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Preface

It is well known that the benefits from the wise use of control engineering are numerous
and include improved product/life quality, minimized waste materials, reduced pollution,
increased safety, reduced energy consumption etc. One can observe that the notions of
feedback and control play important roles in most sociotechnological aspects. The phrase
“control will be the physics of the 21st century”1 implies that all engineering students should
take an introductory course on systems control.

It is widely accepted that control is more “engineering” than “science,” but it does
require a firm theoretical underpinning for it to be successfully applied to ever more chal-
lenging projects. This attention to theory in academia has led to discussions through the
years on the “theory/practice Gap” which culminated in a recent special issue of theIEEE
Control Systems Magazine(Volume 19, Number 6, 1999).

The development of computer software for control has provided many benefits for
teaching, research, and the development of control systems design in industry. MATLAB�

and Simulink� are considered the dominant software platforms for control system analysis
and design, with numerous off-the-shelf toolboxes dedicated to control systems and related
topics. As Confucius said, “The craftsman who wishes to work well has first to sharpen
his implements,”2 and it is clear that MATLAB provides a suitable implement for control
engineering. The major objective of this book is to provide information on how MATLAB
can be used in control system design by covering many methods and presenting additional
software routines. Many students today view control theory as difficult because of the
mathematics involved in evaluating frequency responses, plotting root loci, and doing the
many other calculations which can be easily accomplished in MATLAB, as shown in this
book. It is therefore our opinion that the educational objective today should be to give
students sufficient knowledge of these techniques to understand their relevance and teach
how to use them correctly without the burden of the calculations which MATLAB can
accomplish.

A distinguishing feature of the book is the organization and presentation of the
material. Based on our teaching, research, and industrial experience, we have chosen
to present the course materials in the following sequence: system models, time and fre-
quency domain analysis, introduction to various model reduction techniques, model-based
control design methods, PID techniques and robust control. In addition, a chapter is in-

1Doyle J. C. ‘A new physics?’. plenary talk presented at the 40th IEEE Conference on Decision and Control
Orlando, FL, Dec. 2001.

2http://www.confucius.org/lunyu/ed1509.htm.
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cluded on fractional-order control as an alternative for practical robustness trade-offs. MAT-
LAB scripts and plots are extensively used in this textbook to illustrate basic concepts and
examples. A dedicated toolbox called CtrlLAB developed by the authors can be used as
an effective teaching and learning aid. CtrlLAB was developed to support our objective of
enabling control studies to be done in MATLAB by students with no knowledge of MAT-
LAB, thus avoiding the need to replace less mathematics with the requirement of learning
a programming language (although this is not difficult). CtrlLAB is the most downloaded
package in the Control Systems category in the File Exchange of MATLAB Central.3

We hope that readers will enjoy playing with and changing the scripts as they gain
better understanding and accomplish deeper exploration with reduced effort. Additionally,
each chapter comes with a set of problems to strengthen the readers’ understanding of the
chapter contents.

This book can be used as a reference text in the introductory control course for under-
graduates in all engineering schools. The coverage of topics is broad, yet balanced, and
should provide a solid foundation for the subsequent control engineering practice in both
industry and research institutes. For graduates and researchers not majoring in control, this
textbook is useful for knowledge enhancement. The authors also believe that this book will
be a good desktop reference for control engineers.

The writing of this book started in the mid 1990s. In its evolving into the current
form, many researchers, professors, and students have provided useful feedback, comments,
and input. In particular, we thank the following professors: Xinhe Xu, Xingquan Ren,
Yuanwei Jing, Taicheng Yang, Shuzhi Sam Ge, Igor Podlubny, Ivo Petras, István Kollár,
Alain Oustaloup, Jocelyn Sabatier, Blas M. Vinagre, J. A. Tenreiro Machado, and Kevin L.
Moore. Moreover, we are grateful to Elizabeth Greenspan,Acquisitions Editor of the Society
for Industrial and Applied Mathematics (SIAM), for her professional help. The “Book
Program” from The MathWorks Inc. is acknowledged for the latest MATLAB software.

Last, but not least, Dingyü Xue would like to thank his wife JunYang and his daughter
Yang Xue; YangQuan Chen would like to thank his wife Huifang Dou and his sons Duyun,
David, and Daniel, for their patience, understanding and complete support throughout this
work. DerekAtherton wishes to thank his wife Constance for allowing him hours of overtime
with many hardworking graduate students which included, in particular, many discussions
with Dingyü when he was at Sussex and the email exchanges or with Dingyü andYangQuan,
which led to this book.

Dingyü Xue, Northeastern University, Shenyang, China.
YangQuan Chen, Utah State University, Logan, UT, USA.

Derek P. Atherton, The University of Sussex, Brighton, UK.

3http://www.mathworks.com/matlabcentral/index.shtml
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Chapter 8

Fractional-Order
Controller: An
Introduction

Using the notion of fractional-order may be a more realistic step because real processes
are generally “fractional” [86]. However, for many real processes, fractionality is very
low. A typical example of a noninteger, (fractional-) order system is the voltage–current
relationship of a semi-infinite lossy resistor and capacitor (RC) line or the diffusion of heat
in a semi-infinite solid, where the heat flowq(t) is naturally equal to the semiderivative
of temperatureT (t) [87], as described by the following simple fractional-order differential
equation (FODE):

d0.5T (t)

dt0.5
= q(t).

Clearly, using an integer-order ordinary differential equation (ODE) description for the
above system may differ significantly from the actual situation. However, the fact that
the integer-order dynamic models are more welcome is probably due to the absence of
solution methods for FODEs. Details of past and present progress in the analysis of dynamic
systems modeled by FODEs can be found in [88–95]. For example, PID (proportional
integral derivative) controllers, which have been dominating industrial controllers, have
been modified using the notion of a fractional-order integrator and differentiator. It has
been shown that two extra degrees of freedom from the use of a fractional-order integrator
and differentiator make it possible to further improve the performance of traditional PID
controllers. In addition, the plant to be controlled can also be modeled as a dynamic system
described by an FODE. For fractional-order systems, the fractional controller CRONE was
developed in [96], while [89, 97, 98] presented the PDδ controller and [99] proposed the
PIλDδ controller.

In theory, control systems can include both the fractional-order dynamic system or
plant to be controlled and the fractional-order controller. However, in control engineering,
it is a common practice to consider only the fractional-order controller. This is due to the
fact that the plant model may have already been obtained as an integer-order model in a
classical sense. In most cases, our objective is to apply fractional-order control (FOC) to
enhance system control performance. Therefore, in this chapter we will concentrate on the
scenario in which the controller is fractional-order.
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This chapter serves as an introduction to the essentials of FOC for control engineering
practice, with an emphasis on how to analyze and realize fractional-order systems using
MATLAB. For a broader introductory coverage of fractional-order calculus and its applica-
tions in engineering, we refer the interested reader to the textbook [100].

This chapter is organized as follows. In Sec. 8.1, definitions and properties of
fractional-order calculus are briefly introduced, followed by frequency and time domain
analysis of fractional-order linear systems in Sec. 8.2. Then, in Sec. 8.3 filter approxima-
tions to fractional-order differentiators are introduced using Oustaloup’s recursive scheme
and its refined version. With this filter approximation, using Simulink, a simulation method
for a general nonlinear fractional-order dynamic system is proposed with an illustrative
example. Since the fractional-order controller after finite dimensional approximation is
usually of a very high order, controller order reduction is discussed and demonstrated in
Sec. 8.4. Finally, we present some controller design case studies for fractional-order systems
in Sec. 8.5.

Note that this chapter, like previous chapters, is designed so that the text and illustrative
MATLAB scripts flow in a natural and smooth manner. We hope that this design enables
readers to quickly get started on problem solving. It is worth mentioning that the design of
a MATLAB class for a fractional-order transfer function is demonstrated thoroughly in the
chapter.

8.1 Fractional-Order Calculus and Its Computations
In a letter to Hôpital in 1695, Leibniz raised the following question: Can the meaning of
derivatives with integer order dny(x)/dxn be generalized to derivatives with noninteger
orders, so that in generaln ∈ C ? (HereC is the set for all complex numbers.) Hôpital
was a bit curious about this question and replied with another question to Leibniz: What if
n = 1/2? Leibniz, in a letter dated September 30, 1695, replied: It will lead to a paradox,
from which one day useful consequences will be drawn.

The question raised by Leibniz for a fractional-order derivative has been a topic of
ongoing study in the last 300 years. Several mathematicians contributed to this subject over
the years. People like Liouville, Riemann, and Weyl made major contributions to the theory
of fractional-order calculus. So, the term “fractional-order calculus” is by no means new.
It is a generalization of ordinary differentiation by noninteger derivatives. The subject is as
old as the calculus of differentiation and goes back to the 17th century when Leibniz and
Newton invented calculus. The theory of fractional-order derivatives was developed mainly
in the 19th century. For more information, see [91, 93, 101, 102].

In the development of fractional-order calculus, there appeared different definitions
of fractional-order differentiations and integrations. Some of the definitions extend di-
rectly from integer-order calculus. The well-established definitions include the Cauchy
integral formula, the Grünwald–Letnikov definition, the Riemann–Liouville definition, and
the Caputo definition. The definitions will be summarized first, and then properties will be
given.
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8.1.1 Definitions of Fractional-Order Calculus

Definition 8.1 (Cauchy’s fractional-order integration formula). This definition is a general
extension of the integer-order Cauchy formula

Dγ f (t) = �(γ + 1)

2π j

∫
C

f (τ)

(τ − t)γ+1 dτ, (8.1)

where C is the smooth curve encircling the single-valued functionf (t).

Definition 8.2 (Grünwald–Letnikov definition). The definition is defined as

aD
α
t f (t) = lim

h→0

1

hα

[(t−a)/h]∑
j=0

(−1)j
(

α

j

)
f (t − jh), (8.2)

wherew
(α)
j = (−1)j

(
α
j

)
represents the coefficients of the polynomial(1− z)α. The coeffi-

cients can also be obtained recursively from

w
(α)
0 = 1, w

(α)
j =

(
1 − α + 1

j

)
w

(α)
j−1, j = 1, 2, . . . . (8.3)

Based on the Definition 8.2, the fractional-order differentiation can easily be calculated
from

aD
α
t f (t) = lim

h→0

1

hα

[(t−a)/h]∑
j=0

(−1)j
(

α

j

)
f (t − jh) ≈ 1

hα

[(t−a)/h]∑
j=0

w
(α)
j f (t − jh). (8.4)

Assuming that the step sizeh is small enough, we see that (8.4) can be used to
evaluate the differentiations of the given function. It can be shown [93] that the accuracy
of the method is o(h). Thus, based on the Grünwald–Letnikov definition, the following
MATLAB function can be written to evaluate the fractional-order differentiation [103]:

1 function dy=glfdiff(y,t,gam)
2 h=t(2)-t(1); dy(1)=0; y=y(:); t=t(:);
3 w=1; for j=2:length(t), w(j)=w(j-1)*(1-(gam+1)/(j-1)); end
4 for i=2:length(t), dy(i)=w(1:i)*[y(i:-1:1)]/hˆgam; end

The syntax of the function isdy=glfdiff(y,t,γ) , wherey, t are, respectively, the

vectors composed of the samples and the time instances. The time vectort is assumed to
be evenly distributed.γ is the order of fractional-order differentiation. The returned vector
dy is the vector of the fractional-order derivatives.

