized polynomials, the
s polynomial representation is much more “natural” and simpler than a pure MATLAB
expression.

A.2.2 Entering Other Model Representations
The state space model, or zero-pole-gain model, can also be entered if the corresponding
item from the list box shown in Figure A.2 is selected.
Nu;r[n:;atorpolymmial Apely |
Denominator polynormial Cancel |
I[‘H] Help |
Clear Model |
Oither Type
State space
Pale-zero-gain
SIMULINE
Figure A.2. Dialog box for transfer function model entry.
Table A.1. Examples of polynomial representations.

Mathematical MATLAB commands s polynomial

s2+55+4 [1,5, 4] S2+55+4

s2(s +5)(s2+7) [conv([1,5],[1,0,7]),0,0] |s2(s+5)(s2+7)2

1.553(s3+752+65+2)12 | too complicated 1.553(s3+7s2+65+2) 12
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¥ Enter system model

zeros of the system
I zeroz(0.1] ﬂl
poles of the swstem Cancel |
|

(Fain

| 1 Clear Model |

Other Type [{=

Help

Figure A.3. Dialog box for zero-pole-gain model entry.

Coefficient matrix &
[ Apply |

WVector B Cancel |

|1

WVector C

K Clear Model |
D constant I ] Other Type

Help

State space

Figure A.4. Dialog box for state space model entry.

In Figure A.2, if the menu itempole-zero (for zero-pole-gain model) is selected, the
dialog box shown in Figure A.3 will appear, where the zero-pole-gain model parameters
can be entered in the corresponding edit boxes. Then, presQkhesutton to confirm.
Internally, a transfer function object will be generated automatically from the user-specified
zero-pole-gain model. For ttetate space item, the dialog box shown in Figure A.4 will
appear, where thed, B, C, D) matrices of the system can be entered in the corresponding
edit boxes. Then, a transfer function object of the block can be generated automatically
from the given state space model.

A.2.3 A More Complicated Model Entry

If the system model under study has a more complicated structure, such as containing com-
plex block diagrams or nonlinearities, the Simulink program should be used to construct the
system model. Inthis case, the user can sele@ithelink item from the dialog box shown

in Figure A.2. A model name (an internal name) will be requested and then the Simulink
editing environment will appear, as shown in Figures A.5(a) and (b), where Figure A.5(a) is
the model library from which all the Simulink library models can be accessed. Figure A.5(b)

is a blank Simulink model editing window in which the user can draw the system model
between the input and output ports of the system. Once the model entry process is completed
in the Simulink edit window, as shown in Figure A.5(b), double clRekurn to CtrILAB

to return the user system model to CtrlLAB. If the user model in Simulink is nonlinear, the
linearized transfer function model of the user system will be created and saved, together with
the original Simulink model, for CtrlLAB use. A simple nonlinear model entry example in
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Figure A.5. Simulink model entering in CtrILAB.
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Figure A.6. Complicated model entry in CtrILAB via Simulink.

CtrILAB is shown in Figure A.6 which uses Simulink to describe the nonlinear part. Note
theReturn to CtrlLAB button in Figure A.6 for returning a linearized transfer function object

for use with CtrlLAB.

A.3 Model Transformation and Reduction

A.3.1 Model Display

To display the model of a block in Figure A.1, selégbdel | Model Select in the menu
shown in Figure A.7, or simply click the relevant block button in the main interface shown

in Figure A.1.
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Model Analwysiz Dezign Help
Model Select 4 v Gis]
Model Type » Ge (=)
Model Dizplay 4 Hi=]
Bealization 4 Exp(-T=]
Reduction. ..
Show
Enter/Modi £
Show model library
4dd More Blocks 4
Figure A.7. Model selecting menu.
# Information Display Window
Plant model
9+75%+ 245+ 24 x|
4 1057+355% 4502+ 24 Modify |
Figure A.8. Transfer function display.
Madel Di=play H| v Tran=fer Function
State Space
Fole—Zera
Factorized TF
Figure A.9. Display format selection.
As an example, consider the transfer function of the plant model given by
GGs) s34 752+ 245 + 24
S) = .
54+ 1053 + 3552 + 505 + 24
To display the transfer function model of the plant, simply pres€ifsgbutton in the main
interface shown in Figure A.1. The transfer function model will then be displayed in the
Information Display Window as shown in Figure A.8. The displayed model can also be
modified in the display window by pressing tModify button. The dialog box shown in
Figure A.2 will be displayed again for model parameter changes.

The block model can be displayed in various formats. This can be done by selecting
theModel | Model Display menu, shown in Figure A.9, with the transfer function format
as the default. Through tidodel | Model Display | Factorized TF menu item, the transfer
function in the factorized format will be displayed as shown in Figure A.10.
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# Information Display Window
Figure A.10. Factorized transfer function display format.
# Infermation Display Window
Figure A.11. State space model display format.
# Matrix Processor
Dl{e| 1| =I=[=|od 2 I
Izl iz ine
Figure A.12. Display via the Matrix Processor.
Moreover, the state space model can be displayed bivithdel | Model Display |
state space menu item as demonstrated in Figure A.11. WherSth@y button is clicked,
the Matrix Processor is activated; the typical window is shown in Figure A.12. The zero-
pole-gain format of the system is displayed by Medel | Model Display | Pole-Zero
menu item which is shown in Figure A.13.
If the nonlinear system model is involved, only the linearized model will be displayed
as in Figure A.14. To display the original Simulink model, simply presst¢h€trILAB
button.
O
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% Information Display Window

Plant tnodel

Gaine 1.5 _ Clear|
Zeros: -5, -0.8 fl olify |

Poles: -5.553, -1.51620.5465, -0.4163

Figure A.13. Zero-pole-gain display format.

@ Information Display Window

Plant tnodel

155248 7s5+6 Clear |

405542352427 S5+6 Modify |

Figure A.14. Linearized model display.

A.3.2 State Space Realizations

Different state space realizations can be performed for a given transfer function plant model.
This can be done by thelodel | Realisation menu items shown in Figure A.15, and an
example of the Jordanian canonical form of the system is obtained, as shown in Figure A.16,
via the Matrix Processor interface.

A.3.3 Model Reduction

Reduced-order models of the system can also be obtained Wdtiel | Reduction menu
item. The model reduction dialog box will appear as in Figure A.17, where various model
reduction approaches are implemented such as the continued-fraction approach, the Padé
method, the Routh method, the dominant mode method, the balanced realization method,
the optimal reduction method, the FF-Padé method, the modal method, and the optimal
Hankel approximation method.

For example, if the Padé approximation method is chosen from the list box of model
reduction methods, the expected order of the reduced model can be specified as in Fig-
ure A.17. The reduced-order model is then obtained as shown in Figure A.18.

