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Guest Editorial for Special Issue on Fractional

Order Systems and Controls
YangQuan Chen, Senior Member, IEEE, Dingyü Xue, and Antonio Visioli, Senior Member, IEEE

I. INTRODUCTION

FRACTIONAL calculus is about differentiation and inte-
gration of non-integer orders. Using integer-order models

and controllers for complex natural or man-made systems is
simply for our own convenience while the nature runs in a
fractional order dynamical way. Using integer order traditional
tools for modelling and control of dynamic systems may result
in suboptimum performance, that is, using fractional order
calculus tools, we could be “more optimal” as already doc-
umented in the literature. An interesting remark is that, using
integer order traditional tools, more and more “anomalous”
phenomena are being reported or perhaps complained but in
applied fractional calculus community, it is now more widely
accepted that “Anomalous is normal” in nature. We believe,
beneficial uses of fractional calculus from an engineering
point of view are possible and important. We also hope that
fractional calculus might become an enabler for new science
discoveries. Bruce J. West just finished a new book entitled
“The Fractional Dynamic View of Complexity - Tomorrow’s
Science” (CRC Press, 2015). We resonate that, with this
special issue, “Fractional Order Systems and Controls” will
one day enable “tomorrow’s sciences”.

Since 2012, several special issues were published in some
leading journals which showcase the active interference of
fractional calculus to control engineering. Clearly, there is a
strong need to have a special issue in an emerging leading
control journal such as IEEE/CAA Journal of Automatica
Sinica (JAS). This focused special issue on control theory and
applications is yet another effort to bring forward the latest
updates from the applied fractional calculus community. For
that we feel very excited and we hope the readers will feel the
same.

The aim of this special issue is to show the control engineer-
ing research community the usefulness of the fractional order
tools from signals to systems to controls. It is our sincere

Citation: YangQuan Chen, Dingyü Xue, Antonio Visioli. Guest editorial for
special issue on fractional order systems and controls. IEEE/CAA Journal of
Automatica Sinica, 2016, 3(3): 255−256

YangQuan Chen is with the Mechatronics, Embedded Systems and Automa-
tion (MESA) Lab, School of Engineering, University of California, Merced,
5200 North Lake Road, Merced, CA 95343, USA (e-mail: yqchen@ieee.org).

Dingyü Xue is with the School of Information Sciences and Engi-
neering, Northeastern University, Shenyang 110004, China (e-mail: xued-
ingyu@ise.neu.edu.cn).

Antonio Visioli is with the Department of Mechanical and Industrial
Engineering,University of Brescia, Via Branze 38, I-25123 Brescia, Italy (e-
mail: antonio.visioli@ing.unibs.it).

hope that this special issue will become a milestone of a
significant trend in the future development of classical and
modern control theory. The contributions may stimulate future
industrial applications of the fractional order control leading to
simpler, more economical, more energy efficient, more reliable
and versatile systems with increasing complexities.

II. SCANNING THE ISSUE

This issue is a fractional amount of accepted papers grouped
in two parts. Other accepted papers will be published in the
upcoming issues.

A. Fractional Order Modeling

Complexity calls for fractional order modeling. The paper
by West and Turalska is on the fractional Landau model. The
extension is not mathematically but physically motivated by
recent experiments showing a dependence of the decay of
fluctuations on memory where in the model the exponential is
replaced by an inverse power law. This transition is explained
herein as being due to critical slowing down. The fractional
calculus is used to model this memory and to relate the
index of the inverse power law decay to that of the fractional
derivative in time. This sets an important example of extension
of integer order model to fractional order model that should
be physics based.

The next paper by Cao, Chen, and Stuart is on a fractional
micro-macro model for crowds of pedestrians based on frac-
tional mean field games. Obviously, the considered system
involving human is complex that calls for fractional order
models. The same is true for the paper by Huang, Chen, Li, and
Shi on fractional order modeling of human operator behavior
with second order controlled plant and experiment research.

Ma, Zhou, Li, and Chen presented an interesting study
on fractional modeling and state-of-charge (SOC) estimation
of Lithium-ion battery. Chen, Li, Wilson, Huang discussed
fractional modeling for the coupled MR damper and its
damping system analysis based on fractional calculus. In
common, we can observe that the human individual in crowds,
the individual ion in Li-ion battery, the individual magnetic
particle in MR fluid, collectively form complex systems with
complex behaviors due to complex interactions of individuals
and complex environments. Thus fractional order modeling is
called to better service.

In the paper by Zhou, Zhang, Gao, Wang, and Ma, parame-
ter estimation and topology identification of uncertain general
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fractional-order complex dynamical networks with time delay
is developed to get a fractional model.

These papers were included in this issue to showcase
the usefulness of the idea of fractional calculus in complex
systems modeling.

B. Fractional Order Control

Using fractional order controller has been an intensely
studied topic in recent years. We selected five papers to include
in this special issue due to page budget limit.

The paper by Wang, Li, and Chen is about H∞ output feed-
back control of linear time-invariant fractional-order systems
over finite frequency range. It is the first result in fractional
order control considering finite frequency range in H∞ setting.
The paper by Chen, Lu, and Li presented a rigorous study of
the ellipsoidal invariant set of fractional order systems subject
to actuator saturation when the uncertainties are in the convex
combination form.

Naderi Soorki and Tavazoei showed how to achieve con-
strained swarm stabilization of fractional order linear time
invariant swarm systems, while the paper by Aguila-Camacho
and Duarte-Mermoud focused on how to improving the control
energy in model reference adaptive controllers using fractional
adaptive laws. This issue ends with a paper by Rojas-Moreno
on an approach to design MIMO fractional order controllers
for unstable nonlinear plants.
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Guest Editorial for Special Issue on

Fractional Order Systems and Controls
YangQuan Chen, Senior Member, IEEE, Dingyü Xue, and Antonio Visioli, Senior Member, IEEE

I. INTRODUCTION

FRACTIONAL calculus has been applied in all MAD
(modeling, analysis and design) aspects of control sys-

tems engineering since Shunji Manabe’s pioneering work in
early 1960s.

The 2016 International Conference on Fractional Dif-
ferentiation and Its Applications (ICFDA) was held in
Novi Sad, Serbia, July 18-20. Quoting from the website
http://www.icfda16.com/ “Fractional Calculus (FC for short)
is a modern and expanding domain of mathematical analysis.
The notion of fractional differentiation, or more appropriately
the differentiation of arbitrary real order, means an operation
analogous to standard differentiation which will take into ac-
count, memory effects if the independent variable is time, or
nonlocal effects in the case of spatial independent variables.
The order of the derivative may also be variable, distributed or
complex. Basically, FC includes more information in the model
than offered by the classical integer order calculus. Besides
an essential mathematical interest, its overall goal is general
improvement of the physical world models for the purpose of
computer simulation, analysis, design and control in practical
applications . . . ”, one has a clear impression that “fractional
calculus” is “application oriented”. The conference had two
interesting plenary roundtable panel discussions:

1) Fractional Calculus: D’où venons-nous? Que sommes-
nous? Où allons-nous? (Where do We Come From?
What are We? Where are We Going?)

2) How to Improve Image and Impact of Fractional
Calculus Research Community

The consensus of the community is to move forward with
impacts in mind while seeking new frontiers. The Steering
Committee chaired by one of the Guest Editors (Y. Q. Chen)
decided to have 2018 ICFDA in Jordan and 2020 in Poland.

The aim of this special issue is to show the control en-
gineering research community the usefulness of the fractional
order tools from signals to systems to controls. It is our sincere

Citation: YangQuan Chen, Dingyü Xue, Antonio Visioli. Guest Editorial for
Special Issue on Fractional Order Systems and Controls. IEEE/CAA Journal
of Automatica Sinica, 2016, 3(4): 398−399

YangQuan Chen is with the Mechatronics, Embedded Systems and Automa-
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Dingyü Xue is with the School of Information Sciences and Engi-
neering, Northeastern University, Shenyang 110004, China (e-mail: xued-
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Antonio Visioli is with the Department of Mechanical and Industrial
Engineering, University of Brescia, Via Branze 38, I-25123 Brescia, Italy
(e-mail: antonio.visioli@unibs.it).

hope that you can find something fractionally delicious in this
fractional special issue.

II. SCANNING THE ISSUE

A fractional number of papers was published in the previous
issue (vol. 3, no. 3) which already covered two parts (Frac-
tional Order Modeling and Fractional Order Control) within
which another fractional number of published papers was
selected to produce video abstracts for a better dissemination.

This issue is still a fractional amount of accepted papers
grouped in two parts. Other accepted papers will be published
in the upcoming issues.

A. Fractional Order Control Analysis
Control systems engineering goes in the cycles of modeling,

analysis and design (MAD). This section included 4 papers.
Sathiyaraj and Balasubramaniam studied the controllability
properties of fractional order stochastic differential inclusions
with fractional Brownian motion in finite dimensional space.
It is in an abstract setting but the topic is important because
controllability is the first issue to be investigated in control
analysis. Fractional order stochastic differential inclusions
appear to be an emerging topic in advanced fractional order
systems. Alagoz presented a note on robust stability analysis
of fractional order interval systems by minimum argument
vertex and edge polynomials. The presented results are more
advanced and sharpened compared to the existing results. It
is interesting to note that the stability checking of interval
fractional order LTI systems was included in Chapter 53, in V.
D. Blondel and A. Megretski (Editors). “Unsolved problems in
the mathematics of systems and control” Princeton University
Press in July 2004. The 3rd paper is single-authored by
M. S. Tavazoei entitled “Criteria for Response Monotonicity
Preserving in Approximation of Fractional Order Systems.” It
offered a new angle and perhaps a new needed constraint when
performing finite dimensional FOS (fractional order systems)
approximation. It is interesting to note this contribution over
the previous two criteria: frequency-domain response fitting
as well as time domain impulse response fitting. H. Chen
and Y. Q. Chen’s paper entitled “Fractional-order Generalized
Principle of Self-support (FOG PSS) in Control Systems
Design” is perhaps among the few that contains cartoons.
The idea is quite interesting and useful. The PSS by late Z.
Novakovic in 1992 was almost neglected or forgotten in the
control community although he presented convincing amount
of experimental results in his book to illustrate his control
systems design framework. The key message is: The control
signal contains the real dynamics of the system under control.
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FOG PSS brings fractional order error dynamic model into
PSS which opens a chance to achieve a better performance
that the best achievable using the original PSS.

These four papers were included in this fractional issue
to showcase the diverse ideas of beneficial use of fractional
calculus in control systems analysis.

B. Fractional Order Control Design

Being able to analyze is only the beginning. Being able
to design or synthesize based on available information on
model, performance and constraints, is a step closer to real
applications. Thus “control design” is as interesting as, if not
more interesting than, “control analysis”. This section includes
5 papers related to “Fractional Order Control Design”.

Cheng, Wang, Wei, Liang and Wang presented a very nice
tutorial review type of work entitled “Study on Four Distur-
bance Observers for FO-LTI Systems” with the authors’ own
developments on new schemes and comparisons. Disturbance
observer (DOB) based control has been a very active research
topic due to its effectiveness in many real world applications.
It is interesting to note that there is a dedicated WeChat
group on “Anti-disturbance Control and Applications” with
over 100 members mostly in Chinese. Padula and Visioli
suggested a set-point filter design for a two-degree-of-freedom
fractional control system. Set-point filter can be considered
as command filter to condition the final closed-loop transfer
function. For fractional order systems, this 2DOF design is
original and practically useful. Nie, Wang, Liu and Lan’s paper
is titled “Identification and PID Control for a Class of Delay
Fractional-order Systems” that gives the readers the tool for
control engineering practice when starting from a reaction
curve test. The final two papers are on nonlinear fractional
order systems. Hua, Zhang, Li and Guan’s paper is on robust
output feedback control for fractional order nonlinear systems
with time-varying delays while Zhao, Wang, and Li’s paper
is about state feedback control for a class of fractional order
nonlinear systems.

III. ACKNOWLEDGEMENTS

The guest editors wish to thank Professor Fei-Yue Wang,
the Editor-in-Chief of IEEE/CAA JAS, for the initial idea,
and Dr. Yan Ou for offering significant amount of help in the
whole peer review process and the special issue scheduling
given the amount of submissions and workload. Thanks go to
all the authors, for their submissions, and the large number of

reviewers, who carefully and timely evaluated and commented
the papers submitted.

YangQuan Chen (M’95–SM’98) earned his Ph.D.
degree in advanced control and instrumentation from
Nanyang Technological University, Singapore, in
1998. Dr. Chen was on the faculty of Electrical
and Computer Engineering at Utah State Univer-
sity before he joined the School of Engineering,
University of California, Merced in 2012 where
he teaches “Mechatronics” and “Unmanned Aerial
Systems” for undergraduates and “Fractional Order
Mechanics” and “Nonlinear Control” for graduates.
His current research interests include mechatronics

for sustainability, cognitive process control and hybrid lighting control, multi-
UAV based cooperative multi-spectral “personal remote sensing” and appli-
cations, applied fractional calculus in controls, signal processing and energy
informatics; distributed measurement and distributed control of distributed
parameter systems using mobile actuator and sensor networks.
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Abstract—Cyber-physical systems (CPSs) are man-made com-
plex systems coupled with natural processes that, as a whole,
should be described by distributed parameter systems (DPSs) in
general forms. This paper presents three such general models
for generalized DPSs that can be used to characterize complex
CPSs. These three different types of fractional operators based
DPS models are: fractional Laplacian operator, fractional power
of operator or fractional derivative. This research investigation
is motivated by many fractional order models describing natu-
ral, physical, and anomalous phenomena, such as sub-diffusion
process or super-diffusion process. The relationships among these
three different operators are explored and explained. Several po-
tential future research opportunities are then articulated followed
by some conclusions and remarks.

Index Terms—Cyber-physical systems (CPSs), generalized dis-
tributed parameter systems (DPSs), fractional Laplacian opera-
tor, fractional power of operator, fractional derivative.

I. INTRODUCTION

IT is well known that the cyber-physical systems (CPSs)
with integrated computational and physical processes can

be regarded as a new generation of control systems and can
interact with humans through many new modalities[1]. The
objective of CPS is to develop new science and engineering
methods in which cyber and physical designs are compatible,
synergistic, and integrated at all scales. Besides, as we all
know, the distributed parameter systems (DPSs) can be used
to well characterize those cyber-physical process[2−3] and the
actions and measurements of the system studied are better
described by utilizing the actuators and sensors, which was
first introduced by El Jai and Pritchard in [4] and mainly
focused on the locations, number and spatial distributions of
the actuators and sensors.

Moreover, in the past several decades, fractional calculus
has shown great potential in science and engineering appli-
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cations and some phenomena such as self-similarity, non-
stationary, non-Gaussian process and short or long memory
process are all closely related to fractional calculus[5−7]. It
is now widely believed that, using fractional calculus in
modeling can better capture the complex dynamics of natural
and man-made systems, and fractional order controls can offer
better performance not achievable before using integer order
controls[8−9].

Motivated by the above arguments, in this paper, let Ω be
an open bounded subset of Rn with smooth boundary ∂Ω and
we consider the following fractional DPSs:

zt(x, t) + Az(x, t) = u(x, t) in Ω× [0, b], (1)

where b > 0 is a given constant, u is the control input
depending on the number and the structure of actuators and
A may be a fractional Laplacian operator, a fractional power
of operator or a fractional derivative.

The contribution of this present paper is to analyze the
relationship among the fractional Laplacian operator, fractional
power of operator and fractional derivative and try to explore
the opportunities and research challenges related to the frac-
tional order DPSs emerging at the same time. To the best of our
knowledge, no result is available on this topic. We hope that
the results here could provide some insights into the control
theory of this field and be used in real-life applications.

The rest of the paper is organized as follows. The re-
lationship among fractional Laplacian operator, fractional
power of operator and fractional derivative are explored in
Section II. In Section III, the emerging research opportunities
of the fractional order DPSs with those three operators are
discussed. Several conclusions and remarks of this paper are
given in the last section.

II. THREE DIFFERENT TYPES OF OPERATORS

In this section, we shall introduce some basic relationships
among the fractional Laplacian operator, fractional power of
operator and fractional derivative. For further information, we
refer the readers to papers from [10] to [36] in the reference
section of the present paper and the references cited therein.

A. Fractional Laplacian Operator and Fractional Power of
Operator

This subsection is devoted to the difference between the
fractional Laplacian operator and fractional power of operator.
For more details, please see [10−15] and their cited references.
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Let us denote (−4)α/2 the nonlocal operator (also called
the fractional Laplacian operator) defined pointwise by the
following Cauchy principal value integral

(−4)α/2f(x) = CαP.V.

∫

R

f(x)− f(y)
|x− y|1+α

dy, 0 < α < 2, (2)

where Cα = 2αΓ(1/2+α/2)√
π|Γ(−α/2)| is a constant dependent on the

order α. Obviously, we see that the fractional Laplacian
(−4)α/2 is a nonlocal operator which depends on the pa-
rameter α and recovers the usual Laplacian as α → 2. For
more information about the fractional Laplacian operator, see
[16−20] and the references cited therein. Now we have the
following result.

Theorem 1[21]. Suppose that (−4)α/2 is defined in L2(0, l)
for α ∈ (0, 2). Then, the eigenvalues of the following spectral
problem

(−4)α/2ξ(x) = λξ(x), x ∈ (0, l), (3)

where ξ ∈ L2(0, l) is extended to all R by 0 is

λn =
(

nπ

l
− (2− α)π

4l

)α

+ O

(
1
n

)
(4)

satisfying
0 < λ1 < λ2 ≤ · · · ≤ λi ≤ · · · .

Moreover, the corresponding eigenfunctions ξn of λn, after
normalization, form a complete orthonormal basis in L2(0, l).

Note that the constant in the error term O
(

1
n

)
tends to zero

when α approaches 2 and in the particular case, when α = 2,
we see that λn = (nπ/l)2 without the error term.

However, for a positive operator A on bounded domain
[0, l], suppose 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · are the
eigenvalues of A, {ξ1, ξ2, . . . , ξn, . . .} are the corresponding
eigenfunctions and ξn (i = 1, 2, . . .) form an orthonormal
basis of L2(0, l). Let (·, ·) be the inner product of L2(0, l).
We define the fractional power of operator A as follows:

Aβf(x) =
∞∑

n=1

λβ
n(ξn, f)ξn(x), f ∈ L2(0, l). (5)

Then λβ
n (i = 1, 2, . . .) are the eigenvalues of Aβ . This implies

that the two operators are different.
Moreover, the work spaces of the two operators (fractional

Laplacian operator and fractional power of operator A) are
different. Before stating our main results, we first introduce
two Banach spaces, which are specified in [11, 13, 14, 16].

For Ω ⊆ Rn is a bounded domain, s ∈ (0, 1) and
p ∈ [1,∞), we define the classical Sobolev space W s,p(Ω)
as follows[13]:

W s,p(Ω) :=
{

f ∈ Lp(Ω) :
f(x)− f(y)
|x− y|n

p +s
∈ Lp(Ω× Ω)

}
(6)

endowed with the natural norm

‖f‖W s,p(Ω)

:=
(∫

Ω
|f(x)|pdx +

∫
Ω

∫
Ω
|f(x)−f(y)|p
|x−y|n+sp dxdy

)1/p

is an intermediary Banach space between Lp(Ω) and W 1,p(Ω).
When a non-integer s > 1, let s = m + σ with m ∈ N

and σ ∈ (0, 1). In this case, let Dβf with |β| = m be the
distributed derivative of f , then the classical Sobolev space
W s,p(Ω) defined by

W s,p(Ω) :=
{

f ∈ Wm,p(Ω) : Dβf ∈ W σ,p(Ω) for
all β such that |β| = m

}
(7)

with respect to the norm

‖f‖W s,p(Ω) :=
(
‖f‖p

W m,p(Ω) + ‖Dβf‖p
W σ,p(Ω)

)1/p

(8)

is a Banach space. Clearly, if s = m is an integer, the space
W s,p(Ω) coincides with the Sobolev space Wm,p(Ω).

Besides, let ρ(x) ∼ 1
δα(x) with δ(x) = dist(x,Ωc). Define

another space as follows:

W s,p
ρ (Ω) := {f ∈ W s,p(Ω) : ρ(x)f(x) ∈ Lp(Ω)} (9)

with the norm

‖f‖W s,p
ρ (Ω)

:=
(∫

Ω
|ρ(x)f(x)|pdx +

∫
Ω

∫
Ω
|f(x)−f(y)|p
|x−y|n+sp dxdy

)1/p

.
(10)

Actually, W s,p
ρ (Ω) is called nonlocal Sobolev space and we

have W s,p
ρ (Ω) ⊆ W s,p(Ω)[14, 16].

By the Remark 2.1 in [11], for the fractional power of
operator, we take the classical fractional Sobolev space as
its work space. But for fractional Laplacian operator, we
must take the nonlocal Sobolev space as its work space,
which can be regarded as the weighted fractional Sobolev
space. More precisely, for any element f ∈ W s,p(Ω), since
−4 is a local operator and we do not know how f(x)
approaches 0 when x → ∂Ω. Even if considering the space
W s,p

0 (Ω);= {f ∈ W s,p(Ω) : f |∂Ω = 0}, we only know that
the function f = 0 on the boundary and we do not know
how f approaches 0. However, for the fractional Laplacian
operator, it is a nonlocal operator and it is defined in the whole
space. So, it provides information about how f approaches 0
as x → ∂Ω. In fact, from the definition of nonlocal Sobolev
space, we know that f(x)

δα(x) → 0 as x → ∂Ω, which dictates
how f approaches 0 near boundary. It coincides with the result
of the Theorem 1.2 in [22]. Thus, this is a significant difference
between the fractional power of operator A = −4 and the
fractional Laplacian operator.

Besides, it is well known that

‖4f‖W s,p(Ω) = ‖f‖W s+2,p(Ω).

But for the fractional Laplacian operator (−4)α,

‖(−4)αf‖W s,p(Ω) = ‖f‖W s+2α,p(Ω)

will not hold. By using Fourier transform, we have

‖(−4)αf‖W s,p
ρ (Ω) = ‖f‖W s+2α,p

ρ (Ω).

Finally, by [15], let X be a rotationally invariant stable pro-
cess of index α ∈ (0, 1). Its symbol is given by η(f) = −|f |α
for all f ∈ Rn. It is instructive to accept that η is the symbol
for a legitimate differential operator; then, using the usual
correspondence fj → −i∂j for 1 ≤ j ≤ n, we would write

A = η(Ω) = −
(√

−∂2
1 − · · · − ∂2

n

)α

= −(−4)α/2. (11)
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In fact, it is very useful to interpret η(Ω) as a fractional power
of the operator −4. However, for the fractional Laplacian
operator, it can be defined as the generator of α-stable Lévy
processes. More precisely, if Xt is the isotropic α-stable Lévy
processes starting at zero and f is a smooth function, then

(−4)α/2f(x) = lim
h→0+

E[f(x)− f(x + Xh)]
h

. (12)

This also indicates that the fractional power of operator −4
and the fractional Laplacian operator are different.

B. Fractional Laplacian Operator and Fractional Derivative
This subsection is focused on the relationship between

the fractional Laplacian operator and the Riesz fractional
derivative.

Definition 1[23]. The Riesz fractional operator for n− 1 <
α ≤ n on a finite interval 0 ≤ x ≤ l is defined as

∂α

∂|x|α f(x) =
−1

2 cos(απ
2 )

[0Dα
x + xDα

l ] f(x), (13)

where

0Dα
x f(x) =

1
Γ(n− α)

∂n

∂xn

∫ x

0

(x− η)−α−1+nf(η)dη

and

xDα
l f(x) =

(−1)n

Γ(n− α)
∂n

∂xn

∫ l

x

(η − x)−α−1+nf(η)dη

are the left-sided and right-sided Riemann-Liouville fractional
derivative, respectively.

Moreover, according to [24], the fractional Laplacian is
the operator with symbol |x|α. In other words, the following
formula holds:

(−4)α/2f(x) = F−1|x|αFf(x), (14)

where F and F−1 denote the Fourier transform and inverse
Fourier transform of f(x), respectively. We refer the readers
to [25] for a detailed proof of the equivalence between the two
definitions (1) and (2) of fractional Laplacian operator.

By using Luchko’s theorem in [26], we obtain the following
result on the equivalent relationship between the Riesz frac-
tional derivative ∂α

∂|x|α and the fractional Laplacian operator
−(−4)α/2.

Lemma 1[27]. For a function f(x) defined on the finite
domain [0, l], and f(0) = f(l) = 0, the following equality
holds:

− (−4)α/2
f(x) =

−1
2 cos(απ

2 )
[0Dα

x f(x) + xDα
l f(x)]

=
∂α

∂|x|α f(x),

where α ∈ (1, 2) and the space fractional derivative ∂α

∂|x|α is
a Riesz fractional derivative.

For more information on the analytical solution of the
generalized multi-term time and space fractional partial dif-
ferential equations with Dirichlet nonhomogeneous boundary
conditions, we refer the readers to [27]. For more information
on the numerical solution of fractional partial differential
equation with Riesz space fractional derivatives on a finite
domain, consult [28−29].

C. Fractional Derivative and Fractional Power of Operator

In this part, we first show the following definition of the
positive operator.

Definition 2[30]. The operator A is said to be positive if
its spectrum σ(A) lies in the interior of the sector of angle
ϕ ∈ (0, π), symmetric with respect to the real axis, and if
on the edges of this sector, S1 = {ρeiϕ : 0 ≤ ρ < ∞} and
S2 = {ρe−iϕ : 0 ≤ ρ < ∞}, and outside it the resolvent
(λI −A)−1 is subject to the bound

∥∥(λI −A)−1
∥∥ ≤ M(ϕ)

1 + |λ| . (15)

Moreover, for a positive operator A, any α > 0, one can
define the negative fractional power of operator A by the
following formula[31]:

A−α =
1

2πi

∫

Γ

λ−αR(λ)dλ,

(
R(λ) = (A− λI)−1,
Γ = S1 ∪ S2

)
. (16)

It is then quite easy to see that A−α is a bounded operator,
which is an entire function of α, satisfying A−α = A−n if α
is an integer n, and A−(α+β) = A−αA−β for all α, β ∈ C.
Using (16), we have

A−α =
1

2πi

∫ 0

−∞
λ−αR(λ)dλ +

1
2πi

∫ −∞

0

λ−αR(λ)dλ. (17)

Then taking the integration along the lower and upper sides
of the cut respectively: λ = se−πi and λ = seπi, it follows
that

A−α =
eαπi

2πi

∫ ∞

0

s−αR(−s)ds− e−απi

2πi

∫ ∞

0

s−αR(−s)ds

=
cos(απ) + i sin(απ)

2πi

∫ ∞

0

s−αR(−s)ds

− cos(απ)− i sin(απ)

2πi

∫ ∞

0

s−αR(−s)ds

=
sin(απ)

π

∫ ∞

0

s−αR(−s)ds

=
1

Γ(α)Γ(1− α)

∫ ∞

0

s−αR(−s)ds.

Moreover, for any α ∈ (n− 1, n), we get that

Aαf = Aα−nAnf =

∫∞
0

sα−nR(−s)Anfds

Γ(n− α)Γ(1 + α− n)
. (18)

and for more properties on the fractional power of a positive
operator, please see [32−35] and the references cited therein.

Now we are ready to state the following results on the
connection of fractional derivative and integral with fractional
power of positive operator.

Theorem 2. Let the absolutely space

ACn[0, l] := {f : f (n−1)(x) ∈ C[0, l], f (n)(x) ∈ L2[0, l]}
and let A be the operator defined by the formula Af(x) =
f ′(x) with the domain

{f : f ∈ ACn[0, l], f (n)(0) = 0}.
Then A is a positive operator in the Banach space ACn[0, l]
and

Aαf(x) = 0D
α
x f(x), n− 1 < α < n (19)
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for all f(x) ∈ D(A).
Proof. By [36], the operator A+ sI (s ≥ 0) has a bounded

inverse and the resolvent of A is given by
(
(A + sI)−1

f
)

(x) =
∫ x

0

e−s(x−y)f(y)dy. (20)

Then the operator A is a positive operator in ACn[0, l] and
(17) gives

Aαf(x) =

∫∞
0

sα−nR(−s)Anf(x)ds

Γ(n− α)Γ(1 + α− n)

=

∫∞
0

sα−n (A + sI)−1 f (n)(x)ds

Γ(n− α)Γ(1 + α− n)

=

∫∞
0

sα−n
∫ x

0
e−s(x−y)f (n)(y)dyds

Γ(n− α)Γ(1 + α− n)

=

∫ x

0

[∫∞
0

sα−ne−s(x−y)ds
]
f (n)(y)dy

Γ(n− α)Γ(1 + α− n)
.

Let s(x− y) = λ, we get that
∫ ∞

0

sα−ne−s(x−y)ds = (x− y)n−α−1

∫ ∞

0

λα−ne−λdλ

= (x− y)n−α−1Γ(α− n + 1).

Then

Aαf(x) =

∫ x

0
(x− y)n−α−1Γ(α− n + 1)f (n)(y)dy

Γ(n− α)Γ(1 + α− n)

=
1

Γ(n− α)

∫ x

0

(x− y)n−α−1f (n)(y)dy

= 0D
α
x f(x).

¤

III. THE EMERGING RESEARCH OPPORTUNITIES

Recent advances in modeling and control of fractional
diffusion systems, fractional reaction-diffusion systems and
fractional reaction-diffusion-advection systems have been re-
viewed in the framework of CPSs. The fractional order DPSs
have now been found wide applications for describing many
physical phenomena, such as sub-diffusion or super-diffusion
processes. At the same time, to our best knowledge, many
problems are still open calling for research cooperation of
multi-disciplines such as mathematical modelling, engineering
applications, and information sciences.

First, it is worth noting that in the more recent
monograph[37], the theory of pseudo-differential operators with
singular symbols, and the connections between them and
those three types of operators are explored. See [38−40] for
more knowledge on pseudo-differential operator. Moreover,
we claim that those equivalences between fractional Lapla-
cian operator and fractional derivative, fractional order of
operator and fractional derivative discussed in this paper can
introduce new mathematical vehicles to study fractional order
generalized DPSs. For example, when we study a fractional
DPSs with Riesz fractional derivative, by Lemma 1 in Section
II-B, the spectral representation methods can be used to
characterize the solution of the dynamic system. Then we can
study the existence of solutions, stability, controllability and
observability of the system under consideration.

Potential topics such as modeling the sub-diffusion or super-
diffusion processes with consideration of the networked mo-
bile actuators and mobile sensors, the communication among
the actuators and sensors, collocated or non-collocated actua-
tors and sensors, their robustness and optimality problems are
all interesting and worthy much more efforts in future. An-
other interesting and important topic concerns the time-space
fractional DPSs where the traditional first order derivative is
replaced by a fractional order derivative with respect to the
time t.

Furthermore, in the case of diffusion systems, it is worth
mentioning that, in general, not all the states can be reached
in the whole domain of interest[4, 41−42] and it would be
more challenging in nature since the dynamics of the real-
life control problem is always hybrid continuous and discrete.
Due to the spatial-temporal sampling and discrete nature of
decision and control, the notions of regional analysis should
be introduced, i.e., we can consider the regional stability,
regional controllability, regional observability etc. of the sys-
tem under consideration. In addition, as stated in [43], from
an application point of view, some plain questions such as
“How many actuators/sensors are sufficient and how to best
configure them for a fractional DPSs control process?”, “Given
the desirable zone shape, is it possible to control or contain
the fractional diffusion process within the given zone?”, if
not, “How to quantify the controllability/observability of the
actuators/sensors” and etc. might be asked, which in fact
raises some important theoretical challenges and open new
opportunities for further research.

IV. CONCLUSION

This paper is concerned with the fractional order DPSs
with three different operators: fractional Laplacian operator,
fractional power of operator and fractional derivative. The rela-
tionship among the three operators and the emerging research
opportunities are introduced. We hope that the results here
could provided some insight into the control theory analysis
of fractional order DPSs in particular and CPSs in general.
The results presented here can also be extended to complex
fractional order DPSs and various open questions are still
pending. For instance, the problem of regional optimal control
of fractional order DPSs with more complicated sensing and
actuation configurations are of great interest.
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The Fractional Landau Model
Bruce J. West and Malgorzata Turalska

Abstract—Herein the Landau model of the transition from
laminar to turbulent fluid flow is generalized to include the
effect of memory. The original Landau model is quadratically
nonlinear and memoryless, with turbulent fluctuations decaying
exponentially. However, recent experiments show a dependence of
the decay of fluctuations on memory, with the exponential being
replaced by an inverse power law. This transition is explained
herein as being due to critical slowing down. The fractional
calculus is used to model this memory and to relate the index of
the inverse power law decay to that of the fractional derivative
in time.

Index Terms—Fluid dynamics, turbulence, fractional calculus,
partial differential equations, nonlinear equations.

I. INTRODUCTION

NONLINEAR dynamics blossomed in the decades of the
1980’s and 1990’s, subsequently becoming foundational,

not only in the description of mechanical systems[1], but
in non-equilibrium statistical physics, as well[2]. Much of
that analysis bypassed the contributions made by Koopman[3]

and von Neumann[4−5], in which they formulated classical
mechanics using linear operators to represent physical observ-
ables, providing a Hilbert space for the theory of nonlinear
dynamic systems. The mathematics of this latter theory was
carried to maturity by Kowalski[6]. Herein we apply a version
of these techniques to the solution of fractional nonlinear rate
equations.

The strategy we adopt herein is to introduce the new
technique to examine Landau’s theory of the critical in-
stability leading to turbulent fluid flow. In this application
we demonstrate how nonlinear systems can be solved using
a generalization of normal modes from linear to nonlinear
dynamic systems. It cannot be stressed too strongly that
this method yields non-perturbative solutions, not linearized
approximate solutions to the nonlinear dynamic equations.
This is a straight-forward application of the Koopman-von
Neumann approach to the solution of an initial value problem.

Memory effects appear as integro-differential equation in
the study of open systems interacting with the environment
in the form of generalized Langevin equations[7]. It has been
shown that the fractional calculus very often results from these
integral expressions and have proven to be useful for mod-
eling systems with memory, as demonstrated in viscoelastic

Manuscript received September 8, 2015; accepted January 18, 2016. Rec-
ommended by Associate Editor YangQuan Chen.

Citation: Bruce J. West, Malgorzata Turalska. The fractional Landau model.
IEEE/CAA Journal of Automatica Sinica, 2016, 3(3): 257−260

Bruce J. West is with the Information Science Directorate, Army
Research Office, Research Triangle Park, NC 27708, USA (e-mail:
bruce.j.west@att.net).

Malgorzata Turalska is with the Department of Physics, Duke University,
Durham, NC 27708, USA (e-mail: mat51@phy.duke.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

materials[8], biological processes[9−10], wave propagation in
porous media[11], instability in fluid dynamics[12], and a gen-
eral perspective on the utility of the fractional calculus is pre-
sented in [13−14]. The normal mode technique is generalized
to include the effect of memory modeled using a fractional
time derivative. This occurs generically when there is no time-
scale separation between the microscopic and macroscopic lev-
els of description, that is, the non-differentiable nature of the
microscopic dynamics (non-integrable Hamiltonian dynamics)
is transmitted to the macroscopic level[15].

In Section II, the Landau theory of the transition from
laminar to turbulent fluid flow is briefly presented. The non-
linear rate equation is solved using the spectral decomposition
method of Koopman and von Neumann to obtain the analytic
solution. At early times this solution is shown to undergo an
inverse power law decay, characteristic of critical slowing near
a critical point. Section III generalizes the Landau theory of the
transition to turbulence to include memory using the fractional
calculus. The resulting fractional nonlinear rate equation is
solved and the power law index for the critical slowing down at
early time is shown to be the same as the fractional derivative
index. We draw some conclusions in Section IV.

II. LANDAU TRANSITION THEORY

Historically the fluctuations in turbulent fluid flow have
been modeled to be memoryless and often with Gaussian
statistics[16], using Langevin equations for the dynamics[7].
More recent experiments/observations have shown that Lévy
statistics more accurately model turbulent fluctuations and
that they contain memory[14]. The transition from laminar to
turbulent fluid flow is described by Landau as a critical phase
transition, with the essential features of the flow given in terms
of simple models. Consider the nonlinear rate equation for
the model of the onset of a critical instability of fluid flow
introduced by Landau[16−17]:

du

dt
= 2γu− αu2, (1)

which is valid for times on the time scale 1/γ; α is the Landau
parameter; u(t) = |A(t)|2 , and A(t) is the time-dependent
amplitude of the fluid velocity.

Near the critical point, where the flow becomes unstable
and transitions to turbulence, the linear coefficient can be
expressed as the difference in Reynolds number γ ∝ (R−Rc)
and subsequently vanishes at criticality where R = Rc

[18].
Consequently, the dynamics are dominated by the nonlinear
interaction in the transition region, but that need not concern
us here.
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A. Exact Solution

The exact solution to (1) can be obtained by introducing the
operator O such that (1) takes the form

du

dt
= Ou (2)

and the eigenfunction/eigenvalue expansion of the solution is

u(t) =
∞∑

k=0

vkφk(u0)χk (t) , (3)

where χk (t) φk(u0) is the eigenfunction, factored into a piece
determined by the eigenvalue and the piece determined by the
initial condition u(0) = u0 for the nonlinear dynamics. The
set of coefficients {vk} is determined by the initial condition.

Inserting (3) into (2), yields for the time dependence of the
eigenfunctions

dχk (t)
dt

= λkχk (t) ⇒ χk (t) = eλkt. (4)

Correspondingly, the eigenvalue equations are determined by

O0φk(u0) =
[
2γu0 − αu2

0

] dφk(u0)
du0

= λku0. (5)

Integrating this equation yields

φk(u0) =

(
u0

u0 − α
2γ

)λk
2γ

(6)

for which the eigenvalue are determined to be λk = −2γk by
equating coefficients of the time-dependent terms obtained by
inserting (3) into (1). The expansion coefficients are chosen
such that the series solution satisfies the initial condition,
resulting in (

− α

2γ

)k

vk =
2γ

α
. (7)

In this way the eigenfunction expansion (3) reduces to

u(t) =
2γ

α

∞∑

k=0

(
u0 − 2γ

α

u0

)k

e−2γkt, (8)

=
2γ

α

u0e2γt

(e2γt − 1) u0 + 2γ
α

. (9)

The asymptotic form of the solution is given by

lim
t→∞

u (t) =
2γ

α
. (10)

Consequently, the maximum amplitude of the fluid velocity
scales with the deviation of the Reynolds number from its
critical value

√
(R−Rc). Note that the asymptotic time scale

is still much smaller than the period of oscillation of A(t)[18].
It is also of interest to consider the γ → 0 limit as the system
approaches criticality

lim
γ→0

u (t) =
u0

1 + αu0t
, (11)

which is the phenomenon of critical slowing down, that is,
the decay of any fluctuation in the velocity field slows as
turbulence (the critical point) is approached.