Definition 8.3 (Riemann–Liouville fractional-order differentiation). The fractional-order
integration is defined as

aD
−α
t f (t) = 1

�(α)

∫ t

a

(t − τ)α−1f (τ)dτ, (8.5)
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where 0< α < 1, anda is the initial time instance, often assumed to be zero, i.e.,a = 0.
The differentiation is then denoted asD−α

t f (t).

The Riemann–Liouville definition is the most widely used definition in fractional-
order calculus. The subscripts on both sides ofD represent, respectively, the lower and
upper bounds in the integration [104].

Such a definition can also be extended to fractional-order differentiations when the
order satisfiesn − 1 < β ≤ n. The fractional-order differentiation is then defined as

aD
β
t f (t)= dn

dtn

[
aD

−(n−β)
t f (t)

]
= 1

�(n−β)

dn

dtn

[∫ t

a

f (τ )

(t−τ)β−n+1 dτ

]
. (8.6)

Definition 8.4 (Caputo’s definition of fractional-order differentiation). Caputo’s definition
is given by

0D
α
t y(t) = 1

�(1 − γ )

∫ t

0

y(m+1)(τ )

(t − τ)γ
dτ, (8.7)

whereα = m + γ , m is an integer, and 0< γ ≤ 1. Similarly, Caputo’s fractional-order
integration is defined as

0D
γ
t = 1

�(−γ )

∫ t

0

y(τ)

(t − τ)1+γ
dτ, γ < 0. (8.8)

It can be shown [93] that for a class of real functions, the fractional-order differenti-
ations from the Grünwald–Letnikov and Riemann–Liouville definitions are identical.

8.1.2 Properties of Fractional-Order Differentiations

The fractional-order differentiation has the following properties [105]:

1. The fractional-order differentiation0Dα
t f (t), with respect tot of an analytic function

f (t), is also analytical.

2. The fractional-order differentiation is exactly the same with integer-order one, when
α = n is an integer. Also0D0

t f (t) = f (t).

3. The fractional-order differentiation is linear; i.e., for any constantsa, b, one has

0D
α
t [af (t) + bg(t)] = a 0D

α
t f (t) + b 0D

α
t g(t). (8.9)

4. Fractional-order differentiation operators satisfy the commutative-law, and also satisfy

0D
α
t

[
0D

β
t f (t)

]
= 0D

β
t

[
0D

α
t f (t)

]
= 0D

α+β
t f (t) (8.10)

5. The Laplace transform of fractional-order differentiation is defined as

L
[

0D
α
t f (t)

]
= sαL [f (t)] −

n−1∑
k=1

sk
[

0D
α−k−1
t f (t)

]
t=0

. (8.11)

In particular, if the derivatives of the functionf (t) are all equal to 0 att = 0, one has
L [0Dα

t f (t)] = sαL [f (t)].
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8.2 Frequency and Time Domain Analysis of
Fractional-Order Linear Systems

The fractional-order system is the direct extension of classical integer-order systems. The
fractional-order system is established upon the fractional-order differential equations, and
the fractional-order transfer function of a single variable system can be defined as

G(s) = b1s
γ1 + b2s

γ2 + · · · + bmsγm

a1sη1 + a2sη2 + · · · + an−1sηn−1 + ansηn
, (8.12)

wherebi, ai are real numbers and the ordersγi, ηi of the numerator and the denominator can
also be real numbers. The analysis of the fractional-order Laplace transformations and their
inverse is very complicated. The closed-form solutions to the problems are not possible in
general.

8.2.1 Fractional-Order Transfer Function Modeling

For the fractional-order transfer function model in (8.12), it can be seen that if the coefficients
and the orders of the numerator and denominator are given, the model can be established.
Thus, an “fotf” class can be constructed by creating the@fotf directory and writing in
the directory anfotf() function as follows:

1 function G=fotf(a,na,b,nb)
2 if nargin==0,
3 G.a=[]; G.na=[]; G.b=[]; G.nb=[]; G=class(G,’fotf’);
4 elseif isa(a,’fotf’), G=a;
5 elseif nargin==1 & isa(a,’double’), G=fotf(1,0,a,0);
6 else,
7 ii=find(abs(a)<eps); a(ii)=[]; na(ii)=[];
8 ii=find(abs(b)<eps); b(ii)=[]; nb(ii)=[];
9 G.a=a; G.na=na; G.b=b; G.nb=nb; G=class(G,’fotf’);

10 end

The syntax of the function isG=fotf(a,η,b,γ) , wherea andb are the coefficients of
the denominator and the numerator, respectively, whileη andγ are the order sequences in
the denominator and the numerator, respectively.

A display function should also be created for thefotf class. The file should also be
saved in the@fotf directory such that

1 function display(G)
2 sN=polydisp(G.b,G.nb); sD=polydisp(G.a,G.na); s=’ ’;
3 nm=max([length(sN),length(sD)]); nn=length(sN); nd=length(sD);
4 disp([char(s*ones(1,floor((nm-nn)/2))) sN]), disp(char(’-’*ones(1,nm)));
5 disp([char(s*ones(1,floor((nm-nd)/2))) sD])
6 function strP=polydisp(p,np)
7 P=’’; [np,ii]=sort(np,’descend’); p=p(ii);
8 for i=1:length(p), P=[P,’+’,num2str(p(i)),’sˆ{’,num2str(np(i)),’}’]; end
9 P=P(2:end); P=strrep(P,’sˆ{0}’,’’); P=strrep(P,’+-’,’-’);

10 P=strrep(P,’ˆ{1}’,’’); P=strrep(P,’+1s’,’+s’); strP=strrep(P,’-1s’,’-s’);
11 if length(strP)>=2, if strP(1:2)==’1s’, strP=strP(2:end); end,end,
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Example 8.1. Suppose that the fractional-order transfer function is given by

G(s) = −2s0.63 − 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
.

With the following statement, the fractional-order transfer function can be entered into the
MATLAB environment:

>> b=[-2,-4]; nb=[0.63,0]; a=[2 3.8 2.6 2.5 1.5];
na=[3.501,2.42,1.798,1.31,0]; G=fotf(a,na,b,nb)

The display of the fractional-order transfer function is

-2sˆ{0.63}-4
---------------------------------------------------
2sˆ{3.501}+3.8sˆ{2.42}+2.6sˆ{1.798}+2.5sˆ{1.31}+1.5

A function fotf() can be written in the@tf directory to convert an integer-order
transfer function to anfotf object:

1 function G1=fotf(G)
2 n=G.num{1}; d=G.den{1}; i1=find(abs(n)<eps); i2=find(abs(d)<eps);
3 if length(i1)>0 & i1(1)==1, n=n(i1(1)+1:end); end
4 if length(i2)>0 & i2(1)==1, d=d(i2(1)+1:end); end
5 G1=fotf(d,length(d)-1:-1:0,n,length(n)-1:-1:0);

8.2.2 Interconnections of Fractional-Order Blocks

Based on the newly definedfotf class, theplus(), mtimes() andfeedback()
functions can be written as follows:

• Plus function plus() for block parallel connections:

1 function G=plus(G1,G2)
2 a=kron(G1.a,G2.a); b=[kron(G1.a,G2.b), kron(G1.b,G2.a)]; na=[]; nb=[];
3 for i=1:length(G1.a), na=[na G1.na(i)+G2.na]; nb=[nb, G1.na(i)+G2.nb]; end
4 for i=1:length(G1.b), nb=[nb G1.nb(i)+G2.na]; end
5 G=unique(fotf(a,na,b,nb));

• Multiplication function mtimes() for block series connections:

1 function G=mtimes(G1,G2)
2 G2=fotf(G2); a=kron(G1.a,G2.a);
3 b=kron(G1.b,G2.b); na=[]; nb=[];
4 for i=1:length(G1.na), na=[na,G1.na(i)+G2.na]; end
5 for i=1:length(G1.nb), nb=[nb,G1.nb(i)+G2.nb]; end
6 G=unique(fotf(a,na,b,nb));

• Feedback function feedback() for block negative feedback connections:

1 function G=feedback(F,H)
2 H=fotf(H);
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3 b=kron(F.b,H.a); a=[kron(F.b,H.b), kron(F.a,H.a)]; na=[]; nb=[];
4 for i=1:length(F.b), nb=[nb F.nb(i)+H.nb]; na=[na,F.nb(i)+H.nb]; end
5 for i=1:length(F.a), na=[na F.na(i)+H.na]; end
6 G=unique(fotf(a,na,b,nb));

• Simplification function unique():

1 function G=unique(G)
2 [a,n]=polyuniq(G.a,G.na); G.a=a; G.na=n;
3 [a,n]=polyuniq(G.b,G.nb); G.b=a; G.nb=n;
4 function [a,an]=polyuniq(a,an)
5 [an,ii]=sort(an,’descend’); a=a(ii); ax=diff(an); key=1;
6 for i=1:length(ax)
7 if ax(i)==0, a(key)=a(key)+a(key+1); a(key+1)=[]; an(key+1)=[];
8 else, key=key+1; end
9 end

Other functions should also be designed, such asminus(), uminus(), inv(),
and the files should be placed in the@fotf directory to overload the existing ones. The
listings of these functions are not given in this text but available from the book’s companion
Website.

Example 8.2. Suppose in the unity negative feedback system, the system models are given
by

G(s) = 0.8s1.2 + 2

1.1s1.8 + 0.8s1.3 + 1.9s0.5 + 0.4
, Gc(s) = 1.2s0.72 + 1.5s0.33

3s0.8 .

The plant and controller can be easily entered and the closed-loop system can be
directly obtained with the commands

>> G=fotf([1.1,0.8 1.9 0.4],[1.8 1.3 0.5 0],[0.8 2],[1.2 0]);
Gc=fotf(3,[0.8],[1.2 1.5],[0.72 0.33]); H=fotf(1,0,1,0);
GG=feedback(G*Gc,H)

and the result is given by

G(s) = 0.96s1.92 + 1.2s1.53 + 2.4s0.72 + 3s0.33

3.3s2.6+2.4s2.1+0.96s1.92+1.2s1.53+5.7s1.3+1.2s0.8+2.4s0.72+3s0.33
.

It can be seen from the above illustrations that, although the plant and controllers
are relatively simple, an extremely complicated closed-loop model may be obtained. This
makes the analysis and design of the fractional-order system a difficult task.

8.2.3 Frequency Domain Analysis of Linear Fractional-Order
Systems

It can be seen that, when jω is used to substitute for the variables in the fractional-order
transfer function model, the frequency domain responseG(jω) can be easily evaluated.
Thus, the fractional-order Bode diagrams, Nyquist plots, and Nichols charts can be easily
evaluated with the functionbode(), which is written as an overload function for thefotf
object



‘‘Book
2007/1
page 2

290 Chapter 8. Fractional-Order Controller: An Introduction

1 function H=bode(G,w)
2 a=G.a; eta=G.na; b=G.b; g=G.nb; if nargin==1, w=logspace(-4,4); end
3 for i=1:length(w)
4 P=b*((sqrt(-1)*w(i)).ˆg.’); Q=a*((sqrt(-1)*w(i)).ˆeta.’); H1(i)=P/Q;
5 end
6 H1=frd(H1,w); if nargout==0, bode(H1); else, H=H1; end

The syntax of the function isH=bode(G,ω) , whereG is the fractional-order
transfer function object and the optional argumentω is the frequency vector.

If one wants to draw the Bode diagram, there is no need to return any variable. If
frequency domain response data are needed, the response results can be found in the returned
variableH . The variableH can be used in drawing the Nyquist plot and the Nichols chart
by using nyquist(H) and nichols(H) , respectively.