Bealisation Pl ¥ Controllable form

Obzerwable form
Jordan form
Minimal realisation

Balanced realization

Figure A.15. State space realization menu.
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File Edit Formats Analysis StateSpace Help
Dl w1 ==l=lod 2] i
A tnatrix
4 010 0 :I iz
0 -3 0 0
D0 -2 0
000 -
B wector transpose
64.88 -127.1 -78.70 15.32
C wector
006165 0.04721 -0.0253%8 0.06526 Refresh |
D constant | Eui |
Figure A.16. Jordan realization.
Model Eeduction Farameters
Select a method Feduce |
|F'ade approximation ;I| Bl |
[~ with delay Help |
Expected reduction arder
Murnerator order I‘I—
Denorninator order |2—
Figure A.17. Model reduction dialog box.
Information Display Window
Feduced order model
§%+3.4435+2,504 Madity |
Cormpare Heductionl
Figure A.18. Model reduction result via the Padé approximation method.
To compare the reduced-order model with the original model, clicka@mpare re-
sponses in the model display window. A new dialog box pops up for choosing a comparison
plot from a list of responses which include the Bode diagrams, Nyquist plots, Nichols charts,
as well as the step and impulse responses between the original model and the reduced-order
model. For instance, the step response comparison, and the Bode diagram comparison, of
the original system and the reduced model via the Padé approximation method are shown in
Figures A.19(a) and (b), respectively, where the solid line represents for the original model
and the dotted line the reduced-order model. It can be seen that the responses of the two
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0.9
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(a) step response comparison (b) Bode diagram comparison

Figure A.19. Comparisons of the reduced order and the original models.

models are quite close, especially in the step response comparison, where the two curves
are almost indistinguishable.

A.4 Feedback Control System Analysis

Various linear system analysis tasks covered in this book can be performed by the direct use
of CtrILAB. After performing the model entry from Sec. A.2, sel@ctalysis from the main

menu shown in Figure A.1. The system analysis menu will appear as shown in Figure A.20.
In this menu, plots for time domain, frequency domain, and root locus analysis can be
generated by just using mouse clicks. In what follows, some detailed instructions are given
in the subsections to follow.

A.4.1 Frequency Domain Analysis

The Bode diagram of the system can be obtained byAtieysis | Frequency Domain
Analysis | Bode Diagram menu item. The result is shown as in Figure A.21(a).

Via the Options | Show asymptotes sub-menu in the Bode diagram window, the
Bode plot asymptotes are drawn together with the exact Bode diagram, as demonstrated in
Figure A.21(b).

The properties of the graphs can be modified by @stions | Plot preference
sub-menu in the Bode diagram window, and a dialog box is then provided as shown in

Analysiz Design Help

Frequency Domain Analysis Bode Diagram

Eoot Locus Hyquist Flot
Time Domain Analysis 4 Hichols Chart

: ¥ Inwerse Hyquist Flot
Parametric Analwysis 4

Call Matrix Processor

Loop Specs and Signals 4

Figure A.20. System analysis menu in CtrILAB.
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0
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-50 \/ -50
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19852 101 10° 10t 102 -100
102 101 10° 10t 1
(a) Bode diagram (b) with asymptotes

Figure A.21. Bode diagram of a given linear system.

ElPlat Preference Options

— [Grnid Bios Apply
Ch.
" On i+ On &l Figures SiEE
i [0ff i 0ff + Current Figure Default

44

Modify Color  ——— Cancel

Background Color Pallete | Default Color | Help
Plat &xis Colar | Default Color |
Plat Colar Pallats | Default Calor |

I~ Compenzated

Combinations
’7 ¥ Uncompensated

Figure A.22. Graph properties setting dialog box.

Figure A.22, where some of the details on the graph can be modified such as the boxes, grid,
colors, etc. Moreover, the open-loop and closed-loop properties of the plots can also be
changed. If a controller model is available, thembinations group can be used to choose
theCompensated as well as théJncompensated frequency response. For instance, if the
user checks th€losed Loop box, the closed-loop Bode diagram can then be obtained as
shown in Figure A.23.

The Nyquist and Nichols charts can be obtained viaAhelysis | Nyquist Plot
and Analysis | Nichols Chart menu items. Results shown in Figures A.24(a) and (b),
respectively.

The root locus plot can be obtained by usifgalysis | Root Locus. For some
particular systems, the directly obtained root locus of the system may not be very informative
due to the poor quality of the automatically chosen plot ranges. In this case, the user can
change the axis of the plot via ti@ptions | Zoom | User Define menu item on the root
locus window. A dialog box then appears as shown in Figure A.25(a). The ranges of the
x and y axes can be changed until a good display result is obtained. For instance, with the
properly chosen axes, the more informative root locus of the system can then be redrawn,
as shown in Figure A.25(b).
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0
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-20
-30+
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Figure A.23. The modified graph.
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(a) Nyquist plots (b) Nichols chart
Figure A.24. Frequency responses.
3
2
| . " Current Ok | 1
s % Define Cancel |
| Lower I-'IEI Upper ID Help | o o
| € Current 1
¥ Az o 2
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(a) zoom dialog box (b) root locus
Figure A.25. Root locus analysis.
A.4.2 Time Domain Analysis
The step and impulse responses of the system can be obtained directly from the menu
Analysis | Step response, andAnalysis | Impulse response, respectively. Forinstance, the



A.4. Feedback Control System Analysis 319
0. ‘ ‘ ‘ ‘ ‘ 1
0.9
0.5 0g
od | o7
0.6
0.3 1 og
0.4
02 103
o1l | oz
0.1
% o5 1 15 2 25 3 "0 05 1 15 2 25 3 35 4 45 5
(a) closed-loop system (b) open-loop system

Figure A.26. Step response analysis.

Sirnul:iti-:m Parameters Setting ...

™ Simulation Algarithm Change | Drefault |
| 0de45 [defaults) LI| v Show Linearized

£ Fired step = Yariable step — Ilnput Signal  —————
Sinel Sar | Sawl

—  Simulation parameters

Teminate tire [ 5 PeakVahe  [77
IIin step IW Itk Pt IT
Ilax step IT Pl |1—
Tuolerant error IW Freq Range IT

Figure A.27. Simulation parameter setting dialog box.

step response of the system can be obtained as shown in Figure A.26(a). This step response
shown in Figure A.26(a) is the closed-loop step response. One can obtain the open-loop step
response of the system by selecting the relevant submenu item Anthesis menu and
the open-loop step response of the system can then be redrawn in the step response window
as shown in Figure A.26(b).

For nonlinear systems, one can also specify the type of input signals, W@ptiens
| Simulation parameters menu item in the relevant graphics window. A dialog box will
appear as shown in Figure A.27 which prompts the user to specify the input signals as well
as the simulation parameters. For instance, when studying the system with the Simulink
model, to display the step response of the linearized system and that of the original system,
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Figure A.28. Step responses of a nonlinear system with linearization.
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(a) plot range setting (b) with a new time range

Figure A.29. Time range modifications.

check theShow Linearised box. The time response of the system can then be displayed as
shown in Figure A.28.