In the Kolmogorov picture of turbulence the random for-
mation and breakup of eddies rapidly erase memory, but
this equilibrium argument is difficult to realize in nature[19].
Turbulence with memory is certainly an unorthodox notion
theoretically, but this seems to be the conclusion entailed by
observations. The most recent experiments [19] suggest that
Landau’s theory for the transition to turbulence might be better
modeled using a fractional rate equation.

III. GENERALIZED LANDAU THEORY

We suggest a fractional Landau equation (FLE) as the
lowest-order model that includes the memory effect

∂β
τ [u] = 2γu− αu2, (12)

where all the parameters retain their original interpretation and
∂β

τ [·] is the Caputo derivative[20] in the “time” τ having units
of (sec)1/β . The index of the fractional derivative determines
the strength of the memory in the phenomena of interest,
with no memory at the integer value β = 1 and increasing
memory as β recedes to zero. Consequently, for the moment,
we consider the fractional equation with 0 < β < 1.

The fractional Landau model (FLM) can be written formally
as, using the operator introduced in the integer-value equation,

∂β
τ [u] = Ou, (13)

whose solution can be expressed in terms of the eigenfunction
expansion given by (3)[21]. Inserting the eigenfunction expan-
sion into the fractional equation and separating terms yields

∂β
τ [χk (τ)] = λkχk (τ) . (14)

The solution to this linear fractional rate equation is the
Mittag-Leffler function (MLF)[20, 22]:

χk (τ) = Eβ

(
λkτβ

)
, (15)

which has the series form

Eβ(z) =
∞∑

k=0

zk

Γ (kβ + 1)
. (16)

The eigenvalue spectrum is again determined by the solution
to (5), using the early time stretched exponential form of the
MLF. The expansion coefficients in turn are determined by the
initial condition and results in the solution for the FLM being
given by[23]

u(τ) =
2γ

α

∞∑

k=0

(
u0 − 2γ

α

u0

)k

Eβ

(−2kγτβ
)
. (17)

Consequently, the Landau model with long-term memory has
been decomposed into nonlinear modes, with eigenfunctions
and eigenvalues that map over from the memoryless model. It
is clear that since

lim
β→1

Eα

(−2kγτβ
)

= e−2γkτ

the solution equation (17) reduces to (8) at β = 1, as
it should. However, the solution to the FLM has not been
published previously and in Fig. 1 we present a comparison
of the analytic solution with the solution obtained from a
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numerical integration of the FLE. The numerical integration
was performed with the help of Adams-Bashforth-Moulton
predictor-corrector technique, developed by Diethelm et al.[18].
The two calculations differ by 2 % at most and this deviation
is discussed elsewhere[23].

Fig. 1. The solid lines are the analytic solutions to the FLM and the
dashed curves are from the numerical integration of the FLE. The
four different sets of curves are for the initial conditions indicated.
The time scale parameter is γ = 0.5 and the Landau parameter is
α = 1.0. The step of numerical integration is h = 10−3.

The rapidly decaying exponential function in the Landau
model is replaced with the slowly decaying MLF in the FLM,
since the MLF has the scale-free property in the asymptotic
limit

lim
τ→∞

Eβ

(−2kγτβ
) ∝ 1

τβ
. (18)

In the γ → 0 limit of criticality the MLF can be replaced with
the exponential:

lim
γ→0

Eβ

(−2kγτβ
) ∝ exp

(−2kγτβ
)
,

and (17) simplifies to

lim
γ,τ→0

u (τ) =
u0

1 + αu0τβ
, (19)

so that with memory and 0 < β < 1, the transition
to turbulence is slower than in the memoryless case, since
asymptotically τ > τβ for β < 1.

The solution given by (19) predicts that the energy of the
turbulent flow field, at a point in space, asymptotically decays
as an inverse power law in time. Numerical calculations of
the Euler equations using the “t-model” in 2D and 3D yield
inverse power-law decay with β = 1.84[24]. The solution to the
fractional Landau model must therefore be generalized to 1 <
β < 2. This can be done by expressing the solution in terms of
its initial value u0, taking the initial time derivative

·
u0 = 0 and

noting that as γ → 0 the critical slowing down maintains the
asymptotic form 1/τβ , although now τβ > τ , asymptotically,
since β > 1. The decay of turbulent fluctuations is faster than
in the memoryless case, but certainly much slower than the
pre-critical exponential case.

IV. CONCLUSION

In summary the spectral decomposition of the solution to a
nonlinear dynamic equations can be generalized to fractional
nonlinear rate equations and subsequently solved without
approximation[21, 23]. In considering the Landau model for the
transition to turbulence we used a phenomenological argument
to motivate replacing the first-order with a fractional-order
time derivative, but that need not be done. Stanislavsky[25]

used subordination theory to develop a fractional Hamiltonian
formalism, in which Hamilton’s equations are given in terms of
fractional derivatives. Memory is entailed by the dynamics of
systems so described. He observed that space and time in these
complex systems are not the continuous featureless processes
first assumed by Newton[14], and turbulence certainly qualifies
as being complex.
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A Fractional Micro-Macro Model for Crowds of

Pedestrians Based on Fractional Mean Field Games
Kecai Cao, YangQuan Chen, Senior Member, IEEE, Daniel Stuart

Abstract—Modeling a crowd of pedestrians has been consid-
ered in this paper from different aspects. Based on fractional
microscopic model that may be much more close to reality, a
fractional macroscopic model has been proposed using conserva-
tion law of mass. Then in order to characterize the competitive
and cooperative interactions among pedestrians, fractional mean
field games are utilized in the modeling problem when the
number of pedestrians goes to infinity and fractional dynamic
model composed of fractional backward and fractional forward
equations are constructed in macro scale. Fractional micro-
macro model for crowds of pedestrians are obtained in the end.
Simulation results are also included to illustrate the proposed
fractional microscopic model and fractional macroscopic model,
respectively.

Index Terms—Fractional mean field games, microscopic model,
macroscopic model, micro-macro model, fractional calculus.

I. INTRODUCTION

METHODOLOGY for modeling of crowds of pedestrians
has been categorized as micro scale, macro scale and

meso scale in previous research. It is reasonable to choose
different models in different scenarios as “All models are
wrong but some of them are useful” (George E. P. Box)[1].
Thus, no models are perfect for all scenarios.

A. Short Review of Mathematical Model for Crowds of Pedes-
trians

A lot of work has been done for developing microscopic
model since Dirk Helbing’s work of [2−3] because the frame-
work of social forces are similar to the framework of Newton’s
principle and it is not difficult to understand. Another reason
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for the widespread use of this social force model lies in that
heterogeneity of each pedestrian such as mobilities or reactions
can be considered explicitly. Thus not only theoretical work
but also simulation results have gained a lot of attention such
as [4−7] and [8]. One thing should be pointed out is that
the burden of computation in micro scale has imposed great
challenges when the number of pedestrians goes to infinity
and some effects such as pedestrian’s memory, long range
interactions or other statistical characteristics have been sel-
dom considered in previous work. The burden of computation
in microscopic model have been successfully removed in
macroscopic model as all pedestrians are treated as uniform
physical particles. Thus different kinds of macroscopic models
have been published based on the conservation law of mass
and momentum such as [9−12], high order macroscopic model
in [13], nonlinear macroscopic model in [14] and coupled
macroscopic-microscopic model in [15]. Although the burden
of computation in macroscopic model has been reduced greatly
compared with that in microscopic model, main disadvantages
of macroscopic model are that individual characteristics of
each pedestrian have been ignored and heterogeneity of dif-
ferent pedestrians cannot be characterized in the macro scale.

The authors believe that something important (as mentioned
below) has been neglected in previous research and its effects
should be included in the problem of modeling and control of
crowds so that obtained results are close to reality.

1) Consideration of fractal time
Movement of human beings is the result of complex interac-

tions of physical part, psychological part and some other fac-
tors that cannot be explained easily. Inter-event time has been
proved to have an important role in characterizing people’s
movement as shown in [1]. The fact is that the distribution of
inter-event time in our real life satisfies one form of power
law in most cases while distribution of exponential form has
been always assumed in previous research using calculus of
integer order. Thus fractional order of time scale should be
considered in characterizing movement and decision process
of human beings.

2) Consideration of fractal space
Another important thing should be pointed out is that in

previous research, the time scale of each pedestrian is assumed
to be uniform and the dimensions of space are restricted to
1D, 2D and 3D. But these assumptions are only reasonable if
the crowds of pedestrians can fill space like particles of gases
or fluids while it is not the case usually. Thus only normal
diffusive process has been considered in previous research and
there are few results which have been obtained under sub-
diffusive process or super-diffusive process characterized by
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fractal space.
3) Consideration of interactions
Long range interactions have been considered in the school-

ing of fish, flocking of birds and control of multi-agent systems
and effects of long range interactions that dominate system’s
phase transition have received a lot of attention recently.
Based on obtained results in [16], we can say that long range
interactions in micro scale are connected with the fractional
dynamics in macro scale.

B. Modeling and Control Based on Mean Field

For crowds of pedestrians with large numbers, it is im-
possible and not necessary to consider all the interactions
one by one. In previous research, methods based on mean
field have been proposed to approximate the mass effects of
these interactions for physical system, financial system and
social dynamic system and the readers are referred to [17−20].
The basic idea of mean field framework is replacing all the
interactions with an average interaction in “mean-field” form
to relieve the burden of computation on each agent.

Mean field theory has been applied to control of multi-agent
systems in [21−23] where decentralized consensus protocols
and decentralized optimizing algorithms are considered using
the philosophy of mean field. Mean field theory has also been
applied to the modeling problem of crowds of pedestrians in
recent years. For example, coupled dynamic model composed
of backward Hamilton-Jacobi-Bellman equations and forward
Fokker-Planck equations have been presented using mean-field
limit approach in [20]; Phenomenons that are occurring in
two-population’s interactions such as congestion and aversion
have been modeled using the method of mean field games
in [24] where coupled dynamic model composed of back-
ward Hamilton-Jacobi-Bellman equations and forward Fokker-
Planck equations are obtained; The mean field games theory
has also been used to construct traffic model in macro scale
based on interactions in micro scale in [25] while fractional
dynamic games have been used in [26] to construct dynamic
models for crowds of pedestrians.

With the help of calculus of fractional order, in this paper
we try to include the fractal time, fractal space and statistical
characteristics that have been neglected in previous research on
the modeling of crowds so that obtained models could be much
more close to reality. Based on our previous work on fractional
modeling of crowds[27−29], fractional mean field games theory
has been investigated in this paper to describe the competitive
and cooperative interactions among pedestrians. The rest of
the paper is organized as follows. Fractional microscopic
model, fractional macroscopic model and fractional dynamic
model based on mean-field games are presented in Section
III. Simulation results for the proposed fractional macroscopic
model and fractional microscopic model have been shown in
Section IV.

II. PRELIMINARIES

The definitions of fractal derivative and lemmas that will
be used in the following are firstly presented for the easy of
reading.

Definition 1[30]. For a set F ⊂ R and a subdivision P[a,b],
a < b, the mass function γα(F,a,b,) is given by

γα(F,a,b)= lim
δ→0

inf
{P[a,b]:|P|<δ}

n−1

∑
i=0

(xi+1−xi)α

Γ(α +1)
θ(F,[xi,xi+1]),

where θ(F, [xi,xi+1]) = 1 if F∩ [xi,xi+1] is non-empty, and zero
otherwise, P[a,b] is a subdivision of the interval [a,b] and

|P|= max
0≤i≤n−1

(xi+1− xi),

the infimum being taken over all subdivisions P of [a,b] such
that |P|< δ .

Definition 2[30]. Let a0 be an arbitrary but fixed real number.
The integral staircase function Sα

F (x) of order α for a set F is
given by

Sα
F (x) =

{
γα(F,a0,x), if x≥ a0,
−γα(F,a,x0), otherwise.

Definition 3[30]. The fractal derivative for Fα -derivative of
f at x is

Dα
F ( f (x)) = F− lim

y→x

f (y)− f (x)
Sα

F (y)−Sα
F (x)

, (1)

if the limit exists.
From Definition 1 to Definition 3 listed above, it is easy

to see that the definition of integer order can be treated as
one special case of fractal derivative when α = 1. Thus the
fractional calculus offers us much more freedom in modeling
dynamic behaviors where ordinary differential equations and
methods of calculus of integer order are inadequate.

III. MAIN RESULTS

A. Fractional Microscopic Model

The following dynamic model of integer order has been
extensively used in previous research of particles, human
beings or some other agents in micro scale





dxi

dt
= vi,

mi
dvi

dt
= f S

i +
n

∑
j=1

f N
i j +∑ f W

k ,
(2)

where xi is the position and vi is the velocity. One common
assumption has been made that movement of each pedestrian
is continuous and differentiable everywhere. That is the case
if we observe the movement of each pedestrian with a very
large scale such as in macro scale. However the condition of
differentiable everywhere is hard to be satisfied in reality. So,
will the dx

dt give the true picture of pedestrian’s movement in
micro scale or will the dα x

dtα be much closer to reality when
only continuous condition is satisfied, are the questions to
be explored. Related research on this fractional aspect has
been shown in [31] to characterize the zigzag phenomenon
that is unfolded in traffic control system. For each pedestrian,
continuous but not differential trajectory is also very common
due to interactions with its neighbors as shown in Fig. 1.
Another fact that has been neglected in lots of previous
research is that memory of human beings has been seldom
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considered. This is another proof that dα x
dtα is the much better

choice than dx
dt in characterizing the movement of each pedes-

trian.

Fig. 1. Zig-zag phenomenon in movement of each pedestrian.

Dynamic model of integer order that was brought out by
Dirk Helbing in [2−3] has been extended to the following
dynamic model of fractional order for each pedestrian





dα xi

dtα = vi,

mi
dα vi

dtα = f S
i +

n

∑
j=1

f N
i j +∑ f W

k ,
(3)

where xi and vi are position and velocity of each pedestrian (2)
respectively, f S

i is the self-driven force towards some desired
velocity, f N

i j is the interaction between agent i and its neighbor
j and f W

k represents the interactions with environment such as
walls or corridors.

B. Fractional Macroscopic Model

As fractal time and fractal space have been neglected
in previous models of crowds, only macroscopic models of
integer order have been obtained in previous research. Some
statistical phenomenons observed in recent years have forced
people to reconsider the effectiveness of obtained dynamic
model of integer order.

1) Distribution of inter-event time that is dominating or
affecting movement of each pedestrian can be better approx-
imated by power law rather than exponential distribution[1].
Thus dynamic models of integer order where exponential
distribution has been assumed are no longer effective when
confronted with the distribution of power law. As the hidden
dynamics behind distribution of power law is connected with
dynamics of fractional order, it is much preferable to model
crowds of pedestrians using calculus of fractional order;

2) Different from particles of gases or fluids, pedestrians do
not fill the 2D or 3D space and distribution of the pedestrians
is not uniform in the entire space. Thus space of integer
order is not enough to describe the distribution of pedestrians
and fractal space of fractional order should be included in
modeling of crowds of pedestrians.

Based on [9] where modeling of traffic system has been
considered using calculus of integer order, we try to model
crowds of pedestrians using calculus of fractional order in the
following.

Denote ρ(x, t) as the density of crowds as shown in Fig. 2,
then mass of pedestrians between x = x1 to x = x2 at time t
can be computed as

mass in[x1,x2] at time t :=
∫ x2

x1

ρ(x, t)dxβ . (4)

Fig. 2. Conservation of mass.

For t ∈ [t1, t2], the total mass that enters this domain from
the left boundary at x = x1 is given by

inflow at x1 from t1 to t2 :=
∫ t2

t1
ρ(x1, t)v(t,x1)dtα (5)

Similarly, the total mass that leaves this domain from the right
boundary at x = x2 for t ∈ [t1, t2] is given by

outflow at x2 from t1 to t2 :=
∫ t2

t1
ρ(x2, t)v(t,x2)dtα (6)

The change of people in the area between x1 and x2 is
caused by crossing of people at the boundary of x1 and x2.
Assuming no pedestrians are created or destroyed, then the
change of mass of pedestrians in space [x1,x2] in time interval
[t1, t2] is equal to the mass that is entering at x1 minus that
exiting from x2. This conservation can be described using

∫ x2

x1

ρ(x, t2)dxβ−
∫ x2

x1

ρ(x, t1)dxβ

=
∫ t2

t1
ρ(x1, t)v(t,x1)dtα−

∫ t2

t1
ρ(x2, t)v(t,x2)dtα .

The above equation can also be written as the following
double integral form

∫ x2

x1

∫ t2

t1

{
∂

∂ tα ρ(x, t)+
∂

∂xβ [ρ(x, t)v(t,x)]
}

dtα dxβ = 0. (7)

Since equation (7) should be satisfied for any t and any x, the
following fractional order model for crowds of pedestrians in
one dimensional space

∂
∂ tα ρ(x, t)+

∂
∂xβ [ρ(x, t)v(t,x)] = 0, (8)

can be derived where fractal time and fractal space have been
included in (8).

Remark 1. Part of the results of fractional model in macro
scale has been firstly brought out in [27] and is listed here to
guarantee the completeness.

Remark 2. Similar results are also obtained in [32] where
fractional model for traffic flow has been derived using frac-
tional conservation law. Different from the work of [32] where
dimension of time is α , dimension of surface is 2α and
dimension of volume is 3α , there are no such restrictions in
our fractional model (8).
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C. Fractional Micro-macro Model

Fig. 3. Movement of pedestrians based on fractional mean field
games.

1) Fractional Hamilton-Jacobi-Bellman Equation
For each pedestrian i, we assume the following cost function

to be minimized in his/her movement between initial starting
point x(t0) = x0 and desired location x(T ) as shown in Fig. 3.

J(t0,x0) = in f
v(·)

∫ T

t0
f (t,x(t),v(t))dtα +h(T,x(T )), (9)

where convex function h(T,x(T )) is the terminal cost, convex
even function f (t,x(t),v(t)) describes some different kinds of
running cost between the initial point and destination.

Remark 3. A typical quadratic cost function that is in-
dependent of position of pedestrians’ can be selected as
1
2 |v|2 to penalize pedestrians that are moving too fast; Much
more generalized running cost functions that depend on time,
position and velocity have been adopted in the following
derivation of fractional Hamilton-Jacobi-Bellman equation.

Similar to the derivation of Hamilton-Jacobi-Bellman equa-
tion of integer order in optimal control, the fractional
Hamilton-Jacobi-Bellman equation will be discussed firstly
and then optimal velocity will be prescribed for each pedes-
trian at each time step. Suppose after an infinitesimal time
interval dtα , the pedestrian will arrive at one new place
x0 + vdtα and thus incurring a travel cost of f (v)dtα where
new cost function for the remaining journey is described by
J(t0 +dtα ,x0 +vdtα). The above analysis leads to the follow-
ing relationship between J(t0,x0) and J(t0 +dtα ,x0 + vdtα)

J(t0,x0) = J(t0 +dtα ,x0 + vdtα)+ f (v)dtα . (10)

Based on Taylor expansion, Equation (10) can be rewritten
as

J(t0,x0) = J(t0,x0)+dtα [
∂ α

∂ tα J(t0,x0)

+ v · ∂ β

∂xβ J(t0,x0)+ f (v)],
(11)

and the optimal problem (9) is now transformed into finding
proper v to minimize

v · ∂ β

∂xβ J(t0,x0)+ f (v).

Considering the fact that f (·) is an even function, the
above minimization problem is equivalent to the maximization
problem of

v · ∂ β

∂xβ J(t0,x0)− f (v). (12)

Based on the Legendre transformation H : Rd → R of f : Rd →
R by

H(p) := sup
v(·)

v · p− f (v) (13)

whose maximum value are functions of p. For the maximiza-
tion problem of (12), we can see that the maximum value
is obtained as H( ∂ β

∂xβ J(t0,x0)) for some v. Then substituting

the minimum value −H( ∂ β

∂xβ J(t0,x0)) into (11), the following
equation

J(t0,x0) = J(t0,x0)+dtα [
∂ α

∂ tα J(t0,x0)−H(
∂ β

∂xβ J(t0,x0))]

will be satisfied for any t0 and any x0. Then the fractional
Hamilton-Jacobi-Bellman equation is derived as

− ∂ α

∂ tα J(t0,x0)+H(
∂ β

∂xβ J(t0,x0)) = 0. (14)

From the above discussions, we know that there is one v
that minimize the following expression

v · ∂ β

∂xβ J(t0,x0)+ f (v),

and ṽ =−v maximize the following expression

v · ∂ β

∂xβ J(t0,x0)− f (v).

As seen from (13), ṽ as a function of p should satisfy that

∂
∂ ṽ

(ṽ · p− f (ṽ)) = 0.

On the other hand, the derivative of H(p) can be obtained
as follows

d
d p

H(p) =
∂H
∂ ṽ

∂ ṽ
∂ p

+
∂H
∂ p

= ṽ,

using chain rule and then the velocity for each pedestrian to
move in the next step is derived as

v =−H ′(
∂ β

∂xβ J(t0,x0)).

2) Fractional Macro Model Based on Fractional Mean Field
Games

Based on inspiration of [25] on traffic system, we assume
the following utility function for the i-th pedestrian

f N
i (xi,vi) = vi(1−F(

1
N ∑ω(x j− xi))),

where the first term vi means that the i-th pedestrian tries
to arrive his destination as fast as possible; the second term
means that the i-th pedestrian adapts his velocity according
to pedestrians around him. Bounded non-negative anticipating
function ω(·) has been introduced to weigh different impacts
of pedestrians in the neighborhood of the i-th pedestrian
according to their distances. Thus for the i-th pedestrian,
cooperative and competitive interacting with other pedestrians
are manifested through choosing velocity in the next step.
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First, we show that the following expression is satisfied

lim
N→∞

1
N ∑ω(x j− xi)→

∫ ∞

0
ρt(y)ω(y− x)dyβ ,

where N is the number of interacting pedestrians, ρt(y) is the
number of pedestrians in interval [x,x + dxβ ] and ω(·) is the
anticipating function mentioned above.

Denote Γ N
t (x) = 1

N ∑1{x j<x} as the empirical distribution
function for the crowds composed of N pedestrians. Then
based on the Lebesgue-Stieltjes integral it can be concluded
that

1
N ∑ω(x j− xi) =

∫ ∞

0
ω(y− x)dΓ N

t (y).

If there is one non-decreasing right-continuous function Γt(x)
such that the following expression is satisfied

∫ ∞

0
ω(y− x)dΓ N

t (y)→
∫ ∞

0
ω(y− x)dΓt(y)(N → ∞).

Then
1
N ∑ω(x j− xi)→

∫ ∞

0
ρt(y)ω(y− x)dyβ (N → ∞)

will be satisfied. As ρt(y) is the number of pedestrians in inter-
val [x,x + dxβ ], existence of non-decreasing right-continuous
function Γt(x) can be guaranteed from dΓt(x) = ρt(x)dxβ . Thus
we can impose the following mean field payoff function

J(t0,x0,ρt(x)) = sup
v(·)

∫ T

t0
v(1−F(

∫ ∞

0
ρt(y)ω(y− x)dyβ ))dtα

+h(T,x(T ))

for pedestrians that are competitively and cooperatively inter-
acting with other pedestrians.

Based on similar derivations shown in Section III-C-1, the
following fractional Hamilton-Jacobi-Bellman equation

− ∂ α

∂ tα J(t0,x0)+H(
∂ β

∂xβ J(t0,x0,ρt(x))) = 0

can also be obtained for modeling cooperative and competitive
crowds using mean field game theory when the number of
pedestrians goes to infinity.

Remark 4. Differences from previous work are listed as
following:

a) Only functions of Dirac type and exponential type for
ω(x j−xi) have been considered in [25]. Anticipating function
of inverse power form

f N
i (xi,vi) = vi[1−F(

1
N ∑(

∣∣x j− xi
∣∣+1)−2)]

can be included in this paper considering the long range
effects in interacting of multiple pedestrians, where 1

N has been
introduced to normalize the effects of other pedestrians on the
i-th pedestrian.

b) Mean field games theory is also utilized in [20] for
modeling crowds of pedestrians. But obtained results of [20]
are only restricted to the framework of calculus of integer
order and many statistical characteristics are not considered
such as power law in distribution of crowds, power law in
distribution of inter-event time and long range interactions
among pedestrians.

3) Fractional Micro-macro Model
As shown in Fig. 4, the fractional micro-macro model for

crowds of pedestrians using fractional mean field games can
be described as the following backward-forward PDE systems





− ∂ α

∂ tα J(t0,x0,ρt(x))+H(
∂ β

∂xβ J(t0,x0,ρt(x)))= 0,

∂
∂ tα ρ(t,x)+

∂
∂xβ [ρ(t,x)v(t,x)]= 0,

(15)

and




dα xi

dtα = vi,

mi
dα vi

dtα = f S
i +

n

∑
j=1

f N
i j +∑ f W

k .
(16)

Fig. 4. Fractional micro-macro model of crowds of pedestrians.
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The fractional microscopic model and fractional macro-
scopic model are connected through aggregation and disag-
gregation on Voronoi Diagram. From Fig. 4, the following can
be observed.

1) Movements of each microscopic model are determined by
not only internal potential fields such as the self-driven force
towards some desired velocity described using f S

i in (16) but
also external interactions from neighbors and environments
which are described using f N

i j and f W
k . Some other elements

such as deviations from optimal movement of the whole
crowds are also playing an important role in the movement of
each individual pedestrian. All these information are generated
from the dynamic model in macro scale;

2) Density and velocity that are needed in macroscopic
model are derived from aggregation of individual’s position
and velocity. When the number of pedestrians goes to infinity,
the crowds of pedestrians are treated as some intelligent flows
that are described with the help of fractional MFG as shown
in (15). For the backward part, v can be solved from the first
line of (15) under initial condition on J(T,XT ) and initial
distribution of ρ0(x); Then substitute the obtained v:

v =−H ′(
∂ β

∂xβ J(t0,x0,ρt(x)))

into the forward part and ρ(t,x) will be obtained from the
second line of equation (15) under initial condition ρ0(x).

Due to the complexity of crowds of pedestrians, fractional
microscopic model and fractional macroscopic model that
interacted with each other have been constructed in this
paper. Fractional mean field games have also been utilized
in describing the macroscopic model when the number of
pedestrians goes to infinity.

Remark 5. To the author’s knowledge, the paper is one of
the first works applying fractional mean field games to frac-
tional macroscopic and microscopic model for competitive and
cooperative crowds of pedestrians. Although some theoretical
results have been obtained, a lot of work is waiting for further
efforts such as existence and uniqueness of solution, rate of
convergence and stability of desired equilibrium.

IV. SIMULATION RESULTS

Considering unexpected or dangerous events in real-life
experiment, only some initial simulation results are conducted
to show the differences between model of fractional order and
model of integer order in macro scale and micro scale. Due to
the difficulties caused when the number of pedestrians goes to
infinity, simulation results in macro scale and micro scale are
separated in the following subsections. All we want to show
is that calculus of fractional order has offered us much more
freedom in describing complex phenomenon or dynamics such
as crowds of pedestrians. It is much preferable to choose
different model according to different scenarios and there are a
lot of interesting problems needing to be considered in future.

A. Fractional Macroscopic Model

1) Simulation in Closed and Square Area Without Exit:
Simulations on fractional macroscopic model (8) are firstly

conducted where β = 1 is imposed for simplicity. Lax-
Friedrichs scheme has been used to approximate the spatial
derivatives in solving the nonlinear partial differential equa-
tions due to its efficiency in computation. Based on Lax-
Friedrichs scheme, the following PDE on 2D plane

∂
∂ tα ρ(t,x,y)+

∂
∂x

[ρ(t,x,y)v(t,x,y)]

+
∂
∂y

[ρ(t,x,y)v(t,x,y)] = 0,

has been transformed into

∂
∂ tα ρ(t,x,y)+

1
2Dx

[ρ(t,x+1,y)v(t,x+1,y)

−ρ(t,x−1,y)v(t,x−1,y)]+
1

2Dy
[ρ(t,x,y+1)v(t,x,y+1)

−ρ(t,x,y−1)v(t,x,y−1)] = 0

in this simulation and the following Gaussian distribution

ρ(x,y,0) = C exp(−(x−a)2− (y−b)2),

has been selected as the initial distribution of density where
C = 1 is the density value and (a,b) determines the center of
this initial distribution. Average speed of free flow has been
chosen to be vx = vy = 1.36ms−1as done in many previous
studies for pedestrians. Pedestrians have also been assumed
to move freely within a square area with no obstacles and no
exits in the first simulations.

Simulation results for α = 0.6 and α = 1 are shown in
Figs. 5-6 and Figs. 7-8, respectively. From Fig. 5 and Fig. 7,
it can be concluded that pedestrians described using fractional
model are much scattered in the closed square area than that
described using model of integer order. Same conclusions can
also be obtained from comparisons of Fig. 6 and Fig. 8. Other
fractional orders can also be tested using the methods proposed
in this paper but data from reality are much preferable to find
the proper orders for modeling the crowds of pedestrians in
macro scale.

2) Simulation in Closed and Square Area with one Exit
Based on results obtained in Section IV-A-1, the following

dynamic model has been simulated for pedestrians in closed
and square area with one exit





∂
∂ tα ρ(t,x,y)+

∂
∂x

[ρ(t,x,y)v(t,x,y)]

+
∂
∂y

[ρ(t,x,y)v(t,x,y)] = 0,

vt + vvx =
V − v

τ
− C2

0
ρ

ρx,

ut +uuy =
U−u

τ
− C2

0
ρ

ρy,

where C0 = 0.8 is the anticipation term that describes the
response of pedestrians to density of people and V and U
are some desired velocity that are obtained for the crowds. In
order to lead the crowd moving toward the exit, the desired
velocity V and U are selected as done in [33]
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Fig. 5. Density response for crowds of pedestrians with α = 0.6
using Lax-Friedrichs scheme.

Fig. 6. Contour of the density response for crowds of pedestrians
with α = 0.6 using Lax-Friedrichs scheme.

Fig. 7. Density response for crowds of pedestrians of integer order
using Lax-Friedrichs scheme.

Fig. 8. Contour of the density response for crowds of pedestrians
of integer order using Lax-Friedrichs scheme.
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V = V (ρ) xe−xi√
(xe−xi)2+(ye−yi)2

,

U = U(ρ) ye−yi√
(xe−xi)2+(ye−yi)2

,

where V (ρ) and U(ρ) are the flux-density relationship for
Greenshield’s model.

Simulation results are shown in Figs. 9-10 where dynamic
model with fractional orders 0.85 and 1 are used. Simulation
results show that the density of pedestrians around the exit is
much lower in model of fractional order than that obtained
using model of integer order. In simulations, the authors
found that the final density of pedestrians is depending on
the fractional order selected in the simulation and how to
choose the best order to model the dynamics of crowds is
an interesting problem that is worthy of further consideration
in future research.

Fig. 9. Density response for crowds of pedestrians with α = 0.85
using Lax-Friedrichs scheme.

Fig. 10. Contour of the density response for crowds of pedestrians
with α = 1 using Lax-Friedrichs scheme.

B. Fractional Microscopic Model
In this section, six pedestrians with fractional order α ∈

(0,1), α = 1 and α ∈ (1,2) are employed respectively to show
their effects on pedestrian’s evacuation process. Simulations of
crowds of pedestrians with fractional order α = 0.6, α = 1 and
α = 1.3 are shown in Figs. 11-13 respectively. Results show
that all agents firstly reach consensus through interacting with
their neighbors without games. But parts of them change their
desired value and fragmentation phenomenon are observed
through these simulations after some penalty terms are in-
jected into the simulations. Obtained simulation results have

shown that pedestrians with different orders have different
performance. Thus fractional calculus has provided us much
more freedom in analysis and control of this kind of complex
system. How to quantitatively characterize the relationship
between order of fractional model, fractional controller and
fractional games are interesting topics to be considered by the
authors.

Fig. 11. Responses of six pedestrians with α = 0.6.

Fig. 12. Responses of six pedestrians with α = 1.

Fig. 13. Responses of six pedestrians with α = 1.3.

V. CONCLUSIONS

Modeling of crowds of pedestrians have been considered
in this paper from the view of fractional calculus. Not only
fractional microscopic models but also fractional macroscopic
models have been proposed in this paper. Fractional mean
field games theory has been introduced in the modeling
of crowds of pedestrians and coupled PDEs composed of
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fractional backward part and fractional forward part have
been investigated. Although some theoretical results and some
initial simulations are presented in this paper, there is much
more work unexplored along this topic, such as solution of
fractal MFG systems, stability of the fractal MFG system and
performance of this fractal system, controller design based on
mean field, performance evaluation of dynamic crowds and
security problems related to control of crowds.
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Fractional Order Modeling of Human Operator
Behavior with Second Order Controlled Plant and

Experiment Research
Jiacai Huang, YangQuan Chen, Senior Member, IEEE, Haibin Li, and Xinxin Shi

Abstract—Modeling human operator’s dynamics plays a very
important role in the manual closed-loop control system, and
it is an active research area for several decades. Based on the
characteristics of human brain and behavior, a new kind of
fractional order mathematical model for human operator in
single-input single-output (SISO) systems is proposed. Compared
with the traditional models based on the commonly used quasi-
linear transfer function method or the optimal control theory
method, the proposed fractional order model has simpler struc-
ture with only few parameters, and each parameter has explicit
physical meanings. The actual data and experiment results with
the second-order controlled plant illustrate the effectiveness of
the proposed method.

Index Terms—Fractional order modeling, fractional calculus,
human operator, human in the loop, second order controlled
plant.

I. INTRODUCTION

THE modeling of human operator is still an open prob-
lem. In manual closed-loop control system, an accurate

mathematical model of human operator is very important and
provides criteria to the controller design of the manual control
system. The human operator is a very complex system whose
behavior range includes not only skilled control tasks, but also
instinctive and emotional reactions, such as those resulting
from pain or fear.

For decades, modeling human operator’s dynamics has been
an active research area. The earliest study that considered
the human operator as a linear servomechanism is Tustin in
1947[1], who proposed that the main part of the operator’s
behavior might be described by an “appropriate linear law”,
despite the amplitude’ nonlinear variations and haphazard fluc-
tuations. In 1948, Reference [2] studied the human operator
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as an engineering system, and proposed the following theory
of the human operator in control system: the human operator
behaves basically as an intermittent correction servo consisting
of ballistic movement, moreover there are some counteract-
ing processing tending to make controls seem continuous.
In 1959, Mcruer considered the role of human elements in
certain closed loop control systems and proposed a quasi-
linear mathematical model for the human operator, which is
composed of two components — a describing function and
remnant[3]. In [4], the rms-error performance of a human
operator in a simple closed-loop control system was measured
and compared with the performance of an “optimum” linear
controller, the comparison results showed that the human
operator performs almost as well as a highly constrained
optimum linear controller. In [5] the human operators were
considered as a monitor and controller of multidegree of
freedom system, and the experiment results showed that the
human operators are in fact random sampling device and
nearly ideal observers, meanwhile individual operator may
have fixed patterns of scanning for a short period and change
the patterns from time to time, and different human operators
have different patterns.

In 1965, Mcruer[6] studied the human pilot dynamics in
compensatory system and proposed human pilot models with
different controlled element, and the experiments results val-
idated the proposed models. In 1967, Mcruer summarized
the current state of the quasi-linear pilot models, including
experimental data and equations of describing function models
for compensatory, pursuit, periodic, and multiloop control
situations[7]. In [8], the deficiencies of the existing quasi-linear
pilot models have been analyzed and then some new analytical
approaches from automatic control theory have been proposed
to estimate pilot response characteristics for novel situations.

In [9], based on the assumption that the operator behaves
as an optimal controller and information processor subject
to the operators inherent physical limitations, a mathematical
model of the instrument-monitoring behavior of the human
operator was developed. In [10], an adaptive model with
variable structure was presented to describe the behavior of
the human operator in response to sudden changes in plant
dynamics and transient disturbances. In [11], a pilot model
based on Kalman filtering and optimal control was given
which provides for estimation of the plant state variables, the
forcing functions, the time delay, and the neuromuscular lag.
The remnant which is an important component of the quasi-
linear model for the human operator was discussed in [12],
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and a model for remnant was postulated in which remnant
is considered to arise from an equivalent observation noise
vector whose components are linearly independent white noise
processes. In [13] and [14], a mathematical model of the
human as a feedback controller was developed using optimal
control and estimation theory.

From 70s to the early 21st century, the problem of human
operator modeling has been widely studied and a lot of new
achievements emerged[15−28].

In recent years, with the new situation and different appli-
cation, the modeling of human operator’s dynamics is still an
active research area. In [29], a two-step method using wavelets
and a windowed maximum likelihood estimation method was
proposed for the estimation of a time-varying pilot model
parameters. In [30], the human control model in teleoperation
rendezvous on the basis of human information processing was
studied, and the longitudinal and lateral control models for
the human operator were presented based on phase plane
control method and fuzzy control method. In [31], a review of
pilot model used for flight control system design that focuses
specifically on physiological and manual control aspects was
presented.

For a human-in-the-loop system in safety-critical appli-
cation, the correctness of such systems depends not only
on the autonomous controller, but also on the actions of
the human controller. In [32], a formalism for human-in-
the-loop control systems was presented which focuses on
the problem of synthesizing a semi-autonomous controller
from high-level temporal specification that expects occasional
human intervention for correct operation. In [33], the three
different approaches (engineering, physiology, and applied
experimental psychology) to the study of human operator have
been discussed, and the importance of the studying the human
operator has been pointed out. In [34], the accurate control of
human arm movement in machine-human cooperative control
of GAS tungsten arc welding (GTAW) process was studied
and an adaptive neuro-fuzzy inference system (ANFIS) model
was proposed to model the intrinsic nonlinear and time-
varying characteristic of the human welder response, at last the
human control experimental results verified that the proposed
controller was able to track varying set-points and is robust
under measurement and input disturbances.