8.2.4 Time Domain Analysis of Fractional-Order Systems

The evaluation of the time domain response of a fractional-order system is more complicated.
Let us consider a special form of a fractional-order differential equation [93]

a1D
η1
t y(t) + a2D

η2
t y(t) + · · · + an−1D

ηn−1
t y(t) + anD

ηn
t y(t) = u(t), (8.13)

whereu(t) can be represented by a certain function and its fractional-order derivatives.
Assume also that the output functiony(t) has zero initial conditions. The Laplace transform
can be used to find the transfer function

G(s) = 1

a1sη1 + a2sη2 + · · · + an−1sηn−1 + ansηn
. (8.14)

Consider the Grünwald–Letnikov definition in (8.4). The discrete form of it can be
rewritten as

aD
ηi
t y(t) � 1

h
ηi

[(t−a)/h]∑
j=0

w
(ηi)

j yt−jh = 1

h
ηi

yt +
[(t−a)/h]∑

j=1

w
(ηi)

j yt−jh

 , (8.15)

wherew
(βi)

0 can be evaluated recursively from the formula (8.3). By substituting it into
(8.13), the numerical solution to the fractional-order differential equation can be written as

yt = 1∑n
i=1

ai

h
ηi

ut −
n∑

i=1

ai

h
ηi

[(t−a)/h]∑
j=1

w
(ηi)

j yt−jh

 . (8.16)

For the general form of the fractional-order transfer function in (8.12), the right-hand
side can equivalently be evaluated first by using the numerical method discussed earlier.
The final solution can be obtained from (8.16). A MATLAB function can be written for the
fotf object to evaluate the time domain response as follows:

1 function y=lsim(G,u,t)
2 a=G.a; eta=G.na; b=G.b; gamma=G.nb; nA=length(a);
3 h=t(2)-t(1); D=sum(a./[h.ˆeta]); W=[]; nT=length(t);
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4 vec=[eta gamma]; D1=b(:)./h.ˆgamma(:);
5 y1=zeros(nT,1); W=ones(nT,length(vec));
6 for j=2:nT, W(j,:)=W(j-1,:).*(1-(vec+1)/(j-1)); end
7 for i=2:nT
8 A=[y1(i-1:-1:1)]’*W(2:i,1:nA); y1(i)=(u(i)-sum(A.*a./[h.ˆeta]))/D;
9 end

10 for i=2:nT, y(i)=(W(1:i,nA+1:end)*D1)’*[y1(i:-1:1)]; end

The syntax of the function isy=lsim(G,u,t) , where the time vector and the input
vector are defined in the variablest and u, respectively. The returned vectory is the
solution to the equations. If there are more points in the equation, the computation may be
very slow.

An overloadedstep() function can also be written, based on thelsim() function
given above, as

1 function y=step(G,t)
2 u=ones(size(t)); y=lsim(G,u,t);
3 if nargout==0, plot(t,y); end

with y=step(G,t) , whereG is anfotf object, andt should be given as an evenly
distributed time vector. The step response of the system is returned in vectory.

It is possible to solve the above fractional-order differential equation analytically
by using the Mittag–Leffler function in two parameters, which is a generalization of the
exponential function ez. The Mittag–Leffler function in two parameters is defined as

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
, (α, β > 0). (8.17)

Clearly, ez is a particular case of the Mittag–Leffler function [92]:

E1,1(z) =
∞∑

k=0

zk

�(k + 1)
=

∞∑
k=0

zk

k! = ez.

Furthermore, one can get more particular cases for the Mittag–Leffler function in two pa-
rameters, for example,

E2,1(z) = cosh(
√

z), E1,2(z) = ez − 1

z
, E2,2(z) = sinh(

√
z)√

z
, (8.18)

E1/2,1(
√

z) = 2√
π

e−zerfc(−√
z). (8.19)

The analytical solution of then-term FODE is given in general form [92] by

y(t) = 1

an

∞∑
m=0

(−1)m

m!
∑

k0+k1+···+kn−2=m

k0≥0,...,kn−2≥0

(m; k0, k1, . . . , kn−2)

n−2∏
i=0

(
ai

an

)ki

t
(βn−βn−1)m+βn+

n−2∑
j=0

(βn−1−βj )kj −1
(8.20)
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E (m)

βn−βn−1,βn+
n−2∑
j=0

(βn−1−βj )kj

(
−an−1

an

tβn−βn−1

)
,

whereEλ,µ(z) is the Mittag–Leffler function in two parameters as defined in (8.17) and

E (n)
λ,µ(y) ≡ d n

d yn
Eλ,µ(y) =

∞∑
j=0

(j + n)! yj

j ! �(λj + λn + µ)
for n = 0, 1, 2, . . . . (8.21)

8.3 Filter Approximation to Fractional-Order
Differentiations

It can be seen that the Grünwald–Letnikov definition gives a very good fitting to the
fractional-order derivatives for given functions. However, in control system analysis and
design, the definition is not useful, since the samples of the function should be known. On-
line real-time fractional-order differentiation may be required in control systems. Using
filters is one of the best ways to solve the problems.

8.3.1 Oustaloup’s Recursive Filter

Some continuous filters have been summarized in [105]. Among the filters, the well-
established Oustaloup recursive filter has a very good fitting to the fractional-order dif-
ferentiators [106]. Assume that the expected fitting range is(ωb, ωh). The filter can be
written as

Gf (s) = K

N∏
k=−N

s + ω′
k

s + ωk

, (8.22)

where the poles, zeros, and gain of the filter can be evaluated from (8.23) such that

ω′
k = ωb

(
ωh

ωb

)k+N+ 1
2 (1−γ )

2N+1

, ωk = ωb

(
ωh

ωb

)k+N+ 1
2 (1+γ )

2N+1

, K = ω
γ

h . (8.23)

With the above algorithm, the following MATLAB functionoustafod() can be written
to design the continuous filter. Thus, they(t) signal can be filtered through the filter and
the output of the filter can be regarded as an approximation to theD

γ
t y(t) signal.

1 function G=oustafod(r,N,wb,wh)
2 mu=wh/wb; k=-N:N; w_kp=(mu).ˆ((k+N+0.5-0.5*r)/(2*N+1))*wb;
3 w_k=(mu).ˆ((k+N+0.5+0.5*r)/(2*N+1))*wb;
4 K=whˆr; G=tf(zpk(-w_kp’,-w_k’,K));

The function can be called withGf=oustafod(γ,N,ωb,ωh) , whereγ is the order

of the differentiation, 2N + 1 is the order of the filter, and the frequency fitting range is
given by(ωb, ωh). The filterGf can be designed such that it may fit very well within the
frequency range of the fractional order differentiator.
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Figure 8.1. Time and frequency domain comparisons.

Example 8.3. Consider a fractional-order model

G(s) = −2s0.63 − 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
.

Since the original orders are all fractional, it may not be easy to design controllers for
them. Thus, a model reduction technique can be considered to reduce the order such that a
low integer-order approximation can be achieved. Suppose that one wants to approximate
the differentiators within the frequency range of(10−3, 104); the high-order term can also be
approximated ass3.501 = s3s0.501, and the integer-order approximation can be obtained as

>> N=4; w1=1e-3; w2=1e4; g1=oustafod(0.501,N,w1,w2);
s=tf(’s’);
g2=oustafod(0.42,N,w1,w2); g3=oustafod(0.798,N,w1,w2);
g4=oustafod(0.31,N,w1,w2); g5=oustafod(0.63,N,w1,w2);
G1=(-2*g5-4)/(2*sˆ3*g1+3.8*sˆ2*g2+2.6*s*g3+2.5*s*g4+1.5);

It is found that the order of the approximation reaches 48. The exact Bode diagram and
its 48th-order approximation are shown in Figure 8.1(a). The step responses of the system
is obtained as shown in Figure 8.1(b). With the following MATLAB statements, it can
be seen that the time response of the filter can accurately approximate the fractional-order
derivatives of the system.

>> b=[-2 -4]; nb=[0.63 0]; a=[2 3.8 2.6 2.5 1.5];
na=[3.501 2.42 1.798 1.31 0]; G=fotf(a,na,b,nb);
w=logspace(-4,4,500); H=bode(G,w); bode(G1,H,{1e-4,1e4});
figure; t=0:0.004:30; y=step(G,t); step(G1,30); line(t,y)

The open-loop Nyquist plots and Nichols charts can also be obtained as shown in
Figure 8.2. It can be seen that the Nyquist plot accurately fits the theoretical one, while the
Nichols chart is shifted by 360◦, which means the two are identical:

>> H=bode(G,w); nyquist(G,H,{1e-4,1e4});
figure; nichols(G,H,{1e-4,1e4}); grid
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8.3.2 A Refined Oustaloup Filter

Here we introduce a new approximate realization method for the fractional-order derivative
in the frequency range of interest[ωb, ωh]. Our proposed method here gives a better approx-
imation than Oustaloup’s method with respect to both low frequency and high frequency.

Assume that the frequency range to be fit is defined as(ωb, ωh). Within the pre-
specified frequency range, the fractional-order operatorsα can be approximated by the
fractional-order transfer function as

K(s) =
(

1 + bs
dωb

1 + ds
bωh

)α

, (8.24)

where 0< α < 1, s = jω, b > 0, d > 0, and

K(s) =
(

bs

dωb

)α(
1 + −ds2 + d

ds2 + bωhs

)α

. (8.25)

In the frequency rangeωb < ω < ωh, by using a Taylor series expansion, we obtain

K(s) =
(

bs

dωb

)α(
1 + αp(s) + α(α − 1)

2
p2(s) + · · ·

)
(8.26)

with

p(s) = −ds2 + d

ds2 + bωhs
.

It is then found that

sα = (dωb)
αb−α[

1 + αp(s) + α(α − 1)

2
p2(s) + · · ·

] (1 + bs
dωb

1 + ds
bωh

)α

. (8.27)
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Truncating the Taylor series to 1 leads to

sα ≈ (dωb)
α

bα
(
1 + αp(s)

) (1 + bs
dωb

1 + ds
bωh

)α

. (8.28)

Thus, the fractional-order differentiator is defined as

sα ≈
(

dωb

b

)α(
ds2 + bωhs

d(1 − α)s2 + bωhs + dα

)(1 + bs
dωb

1 + ds
bωh

)α

. (8.29)

Expression (8.29) is stable if and only if all the poles are on the left-hand side of the
complexs-plane. It is easy to check that expression (8.29) has three poles:

• One of the poles is located at−bωh/d, which is a negative real pole sinceωh > 0,
b > 0, d > 0;

• The two other poles are the roots of the equation

d(1 − α)s2 + aωhs + dα = 0 (8.30)

whose real parts are negative since 0< α < 1.

Thus, all the poles of (8.29) are stable within the frequency range(ωb, ωh).
The irrational fractional-order part of expression (8.29) can be approximated by the

continuous-time rational model

K(s) = lim
N→∞ KN(s) = lim

N→∞

N∏
k=−N

1 + s/ω′
k

1 + s/ωk

. (8.31)

According to the recursive distribution of real zeros and poles, the zero and pole of rankk

can be written as

ω′
k =

(
dωb

b

) α−2k
2N+1

, ωk =
(

bωh

d

) α+2k
2N+1

. (8.32)

Thus, the continuous rational transfer function model can be obtained [107] as

sα ≈
(

dωh

b

)α (
ds2 + bωhs

d(1 − α)s2 + bωhs + dα

) N∏
k=−N

s + ω′
k

s + ωk

. (8.33)

Through confirmation by experimentation and theoretical analysis, the synthesis ap-
proximation can obtain the good effect whenb = 10 andd = 9.