The plot range can also be set by tptions | Plot range menu item in the graphics
window. A dialog box, shown in Figure A.29(a), prompts the user to select a new plot range.
For instance, the user can set a new terminating time at 50, and the new system responses
are then obtained as shown in Figure A.29(b).

Other signal types apart from the step and impulse signals can also be applied. For
instance, the user can select square wave, saw tooth, wave and sine wave by using the
dialog box shown in Figure A.27. Other parameters such as the frequency of the signal can
also be changed. The time response to a square wave input is shown in Figure A.30(a).
To display other signals such as the error sigria), select theOptions | Other signals
menu item in the graphics window and click the error sigr@ in the block diagram of
the feedback system. The error signal for a step input can then be obtained as shown in
Figure A.30(b).
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0 5 10 15 20 25 30 35 40 45 50 2G5 1o 15 20 25 30 3 40 45 50
(a) square wave input response (b) error signal

Figure A.30. Time response of other signals.

@ Information Display Window

Gain Margin: Infat o=lald
S Clear |
Phase Margin: 101 6% at o=3.602

I iy |

Figure A.31. Gain and phase margins.

% Information Display Windew

=5t e toe A sats _ Cen |
I adify |

Figure A.32. Analytical closed-loop step response.

A.4.3 System Properties Analysis

The stability property, gain and phase margins, and the analytical solutions to step and im-
pulse signals can also be obtained through the menu system. For instance, for the nonlinear
system model, the gain and phase margins to the linearized model can be obtained as shown

in Figure A.31, and the analytical solutions to the step response of the system can then be
shown as in Figure A.32.
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Design Help
Clas=ical compenszation Lead/Lag compensation
PID Controller L4 18 optimal control
Robust Control L4 Pole-placement

Model following

Figure A.33. System design menu.

# Lead/Lag Controller Specifications !EB

Phase roargin ¢ |5U— Design |
Cross-frequeney @, I 1 Cancel |
Errar coefficient Ku I 10 Help |

Compensator Type
Lead

Lag M avimizs Wwio |
Leag-Lag ;I

Figure A.34. Lead-Lag compensator dialog box.

A.5 Controller Design Examples
A.5.1 Model-Based Controller Designs

We shall use the phase lead-lag controller design problem as an example to illustrate the
controller design for a given plant model via CtrILAB. The model-based controller design
menu is shown in Figure A.33, and it can be seen that several model-based design algorithms
can be selected within the menu, as discussed in Chapter 5. For instance, with a typical
lead-lag controller design dialog box, shown in Figure A.34, the user is requested to enter
the parameters such as the expected phase maydie crossover frequeney,, and the
steady-state error tolerané&g .

Let us try a plant model given b§ (s) = 1/[s(s + 1)(0.2s + 1)]. Set the expected
phase margiry = 50°, the crossover frequenay. = 5 rad/sec, and the steady-state
error tolerancek, = 100. Then, a lead-lag compensator can be designed as shown in
Figure A.35(a). With a proper menu selection, the controller can be shown in the factorized
form as in Figure A.35(a). The Bode diagrams of the system before and after lead-lag
compensation can be obtained usingAhelysis | Bode Diagram menu item, as shown in
Figure A.35(b).

Via CtrILAB, it is also very easy to design the LQ optimal controller and the pole-
placement controller with either full state feedback or observer-based structures. The
straightforward model-based controllers can also be designed with CtrILAB.

A.5.2 Design of PID Controllers

Consider the PID controller design problem with the plant magg) = 10/[(s + 1)(s +

2)(s + 3)(s + 4] entered via CtrILAB. By théDesign | PID Controller menu item, the
design menu will appear as shown in Figure A.36. It can be seen that different PID controller
design algorithms have been implemented within CtrlLAB. The “one-shot” submenu item
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Figure A.35. A lead-lag compensator.
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Figure A.37. Ziegler—Nichols PID controller.

in Figure A.36 means that the PID contro
model with no other extra specification

ller can be designed directly from the known plant
needed. One may design a PID controller using

the Ziegler—Nichols algorithm by selectifigesign | PID controller | One-shot design |

Ziegler—Nichols Tuning. This will immed

iately generate the PID controller as shown in

Figure A.37(a). Furthermore, the refined Ziegler—Nichols controller can be designed, as

also shown in Figure A.37(a), when time

-shot design | Refined Ziegler-Nichols menu

is selected. By thénalysis | Step response menu item, the closed-loop step response of
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Controller Type P P Contral

PI Control
v Hormal FID
PID with Il in Fesdback

Figure A.38. PID controller structures.

First-order Model Identification P Optimal Reduction

¥ Frequency Responze—baszed

Transfer Funetion-based

Figure A.39. FOPDT model fitting methods.

Specified parameters M Chien (CHR) Tuning
Modified Ziegler-Nichols Tuning
Internal Model Control

Figure A.40. PID with specified parameters.

Optimum Tuning M| v ISE Setting
ISTE Setting
ISTZE Setting

Gain Phaze Tuning

Figure A.41. Optimum PID controller design.

the system will be obtained as in Figure A.37(b) where it is shown together with the step
response of the uncompensated system.

Apart from the standard PID controllers, other similar structures such as the P con-
troller, the PI controller, and the PID controller with D in the feedback loop, can also
be designed, which can be selected from frsign PID Controller | Controller Type
menu item as shown in Figure A.38. We know that the PID controller parameter setting is
based on the first-order plus dead time (FOPDT) model. Given a high-order plant model,
we can select different approaches to fit the original plant model by a standard first-order
model with dead time. The fitting algorithms can be selected from the menu shown in
Figure A.39.

PID controllers can also be designed with other algorithms usingSpleeified
parameters and Optimum Tuning menu items as shown in Figures A.40 and A.41,
respectively.

With the above different tuning algorithms, we can design PID controllers that have
better performance. For instance, the suboptimal first-order approximation to the plant
model can be obtained using menu it€ist-order model identification | Optimal re-
duction, and from this an optimum PID controller can be designed. Using these controllers,

2007/
pages



2007/
pages

A.5. Controller Design Examples 325
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Figure A.42. Step response comparison of different PID controllers.

Robust Control LAG Control
LAG/LTR Control

H 2 Contral
H inf Contral
H inf Optimal Control

Figure A.43. Robust control design menu.

the closed-loop step responses are then compared as in Figure A.42. It can be seen that per-
formance can be significantly improved, compared to the results from other “one-shot” PID
controllers.

A.5.3 Robust Controller Design

In this section, only the#¢, controller design via CtrILAB will be demonstrated, although
other design problems can also be solved in CtrILAB. The example we shall use is the
double integrator plant model as given in Example 7.16. The design submenus for the
robust controllers can be obtained by selectinglesign | Robust Control menu item as
shown in Figure A.43.