The existing models for human operator are complicated
and established by integer order calculus. In this paper, based
on the characteristics of human brain and behavior, the frac-
tional order human operator model is proposed and validated
by the actual data.

II. FRACTIONAL ORDER CALCULUS

Fractional calculus has been known since the development
of the integer order calculus, but for a long time it has been
considered as a sole mathematical problem. In recent decades,
fractional calculus has become an interesting topic among
system analysis and control fields due to its long memory
characteristic[35−40].

Fractional calculus is a generalization of integer order
integration and differentiation to non-integer order ones. Let

symbol aDλ
t denote the fractional order fundamental operator,

defined as follows[35]:

aDλ
t

∆= Dλ =





dλ

dtλ , R(λ) > 0,

1, R(λ) = 0,

∫ t

a
(dτ)−λ

, R(λ) < 0,

(1)

where a and t are the limits of the operation, λ is the order of
the operation, and generally λ ∈ R and λ can be a complex
number.

The three most used definitions for the general fractional
differentiation and integration are the Grunwald-Letnikov (GL)
definition[36], the Riemann-Liouville (RL) definition and the
Caputo definition[37].

The GL definition is given as

aDλ
t f(t) = lim

h→0
h−λ

[ t−a
h ]∑

j=0

(−1)j

(
λ
j

)
f(t− jh), (2)

where [·] means the integer part, h is the calculus step, and(
λ
j

)
= λ!

j!(λ−j)! is the binomial coefficient.

The RL definition is given as

aDλ
t f(t) =

1
Γ(n− λ)

dn

dtn

∫ t

a

f(τ)

(t− τ)λ−n+1
dτ , (3)

where n− 1 < λ < n and Γ(·) is the Gamma function.
The Caputo definition is given as

aDλ
t f(t) =

1
Γ(n− λ)

∫ t

a

fn(τ)

(t− τ)λ−n+1
dτ , (4)

where n− 1 < λ < n.
Having zero initial conditions, the Laplace transformation

of the RL definition for a fractional order λ is given by
L

{
aDλ

t f(t)
}

= sλF (s), where F (s) is Laplace transforma-
tion of f(t).

III. REVIEW OF THE QUASI-LINEAR MODELS FOR HUMAN
OPERATOR

The quasi-linear transfer function is an effective method for
the modeling of human operator, and the quasi-linear models
have been found to be useful for the analysis of closed loop
compensatory behavior in the manual control system. For a
simple compensatory manual control system, the functional
block diagram is shown as Fig. 1, where i(t) is the system
input, e(t) is the system error, c(t) is the human operator
output, m(t) is the system output.

Fig. 1. Functional block diagram of the manual control system.
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For the above compensatory manual control system, the
generalized form of the quasi-linear model for human operator
was proposed as follows[3, 6−8]:

YP1(s) =
C(s)
E(s)

= Kp
τLs + 1
τIs + 1

e−Ls

τNs + 1
, (5)

where C(s) and E(s) are the Laplace transforms of c(t)
and e(t) respectively, τL and τI represent the equalisation
characteristics of human operator, L and τN represent the
reaction time and neuromuscular delay of human operator
respectively, Kp represents the human operator’s gain which
is dependant on the task and the operator’s adaptive ability.
The parameters in the above transfer function are adjustable as
needed to make the system output follow the forcing function,
i.e., the parameters, as adjusted, reflect the operator’s efforts
to make the overall system (including himself) stable and the
error small. The quasi-linear model of (5) has been widely
quoted in the literature.

Based on the human operator model described by (5), the
mathematical model of the manual control system is shown in
Fig. 2.

Fig. 2. The mathematical model of the manual control system.

In [15], a detailed research was made on the compensatory
manual control system which is shown in Fig. 1, in which
the forcing function (i.e., the system input) i(t) is a random
appearing signal, and in the human operating process, the error
e(t) and human output c(t) can be obtained. By studying the
relationship between the error e(t) and human output c(t),
the mathematical models for human operator with respect to
controlled plants were proposed in [15].

Because the second order controlled plant is representative
and classic in application, in this paper we take it as an
example, which is described as follows:

Yc(s) =
Kc

s(Ts + 1)
, T =

1
3
,Kc = 1, (6)

then the system input i(t), the system output m(t), the system
error e(t), the human operator output c(t) and the lag of the
operator output C(s)

s+3 were recorded as Figs. 3(a)-3(e).
From the above experiment result, when the lag of the op-

erator output c(t) (i.e., Fig. 3(d)) is compared with the system
error e(t), a great similarity can be seen, so the following
transfer function between c(t) and e(t) was proposed in [15]:

YP2(s) =
C(s)
E(s)

= Kp(s +
1
T

)e−Ls = Kp(s + 3)e−Ls, (7)

where Kp is the human operator’s gain; L is the time delay
of human operator, which is about L = 0.16 s.

Based on the human operator model described by (7), the
mathematical model of the manual control system is shown in
Fig. 4.

(a) System input i(t)

(b) System output m(t)

(c) System error e(t)

(d) Human operator output c(t)
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(e) The lag of operator output, i.e., c
s+3

Fig. 3. Manual control system response, Yc(s) = Kc
s(Ts+1)

, with
T = 1

3
, Kc = 1.

Fig. 4. The mathematical model of the manual control system.

IV. FRACTIONAL ORDER MATHEMATICAL MODEL FOR
HUMAN OPERATOR BEHAVIOR

In the existing research, the human operator models are
established based on the integer order calculus. In fact, the
human body is a highly nonlinear servomechanism, the control
task is completed through the cooperation of the eyes, the brain
nervous, the muscles and the hands, as shown in Fig. 5.

Fig. 5. The control structure of a human operator.

Let us consider the manual control system shown in Fig. 1,
in which the human operator is shown in Fig. 3. In this system,
the human operator controls the machine by hands to follow
the target. The eyes act as a sensor, the brain acts as controller
and sends the nervous system signal to the arm and hand
to follow the target. The muscles of the arm and hand are
employed as power actuators. Meanwhile the human has the
following characteristic[1, 32]:

1) For human brain, the later the thing happens, the clearer
the memory is. On the contrary, the earlier, the poorer. In other
words, the human brain has higher memory level for the newer
things, and lower memory level for the older things.

2) During the human action, there exists dead-time in the
nervous system, including the dead-time from the retina to the
brain, and the dead time from the brain to the muscle.

3) The human muscle has the viscoelastic property.
From the above facts, it can be concluded that the dynamics

of the human operator’s brain is mostly like a kind of fractional
order integral or derivative which exhibits a long memory
characteristics, and so the human operator can be seen as a
fractional order controller with time delay, then in this paper
the fractional order model for human operator in single-input
single-output (SISO) systems is proposed as follow:

YP3(s) =
C(s)
E(s)

=
Kpe−Ls

sα
, α ∈ R, (8)

where α is the fractional order which describes the dynamics
of the human operator, and α can be positive or negative; Kp is
the human operator’s gain; L is the total time delay of human
operator, including the dead-time in the nervous system from
the retina to the brain, and the dead time in the nervous system
from the brain to the muscle. In real system, the α and other
parameters can be obtained by online or off-line identification.

Based on fractional order model of the human operator
described by (8), the mathematical model of the manual
control system is shown in Fig. 6.

Fig. 6. The mathematical model of the manual control system.

In the following section, the effectiveness of the proposed
fractional order model for human operator will be validated.

V. MODEL VALIDATION WITH ACTUAL DATA

In this section, the off-line verification and comparison
will be done using the traditional mathematical models de-
scribed by (5) and (7), and the new proposed fractional order
model described by (8). In the model verification process, the
best fit parameters for the above three models have been
obtained by the fminsearch function with actual data taken
from [15], and the following cost function, i.e., the root mean
square error (RMSE) is used:

J =

√∫ T

0
(mmodel(t)−m(t))2

T
, (9)

where m(t) is the actual output of the manual control system,
mmodel(t) is the model output of the manual control system
by using the human operator model and the actual input (i.e.,
as shown in Fig. 2, Fig. 4, and Fig. 6, T is the operating time
period of human operator.
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In order to get the best fit parameters of each model, the
following searching criteria is adopted.

Case 1. When the human operator model is described by
(8), i.e., the proposed fractional order model, the searching
criteria is

{
α∗,K∗

p , L∗
}

best fit
= min

α∈R;Kp,L∈R+
(J). (10)

In this case, the fractional order differentiation/integration
symbol 1

sα is implemented by the Grunwald-Letnikov (GL)
definition described as (2).

Case 2. When the human operator model is described as
(7), i.e., the traditional model, the searching criteria is

{
K∗

p , L∗
}

best fit
= min

Kp,L∈R+
(J). (11)

Case 3. When the human operator model is described as
(5), i.e. another traditional model proposed in [3, 6-8], the
searching criteria is
{
T ∗L, T ∗I , T ∗N ,K∗

p , L∗
}

best fit
= min

TL,TI ,TN ,Kp,L∈R+
(J). (12)

A. The Minimum RMSE and best fit Parameters for Each
Model

Using the above searching criteria (10)-(12), the minimum
RMSE and the corresponding best fit parameters value for
each model are obtained as shown in Table I. From Table I, it
is obvious that the proposed fractional order model described
by (8) has the smallest RMSE, and the corresponding order
of the model is α = −0.4101. This means that compared
with the traditional model, the proposed fractional order model
described by (8) is the best fit model for describing the
human operator behavior, in other word, the human operator
is a fractional order system.

B. The RMSE of the Proposed Fractional Order Model for
Different α and L

In this section, the RMSE of the proposed model described
by (8) for different α, L and Kp will be scanned. Because the
time delay and gain of human operator have finite range, so in
this scanning process, the time delay L gets some fixed value
between 0 to 0.4, and the gain Kp gets the fixed value of 1,
3 and 5. For each Kp and L, the α is varied from −0.95 to
−0.05 with 0.05 step length. The scan results are shown in
Figs. 7-11.

1) When the gain of the human operator is Kp = 1, the
RMSE scan result for each L is shown in Fig. 7, and the 3-D
RMSE scan result for different α and L is shown in Fig. 8.
From Fig. 7 and Fig. 8 it is clear that: a) the corresponding α
for the minimum RMSE is fractional; b) when the time delay
L gets bigger value, the corresponding minimum RMSE is
also bigger.

2) When the gain of the human operator is Kp = 3, the
RMSE scan result for each L is shown in Fig. 9, from which
it can be seen that: a) the corresponding α for the minimum
RMSE is fractional; b) when the time delay L gets smaller
value, the corresponding minimum RMSE is bigger, this is

because the gain of the human operator gets the bigger value
in this case.

3) When the gain of the human operator gets the value
Kp = 5 or Kp = 7, the RMSE scan results for each L are
shown in Fig. 10 and Fig. 11 respectively. From the figures it
can be seen that the corresponding α for the minimum RMSE
is fractional. Meanwhile as the Kp gets the big value in these
two cases, Fig. 10 and Fig. 11 only show the RMSE for L =
0.05, and the RMSE for other L (which is greater than 0.05 s)
is too large to be shown in the figures.

TABLE I
best fit PARAMETERS VALUE AND RMSE FOR EACH

MODEL

Model Parameter Value

YP3(s)=
Kpe−Ls

sα

RMSE 0.0012

α∗ −0.4101

K∗
p 4.403

L∗(s) 0.117

YP2(s)=Kp(s + 3)e−Ls

RMSE 0.0018

K∗
p 7.994

L∗(s) 0.014

YP1(s) =
Kp(TLs+1)e−Ls

(TIs+1)(TN s+1)

RMSE 0.0024

K∗
p 1.7298

T ∗L 1.8146

T ∗I 0.162

T ∗N 0.162

L∗(s) 0.006

Fig. 7. The RMSE scan result for different α with fixed L, and
Kp = 1.

VI. EXPERIMENT RESEARCH

In this section, the human-in-the-loop control experiment
will be done based on the Quanser SRV02 Rotary Servo Base
unit. The experiment platform is shown in Fig. 12, which is
composed of a human operator, a steering wheel, a torque
sensor, a motor, a computer installed with Quanser/Matlab real
time software and QPIDe data acquisition card. The steering
wheel is fixed with the torque sensor which is mounted on
the desk. The voltage output of the torque sensor is power
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Fig. 8. The 3-D RMSE scan result for different α and L, and
Kp = 1.

Fig. 9. The RMSE scan result for different α with fixed L, and
Kp = 3.

Fig. 10. The RMSE scan result for different α with fixed L, and
Kp = 5.

amplified and transferred to the motor. The motor works on
voltage to position control mode, and the encoder on the
motor offers a high resolution of 4096 counts per revolution in
quadrature mode (1024 lines per revolution). The QPIDe card
samples the voltage output of the torque sensor together with
the encoder output. In the experiment, the system input, output
and error information are all shown on the display screen of the
computer, and the human operator observes the system error
and applies a force around the steering wheel, and so controls

Fig. 11. The RMSE scan result for different α with fixed L, and
Kp = 7.

the motor’s position to follow the system input. The block
diagram of the human-in-the-loop control system is shown in
Fig. 13.

Fig. 12. The human-in-the-loop control experiment platform.

Fig. 13. The block diagram of the human-in-the-loop control
experiment.

In the experiment, the motor works in position control
mode, in this case it is a second order system and its transfer



HUANG et al.: FRACTIONAL ORDER MODELING OF HUMAN OPERATOR BEHAVIOR · · · 277

function is described as follows:

Yc(s) =
K

s(τs + 1)
=

60.2362
s(s + 39.37)

, (13)

where K = 1.53 rad/s/V, τ = 0.0254 s. In this experiment, the
time delay of the human operator is tested at about L = 0.3 s,
and the system input i(t), system output m(t), system error
e(t) and operator output c(t) are real time recorded as shown
in Figs. 14-17.

Fig. 14. The system input of the human-in-the-loop control
experiment.

Fig. 15. The system output of the human-in-the-loop control
experiment.

A. The Minimum RMSE and best fit Parameters for Each
Model

Using the experiment data and the searching criteria (10)-
(12), the minimum RMSE and the corresponding best fit pa-
rameters value for each model are obtained as shown in Table
II. From Table II, it is obvious that the proposed fractional
order model described by (8) has the smallest RMSE, and
the corresponding order of the model is α = −0.3873. This
means that compared with the traditional model, the proposed
fractional order model described by (8) is the best fit model
for describing the human operator behavior, in other words,

Fig. 16. The system error of the human-in-the-loop control
experiment.

Fig. 17. The human operator output (1 V = 4 N·m).

the human operator is a fractional order system. This result is
consistent with the result obtained in Section IV.

B. The Models Parameters for Different L

In general, the time delay of human operator varies in small
range, so in this section the proposed fractional order model
described by (8) and the conventional model described by (5)
will be considered, and the models’ parameters distribution for
different human time delay L will be scanned. As the time
delay of human operator has finite range, so in this scanning
process the time delay L varies from 0.01 to 0.6 with 0.01
step length. The scan results are shown in Figs. 18-21.

Fig. 18 and Fig. 19 show that the distributions of α and Kp

of the proposed fraction order model are smooth, meanwhile
as the time delay L decreases, the fractional order α tends
to increase negatively. Fig. 20 and Fig. 21 show that the
parameters Kp, TL, TI and TN of the conventional model
described by (5) fluctuate in large scale. From this point of
view, the proposed fractional order model described by (8) is
suitable to describe the human operator behavior.
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TABLE II
best fit PARAMETERS VALUE AND RMSE FOR EACH

MODEL (L = 0.3 s)

Model Parameter Value

YP3(s)=
Kpe−Ls

sα

RMSE 3.751 × 10−3

α∗ −0.3873

K∗
p 0.7643

YP2(s)=Kp(s + 39.37)e−Ls

RMSE 4.172 × 10−3

K∗
p 0.6099

YP1(s) =
Kp(TLs+1)e−Ls

(TIs+1)(TN s+1)

RMSE 4.036 × 10−3

K∗
p 1.078

T ∗L 0.1481

T ∗I 0.0001

T ∗N 0.7804

Fig. 18. The fractional order α distribution of human operator for
different L using the proposed model described by (8).

Fig. 19. The gain Kp distribution of human operator for different L
using the proposed model described by (8).

VII. CONCLUSION

In this paper, based on the characteristics of human brain
and behavior, the fractional order mathematical model for
human operator is proposed. Based on the actual data, the

Fig. 20. The gain Kp distribution of human operator for different L
using the conventional model described by (5).

Fig. 21. The TL, TI , TN distributions of human operator for
different L using the conventional model described by (5).

models verifications have been done, and the best fit param-
eters for the proposed model and the traditional models have
been obtained. The verification results show that the proposed
fractional order model is the best fit model for describing the
human operator behavior, in other words, the human operator
is a fractional order system in such a system. The experiment
results also provide the correctness of the above conclusion.

The proposed fractional order model described by (8) for
human operator behavior not only has small RMSE, but also
has a simple structure with only few parameters, and each
parameter has definite physical meaning.

In the future work, we will research the model for human
operator considering other types of controlled plant.
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Fractional Modeling and SOC Estimation of

Lithium-ion Battery
Yan Ma, Xiuwen Zhou, Bingsi Li, and Hong Chen, Senior Member, IEEE

Abstract—This paper proposes a state of charge (SOC) estima-
tor of Lithium-ion battery based on a fractional order impedance
spectra model. Firstly, a battery fractional order impedance
model is derived on the grounds of the characteristics of Warburg
element and constant phase element (CPE) over a wide range
of frequency domain. Secondly, a frequency fitting method and
parameter identification algorithm based on output error are
presented to identify parameters of the fractional order model
of Lithium-ion battery. Finally, the fractional order Kalman filter
approach is introduced to estimate the SOC of the lithium-ion
battery based on the fractional order model. The simulation
results show that the fractional-order model can ensure an
acceptable accuracy of the SOC estimation, and the error of
estimation reaches maximally up to 0.5 % SOC.

Index Terms—Lithium-ion battery, fractional order model,
electrochemical impedance spectra, fractional Kalman filter.

I. INTRODUCTION

GENERALLY, the electrochemical reactions inside
lithium-ion battery are complicated in the running elec-

tric vehicle (EV), which is a highly nonlinear dynamic system.
State of charge (SOC)[1] is defined as the percentage of the
amount of left energy to the rated capacity of a battery, which
cannot be measured directly, it only can be estimated by
measured variables such as current and terminal voltage. The
accurate estimation of SOC is the key problem in the field of
power battery.

The methods of SOC estimation are categorized into direct
experiment measurement methods and estimation methods
based on battery models. Coulomb counting method and cur-
rent integration method are the most popular experiment mea-
surement methods, which are simple to obtain SOC. However,
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these methods result in high errors caused by the accumulation
of errors in numerical integration in current measurement.
State observer[2−3], Kalman filter (KF)[4−5] and particle filter
(PF)[6−7] are used to estimate SOC based on the model of
Lithium-ion battery. The SOC estimation error of each method
is summarized in [8], which shows that the existing integer
order battery SOC estimation methods mainly have estimation
error larger than 1 %, which may be because the models which
are obtained through the external characteristics of the power
battery cannot show the precise internal characteristics. The
dynamics of the battery is described by a set of integer order
calculus equations. But complex electrochemical reactions are
described by the fractional order function.

The fractional order calculus (FOC) is a natural extension
of the classical integral order calculus. References [9−11]
have shown that most phenomena, such as damping, friction,
mechanical vibration, dynamic backlash, sound diffusion, etc.,
have fractional order properties. Thus, FOC is widely used in
modeling, kinetics estimation, etc. FOC is also used to develop
the electrochemical models of the super capacitors and so on.

When it comes to FOC battery modeling and SOC estima-
tion, [12] uses FOC model obtained by system identification
to estimate crankability of battery, [13] proposes lead acid
battery state of charge estimation with FOC, and [14] deals
with a fractional order state space model for the lithium-ion
battery and its time domain system identification method. The
existing FOC modeling for battery meets the same problem,
the estimation accuracy in not high enough for battery man-
agement system.

The electrochemical impedance spectroscopy (EIS) method
is one of the most accurate methods to model the electrochem-
ical Li-ion batteries. There are many studies which have tried
to utilize the impedance spectra directly to estimate SOC, but
EIS method is too complicated to be used directly. EIS method
is mainly used with equivalent circuit model at present[15−16].

The remainder of the paper is organized as follows. Section
II discusses the battery fractional-order modeling based on
impedance spectra; Section III discusses how to obtain char-
acteristic curve between open circuit voltage (OCV) and SOC,
states order identification with frequency method and param-
eters identification according to the output error identification
algorithm; Section IV presents fractional order Kalman filter
for SOC estimation; Section V draws conclusions from the
preceding work and offers suggestion for further study.

II. FRACTIONAL MODELLING OF BATTERY

The impedance spectra curve of the Lithium-ion battery can
be got through Electrochemical workstation and is shown in
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Fig. 1. As shown in the figure, the impedance spectra can be
divided into three sections: the high frequency section, the mid
frequency section and the low frequency section.

Fig. 1. Impedance spectra of a Li-ion battery.

In the high frequency section, the impedance spectra curve
intersects with the real axis and the intersection point could
be represented by an Ohmic resistance.

In the low frequency section, the impedance spectra curve
is a straight line with a constant slope, and has the same
impedance spectroscopy characteristic with constant phase
element (CPE) which is usually referred to as a Warburg
element.

The middle frequency section forms a depressed semicircle,
which is a well-known phenomenon in electrochemistry. Such
a depressed semicircle could be modeled by paralleling a
Warburg element or CPE with a resistance, which is referred
to as a ZARC element (it yields an arc in the Z plane)[17].

From the analysis above, the equivalent circuit model can be
described as Fig. 2. Voc denotes open circuit voltage (OCV),
and Vo denotes battery terminal voltage which can be directly
measured; R1 ∈ R denotes the value of Ohmic resistance,
I denotes the current, and V1 denotes the voltage of R1; C2

∈ R is the coefficient of CPE in ZARC element, R2 ∈ R
denotes the value of Ohmic resistance in ZARC element, and
V2 denotes the terminal voltage of ZARC element; W ∈ R is
the coefficient of Warburg element, and V3 denotes the voltage
of Warburg element.

Fig. 2. Fractional equivalent circuit model.

From the above description, the battery can be described by
a fractional model. To simplify the FOC equation, we define
the denotation as follows:

∆r =





dr

dtr , r > 0,

1, r = 0,
∫

(dτ)r, r < 0.

The mathematical model in high frequency can be described
as (1).

V1 = R1I, (1)

where R1 ∈ R denotes the value of Ohmic resistance, I
denotes the current, and V1 denotes the voltage of R1.

The mathematical model in middle frequency can be de-
scribed as (2).

∆βV2 = − 1
R2C2

V2 − 1
C2

I, (2)

where C2 ∈ R is the coefficient of CPE, β ∈ R, −1 < β < 1
denotes the fractional order of CPE, R2 ∈ R denotes the value
of Ohmic resistance in ZARC element, I denotes the current
across the ZARC element, and V2 denotes the terminal voltage
of ZARC element.

The mathematical model of Warburg element in low fre-
quency can be described as (3).

∆αV3 = − 1
W

I, (3)

where W ∈ R is the coefficient, ∆α denotes α order of the
fractional element, α ∈ R, −1 < α < 1 is the fractional
order of Warburg element, V3 denotes the voltage of Warburg
element, and I denotes the current across the Warburg element.

For the determined relationship of OCV and SOC, SOC
can be regarded as a system state, which can be presented as
follows:

∆1Soc = − 1
Qn

I, (4)

where Qn denotes the nominal capacity (Ah) of battery.
The relationship between SOC and OCV is nonlinear and

it is not easy to draw a mathematical interpretation for it. It
is easy to find that when SOC is between 20 % and 80 % the
relationship is considered to be linear and can be written as
follows:

Voc = k · Soc + d, (5)

where k and d are the coefficients which can be calculated
from the curve fitting.

Set the system state vector as x =
[

V2 V3 Soc

]T
, the

system input as u = I , and the system output as y = Vo − d.
The continuous fractional state space function can be written
as (6).

{
∆Nx = Ax + Bu,

y = Cx + Du,
(6)

where A =



− 1

R2C2
0 0

0 0 0
0 0 0


, B =



− 1

C2

− 1
W

− 1
Qn


, C =

[
1 1 k

]
, D = −R1, N =




β
α
1


.
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According to the stochastic theory, the discrete state space
function is obtained as follows:

{
∆Nxk+1 = Axk + Buk,

yk = Cxk + Duk,
(7)

where xk ∈ R3 denotes the system state vector, yk ∈ R
denotes the system output, and uk ∈ R denotes the system
input, all at the time instant k.

The fractional order Grünwald-Letnikov definition is given
as

∆Nxk =
1

TN
s

k∑

j=0

(−1)j

(
N
j

)
xk−j , (8)

where Ts is the sample interval, and k is the number of
samples for which the derivative is calculated,

(
N
j

)
=

{
1, j = 0,
N(N−1)···(N−j+1)

j! , j > 0.

Equation (9) can be derived from (8).

xk+1 = TN
s ∆Nxk+1 −

(
N
1

)
xk

+
k+1∑

j=2

(−1)j

(
N
j

)
xk−j+1. (9)

The discrete state space function of the battery can be
written as (10).




xk+1 = TN
s (A + NE)xk + TN

s Buk −
k+1∑
j=2

γjxk−j+1,

yk = Cxk + Duk,

(10)

where γj = diag
{(

β
j

)(
α
j

)(
1
j

)}
.

Let Ad = TN
s (A + NE), Bd = TN

s B, Cd = C, Dd = D,
and E be unit matrix. Considering the process noise and output
noise, the discrete state space function of the system can be
written as




xk+1 = Adxk + Bduk + wk −
k+1∑
j=2

γjxk−j+1,

yk = Cdxk + Dduk + vk,

(11)

where wk ∈ R3 is process noise, representing the modeling
uncertainty and unknown input, vk ∈ R is output noise, on be-
half of the measurement disturbance, wk and vk are assumed to
be independent, zero mean Gaussian noise processes with the
covariance matrices E[wkwT

j ] = Qkδkj , E[vkvT
j ] = Rkδkj ,

and δkj is Kronecker function.

III. PARAMETER IDENTIFICATION

Parameter identification of battery model can be divided into
two sections, curve fitting of relationship between OCV and
SOC and parameter identification in battery model. We will
describe the two parts separately as following.

A. Curve Fitting Between OCV and SOC

OCV is obtained by fitting average value of charging and
discharging terminal voltages which are measured by applying
constant pulse current for each time 10 % SOC to battery in
both of charging and discharging modes.

Through the above test, the unknown parameters k and d
in (5) can be obtained by curve fitting.

The specific test procedure is as follows:
1) Discharge the battery till it reaches the minimum dis-

charging voltage (2 V in our case) at room temperature, and
keep it idle for 12 hours.

2) Charge the battery with a constant current of 0.2 C (0.5 A)
till terminal voltage reaches 3.7 V. During the procedure, idle
the battery for 2 minutes after each 10 % SOC charging.
Record every minimum voltage, as shown in Table I.

TABLE I
MINIMUM POINTS OF EVERY SOC WHILE CHARGING

SOC (%) Voltage (mV)

1 2664

11 3140

21 3233

31 3278

41 3304

51 3318

61 3322

71 3341

81 3382

91 3408

100 3702

3) Idle the battery for 12 hours.
4) Discharge the battery with a constant current of 0.2 C

(0.5 A) till terminal voltage reaches 2 V. During the procedure,
idle the battery for 2 minutes after each 10 % SOC discharging.
Record every maximum voltage, as shown in Table II.

TABLE II
MAXIMUM POINTS OF EVERY SOC WHILE

DISCHARGING

SOC (%) Voltage (mV)

99 3434

89 3284

79 3274

69 3266

59 3360

49 3240

39 3222

29 3192

19 3147

9 2812

0 2431

5) Fit minimum points and maximum points that we col-
lected in prior experiments respectively and average the two
curves, which are shown in Fig. 3.
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Fig. 3. OCV measurement during charging and discharging.

Fitting the OCV-SOC relationship from 20 % SOC to 80 %
SOC as shown in Fig. 4, we can get the values k = 0.002086
and d = 3.166.

Fig. 4. OCV-SOC curves between 20 % and 80 % SOC.

B. Parameter Identification of Model

Identify unknown parameters in (6) with time domain and
frequency domain method separately.

1) Identify the order of states using frequency fitting method
in frequency domain: This impedance spectra curve of the
Warburg element has the slope of απ/2. The slope of the
low-frequency part of the impedance spectra is nearly π/4, so
parameter α is equal to 0.5.

The impedance spectra curve of the loop consisting of
a CPE and a resistance is shaped like a semicircle. The
regression rate of the semicircle will be changed with β. The
bigger β is, the bigger the curve radian is. When β = 0.65,
the measured impedance spectra will be matched well, shown
in Fig. 5.

Fig. 5. System state order fitting curve.

Fig. 5 shows that the impedance spectra curve obtained
by the order of state identification can match the measured

impedance spectra well, which means that the fractional-order
model can express the characteristic of Lithium-ion battery
well.

2) Unknown parameter identification: Unknown parame-
ters are identified via output error identification algorithm in
time domain[18−19]. The output error approach is diagrammed
in Fig. 6.

Fig. 6. Parameter identification of battery by output error approach.

The transfer function of fractional order equivalent circuit
model shown in Fig. 1 can be written as

H(s) =
V (s)
I(s)

=
1

Wsα
·R1 ·

R2( 1
C2sβ )

R2 + ( 1
C2sβ )

=
R1R2

Wsα(1 + C2R2sβ)
, (12)

where V = Vo − Voc.
Equation (12) can be written as (13).

V (s)Wsα(1 + C2R2s
β) = I(s)R1R2. (13)

Applying of inverse Laplace transform algorithm, we have

W
dα

dt
V (t) + C2R2W

dα+β

dt
V (t) = R1R2I(t). (14)

Let a = R1R2, b = W , c = C2R2W , θ =




a
b
c


, p =

d
dt

.

Equation (14) is written as

G(p) =
V (t)
I(t)

=
a

bpα + cpα+β
=

B(θ)
A(p, θ)

. (15)

The noise-free output y(tk) is supposed to be corrupted by
an additive white measurement noise v(tk) which is normally
distributed with a zero mean and R variance, considered at
discrete instants. The complete equation can be written in the
form {

y(tk) = G(p) · u(tk),
y∗(tk) = y(tk) + v(tk),

(16)

where y∗(tk) is the measured output of the system.
Assume that an error function ε(t) is given by the output

error, i.e.,

ε(t) = y∗(tk, θ)− B(θ)
A(p, θ)

u(t)

= A(p, θ)
(

y∗(tk, θ)
A(p, θ)

)
−B(θ)

(
u(t)

A(p, θ)

)

= A(p, θ)y∗f (t)−B(θ)uf (t), (17)

where y∗f (t) = y∗(t, θ)/A(p, θ) and uf (t) = u(t)/A(p, θ).
Hence, a linear low-pass filter is applied to the measured
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input part and output part separately instead of a direct
differentiation of the input variable and output variable. As
shown in (17), the filter converts the output error into an
equation error[20].

Let Fn(p) = 1/A(p, θn), n = 1, 2, . . . stands for the
iteration number. In practical cases, A(p, θ) being unknown,
an estimation Fn(p) = 1/Â(p, θ̂n) is computed iteratively.

The noise-free output variable is obtained through an aux-
iliary model, i.e.,

yn(t) =
B̂(θ̂n)

Â(p, θ̂n)
u(t). (18)

The filtered input, output, and measured output are com-
puted respectively with

uf (t) = Fn(p)u(t),
pαyf (t) = pαFn(p)y(t),
pαy∗f (t) = pαFn(p)y∗(t).

And they are gathered in the regression vectors as

ϕf (k) =
[

uf (k) −pαy∗f (k) −pα+βy∗f (k)
]T

,

ϕn
f (k) =

[
uf (k) −pαyf (k) −pα+βyf (k)

]T
.

Thus, we have

Φn
f =

[
ϕn

f (0) ... ϕn
f (Tfinal)

]
,

Φf =
[

ϕf (0) ... ϕf (Tfinal)
]
,

Y ∗
f =

[
y∗f (0) ... y∗f (Tfinal)

]
. (19)

The optimization problem of the parameter identification
can be stated as

θ̂k = arg min
θ

∥∥[Φn
f ΦT

f ]θ − [Φn
f Y ∗

f ]
∥∥2

. (20)

The solution is given by

θ̂k = (Φn
f ΦT

f )−1Φn
f Y ∗

f , (21)

and the algorithm is iterated until convergence, when
max | θ̂k−θ̂k−1

θ̂k
| < ε , where ε is chosen by the accuracy of

modeling.
Specific identification process can be described as:
1) k = 0, initialize the parameters with θ0 =

[
0 0 0

]T
.

2) k = 1, 2, 3, . . ., calculate noise-free output y(k) accord-
ing to θk−1 and (16).

3) Filter the current, the terminal voltage, and the noise-free
terminal voltage based on (18).

4) Determine variables based on (19).
5) Update the identified parameters θ̂k by (21).
6) Calculate the relative error of | θ̂k−θ̂k−1

θ̂k
| from 2) to 5)

until the error is less than 0.05.
After the identification process, the value of every element

can be gotten as R2 = a
R1

, W = b, C2 = c
R2W in (6), Qn

= Cn × 3600 where Cn is the nominal capacity, i.e., R2 =
2.1mΩ, W = 26.5, C2 = 11 mF.

The intersection of impedance spectra with real axis in high
frequency shows the value of resistance. From the impedance
spectra curve we can get R1 = 24.3mΩ.

Bring the above parameters into (6), the discrete fractional
model can be written as




xk+1 = Adxk + Bduk + wk −
k+1∑
j=2

γjxk−j+1,

yk = Cdxk + Dduk + vk,

(22)

where

Ad =




β − 1
R2C2

0 0
0 α 0
0 0 1


 =



−43289.39 0 0

0 0.5 0
0 0 1


 ,

Bd =




−1
C2

−1
W

−1
Qn


 =




−90.9
−0.038
−0.00011


 , N =




0.65
0.5
1


 ,

Cd =
[
1 1 k

]
=

[
1 1 0.21

]
, Dd = −R1 = −0.0243.

C. Model Validation
The current profile consists of many charge/discharge

pulses, at different current levels. Economic Commission for
Europe (ECE) 15 urban driving cycle which is used on electric
vehicles is selected to simulate a typical driving pattern. The
current profile shown in Fig. 7 repeats the ECE 15 urban
driving cycle 3 times, and each circle is running for 400 s.

The voltage curve, shown in Fig. 8, includes the two curves.
One is the output of the identified model and the other is the
measured voltage of the battery. And Fig. 9 shows the error of
the two voltage curves at different time. It is easy to find that
almost all the voltage errors are within 20 mV. When the input

Fig. 7. Current profile for model validation.

Fig. 8. Voltage profile for model validation.

Fig. 9. Voltage error for model validation.
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charging current or discharging current switches largely, the
error is reaches to 40 mV.

Thus the identified fractional order model is accurate.

IV. SOC ESTIMATION BASED ON FRACTIONAL ORDER
MODEL

The work described in this paper was undertaken using
26 650 Lithium-ion batteries manufactured by A123 (2.5 Ah,
3.3 V batteries) which are shown in Fig. 10, and the battery
test machine is shown in Fig. 11.

Fig. 10. A123 cell.

Fig. 11. Battery test equipment.

A fractional order estimator is designed to estimate SOC of
the battery.

For the common integer order system, Kalman filter ap-
proach is widely used to estimate the parameters of the system.

Hence, fractional order Kalman filter (FKF)[21] is selected
to estimate the SOC of the battery.

The process can be described as:
1) k = 0
The Kalman filter is initialized with the best available

information of state and error covariance. The initialized value
of state estimation and error covariance are expressed as:
the covariance matrices of process noise Q, the covariance
matrices of measurement noise R, the initialized system state
x̂0, and the covariance matrices of initialized system state P0

= E[(x̂0 − x0)(x̂0 − x0)T].
2) k = 1, 2, . . .
State estimation propagation

x̃k = Adxk−1 + BdIk −
k∑

j=1

γj

(
N
j

)
xk−j . (23)

Error covariance propagation

P̃k = (Ad + N1)Pk−1 + Qk−1 +
k∑

j=2

NjPk−jN
T
j . (24)

Kalman gain update

Kk = P̃kCT(CP̃kCT + Rk). (25)

State estimation update

x̂k = x̃k + Kk(yk − Cx̃k). (26)

Error covariance update

Pk = (1−KkC)P̃k. (27)

3) Save the estimated state and covariance for further
iteration.

4) Separate the system state, and we will get SOC timely.
The current profile shown in Fig. 12 is employed as vali-

dation scenario. Under this condition, fractional Kalman filter
and Kalman filter (KF) are used to estimate terminal voltage
and SOC of battery. Both the measured terminal voltage and
model terminal voltage are shown in Fig. 13. From Fig. 13, we
can see the battery is tested in full SOC range (i.e., terminal
voltage from 2.0 V to 3.6 V), and both the terminal voltage
estimated by FKF and KF can trace the measured terminal
voltage well, but the FKF results are more precise than the
KF ones.

Fig. 12. Current profile for SOC estimation.

Fig. 13. Terminal voltage profile for SOC estimation.

SOC estimation and SOC estimation error curves are shown
in Fig. 14 and Fig. 15, respectively. From Fig. 15 we will see,
at the beginning of battery charging, the FKF estimation error
is almost the same as KF estimation error. And with further
charging of battery, precision of FKF will rise gradually while
precision of KF gets worse. At the late charging period, both
the FKF and KF error are increasing, but the FKF estimation
error is always smaller than the KF one. In the whole test, the
error of FKF can be reduced up to max 0.5 % SOC, while the
error of KF reaches 3 %.

Fig. 14. SOC estimation.
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Fig. 15. SOC estimation error.