Through the approximation method, the fractional-order system may be approximated
as the very high integer-order system. The high integer-order rational transfer function could
be very tedious.
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With the above algorithm, a MATLAB functionnew_fod() is written

1 function G=new_fod(r,N,wb,wh,b,d)
2 if nargin==4, b=10; d=9; end
3 mu=wh/wb; k=-N:N; w_kp=(mu).ˆ((k+N+0.5-0.5*r)/(2*N+1))*wb;
4 w_k=(mu).ˆ((k+N+0.5+0.5*r)/(2*N+1))*wb; K=(d*wh/b)ˆr;
5 G=zpk(-w_kp’,-w_k’,K)*tf([d,b*wh,0],[d*(1-r),b*wh,d*r]);

with the syntaxGf=new_fod(γ,N,ωb,ωh,b,d) .

Example 8.4. Consider a model

G(s) = s + 1

10s3.2 + 185s2.5 + 288s0.7 + 1

which is a fractional-order model. The exact Bode diagram can be obtained with thebode()
function. The approximations using the Oustaloup filter, and the refined Oustaloup filter,
can be obtained as shown in Figure 8.3(a). The approximations to theG(s) model are shown
in Figure 8.3(b). It can be seen that the refined method provides a much better fit:

>> b=[1 1]; a=[10,185,288,1]; nb=[1 0]; na=[3.2,2.5,0.7,0];
w=logspace(-4,4,200); G0=fotf(a,na,b,nb); H=bode(G0,w);
s=zpk(’s’); N=4; w1=1e-3; w2=1e3; b=10; d=9;
g1=oustafod(0.2,N,w1,w2); g2=oustafod(0.5,N,w1,w2); a1=g1;
g3=oustafod(0.7,N,w1,w2);
G1=(s+1)/(10*sˆ3*g1+185*sˆ2*g2+288*g3+1);
g1=new_fod(0.2,N,w1,w2,b,d); g2=new_fod(0.5,N,w1,w2,b,d);
g3=new_fod(0.7,N,w1,w2,b,d); bode(g1,a1); figure
G2=(s+1)/(10*sˆ3*g1+185*sˆ2*g2+288*g3+1); bode(H,G1,G2)

8.3.3 Simulink-Based Fractional-Order Nonlinear Differential
Equation Solutions

From the previous discussions, it can be found that the refined Oustaloup recursive filter
is an effective way to compute the fractional-order derivatives. It should be noted that the
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orders of the numerator and the denominator in the refined Oustaloup filter are the same,
which may cause algebraic loops in Simulink. To avoid the algebraic loops, the filter should
be followed by a low-pass filter, with a crossover frequencyωh. The constructed block is
shown in Figure 8.4(a).

With the mask facilities provided in Simulink, the fractional-order differentiator block
can be built, as shown in Figure 8.4(b). Double click the fractional-order differentiator block
to display the dialog box in Figure 8.4(c), which allows the user to enter parameters into the
refined Oustaloup filters:

1 wb=ww(1); wh=ww(2); G=new_fod(gam,n,wb,wh,10,9);
2 num=G.num{1}; den=G.den{1}; T=1/wh; str=’Fractional\n’;
3 if isnumeric(gam)
4 if gam>0, str=[str, ’Der sˆ’ num2str(gam) ];
5 else, str=[str, ’Int sˆ{’ num2str(gam) ’}’]; end
6 else, str=[str, ’Der sˆgam’]; end

In practical simulation processes, the model established could be made up of stiff
systems. Thus,ode15s or ode23tb algorithms should be selected to ensure high efficiency
and accuracy. Examples will be given to demonstrate the solutions of FODEs.

Example 8.5. Consider the nonlinear FODE described by

3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
+
∣∣∣2D0.7y(t)

∣∣∣1.5 + 4

3
y(t) = 5 sin(10t).

It can be seen that solving the original FODE is very complicated. From the original
equation, the output signaly(t) can explicitly be expressed as

y(t) = 3

4

[
5 sin(10t) − 3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
−
∣∣∣2D0.7y(t)

∣∣∣1.5
]

.

A Simulink model can then be established from the above equations, as shown in Fig-
ure 8.5(a). It can be seen from the model that each fractional-order differentiator can be
modeled with the above designed block. In Figure 8.5(b), the simulation results are shown,
with different parameters of the refined Oustaloup filter.

1
Out1T.s+1

1

Transfer Fcn1

num(s)

den(s)
Transfer Fcn

1
In1

(a) fractional-order filter

Fractional
Der  s^0.9

(b) masked block (file: c7mfode.mdl)

(c) Dialog box of fractional-order differentiators

Figure 8.4. Fractional-order differentiator block design.
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(b) simulation results

Figure 8.5. Simulink modeling and results of a nonlinear FODE.

It can be seen that the results are the same, and the only exception is the combination
of ωb = 0.001, ωh = 1000, N = 2. However, even with this rough approximation, the
error is still acceptable.

8.4 Model Reduction Techniques for Fractional-Order
Systems

It has been shown that if the integer-order approximation is used to fit the fractional-order
transfer function models with the use of the refined Oustaloup recursive filter, the order of
the final system could be extremely high. Thus, a low-order approximation to the original
problem can be found using the optimal model reduction method.

Recall the expected reduced-order model given by

Gr/m,τ (s) = β1s
r + · · · + βrs + βr+1

sm + α1sm−1 + · · · + αm−1s + αm

e−τs . (8.34)

An objective function for minimizing theH2-norm of the reduction error signale(t) can be
defined as

J = min
θ

∥∥∥Ĝ(s) − Gr/m,τ (s)

∥∥∥
2
, (8.35)

whereθ is the set of parameters to be optimized such that

θ = [β1, . . . , βr , α1, . . . , αm, τ ]. (8.36)

For an easy evaluation of the criterionJ , the delayed term in the reduced-order model
Gr/m,τ (s) can be further approximated by a rational functionĜr/m(s) using the Padé ap-
proximation technique [47]. Thus, the revised criterion can then be defined by

J = min
θ

∥∥∥Ĝ(s) − Ĝr/m(s)

∥∥∥
2

(8.37)

and theH2-norm computation can be evaluated recursively using the algorithm in [108]. The
functionopt_app() discussed in Sec. 3.6 can still be used for fractional-order systems.
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Table 8.1.Comparisons of different order combinations.

r m Reduced-order model Error

2 3
0.03147s2 − 0.8141s − 0.07206

s3 + 0.3168s2 + 0.2582s + 0.02703
0.2286

2 4
−0.0119s2 − 23.21s − 2.035

s4 + 28.78s3 + 9.242s2 + 7.365s + 0.7634
0.2308

2 5
−4.932s2 − 0.8602s − 0.00386

s5 + 5.741s4 + 2.794s3 + 1.596s2 + 0.3134s + 0.001448
0.1342

2 6
−2.327×104s2 − 4059s − 18.21

s6+4719s5+2.709×104s4+1.318×104s3+7534s2+1479s+6.831
0.1342
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Figure 8.6. Comparisons of the reduced-order models.

Example 8.6. Consider again the high-order fractional-order transfer function given in
Example 8.3, where a 48th-order model was obtained, and with the refined Oustaloup
filter, a 58th-order model can be obtained. Using optimal reduction techniques for different
order combinations, the reduced-order models can be found as shown in Table 8.1. It can
be seen that theG2/5(s) model is the best one. The step responses and Bode diagrams are
compared in Figure 8.6. It can be seen that the approximation is satisfactory. It should
be noted that in the code, theopt_app() function may be called several times since the
original model should be used in these cases.

>> N=4; w1=1e-3; w2=1e3; s=tf(’s’); g1=new_fod(0.501,N,w1,w2,9,10);
g2=new_fod(0.42,N,w1,w2,9,10); g3=new_fod(0.798,N,w1,w2,9,10);
g4=new_fod(0.31,N,w1,w2,9,10); g5=new_fod(0.63,N,w1,w2,9,10);
G=(-2*g5-4)/(2*sˆ3*g1+3.8*sˆ2*g2+2.6*s*g3+2.5*s*g4+1.5);
Gr1=opt_app(G,2,3,0);norm(G-Gr1),Gr2=opt_app(G,2,4,0);norm(G-Gr2)
Gr3=opt_app(G,2,5,0); Gr3=opt_app(G,2,5,0,Gr3); norm(G-Gr3)
Gr4=opt_app(G,2,6,0); Gr4=opt_app(G,2,6,0,Gr4);
Gr4=opt_app(G,2,6,0,Gr4); norm(G-Gr4)
step(G,Gr1,Gr2,Gr3,Gr4,30); figure; bode(G,Gr1,Gr2,Gr3,Gr4)
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8.5 Controller Design Studies for Fractional-Order
Systems

From the analysis given previously, it can be seen that the behaviors of fractional-order
controllers may be different from their integer-order counterparts. For instance, if the
widely used PID controller is considered, its fractional-order version PIλDµ controller can
be expressed by [99]

Gc(s) = Kp + Ki

sλ
+ Kdsµ. (8.38)

In the illustration in Figure 8.7, the fractional-order PID controller is explained, with
the horizontal axis as the order of the integrator and the vertical axis the order of the
differentiator. It can be seen that the ordinary PI (proportional plus integral), PD, and PID
controllers are special cases of the fractional-order PID controller since the values ofλ and
µ can be selected freely, which adds two more degree of freedom to the controller design. It
has been shown that the control behavior of the best fractional-order PID controller is quite
superior to the best conventional PID controller in some applications [109].

If the loop shaping technique is considered, it can be seen that the Bode magnitude
diagrams is no longer restricted to 20k dB/decade slopes. Thus the shape of the loop transfer
function can be set freely for better performance and robustness. In this section, several
examples will be given to show the design of an integer-order controller and fractional-order
controller for fractional-order plants.

Example 8.7. For a plant model

G(s) = 1

s2.6 + 2.2s1.5 + 2.9s1.3 + 3.32s0.9 + 1
,

if an integer-order PID controller is expected, it is quite natural to first find an FOPDT
approximate model,

Gp(s) = k
e−Ls

T s + 1

and then design a PID controller for the FOPDT model. The designed controller can then
be used in closed-loop control of the fractional-order plantG(s). For instance, the Wang–
Juang–Chan algorithm [69] in Sec. 6.3.4 can be used to design a PID controller for an

�

�

µ = 1

λ = 1

λ

µ

PI controller

PD controller PID controller

Figure 8.7. Fractional-order PID controller.
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FOPDT model with an optimum ITAE criterion:

Kp = (0.7303+ 0.5307T/L)(T + 0.5L)

K(T + L)
, Ti = T + 0.5L, Td = 0.5LT

T + 0.5L
. (8.39)

The following statements can be used to extract the FOPDT model from the approxi-
mated high-order plant model:

>> N=4; w1=1e-3; w2=1e3; s=tf(’s’);
g1=new_fod(0.6,N,w1,w2,9,10); g2=new_fod(0.5,N,w1,w2,9,10);
g3=new_fod(0.3,N,w1,w2,9,10); g4=new_fod(0.9,N,w1,w2,9,10);
G=1/(sˆ2*g1+2.2*s*g2+2.9*s*g3+3.32*g4+1); Gr=opt_app(G,0,1,1)

The reduced plant model is then

Gr(s) = 0.1702

s + 0.1702
e−0.612s .