To get an#,, optimal controller, select thBesign | Robust Control | H_inf Op-
timal Control menu item to obtain the dialog box shown in Figure A.44. Specify various
weighting functionsWy (s), Wa(s), and W3(s) in the dialog box. To design af#f,, con-
troller for the sensitivity problem, chedensitivity so that a new dialog box will appear
as shown in Figure A.45(a). In Figure A.45(a), the expected order and the natural fre-
guency for the ITAE standard reference model should be entered. For instance, if one
selects: = 2 andw,, = 10 rad/sec, an optima#,, controller can be designed as shown in
Figure A.45(b).

The Nichols charts and the closed-loop step response of the system can then be ob-
tained as shown in Figures A.46(a) and (b), respectively. Other types of robust controllers,
such as the#, controller and the LQG/LTR controllers, can also be designed and analyzed
with little effort using the menus and dialog boxes.



2007!
pages

326 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool
Figure A.44. #¢-norm-based dialog box.
EzlRobust Control Design
—  Desn | o | _ Heb |
[0
Controller model
(5+10.6750.90)(s+0. 192240 026941
i 325X105(s+644.11643.?i)(s+8.85111.??i)(s+0.1)
Poptimal =0 7922
(a) dialog box for the sensitivity problem (b) optimal #~, controller
Figure A.45. Robust control design results.
2
18
1.6
14
-4 al 0
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(a) Nichols charts (b) closed-loop step response
Figure A.46. Robust control system analysis.
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A.6 Graphical Interface-Based Tools

Two useful graphics-based tools are provided in CtrlLAB which can be used to process
matrices and figures, respectively. In the following subsections, detailed descriptions of
these two programs will be given.

A.6.1 A Matrix Processor

A matrix processorMat xPr oc() is developed which can be used to process and edit
matrices and state space models, and perform various kinds of matrix analyses in a visual
way. The GUI facilities are extensively used to make the matrix processor very flexible and
easy to use.

When Mat xPr oc is typed in the MATLAB prompt, a GUI will appear as shown
in Figure A.47. The program can also be called from within CtrILAB. In MATLAB,
Mat xProc() can be called using the form&tt xPr oc( A) , whereA is a given ma-
trix, or simply usingVat xPr oc.

The File | New matrix menu can be selected to create a new matrix. The dialog
box shown in Figure A.48 will appear to prompt the user to select from different matrix
templates. For instance, if one selectsitbert matrix with 3 rows, the matrix will then be
created bywat xPr oc as shown in Figure A.49.

Various display formats are allowed Mat xPr oc() . The user can select tter-
mat menu as shown in Figure A.50(a). It can be seen that the user can specify different
display precisions (high, normal, or rational), different alignment requirements (left, right,
or center), and different truncating thresholds. For instance, the high precision display is
given in Figure A.50(b), with part of the matrix elements hidden due to the limited size of
the window. The hidden part of the matrix can be displayed via the horizontal scroll bar.
The matrix can also be displayed in rational number format.

A matrix displayed can be analyzed and processed withinxPr oc(). For in-
stance, to analyze the matrix, simply select #relysis to obtain the menu appearing
in Figure A.51. To get the parameters of the given matrix, selecAthadysis | Matrix

# Matrix Processar

File Edit Formats Analysis Help

Hew matrix. .. Fiedl
o izl
Save [ritze) erzite |

Save Az ...

Exit

E it |

Figure A.47. A matrix processor interface.
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¢ Hew Matrix Initialiszation
|dentity matrix
Hilbert matrix
M agic: matrix
R andam matris
Diagonal matrix
Companion matris
Harkel matrix
Wandermonde matris
Figure A.48. Matrix creating dialog box.
¥ Matrix Fro T
Dl = 1| =|==[od 2|
Figure A.49. Creating a new matrix.
Ivlatrix &
P o Trmmesie 1 0.5 033333333
0a 0.33333333 0.25
0.33333333 0.25 0.2
(a) format menu (b) high precision display
Figure A.50. Display formats of a matrix.
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Analysiz Help
Matrix Parameters P Dleterminant
Manipulations 4 Banlk
Decomposition 4 Trace
Matrix Evalnation F Eizenwalues

Singular Values

Condition Humber

Horm 4
Characteristic Polynomial

Matrix Parameters

Figure A.51. Matrix analysis menu.

# Information Display Window

Figenvralues of matris
001223, 0.002687, 1403
Singular values of matrix _ Cear |

1.408, 0.1223, 0.002687 b adify
det(A)=0.000463  tr(A)=1.533 cond(A)=524.1 rank(A=
Al =1.833  |l&ll,=1408 ||&)| =1.833 ||All=1414

Figure A.52. Matrix parameters display.

Manipulations Matrix A

Transpose

Inverse

Flip Horizomtal .I.'I:";-l

Flip Yertical g _36 3|:|

Botate 90 Degree

-3 197 -1&80

Orthonormal Basis

Hull Space 3':' 'ISD ISD
(a) manipulation menu (b) inverse matrix

Figure A.53. Matrix manipulations.

Parameters menu item. The analysis results will be obtained and displayed in the Infor-
mation Display Window as shown in Figure A.52. Other analysis tasks such as evaluating
the determinant, trace, norm, characteristic polynomial of the matrix can also be performed
using theAnalysis menu.

Matrix manipulation such as matrix inversion and rotation can be performed within
Mat xPr oc() . To manipulate the matrix, select tAmalysis | Manipulations menu as
shown in Figure A.53(a) to easily obtain, for example, the inversion of the matrix shown in
Figure A.53(b).

Different decompositions for a given matrix can also be obtained, such as the QR
decomposition, LU decomposition, singular value decomposition (SVD), etcAidlgsis
| Decomposition menu is shown in Figure A.54(a), where tbematrix of the Schur
decomposition can easily be obtained by selecting the relevant menu item, and the results
are shown in Figure A.54(b). In addition, the button labdledatrix in the GUI prompts
the user to display the other matrix, for example, Thmatrix, such thad = UTUT.
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Decomposition P LU Decomposition

S¥D Decomposition L ..
T tnatriz in Schur decomposition

0.5474 01277 0.827

Schur Decomposition

G Decomposition

Hezz Form -0.5383 -07137 04599
Ealance Form -0.649 06887  0.3233
(a) decomposition menu (b) U matrix

Figure A.54. Matrix decompositions.

Matrix Evaluation P EDS(Q‘)
Sin(A) 04244  -0.3166 -0.2215
Cos () 03166 0.5206 -0.1272
Log(A]
Sart (A -0.2215 001372 0.9092
(a) matrix evaluation menu (b) cosine function

Figure A.55. Matrix function evaluations.

# Matrix Processor

File Edit Formatz #nalysiz Help

Dl =4 ;| =|=[=lod 2]

EEapET: |
A e Ear |
I 03333
1 0.5 0.33532

0.5 03333 025
0.3333 0.25 0.2

Edit Formatz Analy=iz Help

Edit an Element

Show in MATLAR Format ...
Fefresh |
Show inm TeXl Format ...
Exit |

Show System Model

(a) matrix edit menu (b) matrix editing interface

Figure A.56. Matrix editing facilities.