V. CONCLUSION

Based on the analysis of the impedance spectra, a simplified
battery fractional-order model is derived. A new identification
method is presented to identify the orders of the states and
parameters based on the fractional-order system. The fractional
Kalman filter is utilized to estimate the SOC of the lithium-ion
battery based on the fractional-order model. The simulation
results show the SOC estimation with fractional Kalman filter
is consistent with expectations. However just one battery is
tested in the paper, battery pack will be tested in further study.
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Fractional Modeling and Analysis of Coupled MR
Damping System

Bingsan Chen, Chunyu Li, Benjamin Wilson, and Yijian Huang

Abstract—The coupled magnetorheological (MR) damping sys-
tem addressed in this paper contains rubber spring and magne-
torheological damper. The device inherits the damping merits
of both the rubber spring and the magnetorheological damper.
Here a fractional-order constitutive equation is introduced to
study the viscoelasticity of the combined damper. An introduction
to the definitions of fractional calculus, and the transfer func-
tion representation of a fractional-order system are given. The
fractional-order system model of a magnetorheological vibration
platform is set up using fractional calculus, and the function of
displacement is presented. It is indicated that the fractional-order
constitutive equation and the transfer function are feasible and
effective means for investigating of magnetorheological vibration
device.

Index Terms—Fractional calculus, magnetorheological (MR)
fluid, fractional-order constitutive equation, fractional-order sys-
tem, system modeling.

I. INTRODUCTION

MAGNETORHEOLOGICAL (MR) fluids are particulate
suspensions whose rheological properties are dramat-

ically altered by magnetic fields. In shear flow, an applied
magnetic field can increase the apparent viscosity by several
orders of magnitude. This phenomenon is currently being
exploited in commercial applications.

MR dampers are a new research development in the field
of semi-active control. The mechanical model of an MR fluid
is a key way to reach the ideal control effect of the device. In
fact, the mechanical properties of MR fluids and their dampers
are also influenced by many factors including the vibration
displacement, the acceleration, the vibration frequency among
other factors. The dynamics of an MR damper can be de-
scribed through both theoretical and empirical relationships.
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Stanway[1−2] established a rational mechanics model based
on MR fluids viscosity. The Stanway model contains Coulomb
friction and viscous damping, but the elastic characteristic of
the MR fluids is not included; Zhou and Qu[3] modified the
Bingham model based on a constitutive relation for MR fluids,
the precise calculation of mechanical characteristics is given,
but the model is inconvenient due to its many parameters;
Gamota and Filisko[4] also proposed a similar viscoelastic-
plastic mechanical model.

In this paper, the viscoelastic model of the MR damper is
established by fractional calculus. As the physical meaning
of fractional calculus is not clear, not achieving its genetic
characteristics and infinite memory function, so its practical
engineering application is latter than the integer order calculus,
although they were present almost at the same time. Fractional
calculus has been introduced into rheology by Slonimsky[5]

and Friedrich[6], et al., to study the nonlinear constitutive
relation. Considerable progress has been made in using frac-
tional calculus to study nonlinear viscoelasticity. Bagley and
Torvik[7] used fractional calculus to study the three- dimen-
sional constitutive relation as well as find limits of the model
parameters caused by the thermodynamic effects. Paggi et
al.[8] modeled the thermoviscoelastic rheological behavior of
ethylene vinyl acetate (EVA) to assess the deformation and the
stress state of photovoltaic (PV) modules and their durability;
Jóźwiak et al.[9] studied the dynamic behavior of biopolymer
materials with fractional Maxwell and Kelvin-Voigt rheolog-
ical models. Fractional calculus has been a breakthrough in
the theory and application of the constitutive equation, and
emerged as a new principle and method for the constitutive
equation of viscoelastic materials. Therefore, the constitutive
equation applying fractional calculus theory of viscoelastic
materials is always one key research field.

In this paper, the fractional calculus is introduced to ex-
plore the viscoelastic properties of the composite MR-rubber
damper, and the mechanical properties of the composite are
also studied. The dynamic characteristics of the composite
damper are verified by experiments, which provide the practi-
cal basis for verification of the theoretical results on MR shock
absorber.

II. MODEL ESTABLISHMENT

A. Fractional Order Model

The fractional order derivative rheological model is based
on the spring, dashpot and friction element.
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As shown in Fig. 1 (a), for a = 0, the model is a typical
Hook theorem, given by (1).

σ(t) = τ0ED0
t ε(t), (1)

where σ(t) represents applied stress, E is the elastic modulus,
D0

t ε(t) is the 0 order time derivative with respect to t of the
strain ε(t).

Fig. 1. Elastic coefficient and viscosity: (a) Hookinan spring, a = 0;
(b) Newtonian dashpot, a = 1; (c) Abel sticky pot, 0 < a < 1.

When a = 1 shown as Fig. 1 (b), the behavior obeys the laws
of Newtonian fluid, and the constitutive equation is given by
(2).

σ(t) = τ1ηD1
t ε(t), (2)

where τ1 = η/E is the relaxation time for the dashpot, η is
dynamic viscosity, and E represents the elasticity modulus of
the dashpot, and D1

t ε(t) is the first time derivative of strain
with respect to time t.

In practical application of some materials or devices, the
fluid behaves viscoelastically and the mechanical properties
exhibit both spring and dashpot characteristics. We can use
Fig. 1 (c) to describe the Abel sticky pot.

σ(t) = ταEDα
t ε(t), (3)

where Dα
t ε(t) is the fractional derivative of α order of the

strain with respect to time with evidently 0 ≤ α ≤ 1.

B. Definition of Fractional Derivative

The most common definition of Riemann-Liouville (R-L)
fractional integral is given by[10]

a0D
q
t f(t) =

1
Γ(n− q)

dn

dxn

∫ t

a0

(t− ξ)(n−q)−1f(ξ)dξ,

n− 1 ≤ q < n, (4)

where Γ(·) is gamma function, q is a non-integer order, a0 is
the iterative initial value. In addition, the Caputo definition
is often adopted in engineering applications, given by the
following equation:

C
a Dq

t f(t) =
1

Γ(n− q)

∫ t

a

(t− ξ)(n−q)−1f (n)(ξ)dξ,

n− 1 < q ≤ n, (5)

In order to distinguish Caputo definition from R-L fractional
calculus definition, we decorate it with the additional apex C.
The fractional calculus definitions given by R-L and Caputo
are all defined in time domain as a function f(t). The Laplace
transformation of the R-L definitions is related to the initial
value of the fractional differential and fractional calculus.
Although the solutions can be found, a reasonable physical
interpretation to these solutions is difficult to understand[6].

The advantage of the Caputo fractional calculus definition is
that the physical meaning of the initial value is the same as
integer order calculus.

So for an arbitrary real number p, the definition of fractional
calculus is given by

Dp
t f(t) =

dn

dtn
(Dp−n

t f(t)), 0 < n− p < 1, (6)

Equation (6) can also be simplified to

Dq
t f(t) =

dq

dtq
. (7)

C. Fractional Order Model of MR Damper

In Fig. 2, the shock absorber is composed of an MR damper
and a rubber damper, which possesses the advantages of
the rubber and the MR damper. The damping force can be
adjusted rapidly with little control energy requirement. In
view of the structural characteristics of the coupled shock
absorber, a typical standard linear solid model is presented,
also called the Zener model[10], as shown in Fig. 2 (b). The
fractional order Zener model can be obtained by replacing
the traditional Newton dashpot with the Abel dashpot. The
constitutive relation can be written as[10]:

σ + ταDασ(t) = E2τ
αDαε(t) + E1ε(t), 0 ≤ α < 1, (8)

where E1 is the relaxed modulus, E2 is the unrelaxed modulus
shown in Fig. 2. When a sinusoidal pressure is applied, the
storage modulus (E′) and loss modulus (E′′) can be got from
(8)

E′ =
E2(ωτ)2α + (ωτ)α(E1 + E2) cos

(
α

π

2

)
+ E1

[
1 + (ωτ)α cos

(
α

π

2

)]2

+
[
(ωτ)α sin

(
α

π

2

)]2 , (9)

E′′ =
(E2 − E1)(ωτ)α sin

(
α

π

2

)

[
1 + (ωτ)α cos

(
α

π

2

)]2

+
[
(ωτ)α sin

(
α

π

2

)]2 , (10)

where in both (9) and (10), ω is angular frequency (rad/s), ω
= 2πf , and f is frequency (Hz).

Fig. 2. The principle of the damper and the simplified model: (a)
The schematic diagram of the shock absorber; (b) Simplified model;
(c) The shock absorber.
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Substituting the structure parameters obtained from the
coupled shock absorber into the (9) and (10), the storage
modulus (E′) and loss modulus (E′′) can be calculated, shown
in Figs. 3 and 4. The storage modulus E′ increases as a
function of the system frequency, while the loss modulus E′′

is nonlinear. Using verified parameters and changing the order
of the Abel dashpot from 0.2 to 1, E′ and E′′ exhibit different
characteristics. When the frequency is less than 10 Hz, E′

decreases with the increase of the order α. When the frequency
is larger than 10 Hz, the law is opposite, showing that the
smaller α produces larger elastic properties of the shock
absorber. When 0 < α < 1, the E′′ increases with the increase
of the order α, showing an increase in the viscous behavior.
When α = 1, the E′′ has a fast drop when the frequency
is larger than 10 Hz, when the frequency increases beyond a
certain value, the loss modulus is smaller than a small α, as
the Fig. 4 showing, the loss modulus in α = 1 is smaller than
α = 0.8 when the frequency is larger than 32 Hz.

Fig. 3. The storage modulus of Zener model E′.

Fig. 4. The loss modulus of Zener model E′′.

When the applied magnetic field is manipulated accord-
ing to the damping part of the coupled MR damper, the
viscoelastic properties of the entire shock absorber can be
changed dramatically. The magnetic field can be manipulated
by changing the current, I , of the system. In Fig. 5, the

storage modulus is plotted as a function of frequency for
two different values of α. In Fig. 5 (a), as I is increased, the
storage modulus asymptote increases. Also as I is increased,
the storage modulus approaches the asymptote more rapidly. In
Fig. 5 (b) the asymptotic value of each current is larger than
the corresponding current in Fig. 5 (a). Similar to Fig. 6 (a),
the storage modulus gradually approaches the asymptote as
frequency is increased. As I is increased, the storage modulus
approaches the asymptote much more rapidly.

Fig. 5. The storage modulus E′ of the Zener model with different
currents.

In Fig. 6, the loss modulus is plotted as a function of
frequency. In Fig. 6 (a), for I = 0, the loss modulus reaches
a maximum for f = 8. As frequency is increased, the loss
modulus gradually decreases. For I > 0, the modulus rapidly
increases and reaches a maximum value for f = 4. The
maximums for all values of I are all very similar in magnitude.
However, as frequency is increased, larger currents possess a
smaller loss modulus. In Fig. 6 (b), for I = 0, the maximum
in loss modulus occurs at f = 8. The loss modulus then
gradually decreases. For I > 0, the maximum occurs for f
= 4. Furthermore, the decrease in loss modulus is much more
rapid than what we observed in Fig. 6 (a) for α = 0.6. In
addition, the maximum for all values of I is larger than the
maximums observed in Fig. 6 (a). The viscous characteristics
of the coupled MR damper are reflected in the low working
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frequency. At large frequency the viscous performance of the
damper is decreased, which is directly related to the working
magnetic field.

Fig. 6. The loss modulus E′′ of the Zener model with different
currents.

III. EXPERIMENTAL PLATFORM

From the above analysis, it can be seen that the fractional
order model can accurately describe the viscoelasticity of the
shock absorber. In order to further the study and analyze
the dynamic performance of the damper, equivalent viscous
damping is introduced[11]. The equivalent viscous damping is
used to replace the complex damping machine.

A. Experiment Platform and Model Analysis

From (8), the resistance, f(t), is provided, and the direction
is opposite to the speed of the mass, m. The force applied to
the system is F sinωt, as shown in Fig. 7 (a), the two-order
mode for a single degree of freedom dynamic system is defined
as:

mẍ(t) + cẋ(t) + kx(t) = F sinωt, (11)

where k is the stiffness of the damper, c is the damping coef-
ficient. Here, some characteristic parameters of the vibration
system are introduced: natural frequency of the system ωn

=
√

k/m, critical damping coefficient cc = 2
√

km, and the
damping factor µ = c/cc. So (11) can also be written as

ẍ(t) + 2µω2
nẋ(t) + ω2

nx(t) =
F sinωt

m
, (12)

and the two order vibration system in fractional order form
can be given as:

D2x(t) + 2µωnDβx(t) + ω2
nx(t) = P (t), 0 < β ≤ 1. (13)

Fig. 7. The simplified model and the real experimental platform:
(a) The simplified model of the experimental platform; (b) The real
experimental platform.

In order to simplify (13), here A1 = µωn, A2 = w2
n, so

(13) can be written as follows:

D2x(t) + A1D
βx(t) + A2x(t) = F (t). (14)

Laplace transform was applied on the fractional differential
(14) to get:

s2X(s) + A1s
βX(s) + A2X(s) = F (s). (15)

The Caputo fractional derivative operator can also be used
with initial values x(0+) = c0, ẋ(0+) = c1, this is called the
composite fractional vibration equation. The transfer function
for the fractional order system can be obtained by using the
Laplace transform[12−13]:

G(s) =
1

s2 + µβωβ
nsβ + ω2

n

, 0 < β < 2. (16)

For the differential equation (11), the Grünwald-Letnikov
(G-L) definition is used to solve the differential equation. The
Grünwald-Letnikov method is the direct numerical method for
solving fractional calculus.

The G-L definition of fractional calculus is as follows:

aDβi

t x(t) =
1

hβi

t−a
h∑

j=0

w
(βi)
j xt−jh

=
1

hβi


xt +

t−a
h∑

j=1

w
(βi)
j xt−jh


 . (17)

In (17), a is the initial value for the numerical calculation, and
to meet 0 < a < 1, h is the calculation step size, w

(βi)
j is the

coefficient of a polynomial (1 + z)βj , which can be derived
from the following recursive formula[14]:

wβi

0 = 1, w
(βi)
j =

(
1− βi + 1

j

)
w

(βi)
j−1, j = 1, 2, . . . . (18)
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Equation (18) is substituted into (17), the numerical solution
of (17) can be directly derived from differential equation:

xt =
1

n∑

i=0

ai

hβi


P (t)−

n∑

i=0

ai

hβi

t−a
h∑

j=1

w
(βi)
j xt−jh


 , (19)

where xt is the sampled displacement data. P (t) is the
controllable input external force, and ai denotes the iterative
value during the process of calculation.

The numerical solution and the analytical solution for the
trinomial model (i.e., α2 = 2, α1 = α, α0 = 0) excited
by unit step function are shown in Fig. 8. The solutions are
calculated based on (15) and by the method of Adomian
decomposition, respectively. In Fig. 8, the displacement is
plotted as a function of time. From Fig. 8, both the numerical
and analytical solutions exhibit similar displacement for all
values of time considered. Therefore, the numerical solution
of G-L can be applied to engineering analysis. In this paper,
the fractional order model and the integer order model are
analyzed using the numerical solution.

Fig. 8. Adomian decomposition method solution vs G-L definition
numerical solution.

B. Measurement and Control Device

The measurement and control system of MR damper is
shown in Fig. 7. In the MR damper, the sensor collects the
signals of vibration, displacement and acceleration. LabVIEW
is used to process, analyze, and display the collected data.
Then, based on the specific vibration control requirements and
other related parameters (system structure, magnetorheological
material characteristics, etc.), the required control current
is calculated using the GBIP mode in LabVIEW. Through
LabVIEW, the vibrational damping force can be controlled.
The changes to the vibrational parameters of the experimental
platform can be observed, and the output current can be
adjusted to achieve a more desirable vibrational damping
effect. The response of the shock absorber is of the order of
several tens of milliseconds. A high signal sampling rate is
required in order to meet the required vibrational reduction.

The system consists of temperature, acceleration, and dis-
placement sensors, as well as a data acquisition card of virtual

instrument system, data acquisition terminal, software system
using LabVIEW7.0 version, programmable current source, etc.

IV. EXPERIMENT ANALYSIS

The dynamic characteristics in the MR fluids are considered
with changing mass percent of carbonyl iron. In Figs. 9 and
10, the mass percentages of carbonyl considered are 74 % and
78 %. The eccentricity is large for vibration frequencies of
10 Hz and 11 Hz. The dynamic parameters of the system model
are described in Tables I and II.

TABLE I
f = 10 Hz, THE PARAMETERS A1, A2, β, D(e) OF THE

MODEL IN DIFFERENT WORKING FLUIDS

MRF (%) I (A) A1 (s−2) A2 (s−1) β
∑

D(e)

74 1
28.625 28.723 0.6800 35.624

20.122 22.980 1 189.356

78 1
42.389 42.436 0.6890 36.234

38.452 39.015 1 195.236

74 3
58.963 58.967 0.8400 32.149

51.273 51.519 1 128.265

78 3
64.398 64.386 0.8410 34.572

59.581 59.815 1 168.426

TABLE II
f = 11 Hz, THE PARAMETERS A1, A2, β, D(e) OF THE

MODEL UNDER DIFFERENT WORKING FLUIDS

MRF (%) I (A) A1 (s−2) A2 (s−1) β
∑

D(e)

74 1
30.058 29.264 0.6800 38.605

23.612 24.532 1 249.437

78 1
62.424 61.426 0.6950 40.096

100.000 100.000 1 258.812

74 3
63.912 62.117 0.8400 35.012

100.000 100.000 1 244.707

78 3
69.046 66.084 0.8430 37.155

100.000 100.000 1 234.314

1) The order β of fractional order model is related to the
vibration damping performance of MR fluids. With the same
control current and the nonmagnetic saturation situation, the
damping capacity and the model order β increase with the
increase of the mass fraction of the carbonyl iron powder. As
shown in Fig. 9, at f = 10 Hz, I = 1 A, the fractional order
β increases from 0.68 to 0.689 as mass fraction M increased
from 74 % to 78 % accordingly. Similar situation can be seen
from Fig. 10, at f = 11 Hz, I = 1 A, the fractional order
β increases from 0.68 to 0.695 as mass fraction M adjusted
from 74 % to 78 %. From the results we can find that the order
number is changed with the different working fluids.

2) The viscoelastic characteristics of the system with higher
iron content is stronger: such as, f = 10 Hz, I = 1 A, when
M = 74 %, 78 % respectively, the viscosity coefficients of
A1 are 28.625, 42.389, which shows a significant increase;
viscoelastic ratio ξ is respectively 0.9965 and 0.9988, which
is also increased weakly, so can also be viewed unchanged.
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Fig. 9. f = 10 Hz, the displacements and the fractional order in
different working fluids.

Fig. 10. f = 11 Hz, the vibration displacements and the fractional
order in different working fluids.

3) ∆x1 and ∆x2 represent the variation displacement of
the two working fluids in 1 A, 3 A respectively, it can be seen
that ∆x1 > ∆x2, and under the working current of 3 A, the
changes of MR fluids damping characteristics are reducing.

4) The displacement of the theoretical fractional model and
the integer order model are given in Figs. 9 and 10. It can
be seen that the fitting curve of fractional order model is
more close to the sampled displacement curve than that of
the integer order model, and the results are in agreement
with the computed results of Tables I and II. Based on the
same sampled signal, the residual sum of squares

∑
D(e)

obtained by fitting the fractional order models is less than
that of the integer order models obtained by fitting the integer
model, indicating that the fractional order system model is
more accurate than the integer order system model.

The effect of working fluids on the vibrational energy of
the system is analyzed quantitatively by using the variance
analysis. As shown in Table III, taking I = 1 A in Fig. 9 for
example, σ2

1 is the variance at M = 74 %, and σ2
2 is variance at

M = 78 %, σ2
1/σ2

2 denotes the energy coefficient, we can find
that the replacement of the working fluids has great influence
on the dynamic energy coefficient, whose average value is

1.148, indicating that different MR liquids of the system have
certain influence on the system.

TABLE III
I = 1 A, THE VARIANCE OF THE SAMPLED DATA

SEGMENTS WITH DIFFERENT CURRENTS

No. Sampled data
74 %, 78 %,

σ2
1/σ2

2σ2
1 (mm2) σ2

2 (mm2)

1 6000-6500 0.0313 0.0270 1.159

2 6500-7000 0.0316 0.0267 1.184

3 7000-7500 0.0313 0.0268 1.168

4 7500-8000 0.0313 0.0274 1.142

5 8000-8500 0.0308 0.0277 1.112

6 8500-9000 0.0306 0.0270 1.133

7 9000-9500 0.0307 0.0269 1.141

Average value 8.039/7 = 1.148

V. CONCLUSIONS

The above analysis shows the mechanical properties of the
coupled MR damper using viscous and elastic characteristics,
presenting the properties of an elastic solid and a viscous fluid,
and through the experiment, we have shown that:

1) the constitutive equation with fractional derivative
method is derived from a strict formula, which has definite
physical meaning;

2) the viscoelastic constitutive equation with the fractional
derivative can be used to describe the mechanical vibration
performance of the coupled MR damper with great accuracy
than the integer order model;

3) the dynamic characteristics of the system are related to
the order number of the fractional order model: under the
same operating frequency, with the increase of the control
current, the order of the fractional model is increased, and the
viscoelastic properties of the shock absorber are enhanced.
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Parameter Estimation and Topology Identification of
Uncertain General Fractional-order Complex

Dynamical Networks with Time Delay
Xiaojuan Chen, Jun Zhang, and Tiedong Ma

Abstract—Complex networks have attracted much attention
from various fields of sciences and engineering in recent years.
However, many complex networks have various uncertain infor-
mation, such as unknown or uncertain system parameters and
topological structure, which greatly affects the system dynamics.
Thus, the parameter estimation and structure identification
problem has theoretical and practical importance for uncertain
complex dynamical networks. This paper investigates identifi-
cation of unknown system parameters and network topologies
in uncertain fractional-order complex network with time delays
(including coupling delay and node delay). Based on the stability
theorem of fractional-order differential system and the adaptive
control technique, a novel and general method is proposed to
address this challenge. Finally two representative examples are
given to verify the effectiveness of the proposed approach.

Index Terms—Complex networks, fractional-order, parameter
estimation, structure identification, time delay.

I. INTRODUCTION

COMPLEX networks widely exist in the world, from
Internet to World Wide Web, from communication net-

works to social network, etc.. All the above networks can be
represented in terms of nodes and edges, where edges indicate
connections between nodes. Due to the tremendous potentials
in real applications, the research of complex networks has
become a hot topic in modern scientific research[1−4]. In
recent years, synchronization in complex network, as col-
lective behavior, has received increasing attention and been
extensively investigated due to its potential applications in
many fields, including secure communization, image process-
ing, neural networks, information science, etc.[5−9]. However,
there exists much uncertain information in real-world complex
networks[10−11], such as the unknown or uncertain topological
structure and node dynamics, as it is often difficult to exactly
know all system parameters beforehand in many practical
applications. Moreover, the uncertainty would greatly affect
the modeling, understanding and controlling of the complex
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networks. Therefore, the issue of network structure and pa-
rameter identification is of theoretical and practical importance
for uncertain complex dynamical networks. However, due to
the nonlinear, complex, and high dimensional nature of the
practical complex networks, it is very difficult to exactly
identify its topological structure and system parameters by
using the traditional approaches. Recently, some researchers
have made great effort to address this problem and some
valuable results have been obtained[12−14]. Wu[12] proposed
an adaptive feedback control method to identify the exact
topology of weighted general complex dynamical networks
with time delay. Zhou et al.[13] investigated the topology
identification of weighted complex dynamical networks. Liu
et al.[14] proposed a novel adaptive feedback control approach
to simultaneously identify the unknown or uncertain network
topological structure and system parameters of uncertain de-
layed general complex dynamical networks. It is noted that the
mentioned references [12−14] mainly contribute to the con-
trol or identification of networks with nodes of conventional
integer-order dynamics.

On the other hand, the study of complex network with
fractional-order dynamic nodes also begins to attract increas-
ing interest among the researchers. It is well known that the
fractional calculus is a classical mathematical notion, and is
a generalization of ordinary differentiation and integration
to arbitrary order[15]. However, the fractional calculus did
not attract much attention for a long time due to lack of
application background. Nowadays, many known systems can
be described by fractional-order systems, such as viscoelastic
system, dielectric polarization, electromagnetic waves[16−18].
Compared with the classical integer-order models, fractional-
order derivatives provide an excellent instrument for the
description of memory and hereditary properties of various
materials and processes. Therefore, it may be more accu-
rate to model by fractional-order derivatives than integer-
order ones. It is demonstrated that many fractional-order
differential systems behave chaotically or hyperchaotically,
such as the fractional-order Chua circuit[19], the fractional-
order Lorenz system[20], the fractional-order chaotic and hy-
perchaotic Rössler system[21], etc.. Following these findings,
synchronization of chaotic fractional-order differential systems
becomes a challenging and interesting problem due to the
potential applications in secure communication and control
processing.

Not surprisingly, a complex network with nodes modeled
by fractional-order differential systems has currently been one
of the most promising research topics. However, due to the
limited theories for the coupled fractional-order dynamical
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systems, the synchronization between fractional-order com-
plex networks is still a challenging research topic. Com-
pared with integer-order complex networks, the fractional-
order complex networks related studies are still few[22−29].
For example, Chai et al.[22] investigated synchronization of
general fractional-order complex dynamical networks by adap-
tive pinning method. In [23−25], the authors discussed the
cluster synchronization in fractional-order complex networks.
Wu and Lu[26] investigated outer synchronization between
two different fractional-order general complex networks. The
above mentioned literatures concentrated on the research of
fractional-order network with known system parameters and
network structures. So far, there are very few studies on the
parameter estimation and topology identification of uncertain
fractional-order complex networks.

Time delay is ubiquitous in many physical systems due
to the finite switching speed of amplifiers, the finite signal
propagation time in biological networks, traffic congestions
and so forth. Time delay in the interaction may influence the
dynamical behavior of the system. Si et al.[27] has investigated
the identification of fractional-order complex network with
unknown system parameters and network topologies. Yang
and Jiang[28] has discussed the drive-response fractional-order
complex dynamical network with uncertainty. Unfortunately,
time delay is ignored. Although Ma et al.[29] discussed param-
eter identification and synchronization problem of fractional-
order neural networks with time delays, but only the case of
state variables x ∈ R is discussed, and the case for state vector
x ∈ Rn has not been investigated.

Motivated by the above discussion, in this paper, we will
study the identification of unknown system parameters and
network topologies in uncertain fractional-order complex net-
work with coupling delay and node delay. The paper is
organized as follows. In Section II, some fractional-order
definitions and lemmas are given. Sections III and VI study
the parameter estimation and topology identification method
for delayed fractional-order complex networks with different
nodes. In Section V, two representative examples are given to
demonstrate the effectiveness of the proposed method. Finally,
some concluding remarks are given in Section VI.

Throughout this paper, the following notations are used. ‖·‖
is the Euclidean norm of a vector. AT means the transpose of
the matrix A. In denotes the identity matrix with dimension
n. ⊗ represents the Kronecker product of two matrices.

II. PRELIMINARIES AND NOTATIONS

A. The Definition of Fractional Calculus

The fractional-order integer-differential operator is the gen-
eralized concept of an integer-order integer-differential opera-
tor, which is denoted by a fundamental operator as follows:

aDq
t =





dq

dtq
, R (q) > 0,

1, R (q) = 0,
∫ t

a
(dτ)−q

, R (q) < 0,

(1)

where q is the fractional-order calculus operator which can be
a complex number, a and t are the limits of the operation.
The commonly used definitions are Grunwald-Letnikov (GL),

Riemann-Liouville (RL), and Caputo (C) definitions. In the

rest of this paper, the notation
dq

dtq
is chosen as the Caputo

fractional derivation operator.
Definition 1. The Caputo fractional derivative is defined as

follows

Dqx(t) .= c
aDq

t x(t) =





1
Γ(n−q)

∫ t

a
(t− τ)n−q−1x(n)(τ)dτ,

n− 1 < q < n,

dn

dtn
x(t), q = n,

(2)

where Γ (·) is the Gamma function which is defined by Γ(z)
=

∫∞
0

e−ztz−1dt.
It should be noted that the advantage of the Caputo approach

is that the initial conditions for fractional differential equations
with Caputo derivatives take on the same form as those
for integer-order ones, which have well understood physical

meaning. Therefore, in the rest of this paper, the notation
dq

dtq
is chosen as the Caputo fractional derivation operator.

B. Mathematical Preliminaries
Consider uncertain dynamical systems

Dqxi(t) = f̄i(t, xi(t), αi), (3)

or rewrite systems (3) in the following form:

Dqxi(t) = fi(t, xi(t)) + Fi(t, xi(t))αi, (4)

where xi(t) ∈ Rn are state vectors, αi ∈ Rmi are unknown
system parameter vectors for i = 1, 2, . . . , N , in which mi

are positive integers. fi (t, xi (t)) ∈ Rn is a continuous vector
function and Fi (t, xi (t)) ∈ Rn×mi is a continuous matrix
function.

Assumption 1 (A1). Suppose that there exist positive
constants Li such that

∥∥f̄i(t, x(t), αi)− f̄i(t, y(t), αi)
∥∥ ≤ Li ‖x(t)− y(t)‖ , (5)

where x (t) , y (t) ∈ Rn are time-varying vectors, and αi is
the parameter vector of function f̄i (·).

Assumption 2 (A2). Denote Fi(t, xi(t)) = (F (1)
i (t, xi(t)),

F
(2)
i (t, xi(t)), . . . , F

(mi)
i (t, xi(t))). Suppose that F

(j)
i (t,

xi(t)) ∈ Rn for j = 1, 2, . . . , mi, and {{F (j)
i (t, xi(t))}mi

j=1,
{Axj(t−τ)}N

j=1} are linearly independent on the orbit {xi(t),
xi(t− τ)}N

i=1 of synchronization manifold.
If time delay τ is considered, similar to (3) and (4), we can

get the following delayed uncertain dynamical systems:

Dqxi(t) = ḡi(t, xi(t), xi (t− τ) , βi), i = 1, 2, . . . ., N, (6)

or

Dqxi(t) = ḡi (t, xi(t), xi (t− τ) , βi)

= gi (t, xi (t) , xi (t− τ))

+ Gi (t, xi (t) , xi (t− τ))βi, (7)

where xi(t), xi(t− τ) ∈ Rn are the state vectors, βi ∈ Rqi

are the unknown parameter vector. gi(t, xi(t), xi(t − τ)) ∈
Rn is a continuous vector function and Gi(t, xi(t), xi(t −
τ)) ∈ Rn×qi is a continuous matrix function.
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Assumption 3 (A3). Assume that there exists a nonnegative
constant M satisfying

‖ḡi (t, x (t) , x (t− τ) , βi)− ḡi (t, y (t) , y (t− τ) , βi)‖

≤
√

M
(
‖x (t)− y (t)‖2 + ‖x (t− τ)− y (t− τ)‖2

) 1
2

.

(8)

Assumption 4 (A4). Denote Gi(t, xi(t), xi(t − τ)) =
(G(1)

i (t, xi(t), xi(t−τ)), G(2)
i (t, xi(t), xi(t−τ)), · · · , G

(qi)
i (t,

xi(t), xi(t−τ))). Assume that G
(j)
i (t, xi(t), xi(t− τ)) ∈ Rn

for j = 1, 2, · · · , qi, and {{G(j)
i (t, xi(t), xi(t− τ))}qi

j=1,
{Axj(t)}N

j=1} are linearly independent on the orbit {xi(t),
xi(t− τ)}N

j=1 of synchronization manifold.
Lemma 1[30]. Consider a delayed fractional order system:

Dqx(t) = f (x (t) , x (t− τ)) , (9)

where fractional order 0 < q ≤ 1, x(t) = (x1, x2, . . . , xn)T ∈
Rn is the state vector. f(x(t), x(t − τ)) = (f1(x(t), x(t −
τ1)), f2(x(t), x(t−τ2)), . . . , fn(x(t), x(t−τn)))T is nonlinear
vector function satisfying Lipschitz condition and the delay
time τ = (τ1, τ2, . . . , τn)T ∈ Rn. If there exist a positive
definite matrix P and a semi positive definite matrix Q such
that

xT(t)PDqx(t) + xT (t)Qx (t)− xT (t− τ) Qx (t− τ) ≤ 0,
(10)

then the delayed fractional system (9) is Lyapunov stable.
Lemma 2[26]. For any vector x, y ∈ Rn, the inequality

2xTy ≤ xTx + yTy holds.

III. STRUCTURE IDENTIFICATION OF UNCERTAIN GENERAL
FRACTIONAL-ORDER COMPLEX DYNAMICAL NETWORKS

WITH COUPLING DELAY

Consider a complex dynamical network with time-varying
coupling delay and N different nodes, which is described by

Dqxi (t) = f̄i(t, xi(t), αi) +
N∑

j=1

cijAxj (t− τ), (11)

or it can be rewritten in the following form:

Dqxi (t) =

fi (t, xi (t)) + Fi (t, xi (t))αi +
N∑

j=1

cijAxj (t− τ),

(12)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state
vector of the ith node, i = 1, . . . , N , τ is the constant
time delay. C = (cij)N×N ∈ RN×N is an unknown or
uncertain coupling configuration matrix, and cij is the weight
or coupling strength. If there exists a link from nodes i to j (j
6= i), then cij 6= 0, otherwise, cij = 0. A ∈ Rn×n is an inner-
coupling matrix which determines the interaction variables.

Hereafter, the coupling configuration matrix C need not be
symmetric, irreducible, or diffusive. Of course, it is necessary
to ensure the boundedness of complex dynamical networks
in this paper. The main goal is to identify these unknown or
uncertain coupling strengths, namely the network topological

structure, and all unknown system parameter vectors αi of the
complex dynamical networks.

Consider another complex dynamical network which will
be referred to as the response network with coupling delay as
follows:

Dqx̂i (t) = fi (t, x̂i (t)) + Fi (t, x̂i (t)) α̂i

+
N∑

j=1

ĉijAx̂j (t− τ) + ui, (13)

where x̂i(t) = (x̂i1(t), x̂i2(t), . . . , x̂in(t))T ∈ Rn is the
response state vector of the i-th node, ui ∈ Rn is its controller,
ĉij is the estimated value of weight cij , and vector α̂i is the
estimated value of the unknown parameter vector αi.

Denote x̃i = x̂i − xi, c̃ij = ĉij − cij , α̃i = α̂i − αi. The
systems (12) and (13) achieve synchronization if x̃i → 0 as t
→ ∞. Then the error system is given by

x̃i(t) = fi(t, x̂i(t)) + Fi(t, x̂i(t))α̂i − fi(t, xi(t))

− Fi(t, xi(t))αi +
N∑

j=1

ĉijAx̂j(t− τ)

−
N∑

j=1

cijAxj(t− τ) + ui. (14)

That is,

Dqx̃i(t) = f̄i (t, x̂i (t) , αi)− f̄i (t, xi(t), αi)

+ Fi (t, x̂i(t)) α̃i +
N∑

j=1

c̃ijAx̂j (t− τ)

−
N∑

j=1

cijAx̃j (t− τ) + ui. (15)

Theorem 1. Suppose that Assumptions A1 and A2 hold.
Then the uncertain coupling configuration matrix C and
parameter vectors αi of uncertain general delayed complex
dynamical network (12) can be identified by the estimated
values Ĉ and α̂i via the response network





Dqx̂i = fi (t, x̂i(t)) + Fi (t, x̂i (t)) α̂i

+
N∑

j=1

ĉijAx̂j (t− τ) + ui,

ui = −kix̃i (t) ,

Dqki = di ‖x̃i‖2 ,

Dqα̂i = −FT
i (t, x̂i (t)) x̃i (t) ,

Dq ĉij = −δij x̃i (t)T Ax̂j (t− τ) ,

(16)

where i, j ∈ {1, 2, . . . , N} and di, δij are any positive
constants.

Proof. Denote k̃i = ki − k∗i , and k∗i is a positive constant.
Further denote X = (X̃T, α̃T, c̃T, k̃T)T, where



X̃ =
(
x̃T

1 , x̃T
2 , . . . , x̃T

N

)T
, x̃i = (x̃i1, x̃i2, . . . , x̃in)T ,

α̃ =
(
α̃T

1 , α̃T
2 , . . . , α̃T

N

)T
, α̃i = (α̃i1, α̃i2, . . . , α̃imi

)T ,

c̃ =
(
c̃T
1 , c̃T

2 , . . . , c̃T
N

)T
, c̃i = (c̃i1, c̃i2, . . . , c̃iN )T ,

k̃ =
(
k̃1, k̃2, . . . , k̃N

)T

.