The PID controller can be designed such that

>> K=0.1702/0.1702; T=1/0.1702; L=0.612;
Ti=T+0.5*L; Kp=(0.7303+0.5307*T/L)*Ti/(K*(T+L));
Td=(0.5*L*T)/(T+0.5*L); Gc=Kp*(1+1/Ti/s+Td*s),

The integer-order PID controller is designed as

Gc(s) = 4.7960

(
1 + 1

5.6315s
+ 0.3076s

)
= 1.614s2 + 5.55s + 0.8979

s
.

Under such a controller, the closed-loop step response is obtained as shown in Figure 8.8. It
can be seen that the integer-order PID controller can still be used in the fractional-order plant
control. The control results are satisfactory. It is also seen that the high-order approximation
to the closed-loop system is very accurate:

>> Gcf=fotf(1,1,[1.614 5.55 0.8979],[2,1,0]); H=fotf(1,0,1,0);
a=[1 2.2 2.9 3.32 1]; an=[2.6,1.5,1.3 0.9 0]; G0=fotf(a,an,1,0);
GG=feedback(Gcf*G0,H); t=0:0.005:15;
step(feedback(G*Gc,1),t); hold on, step(feedback(G0*Gcf,H),t);

Example 8.8. Consider a fractional-order plant model

G(s) = 10

sα + 2.2
,

where the orderα is an undetermined parameter, within the intervalα ∈ (1.2, 1.6). The
nominal value of the variable isα0 = 1.4. In order to get a low-order robust controller, a
relatively smaller value ofN can be selected, for instance,N = 2. The following statements
can be used to approximate the original model by integer-order approximation such that

>> N=2; w1=1e-3; w2=1e3; s=tf(’s’);
g1=oustafod(0.4,N,w1,w2); G=1/(s*g1+2.2);
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Figure 8.8. Integer-order PID control of fractional-order plant.

Select weighting functionsw1(s) = 100/(s + 1) andw3(s) = 10/(0.01s + 100). The
optimalH∞ controller can be designed such that

>> W1=100/(s+1); W3=100/(0.01*s+100); Gc=mixsyn(G,W1,[],W3);

The controller can be designed as

Gc(s) =
71870205(s + 1000)(s + 144.3)(s + 8.265)(s + 0.1116)

(s + 0.006921)(s2 + 1.73s + 2.388)

(s + 9499)(s + 9975)(s + 346.4)(s + 27.46)
(s + 1.738)(s + 1)(s + 0.1096)(s + 0.006918)

.

Under such a controller, the open-loop Bode diagrams and the closed-loop step response
are obtained as shown in Figures 8.9(a) and (b), respectively:

>> f1=figure; bode(G*Gc); hold on
f2=figure; step(feedback(G*Gc,1),0.1); hold on
for a=[0.2:0.05:0.6]

g1=oustafod(a,4,w1,w2); G1=1/(s*g1+2.2);
figure(f1); bode(G1*Gc);
figure(f2); step(feedback(G1*Gc,1),0.1)

end

Example 8.9. Consider again the fractional-order plant model in Example 8.7. The integer-
order approximation can be obtained such that

>> N=4; w1=1e-3; w2=1000; s=tf(’s’);
g1=oustafod(0.6,N,w1,w2); g2=oustafod(0.5,N,w1,w2);
g3=oustafod(0.3,N,w1,w2); g4=oustafod(0.9,N,w1,w2);
G=1/(sˆ2*g1+2.2*s*g2+2.9*s*g3+3.32*g4+1);

Using the integer-order model, the Simulink model for optimal controller design with
an integer-order PID controller is established as shown in Figure 8.10(a). A saturation
actuator with limits±5 is also included in the Simulink model.
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(b) closed-loop step responses

Figure 8.9. Time and frequency domain analysis under robust controller.
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Figure 8.10.Optimal PID controller design for fractional-order plant.

It can be found by using the Optimal Controller Designer (OCD) program that
the parameters of the PID controller areKp = 14768.1007, Ki = 1.35636077, Kd =
2306.39271. Under such a controller, the optimum step response of the closed-loop system
can be obtained as shown in Figure 8.10(b). It can be seen that the controller obtained with
the OCD is much better than the one obtained in Example 8.7. Also the control action is
restricted within the specific range.

Due to the robustness of the PID controllers, the errors in the controller parameters
may not cause any problem in the control results. For instance, if we had the erroneous
parametersKp = 10000, Ki = 1, Kd = 2500, where the errors reach 35%, the control
results would be as shown in Figure 8.11(a). It can be seen that the system responses are
almost the same with the optimal PID controller:

>> Kp=10000; Ki=1; Kd=2500;
[t,x,y]=sim(’c8mfpid2’,[0,10]); plot(t,y(:,2))

Assume that plant model is changed to

G(s)= 2

s2.6+5s1.5+4s1.3+5.32s0.9+1
,

where the parameters are all perturbed. If the erroneous PID controller is still used, the
control results are as shown in Figure 8.11(b). It can be seen that, although the plant models
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Figure 8.11.The robustness of the PID controller.

change significantly, the PID controller can still behave perfectly. This demonstrates the
robustness of the PID controller in fractional-order plant models:

>> G=2/(sˆ2*g1+5*s*g2+4*s*g3+5.32*g4+1);
[t,x,y]=sim(’c8mfpid2’,[0,10]); plot(t,y(:,2))

Problems

1. Assume that a fractional-order linear differential equation is given by

0.8D2.2
t y(t) + 0.5D0.9

t y(t) + y(t) = 1,

with initial valuesy(0) = y′(0) = y′′(0) = 0. Solve numerically the FODE. If the
order of 2.2 is approximated by 2, and 0.9 is approximated by 1, the original fractional-
order differential equation can be approximated by an integer-order system. Compare
the accuracy of the approximated integer-order systems.

2. For a fractional-order model given by

(a). G(s) = 5

s2.3 + 1.3s0.9 + 1.25

and

(b). G(s) = 5s0.6 + 2

s3.3 + 3.1s2.6 + 2.89s1.9 + 2.5s1.4 + 1.2
,

approximate the fractional-order models with low-order integer-order models, and
compare the accuracy of the frequency and time domain fittings. Discuss what order
combination is most suitable for the original model.

3. Suppose that the plant model is

G(s)= 1

s2.6+2.2s1.5+2.9s1.3+3.32s0.9+1
,
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and an integer-order PID controller is

Gc(s) = 1.614s2 + 5.55s + 0.8979

s
.

Find the closed-loop fractional-order model.

4. Write a function to find the solutions to the FODE using the algorithm in (8.17)–
(8.21), and compare the results with the Grünwald–Letnikov definition approach and
the block diagram algorithm.

5. Consider the linear FODE given by

Dx(t) +
(

9

1 + 2λ

)α

Dαx(t) + x(t) = 1,

whereλ = 0.5, α = 0.25 andx(0) = 0. Solve the equation numerically.

6. Find a good approximation tos0.7 with the revised Oustaloup filter and see whichN

can best fit the fractional-order differentiator.

7. Solve the following nonlinear FODE with the block diagram algorithm withx(0) = 0:

D2x(t) + D1.455x(t) +
[
D0.555x(t)

]2 + x3(t) = sint.

8. For the plant model

G(s) = 5s0.6 + 2

s3.3 + 3.1s2.6 + 2.89s1.9 + 2.5s1.4 + 1.2
,

design an integer-order PID controller and observe the control results.

9. For the fractional-order model

G = b

as0.7 + 1
,

design anH∞ controller which can tolerate the parameter changes in the fractional-
order model, for instance,a ∈ (0.2, 5) andb ∈ (0.2, 1.5).
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Appendix

CtrlLAB: A Feedback
Control System Analysis
and Design Tool

A.1 Introduction
A.1.1 What Is CtrlLAB?

CtrlLAB, a MATLAB-based toolkit with an integrated graphical user interface (GUI), was
designed by the authors for solving the modeling, analysis, and design problems in SISO
(single input–single output) feedback control systems. It is developed from the old Control
Kit by the authors [110]. CtrlLAB has become a flexible and powerful tool for both teaching
and engineering design and requires minimum user effort. It can be used as a companion
to this book.

CtrlLAB, written and tested under MATLAB v4.2, was first made public on the
MathWorks anonymous ftp site as a user-contributed MATLAB program. Since then, much
useful feedback has been received. Over the years, CtrlLAB has been greatly improved. It
has already been used as a CAI (computer aided instruction) tool in control courses at many
universities worldwide. The latest version of CtrlLAB can also run under other versions
of MATLAB, including MATLAB R2007b. It is still freely downloadable from MATLAB
Central at

http://www.mathworks.com/matlabcentral/index.shtml

Currently, CtrlLAB is the most downloaded tool under the Controls and Systems Modeling
file exchange category at MATLAB Central.

The main facilities provided by CtrlLAB are

• model entry, including Simulink model entry;

• model display;

• state space realizations;

• model reduction using various algorithms;

• system analysis in frequency and time domains;

• graphical display with figure editing and manipulation;

• a GUI matrix processor and editor;

307
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• many controller design modules such as the model-based approaches (lead-lag, LQ
(linear quadratic) optimal, pole-placement, etc.); PID (proportional integral derivative)
parameter setting and PID tuning schemes; and robust controller design approaches
(such as LQG (linear quadratic Gaussian), LQG/LTR (loop transfer recovery),H2,
H∞, etc.).

A.1.2 Installation and Requirements

With the downloadedctrllab.zipfile, unzip it to a directory usingWinZiporpkunzip
software. Before running CtrlLAB, the directory of CtrlLAB should be added to the MAT-
LAB path. This can be set with theFile | Set Path menu item in the MATLAB command
window.

CtrlLAB is written for the PC Windows platform; however, it should also be able to
run on other platforms. Although CtrlLAB has not been fully tested on other platforms,
with a MATLAB version newer than 4.2c, the cross platform compatibility will be much
better than what was experienced under MATLAB version 4.2c. We believe that CtrlLAB
can run on any current version of other platforms with little modification.

A.1.3 Execution of CtrlLAB

To run CtrlLAB, simply type ctrllab under the MATLAB prompt, and a GUI with
menus will pop up, as shown in Figure A.1. The user must first enter or to define the
models, which include the plant, the controller, and the feedback element. The default
models for the latter two are all unity. The possible time delay may also be specified. With
the specified models, the analysis and design tasks can be performed.

Menus and dialog boxes are provided to invoke relevant functions to fulfill the user’s
own analysis and design tasks. Note that all the functions provided in CtrlLAB can be
accessed through the efficient and user friendly GUI. There is no need to call these functions

Figure A.1. The GUI of CtrlLAB.
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manually. CtrlLAB is designed for linear feedback control system analysis and design using
only mouse clicks and numeric key strokes. Great effort has been made in CtrlLAB to
minimize the user involvement in the analysis and design of feedback control systems.

A.2 Model Entry and Model Conversion
A.2.1 Transfer Function Entry

To quickly enter a default model, the user can click one of the model icons in the block
diagram shown in Figure A.1, and CtrlLAB will check whether the model exists in the work
space. If it does not exist, a dialog box, shown in Figure A.2, will appear by default, which
allows the user to enter the system model by specifying the numerator and denominator,
respectively, in the appropriate edit boxes.