Matrix function evaluations can be performed witihlat xPr oc() by selecting the
Analysis | Matrix Evaluation menu. Contents of the menu are displayed in Figure A.55(a).
When the user selects tk®s(A) function display, the cosine of matrix can be obtained
as shown in Figure A.55(b).

A matrix can be edited using thelit menu as shown in Figure A.56(a). By thdit |
Edit an Element menu item, the cursor will be changed to the cross sign, which prompts the
user to select a matrix element. Once the user has selected an element to edit, the value of
the element will be entered into the edit box for modification, as shown in Figure A.56(b).
Once the edit process is done, the user can pressdtipt button to confirm the change.
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<) Information Dizplay Window <) Information Display Window ==
Sleftfmatrisd [
1 405 & 03333 her 1,05,0.3333
005 4 03333 025 hor 05, 03332, 025
0333360254 0.2 13333 025, 02
Furight] ]
(a) TeX format (b) MATLAB format

Figure A.57. Matrix display in other formats.

The matrix can be shown in other formats as well, such asgiefdrmat and the
MATLAB format. This is particularly useful in dealing with large and complicated matrices.
For instance, thegX format of the matrix can be obtained by selecting Edé | Show in
TeX Format menu item, and the result is as shown in Figure A.57(a), while the MATLAB
format of the matrix is shown in Figure A.57(b).

A.6.2 A Graphical Curve Processor

The graphical curve processor is not currently an independent MATLAB function. It has
been integrated into CtrlLAB. It is mainly used to “decorate” the graphs obtained using
CtrlLAB to any degree of complexity. It can be used to do simple things such as add or
remove grids, add arrows, add floating legends to the graph, etc. Most of the figures in this
book used this unique graphical curve processor within CtriILAB. We remark that, although
the current version of MATLAB has provided a plot editing toolbar for various graph editing
utilities, the graphical curve processor within CtrILAB has been working similarly and more
powerfully with earlier versions of MATLAB (since version 4.2c) and is compatible with
versions 5.x and 6.x. The ultimate objective of CtrlLab is to minimize user effort.

An Option menu in the standard MATLAB graphics window allows for some of the
useful facilities to be called; this menu is shown in Figure A.58(a). For instance, via the
Options | Axis and Grid | with Boxes off andOptions | Axis and Grid | with Grid off
menu items, the time response graph will then be changed to the display format shown in
Figure A.58(b), where the grids and boxes are turned off.

Note that, to turn off the grids, we cantygei d of f withinthe MATLAB command
line. However, our objective here is to avoid such a user involvement. At this point, we
remark again that CtrlLAB is designed for linear feedback control system analysis and
design byonly mouse clickeind some essential numeric key strokes. Great efforts have
been made to minimize the user involvement in the analysis and design of feedback control
systems. The Matrix Processor and Graph Processor described in this section are also part
of the efforts to achieve this goal.

To draw several curves together with a common coordinate, sele@yttiens | Axis
and Grid | Hold on menuitem to hold the current graph coordinate and then display another
curve on the current plot. This is demonstrated in Figure A.59(a).

2007/
pages



2007/
pages

S
332 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool
File Legend=z Zooming Curwes Help 1.2-
Hew
Open 1
Save 0g
Save Az
Amiz and Grids M| with Grids 0.6
Clear ¥ with Box
Hold Figure 04
Preferences. .. - — e
Print 4 0.2
Close Window 0 . . . . . . . . . .
0 5 10 15 20 25 30 35 40 45 &€
(a) Options menu (b) curve without box and grid
Figure A.58. Graphics processor menu and results.
2- 1.2-

i':’ 1l 10.69,0.9829) (31.36,1)

1.4 /\ od (6.464,0.8743)

1.2 (4.352,0.7242)

ol : 0 29.79,0.5
od / \/ (4.192,0.4848) (29.79,0.5)
0.4

0.6 (1.76,0.3216)

04 v 0.2}

0.2

% 5 10 15 20 25 30 35 40 45 5 0 5 10 15 20 25 30 35 40 45 &
(a) graph holding (b) cursor positioning
Figure A.59. Screen hold and cursor.

To cancel the hold protection, select @ptions | Axis and Grid | Hold off menu
item. To locate the specific points on the graph, useG@meions | Cursor positions
menu item. For instance, the curves with some points selected and marked are shown in
Figure A.59(b).

Furthermore, various legends can be added to the graphsOptiens | Legends
menu is shown in Figure A.60, where one can select to add, move, or edit text strings on the
graphs, and also to draw lines or lines with arrows on the graph.

Two text legends are added on the graph shown in Figure A.61(a), and several lines
and arrows can be further added on the graph as shown in Figure A.61(b). It can be seen that
the legends (including lines and arrows) can be added or edited freely using the facilities
provided. The user can also remove the legends by sele@jiigns | Legends | Delete
a Legend to remove an existing legend.

The properties of the legends can be modified if the user seledtsgheds | Proper-
ties menu item, and a dialog box for assigning legend properties will be displayed as shown
in Figure A.62(a). With proper settings, the modified version of the graph with different
fonts, and line types will be obtained as shown in Figure A.62(b).
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Figure A.60. Legends menu.

1.2- 1.2

1t 1t
0.8 0.8

This is curve 1 This is curve 1

0.6+ 0.6
04 This is curve 2 04 This is curve 2
0.2 0.2

0

0 5 10 15 20 25 30 35 40 45 5 0 5 10 15 20 25 30 35 40 45 50
(a) examples of legends (b) examples of arrows and lines

Figure A.61. Adding more legends on graphs.

1.2

1t

|_| Legend/Curve Froperties

0.8+

+ sign 04 This i's curve 2

thinner 0.2

1\nlo 10 xupwe 1

0

0 5 10 15 20 25 30 35 40 45 50
(a) legend properties dialog box (b) modified legends
Figure A.62. Changing the properties of legends.