(17)
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Choose the real symmetric positive definite matrix P as

P = diag





1, . . . , 1︸ ︷︷ ︸
nN+

N∑
i=1

mi

,
1

δ11
, . . . ,

1
δNN

,
1
d1

, . . . ,
1

dN





, (18)

Q = diag





1, . . . , 1︸ ︷︷ ︸
nN

, 0, . . . , 0︸ ︷︷ ︸
N∑

i=1
mi+N2+N





. (19)

Then we have

J = XT(t)PDqX(t) + XT (t) QX (t)

−XT (t− τ) QX (t− τ)

=
N∑

i=1

x̃T
i (t) Dqx̃i (t) +

N∑

i=1

α̃T
i Dqα̃i

+
N∑

i=1

N∑

j=1

1
δij

c̃ijD
q c̃ij +

N∑

i=1

1
di

k̃iD
qk̃i

+
N∑

i=1

x̃T
i (t)x̃i (t)−

N∑

i=1

x̃T
i (t− τ)x̃i (t− τ)

=
N∑

i=1

x̃T
i (t)

{
f̄i (t, x̂i (t) , αi)− f̄i (t, xi(t), αi)

}

+
N∑

i=1

x̃T
i (t) Fi (t, x̂i (t)) α̃i

+
N∑

i=1

N∑

j=1

cij x̃
T
i (t) Ax̃j (t− τ)−

N∑

i=1

ki ‖x̃i (t)‖2

+
N∑

i=1

N∑

j=1

c̃ij x̃
T
i (t) Ax̂j (t− τ)

+
N∑

i=1

α̃T
i Dqα̃i +

N∑

i=1

N∑

j=1

1
δij

c̃ijD
q c̃ij

+
N∑

i=1

(ki − k∗) ‖x̃i (t)‖2

+
N∑

i=1

x̃T
i (t)x̃i (t)−

N∑

i=1

x̃T
i (t− τ)x̃i (t− τ)

≤
N∑

i=1

Lix̃
T
i (t) x̃i(t)

+
N∑

i=1

x̃i (t)Fi (t, x̂i (t)) α̃i +
N∑

i=1

α̃T
i Dqα̃i

+
N∑

i=1

N∑

j=1

c̃ij x̃
T
i (t) Ax̂j (t− τ)

+
N∑

i=1

N∑

j=1

1
δij

c̃ijD
q c̃ij

+
N∑

i=1

N∑

j=1

cij x̃
T
i (t) Ax̃j(t− τ)−

N∑

i=1

k∗ ‖x̃i(t)‖2

+
N∑

i=1

x̃T
i (t)x̃i (t)−

N∑

i=1

x̃T
i (t− τ)x̃i (t− τ)

≤
N∑

i=1

x̃T
i (t)x̃i(t) +

N∑

i=1

N∑

j=1

cij x̃i(t)Ax̃j(t− τ)

−
N∑

i=1

k∗ ‖x̃i (t)‖2 +
N∑

i=1

x̃T
i (t)x̃i (t)

−
N∑

i=1

x̃T
i (t− τ)x̃i (t− τ) ,

≤ LX̃T(t)X̃(t) + X̃T(t)(C ⊗A)X̃(t− τ)

− k∗X̃T(t)X̃(t) + X̃T(t)X̃(t)

− X̃T(t− τ)X̃(t− τ)

≤ LX̃T(t)X̃(t) +
1
2
X̃T(t)(CCT ⊗AAT)X̃(t)

+
1
2
X̃T(t− τ)X̃(t− τ)− k∗X̃T(t)X̃(t)

+ X̃T(t)X̃(t)− X̃T(t− τ)X̃(t− τ)

=
(

L− k∗ + 1 +
1
2
λmax(CCT ⊗AAT)

)
X̃T(t)X̃(t)

− 1
2
X̃T (t− τ) X̃ (t− τ) , (20)

where L = max{Li|1 ≤ i ≤ N.}. Lemma 2 is used in the last
inequality of (20). It is obvious that there exists sufficiently
large positive constant k∗ such that J is negative definite.
Namely, XT(t)PDqX(t)+XT(t)QX(t)−XT(t−τ)QX(t−
τ) ≤ 0 holds, which implies the Lyapunov stability of error
system (14) or (15) by Lemma 1. ¤

Remark 1. It should be especially pointed out that the
coupling configuration matrix C need not be symmetric,
irreducible, even diffusive.

Remark 2. The positive constants δij , di in the updating
laws Dqki and Dq ĉij can control the convergence speed of
the synchronization and identification.

Remark 3. Assumption A2 is a very essential condition
for guaranteeing the success of identification. Without this
condition, it may cause false identification result. Similarly,
Assumption A4 guarantees the identification of the next sec-
tion.

IV. STRUCTURE IDENTIFICATION OF AN UNCERTAIN
GENERAL COMPLEX DYNAMICAL NETWORK WITH NODE

DELAY

Consider an uncertain general complex dynamical network
consisting of N different nodes with time delay τ , called the
drive network, which is described by

Dqxi(t) = ḡi (t, xi(t), xi (t− τ) , βi) +
N∑

j=1

cijAxj(t), (21)
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where the node dynamics can be rewritten as follows

ḡi (t, xi(t), xi (t− τ) , βi)
= gi (t, xi (t) , xi (t− τ)) + Gi (t, xi (t) , xi (t− τ))βi,

(22)

and βi (i = 1, 2, . . . , N) are unknown or uncertain system
parameter vectors.

Construct another controlled general fractional-order com-
plex network, called response network, which is given by

Dqx̂i = ḡi

(
t, x̂i(t), x̂i (t− τ) , β̂i

)
+

N∑

j=1

ĉijAx̂j(t) + ui,

(23)

where x̂i(t) = (x̂i1(t), x̂i2(t), . . . , x̂in(t))T ∈ Rn is the
response state vector of the i-th node, ui ∈ Rn is its control
input, ĉij and β̂i are the estimated values of cij and βi,
respectively. Denote x̃i = x̂i−xi, c̃ij = ĉij−cij , β̃i = β̂i−βi.
Thus the error system is described by

Dqx̃i (t) = ḡi (t, x̂i (t) , x̂i (t− τ) , βi)
− ḡi (t, xi (t) , xi (t− τ) , βi)

+ Gi (t, x̂i (t) , x̂i (t− τ)) β̃i

+
N∑

j=1

c̃ijAx̂j (t) +
N∑

j=1

cijAx̃j (t) + ui. (24)

Theorem 2. Suppose that Assumptions A3 and A4 hold.
Then uncertain coupling configuration matrix C and system
parameter vectors βi can be identified by using the estimated
values Ĉ and β̂i via the response network




Dqx̂i (t) = gi (t, x̂i (t) , x̂i (t− τ))

+ Gi (t, x̂i (t) , x̂i (t− τ)) β̂i +
N∑

j=1

ĉijAx̂j (t) + ui,

ui = −kix̃i (t) ,

Dqki = di ‖x̃i (t)‖2 ,

Dqβ̂i = −GT
i (t, x̂i (t) , x̂i (t− τ)) x̃i (t) ,

Dq ĉij = −δij x̃
T
i (t) Ax̂j (t) ,

(25)

where i, j ∈ {1, 2, . . . , N}, di, δij are any positive constants.
Proof. Denote k̃i = ki−k∗i , k∗i is a positive constant. Further

denote X = (X̃T, β̃T, c̃T, k̃T)T, where




X̃ =
(
x̃T

1 , x̃T
2 , . . . , x̃T

N

)T
, x̃i = (x̃i1, x̃i2, . . . , x̃in)T ,

β̃ =
(
β̃T

1 , β̃T
2 , . . . , β̃T

N

)T

, β̃i =
(
β̃i1, β̃i2, . . . , β̃imi

)T

,

c̃ =
(
c̃T
1 , c̃T

2 , . . . , c̃T
N

)T
, c̃i = (c̃i1, c̃i2, . . . , c̃iN )T ,

k̃ =
(
k̃1, k̃2, . . . , k̃N

)T

.

(26)

Choose the real symmetric positive definite matrix P as

P = diag




1, . . . , 1︸ ︷︷ ︸
nN+

N∑
i=1

mi

,
1

δ11
, . . . ,

1
δNN

,
1
d1

, . . . ,
1

dN




, (27)

Q = diag




M

2
, . . . ,

M

2︸ ︷︷ ︸
nN

, 0, . . . , 0︸ ︷︷ ︸
N∑

i=1
mi+N2+N




. (28)

Then, we have

J = XT(t)PDqX(t) + XT (t) QX (t)

−XT (t− τ) QX (t− τ)

=
N∑

i=1

x̃T
i (t) Dqx̃i (t) +

N∑

i=1

β̃T
i Dqβ̃i

+
N∑

i=1

N∑

j=1

1
δij

c̃ijD
q c̃ij +

N∑

i=1

1
di

k̃iD
qki

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

=
N∑

i=1

x̃T
i (t) (ḡi (t, x̂i (t) , x̂i (t− τ) , βi)

− ḡi (t, xi (t) , xi (t− τ) , βi)

+ Gi (t, x̂i (t) , x̂i (t− τ)) β̃i

+
N∑

j=1

c̃ijAx̂j (t) +
N∑

j=1

cijAx̃j (t)− kix̃i (t))

−
N∑

i=1

β̃T
i GT

i (t, x̂i (t) , x̂i (t− τ)) x̃i (t)

−
N∑

i=1

N∑

j=1

c̃ij x̃
T
i (t) Ax̂j (t) +

N∑

i=1

(ki − k∗)
∥∥x̃T

i (t)
∥∥2

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

=
N∑

i=1

x̃T
i (t)(ḡi(t, x̂i(t), x̂i(t− τ), βi)

− ḡi(t, xi(t), xi(t− τ), βi))

+
N∑

i=1

N∑

j=1

x̃T
i (t) cijAx̃j (t)− k∗

N∑

j=1

‖x̃i (t)‖2

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

≤ 1
2

N∑

i=1

x̃T
i (t)x̃i(t) +

1
2
‖ḡi(t, x̂i(t), x̂i(t− τ), βi)

− ḡi(t, xi(t), xi(t− τ), βi)‖2

+
N∑

i=1

N∑

j=1

x̃T
i (t) cijAx̃j (t)− k∗

N∑

j=1

‖x̃i (t)‖2

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

≤ 1
2

N∑

i=1

x̃T
i (t) x̃i (t) +

M

2

(
‖x̃i (t)‖2 + ‖x̃i (t− τ)‖2

)
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+
N∑

i=1

N∑

j=1

x̃T
i (t) cijAx̃j (t)− k∗

N∑

j=1

‖x̃i (t)‖2

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

=
(

1
2

+ M − k∗
)

X̃T (t) X̃ (t) + X̃T (t) (C ⊗A) X̃ (t)

≤
(

1
2

+ M − k∗ + λmax(C ⊗A)
)

X̃T(t)X̃(t). (29)

It is obvious that there exists sufficiently large positive
constant k∗ such that J is negative definite. Namely, XT(t)P
× DqX(t)+XT(t)QX(t)−XT(t−τ)QX(t−τ) ≤ 0 holds,
which implies the Lyapunov stability of error system (24) by
Lemma 1. ¤

V. NUMERICAL SIMULATIONS

In this section, two representative examples are given to
verify the effectiveness of the proposed parameters estimation
and structure identification approaches.

A. Identification with Coupling Time Delay

The well-known Lü system with fractional order derivative
is used as the node dynamics in the uncertain network, which
is described as

Dqxi(t) = fi (t, xi (t)) + Fi (t, xi(t))αi, (30)

where q = 0.9, xi(t) = (xi1(t), xi2(t), xi3(t))T is state vector,
fi(t, xi(t)) = (0,−xi1(t)xi3(t), xi1(t)xi2(t))T, Fi(t, xi(t))
= diag{xi2(t)− xi1(t), xi2(t),−xi3(t)}, and αi = (αi1, αi2,
αi3)T, i = 1, . . . , 4. Fig. 1 shows the chaotic attractor of
fractional-order Lü system.

Fig. 1. Chaotic attractor of fractional-order Lü system.

The weight configuration matrix is set as

C =




−5 1 4 0
3 −4 1 0
0 1 −3 2
1 3 0 −4


 . (31)

Let αi = (αi1, αi2, αi3)T = (36, 20 + i, 3)T for i = 1,
. . . , 4. τ = 0.2, and networks inner-coupling matrix A =
diag{1, 1, 1}.

According to Theorem 1, the coupling configuration matrix
C and system parameter vectors αi of complex networks (12)
can be identified by using adaptive control laws (16). Fig. 2
shows the identification of the uncertain system parameters,
while Fig. 3 illustrates the identification of the unknown net-
work topology.

Fig. 2. Identification of uncertain parameters.

B. Identification with Node Time Delay

In this subsection, we consider the uncertain network (21)
with four nonidentical delayed Lü systems, and the single
delayed Lü system is described as
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Fig. 3. Identification of network structure.





Dqxi1 (t) = βi1 (xi2 (t− τ)− xi1 (t− τ)) ,

Dqxi2 (t) = −xi1 (t− τ) xi3 (t− τ) + βi2xi2 (t− τ) ,

Dqxi3 (t) = xi1 (t− τ) xi2 (t− τ)− βi3xi3 (t− τ) ,
(32)

where q = 0.9, βi = (βi1, βi2, βi3)
T = (36, 20 + i, 3)T

for i = 1, . . . , 4. Let A = diag{1, 1, 1} and τ = 0.002.
Here, the coupling configuration matrix C is also defined
as (31). The chaotic attractor of delayed fractional-order Lü
system (32) is shown in Fig. 4. According to Theorem 2, the
unknown or uncertain coupling configuration matrix C and
system parameter vector βi can be estimated by using Ĉ and
β̂i, respectively. Fig. 5 shows the identification of the uncertain

Fig. 4. Chaotic attractor of delayed fractional-order Lü system.
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Fig. 5. Identification of uncertain parameters.
Fig. 6 Identification of network structure.

system parameters, and Fig. 6 illustrates the identification of
the unknown network topology.

VI. CONCLUSION

In this paper, a novel and feasible approach to identify the
parameters and network topology of fractional-order complex
network with time delay is proposed. Based on the stabil-
ity theorem of fractional-order differential system and the
adaptive control technique, two useful identification criteria
are derived. Illustrative simulations are provided to verify the
correctness and effectiveness of the proposed methods.
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HHH∞ Output Feedback Control of
Linear Time-invariant Fractional-order
Systems over Finite Frequency Range
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Abstract—This paper focuses on the HHH∞∞∞ output feedback
control problem of linear time-invariant fractional-order systems
over finite frequency range. Based on the generalized Kalman-
Yakubovic-Popov (KYP) Lemma and a key projection lemma, a
necessary and sufficient condition is established to ensure the exis-
tence of the HHH∞∞∞ output feedback controller over finite frequency
range, a desirable property in control engineering practice. By
using the matrix congruence transformation, the feedback control
gain matrix is decoupled and further parameterized by a scalar
matrix. Two iterative linear matrix inequality algorithms are
developed to solve this problem. Finally, numerical examples are
provided to illustrate the effectiveness of the proposed method.

Index Terms—Fractional-order system, Kalman-Yakubovic-
Popov (KYP) Lemma, finite frequency range, HHH∞∞∞ control.

I. INTRODUCTION

FRACTIONAL-ORDER dynamic system has received a
growing interest due to the fact that many real-world

physical systems can be well characterized by fractional-
order state equations and modeling various physical phe-
nomena involves less parameters than traditional integer-order
system[1]. Many useful analysis and synthesis results about
fractional-order systems have emerged, such as stability[2−4]

and Mittag-Leffler stability analysis[5], robust stability[6−7],
H∞ performance analysis[8], H∞ feedback control[9−11], and
so on.

On the other hand, the Kalman-Yakubovich-Popov (KYP)
Lemma has been proved to be a very strong tool to convert
frequency domain inequalities (FDIs) to linear matrix inequal-
ities (LMIs)[12]. Many control methods have been developed
with the help of KYP Lemma[13−15]. However, KYP Lemma
just only characterizes FDIs in entire frequency range and
does not deal with the multiple FDIs in finite range. The
generalized Kalman-Yakubovich-Popov (GKYP) Lemma pro-
vided in [16] extends the standard KYP Lemma to present the
LMI characterization of FDIs in finite frequency range. It has
been shown that the GKYP Lemma is profitable for system
dissipative analysis and control synthesis problems which can
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be exactly converted to semidefinite programming or convex
optimization problems. Based on GKYP Lemma, H∞ model
reduction[17] and static output feedback control[18] problem
for integer-order systems have been investigated over finite
frequency. Furthermore, the H∞ performance analysis and
H∞ control synthesis for fractional-order systems have been
also considered in [8−10]. But these results are presented over
the entire frequency range. It is worth noting that the H∞
synthesis problems over a finite frequency range is essentially
different from the entire frequency range case this is because
even the state feedback control problem cannot be completely
solved via convex optimization[17].

In this paper, we will investigate the problem of H∞ static
output feedback (SOF) controller synthesis for linear time-
invariant fractional-order systems subject to finite frequency
range. Based on the GKYP Lemma and a key projection
lemma, necessary and sufficient condition is firstly established
for the existence of a SOF controller that ensures the frac-
tional order system is asymptotically stable and satisfies the
prescribed H∞ performance index over a finite frequency
range. Then, by using matrix congruence transformation, the
feedback gain matrix is decoupled from matrix variables and
parameterized by a scalar matrix. Moreover, two iterative algo-
rithms are developed to solve this problem. Finally, numerical
examples are given to demonstrate the effectiveness of our
proposed method.

Notations. For a matrix M , its transpose and complex
conjugate transpose are denoted by MT, M∗, respectively. The
symbol Hn stands for the set of n × n Hermitian matrices.
For a matrix M ∈ Hn, inequalities M > 0 (≥ 0) and M
< 0 (≤ 0) denote positive (semi) definiteness and negative
(semi) definiteness, respectively. For matrices Φ and P , Φ⊗P
means the Kronecker product. All the matrices are assumed
to be of compatible dimensions and ∗ is used to denote the
Hermitian part. For any matrix M ∈ Cn×n, Her(X) = X +
X∗. Re(M) represents the real parts of the complex matrix
M . For G ∈ Cn×m and Π ∈ Hn+m, a function σ : Cn×m ×
Hn+m → Hm is defined by

σ(G,Π) :=
[

G
Im

]∗
Π

[
G
Im

]
.

j denotes the imaginary unit.

II. PRELIMINARIES

In this paper, taking the physical meaning into considera-
tion, the Caputo fractional-order derivative is used and defined
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as follows:

Dαf(t) =
dαf(t)

dtα
=

1
Γ(m− α)

∫ t

0

f (m)(τ)
(t− τ)α+1−m

dτ,

where f(t) is a time-dependent function, α represents the order
of the derivative (m− 1 ≤ α < m, m is an integer).

Consider the following linear time-invariant fractional-order
system admitting a pseudo state space representation of the
form 




Dαx(t) = Ax(t) + B1u(t) + Bw(t),

z(t) = Cx(t) + Dw(t),

y(t) = Cyx(t),

(1)

where α is the fractional order and α ∈ (0, 2). x(t) ∈ Rn

is system state, u(t) ∈ Rm is control input, w(t) ∈ Rq is
disturbance input, z(t) ∈ Rs is control output, y(t) ∈ Rl is
measured output. A ∈ Rn×n, B1 ∈ Rn×m, B ∈ Rn×q, C ∈
Rs×n, Cy ∈ Rl×n, and D ∈ Rs×q are known matrices.

In general, the frequency ranges can be visualized as the
following set of complex numbers that represents certain
curves on the complex plane:

Λ(Φ, Ψ) := {λ ∈ C|σ(λ, Φ) = 0, σ(λ, Ψ) ≥ 0}, (2)

where Φ, Ψ ∈ H2.
Define Λ̄(Φ,Ψ) = Λ(Φ,Ψ) ∪ {∞} if Λ is bounded,

otherwise Λ̄(Φ, Ψ) = Λ(Φ, Ψ).
By choosing appropriate Φ and Ψ in (2), the set Λ(Φ, Ψ)

can be specified to define a certain range of the frequency
curve. For fractional-order system, we can choose

Φ =
[

0 r
∗ 0

]

to represent the curve Λ = {(jω)α|ω ∈ Ω}, where r = ejθ,
θ = (α − 1)π/2, Ω is a subset of real numbers specified by
appropriate choice of Ψ, Table I shows an example.

TABLE I
CHOICE OF Ψ FOR DIFFERENT FREQUENCY RANGES

HF MF LF

Ω ω ≥ ωh ωl ≤ ω ≤ ωh ω ≤ ωl

Ψ

[
1 0

∗ −ω2α
h

] [
−1 jrωc

∗ −ωα
l ωα

h

] [
−1 0

∗ ω2α
l

]

In Table I, ωc := (ωα
l + ωα

h )/2, ωh ≥ 0, ωl ≥ 0, and HF,
MF and LF denote high, middle and low frequency ranges,
respectively.

In this paper, we focus on the static output feedback
controller in the following form:

u(t) = Ky(t), (3)

then, we have the following closed-loop system
{

Dαx(t) = Âx(t) + Bω(t),

z(t) = Cx(t) + Dω(t),
(4)

where Â = A + B1KCy .

Therefore, the finite frequency H∞ static output feedback
control problem can be formulated as follows.

Problem FF-HHH∞∞∞-SOFC (Finite frequency HHH∞∞∞ static
output feedback control). For a pre-specified frequency range
Λ(Φ, Ψ) and a given performance index γ > 0, The problem
of the H∞ static output feedback control over frequency range
Λ(Φ, Ψ) is to find a static output feedback controller (2) such
that:

1) The closed-loop system (3) is asymptotically stable.
2) The transfer function G(s) of closed-loop sys-

tem (3) satisfies the finite frequency H∞ performance
supω∈Λ(Φ,Ψ)σ̄(G(jω)) < γ, where G(s) = C(sαI−Â)−1B+
D, σ̄ denotes the maximum singular value of a matrix.

The following lemma is very useful in the proofs of the
main results of this paper.

Lemma 1[11]. Let A ∈ Rn×n, the linear time-invariant
system Dαx(t) = Ax(t) with α ∈ (0, 1) is asymptotically
stable if and only if there exists Hermitian matrix H > 0 such
that (Re(rH))TAT + A(Re(rH)) < 0.

Lemma 2[11]. Let A ∈ Rn×n, the linear time-invariant
system Dαx(t) = Ax(t) with α ∈ (1, 2) is asymptotically
stable if and only if there exists Hermitian matrix H > 0 such
that rHAT + r̄AH < 0.

Lemma 3 (GKYP Lemma)[16, 19]. Given real matrices A,
B, C, D, a real symmetric matrix Π, and Φ, Ψ, ∈ H2,
let G(λ) = C(λI − A)−1B + D. Then the frequency range
inequality

[
G(λ)

I

]∗
Π

[
G(λ)

I

]
< 0

holds for all λ ∈ Λ̄(Φ, Ψ) if and only if there exist Hermitian
matrices P and Q > 0 such that

[
A I
C 0

]
(Φ⊗ P + Ψ⊗Q)

[
A I
C 0

]T

+
[

B 0
D I

]
Π

[
B 0
D I

]T

< 0.

Remark 1. Let

Π =
[

I 0
0 γ2I

]

or
Π =

[
0 −I
−I 0

]
,

the characterization of Lemma 3 turns into the bounded real
lemma and positive real lemma.

Lemma 4 (Projection Lemma)[20]. Given a symmetric
matrix Ξ ∈ Rm×m and two matrices P , Q of column
dimension m, consider the problem of finding some matrix
Θ of compatible dimensions such that

Ξ + PTΘTQ + QTΘP < 0. (5)

Denote by ℵP , ℵQ any matrices whose columns form basis of
the null space of P and Q, respectively. Then (5) is solvable
for Θ if and only if

{
ℵT

P ΞℵP < 0,

ℵT
QΞℵQ < 0.
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III. MAIN RESULTS

In this section, we will firstly investigate the H∞ static
output feedback control for fractional-order systems over
middle frequency ranges. Based on the GKYP Lemma and
the projection lemma, we will give the necessary and sufficient
condition that the problem of FF-H∞-SOFC is solvable.

Theorem 1. Given performance index γ > 0, fractional
order α ∈ (0, 1), system matrices A,B1, B, C, D, Cy , a
feedback gain K and finite frequency range ΛMF = {ω ∈ R :
ωl ≤ ω ≤ ωh, ωl, ωh ≥ 0}. Problem FF-H∞-SOFC is solvable
if and only if there exist Hermitian matrices H > 0, Q > 0, P ,
and real matrix E = [E1, E2] such that the following matrix
inequalities hold:

Ξ = Her(Â(Re(rH))) < 0, (6)

and

Σ =




−Q Σ12 −E2 0
∗ Σ22 Σ23 B
∗ ∗ Σ33 D
∗ ∗ ∗ −I


 < 0, (7)

where r = ejθ, θ = (α− 1)π/2, Â = A + B1KCy, and

Σ12 =rP + jrωcQ− E1,

Σ22 =− ωα
l ωα

hQ + Her(ÂE1),

Σ23 =ÂE2 + ET
1 CT,

Σ33 =− γ2I + Her(CE2).

Proof. (Necessity). It follows from Lemma 1 and Lemma
3 that the problem of FF-H∞-SOFC is solvable if and only
if there exist Hermitian matrices H > 0, Q > 0 and P such
that the following matrix inequalities hold. That is,

Ξ = Her(Â(Re(rH))) < 0,

and
[

Â I
C 0

] [ −Q rP + jrωcQ
r̄P − jωcQ −ωα

l ωα
hQ

] [
Â I
C 0

]T

+
[

B 0
D I

] [
I 0
0 −γ2I

] [
B 0
D I

]T

=
[

Â I 0
C 0 I

]
Θ

[
Â I 0
C 0 I

]T

< 0,

where

Θ =



−Q rP + jrωcQ 0
∗ −ωα

l ωα
hQ + BBT BDT

∗ ∗ DDT − γ2I


 .

Note that
[

I 0 0
]
Θ

[
I 0 0

]T = −Q < 0,

and denote that

Γ =
[
−I ÂT CT

]
, Λ =

[
0 I 0
0 0 I

]
,

then, we can obtain

ℵΓ =




ÂT C
I 0
0 I


 , ℵΛ =

[
I 0 0

]T
,

and

ℵT
ΓΘℵΓ < 0, ℵT

ΛΘℵΛ < 0.

It follows from the projection lemma that there exists a real
matrix E = [E1 E2] such that

Θ + ΓTEΛ + ΛTETΓ < 0,

which implies Σ < 0 holds by Schur complement lemma.
(Sufficiency). It follows from Schur complement lemma

that Ξ2 < 0 is equivalent to Θ + ΓTEΛ + ΛTETΓ < 0.
Using the projection lemma, ℵT

ΓΘℵΓ < 0 holds. Therefore,
the sufficiency is trivially true. ¤

Remark 2. In the above theorem, the feedback gain K is
coupled with matrix variables and is intrinsically non convex.
In the following theorem, the feedback gain matrix K will be
decoupled from matrices H , E1, and E2, simultaneously, and
will be parameterized by a positive scalar matrix.

Theorem 2. Given performance index γ > 0, fractional
order α ∈ (0, 1), system matrices A, B1, B, C, D and Cy,
and the finite frequency range ΛMF = {ω ∈ R : ωl ≤ ω ≤
ωh, ωl, ωh ≥ 0}. Problem FF-H∞-SOFC is solvable if and
only if there exist Hermitian matrices H > 0, Q > 0, P , real
matrices E = [E1, E2], U , and a scalar ε > 0, such that the
following matrix inequalities hold

Ξ̄ =
[

Ξ̄11 −(Re(rH))T −B1LCy

∗ −εI

]
< 0, (8)

and

Σ̄ =




−Q Σ̄12 −E2 0 0
∗ Σ̄22 Σ̄23 B Σ̄25

∗ ∗ Σ̄33 D −ET
2

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εI




< 0, (9)

where r = ejθ, θ = (α− 1)π/2, and

Ξ̄11 = Her
(
A(Re(rH))−B1LCyUTBT

1

)

+ εB1UUTBT
1 ,

Σ̄12 = rP + jrωcQ− E1,

Σ̄22 = − ωα
l ωα

hQ + Her(AE1 −B1LCyUTBT
1 )

+ εB1UUTBT
1 ,

Σ̄23 = AE2 + ET
1 CT,

Σ̄33 = − γ2I + Her(CE2),

Σ̄25 = − ET
1 −B1LCy.

Moreover, the static output feedback control gain is designed
as K = ε−1L.

Proof. (Necessity). It follows from Theorem 1 that problem
FF-H∞-SOFC is solvable if and only if there exist Hermitian
matrices H > 0, Q > 0, P and real matrix E = [E1, E2] such
that (6) and (7) hold. It is always possible to find a sufficiently
large scalar ε such that[

Her(Â(Re(rH))) −Re(rH)T

∗ −εI

]
< 0,
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and [
Ξ2 ΥT

∗ −εI

]
< 0,

where Υ = [0 − E1 − E2 0].
Taking congruence transformation yields

ΓT
1

[
Her(Â(Re(rH))) −(Re(rH))T

∗ −εI

]
Γ1

=
[

Φ11 Φ12

∗ −εI

]
< 0. (10)

with

Γ1 =
[

I 0
(B1KCy)T I

]
,

Φ11 = Her(A(Re(rH))− ε(B1KCy)(B1KCy)T,

Φ12 = −(Re(rH))T − εB1KCy.

Let εK = L and note that

B1(LCy − εU)ε−1(LCy − εU)TBT
1 ≥ 0

holds for any real matrix U . Expanding this inequality, one
has

− (B1LCy)ε−1(B1LCy)T

≤ −B1LCyUTBT
1 −B1U(LCy)TBT

1 + εB1UUTBT
1 .

(11)

Using above inequality and combining (10), we get (8). In the
same way, taking congruence transformation, we have

ΓT
2

[
Ξ2 ΥT

∗ −εI

]
Γ2 < 0,

with

Γ2 =




I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 (B1KCy)T 0 0 I




.

Let εK = L and use inequality (11), we get (9).
(Sufficiency). Suppose that there exist Hermitian matrices

H > 0, Q > 0, P , real matrices E = [E1, E2], U and a
scalar ε > 0 such that (8) and (9) hold. From (11), (8) implies
that [

Φ̃11 −(Re(rH))T −B1LCy

∗ −εI

]
< 0,

where

Φ̃11 = Her(A(Re(rH))− (B1LCy)ε−1(LCy)TBT
1 ,

choosing U = ε−1LCy yields
[

Φ̄11 −(Re(rH))T − εB1U
∗ −εI

]
< 0,

where, Φ̄11 = Her(A(Re(rH))− εB1UUTBT
1 .

Therefore, using congruence transformation and letting
ε−1L = K, we can conclude that

[
Her(Â(Re(rH))) −(Re(rH))T

∗ −εI

]
< 0,

and Her(Â(Re(rH))) < 0. Similarly, one can deduce that (9)
implies (7). ¤

Remark 3. Based on congruence transformation, the feed-
back gain K can be decoupled from H , E1 and E2 simultane-
ously, and parameterized by a positive scalar ε. Note that the
matrix inequalities in (8) and (9) are still bilinear, however,
we can fix U to make them linear. Using the method provided
in [21−22], we defined η ∈ R satisfying that

{
Ξ̄− diag{ηI, 0} < 0,

Σ̄− diag{0, ηI, 0, 0, 0} < 0.

It is easily known from the proof of Theorem 1 that η
achieves its minimum when U = ε−1LCy , which naturally
leads to an iterative LMI (ILMI) algorithm.

Algorithm 1 (ILMI algorithm).
Step 1. Set j = 1. For a given H∞ performance level γ > 0,

and the finite frequency range ΛFF = {ω ∈ R : ωl ≤ ω ≤
ωh, ωl, ωh ≥ 0}. Solve the following relaxed LMIs

Her(A(Re(rH)) + B1W1) < 0, (12)

and 


−Q Φ̂12 −E2 0
∗ Φ̂22 Φ̂23 B

∗ ∗ Φ̂33 D
∗ ∗ ∗ −I


 < 0. (13)

where

Φ̂12 = rP + jrωcQ− E1,

Φ̂22 = −ωα
l ωα

hQ + Her(AE1 + B1W2),

Φ̂23 = AE2 + B1W3 + ET
1 CT,

Φ̂33 = −γ2I + Her(CE2),

with variables in S , {Hermitian matrices H > 0, Q > 0, P ,
and real matrices, E1, E2, W1, W2 and W3}.

The initial value U1 is obtained as

U1 = W1(Re(rH))−1.

Step 2. For fixed Uj , solve the following minimization
problem for matrix variables in the set S , {Hermitian
matrices H > 0, Q > 0, P, real matrices E = [E1, E2],
U and a scalar ε > 0}

min η,

s.t.

{
Ξ̄− diag{ηI, 0} < 0,

Σ̄− diag{0, ηI, 0, 0, 0} < 0,
(14)

where Ξ̄ and Σ̄ are defined in (8) and (9) respectively. Denote
the obtained η as ηj .

Step 3. If ηj < 0, then a desired feedback gain is obtained
as K = ε−1L.

Step 4. Fix η = ηj , minimize ε such that LMIs (14) hold,
denote the obtained ε and L as εj and Lj .

Step 5. If |ηj − ηj−1|/ηj−1 < τ , where τ is a prescribed
tolerance, then this algorithm fails to find the desired feedback
gain K, stop; If not, update ηj+1 as Uj+1 = ε−1

j LjCy . Set j
:= j + 1 and go to Step 2.
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Before employing the ILMI algorithm, it is suggested to
find some initial value which is “close” to the desired so-
lution. We adopt the following initial optimization algorithm
provided in [11]. Denote W̄ = [W1, W2, W3] and Ē =
[Re(rH), E1, E2].

Algorithm 2 (Initial optimisation).
Step 1. Set j = 1. For a given H∞ performance level γ > 0,

and the finite frequency range ΛFF = {ω ∈ R : ωl ≤ ω ≤ ωh,
ωl, ωh ≥ 0}, find Hermitian matrices H > 0, Q > 0, P , and
real matrices W1, W2, W3 such that LMIs (12) and (13) hold.
Denote the feasible solution Ē and W̄ as Ēj and W̄j .

Step 2. Fix Ē = Ēj , minimize δ = ‖W̄−N⊗Ē‖2, such that
LMIs (12) and (13) hold, where N is a real matrix variable.
Denote the obtained N as Nj .

Step 3. Fix N = Nj , minimize δ = ‖W̄ −N ⊗ H̄‖2, such
that LMIs (12) and (13) hold. Denote the minimized δ as δj .

Step 4. Set j := j + 1, and repeat Step 2 and Step 3. If
|δj − δj−1|/δj−1 ≤ µ, where µ is a prescribed tolerance, then
stop. The initial value U1 is given by U1 = W1(Re(rH))−1.

Follow the similar line, we can give the condition that
the problem of FF-H∞-SOFC is solvable over low frequency
range as follows.

Theorem 3. Given performance index γ > 0, fractional
order α ∈ (0, 1), system matrices A, B1, B, C, D, Cy , a
feedback gain K and finite frequency range ΛLF = {ω ∈ R :
ω ≤ ωl, ωl ≥ 0}. Problem FF-H∞-SOFC is solvable if and
only if there exist Hermitian matrices H > 0, P and Q > 0,
real matrix U , E = [E1, E2] and real scalar ε such that the
following matrix inequalities hold

Ξ̃ =
[

Ξ̃11 −(Re(rH))T −B1LCy

∗ −εI

]
< 0,

and

Σ̃ =




−Q rP − E1 −E2 0 0
∗ Σ̃22 Σ̃23 B Σ̃25

∗ ∗ Σ̃33 D −ET
2

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ εI




< 0,

where r = ejθ, θ = (α− 1)π/2, and

Ξ̃11 = Her
(
A(Re(rH))−B1LCyUTBT

1

)

+ εB1UUTBT
1 ,

Σ̃23 = AE2 + ET
1 CT,

Σ̃22 = ω2α
l Q + Her(AE1 −B1LCyUTBT

1 )

+ εB1UUTBT
1 ,

Σ̃25 = − ET
1 −B1LCy,

Σ̃33 = − γ2I + Her(CE2).

Moreover, the static output feedback control gain is designed
as K = ε−1L.

For highest frequency case, we can refer to the designed
method in [17] and use the following condition.

Theorem 4. Given performance index γ > 0, fractional
order α ∈ (0, 1), system matrices A, B1, B, C, D and Cy , and
the finite frequency range ΛHF = {ω ∈ R : ω ≥ ωh, ωh ≥ 0}.

Problem FF-H∞-SOFC is solvable if and only if there exist
Hermitian matrices H > 0, P , and Q > 0, real matrix U , and
a scalar ε > 0, such that the following matrix inequalities hold

Ξ̂ =
[

Ξ̂11 −(Re(rH))T −B1LCy

∗ −εI

]
< 0,

and

Σ̂ =




Σ̂11 r̄PCT AQ B P + rB1LCy

∗ −γ2I CQ D 0
∗ ∗ −Q 0 rQ
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εI




< 0,

where r = ejθ, θ = (α− 1)π/2, and

Ξ̂11 = Her
(
A(Re(rH))−B1LCyUTBT

1

)

+ εB1UUTBT
1 ,

Σ̂11 = Her(rAP −B1LCyUTBT
1 )− ω2α

h Q

+ εB1UUTBT
1 .

Moreover, the static output feedback control gain is designed
as K = ε−1L.

Remark 4. The designed algorithms of H∞ static output
feedback controller for fractional order system over high
frequency and low frequency ranges can refer to the middle
frequency case and hence is omitted for brevity.

Remark 5. When the problem of FF-H∞-SOFC for system
with the fractional order α ∈ [1, 2) case is considered, we just
need to replace the stability condition based on Lemma 2. For
example, we just replace LMI (8) by

[
Ψ11 −H − r̄B1LCy

∗ −εI

]
< 0,

where Ψ11 = Her
(
r̄AH −B1LCyUTBT

1

)
+ εB1UUTBT

1 .

IV. NUMERICAL EXAMPLE

Example 1. Consider the system (1) with the following
parameters:

A =
[ −8 −0.8
−2 0.5

]
, B1 =

[ −0.6
2

]
, B =

[
1

0.1

]
,

C =
[

1.2 2
]
, Cy =

[
1 −130

]
, D = 0.1,

α = 0.8, ωl = 0.2, ωh = 4.

The eigenvalues of A are λ1 = −8.1842, λ2 = 0.6842,
which implies the open-loop system is unstable. Using Algo-
rithm 2, the initial value U1 is obtained as

U1 =
[ −5.0654 −1.4742

]
,

and using Algorithm 1, the desired static output feedback gain
matrix is obtained as K = 0.1370. We can easily compute
and find that closed-loop system has the stable eigenvalues λ1

= −8.7288, λ2 = −34.4677. In addition, with the designed
controller, Fig. 1 shows the H∞ norm of the closed-loop
system is smaller than thant of open-loop system.
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Fig. 1. Maximum singular value comparison, open-loop vs. closed-
loop systems.

Example 2. Consider the system (1) with the following
parameters:

A =
[ −2.01 0

0 −5.3

]
, B1 =

[ −5
0.5

]
,

B =
[

0.2
0.5

]
, C =

[
0.99 1.01

]
,

Cy =
[

1.01 1.89
]
, D = 0.58, α = 1.2.

When w(t) = 0, it is easy to see such system is asymptotically
stable. Thus, in the following setting, we mainly make the
comparison of H∞ norm of closed loop system over different
frequency ranges. Firstly, for different frequency ranges, we
adopt same initial matrix U = [−0.2923 0.1175] which
can be obtained by solving LMI (12). Then we can design
the different desired static output feedback controller using
ILMI algorithm over three kinds of frequency ranges. After
that, the norm values of the transfer function of the open-
loop system and the closed-loop systems over three kinds of
frequency ranges, are compared in Fig. 2, and the H∞ norm
comparison are presented in Table II. From Fig. 2, we can
see that controllers over three kinds of frequency ranges yield
the smaller H∞ norm compared with the open loop system.
From Table II, we can see the least H∞ norm are generated by
controller over the frequency range [0.2 0.5], which exactly is
the range that the supremum point of maximum singular value
of open loop system belongs to. Therefore, if the disturbance
has a finite frequency, the minimization on the entire frequency
range may not give the optimal solution. In order to achieve a
better result in the optimization, it is meaningful to investigate
the finite frequency H∞ control.