The transfer function model can be entered in two ways. The first is by entering
the standard MATLAB vectors in descending order of the Laplace complex variables.
The second is by representing the polynomials in a “natural way.” These two methods
are demonstrated in Table A.1. It can be seen that for the factorized polynomials, the
s polynomial representation is much more “natural” and simpler than a pure MATLAB
expression.

A.2.2 Entering Other Model Representations

The state space model, or zero-pole-gain model, can also be entered if the corresponding
item from the list box shown in Figure A.2 is selected.

Figure A.2. Dialog box for transfer function model entry.

Table A.1. Examples of polynomial representations.

Mathematical MATLAB commands s polynomial

s2 + 5s + 4 [1,5,4] s2+5s+4

s2(s + 5)(s2 + 7) [conv([1,5],[1,0,7]),0,0] s2(s+5)(s2+7)2

1.5s3(s3+7s2+6s+2)12 too complicated 1.5s3(s3+7s2+6s+2)12
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Figure A.3. Dialog box for zero-pole-gain model entry.

Figure A.4. Dialog box for state space model entry.

In Figure A.2, if the menu itempole-zero (for zero-pole-gain model) is selected, the
dialog box shown in Figure A.3 will appear, where the zero-pole-gain model parameters
can be entered in the corresponding edit boxes. Then, press theOK button to confirm.
Internally, a transfer function object will be generated automatically from the user-specified
zero-pole-gain model. For thestate space item, the dialog box shown in Figure A.4 will
appear, where the(A, B, C, D) matrices of the system can be entered in the corresponding
edit boxes. Then, a transfer function object of the block can be generated automatically
from the given state space model.

A.2.3 A More Complicated Model Entry

If the system model under study has a more complicated structure, such as containing com-
plex block diagrams or nonlinearities, the Simulink program should be used to construct the
system model. In this case, the user can select theSimulink item from the dialog box shown
in Figure A.2. A model name (an internal name) will be requested and then the Simulink
editing environment will appear, as shown in Figures A.5(a) and (b), where Figure A.5(a) is
the model library from which all the Simulink library models can be accessed. FigureA.5(b)
is a blank Simulink model editing window in which the user can draw the system model
between the input and output ports of the system. Once the model entry process is completed
in the Simulink edit window, as shown in Figure A.5(b), double clickReturn to CtrlLAB
to return the user system model to CtrlLAB. If the user model in Simulink is nonlinear, the
linearized transfer function model of the user system will be created and saved, together with
the original Simulink model, for CtrlLAB use. A simple nonlinear model entry example in
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Figure A.5. Simulink model entering in CtrlLAB.

Figure A.6. Complicated model entry in CtrlLAB via Simulink.

CtrlLAB is shown in Figure A.6 which uses Simulink to describe the nonlinear part. Note
theReturn to CtrlLAB button in FigureA.6 for returning a linearized transfer function object
for use with CtrlLAB.

A.3 Model Transformation and Reduction
A.3.1 Model Display

To display the model of a block in Figure A.1, selectModel | Model Select in the menu
shown in Figure A.7, or simply click the relevant block button in the main interface shown
in Figure A.1.
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Figure A.7. Model selecting menu.

Figure A.8. Transfer function display.

Figure A.9. Display format selection.

As an example, consider the transfer function of the plant model given by

G(s) = s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24
.

To display the transfer function model of the plant, simply press theG(s) button in the main
interface shown in Figure A.1. The transfer function model will then be displayed in the
Information Display Window as shown in Figure A.8. The displayed model can also be
modified in the display window by pressing theModify button. The dialog box shown in
Figure A.2 will be displayed again for model parameter changes.

The block model can be displayed in various formats. This can be done by selecting
theModel | Model Display menu, shown in Figure A.9, with the transfer function format
as the default. Through theModel | Model Display | FactorizedTF menu item, the transfer
function in the factorized format will be displayed as shown in Figure A.10.
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Figure A.10. Factorized transfer function display format.

Figure A.11. State space model display format.

Figure A.12. Display via the Matrix Processor.

Moreover, the state space model can be displayed by theModel | Model Display |
state space menu item as demonstrated in Figure A.11. When theShow button is clicked,
the Matrix Processor is activated; the typical window is shown in Figure A.12. The zero-
pole-gain format of the system is displayed by theModel | Model Display | Pole-Zero
menu item which is shown in Figure A.13.

If the nonlinear system model is involved, only the linearized model will be displayed
as in Figure A.14. To display the original Simulink model, simply press theto CtrlLAB
button.
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Figure A.13. Zero-pole-gain display format.

Figure A.14. Linearized model display.

A.3.2 State Space Realizations

Different state space realizations can be performed for a given transfer function plant model.
This can be done by theModel | Realisation menu items shown in Figure A.15, and an
example of the Jordanian canonical form of the system is obtained, as shown in FigureA.16,
via the Matrix Processor interface.

A.3.3 Model Reduction

Reduced-order models of the system can also be obtained by theModel | Reduction menu
item. The model reduction dialog box will appear as in Figure A.17, where various model
reduction approaches are implemented such as the continued-fraction approach, the Padé
method, the Routh method, the dominant mode method, the balanced realization method,
the optimal reduction method, the FF-Padé method, the modal method, and the optimal
Hankel approximation method.

For example, if the Padé approximation method is chosen from the list box of model
reduction methods, the expected order of the reduced model can be specified as in Fig-
ure A.17. The reduced-order model is then obtained as shown in Figure A.18.

Figure A.15. State space realization menu.



Book
2007/1
page3

A.3. Model Transformation and Reduction 315

Figure A.16. Jordan realization.

Figure A.17. Model reduction dialog box.

Figure A.18. Model reduction result via the Padé approximation method.

To compare the reduced-order model with the original model, click onCompare re-
sponses in the model display window. A new dialog box pops up for choosing a comparison
plot from a list of responses which include the Bode diagrams, Nyquist plots, Nichols charts,
as well as the step and impulse responses between the original model and the reduced-order
model. For instance, the step response comparison, and the Bode diagram comparison, of
the original system and the reduced model via the Padé approximation method are shown in
Figures A.19(a) and (b), respectively, where the solid line represents for the original model
and the dotted line the reduced-order model. It can be seen that the responses of the two
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Figure A.19. Comparisons of the reduced order and the original models.

models are quite close, especially in the step response comparison, where the two curves
are almost indistinguishable.

A.4 Feedback Control System Analysis
Various linear system analysis tasks covered in this book can be performed by the direct use
of CtrlLAB. After performing the model entry from Sec. A.2, selectAnalysis from the main
menu shown in Figure A.1. The system analysis menu will appear as shown in Figure A.20.
In this menu, plots for time domain, frequency domain, and root locus analysis can be
generated by just using mouse clicks. In what follows, some detailed instructions are given
in the subsections to follow.

A.4.1 Frequency Domain Analysis

The Bode diagram of the system can be obtained by theAnalysis | Frequency Domain
Analysis | Bode Diagram menu item. The result is shown as in Figure A.21(a).

Via the Options | Show asymptotes sub-menu in the Bode diagram window, the
Bode plot asymptotes are drawn together with the exact Bode diagram, as demonstrated in
Figure A.21(b).

The properties of the graphs can be modified by theOptions | Plot preference
sub-menu in the Bode diagram window, and a dialog box is then provided as shown in

Figure A.20. System analysis menu in CtrlLAB.
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Figure A.21. Bode diagram of a given linear system.

Figure A.22. Graph properties setting dialog box.

Figure A.22, where some of the details on the graph can be modified such as the boxes, grid,
colors, etc. Moreover, the open-loop and closed-loop properties of the plots can also be
changed. If a controller model is available, theCombinations group can be used to choose
theCompensated as well as theUncompensated frequency response. For instance, if the
user checks theClosed Loop box, the closed-loop Bode diagram can then be obtained as
shown in Figure A.23.

The Nyquist and Nichols charts can be obtained via theAnalysis | Nyquist Plot
andAnalysis | Nichols Chart menu items. Results shown in Figures A.24(a) and (b),
respectively.

The root locus plot can be obtained by usingAnalysis | Root Locus. For some
particular systems, the directly obtained root locus of the system may not be very informative
due to the poor quality of the automatically chosen plot ranges. In this case, the user can
change the axis of the plot via theOptions | Zoom | User Define menu item on the root
locus window. A dialog box then appears as shown in Figure A.25(a). The ranges of the
x and y axes can be changed until a good display result is obtained. For instance, with the
properly chosen axes, the more informative root locus of the system can then be redrawn,
as shown in Figure A.25(b).
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Figure A.23. The modified graph.
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Figure A.24. Frequency responses.

(a) zoom dialog box

-10 -8 -6 -4 -2 0
-3

-2

-1

0

1

2

3

(b) root locus

Figure A.25. Root locus analysis.

A.4.2 Time Domain Analysis

The step and impulse responses of the system can be obtained directly from the menu
Analysis | Step response, andAnalysis | Impulse response, respectively. For instance, the
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Figure A.26. Step response analysis.

Figure A.27. Simulation parameter setting dialog box.

step response of the system can be obtained as shown in Figure A.26(a). This step response
shown in FigureA.26(a) is the closed-loop step response. One can obtain the open-loop step
response of the system by selecting the relevant submenu item in theAnalysis menu and
the open-loop step response of the system can then be redrawn in the step response window
as shown in Figure A.26(b).

For nonlinear systems, one can also specify the type of input signals, via theOptions
| Simulation parameters menu item in the relevant graphics window. A dialog box will
appear as shown in Figure A.27 which prompts the user to specify the input signals as well
as the simulation parameters. For instance, when studying the system with the Simulink
model, to display the step response of the linearized system and that of the original system,
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Figure A.28. Step responses of a nonlinear system with linearization.
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Figure A.29. Time range modifications.

check theShow Linearised box. The time response of the system can then be displayed as
shown in Figure A.28.

The plot range can also be set by theOptions | Plot range menu item in the graphics
window. A dialog box, shown in FigureA.29(a), prompts the user to select a new plot range.
For instance, the user can set a new terminating time at 50, and the new system responses
are then obtained as shown in Figure A.29(b).

Other signal types apart from the step and impulse signals can also be applied. For
instance, the user can select square wave, saw tooth, wave and sine wave by using the
dialog box shown in Figure A.27. Other parameters such as the frequency of the signal can
also be changed. The time response to a square wave input is shown in Figure A.30(a).
To display other signals such as the error signale(t), select theOptions | Other signals
menu item in the graphics window and click the error signale(t) in the block diagram of
the feedback system. The error signal for a step input can then be obtained as shown in
Figure A.30(b).
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Figure A.30. Time response of other signals.

Figure A.31. Gain and phase margins.

Figure A.32. Analytical closed-loop step response.

A.4.3 System Properties Analysis

The stability property, gain and phase margins, and the analytical solutions to step and im-
pulse signals can also be obtained through the menu system. For instance, for the nonlinear
system model, the gain and phase margins to the linearized model can be obtained as shown
in Figure A.31, and the analytical solutions to the step response of the system can then be
shown as in Figure A.32.
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Figure A.33. System design menu.

Figure A.34. Lead-Lag compensator dialog box.

A.5 Controller Design Examples
A.5.1 Model-Based Controller Designs

We shall use the phase lead-lag controller design problem as an example to illustrate the
controller design for a given plant model via CtrlLAB. The model-based controller design
menu is shown in FigureA.33, and it can be seen that several model-based design algorithms
can be selected within the menu, as discussed in Chapter 5. For instance, with a typical
lead-lag controller design dialog box, shown in Figure A.34, the user is requested to enter
the parameters such as the expected phase marginγ , the crossover frequencyωc, and the
steady-state error toleranceKv.