2007/
pages

S
334 Appendix. CtrILAB: A Feedback Control System Analysis and Design Tool
1t
0.9
Zooming Cwrwes H 0.8
0.7
E-axiz Zooming
Y-axiz Zooming 06
Full 0.5
User Define. .. 0.4 ) . . . . .
2 4 6 8 10 12
(a) zoom menu (b) zoomed graphic display
Figure A.63. Zoom facilities.
0.
|  Currert Ok 0.2
s % Diefine Cancel .
‘ Lower ID_ Tpper |5_ Help 0.2
0.1
‘ £ Current 01
¥ is 1+ Define 00
‘ Lower IU_Upper W '
% 05 1 15 2 25 3 35 4 45 5
(a) axis specification dialog box (b) zoomed graphic display
Figure A.64. Axis range specifications.
The user may also change the view in the graph window by selectin@phiens
| Zooming menu item as shown in Figure A.63(a), which allows the user to change the
current coordinates using a mouse. For instance, the user can redefine the range for display
by dragging the mouse, and the results can then be displayed as shown in Figure A.63(b).
Moreover, using th&ooming | User Define menu item, the dialog box shown in
Figure A.64(a) will pop up to allow the user to select a reasonable display range. If the
plot range in Figure A.64(a) is used, the zoomed output will be displayed as shown in
Figure A.64(b).
Problems
1. Use the following plant models to test the previously described analysis and design
tasks using CtrILAB:
50000
(@)G(s) = .
C+DE+2DE+DE+DE+DGE+6)s+7)(s+8)
S
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225 -5 -125 -05 4
. 225 —-425 -125 -0.25 2
O)*=1025 _05 —125 -1 |¥F|2|® Y=xtde
125 -175 -025 -0.75 0
(c) The DC drive system given in Example 2.11. Use both the direct method and the
Simulink method to create the system model.
2. Analyze the system matrix in problem 1(b). Find the norms, determinant, eigenvalues,
and characteristic polynomial &f, and do LU, QR, SVD decomposition df within
CtrlLAB. Find the matrices 4, sin(A), and bg(A).
3. Try to reproduce Figure 3.14(a) by using the graphics processor.
e
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are,152

arx, 36, 37-39, 41-44
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augss255

augtf, 255 256, 263-268, 270, 272, 274,
276, 277, 279, 280
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bilin, 252
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148, 240, 258, 275, 27289, 293, 296,
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branch,251, 256, 274, 276, 277, 280

c2d,34, 74, 87,123
canon,30, 31
chrpid, 197, 198
cohenpid199 200
collect, 24

comet3, 118
conv,15, 97, 309
coprime,260, 261
ctrb, 56, 168

ctrbf, 56, 57, 58, 62

d2c,34, 35, 43

dare,156

dcgain,72, 188, 194, 209
decouple_ppl174
decouplerl72

dlinmod, 132 134

345

digr, 156
dsolve, 135

eig, 52, 53, 55, 155, 156, 158, 159, 161,
167-169, 252

expm, 68

ezplot, 10

feedback21, 22-24, 53, 55, 82, 88, 120,
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293

h2iqg,272
hinf, 262 263-267, 274
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iddata,37, 43, 44
ident,39
idinput, 42, 43, 44
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impulse,75, 76, 77
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inv, 152, 279, 280, 289 pade_app93, 97
ipdtctrl, 211 pademod93, 94
iztrans, 69 paderm96, 97, 120
id_tuner213 213-216

kalman,237, 242244, 247 glage,167, 163'8—170
kalmdec 60, 61 plot, 7, 38, 71,73, 74, 117, 118, 121, 122,
aplace3, 14, 69, 70 124,125130,153, 154, 161, 162, 184,
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linmod, 132 133 ole ’52
linmod2,132, 134 po'e,
logspace, 245, 246, 275, 293, 296 pzmap .52, 53
lgg, 239 240
lgr, 153 154, 155, 157-159, 164, 242,  rank, 56-58, 168, 170

243, 245, 246 reg,163 164, 165, 169
Isim, 38, 42, 4377, 291 rlocus,78, 79-83, 182
ltru, 244, 245, 246, 247251 routhmod,95
ltry, 244, 245, 251 rziegler,202
lyap, 59

_ schmr,102

margin,89, 141, 144, 150, 189, 190, 196, semilogx, 244, 258, 275, 279

2c|)(2, 20694, 240, 242, 243 sim, 117, 118, 121, 122, 124, 125, 130,
markovp, 4
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mksys,250, 255 simset,118, 124, 125
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nichols,85, 149, 150, 209, 264, 266, 267, 62, 66, 68, 102, 103, 120, 132-134,
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norm, 65, 66,99, 299 256, 267, 274, 276, 277, 279, 280
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nyquist,84, 85, 88, 90, 91, 141, 143, 189, :a:f;”;g;ﬁz’? 4 276. 279, 280

242, 243, 246, 2471290, 293 tairs. 10, 4. 122
obsv, 57, 58 std_tf,174, 279, 280
obsvf,58, 62 step,73, 74, 75, 77, 82, 88, 93, 95, 97,
ocd, 216221, 223, 224, 303 100,102,103, 120,123,133, 142, 144,
ohkimr, 103 148,151, 153, 154, 157, 159, 164, 165,
open_systent 12 169, 170, 182—185, 188—190, 193, 196,
opt_app, 100, 103, 209, 212, 299, 301 198, 200, 202, 206, 209, 212, 240, 244,
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optpid, 205, 206,208 209 273-277,279,28@91, 293, 299, 301,
oustafod 292, 293, 296, 301, 302 302

svd, 59
pade 96, 97 syms, 13, 23, 24, 68-70
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tfdata,16, 194

timmomt, 63, 97

trim, 131, 132
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writepid, 187

xlim, 264, 279

zero,52

ziegler,187,188, 189190,193,195 196,
198, 202, 209
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Ackermann’s algorithm, 166

actuator saturation, 220, 226, 302

additive uncertainty, 248

AlC, 40, 41

Akaike’s information criterion, 337

algebraic Riccati equation (ARE), 152,
158, 237, 238, 262

analytical solution, 66-70, 135, 160, 291,
321

anti-windup, 5, 226

ARE (algebraic Riccati equation), 152,
158, 237, 238, 262

automatic tuning, 207, 208, 227-228
relay, 5, 128, 207, 228, 229
Tsypkin's method, 228-229