V. CONCLUSIONS

In this paper, the H∞ output feedback control problem of
fractional-order systems over finite frequency range has been
investigated. Based on the GKYP Lemma and the Projection
Lemma, we have established the existence conditions of the
desired static output feedback controller. By matrix congru-
ence transformation, the feedback gain matrix is decoupled
with three matrix variables simultaneously, and further param-
eterized by a scalar matrix. Two iterative LMI algorithms have

been presented to obtain the desired results. Furthermore, the
existence conditions of desired controller have been extended
to the high frequency and low frequency cases. Moreover, the
design method is feasible for the fractional order α ∈ (1, 2)
case. Finally, numerical examples are given to show the
effectiveness of our design method.

Fig. 2. Comparison of different frequency ranges.

TABLE II
H∞ NORM COMPARISON OVER DIFFERENT FREQUENCY

RANGES

Open-loop ω > 0 0.2 ≤ ω ≤ 0.5 ω ≤ 0.7

0.7784 0.7255 0.7171 0.7220
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The Ellipsoidal Invariant Set of Fractional Order
Systems Subject to Actuator Saturation:

The Convex Combination Form
Kai Chen, Junguo Lu, and Chuang Li

Abstract—The domain of attraction of a class of fractional
order systems subject to saturating actuators is investigated in
this paper. We show the domain of attraction is the convex hull
of a set of ellipsoids. In this paper, the Lyapunov direct approach
and fractional order inequality are applied to estimating the
domain of attraction for fractional order systems subject to
actuator saturation. We demonstrate that the convex hull of
ellipsoids can be made invariant for saturating actuators if each
ellipsoid with a bounded control of the saturating actuators is
invariant. The estimation on the contractively invariant ellipsoid
and construction of the continuous feedback law are derived
in terms of linear matrix inequalities (LMIs). Two numerical
examples illustrate the effectiveness of the developed method.

Index Terms—Fractional order, saturation, convex hull, invari-
ant set, ellipsoid, domain of attraction.

I. INTRODUCTION

IN this paper, we focus on the domain of attraction of
the original for a class of fractional order systems with

saturating actuators. Fractional order systems, which are based
on fractional calculus, have attracted much attentions in recent
decades. Fractional calculus has a long history over 300 years,
and it is a branch of mathematical analysis that deals with
the possibility of taking real number or complex number
powers of differentiation and integration operators[1]. In recent
years, considerable interest in fractional calculus has been
stimulated by the applications that this calculus found in
numerical analysis and different areas of physics and engi-
neering, possibly including fractal phenomena[2]. Especially
in some special areas, such as viscoelastic materials[3] and
electro-chemical systems[4], the application of fractional-order
models is more adequate and elegant than integer-order models
for the investigation of dynamic behavior. The most significant
reason is that the fractional differential equations (FDEs)
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have the ability of revealing inherent memory and inherited
character of various materials and processes in real physical
world.

In control engineering field, the fractional order PIλDµ

(FOPID) controller is an active topic for its excellent control
performance and the tuning method for FOPID controller has
attract more attentions. In the past decades, a number of tuning
methods for fractional order controllers are proposed in the
literatures, such as [5-7]. However, most of obtained results
are derived in the frequency domain, and it is hard to han-
dle nonlinearities, e.g., actuator saturation, of the considered
systems.

The stability and stabilization problems of integer order
state space model have been widely investigated. In [8], a
method for estimating the domain of attraction of the origin
for a system under a saturated linear feedback is proposed.
And in [9], the stability and stabilization problems of a
class of continuous-time and discrete-time Markovian jump
linear systems with partly unknown transition probabilities
are investigated. The robust stochastic stability problem for
discrete-time uncertain singular Markov jump systems with
actuator saturation is considered in [10]. As the extension of
integer order systems, the stability and stabilization problems
of fractional order state space model also have attracted great
attractions. Control problems of fractional order systems have
achieved tremendous attention in recent years due to the
inherent memory advantage of fractional derivatives.

Iterative learning control is one of important robust linear
control methods for fractional order linear systems. In [11],
Chen investigated the classical Arimoto D-type iterative learn-
ing control (ILC) updating law uses the first order derivative
(with transfer functions) of tracking error. The convergence
of the iterative process for fractional order linear systems was
first discussed in time domain in [12], which is a meaningful
work, and the fractional order iterative learning control for
time-varying systems in convolution form are analyzed. In
[13], Li discussed the convergence of the iterative process
for fractional order linear time invariant (LTI) system, and
proved that the convergence conditions of the fractional order
and integer order iterative learning schemes are equivalent for
D = 0.

Another important issue is the robust stability and stabi-
lization problems of fractional order systems. In [14], the
problems of robust stability and stabilization for a class of
fractional order linear time invariant systems with convex
polytopic uncertainties were considered. Several methods to
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investigate the stability and stabilization of fractional order
linear systems are proposed in [15] and [16] which are
based on the conclusion in [14]. In this years, the control
synthesis of fractional order system was wide investigated.
Reference [17] investigated the robust stability of uncertain
parameters FO-LTI interval systems, which have deterministic
linear coupling relationship between fractional order and other
model parameters. The robust stability for uncertain fractional-
order systems of two types of order α ∈ (0, 1) are investigated
in [18].

In engineering practice, it is important to consider the input
saturation. The performance of the closed-loop system may be
severely degraded or be unstable when the actuator is under
saturation. The actuator saturation for the integer order systems
has received great attention in the past decades. However, in
the stability analysis of fractional order systems, it is still
an open topic. In this paper, we consider the control of
fractional order linear systems subject to actuator saturation
Dαx(t) = Ax(t) + BSat(u(t)). To ensure the stabilization
of this fractional order linear system, we first concern with
the closed-loop stability under a given linear state feedback
u = Fx. The Lyapunov approach is the mostly fundamental
approach to deal with the stability issues of integer order
systems. However, it is still an open topic to choose proper
Lyapunov function candidates for fractional order systems.
Several works have been dedicated to this problem.

For stable fractional order systems, the decay rate of solu-
tion is in the sense of Mittag-Leffler function rather than expo-
nential function, which motivates the concept of Mittag-Leffler
stability of fractional order systems. Mittag-Leffler stabilities
were firstly proposed in [19] and [20] for the commensurate
case and incommensurate case, respectively. Even though the
generalization of classical Lyapunov direct approach to the
fractional order case is proposed, the commonly used quadratic
Lyapunov function candidate is not valid for fractional order
systems since the fractional derivative of composite function
is an infinite series. To the best of our knowledge, stability
analysis of fractional order systems based on the Lyapunov
direct approach is still an open problem, and only a few works
are dedicated to this topic. By the equivalent transformation
between the solution of FDEs with that of ODEs, the Lyapunov
direct approach was adopted to investigate the stability of
fractional order nonlinear systems[21].

Only few works are related to the estimation of domain
of attraction for fractional order systems. Such as, in [22],
the sector bounded condition of saturation nonlinearity and
Gronwall-Bellman inequality were adopted to derive esti-
mation algorithm of attraction in terms of bilinear matrix
inequality.

Our contributions of this paper include:
1) Propose a method to obtain the domain of attraction for

fractional order systems through a set of ellipsoids.
2) Demonstrate that the convex hull of ellipsoids can be

made invariant for fractional order linear systems subject to
actuator saturation if each ellipsoid in a set with a bounded
control of the saturating actuators is invariant.

By comparing our paper with the previous conclusions, it
could be observed that less conservative results were obtained

through the proposed method.
The rest of this paper is organized as follows: In Section II,

some necessary preliminaries and the problem statement are
introduced. The domain of attraction under a given saturated
linear feedback is discussed in Section III. To obtain the
feedback matrix, the construction of continuous feedback laws
are introduced in Section IV. To show the effectiveness of
this method, two numerical examples are shown in Section V.
Finally, Section VI draws the conclusion.

Notations. Rn is the set of real n dimensional vectors, and
Rn×m is the set of real n ×m dimensional matrices. Sat(·)
stands for the standard saturation function. For a P ∈ Rn×n,
P > 0 and ρ ∈ (0,∞), an ellipsoid is denoted as Ψ(P, ρ) :=
{x ∈ Rn : xTPx ≤ ρ} where P is a positive-definite matrix.
Especially, we use Ψ(P ) to denote Ψ(P, 1). In this paper,
we are interested in a convex function determined by a set of
positive-definite matrices P1, P2, P3,. . . , PN ∈ Rn×n to obtain
the maximum estimation on the invariance of the considered
fractional order systems.

II. PROBLEM STATEMENT AND NECESSARY
PRELIMINARIES

A. Preliminaries

Definition 1[23]. A quadratic function can be defined as
follows:

Vc(x) = xTPx,

where P ∈ Rn×n is a positive-definite matrix. For a positive
number ρ, a level set of Vc(·), denoted by LVc

(ρ), is

LVc(ρ) := {x ∈ Rn;Vc(x) ≤ ρ} = Ψ(P, ρ).

Definition 2. The α-th (α > 0) order fractional integral of
a fractional calculus function f(t) is defined as

Iαf(t) = D−αf(t) =
1

Γ(α)

∫ t

0

f(τ)
(t− τ)1−α

dτ .

Definition 3. The α-th (α > 0) order fractional derivative
of an integrable and differentiable function f(t) is introduced
as

Dαf(t) =
1

Γ(m− α)

∫ t

0

f (m)(τ)
(t− τ)1+α−m

dτ ,

where m is an integer satisfying m − 1 < α < m. f (m)(·)
is the m-th derivative of function f(·) and Γ(·) is the Euler-
Gamma function.

Lemma 1[23]. For a set of positive-definite matrices
P1, P2, P3, . . . , PN ∈ Rn×n, Let P (γ) :=

∑N
j=1 γjPj , Then,

LVc
(ρ) = co{Ψ(Pj , ρ), j ∈ I[1, N ]} =

⋃

γ∈Γ

Ψ(P (γ), ρ),

where γ ∈ RN , N is a positive integer number, and co{·}
stands for the convex hull.

Lemma 2[24]. Let x(t) ∈ Rn be a vector of differentiable
functions. Then, for any time instant t ≥ 0, the following
relationship holds

Dβ(xT(t)Px(t)) ≤ 2xT(t)P (Dβx(t)),
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where P ∈ Rn×n is a constant symmetric positive-definite
matrix.

Lemma 3[25]. Define Φ(F ) = {x ∈ Rn : |fix| ≤ 1, i ∈
[1,m]} , and fi is the i-th row of the matrix F . Let P ∈ Rn×n

be a positive-definite matrix. Suppose that ρ > 0. An ellipsoid
Ω(P, ρ) = {x ∈ Rn : xTPx ≤ ρ} is included in Φ(F ) if and
only if,

fT
i Pfi ≤ ρ.

Let Ξ denote the set of m × m diagonal matrices whose
diagonal elements are either 0 or 1. Then, there are 2m

elements in Ξ . Suppose that elements of Ξ are labeled as
Ei with i ∈ [1, 2m]. Then, E−

i = Im −Ei is also an element
of Ξ , where Im is the m×m dimensional identity matrix.

Lemma 4[25]. Given F, H ∈ Rm×n. Suppose that | hjx |≤
1, then we have

Sat(Fx) ∈ co{EiFx + E−
i Hx, i ∈ [1, 2m]},

where hj is the j-th row of the matrix H .
Lemma 5[19]. Let x = 0 be an equilibrium point for the

non-autonomous fractional order system Dαx(t) = f(t, x).
Assume that there exists a Lyapunov functin V (t, x) and three
class-K functions βi, i = 1, 2, 3 satisfying

β1(‖x‖) ≤ V (t, x) ≤ β2(‖x‖),
DβV (t, x) ≤ −β3(‖x‖),

where β ∈ (0, 1). Then the equilibrium point of system
Dαx(t) = f(t, x) is asymptotically Mittag-Leffler stable.

Lemma 6[26]. Considering an ellipsoid Ψ(P ), if there exists
an H ∈ Rm×n such that

(A + BEiF + E−
i H)TP + P (A + BEiF

+ E−
i H) < 0,∀i ∈ I[1, 2m],

and Ψ(P, ρ) ⊂ Φ(F ), then Ψ(P, ρ) is an invariant set of
fractional order system Dαx(t) = Ax(t) + BSat(Fx).

B. Problem Statement

Considering the open-loop fractional order linear system
subject to actuator saturation:

Dαx(t) = Ax(t) + BSat(u), (1)

where the fractional order 0 < α < 1. x ∈ Rn, u ∈
Rm are the state and input, respectively. A ∈ Rn×n,
B ∈ Rn×m are constant system matrices. Sat(·) : Rm →
Rm is the standard saturation function, and Sat(u) =
[Sat(u1) Sat(u2) . . . Sat(um)]T, where Sat(ui) =
Sign(ui)min{1, |ui|}.

The objective of this paper is to obtain an estimation of the
domain of attraction for system (1) and obtain a feedback law
u = Sat(Fx), under which the closed-loop system,

Dαx(t) = Ax(t) + BSat(Fx), (2)

is asymptotically stable, where F ∈ Rm×n is the feedback
matrix. Then the input control is linear with respect to state x
in the domain of the state space Φ(F ).

Remark 1. Lyapunov stability method is an important tool
for stability analysis of nonlinear systems. There are two

methods to explore the stability of nonlinear systems: the
Lyapunov indirect approach and the Lyapunov direct approach.
In previous work [27], we utilized the Lyapunov indirect ap-
proach and Gronwall-Bellman inequality to analyse the decay
law of solution. It is an effective way to investigate the global
asymptotic stability and controller synthesis of fractional order
systems with nonlinearity. However, we are interested in the
invariance of considered systems in this study, which means
we are more concerned about the local asymptotic stability
than the global asymptotic stability. Therefore, the method in
[27] is not enough to handle the invariance estimation problem
of fractional order systems with actuator saturation.

The Lyapunov direct approach introduce an energy function
to analysis the stability of the nonlinear system directly. It is an
efficient way to investigate the invariance of nonlinear system.
In this paper, we primarily consider Mittag-Leffler stability
of the closed-loop systems with the state feedback law using
Lyapunov direct approach.

Remark 2. From Definition 1 and [18], one can obtain
that the quadratic function Vc(x) = xTPx is the most pop-
ular Lyapunov function candidate to investigate the stability
and control method of integer order systems. However, for
fractional order systems, it is not suitable to use this function
directly. The main reason for this problem is that the quadratic
Lyapunov function is not valid since the fractional derivative
of composite function is an infinite series. Lemma 2 provides
a direct way to adopt this quadratic Lyapunov function for
the fractional order systems. Thus the quadratic Lyapunov
function can be used to analyze the stability and stabilization
of fractional order system by expressing a linear feedback law
subject to saturation into a convex hull of a group of auxiliary
linear feedback matrices.

The objective of this paper is to obtain a series of feedback
functions to reduce the conservatism of the domain of attrac-
tion. To that end, we are interested in a function determined
by a set of positive-definite matrices P1, P2, P3, ldots, PN ∈
Rn×n. Let Qj = P−1

j , j ∈ I[1, N ]. For a vector γ ∈ RN ,
define

Q(γ) :=
N∑

j=1

γjQj , P (γ) := Q−1(γ),

where γ ∈ RN :
∑N

j=1 γj = 1, γ ∈ Γ. Thus we change the
quadratic function as,

Vc(x) = xTP (γ)x.

From Lemmas 2-4 and Definition 1, the ellipsoid Ψ(P, ρ) :=
{x ∈ Rn : xTPx ≤ ρ} is said to be contractively invariant
if Dα(xTP (γ)x) < 0 for all x ∈ Ψ(P, ρ) \ {0}. Obviously,
Ψ(P, ρ) is inside the domain of attraction.

III. DOMAIN OF ATTRACTION UNDER A GIVEN
SATURATED LINEAR FEEDBACK

In this section, we consider the calculation problems corre-
sponding to the quadratic function and apply it to fractional
order linear systems. And then the estimation of the domain
of attraction is illustrated.
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A. Calculation Problems

From [26] and Remark 2, we know different reference
polyhedrons will result in different ellipsoid set. Obviously, a
single ellipsoid will result in much conservation. To deal with
this situation and reduce the conservatism of the estimation, in
this paper, a set of reference polyhedrons is used to produce
multiple ellipsoids. Thus, these ellipsoids will combined to
a convex hull and it can extend the domain of the invariant
set Ψ(P, ρ). One convex hull which is combined by three
ellipsoids is shown in Fig. 1. We denote the convex hull of
the ellipsoids

co{Ψ(Pj , ρ),j ∈ I[1, N ]

:= {
N∑

j=1

γjxj : xj ∈ Ψ(Pj , ρ), γ ∈ Γ}.

There are various ways to define the composite quadratic
function with a set of matrices P1, P2, . . . , PN > 0. For the
convenience of analysis, we define this function as follows,

Vc(x) := max
γ∈Γ

xT




N∑

j=1

γjPj


 x,

N∑

j=1

γj = 1.

For convenience, only two ellipsoids are considered in this
paper. Thus,

Vc(x) = max
γ∈Γ

xT




N∑

j=1

γjPj


 x

= max
λ∈[0,1]

xT (λQ1 + (1− λ))Q2)
−1

x,

(3)

where N = 2, and λ is a real number. Denote Ψ(P, ρ) as
a bounded convex set, it can be easily translated into the
following form by Schur complement,

sup
γ∈Γ

δ, (4)

s.t.




δ xT

x
N∑

j=1

γjQj


 ≥ 0,

N∑

j=1

γj = 1, (5)

⇒ s.t.
[

δ xT
i

xi λQ1 + (1− λ)Q2

]
≥ 0.

Fig. 1 shows a two dimensional level set which is the convex
hull of three ellipsoids.

Remark 3. In order to calculate the optimal value of γ =
γ∗(x), the LMI problem (5) needs to be solved. However,
the calculation is a time-consuming process. Reference [23]
provides a simplified way to get γ∗(x).

Denote that α(λ, x) = xT (λQ1 + (1− λ))Q2)
−1

x. Then,
let x ∈ Rn and Q1, Q2 > 0 be given. Assume that
Q1 − Q2 is nonsingular. Let U ∈ Rn×n be such that
UTU = UUT = I and UTxxTU = diag{xTx, 0, . . . , 0}.
Let Q̂1 = UTQ1U, Q̂2 = UTQ2U and partition Q̂1 and Q̂2

as

Q̂1 = [q̂1, Q̂12], Q̂2 = [q̂2 Q̂22], q̂1, q̂2 ∈ Rn×1.

Fig. 1. The invariant set which is the convex hull of three
ellipsoids (See the magenta dash-dotted outer curve).

Then ∂α
∂λ = 0 at λ ∈ [0, 1] if and only if

det
[
λ(Q̂12 − Q̂22) + Q̂22 Q̂1 − Q̂2

0(n−1)×(n−1) λ(Q̂12 − Q̂T
22)

T + Q̂T
22

]
= 0.

(6)
Using this method requires less time than solving the LMI
problem.

Remark 4. In this section, only two ellipsoids are used
in (3). For this case, Q1 − Q2 is nonsingular and γ∗(x)
can be easily calculated by the technology in Remark 3.
Obviously, using more ellipsoids will make the conservatism
less. However, for the case where N > 2, γ∗(x) could be non
unique in some special condition. Such as, the case that one
of Qj might be the combined convex hull of other matrices,
which may be considered as degenerated. Although, one can
assume that there is no this kind of condition, it is hard to keep
the uniqueness and continuity of γ∗(x). Thus, for N > 2 case,
it is difficult to compute the γ∗(x) and needs further study.

B. Analysis of Attraction Domain

Assume the set of ellipsoid Ψ(Pj , ρj), j ∈ I[1, N ] is
given, the fractional order system can be invariant with a
corresponding saturated linear feedback Fx. For simplicity
and reducing the conservatism of the domain of attraction, a set
of invariant ellipsoids Ψ(Pj , ρj), j ∈ I[1, N ] was considered
with ρj = 1.

Theorem 1. Suppose that the state feedback law F and an
ellipsoid Ψ(Pj), j ∈ I[1, N ] are given. If there exists a matrix
Hj ∈ Rm×n satisfying

(A + B(EiF + E−
i Hj))TPj + Pj(A + B(EiF + E−

i Hj))
≤ 0, ∀i ∈ I[1, 2m], j ∈ I[1, N ]

(7)

and Ψ(Pj) ⊂ Φ(Hj), then co{Ψ(Pj), j ∈ I[1, N ]} is an
invariant set of closed-loop system (2).

Proof. From Lemma 5 we know, the following inequality
needs to be proved to ensure the asymptotic Mittag-Leffler
stability of the fractional order linear system (2) corresponding
the quadratic function (1),

DαV (t, x) = Dα(xTPjx) < 0,∀x ∈ Ψ(Pj , ρ) \ {0}, (8)
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applying fractional inequality in Lemma 2 and Lemma 4 to
inequality (8), gives

Dα(xTPjx) ≤ 2xTPj(Dα(x))

= 2xTPj(Ax + BSat(Fx))

= 2xTATPjx + 2xTPjB
2m∑

i=1

ηi(EiFx + E−
i Hjx),

where 0 ≤ ηi ≤ 1 and
2m∑

i=1

ηi = 1.

From Theorem 1, one can obtain that Dα(xTPjx) < 0
for all x ∈ Ψ(Pj , ρ)\{0}. And it is easy to notice that
Sat(Fx) is a convex hull of EiFx + E−

i Hjx for all i ∈
[1, 2m], j ∈ I[1, N ] in (9). Thus, the Mittag-Leffler stability
of the fractional order linear closed-loop system Dαx(t) =
Ax(t) + BSat(Fx) is ensured.

The condition of Ψ(Pj) ⊂ Φ(Hj) is equivalent to
ρhjiP

−1
j hT

ji ≤ 1, then it can be written as follows by Schur
complement,

[
1 hji(

Pj

ρ )−1

(Pj

ρ )−1hT
ji (Pj

ρ )−1

]
≥ 0, (9)

for all i ∈ [1,m].
Denote Qj = (Pj

ρ )−1. Let Gj = Hj(
Pj

ρ )−1 and the i-th
row of matrix Gj be gji, i.e., gji = hji(

Pj

ρ )−1. Hence, the
condition Ψ(Pj , ρ) ⊂ Φ(Hj), j ∈ I[1, N ] can be formulated
as, [

1 gji

gT
ji Qj

]
≥ 0, for i ∈ [1,m], j ∈ I[1, N ], (10)

where Qj ∈ Rn×n, Gj ∈ Rm×n. Due to the fact that x0 ∈
co{Ψ(Pj , j ∈ I[1, N ])}, there exists xj ∈ Ψ(Pj) and γj ≥
0, j ∈ I[1, N ], such that γ1 + γ2 + · · · + γN = 1 and x0 =
γ1x1 +γ2x2 + · · ·+γNxN . Denote Q = γ1Q1 +γ2Q2 + · · ·+
γNQN and P = Q−1. Then from Lemma 1, one can obtain
that Ψ(P ) ⊂ co{Ψ(Pj), j ∈ I[1, N ]}.

Let G = γ1G1 +γ2G2 + · · ·+γNGN and gi be the ith row
of G, combining inequality (7) and inequality (10), gives

Q(A+BEiF )T + (A + BEiF )Q

+ GTE−
i BT + BE−

i G ≤ 0,∀i ∈ [1, 2m],
(11)

and [
1 gi

gT
i Q

]
≥ 0, for i ∈ [1,m]. (12)

Denote H = GQ−1, then one can obtain

(A + B(EiF + E−
i H))TP + P (A + B(EiF + E−

i H))
≤ 0, ∀i ∈ I[1, 2m],

(13)

and [
1 hk(P

ρ )−1

(P
ρ )−1hT

k (P
ρ )−1

]
≥ 0, k ∈ I[1,m]

⇔ Ψ(P ) ⊂ Φ(H).

(14)

From the above fact, one can easily derive the conclusion
that Ψ(P ) is invariant, which means that a trajectory starting

from x0 will stay inside of Ψ(Pj) and it is a subset of
co{Ψ(Pj), j ∈ I[1, N ]}. Since that x0 is a random point inside
co{Ψ(Pj), j ∈ I[1, N ]}, then one can obtain that the convex
hull is an invariant set. If “<” holds for all the inequalities,
then the state trajectory will converge to the origin for all the
initial states. ¤

Theorem 1 shows that if each Ψ(Pj) is invariant, then, their
convex hull, co{Ψ(Pj), j ∈ I[1, N ]} is also invariant. This
theorem provides the sufficient condition for an ellipsoid to
be inside the domain of attraction. To maximize the cross-
section of the ellipsoid in the state-space Rn, the following
type of convex set is considered in this paper:

XR = co{x1, x2, . . . , xl},
where XR represents polyhedrons. Then the problem that how
to choose the ellipsoid Ψ(P ∗, ρ) with the largest volume from
all the ellipsoids Ψ(P, ρ) which satisfies the Theorem 1 is
considered. It can be concerned with the maximum quantity
of λR(Ψ(P, ρ)) and then it is formulated as

sup
Pj>0,ρ,Hj

λ, (15)

s.t. λXR ⊂ Ψ(Pj , ρ), (16)

(A + BEiF + E−
i Hj)TPj

+ Pj(A + BEiF + E−
i Hj) < 0, for i ∈ [1, 2m], (17)

where Pj ∈ Rn×n, Hj ∈ Rm×n, j ∈ I[1, N ], ρ = 1.
Inequalities (15)-(17) can be formulated as follows:

inf
Qj>0,G

Λ, (18)

[
Λ xT

ji

xji Qj

]
≥ 0, for i ∈ [1, l], j ∈ I[1, N ], (19)

QjA
T + AQj + BE−1

i Gj + GT
j (BE−1

i )
T

+ Qj(BEiF )T + (BEiF )Qj , for i ∈ [1, 2m], (20)

where Λ = 1
λ2 , Qj = (Pj

ρ )−1, Gj = Hj(
Pj

ρ )−1.

IV. CONTROLLER SYNTHESIS

In this section, the possibility that a level set can get invari-
ant with controls subject to actuator saturation is investigated.
Then, a continuous feedback law that guarantees the invariance
of the convex hull of ellipsoids co{Ψ(Pj), j ∈ I[1, N ]} =
LVc

(1) is constructed.
Considering the fractional order system Dα(x) = Ax +

BSat(u), where 0 < α < 1. Only the initial condition needs
to be specified. For x0, the state trajectory of system (2) is
defined as ψ(t, x0). Then the domain of attraction of the origin
is

Ψ := {x0 ∈ Rn : lim
t→∞

ψ(t, x0) = 0}.

Denote P ∈ Rn×n be a positive-definite matrix and Vc(x) =
xTPx as Lyapunov function of fractional order system (2).
Then, the ellipsoid Ψ(P, ρ) = {x ∈ Rn : xTPx ≤ ρ} is
said to be (contractively) invariant if DαV (x) < 0 for all
x ∈ Ψ(P, ρ)\{0}, and then ellipsoid Ψ(P ∗, ρ) is called the
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invariant set of fractional order systems (2). Let ρ = 1, hence,
if the ellipsoid Ψ(P ) is contractive invariant set, it is inside
the domain of attraction.

Fact 1[25]. For a raw vector f0 ∈ R1×n and matrix P > 0,
Ψ(P ) ⊂ Φ(f0) if and only if,

f0P
−1fT

0 ≤ 1 ⇔
[

1 f0P
−1

P−1fT
0 P−1

]
≥ 0.

The equality f0P
−1fT

0 = 1 holds if and only if the ellipsoid
Ψ(P ) touches the hyperplane f0x = 1 at x0 = P−1fT

0 (the
only intersection), namely,

1 = f0x0 > f0x ∀x ∈ Ψ(P )\{x0},
the ellipsoid Ψ(P ) lies strictly between the hyperplane f0x =
1 and f0x = −1 without touching them.

Theorem 2. Assuming that each of ellipsoids Ψ(Pj), j ∈
I[1, N ] is contractively invariant. Then, as a result, the level
set LVc

(1) is also contractively invariant.
Proof. The proof of invariance is as follows. Let Vj(x) =

xTPjx. Assuming there exists a uj ∈ Rm, |uj |∞ ≤ 1 such
that

Dα(xT
j Pjxj) ≤ 2xT

j Pj(Axj + BSat(uj)) ≤ 0. (21)

As the fact that if DαVj(x) < 0 for all x ∈ Ψ(Pj)\{0},
and then ellipsoid Ψ(Pj) is said to be invariant. From Lemma
2, we know,

Dα(XT
j Pjxj) ≤ 2xT

j PjD
α(xj),

and if the inequality

2xT
j PjD

α(xj) ≤ 0,

is specified, the ellipsoid Ψ(Pj), j ∈ I[1, N ] is contractively
invariant. Let r0 = (P0x0)T, x0 ∈ LVc

(1), where LVc
(1) is

the edge of LVc
(1). Then we get r0x0 = xT

0 P (γ∗(x0))x0 =
1, which means the hyperplane r0x = 1 is tangential to the
convex set LVc(1) at x0. Then the level set LVc(1) lies between
r0x = 1 and r0x = −1, therefore

Ψ(Pj) ⊂ Φ(r0)∀j ∈ I[1, N0],

and
1 = r0x0 ≥ r0xj .

In fact, the r0xj = 1 is established for all rj ∈ I[1, N ]. It can
be proved as follows: suppose that r0xj < 1 for some j, such
as r0x1 < 1, then

1 = r0x0 = ξ1r0x1 +
N0∑

j=2

ξjr0xj

≤ ξ1r0x1 +
N0∑

j=2

ξj ≤
N0∑

j=1

ξj = 1,

which is a contradiction. Similarly, the r0xj = 1 implies that
Ψ(Pj) touches the hyperplane r0x = 1 at x = xj . Then, the
hyperplane r0x = 1 is tangential to Ψ(Pj) at xj for every
j ∈ I[1, N0]. One can obtain from Fact 1 that

rT
0 = Pjxj ∀j ∈ I[1, N0].

By inequality (21) and the assumption we know, there exists
a uj ∈ Rm, |uj |∞ < 1 such that inequality (21) is satisfied.

Let u0 =
N0∑

j=1

ξjuj . Then, by |u0|∞ ≤ 1 and by the convexity,

Dα(xT
0 P0x0) ≤ 2r0(Ax0 + BSat(u0)) ≤ 0.

Due to the fact that x0 is a random point in LVc
(1), hence,

the level set LVc
(1) is contractively invariant. ¤

Theorem 3. Consider ellipsoid Ψ(Pj) and feedback matri-
ces Fj ∈ Rm×n. For the closed-loop fractional order system
(2), if the ellipsoid type convex set XR is considered, then
the state feedback matrix Fj ∈ Rm×n can be obtained as
Fj = YjQ

−1
j , where Yj , Qj are solutions of the following

optimization problem:

inf
Qj>0,Yj ,Gj

Λ, (22)

s.t. (10), (19), and

QjA
T + AQj + BE−1

i Gj + GT
j (BE−1

i )
T

+ Y T
j ET

i BT + BEiYj ≤ 0, for i ∈ [1, 2m], j ∈ [1, N ].
(23)

Let γ∗(x) be such that xTP (γ∗(x))x = Vc(x), define,

Y (γ) =
N∑

j=1

γjYj , Q(γ) =
N∑

j=1

γjQj , (24)

then the fractional order linear closed-loop system is invariant
under the feedback u = Sat(F ((γ∗(x)x)), which is continu-
ous while the vector function γ∗(·) is continuous.

Proof. Let Gj = QjHj , G(γ) =
∑N

j=1 γjGj and H(γ) =
G(γ)Q−1(γ), give

Q(γ)AT + AQ(γ) + BE−1
i G(γ) + G(γ)T(BE−1

i )
T

+ Y (γ)TET
i BT + BEiY (γ) ≤ 0, (25)

for all i ∈ [1, 2m] and γ ∈ Γ. The previous inequality can be
formulated as follows:

(A + B(EiF (γ) + D−
i H(γ)))TP (γ)

+ P (γ)(A + B(EiF (γ) + D−
i H(γ)))

≤ 0, ∀i ∈ I[1, 2m].

(26)

By Lemma 6, Ψ(P (γ)) ⊂ Φ(F (γ)) and inequality (26) can
make sure that the ellipsoid set Ψ(P (γ)) is invariant under
the control of u = sat(F (γ)x). Thus, by Theorem 2, one
can get the level set LVc

(1) is invariant under the control of
u = Sat(F (γ∗(x)))x. ¤

V. NUMERICAL EXAMPLES

A. Example 1. Comparative Example

We use an example of [22] to illustrate the effectiveness of
our method. For fractional order linear systems (2), let α =
0.7, and

A =
[

0.7 −1.4
−0.2 1.5

]
, B =

[
1 0
0 1

]
.



CHEN et al.: THE ELLIPSOIDAL INVARIANT SET OF FRACTIONAL ORDER SYSTEMS · · · 317

The following reference polyhedrons is chosen as the pre-
scribed convex set:

XR = co{x,−x},
where x1 = [1 0]T, x2 = [0 1]T. Then, according the
approach we proposed in [21], the following two ellipsoids
can be obtained

P1 =
[

4.7515 −0.3347
−0.3347 2.2345

]
, P2 =

[
0.2985 −0.5538
−0.5538 2.9894

]
.

The boundaries of the two ellipsoids are plotted in red solid
curves, while the dotted curves are the boundaries of Ψ(P (γ))
as γ varies in the set Γ. The shape of LVc(1) =

⋃
γ∈Γ Ψ(P (γ))

can be obtained by those blue dotted curves in Fig. 2. To illus-
trate the effectiveness of the proposed method, the following
closed-ball Bε := {x ∈ Rn : xTx ≤ 0.4326}, who is proposed
in [22] is also demonstrated in Fig. 2.

Fig. 2. Comparison between proposed method and existing
method[22].

The convex combination of P1 and P2 in Fig. 2 shows that
the proposed method provides a satisfactory estimation on the
domain of attraction and also can obtain better estimation that
the approach in [22].

Remark 5. From Fig. 2 we know, the closed-ball Bε which
proposed in [22] is almost contained in the convex hull of the
proposed method. Two state trajectories started from initial
points x01 = [−2 − 0.3127], x02 = [0.750.6665] on the
boundary of LVc(1) shows that, the trajectories are convergent
to origin , and the proposed method provides better estimation
on the domain of attraction than method in [22]. This method
extend the domain of attraction. The control signals u1(t),
u2(t) and the Lyapunov function Vc(x(t)) of example 1 are
illustrated in Fig. 3. Comparative example indicates that the
proposed method is less conservative than [22].

B. Example 2. Continuous State Feedback Control Law Syn-
thesis

In this paper, we consider the fractional order system with

α = 0.9, A =
[

1.6 −0.5
−0.6 0.6

]
, B =

[
5
−5

]
.

Fig. 3. Signals u1(t), u2(t) and the Lyapunov function Vc(x(t)).

For this example, we choose the following reference poly-
hedrons as the prescribed convex set:

XR = co{xi,−xi}, i = 1, 2,

where x1 = [1 0]T, x2 = [0 1]T, then respectively, the
following two feedback matrices can be designed with the
approach proposed in [21],

F1 = [−0.0414 − 0.2897], F2 = [0.2161 − 0.3540],

along with two ellipsoids Ψ(P1) and Ψ(P2), where,

P1 =
[
0.7985 0.1881
0.1881 0.1270

]
,

P2 =
[
1.6258 0.1881
0.1881 0.0443

]
.

The matrix P1 and F1 are designed such that the closed-
loop system (2) is locally Mittag-Leffler stable and the es-
timated ellipsoid invariant set is maximized with respect to
the bounded convex set XR. Similarly, the matrix P2 and F2

are designed such that λXR ⊂ Ψ(P ). The boundaries of the
two ellipsoids are plotted in red solid curves, while the dotted
curves are the boundaries of Ψ(P (γ)) as γ varies in the set
Γ. The shape of LVc

(1) =
⋃

γ∈Γ Ψ(P (γ)) can be obtained by
those blue dotted curves in Fig. 4. The γ∗(x) can be obtained
by computing the optimization problem (4) or the formula in
(6).

From Theorem 2. we know,

F (γ∗) = (γ∗Y1 + (1− γ∗)Y2)(γ∗Q1 + (1− γ∗)Q2)−1,

Y1 =
[−0.9000 1.7921

]
, Y2 =

[−0.9000 5.9397
]
,

and

Q1 =
[

1.9228 −2.8469
−2.8469 12.0873

]
, Q2 =

[
1.2087 −5.1320
−5.1320 44.3652

]
.

Fig. 5 shows that the state trajectories with different initial
conditions. Obviously, the closed-loop system (2) is asymptoti-
cally Mittag-Leffler stable. To obtain the control signal and the
composite quadratic function, the state trajectory from initial
point x01 = [1.2300 − 3.9533] and x02 = [−1.200 4.2699]
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Fig. 4. Convex hull of two provided ellipsoids.

started from the boundary of level set LVc
(1) is illustrated

in Fig. 5. The control signal u(t) and the Lyapunov function
Vc(x(t)) of trajectory started from x01 are demonstrated in
Fig. 6, and the value of γ∗(x) is plotted in Fig. 7 as x(t) varies
along the time.

Fig. 5. State trajectory with different initial conditions.

Fig. 6. Control signal u(t) and the Lyapunov function Vc(x(t)).

Fig. 7. γ∗(x) varies in [0, 1].

VI. CONCLUSION

This paper provides a method for the estimation of the
domain of attraction and state feedback synthesis utiize the
convex combination form for fractional order systems subject
to actuator saturation with the fractional order 0 < α < 1.
The ellipsoidal invariant set of fractional order systems subject
to actuator saturation is investigated by convex hull form for
the first time. Then we demonstrate that the convex hull of
ellipsoids can be made invariant for fractional order linear
systems subject to actuator saturation if each ellipsoid in a set
with a bounded control of the saturating actuators is invariant.
The results show that the proposed method is effective to
handle saturation nonlinearity. The composite quadratic Lya-
punov function and Lyapunov direct approach are applied in
this paper to estimate the invariant ellipsoids for fractional
order systems. In particular, by using a set of feedback laws
to make the convex hull of a set of ellipsoid invariant, one
proper method is proposed to construct a continuous feedback
law.