Let us try a plant model given byG(s) = 1/[s(s + 1)(0.2s + 1)]. Set the expected
phase marginγ = 50◦, the crossover frequencyωc = 5 rad/sec, and the steady-state
error toleranceKv = 100. Then, a lead-lag compensator can be designed as shown in
Figure A.35(a). With a proper menu selection, the controller can be shown in the factorized
form as in Figure A.35(a). The Bode diagrams of the system before and after lead-lag
compensation can be obtained using theAnalysis | Bode Diagram menu item, as shown in
Figure A.35(b).

Via CtrlLAB, it is also very easy to design the LQ optimal controller and the pole-
placement controller with either full state feedback or observer-based structures. The
straightforward model-based controllers can also be designed with CtrlLAB.

A.5.2 Design of PID Controllers

Consider the PID controller design problem with the plant modelG(s) = 10/[(s + 1)(s +
2)(s + 3)(s + 4)] entered via CtrlLAB. By theDesign | PID Controller menu item, the
design menu will appear as shown in FigureA.36. It can be seen that different PID controller
design algorithms have been implemented within CtrlLAB. The “one-shot” submenu item
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Figure A.35. A lead-lag compensator.

Figure A.36. Main menu for PID controller design.
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Figure A.37. Ziegler–Nichols PID controller.

in Figure A.36 means that the PID controller can be designed directly from the known plant
model with no other extra specification needed. One may design a PID controller using
the Ziegler–Nichols algorithm by selectingDesign | PID controller | One-shot design |
Ziegler–Nichols Tuning. This will immediately generate the PID controller as shown in
Figure A.37(a). Furthermore, the refined Ziegler–Nichols controller can be designed, as
also shown in Figure A.37(a), when theOne-shot design | Refined Ziegler–Nichols menu
is selected. By theAnalysis | Step response menu item, the closed-loop step response of
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Figure A.38. PID controller structures.

Figure A.39. FOPDT model fitting methods.

Figure A.40. PID with specified parameters.

Figure A.41. Optimum PID controller design.

the system will be obtained as in Figure A.37(b) where it is shown together with the step
response of the uncompensated system.

Apart from the standard PID controllers, other similar structures such as the P con-
troller, the PI controller, and the PID controller with D in the feedback loop, can also
be designed, which can be selected from theDesign PID Controller | Controller Type
menu item as shown in Figure A.38. We know that the PID controller parameter setting is
based on the first-order plus dead time (FOPDT) model. Given a high-order plant model,
we can select different approaches to fit the original plant model by a standard first-order
model with dead time. The fitting algorithms can be selected from the menu shown in
Figure A.39.

PID controllers can also be designed with other algorithms using theSpecified
parameters and Optimum Tuning menu items as shown in Figures A.40 and A.41,
respectively.

With the above different tuning algorithms, we can design PID controllers that have
better performance. For instance, the suboptimal first-order approximation to the plant
model can be obtained using menu itemFirst-order model identification | Optimal re-
duction, and from this an optimum PID controller can be designed. Using these controllers,
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Figure A.42. Step response comparison of different PID controllers.

Figure A.43. Robust control design menu.

the closed-loop step responses are then compared as in Figure A.42. It can be seen that per-
formance can be significantly improved, compared to the results from other “one-shot” PID
controllers.

A.5.3 Robust Controller Design

In this section, only theH∞ controller design via CtrlLAB will be demonstrated, although
other design problems can also be solved in CtrlLAB. The example we shall use is the
double integrator plant model as given in Example 7.16. The design submenus for the
robust controllers can be obtained by selecting theDesign | Robust Control menu item as
shown in Figure A.43.

To get anH∞ optimal controller, select theDesign | Robust Control | H_inf Op-
timal Control menu item to obtain the dialog box shown in Figure A.44. Specify various
weighting functionsW1(s), W2(s), andW3(s) in the dialog box. To design anH∞ con-
troller for the sensitivity problem, checkSensitivity so that a new dialog box will appear
as shown in Figure A.45(a). In Figure A.45(a), the expected order and the natural fre-
quency for the ITAE standard reference model should be entered. For instance, if one
selectsn = 2 andωn = 10 rad/sec, an optimalH∞ controller can be designed as shown in
Figure A.45(b).

The Nichols charts and the closed-loop step response of the system can then be ob-
tained as shown in Figures A.46(a) and (b), respectively. Other types of robust controllers,
such as theH2 controller and the LQG/LTR controllers, can also be designed and analyzed
with little effort using the menus and dialog boxes.
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Figure A.44. H -norm-based dialog box.

(a) dialog box for the sensitivity problem (b) optimalH∞ controller

Figure A.45. Robust control design results.
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Figure A.46. Robust control system analysis.
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A.6 Graphical Interface-Based Tools
Two useful graphics-based tools are provided in CtrlLAB which can be used to process
matrices and figures, respectively. In the following subsections, detailed descriptions of
these two programs will be given.

A.6.1 A Matrix Processor

A matrix processor,MatxProc() is developed which can be used to process and edit
matrices and state space models, and perform various kinds of matrix analyses in a visual
way. The GUI facilities are extensively used to make the matrix processor very flexible and
easy to use.

WhenMatxProc is typed in the MATLAB prompt, a GUI will appear as shown
in Figure A.47. The program can also be called from within CtrlLAB. In MATLAB,
MatxProc() can be called using the formatMatxProc(A), whereA is a given ma-
trix, or simply usingMatxProc.

The File | New matrix menu can be selected to create a new matrix. The dialog
box shown in Figure A.48 will appear to prompt the user to select from different matrix
templates. For instance, if one selects aHilbert matrix with 3 rows, the matrix will then be
created byMatxProc as shown in Figure A.49.

Various display formats are allowed inMatxProc(). The user can select theFor-
mat menu as shown in Figure A.50(a). It can be seen that the user can specify different
display precisions (high, normal, or rational), different alignment requirements (left, right,
or center), and different truncating thresholds. For instance, the high precision display is
given in Figure A.50(b), with part of the matrix elements hidden due to the limited size of
the window. The hidden part of the matrix can be displayed via the horizontal scroll bar.
The matrix can also be displayed in rational number format.

A matrix displayed can be analyzed and processed withinMatxProc(). For in-
stance, to analyze the matrix, simply select theAnalysis to obtain the menu appearing
in Figure A.51. To get the parameters of the given matrix, select theAnalysis | Matrix

Figure A.47. A matrix processor interface.
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Figure A.48. Matrix creating dialog box.

Figure A.49. Creating a new matrix.

(a) format menu (b) high precision display

Figure A.50. Display formats of a matrix.
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Figure A.51. Matrix analysis menu.

Figure A.52. Matrix parameters display.

(a) manipulation menu (b) inverse matrix

Figure A.53. Matrix manipulations.

Parameters menu item. The analysis results will be obtained and displayed in the Infor-
mation Display Window as shown in Figure A.52. Other analysis tasks such as evaluating
the determinant, trace, norm, characteristic polynomial of the matrix can also be performed
using theAnalysis menu.

Matrix manipulation such as matrix inversion and rotation can be performed within
MatxProc(). To manipulate the matrix, select theAnalysis | Manipulations menu as
shown in Figure A.53(a) to easily obtain, for example, the inversion of the matrix shown in
Figure A.53(b).

Different decompositions for a given matrix can also be obtained, such as the QR
decomposition, LU decomposition, singular value decomposition (SVD), etc. TheAnalysis
| Decomposition menu is shown in Figure A.54(a), where theU matrix of the Schur
decomposition can easily be obtained by selecting the relevant menu item, and the results
are shown in Figure A.54(b). In addition, the button labeledT matrix in the GUI prompts
the user to display the other matrix, for example, theT matrix, such thatA = UT UT .
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(a) decomposition menu (b) U matrix

Figure A.54. Matrix decompositions.

(a) matrix evaluation menu (b) cosine function

Figure A.55. Matrix function evaluations.

(a) matrix edit menu (b) matrix editing interface

Figure A.56. Matrix editing facilities.

Matrix function evaluations can be performed withinMatxProc() by selecting the
Analysis | Matrix Evaluation menu. Contents of the menu are displayed in Figure A.55(a).
When the user selects theCos(A) function display, the cosine of matrixA can be obtained
as shown in Figure A.55(b).

A matrix can be edited using theEdit menu as shown in Figure A.56(a). By theEdit |
Edit an Element menu item, the cursor will be changed to the cross sign, which prompts the
user to select a matrix element. Once the user has selected an element to edit, the value of
the element will be entered into the edit box for modification, as shown in Figure A.56(b).
Once the edit process is done, the user can press theAccept button to confirm the change.
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(a) TEX format (b) MATLAB format

Figure A.57. Matrix display in other formats.

The matrix can be shown in other formats as well, such as the TEX format and the
MATLAB format. This is particularly useful in dealing with large and complicated matrices.
For instance, the TEX format of the matrix can be obtained by selecting theEdit | Show in
TeX Format menu item, and the result is as shown in Figure A.57(a), while the MATLAB
format of the matrix is shown in Figure A.57(b).

A.6.2 A Graphical Curve Processor

The graphical curve processor is not currently an independent MATLAB function. It has
been integrated into CtrlLAB. It is mainly used to “decorate” the graphs obtained using
CtrlLAB to any degree of complexity. It can be used to do simple things such as add or
remove grids, add arrows, add floating legends to the graph, etc. Most of the figures in this
book used this unique graphical curve processor within CtrlLAB. We remark that, although
the current version of MATLAB has provided a plot editing toolbar for various graph editing
utilities, the graphical curve processor within CtrlLAB has been working similarly and more
powerfully with earlier versions of MATLAB (since version 4.2c) and is compatible with
versions 5.x and 6.x. The ultimate objective of CtrlLab is to minimize user effort.

An Option menu in the standard MATLAB graphics window allows for some of the
useful facilities to be called; this menu is shown in Figure A.58(a). For instance, via the
Options | Axis and Grid | with Boxes off andOptions | Axis and Grid | with Grid off
menu items, the time response graph will then be changed to the display format shown in
Figure A.58(b), where the grids and boxes are turned off.

Note that, to turn off the grids, we can typegrid offwithin the MATLAB command
line. However, our objective here is to avoid such a user involvement. At this point, we
remark again that CtrlLAB is designed for linear feedback control system analysis and
design byonly mouse clicksand some essential numeric key strokes. Great efforts have
been made to minimize the user involvement in the analysis and design of feedback control
systems. The Matrix Processor and Graph Processor described in this section are also part
of the efforts to achieve this goal.

To draw several curves together with a common coordinate, select theOptions | Axis
and Grid | Hold on menu item to hold the current graph coordinate and then display another
curve on the current plot. This is demonstrated in Figure A.59(a).
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(a)Options menu
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Figure A.58. Graphics processor menu and results.
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Figure A.59. Screen hold and cursor.

To cancel the hold protection, select theOptions | Axis and Grid | Hold off menu
item. To locate the specific points on the graph, use theOptions | Cursor positions
menu item. For instance, the curves with some points selected and marked are shown in
Figure A.59(b).

Furthermore, various legends can be added to the graphs. TheOptions | Legends
menu is shown in Figure A.60, where one can select to add, move, or edit text strings on the
graphs, and also to draw lines or lines with arrows on the graph.