autonomous system, 67

balanced realization, 31-32, 58, 59,
101-103, 314
Schur’s, 102

Bass—Gura algorithm, 166

Bezout equation, 259, 260

bilinear transform, 251, 252, 266

block diagram, 1, 4, 20-24, 60, 111, 163,
201, 248, 309

Bode diagram, 7, 85-88, 317, 322
magnitude, 259, 262, 275, 279, 282,

300
bounded input-bounded output, 52

canonical form, 56, 57, 59, 62
controllable, 29
Jordanian, 29-31, 314
observable, 29
Caputo’s definition, 284, 286
cascade PI controller, 223
Cauchy'’s definition, 284, 285
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Chien—Hrones—Reswick formula, 181,
197-198
class, 287, 288
Cohen—Coon formula, 181, 198—-200
complementary sensitivity function, 108,
243, 255
complex plane, 194, 251
connection
feedback, 21-22, 288
parallel, 20-21, 32, 288
series, 11, 20, 22, 288
constrained optimization, 131, 216, 217
control strategy, 2, 3, 157, 158, 162,
182-184, 230
Control Systems Toolbox, 2, 6, 8
controllability, 51, 55-60, 168
Gramian, 51, 58, 59, 179
staircase form, 56, 57
controllable canonical form, 29
controller
Hoo, 236, 249, 262, 263, 266, 270, 325
Ho, 272, 273, 325
fractional-order, 283, 284, 300
PD, 200, 210-212, 223, 300
PI, 123, 183, 186, 188, 189, 194-196,
198, 200, 203, 205207, 222, 226,
300, 324
PID, 181-233
coprime factorization, 259-261
crossover frequency, 142, 146-149, 186,
189, 192, 207, 228, 297, 322
CtrlLAB, 5-7, 9, 307
damping ratio, 78, 81
iso-, 78, 81, 82
DC (direct-current) gain, 42, 192, 193
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decoupling, 5, 139, 171-174, 270 Caputo’s definition, 284, 286
dynamic, 172, 174 Cauchy’s definition, 284, 285
with state feedback, 171-174 Grunwald—Letnikov definition,
default discretization, 34 284-286, 290, 292
delayed system, 79, 120 Riemann-—Liouville definition,
describing function, 126, 228-229 284-286
descriptor system, 250 transfer function, 287—-289, 298, 299
difference equation, 44 frequencyresponses, 5,43, 64, 65, 84-92,
differential equation, 12, 14, 17, 283 186, 191-192, 194, 317
fractional-order, 283, 290, 291
differential Riccati equation, 152, 158 gain margin, 88-89, 141, 144, 189, 244
differentiation, 14, 284 general mixed sensitivity problem, 254
fractional-order, 285, 286, 292 genetic algorithm (GA), 224
direct-current (DC) gain, 42, 192, 193 Genetic Algorithm Optimization Toolbox
discrete-time Riccati equation, 156 (GAQT), 9, 224
discretization, 34 Grinwald—Letnikov definition, 284—-286,
disturbance, 53, 198, 203, 205, 235, 241, 290, 292
248
rejection, 197, 198, 205-207 J-norm, 65
dominant poles, 81 Ffr-norm, 65—-66, 98, 99, 236, 249
dual, 29, 58, 169 Hoo-nOrm, 236, 249, 259, 261
dynamic decoupling, 172, 174 #t2 controller, 272, 273, 325
Hoo controller, 236, 249, 262, 263, 266,
feedback connection, 21-22, 288 270, 325
filter optimal, 267, 270, 274, 276, 280, 302,
Kalman, 236-239, 241-243, 245, 272 325
low-pass, 184, 254, 297 standard, 249
Oustaloup’s, 292—-293, 298, 299 Hankel matrix, 166
refined Oustaloup’s, 294-299 Hankel norm, 103
first-order lag and integrator plus dead Hardy space, 3, 5, 65
time (FOIPDT), 211, 212, 222
first-order plus dead time (FOPDT), 181, identification
186, 188, 193, 198, 209, 324 system, 4, 11, 35-45, 139, 194
fixed step, 117 impulse response, 51, 62, 63, 70, 75-77,
FOIPDT (first-order lag and integrator plus 125, 250, 315, 319
dead time), 211, 212, 222 impulse signal, 65, 76, 77, 98, 125, 320,
FOPDT (first-order plus dead time), 181, 321
186, 188, 193, 198, 209, 324 integral of absolute error (IAE), 98, 173,
Fourier series expansion, 41, 229 203, 218, 223, 278, 301
fractional transformation representation, integral of squared error (ISE), 98-100,
249, 254 203-206
fractional-order, 283-305 integrator plusdeadtime (IPDT), 181, 210
calculus, 284, 286 internal stability, 51-55
controller, 283, 284, 300 internal structure, 4, 17, 35, 57, 226
differential equation, 283, 290, 291 inverse system, 83
differentiation, 285, 286, 292 inverse Z transform, 69
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IPDT (integrator plusdeadtime), 181, 210 LTI (linear time invariant), 14, 18, 131,
ISE (integral of squared error) criterion, 133, 134, 138, 151
98-100, 203-206 LTR (loop transfer recovery), 3, 236, 243,
iso-damping, 78, 81, 82 245, 247
iso-frequency, 78 Lyapunov equation, 10, 58
ITAE (integral of absolute error) crite-
rion, 98, 173, 203, 218, 223, 278, 301 Maclaurin series, 62, 96, 97
Jordanian canonical form, 29-31, 314 magnitude Bode diagram, 259, 262, 275,
279, 282, 300
Kalman decomposition, 51, 59-61 Markov parameters, 51, 63—64
Kalman filter, 236-239, 241-243, 245, MATLAB toolbox
272 CtrlLAB, 5-7, 9, 307
Genetic Algorithm Optimization Tool-
£L-norm, 65 box (GAOT), 9, 224
L1-norm, 65 Optimal Controller Designer (OCD),
Lz-norm, 65 216, 221-225, 303
oonor, 05 PID_ Tuner, 213-216
Laplace transform, 11-14, 25, 62, 64, Robust Contral, 9, 235, 250-252, 255
68-69, 77, 98, 99, 286, 287, 290 Simulink, 111-135, 296-298
inversé, 1é, 69 Symbolic, 9, 13, 14, 68-70
lead-lag compensator, 139-151, 218, 308, System Ident|f|_cat|on, 9, 36,39
322 mgqsurement noise, 53, 239
Lebesgue space, 65 minimum
limit cycle, 111, 126, 129, 131, 228, 229 phase, 164, 257-259, 261
linear quadratic Gaussian control (LQG), realization, 21, 32-33, 44, 61, 62
3, 235-247 sensitivity problem, 257, 258
linear quadratic regulator (LQR), 3, 152, ~ Mittag-Leffler function, 291, 292
156, 180, 216 mixed stability, 262
linear system model conversion, 4, 11, 25, 26, 38, 43,
fractional-order, 283—-305 44,67
state space, 3, 4, 11, 17-19, 24-33,51,  model mismatch, 235
55-57, 59, 62, 64, 101-103, 281 model reduction, 4, 51, 58, 59, 92-103,
transfer function, 4, 7, 11, 14-17, 194, 271, 293, 314-316
19-22, 24-28, 44, 288, 295 optimal Hankel norm approximation,
linear time invariant (LTI), 14, 18, 131, 103, 314
133, 134, 138, 151 Pade approximation, 92, 94, 96, 97, 99,
logarithmic Nyquist plotseeNyquist plot, 120, 133, 298, 314
logarithmic Routh approximation, 94, 95, 314
loop transfer recovery (LTR), 3, 236, 243, Schur’s balanced realization, 102
245, 247 suboptimal reduction, 191, 215, 298,