In order to facilitate analysis, the case N = 2 is chosen
in this paper. A more effective way needs to be specified
to compute the condition N > 2. Nevertheless, the stability
analysis problem for fractional order system subject to actuator
saturation with the fractional order 1 < α < 2 is still
unsolved. The stability conditions for fractional order systems
is concerned with the fractional order, thus our future work is
related to the problem of order-dependent estimation on the
domain of attraction.
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Constrained Swarm Stabilization of Fractional

Order Linear Time Invariant Swarm Systems
Mojtaba Naderi Soorki and Mohammad Saleh Tavazoei, Member, IEEE

Abstract—This paper deals with asymptotic swarm stabiliza-
tion of fractional order linear time invariant swarm systems in
the presence of two constraints: the input saturation constraint
and the restriction on distance of the agents from final destination
which should be less than a desired value. A feedback control law
is proposed for asymptotic swarm stabilization of fractional order
swarm systems which guarantees satisfying the above-mentioned
constraints. Numerical simulation results are given to confirm
the efficiency of the proposed control method.

Index Terms— Fractional order system, swarm system, swarm
stability, input saturation, constraint stabilization.

I. INTRODUCTION

COORDINATION of multi-agent swarm systems has at-
tracted great interest in recent years. Coordinated move-

ment of fish and formation of birds are two examples of
coordination of multi-agent swarm systems in nature. Also,
it is known that the swarm behavior of networks of agents
has potential applications in various areas (for example in
formation control[1−2], flocking[3] and sensor networks[4]).
Asymptotic swarm stability, as a general form of consensus,
is one of the interesting behaviors in swarm systems. Till now,
different studies have been done in this regard[5−9]. The dy-
namic model of agents in most of these studies has been con-
sidered in a classical integer order form, whereas the dynamic
model of many real-world systems can be better described by
fractional order dynamical equations[10−11]. Considering this
point, study on fractional order swarm systems has attracted
much interest in recent years[12−20]. For example, these studies
include obtaining conditions for coordination in the networked
fractional order systems[12], time response behavior analysis of
agents in asymptotically swarm stable fractional order swarm
systems[16], controller design for enforcing the agents in uncer-
tain fractional order systems to track a desired trajectory while
achieving consensus[18], and deriving consensus conditions in
the presence of communication time-delays[14,19−20].

In practice, we are faced with different constraints in
coordination of multi-agent swarm systems (for example, mea-
surement constraints[21], dealing with agents having nonlinear

Manuscript received August 31, 2015; accepted January 1, 2016. This work
was supported by the Research Council of Sharif University of Technology
under Grant (G930720). Recommended by Associate Editor YangQuan Chen.

Citation: Mojtaba Naderi Soorki, Mohammad Saleh Tavazoei. Constrained
swarm stabilization of fractional order linear time invariant swarm systems.
IEEE/CAA Journal of Automatica Sinica, 2016, 3(3): 320−331

Mojtaba Naderi Soorki and Mohammad Saleh Tavazoei are with Electrical
Engineering Department, Sharif University of Technology, Azadi Ave, Tehran
11365-9363, Iran (email: mojtabanaderi@aut.ac.ir; tavazoei@sharif.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

dynamics[22], communication constraints[23], uncertainty in the
dynamical models of the agents[24], and time-varying commu-
nication links[25]). One of the major challenges in the swarm
systems is to control the agents when they are exposed to input
saturation constraint[26−29]. In real-world swarm systems, this
constraint is commonly due to physical limitations of the
actuators. In this paper, the aim is asymptotic swarm stabi-
lization of fractional order linear time invariant swarm systems
subject to input constraints. To clarify the motivation of the
paper, let us give an example. Consider a multi-robot system
composed of a large number of cooperative mobile robots[18].
Assume that the aim of coordination is consensus in such
a system[30−31]. In some situations, it is more accurate and
realistic to model these robots with fractional order differential
equations[32−33] (for example, when the friction is modeled by
the fractional order equations[34−35], or when the robots are
driven on the sandy or muddy road[12]). In these situations, we
face a multi-agent system with a fractional order swarm model.
Also due to the physical constraints, in these cases the input
torque that should be applied to the wheels of the robot for
changing the velocity or the orientation is limited. Generally
speaking, in the mentioned example the control objective is
to achieve consensus in a multi-robot system as a fractional
order swarm system where the control inputs are subjected to
input constraints. This example clearly verifies the importance
of controller design in the presence of control input constraints
for achieving consensus in a fractional order swarm system.

Considering input saturation constraints, consensus in net-
worked multi-agent systems has been studied in [26−29]. But,
the dynamics of each agent in these papers is in classical
integer order form. Recently, [36] has considered input sat-
uration in stability and stabilization of fractional order linear
systems. In the present paper, the results of[36] are used for
proposing a control law for asymptotic swarm stabilization
of fractional order swarm systems in the presence of input
saturation constraints. Another constraint is also considered
in this paper. More precisely, the other constraint is an
assumption that during achieving consensus, all the agents
will be inside a specified region and the distance of agents
from the final destination is less than a desired value. To
reveal the motivation for considering such a constraint in
this paper, we again recall the above-mentioned example on
consensus in a multi-robot system. In this swarm system,
due to the communication and environmental limitations, it
may be desirable that the distance between the robots and
their final distention is less than a specified value during the
reaching consensus. This control objective can be satisfied by
considering the second constraint in the controller design
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procedure. In summary, the main contribution of the paper
is to propose a feedback controller for asymptotic swarm
stabilization of fractional order linear time invariant swarm
systems in the presence of the aforementioned constraints.

This paper is organized as follows: The problem formulation
and some preliminaries are given in Section II. Section III
presents some properties on linear transformations appeared
in our study. The control law for the asymptotic swarm
stabilization of fractional order swarm systems with input
constraint is obtained in Section IV. Simulation results in
Section V are given to confirm the analytical results. Finally,
conclusions in Section VI close the paper.

II. PRELIMINARIES

A. Notations

The notations used in this paper are fairly standard. R+

denotes the set of positive real numbers. sgn(·) and sat(·) re-
spectively indicate the sign and saturation functions. sym{X},
where X is a real square matrix, denotes the symmetric matrix
XT+X . diag {c1, c2, . . . , cn} specifies a diagonal matrix with
diagonal entries c1, c2, . . . , and cn. If z ∈ C, arg(z) denotes
the argument of z. Also, Im and ⊗ respectively indicate the
m × m identity matrix and the kronecker product operator.
eig(A) denotes eigenvalue of the square matrix A. Nu(M)
and Ra(M) are respectively the null space and the range
space of matrix M . ‖ · ‖ and ‖ · ‖∞ specify respectively
2-norm and infinity-norm functions. The distance between
vector e = [e1, e2, . . . , en] ∈ Rn and the non-empty set S is
defined by D(e, S) := infs∈S ||e−s||. Moreover, A(i) denotes
the i-th row of matrix A ∈ Rm×n. Finally for the vectors
A1, A2, A3 ∈ Rn, the vector inequality A1 ≤ A2 ≤ A3 means
A1(i) ≤ A2(i) ≤ A3(i) , i = 1, . . . n.

B. Fractional Order Linear Time Invariant Swarm Systems

A fractional order linear time invariant swarm system of N
agents can be described by[16]

Dα
t xi = Axi + F

N∑

j=1

wij(xj − xi) + Bui,

i = 1, 2, . . . , N. (1)

where A ∈ Rd×d, F ∈ Rd×d, B ∈ Rd×m, xi ∈
Rd, ui ∈ Rm, wij ≥ 0, and α ∈ (0, 1]. Also, in (1) Dα

t

denotes the Caputo fractional derivative operator defined as
follows[37].

Dα
t f(t) =

1
Γ(dαe − α)

∫ T

0

f (dαe)(τ)
(t− τ)α−dαe+1

dτ ,

0 < α /∈ Z. (2)

In this swarm system, the communication among agents is
described by a weighted graph of order N , denoted by G, such
that each agent is corresponding to a vertex of G. This graph
may either be directed or undirected. wij in (1) indicates the
weight of the edge between i-th and j-th agents and can be

considered as a measure of data transmission between these
two agents[38]. The adjacency matrix of graph G is as follows:

WG =




w11 . . . w1N

...
. . .

...
wN1 · · · wNN




The concept of asymptotic swarm stability in a swarm system
is defined on the basis of the relative distances between the
agents[38].

Definition 1 (Asymptotic swarm stability)[38]. The frac-
tional order linear time invariant swarm system in (1) is
asymptotically swarm stable if for each ε̄ > 0 there exists T̄ >
0 such that ‖xi(t)− xj(t)‖ < ε̄ for all i, j ∈ {1, 2, . . . , N}
and t > T̄ .

Considering the pseudo state vector of agents as x =
[xT

1 , . . . , xT
N ]T, the swarm system in (1) can be rewritten as[38]

Dα
t x = (IN ⊗A− L⊗ F )x + (IN ⊗B)U, (3)

where U = [uT
1 , . . . , uT

N ]T is the input vector and L = L(G)
is the Laplacian matrix of graph G[39]. In this paper, the
following assumption is considered on communication graph
G.

Assumption 1. Graph G in swarm system (1) is in one of
the following forms:

1) G is an undirected connected graph.
2) G is a directed graph which includes a spanning tree and

the eigenvalues of its Laplacian matrix are real numbers.
Let λ1 = 0, λ2, . . . , λN ∈ R+ be the eigenvalues

of the Laplacian matrix L of fractional order linear time
invariant swarm system in (1) (Considering Assumption 1, the
Laplacian matrix L has exactly one zero eigenvalue and its
other eigenvalues are positive real[5]). Also, assume that the
Jordan canonical form of L is denoted by J . This means that
there exists a non-singular matrix T such that

J = TLT−1 =




0 0 0 · · · 0
0 λ2 ∗ · · · 0
...

...
...

. . .
...

0 0 . . . . . . ∗
0 0 · · · 0 λN




,

where “*” may either be 1 or 0. By defining
x̃ = [x̃T

1 , x̃T
2 , . . . , x̃T

N ]T = (T ⊗ Id)x and Ũ =
[ũT

1 , ũT
2 , . . . , ũT

N ]T = (T ⊗ Im)U , the swarm system in (3) is
rewritten as

Dα
t x̃ = (IN ⊗A− J ⊗ F )x̃ + (IN ⊗B)Ũ , (4)

where matrix IN ⊗A− J ⊗ F is of the form

IN ⊗A− J ⊗ F

=




A 0 0 · · · 0
0 A− λ2F × · · · 0

0
...

...
. . .

...
... 0 · · · · · · ×
0 0 · · · 0 A− λNF



∈ RNd×Nd,

(5)



322 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 3, NO. 3, JULY 2016

and each “×” represents a block in Rd×d that may either be
−F or 0[16, 38]. Also, matrix IN ⊗ B in (4) is expressed as
follows.

IN ⊗B =




B 0 0 · · · 0
0 B 0 · · · 0
...

...
...

. . .
...

0 0 · · · · · · 0
0 0 · · · 0 B



∈ RNd×Nm. (6)

The following lemma presents the necessary and sufficient
conditions for asymptotic swarm stability of the fractional
order swarm system (1) by checking the asymptotic stability
of a fractional order linear time invariant system.

Lemma 1[38]. The fractional order linear time invariant
swarm system (1) with Assumption 1 is asymptotically swarm
stable if and only if the following system

Dα
t x̂ = Âx̂ + B̂Û , (7)

is asymptotically stable where x̂ = [x̃T
2 , x̃T

3 , . . . , x̃T
N ]T ∈

R(N−1)d, Û = [ũT
2 , ũT

3 , . . . , ũT
N ]T ∈ R(N−1)m and matrices

Â and B̂ are defined as follows:

Â =




A− λ2F × 0 · · · 0
0 A− λ3F × · · · 0

0
...

...
. . .

...
... 0 · · · · · · ×
0 0 · · · 0 A− λNF




∈ R(N−1)d×(N−1)d (8)

B̂ =




B 0 0 · · · 0
0 B 0 · · · 0
...

...
...

. . .
...

0 0 · · · · · · 0
0 0 · · · 0 B




∈ R(N−1)d×(N−1)m

Although Lemma 1 has been presented in [38] for integer order
case (i.e. where α = 1), its proof can be easily extended to
the fractional order case[16]. On the other hand, system (7) is
asymptotically stable (or equivalently the swarm system (1)
with Assumption 1 is asymptotically swarm stable) if and
only if the condition |arg(λ)| > απ/2 is satisfied for each
eigenvalue λ of matrix Â[40]. In such a case, matrix Â is
called an α-Hurwitz matrix

C. Problem Statement

In this paper, the aim is asymptotic swarm stabilization of
fractional order linear time invariant swarm system (1) under
the following constraints:

Constraint 1. The control inputs ui, i = 1, 2, . . . , N, in (1)
should be bounded as

∣∣ui(l)

∣∣ ≤ ūi(l), i = 1, 2, . . . , N, l =
1, 2, . . .m, where ūi(l) ∈ R+ denotes the allowable upper
bound for the l-th control input of i-th agent.

Constraint 2. The distance between x(t) =
[xT

1 (t), . . . , xT
N (t)]T ∈ RNd and the set {x ∈ RNd|x =

[xT
1 , . . . , xT

N ]T, x1 = x2 = · · · = xN , xi ∈ Rd (i =

1, . . . , N)} in the Nd-dimensional space should be less than
µ ∈ R+ for each t ≥ 0.

Constraint 1 specifies the input saturation constraints in the
fractional order swarm system (1). Actually, this constraint
will bound the input signals in (1) similar to the virtual
saturation function sat(ui) : Rm → Rm where

sat(ui) = [sat(ui(1)), sat(ui(2)), . . . , sat(ui(m))]T (9)

and sat(ui(l)), i = 1, 2, . . . , N, l = 1, 2, . . . , m is defined as
follows[36].

sat(ui(l)) = sgn(ui(l))min(ūi(l),
∣∣ui(l)

∣∣). (10)

Also, Constraint 2 states that during reaching consensus
the pseudo state vector of agents (x(t)) should be inside a
specified region. Note that the line x1 = x2 = · · · = xN

expresses a situation in which the pseudo states of all agents
are the same. This situation can be interpreted as the “final
destination” in the problem of swarm stabilization. In fact,
Constraint 2 enforces that during reaching consensus, the
distance between agents and this final destination is less than
a desired value specified by µ.

III. SOME PROPERTIES OF x → (QT ⊗ Id)x
According to the definitions of pseudo-state variables x =

[xT
1 , . . . , xT

N ]T ∈ RNd, x̃ = [x̃T
1 , x̃T

2 , . . . , x̃T
N ]T = (T ⊗ Id)x,

and x̂ = [x̃T
2 , x̃T

3 , . . . , x̃T
N ]T ∈ R(N−1)d in the previous

section, one can easily obtain the vector x̂

x̂ = (Q⊗ Id)(T ⊗ Id)x = (QT ⊗ Id)x, (11)

where

Q =




0 1 0 · · · 0
... 0

...
. . .

...

0
...

... · · · 0
0 0 · · · 0 1




(N−1)×N.

(12)

In this section, the linear transformation x ∈ RNd → x̂ =
(QT ⊗ Id)x ∈ R(N−1)d is studied from the viewpoint of
geometric properties. We will use these geometric properties
to solve the main problem in the next section. At first, consider
the following lemma.

Lemma 2. By the linear transformation x → x̂ = Px,
where P = QT ⊗ Id, T is the transition matrix introduced
in Section II-B and Q is defined as in (12), the closed ball
βε := {x̂ ∈ R(N−1)d|x̂Tx̂ ≤ ε} transforms to the region
β′ε := {x ∈ RNd|xTzx ≤ ε} with z = PTP .

Proof. By substituting x̂ from (11) in the definition of the
closed ball βε, the region β′ε is easily obtained. ¤

It is clear that the center of the closed ball βε in Lemma 2 is
the origin. According to Lemma 2, the set {x ∈ RNd|xTzx =
0} specifies all the vectors which are transformed by the
aforementioned transformation to the origin. The geometric
interpretation of this set is revealed in Lemma 3.

Lemma 3. If P = QT ⊗ Id, z = PTP , and matrices T
and Q are as in Lemma 2, then {x ∈ RNd|x1 = x2 = · · · =
xN} = {x ∈ RNd|xTzx = 0}.

Proof. To prove this lemma, we show that the set {x ∈
RNd|x1 = x2 = · · · = xN} is the only solution of the
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equation xTzx = 0. The equation xTzx = 0 can be written
as

xTzx = xTPTPx = ‖Px‖2 = 0, (13)

which is equivalent to

Px = (QT ⊗ Id)x = 0. (14)

For simplicity, assume that d = 1 which results in Id = 1 (The
proof can be easily extended for d > 1). Assuming Id = 1
and using(12), (14) can be written as

QTx =




t2,1 · · · t2,N

...
. . .

...
tN,1 · · · tN,N







x1

x2

...
xN


 = 0, (15)

where ti,k (i = 2, 3, . . . , N, k = 1, 2, . . . , N) denotes the
elements of similarity matrix T . On the other hand,

T




t̂11
t̂11
...

t̂11


 =




1
0
...
0


 , (16)

where [t̂11, . . . , t̂11]T is the first column of matrix T−1[16, 18].
Equation (16) means that the sum of all entries in each
row (except the first row) of matrix T is zero, i.e.∑N

k=1 ti,k = 0, i = 2, 3, . . . , N . As a result, according to
(15), it is easy to conclude that each member of the set
{x ∈ RNd|x1 = x2 = · · · = xN} is a solution for equation
(13). Also, according to the independent linearity of the rows
of the matrix T , the rank of matrix QT in (15) is N − 1. So,
the set {x ∈ RNd|x1 = x2 = · · · = xN} specifies all of the
solutions of equation (13). ¤

To express a geometric property for the region β′ε introduced
in Lemma 2, some preliminary lemmas are needed. These
lemmas (Lemmas 4-6) are as follows.

Lemma 4[41]. Let Ḡ ∈ Rn×n and H̄ ∈ Rm×m be
two arbitrary matrices and have singular values (eigenvalues)
σi, i = 1, 2, . . . , n and µj , j = 1, 2, . . . , m respectively. Then,
the mn singular values (eigenvalues) of matrix Ḡ⊗ H̄ are as
follows.

σ1µ1, . . . , σ1µm, σ2µ1, . . . , σ2µm, . . . , σnµ1, . . . , σnµm.
(17)

Lemma 5. If S := S′ ⊗ Id, where matrix S′ is defined as

S′ =




N − 1 −1 · · · −1

−1 N − 1
. . .

...
...

... · · · −1
−1 · · · −1 N − 1



∈ RN×N , (18)

then

‖S‖ = N. (19)

Proof. It can be verified that the characteristic polynomial
of matrix S′ is

det(λI − S′) = λ(λ−N)N−1. (20)

From (20), S′ has one zero eigenvalue, and the other eigen-
values of this matrix are equal to N . Therefore, the maximum
singular value of real symmetric matrix S′ or equivalently its
2-norm is N . ¤

Lemma 6. Let ρmin denote the minimum singular value
of matrix QT where T is the transition matrix introduced in
Section II-B and Q is defined by (12). In this case,

‖Sx‖ ≤ N

ρmin
‖Px‖ , ∀x ∈ RNd, (21)

where matrices P and S are respectively defined in Lemmas
2 and 5.

Proof. In the proof of Lemma 3, it is verified that Nu(P ) =
{x ∈ RNd|x1 = x2 = · · · = xN}. On the other hand,
by considering the structure of matrix S′ in (18) and noting
S = S′ ⊗ Id it is deduced that Nu(S) = {x ∈ RNd|x1 =
x2 = · · · = xN}. Therefore, subspaces Nu(S) and Nu(P )
are identical, and consequently, the orthogonal complements of
these subspaces (i.e., Ra(ST) and Ra(PT)) are also identical.
Now, by the range-null space decomposition of RNd[42], each
x ∈ RNd can be uniquely written as x = xNu + xRa where
xNu ∈ Nu(S) = Nu(P ) = {x ∈ RNd|x1 = x2 = · · · =
xN} and xRa ∈ Ra(ST) = Ra(PT). Since SxNu = 0, for
each x ∈ RNd decomposed in the form x = xNu + xRa we
have

‖Sx‖ = ‖SxRa‖ . (22)

Let us define the new matrix P̂ as follows:

P̂ = (QTQT )⊗ Id. (23)

Considering the structures of matrices Q and QT from (12)
and (15), it is deduced that matrix QTQT is in the form

QTQT =




0 · · · 0
t2,1 · · · t2,N

...
. . .

...
tN,1 · · · tN,N


 . (24)

As discussed in the proof of Lemma 3, we know that∑N
k=1 ti,k = 0, i = 2, 3, . . . , N . According to this equality,

nonsingularity of matrix T, and structure of matrix QTQT in
(24), it is found that P̂ xNu = 0 if and only if xNu ∈ {x ∈
RNd|x1 = x2 = · · · = xN}. Hence, Nu(P̂ ) = Nu(S) =
Nu(P ), Ra(P̂ ) = Ra(S) = Ra(P ), and for each x ∈ RNd

decomposed as x = xNu + xRa, we have
∥∥∥P̂ x

∥∥∥ =
∥∥∥P̂ xRa

∥∥∥ . (25)

It can be easily verified that matrix Q in (12) has the
property QTQ =

(
QTQ

)2
. This property enforces that

xTPTPx = xTP̂TP̂ x, for each x ∈ RNd, and consequently
‖Px‖ =

∥∥∥P̂ x
∥∥∥. From this equality and (25),

‖Px‖ =
∥∥∥P̂ xRa

∥∥∥ . (26)

Since T is an invertible matrix, the rank of matrix QTQT
equals N − 1. This means that matrix QTQT has one zero
singular value (namely ρ1 = 0 ) and N − 1 nonzero singular
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values denoted by ρ2, ρ3, . . . , ρN . Hence, according to Lemma
4 the singular values of matrix P̂ are

0, . . . , 0︸ ︷︷ ︸
d times

, ρ2, . . . , ρ2︸ ︷︷ ︸
d times

, ρ3, . . . , ρ3︸ ︷︷ ︸
d times

, . . . , ρN , . . . , ρN︸ ︷︷ ︸
d times

. (27)

Now, consider the following two matrix inequalities

‖SxRa‖ ≤ ‖S‖ ‖xRa‖ , (28)

and

ρmin ‖xRa‖ ≤
∥∥∥P̂ xRa

∥∥∥ , (29)

for each xRa ∈ Ra(P̂ ) = Ra(S) = Ra(P ), where ρmin

indicates the minimum nonzero singular value of matrix P̂ .
From (15) and (24), it is found that the only difference between
matrices QTQT and QT is an extra zero row. Hence, these
two matrices have the same nonzero singular values (i.e.
ρ2, ρ3, . . . , ρN ). This means that ρmin is the minimum singular
value of matrix QT . According to (28) and (29), it is obtained
that

‖SxRa‖ ≤ ‖S‖

∥∥∥P̂ xRa

∥∥∥
ρmin

. (30)

By substituting ‖SxRa‖ and
∥∥∥P̂ xRa

∥∥∥ respectively from (22)
and (26) in (30), and noting that ‖S‖ = N (Lemma 5),
inequality (21) is deduced. ¤

Finally, a geometric property for the region β′ε is revealed in
the following lemma. Actually this lemma helps us to satisfy
Constraint 2 in the controller design procedure of the next
section.

Lemma 7. Define the set in Lemma 3 as M̄ := {x ∈
RNd|x1 = x2 = · · · = xN}. Also, assume that the positive
constant ε satisfies the condition

ε ≤ µ2ρ2
min, (31)

where µ ∈ R+, ρmin is the minimum singular value of
matrix QT , T is the transition matrix introduced in Section
II. B and Q is defined by (12). In this case D(x, M̄) ≤ µ,
∀x ∈ β′ε = {x ∈ RNd|xTzx ≤ ε}.

Proof. Consider m̄ = [m̂, m̂, . . . , m̂]T ∈ RNd as a member
of the set M̄ . Then for each x ∈ β′ε, D(x, M̄) is defined as

D(x, M̄) = inf
m̄∈M̄

‖x− m̄‖

= inf
m̂∈Rd

√
‖x1 − m̂‖2 + ‖x2 − m̂‖2 + · · ·+ ‖xN − m̂‖2

(32)

By setting the gradient of ‖x1 − m̂‖2 + ‖x2 − m̂‖2 + . . . +
‖xN − m̂‖2 with respect to m̂ equal to zero, it is found that
the minimum of this function occurs at m̂ = m̂∗ where

m̂∗ =
1
N

N∑

i=1

xi. (33)

Hence, the distance of x from M̄ is equal to ‖x− m̄∗‖ where
m̄∗ = [m̂∗, m̂∗, . . . , m̂∗]T. Consequently, (34) is concluded.

According to the definition of matrix S in Lemma 5, (34)
can be written as

D(x, M̄) =
‖Sx‖
N

. (35)

As we know, the set β′ε = {x ∈ RNd|xTzx ≤ ε} indicates all
the points placed inside the surface xTzx = ε. According to
the definition of z, i.e. z = PTP , we have

‖Px‖2 ≤ ε, (36)

for each x in the set β′ε = {x ∈ RNd|xTzx ≤ ε}. Inequalities
(31) and (36) result in

‖Px‖ ≤ µρmin. (37)

Finally, (21) and (37) yield in the following inequality for the
distance indicated by (35).

D(x, M̄) =
‖Sx‖
N

≤ µ (38)

¤

IV. DESIGN OF THE STABILIZING CONTROLLER

In this section, the aim is to design a controller for the
swarm system (1) such that asymptotic swarm stability is
guaranteed and the Constraints 1 and 2 are simultaneously
met. To this end, at first in Section IV-A two useful theorems
from [36] have been restated. Then, the control law is proposed
in Section IV-B.

A. Two Useful Theorems

At first, let us restate a theorem related to the asymptotic
stability of fractional order linear time invariant systems sub-
ject to input saturation.

Theorem 1[36]. Consider the following fractional order
linear time invariant system

Dα
t x(t) = Āx(t) + B̄sat(u(t)), x(0) = x0, (39)

where 0 < α < 1, x(t) ∈ Rn , u(t) ∈ Rm, Ā ∈ Rn×n
, B̄ ∈

Rn×m and the saturation function sat(u(t)) : Rm → Rm is
of the form

sat(u(t)) = [sat(u(t)(1)), sat(u(t)(2)), . . . , sat(u(t)(m))]T,
(40)

where sat(u(t)(l)), l = 1, 2, . . . , m is defined as follows.

sat(u(t)(l)) = sgn(u(t)(l))min(ū(t)(l),
∣∣u(t)(l)

∣∣). (41)

D(x, M̄) =

√
‖(N − 1)x1 − x2 − · · · − xN‖2 + · · ·+ ‖(N − 1)xN − x1 − · · · − xN−1‖2

N
. (34)
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Also, assume that u(t) = Kx(t), where K ∈ Rm×n.
If there exists a diagonal matrix γ = diag{γ1, γ2, . . . , γm}
such that 0 < γi ≤ 1 for all i = 1, . . . , m and∣∣arg(eig(Ā + B̄γK))

∣∣ > απ/2, then there exists a sufficiently
small closed ball, denoted by βδ := {x ∈ Rn| ‖x‖ ≤ δ},
such that system (39) is asymptotically stable for any x0 ∈
βδ ⊂ S(γK, u0), where uo = [uo(1), uo(1), . . . , uo(m)]

T,
uo(i) ∈ R+ denotes the saturation level for the i-th input
(i = 1, . . . , m), and S(γK, u0) is defined by

S(γK, u0) = {x(t) ∈ Rn| − u0 ≤ γKx(t) ≤ u0}. (42)

As mentioned in [36], asymptotic stability of (39) means that
for every ε > 0, there exists δ > 0 such that for every initial
condition x0 ∈ βδ = {x0 ∈ Rn| ‖x0‖ ≤ δ} the solution
x(t, x0) remains in the closed ball βε := {x ∈ Rn| ‖x‖ ≤ ε}.
In [36], it has been shown that the region βε, can be used to
estimate S(γK, u0) in (42). Also, the following theorem has
been proved which presents a procedure to determine the state
feedback control gain K.

Theorem 2[36]. Consider system (39) with the state feed-
back controller u(t) = Kx(t), K ∈ Rm×n. If there ex-
ists matrix X ∈ Rm×n, symmetric positive definite matrix
H ∈ Rn×n, diagonal matrix γ = diag{γ1, γ2, . . . , γm}
(0 < γi ≤ 1 for all i = 1, . . . , m), and positive constant ε
such that

2∑

i=1

sym{Θi1 ⊗ (ĀH + B̄X)} < 0, (43)

2∑

i=1

sym{Θi1 ⊗ (ĀH + B̄γX)} < 0, (44)

[
2H − εI γiX

T
(i)

γiX(i) u2
0(i)

]
≥ 0, (45)

where

Θ11 = ΘT
21 =

[
sin(απ

2 ) − cos(απ
2 )

cos(απ
2 ) sin(απ

2 )

]
, (46)

then the fractional order system (39) is asymptotically sta-
bilizable for any x0 ∈ βδ by using the state feedback
controller u(t) = Kx(t) with the state feedback control gain
K = XH−1. Also, the trajectory x(t, x0) is placed in the
closed ball βε = {x ∈ Rn| ‖x‖ ≤ ε}.

B. Constraint Swarm Stabilization

In this subsection, a controller for swarm stabilization
of fractional order linear time invariant swarm systems is
proposed which simultaneously satisfies Constraints 1 and 2.
Before presenting this control law, consider the following as-
sumption that is necessary for designing the swarm stabilizing
controller in this subsection. It is assumed that the swarm
system (1) satisfies the following assumption.

Assumption 2. In the fractional order linear time invariant
swarm system (1), all the pairs of matrices (A− λiF, B) for
all i = 2, . . . , N are stabilizable, where λ2, . . . , λN ∈ R+

denote the nonzero eigenvalues of the Laplacian matrix L.

Now, the proposed swarm stabilizing controller is presented
in the following theorem which simultaneously satisfies Con-
straints 1 and 2.

Theorem 3. Consider the fractional order linear time in-
variant swarm system (1) which satisfies Assumptions 1 and
2. Also, assume that the positive constant ε satisfies condition
(31). Let U = [uT

1 , . . . , uT
N ]T be given by

U = (T−1QT ⊗ Im)sat(K̂(QT ⊗ Id)x), (47)

where the matrix K̂ = XH−1 ∈ R(N−1)m×(N−1)d is chosen
such that the following matrix inequalities

2∑

i=1

sym{Θi1 ⊗ (ÂH + B̂X)} < 0, (48)

and [
2H − εI XT

(i)

X(i) u2
0(i)

]
≥ 0, (49)

are satisfied for matrix X ∈ R(N−1)m×(N−1)d and sym-
metric positive definite matrix H ∈ R(N−1)d×(N−1)d, and
uo i(l) = ūi(l)/

∥∥T−1
∥∥
∞, i = 1, 2, . . . , N, l = 1, 2, . . . , m

where uo i(j) ∈ R+ denotes the saturation level for the
saturation function used in (47) and T is the transition matrix
introduced in Section II-B. In this case, there is a region
β′δ := {x0 ∈ RNd|xT

0 zx0 ≤ δ} ⊂ Ŝ(K̂, ū) (δ > 0) such that
the aforementioned swarm system is asymptotically swarm
stable for any x0 ∈ β′δ , where ū = [ū(1), ū(2), . . . , ū(N)]

T,
ū(i) = [ūi (1), ūi (2), . . . , ūi (m)]T (i = 1, 2, . . . N), and the
region Ŝ(K̂, ū) is defined by

Ŝ(K̂, ū) =

{x(t) ∈ RNd| − ū ≤ ∥∥T−1
∥∥
∞ K̂(QT ⊗ Id)x(t) ≤ ū}. (50)

Also, in such a case the Constraints 1 and 2 are simultaneously
satisfied for all x0 ∈ β′δ .

Proof. Consider the system

Dα
t x̂ = Âx̂ + B̂sat(Û), (51)

which is a fractional order linear time invariant system
subject to input saturation. Also, assume that matrices Â
and B̂ in system (51) are in the forms introduced in (8).
According to Theorem 1, if there exists diagonal matrix
γ = diag{γ1, γ2, . . . , γ(N−1)m} such that 0 < γi ≤ 1 for
all i = 1, . . . , (N − 1)m and

∣∣∣arg(eig(Â + B̂γK̂))
∣∣∣ > απ/2

for some K̂ ∈ R(N−1)d×(N−1)m, then by using Û = K̂x̂ the
system in (51) is asymptotically stable for any x̂0 ∈ βδ ⊂
S(γK̂, uo), where uo ∈ R(N−1)m denotes the saturation level
vector for the control input and S(γK̂, u0) is defined as

S(γK̂, u0) = {x̂(t) ∈ R(N−1)m| − u0 ≤ γK̂x̂(t) ≤ u0}.
(52)

Consider matrix γ as an identity matrix, i.e.
γ = I(N−1)m×(N−1)m. Hence, the condition∣∣∣arg(eig(Â + B̂γK̂))

∣∣∣ > απ/2 can be written as
∣∣∣arg(eig(Â + B̂K̂))

∣∣∣ > α
π

2
. (53)
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K̂ can be found for satisfying condition (53) if the pair
(Â, B̂) is stabilizable. According to the block diagonal form
of matrices Â and B̂ (See (8)), the stabilizability of the
pair (Â, B̂) is deduced from the stabilizability of the pair
matrices (A − λiF, B) for all i = 2, . . . , N . This means
that if Assumption 2 holds, K̂ can be found for satisfying
condition (53). On the other hand, based on Theorem 2 and
considering matrix γ as an identity matrix, Equations (48) and
(49) can be used to find K̂ in order to guarantee the asymptotic
stability of system (51). Asymptotic stability of this system
results in limt→∞ x̂(t) = 0, which is equivalent to asymptotic
swarm stability of system (1) provided that Assumption 1
holds (Lemma 1).

Now, we are faced with four problems that need to be
answered for completing the proof. First, obtaining the control
signal U ∈ RNm in the form (47) to guarantee asymptotic
stability of swarm system (1) according to the above-described
control signal Û = K̂x̂ ∈ R(N−1)m. Second, finding the
upper bound of input controls in (3) (i.e., ū) according to
the saturation level of the saturation function in (47) (i.e., uo)
in order to show that Constraint 1 is met by using control
signal (47). Third, obtaining the region Ŝ(K̂, ū) based on the
region S(γK̂, u0), and fourth, finding the positive constant ε
such that Constraint 2 is satisfied. The latter problem has been
answered in Lemma 7. According to this lemma, to achieve
the Constraint 2 the positive constant ε in the region β′ε should
satisfy (31).

The other issues will be answered in the following parts:
1) Finding the control signal U ∈ RNm: Note that U =

[uT
1 , . . . , uT

N ]T ∈ RNm, Ũ = [ũT
1 , ũT

2 , . . . , ũT
N ]T ∈ RNmand

Û = [ũT
2 , ũT

3 , . . . , ũT
N ]T ∈ R(N−1)m. According to the

relation Ũ = (T ⊗ Im)U , we have

U = (T−1 ⊗ Im)Ũ , (54)

where Ũ = [ũT
1 , ÛT]T. Assuming Û = K̂x̂ and considering

the saturation function on Û results in

U = (T−1 ⊗ Im)
[

ũ1

sat(K̂x̂)

]
. (55)

Matrix (T−1 ⊗ Im) is in the following form [16,18]

(T−1 ⊗ Im) =




t̂11Im · · ·
t̂11Im · · ·

...
. . .

t̂11Im · · ·


 . (56)

By substituting x̂ from (11) and (T−1⊗ Im) from (56) into
(55), it is Obtained that

U =




t̂11Im · · ·
t̂11Im · · ·

...
. . .

t̂11Id · · ·




[
ũ1

sat(K̂(QT ⊗ Id)x)

]

= (1N ⊗ (t̂11ũ1)) + (T−1QT ⊗ Im)sat(K̂(QT ⊗ Id)x),
(57)

where 1N = [1, 1, . . . , 1︸ ︷︷ ︸
N

]T ∈ RN×1 and ũ1 ∈ Rm is an

arbitrary input vector. By considering ũ1 as a zero vector, the
input control (47) is achieved which yields asymptotic swarm
stability in swarm system (1).

2) Finding the upper bound of control signal i.e. ū: By sub-
stituting Ũ with sat(Ũ) in (54) and defining M = [mi,j ] :=
(T−1 ⊗ Im) ∈ RNm×Nm, one can obtain (58).

For simplicity, we redefine U = [u∗1, u
∗
2, . . . , u

∗
Nm]T and

Ũ = [ũ∗1, ũ
∗
2, . . . , ũ

∗
Nm]T. Hence, (58) can be rewritten as (59).







u1,1

...
u1,m







u2,1

...
u2,m




...


uN,1

...
uN,m







=




m1,1 m1,2 · · · m1,Nm

m2,1 · · · · · · m2,Nm

...
...

. . .
...

mNm,1 mNm,2 · · · mNm,Nm










sat(ũ1,1)
...

sat(ũ1,m)







sat(ũ2,1)
...

sat(ũ2,m)




...


sat(uN,1)
...

sat(uN,m)







. (58)




u∗1
u∗2
...

u∗Nm


 =




m1,1 m1,2 · · · m1,Nm

m2,1 · · · · · · m2,Nm

...
...

. . .
...

mNm,1 mNm,2 · · · mNm,Nm







sat(ũ∗1)
sat(ũ∗2)

...
sat(ũ∗Nm)


 . (59)



NADERI SOORKI AND TAVAZOEI: CONSTRAINED SWARM STABILIZATION OF FRACTIONAL ORDER · · · 327

From (59),

u∗i =
Nm∑

j=1

mi,jsat(ũ∗j ), i = 1, 2, . . . , Nm. (60)

Hence, the upper bound of control input u∗i is obtained as
follows.

|u∗i | ≤ uo(i)

Nm∑

j=1

mi,j ≤ uo(i)

Nm∑

j=1

|mi,j |, i = 1, 2, . . . , Nm.