Two text legends are added on the graph shown in Figure A.61(a), and several lines
and arrows can be further added on the graph as shown in Figure A.61(b). It can be seen that
the legends (including lines and arrows) can be added or edited freely using the facilities
provided. The user can also remove the legends by selectingOptions | Legends | Delete
a Legend to remove an existing legend.

The properties of the legends can be modified if the user selects theLegends | Proper-
ties menu item, and a dialog box for assigning legend properties will be displayed as shown
in Figure A.62(a). With proper settings, the modified version of the graph with different
fonts, and line types will be obtained as shown in Figure A.62(b).
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Figure A.60. Legends menu.
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Figure A.61. Adding more legends on graphs.
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Figure A.62. Changing the properties of legends.
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Figure A.63. Zoom facilities.
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Figure A.64. Axis range specifications.

The user may also change the view in the graph window by selecting theOptions
| Zooming menu item as shown in Figure A.63(a), which allows the user to change the
current coordinates using a mouse. For instance, the user can redefine the range for display
by dragging the mouse, and the results can then be displayed as shown in Figure A.63(b).

Moreover, using theZooming | User Define menu item, the dialog box shown in
Figure A.64(a) will pop up to allow the user to select a reasonable display range. If the
plot range in Figure A.64(a) is used, the zoomed output will be displayed as shown in
Figure A.64(b).

Problems
1. Use the following plant models to test the previously described analysis and design

tasks using CtrlLAB:

(a)G(s) = 50000

(s + 1)(s + 2)(s + 3)(s + 4)(s + 5)(s + 6)(s + 7)(s + 8)
.
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(b) ẋ =


2.25 −5 −1.25 −0.5
2.25 −4.25 −1.25 −0.25
0.25 −0.5 −1.25 −1
1.25 −1.75 −0.25 −0.75

 x +


4
2
2
0

 u, y = x1 + 5x2.

(c) The DC drive system given in Example 2.11. Use both the direct method and the
Simulink method to create the system model.

2. Analyze the system matrix in problem 1(b). Find the norms, determinant, eigenvalues,
and characteristic polynomial ofA, and do LU, QR, SVD decomposition ofA within
CtrlLAB. Find the matrices eA, sin(A), and log(A).

3. Try to reproduce Figure 3.14(a) by using the graphics processor.
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actuator saturation, 220, 226, 302
additive uncertainty, 248
AIC, 40, 41
Akaike’s information criterion, 337
algebraic Riccati equation (ARE), 152,

158, 237, 238, 262
analytical solution, 66–70, 135, 160, 291,

321
anti-windup, 5, 226
ARE (algebraic Riccati equation), 152,

158, 237, 238, 262
automatic tuning, 207, 208, 227–228

relay, 5, 128, 207, 228, 229
Tsypkin’s method, 228–229

autonomous system, 67

balanced realization, 31–32, 58, 59,
101–103, 314
Schur’s, 102

Bass–Gura algorithm, 166
Bezout equation, 259, 260
bilinear transform, 251, 252, 266
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201, 248, 309
Bode diagram, 7, 85–88, 317, 322

magnitude, 259, 262, 275, 279, 282,
300

bounded input–bounded output, 52

canonical form, 56, 57, 59, 62
controllable, 29
Jordanian, 29–31, 314
observable, 29

Caputo’s definition, 284, 286
cascade PI controller, 223
Cauchy’s definition, 284, 285

Chien–Hrones–Reswick formula, 181,
197–198

class, 287, 288
Cohen–Coon formula, 181, 198–200
complementary sensitivity function, 108,

243, 255
complex plane, 194, 251
connection

feedback, 21–22, 288
parallel, 20–21, 32, 288
series, 11, 20, 22, 288

constrained optimization, 131, 216, 217
control strategy, 2, 3, 157, 158, 162,

182–184, 230
Control Systems Toolbox, 2, 6, 8
controllability, 51, 55–60, 168

Gramian, 51, 58, 59, 179
staircase form, 56, 57

controllable canonical form, 29
controller

H∞, 236, 249, 262, 263, 266, 270, 325
H2, 272, 273, 325
fractional-order, 283, 284, 300
PD, 200, 210–212, 223, 300
PI, 123, 183, 186, 188, 189, 194–196,

198, 200, 203, 205–207, 222, 226,
300, 324

PID, 181–233
coprime factorization, 259–261
crossover frequency, 142, 146–149, 186,

189, 192, 207, 228, 297, 322
CtrlLAB, 5–7, 9, 307

damping ratio, 78, 81
iso-, 78, 81, 82

DC (direct-current) gain, 42, 192, 193
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decoupling, 5, 139, 171–174, 270
dynamic, 172, 174
with state feedback, 171–174

default discretization, 34
delayed system, 79, 120
describing function, 126, 228–229
descriptor system, 250
difference equation, 44
differential equation, 12, 14, 17, 283

fractional-order, 283, 290, 291
differential Riccati equation, 152, 158
differentiation, 14, 284

fractional-order, 285, 286, 292
direct-current (DC) gain, 42, 192, 193
discrete-time Riccati equation, 156
discretization, 34
disturbance, 53, 198, 203, 205, 235, 241,

248
rejection, 197, 198, 205–207

dominant poles, 81
dual, 29, 58, 169
dynamic decoupling, 172, 174

feedback connection, 21–22, 288
filter

Kalman, 236–239, 241–243, 245, 272
low-pass, 184, 254, 297
Oustaloup’s, 292–293, 298, 299
refined Oustaloup’s, 294–299

first-order lag and integrator plus dead
time (FOIPDT), 211, 212, 222

first-order plus dead time (FOPDT), 181,
186, 188, 193, 198, 209, 324

fixed step, 117
FOIPDT (first-order lag and integrator plus

dead time), 211, 212, 222
FOPDT (first-order plus dead time), 181,

186, 188, 193, 198, 209, 324
Fourier series expansion, 41, 229
fractional transformation representation,

249, 254
fractional-order, 283–305

calculus, 284, 286
controller, 283, 284, 300
differential equation, 283, 290, 291
differentiation, 285, 286, 292

Caputo’s definition, 284, 286
Cauchy’s definition, 284, 285
Grünwald–Letnikov definition,

284–286, 290, 292
Riemann–Liouville definition,

284–286
transfer function, 287–289, 298, 299

frequency responses, 5, 43, 64, 65, 84–92,
186, 191–192, 194, 317

gain margin, 88–89, 141, 144, 189, 244
general mixed sensitivity problem, 254
genetic algorithm (GA), 224
GeneticAlgorithm Optimization Toolbox

(GAOT), 9, 224
Grünwald–Letnikov definition, 284–286,

290, 292

H -norm, 65
H2-norm, 65–66, 98, 99, 236, 249
H∞-norm, 236, 249, 259, 261
H2 controller, 272, 273, 325
H∞ controller, 236, 249, 262, 263, 266,

270, 325
optimal, 267, 270, 274, 276, 280, 302,

325
standard, 249

Hankel matrix, 166
Hankel norm, 103
Hardy space, 3, 5, 65

identification
system, 4, 11, 35–45, 139, 194

impulse response, 51, 62, 63, 70, 75–77,
125, 250, 315, 319

impulse signal, 65, 76, 77, 98, 125, 320,
321

integral of absolute error (IAE), 98, 173,
203, 218, 223, 278, 301

integral of squared error (ISE), 98–100,
203–206

integrator plus dead time (IPDT), 181, 210
internal stability, 51–55
internal structure, 4, 17, 35, 57, 226
inverse system, 83
inverse Z transform, 69
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IPDT (integrator plus dead time), 181, 210
ISE (integral of squared error) criterion,

98–100, 203–206
iso-damping, 78, 81, 82
iso-frequency, 78
ITAE (integral of absolute error) crite-

rion, 98, 173, 203, 218, 223, 278, 301

Jordanian canonical form, 29–31, 314

Kalman decomposition, 51, 59–61
Kalman filter, 236–239, 241–243, 245,

272

L-norm, 65
L1-norm, 65
L2-norm, 65
L∞-norm, 65
Lp-norm, 64
Laplace transform, 11–14, 25, 62, 64,

68–69, 77, 98, 99, 286, 287, 290
inverse, 13, 69

lead-lag compensator, 139–151, 218, 308,
322

Lebesgue space, 65
limit cycle, 111, 126, 129, 131, 228, 229
linear quadratic Gaussian control (LQG),

3, 235–247
linear quadratic regulator (LQR), 3, 152,

156, 180, 216
linear system

fractional-order, 283–305
state space, 3, 4, 11, 17–19, 24–33, 51,

55–57, 59, 62, 64, 101–103, 281
transfer function, 4, 7, 11, 14–17,

19–22, 24–28, 44, 288, 295
linear time invariant (LTI), 14, 18, 131,

133, 134, 138, 151
logarithmic Nyquist plot,seeNyquist plot,

logarithmic
loop transfer recovery (LTR), 3, 236, 243,

245, 247
low-pass filter, 184, 254, 297
LQG (linear quadratic Gaussian control),

3, 235–247
LQR (linear quadratic regulator), 3, 152,

156, 180, 216

LTI (linear time invariant), 14, 18, 131,
133, 134, 138, 151

LTR (loop transfer recovery), 3, 236, 243,
245, 247

Lyapunov equation, 10, 58

Maclaurin series, 62, 96, 97
magnitude Bode diagram, 259, 262, 275,

279, 282, 300
Markov parameters, 51, 63–64
MATLAB toolbox

CtrlLAB, 5–7, 9, 307
Genetic Algorithm Optimization Tool-

box (GAOT), 9, 224
Optimal Controller Designer (OCD),

216, 221–225, 303
PID_ Tuner, 213–216
Robust Control, 9, 235, 250–252, 255
Simulink, 111–135, 296–298
Symbolic, 9, 13, 14, 68–70
System Identification, 9, 36, 39

measurement noise, 53, 239
minimum

phase, 164, 257–259, 261
realization, 21, 32–33, 44, 61, 62
sensitivity problem, 257, 258

Mittag–Leffler function, 291, 292
mixed stability, 262
model conversion, 4, 11, 25, 26, 38, 43,

44, 67
model mismatch, 235
model reduction, 4, 51, 58, 59, 92–103,

194, 271, 293, 314–316
optimal Hankel norm approximation,

103, 314
Padé approximation, 92, 94, 96, 97, 99,

120, 133, 298, 314
Routh approximation, 94, 95, 314
Schur’s balanced realization, 102
suboptimal reduction, 191, 215, 298,

299, 314
multiple input–multiple output, 7, 16
multiplicative uncertainty, 248
multivariable system, 16, 44–45, 120,

171–174
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natural frequency, 174, 180, 282, 325
Nichols chart, 85, 148–151, 289
nominal value, 262, 301
nonminimum phase model, 246, 259,

261–267
nonlinear system, 5, 17, 111, 112, 116,

126, 129, 131–134, 136, 313, 319, 321
nonlinearity, 111, 112, 127, 128, 228, 310

double-valued, 111, 126–128
piecewise linear, 111, 126
relay, 128, 228, 229
saturation, 112, 123, 224
single-valued, 111, 126–128
static, 126, 128, 228

Nyquist plot, 42, 51, 84, 85, 87–90
atan, 90
logarithmic, 90–92

Nyquist Theorem, 87, 88

observability, 51, 57–60
Gramian, 58, 59
staircase form, 58

observable canonical form, 29
observer, 3, 139, 159–162, 164, 165, 169,

236, 262
observer-based

controller, 139, 322
regulator, 165, 169

OCD (Optimal Controller Designer), 216,
221–225, 303

operating point, 131, 132
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