low-pass filter, 184, 254, 297 299, 314
LQG (linear quadratic Gaussian control), multiple input—-multiple output, 7, 16
3, 235-247 multiplicative uncertainty, 248
LQR (linear quadratic regulator), 3, 152, multivariable system, 16, 44-45, 120,
156, 180, 216 171-174
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natural frequency, 174, 180, 282, 325 Oustaloup recursive approximation,
Nichols chart, 85, 148-151, 289 292-293, 298, 299
nominal value, 262, 301 refined, 294-299
nonminimum phase model, 246, 259, overshoot, 71, 72, 74, 196-198
261-267
nonlinear system, 5, 17, 111, 112, 116,  Padé approximation, 92, 94, 96, 97, 99,
126, 129, 131-134, 136, 313, 319, 321 120, 133, 298, 314
nonlinearity, 111, 112, 127, 128, 228,310 Parallel connection, 20-21, 32, 288
double-valued, 111, 126128 PD controlle_r, 200, 210-212, 223, 300
e L e e
relay, 128, 228, 229 N ' y ’ ’ !
saturation, 112, 123, 224 assignment, 207
: ' ' ' Plcontroller, 183, 186, 188, 189, 194-196
smgle-valued, 111, 126-128 PID* controller, 300
static, 126, 128, 228 PID controller, 181-233
Nyquist plot, 42, 51, 84, 85, 87-90 anti-windup, 5, 226
atan,-90 ) Chien—Hrones—Reswick, 181, 197-198
logarithmic, 90-92 Cohen—Coon, 181, 198-200
Nyquist Theorem, 87, 88 for FOIPDT plant, 211, 212, 222
for IPDT plant, 181, 210
observability, 51, 57-60 fractional-order, 300
Gramian, 58, 59 modnﬁed Zlegler—NlchoIs, 181, 202
staircase form, 58 OEt'mum setting, 181, 20?[’ géj
; phase margin assignment,
ggzglerj,lg,C12n9o,ngl_ffég],'12694, 165, 169, reg’;egd Ziegler-Nichols, 181, 200-202,
obiitr‘)\,/:fsase d V\_/ang—Jugng—Chan, 181, 203, 300
Ziegler—Nichols, 181, 185-198, 200-202,
controller, 139, 322 209 323
regulator, 165, 169 PID Tur’1er, 213-216
OCD (Optimal Controller Designer), 216, plan_t augmentation, 247, 249, 255
2217225' _303 plant model, 2, 53, 82
operating point, 131, 132 FOIPDT, 211, 212, 222
optlmal control, 181, 216, 218-225 FOPDT, 181, 186, 188, 193, 198, 209,
Optimal Controller Designer (OCD), 2186, 324
221-225, 303 IPDT, 181, 210
optimal Hankel norm approximation, 103, minimum phase, 164, 257-259, 261
314 nonminimum phase, 246, 259, 261-267
optimization, 99, 181, 216-219, 221, 223, unstable FOPDT, 213
224,239 pole placement, 139, 165-170, 173, 260
constrained, 131, 216, 217 Ackermann’s algorithm, 166
Genetic Algorithm Toolbox, 9, 224 Bass—Gura'’s algorithm, 166
unconstrained, 216-217 robust algorithm, 167-169
optimum PID controller, 181, 209, 324 prefilter, 2
ordinary differential equations (ODE), 12, pseudorandom binary sequence (PRBS),
14,17, 283 42-44
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ramp response, 77 stability margins, 3, 241
realization, 58, 59, 61, 62, 101, 102, 163, stabilizing controller, 249, 257, 260, 271
307, 314 standard transfer function, 11, 173, 174,
balanced, 31-32, 58, 59, 101-103, 314 278
minimum, 21, 32-33, 44, 61, 62 state augmentation, 67, 68, 254
reduced-order model, 59, 92-95, 98, 298, state feedback, 152, 153, 155, 156,
299, 315 163-167,171-174, 236, 239, 243, 272
refined Oustaloup recursive approxima- decoupling with, 171-174
tion, 294299 state space, 3, 4, 11, 17-19, 24-33, 51,
refined Ziegler—Nicholstuning, 181, 200-202, 55-57, 59, 62, 64, 101-103
323 steady-state, 42
relay, 128, 228, 229 error, 183, 189, 210, 211, 322
autotuning, 5, 207, 228 response, 62, 64, 231
Riccati equation, 155, 156, 237, 241, 262 value, 71, 72, 152, 192, 266
algebraic, 152, 158, 237, 238, 262 step response, 70, 73-75, 121, 291, 299,
differential, 152, 158 301-303
discrete-time, 156 suboptimal reduction, 191, 215, 298, 299,
Riemann—Liouville definition, 284—286 314
rise time, 72, 73 Symbolic Toolbox, 9, 13, 14, 68—70
Robust Control Toolbox, 235, 250-252, System Identification Toolbox, 4, 9, 11,
255, 278 35-45, 139, 194
robust pole placementalgorithm, 167-169
root locus, 3, 51, 78-83, 316, 317 Taylor series expansion, 62—-64, 92, 294
Routh approximation, 94, 95, 314 time domain response, 77, 87, 290
impulseresponse, 51, 62,63, 70, 75-77,
sampling interval, 15, 17, 19, 39, 74, 87, 125, 250, 315, 319
122,123 ramp response, 77
saturation, 112, 123, 224 step response, 70, 73-75, 121, 291,
actuator, 220, 226, 302 299, 301-303
Schur decomposition, 329 time moment, 62—-63, 96
Schur’s balanced realization, 102 time varying system, 111, 118, 123-125,
sensitivity function, 243, 255, 256, 259, 152
275, 278 transfer function, 4, 7, 11, 14-17, 19-22,
sensitivity problem, 254, 256, 265, 325 24-28, 44, 288, 295
general mixed, 262 discrete-time, 16, 35, 39, 42, 43, 69,
minimum, 257, 258 79, 134
series connection, 11, 20, 22, 288 fractional-order, 287-289, 298, 299
settling time, 72, 74 matrix, 16, 24, 25, 28, 38, 44, 45, 120,
similarity transformation, 28, 59-62 172
Simulink, 111-135, 296298 standard, 11, 173, 174, 278
single input-single output, 7, 16 transmission zero, 27, 243
SISOTool, 175-177 tree variable, 250-252, 255, 262, 268
small gain theorem, 247-248 Tsypkin's method, 228-229
stability, 3, 51-55, 84, 86-88, 90, 94, 95 Tustin transform, 252
assessment, 51-53 bilinear, 251, 252, 266
internal, 51-55 two degrees-of-freedom control, 2
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two-port state-space, 250, 253, 255, 256,  weighting matrix, 152, 154, 157, 158,
261-263, 268, 270, 272 164, 180
well-posedness, 53-54, 248
uncertainty, 64,159, 235, 247, 248, 262, 269
additive, 248 Youla parameterization, 256, 257
multiplicative, 248
unstructured uncertainty, 248—249 Z transform, 16
unconstrained optimization, 216—217 inverse, 69
undershoot, 266 zero initial conditions, 13, 14, 25, 106
unity negative feedback, 53, 78, 87, 88,  zero-order-hold (ZOH), 34, 121, 123
163, 289 zero-pole-gain model, 19, 25-27, 32, 94,
unstable FOPDT (first-order plusdeadtime), 112
213 Ziegler—Nichols formula, 181, 185-198,
200-202, 209, 323
variable step, 117 modified algorithm, 181, 202
refined, 181, 200-202, 323
Wang—Juang—Chanformula, 181,203,300 zOH (zero-order-hold), 34, 121, 123
weighting function, 99, 236, 243, 253256,
258, 262, 273-281, 302, 325
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