(61)

According to the definition of infinity matrix norm, we have

‖M‖∞ = max
i=1,2,...,Nm

Nm∑

j=1

|mi,j | . (62)

Finally, (61) and (62) result in

|u∗i | ≤ uo(i) ‖M‖∞ i = 1, 2, . . . , Nm. (63)

Now, from the properties of infinity matrix norm, the matrix
norm ‖M‖∞ in (63) can be written as

‖M‖∞ =
∥∥T−1 ⊗ Id

∥∥
∞ =

∥∥T−1
∥∥
∞ . (64)

Hence, (63) is written as

|u∗i | ≤ uo(i)

∥∥T−1
∥∥
∞ , i = 1, 2, . . . , Nm. (65)

Choosing uo(i) , i = 1, 2, . . . , Nm as

uo(i) =
ūi

‖T−1‖∞
(66)

results in the following saturation level as the upper bound for
the i-th control input of input vector U in (47).

|u∗i | ≤ ūi, i = 1, 2, . . . , Nm. (67)

Consequently, if ūi(l) =
∥∥T−1

∥∥
∞ uo i(l) ∈ R+, i =

1, 2, . . . , N , l = 1, 2, . . . , m Constraint 1 is satisfied by using
control signal (47).

3) Obtaining the region Ŝ(K̂, ū): According to (66),

uo =
ū

‖T−1‖∞
, (68)

where uo ∈ R(N−1)m and ū ∈ RNm. By substituting
(11) and (68) into (52) and considering the assumption γ =
I(N−1)m×(N−1)m, the region Ŝ(K̂, ū) in (48) is obtained. ¤

V. NUMERICAL SIMULATIONS

In this section, the results of the previous section are verified
by two numerical examples. Numerical simulations of this
section have been done by using the Adams-type predictor-
corrector method introduced in [43] for solving fractional order
differential equations.

Fig. 1. (a) Graph Ga in Example 1; (b) Graph Gb in Example 2.

Example 1. Consider the following fractional order linear
time invariant swarm system:

D0.8
t xi = Axi + F

5∑

j=1

wij(xj − xi) + Bui,

i = 1, . . . , 5, (69)

where

A =
[

1.6 −0.9
3 1.2

]
, F =

[
3.2 −3
4 5

]
, B =

[
1
0

]
.

(70)

Graph Ga expressing the communication among these agents
is shown in Fig. 1(a). Also, the adjacency matrix of this graph
is considered as

WGa
=




0 0.4 0 0 0.7
0 0 0.2 0 0

0.3 0 0 0 0
0 0 0.6 0 0
0 0 1.2 0.8 0




.

In this case, the eigenvalues of the Laplacian
matrix for the mentioned graph are λ(Ga) =
{0, 0.2776, 0.8856, 1.1811, 1.8557}. According to (8),
matrices Â and B̂ are in the following forms:

Â =




A− λ2F 0 0 · · · 0
0 A− λ3F 0 · · · 0

0
...

...
. . .

...
... 0 · · · · · · 0
0 0 · · · 0 A− λ5F



∈ R8×8

where

A− λ2F =
[

0.7118 −0.0673
1.8897 −0.187

]
,

A− λ3F =
[ −1.2341 1.7569
−0.5426 −3.2282

]
,

A− λ4F =
[ −2.1794 2.6432
−1.7243 −4.7053

]
,

A− λ5F =
[ −4.3383 4.6671
−4.4228 −8.0786

]
,

and

B̂ =




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0




T

.

It is worth noting that matrix Â is not α-Hurwitz with α = 0.8.
In this example, the aim is asymptotic swarm stabilization
of the above-described swarm system in the presence of
Constraint 1 with saturation level ū = [2; 2; 2; 2; 2]T and
Constraint 2 with µ = 1.8. To achieve this aim, from Theorem
3 the control can be chosen as

U = (T−1QT ⊗ I1)sat(K̂(QT ⊗ I2)x), (71)
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where the matrices T and Q have the following forms:

T =




0.2988 0.5976 1.0956 0.1394 0.1046
0.1977 −1.0194 0.5420 0.1994 0.0803
−1.3072 0.7626 −0.9340 2.2997 −0.8211
2.1783 −0.8881 −0.5886 −2.5635 1.8620
0.3645 −0.0881 −0.9182 −1.1266 1.7683




,

Q =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




4×5

.

Considering
∥∥T−1

∥∥
∞ = 2.657, the saturation level is chosen

as u0 = 0.7527 (See (68)). Moreover since µ = 1.8 and
ρmin = 0.6819, one can choose ε = 1.5 to satisfy (31). Solving
the matrix inequalities in (48) and (49) with ε = 1.5 results
in the matrix K̂ as follows.

K̂ = [K̂1 K̂2] ∈ R4×8, (72)

where

K̂1 =




−7.6211 −2.6937 0 0
0 0 −1.1352 −1.2980
0 0 0 0
0 0 0 0


 ∈ R4×4

K̂2 =




0 0 0 0
0 0 0 0

−1.1076 −2.2546 0 0
0 0 −2.3234 −4.5966


 ∈ R4×4

As shown in Fig. 2, the considered aim is achieved by applying
the control law (71). More precisely, Fig. 2 (a) confirms that
asymptotic swarm stability is achieved. Also, Figs. 2 (b) and
2 (c) respectively reveal that Constraint 1 with saturation level
ū = [2; 2; 2; 2; 2]T and Constraint 2 with µ = 1.8 are satisfied.

Example 2. Consider the following fractional order linear
time invariant swarm system with five agents

D0.8
t xi = Axi + F

5∑

j=1

wij(xj − xi) + Bui , i = 1, . . . , 5.

(73)

A =
[ −0.1 0.7
−5.2 1.8

]
, F =

[
2 −10
4 −6

]
, B =

[
2 0
0 1

]
.

(74)

The undirected graph Gb describing the communication among
these agents is shown in Fig. 1 (b). Also, the adjacency matrix
of this graph is considered as

WGb
=




0 1.2 0 0 0.8
1.2 0 0.4 0 0
0 0.4 0 0 0
0 0 0 0 0.9

0.8 0 0 0.9 0




.

The eigenvalues of the Laplacian matrix for the mentioned
graph are as follows:

λ(Gb) = {0, 0.2935, 0.8222, 2.1424, 3.3419}

The matrices Â and B̂ in this example are

Â =




A− λ2F 0 0 · · · 0
0 A− λ3F 0 · · · 0

0
...

...
. . .

...
... 0 · · · · · · 0
0 0 · · · 0 A− λ5F



∈ R8×8

where

A− λ2F =
[ −0.6871 3.6354
−6.3742 3.5613

]
,

A− λ3F =
[ −1.7444 8.9222
−8.4889 6.7333

]
,

A− λ4F =
[ −4.3848 22.1239
−13.7695 14.6543

]
,

A− λ5F =
[ −6.7837 34.1185
−18.5674 21.8511

]
,

and
B̂ = diag{2, 1, 2, 1, 2, 1, 2, 1}.

Matrix Â is not α-Hurwitz with α = 0.8. In this case, matrices
T and Q have the following forms:

T =




−0.447 −0.447 −0.447 −0.447 −0.447
−0.032 0.196 0.736 −0.537 −0.362
0.501 0.519 −0.492 −0.486 −0.042
0.181 −0.481 0.110 −0.499 0.689
−0.718 0.511 −0.069 −0.162 0.439




Q =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




4×5

Suppose that all the input control signals are subjected to con-
straint with upper bound 4, i.e. ū = [4; 4; 4; 4; 4; 4; 4; 4; 4; 4]T

in Constraint 1. Moreover, the aim is to achieve asymptotic
swarm stability in the considered swam system while Con-
straint 2 with µ = 1.5 is satisfied. To achieve asymptotic
swarm stability with considering the mentioned constraints,
according to Theorem 3 the control law is chosen in the
following form

U = (T−1QT ⊗ I2)sat(K̂(QT ⊗ I2)x). (75)

From equality
∥∥T−1

∥∥
∞ = 2.1538, the saturation level is

obtained as u0 = 1.8572. Also since ρmin = 1, we choose
ε = 1 to satisfy (31). Solving the matrix inequalities (48) and
(49) with ε = 1 yields

K̂ = diag{K̂1, K̂2, K̂3, K̂4} ∈ R8×8, (76)

where

K̂1 =

[−4.8508 2.3989
6.8251 −7.6845

]
, K̂2 =

[−5.6536 2.2859
9.8021 −16.0606

]
,

K̂3 =

[−9.2684 5.0800
19.4285 −44.1909

]
, K̂4 =

[−16.9353 21.5528
41.1281 −108.9224

]
.
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Numerical simulation results presented in Fig. 3 (a) confirm
that asymptotic swarm stability is achieved by applying the
control law (75) with the obtained specifications. Moreover,
Figs. 3 (b) and 3 (c) verify that the aforementioned constraints
are also satisfied in this case. For a comparison, simulation
results of the swarm system in (73) by applying control law
(75) and without considering saturation function in this law
(unsaturated control inputs) have been presented in Fig. 4. By
comparing the simulation results of Figs. 3 and 4, it can be seen
that without considering the input constraint, the convergence
rate of the agents to reach consensus increases. But in this case,
as a negative point the values of control inputs at the beginning

of the motion are too large which can cause practical problems
due to physical constraints of the actuators in the real-world
applications. This means that involving Constraint 1 in design
procedure can yield in more applicable control signals.

As it is confirmed by the above-mentioned numerical ex-
amples, by using the feedback control law (47) asymptotic
swarm stability is achieved in fractional order linear time
invariant swarm system (1) with a directed/undirected topology
graph satisfying Assumption 1. Applying this control law, the
distance of the agents from the final destination is less than a
desired value. In addition, the input signals do not exceed a
predetermined value.

Fig. 2. Numerical simulation results of Example 1 where x0 = [[0.3, 0.8], [−0.01,−0.8], [−0.4, 1.1], [0.36,−0.22], [−0.23, 0.7]]T.

Fig. 3. Numerical simulation results of Example 2 where x0 = [[0.29,−0.63], [0.43, 0.41], [−0.48,−0.59], [0.52,−0.65], [0.50,−0.58]]T.

Fig. 4. Numerical simulation results of Example 2 without considering input saturation constraint.
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VI. CONCLUSION

Constrained swarm stabilization of fractional order linear
time invariant swarm systems is studied in this paper. In this
study, a bounded state-feedback control law is proposed to
ensure asymptotic swarm stability in fractional order swarm
systems. This law enforces that the distance of agents from the
final destination is less than a desired value. Numerical sim-
ulation results demonstrated the effectiveness of the proposed
control law.
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Improving the Control Energy in Model Reference
Adaptive Controllers Using Fractional

Adaptive Laws
Norelys Aguila-Camacho and Manuel A. Duarte-Mermoud, Senior Member, IEEE

Abstract—This paper presents the analysis of the control
energy consumed in model reference adaptive control (MRAC)
schemes using fractional adaptive laws, through simulation stud-
ies. The analysis is focused on the energy spent in the control
signal represented by means of the integral of the squared control
input (ISI). Also, the behavior of the integral of the squared
control error (ISE) is included in the analysis.

The orders of the adaptive laws were selected by particle
swarm optimization (PSO), using an objective function including
the ISI and the ISE, with different weighting factors. The
results show that, when ISI index is taken into account in the
optimization process to determine the orders of adaptive laws,
the resulting values are fractional, indicating that control energy
of the scheme might be better managed if fractional adaptive
laws are used.

Index Terms—Control energy, fractional adaptive laws, model
reference adaptive control.

I. INTRODUCTION

The main idea behind direct model reference adaptive
control (direct MRAC) technique is to create a closed loop
system with adjustable parameters, such that the application of
the resulting control signal to the plant makes the output of the
plant to follow the output of a given reference model. Adaptive
laws for adjusting controller parameters have been synthesized
using several techniques, where the most commonly used is
the gradient approach, in which the estimated parameter is the
result of a differential equation of integer order, moving in the
negative direction of the gradient of the criterion function to
be minimized[1].

The fractional calculus, that is calculus of integrals and
derivatives of real or complex orders[2], has been increasingly
used in many fields of science and engineering, and the control
techniques are not the exception. Since the paper by Vinagre
et al.[3], which as far as we know is the first paper proposing
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the inclusion of fractional operators in MRAC schemes, many
works have been published including fractional operators not
only in MRAC schemes (see for example [4−9]) but also in
some other adaptive schemes[10−11]. Some researchers have
mentioned advantages of using fractional operators in MRAC
schemes such as better management of noise[10], better behav-
ior under disturbances[4−5, 9] and improvements in transient
responses[3, 9], among others.

However, there is still a reticence in the adaptive control
community about using these fractional operators inside adap-
tive schemes because of their complexity. In [9] it has been
mentioned that the use of fractional adaptive laws in a MRAC
scheme for an automatic voltage regulator leads to a smoother
control signal, which is a very interesting fact. This behavior
could be seen as a better management of the energy used in
the control scheme, and this could be a point in favor of the
fractional operators, at least in MRAC schemes, since energy
efficiency is a trending topic nowadays due to the increasing
cost of energy worldwide.

This paper makes a preliminary analysis of the behavior of
control signals in a MRAC scheme, when fractional adaptive
laws are used to adjust control parameters. The analysis is
made empirically, since it follows from simulation studies,
but we believe this could be the first step to a more detailed
study on this topic. The results show that the introduction
of fractional adaptive laws in the MRAC schemes analyzed
leads to smoother control signals, with a lower integral of the
squared control, which can be seen as a better management of
the energy spent in the control scheme. The simulations also
show that there could exist a trade-off between the control
energy and the convergence speed of the control error, which
suggests the use of optimization techniques to select the
suitable orders to be used in adaptive laws.

The paper is organized as follows. Section II presents some
basic concepts about fractional calculus. Section III introduces
the MRAC scheme that is analyzed in the paper, with the
corresponding fractional adaptive laws. Section IV presents
the simulation and analysis of the results for the MRAC
scheme, implemented for three different plants: one stable,
one marginally stable and one unstable. Finally, Section V
presents the conclusions of the study.

II. BASIC CONCEPTS

This section presents some basic concepts of fractional
calculus, which are used in this paper.
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A. Fractional Calculus

Fractional calculus studies integrals and derivatives of real
or complex orders[2]. The Riemann-Liouville fractional inte-
gral is one of the main concepts of fractional calculus, and is
presented in Definition 1.

Definition 1 (Riemann-Liouville fractional integral)[2].

Iα
a+f (t) =

1
Γ (α)

∫ t

a

f (τ)
(t− τ)1−α dτ, t > a, R (α) > 0,

(1)
where Γ (α) corresponds to the Gamma Function, given by
Equation (2).

Γ (α) =
∫ ∞

0

tα−1e−tdt. (2)

There are several definitions regarding fractional derivatives.
Definition 2 corresponds to the fractional derivative according
to Caputo, and is the one used in this paper for implementing
fractional adaptive laws.

Definition 2 (Caputo fractional derivative)[2].

C
t0D

α
t x (t) =

1
Γ (n− α)

∫ t

a

f (n) (τ)
(t− τ)α−n+1 dτ, (3)

where t > a, n− 1 < α < n, n ∈ Z+.

III. MODEL REFERENCE ADAPTIVE CONTROL SCHEME

In this section, we present the structure of the MRAC
scheme analyzed in this work. Since this adaptive scheme has
been very well studied in [1], for the sake of space we only
present here the equations needed for its implementation. For
more specific details, the reader is referred to [1], Chapter 5.

A. MRAC Scheme for Plants with Only the Output Accessible

Usually, the whole state of a plant is not accessible, because
some variables cannot be physically measured or because
there is no instrumentation available to do it. In these cases,
the designer has access only to the input and output of the
plant, and the control scheme must be designed under these
constraints.

Let us consider a single-input single-output linear time
invariant plant of n-th order described by the vector differential
equation

ẋp (t) = Apxp (t) + bpu (t) ,
yp (t) = hT

p xp (t) ,
(4)

where Ap ∈ Rn×n, bp, hp ∈ Rn are completely unknown.
xp ∈ Rn is the state vector, which is not accessible, and
u, yp ∈ R are the input and the output of the system. The
plant is assumed to be controllable and observable.

An asymptotically stable reference model is specified by the
linear time-invariant system described by

ẋm (t) = Amxm (t) + bmr (t) ,
ym (t) = hT

mxm (t) ,
(5)

where Am ∈ Rn×n is a known asymptotically stable matrix
and bm, hm ∈ Rn are known vectors. The reference model
is assumed to be controllable and observable. ym ∈ R is

the output of the reference model and r ∈ R is a bounded
reference input. It is assumed that ym(t), for all t ≥ t0,
represents the desired trajectory for yp(t).

The transfer function of the plant (4) can be represented as

Wp (s) = hT
p (sI −Ap)

−1
bp = kp

Zp (s)
Rp (s)

(6)

where kp is the high frequency gain and Zp (s) , Rp (s) are
monic polynomials with unknown parameters. It is assumed
that Zp (s) is a Hurwitz polynomial and that the sign of kp

is known. The control goal here is to keep bounded all the
signals of the scheme and that limt→∞ (yp (t)− ym (t)) = 0.

As we may expect, having no access to the plant state
implies that a more complex control scheme has to be used
in the problem to synthesize stable adaptive laws, compared
to the case when the whole state xp (t) is accessible (see
[1], Chapter 3). For this kind of scheme and with no loss
of generality, it is assumed that the transfer function of the
reference model is strictly positive real (SPR). The transfer
function of the reference model is represented as

Wm (s) = hT
m (sI −Am)−1

bm = km
Zm (s)
Rm (s)

, (7)

where km is the high frequency gain and Zm (s) , Rm (s)
are monic coprime and Hurwitz polynomials with all the
parameters known. Note that since the reference model is
chosen by the designer, then all these conditions can be
fulfilled.

This control problem has to be solved in a different way for
plants with relative degree n∗ = 1 and for plants with relative
degree n∗ ≥ 2[1]. For the sake of simplicity, let us consider
that the plant under study has relative degree n∗ = 1. Then,
the control input to the plant is chosen as

u (t) = θT (t) ω (t) , (8)

where θ (t) ∈ R2n is a vector of adjustable parameters and
ω (t) ∈ R2n is a vector of known signals. Specifically

θ (t) =
[
k (t) θT

1 (t) θ0 (t) θT
2 (t)

]T
,

ω (t) =
[
r (t) ωT

1 (t) yp (t) ωT
2 (t)

]T
,

(9)

with k, θ0 : R+ → R; θ1, ω1 : R+ → Rn−1; θ2, ω2 : R+ →
Rn−1.

The auxiliary signals ω1 (t) ∈ Rn−1, ω2 (t) ∈ Rn−1 are
obtained by filtering the input and the output, respectively,

ω̇1 (t) = Λω1 (t) + l u (t) ,
ω̇2 (t) = Λω2 (t) + l yp (t) ,

(10)

where Λ ∈ R(n−1)×(n−1) and l ∈ Rn−1 must be chosen such
that det(sI − Λ) = Zm (s) and the pair (Λ, l) is controllable
and asymptotically stable.

Defining the control error as

e (t) = yp (t)− ym (t) , (11)

then for the classic integer order MRAC (IOMRAC) the stable
adaptive laws for the parameters are generated as

k̇ (t) = −γ sgn (kp) e (t) r (t) ,

θ̇0 (t) = −γ sgn (kp) e (t) yp (t) ,

θ̇1 (t) = −γ sgn (kp) e (t) ω1 (t) ,

θ̇2 (t) = −γ sgn (kp) e (t) ω2 (t) ,

(12)
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where γ ∈ R+ corresponds to the adaptive gain[1].
In this work we are going to use the same structure already

explained for the IOMRAC scheme, but using fractional
adaptive laws (FOMRAC) given by

CDαk
t0 k (t) = −γ sgn (kp) e (t) r (t) ,

CDα0
t0 θ0 (t) = −γ sgn (kp) e (t) yp (t) ,

CDα1
t0 θ1 (t) = −γ sgn (kp) e (t)ω1 (t) ,

CDα2
t0 θ2 (t) = −γ sgn (kp) e (t)ω2 (t) ,

(13)

where αk, α0 and each component of α1, α2 belong to the
interval (0, 1]. It is important to have in mind that these
fractional orders can be different for every component of the
adaptive laws.

It should also be noted that, although some advances have
been made regarding the stability analysis of fractional adap-
tive schemes[12], the stability of this particular case has not
been proved yet. Nevertheless, since the main idea of this
work is obtaining some empirical conclusions from simulation
studies on the control effort, we will focus only on this topic.
The reader will observe, however, that in simulation studies
the fractional case remains stable as well.

IV. SIMULATIONS STUDIES

In this section we will study the control of three second
order plants, using the controller presented in Section III,
through simulations. The plants under control have the same
vectors bp, hp specified in (14), and only the matrix Ap

changes from one plant to another.
In the first case we study an unstable plant (a11 = 4, a12 =

−1, a21 = 5, a22 = −3) with poles p1 = 3.1926 and
p2 = −2.1926. The second case corresponds to a marginally
stable plant (a11 = −5, a12 = 1, a21 = 0, a22 = 0), with
poles p1 = 0 and p2 = −5. Finally, the third case corresponds
to a stable plant (a11 = −5, a12 = 3, a21 = −15, a22 = 1)
with complex conjugate poles p1,2 = −2± 6i. The reference
model is asymptotically stable, as detailed in (14).

Ap =
[

a11 a12

a21 a22

]
, Am =

[ −1 0
0 −2

]
,

bp = bm =
[

1
1

]
, hp = hm =

[
1
0

]
.

(14)

The initial conditions used in simulations are xp (0) =
[0 1]T and xm (0) = [1 5]T.

It can be checked that the transfer function of the reference
model is SPR and the relative degree is n∗ = 1 for the three
plants, so that conditions for designing MRAC are fulfilled.
Since the numerator of the reference model transfer function
is Zm (s) = s + 2, the design parameters Λ, l were chosen as
Λ = −2 and l = 1.

For the three plants to be controlled, the initial conditions
of the four estimated parameters were chosen as θ (0) =
[5 4 − 8 − 5]T, the simulation time was set to T = 500 s,
γ = 1 and the reference input r (t) used is a unit step.

As we mentioned at the beginning of this paper, we will
focus on analyzing how the management of control energy can
be improved using fractional adaptive laws. To that extent, we

use the integral of the squared input (ISI) as an indicator of
the control energy, calculated using the following expression

ISI =
∫ T

0

u2 (t) dt, (15)

where T is the final simulation time.
Since the control signal is usually generated using some

kind of energy, then ISI represents an excellent measurement
of the energy spent to control the plant. Nowadays, ISI has
become extremely important in control schemes, since indus-
trial processes design and operation are focusing on saving
energy, as a way of contributing to protect natural resources
and planet sustainability.

Although our main goal is showing that the use of the
fractional adaptive laws may improve the use of control energy
in the adaptive schemes, we have to consider another important
variable which is the control error. The integral of the squared
control error is usually used as a performance index, measuring
the deviation of the controlled variable from its desired value
over the time. This index is given in (16) and it will be taken
in mind during our studies as well.

ISE =
∫ T

0

e2 (t) dt. (16)

A. Numerical Results for the Unstable Plant

Although the order of the adaptive law can be different
for each of the four components, let us make a preliminary
analysis using the same value for αk, α0, α1 and α2. To
get some insight about the behavior of the MRAC scheme
depending on the order of the adaptive laws, let us compare
the results using the values specified in Table I.

The fractional adaptive laws were implemented using the
NID block of the Ninteger toolbox[13], developed for Mat-
lab/Simulink. This implementation requires the definition of
the number of poles and zeros of the transfer function (N ) to
be used in the approximation, as well as the frequency range
where approximation is valid and where these poles/zeros lie.
In general, large values of N lead to more accurate approxima-
tion of the fractional order operator, and the converse is also
true. In this paper the Crone approximation[14−18] of order
10 was used, with a frequency interval of [0.01, 1 000] rad/s.
Table I shows the resulting values of ISI and ISE for these
simulations.

TABLE I
RESULTING VALUES OF ISI AND ISE FOR

REPRESENTATIVE VALUES OF THE ORDERS IN THE
ADAPTIVE LAWS, FOR A STABLE PLANT

α1 α2 α0 αk ISI ISE

0.5 0.5 0.5 0.5 5 212.4 6.3651

0.7 0.7 0.7 0.7 58 379 2.1056

0.9 0.9 0.9 0.9 6 033.8 1.2405

1 1 1 1 6 071.7 1.0781

As can be seen from Table I, the lowest ISI value corre-
sponds to the fractional case with lower order (α1 = α2 =
α0 = αk = 0.5), increasing from there up to the integer order
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case. However, the behavior of the ISE is the opposite, being
the case with the lowest ISI the one having the highest ISE.

Fig. 1 shows the evolution of control error and the control
signal for these simulations. As can be seen, the control signal
is smoother for the fractional cases and also converges slowly
to its final value, which explains why these cases have lower
ISI. However, the convergence of the control error is slower
for the fractional cases, which explains why they also have the
higher ISE. Thus, there is a trade-off between the magnitudes
of the ISI and ISE values, which must be analyzed before
making a decision about what values to choose for the orders
of the adaptive laws.

Fig. 1. Control error e (t) (above) and control signal u (t) (below)
for representative values of the orders in the adaptive laws, when the
reference signal is a unit step.

How to choose the right orders in the adaptive laws is
a question that always arises. The answer to this question,
however, is not absolute, since it will depend on many factors.
It can be seen in the very simple simulation example given
here, where the same order was used for the four components
of the adaptive laws, that different behaviors will be obtained
depending on the selection.

For that reason, the first question we must answer is: how
important is the ISI index with respect to the ISE index for our
problem? As the reader may note, the answer to this question
will strongly depend on the specific application. For example,
for processes that are high energy consuming, a reduction of a
2 % of the ISI could lead to million dollars savings in energy,
and having probably a bit slower convergence speed of the
control error.

Once this question is answered, it is still hard to choose
the orders of the adaptive laws. Having in mind that there
exists a trade-off between the ISI and the ISE, an optimization
procedure appears to be the right option to decide.

In order to see how an optimization procedure can help
to choose the orders α1, α2, α0, αk, we performed another
simulation study. In this case, an optimization procedure was
carried out using particle swarm optimization (PSO)[19], but
other techniques could be used at designer will. The objective
function used in this optimization process is presented in
(17). Certainly, it includes both, the ISE and the ISI indexes,

with their corresponding weighting factors to indicate how
important is each index in the minimization problem.

Jopt = w1 ISE + w2 ISI. (17)

For the optimization procedure we consider four cases. The
first one takes into account only the ISE. The second, third
and fourth take into account both, the ISE and the ISI, using
different weighting factors w1, w2, as follows:

Case 1 : w1 = 1 and w2 = 0,
Case 2 : w1 = 0.5 and w2 = 0.5,
Case 3 : w1 = 0.8 and w2 = 0.2,
Case 4 : w1 = 0.2 and w2 = 0.8,

(18)

The optimization process delivers the best values of orders
α1, α2, α0 and αk minimizing the objective function Jopt (17),
using the weighting factors (18). The Matlab PSO toolbox[20]

was used, with the most representative PSO parameters spec-
ified as:

1) Swarm size: 100
2) Number of iterations: 1 000
3) Initial inertia weight: 0.9
4) Final inertia weight: 0.4
The selection of these PSO parameters was made based on

the works by [21–23]. The remaining PSO parameters were
chosen at their default values.

For every case specified in (18), the optimization process
was carried out ten times, obtaining ten sets of values for
parameters α1, α2, α0 and αk. In order to select one set of
parameters, a criterion function J was calculated for each case,
as it is specified in (19)

J = w1 ISEnorm + w2 ISInorm, (19)

where ISEnorm and ISInorm are the normalized values of
ISE and ISI respectively. These normalized values were
calculated as

ISEnorm =
ISE − ISEmin

ISEmax − ISEmin
, (20)

and
ISInorm =

ISI − ISImin

ISImax − ISImin
, (21)

where ISEmax, ISEmin, ISImax and ISImin are the maxi-
mum and minimum values of ISE and ISI , respectively, for
the ten simulations.

The values of ISI and ISE were normalized because
their absolute values were of very different magnitudes (see
Table II), where the resulting orders are specified. Thus,
normalization allows the resulting ISInorm and ISEnorm to
lie in the same interval [0, 1], and then weighting them with
weighting factors that are also in the interval [0, 1] is much
more fair.

Analyzing the optimal set of parameters for the four cases,
some conclusions can be drawn. It can be seen that the
resulting optimal orders for Case 1 were all 1, that is, in
this case the IOMRAC is the best solution. This means that
when the control energy spent in the scheme is not taken into
account, then the classic MRAC gives the best results.
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However, for Case 2, Case 3 and Case 4, the resulting
optimal orders are fractional. This means that, at least for
this particular case analyzed, the recommended adaptive laws
should not be the classic, if it is taken into account not only
the behavior of the control error but also the energy used in
the control. This empirical conclusion opens a lot of questions
about MRAC, being a topic that deserves more research, from
which interesting and useful results could be derived.

B. Numerical Results for the Marginally Stable Plant

As it was done in the case of the unstable plant, optimization
process was carried out for the case of the marginally stable
plant as well. All the details of the procedure used with the
unstable plant were preserved, changing only the plant to
be controlled. As a result of the optimization process, the
fractional orders detailed in Table III were obtained. The
values of the criterion function J for these cases are also
specified in Table III.

If we look at Table III, it can be noted that the resulting
optimal orders for Case 1 were all 1. This is the same that
happened for the unstable plant, that is, in this case the
IOMRAC is the best solution. As we mentioned before, this
means that when the control energy spent in the scheme is
not taken into account, then the classic MRAC gives the best
results.

As it was observed for the unstable plant, in this case it can
be seen from Table III that for Case 2, Case 3 and Case 4, the
resulting optimal orders are fractional or combinations of frac-
tional and integer orders. Thus, when the energy used in the
control scheme is taken into account, then the recommended
adaptive laws should not be the integer order but fractional.

C. Numerical Results for the Stable Plant

Finally, optimization process was carried out for the case
of the stable plant. Again in this case, all the details of
the procedure used with the unstable plant were preserved,
changing only the plant to be controlled. As a result of the
optimization process, the fractional orders and the values of
J obtained are detailed in Table IV.

As can be seen from Table IV, the main difference arising
in the case of the stable plant is that the resulting optimal
orders for Case 1 are not all 1, like in the case of unstable
and marginally stable plant, but all fractional. The resulting
optimal orders for Case 2, Case 3 and Case 4, are all fractional
or combinations of fractional and integer orders, same as in
the case of the two previously studied plants. Thus, although
for the stable plant the optimal scheme for Case 1 is not the
IOMRAC, the fractional orders do remain as the best options
when the control energy spent in the scheme is taken into
account.

Remark 1. Although the work presented here is prelimi-
nary, we must point out an important issue. Beside the orders
of the adaptive laws (α1, α2, α0 and αk), MRAC schemes have
some other design parameters such as adaptive gains γ and
initial conditions of the controller parameters. In this study, we
used specific values for all these design parameters, and only
the orders of the adaptive laws were varied. For that reason,
a more complete study should include all these parameters in
the decision making, being this a topic that is currently under
investigation.

V. CONCLUSIONS

In this paper, an empirical analysis of the control energy

TABLE II
RESULTING FRACTIONAL ORDERS FROM THE OPTIMIZATION PROCESS FOR THE UNSTABLE PLANT

α1 α2 α0 αk ISI ISE J

Case 1 1 1 1 1 6 071.7 1.0781 0

Case 2 0.01 0.01 0.397 0.6331 5 451 7.7834 0.3881

Case 3 0.8058 0.1657 0.01 0.7619 5 911.7 1.9744 0.1947

Case 4 0.01 0.8818 0.01 0.01 1 471 131.0084 0.1544

TABLE III
RESULTING FRACTIONAL ORDERS FROM THE OPTIMIZATION PROCESS FOR THE MARGINALLY STABLE PLANT

α1 α2 α0 αk ISI ISE J

Case 1 1 1 1 1 4.4786 0.7313 0

Case 2 0.7953 1 0.409 1 4.4558 1.0097 0.0174

Case 3 0.6224 0.1333 0.8913 1 4.4693 0.8601 0.0011

Case 4 1 0.4239 1 0.6472 4.4556 1.2604 0.0171

TABLE IV
RESULTING FRACTIONAL ORDERS FROM THE OPTIMIZATION PROCESS FOR THE STABLE PLANT

α1 α2 α0 αk ISI ISE J

Case 1 0.6585 0.2147 0.7345 0.01 2.0052× 105 0.2402 0.2402

Case 2 1 0.6722 0.9677 0.4263 1.9968× 105 0.2718 0

Case 3 1 1 0.3875 0.1408 1.9969× 105 0.2588 0.2

Case 4 1 1 0.4185 1 1.9968× 105 0.2833 0
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used in MRAC schemes has been presented, using orders for
the adaptive laws in the interval (0, 1]. The analysis was made
through simulation studies, including optimization procedures
using PSO to select the orders of the adaptive laws. The
behavior of the control energy spent by the system was
analyzed through the integral of the squared control input ISI.
The integral of the squared control error ISE was also included
in the optimization process.

Simulation studies together with the optimization proce-
dures were carried out for three different types of plants,
and they have shown that, when the ISI is included in the
objective function of the optimization to determine the orders
of the adaptive laws, the resulting orders are fractional or
combinations of fractional and integer orders. This is a very
interesting result, since it suggests that the use of fractional
adaptive laws could play an important role in the control
energy management in MRAC schemes, which is an extremely
important issue in today industry.

Since the results presented here are preliminary, research
should be conducted to include other design parameters of the
MRAC schemes into the optimization procedures.
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An Approach to Design MIMO FO Controllers for
Unstable Nonlinear Plants
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Abstract—This paper develops an approach to control unstable
nonlinear multi-inputs multi-output (MIMO) square plants using
MIMO fractional order (FO) controllers. The controller design
uses the linear time invariant (LTI) state space representation
of the nonlinear model of the plant and the diagonal closed-
loop transfer matrix (TM) function to ensure decoupling between
inputs. Each element of the obtained MIMO controller could be
either a transfer function (TF) or a gain. A TF is associated
in turn with its corresponding FO TF. For example, a D
(Derivative) TF is related to a FO TF of the form DDDδδδ , δδδ =
[0, 1]. Two applications were performed to validate the developed
approach via experimentation: control of the angular positions
of a manipulator, and control of the car and arm positions of a
translational manipulator.

Index Terms—Fractional calculus, modeling of nonlinear sys-
tem, control of manipulator, multivariable decoupling, multivari-
able nonlinear system.

I. INTRODUCTION

CURRENTLY research for the design, application, and
tuning rules of SISO (Single-input-single-output) FO

PID controllers, such as PI−λDδ , is notably growing because
controllers designed via fractional calculus improve the control
performance and robustness over conventional IO (Integer
order) PID controllers, due mainly to the presence of two more
tuning parameters[1−3]: fractional numbers λ and δ. However,
few results about FO control of MIMO plants have been
published.

In [4], the two interacting conical tank process, a two-
input two-output stable plant, was controlled by a multiloop
FO PID configuration employing two FO PID controllers that
were tuned using the cuckoo algorithm. Reference [5] deals
with the tuning of FO PID controllers employing a genetic
algorithm. Those controllers were applied to a MIMO process.
A MIMO FO PID controller was designed in [6] to control
stable MIMO time-delay plants. The resulting controller has
a diagonal form with each diagonal element being a FO
PI controller, whose parameters were tuned using CMAES
(Covariance matrix adaptation evolution strategy). In [7], a
diagonal-form MIMO FO PI controller was designed to control
stable time-delay systems. The design procedure is based on
a steady state decoupling of the MIMO system. A MIMO
IO (Integer order) PID controller was designed using LMI
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(Linear matrix inequality) to control a MIMO FO plant in [8].
Design approaches developed in [4, 6] and [7] were tested via
simulation.

This paper develops an approach to control stable and
unstable nonlinear MIMO square plants using MIMO FO
controllers. The design procedure employs the LTI state space
representation of the nonlinear model of the the plant. Fig. 1
depicts the linear feedback control system, where the TM
function GGGp(s) of the plant is computed from its space state
description. A selected diagonal closed-loop TM function
denoted as GGGT (s) ensures decoupling between inputs. For
design purposes, each element of this TM function has the
form of a first order TF with unity gain. The step response
of this TF constitutes the desired output response of the
variable under control. Knowing GGGp(s) and GGGT (s), the MIMO
controller GGGc(s), actually the structure of the FO MIMO
controller GGGcFO(s) shown in Fig. 2, can be easily computed.
The elements of GGGc(s) could be either transfer functions or
gains. Replacing each TF of GGGc(s) with its corresponding FO
TF, GGGc(s) becomes GGGcFO(s). For instance, the FO form of
the Laplace variable s is sδ , while the FO form of s−1 is
s−λ, where δ and λ are fractional numbers between 0 and 1.
The validity of the developed design approach was verified
via experimentation using the FO nonlinear control system of
Fig. 2. Two applications were performed for such a purpose:
control of the angular positions of a manipulator, and control
of the car and arm positions of a translational manipulator.

Fig. 1. Block diagram of the linear feedback control system.

Fig. 2. Block diagram of the nonlinear FO feedback control system.

The MIMO FO controller designed in this work is novel
due to its abilities to control not only MIMO stable plants but
also nonlinear MIMO unstable ones. On the other hand, the
developed approach was verified not only via simulation, but
also by means of two real-time applications.

This paper is organized as follows. Section II deals with the
design of the MIMO FO controller for MIMO nonlinear pla-
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nts. The first and second applications are described in Sections
III and IV, respectively, while in Section V, some conclusions
derived from this work are presented and discussed.

II. DESIGN OF THE MIMO FO CONTROLLER

A MIMO nonlinear plant can be described by the following
steady state representation

Ẋ = fff(XXX,UUU), (1)

where fff is the function vector that describes the system dy-
namics. XXX and UUU are the state and control vectors, respectively.
All vectors and functions are of known order. The correspond-
ing LTI state-model can be obtained by linearization of (1)
about a nominal trajectory. That is

ẋxx = AxAxAx + BuBuBu, yyy = CxCxCx, (2)

where AAA, BBB, and CCC are the state, control and output matrices,
respectively, and yyy is the output vector. The TM function of
the linear plant (2) is obtained from

GGGp(s) = CCC(sIII −AAA)−1BBB + DDD. (3)

In (3), III is the identity matrix and all vectors and matrices
are of known orders. Fig. 1 depicts the block diagram of
the MIMO LTI control system, where GGGc(s) is the MIMO
controller, GGG(s) is the open-loop matrix function

GGG(s) = GGGp(s)GGGc(s), (4)

GGGT (s) is the closed-loop matrix function

GGGT (s) = [GGG(s) + III]−1GGG(s), (5)

and rrr, eee, uuu and yyy represent reference, error, control and output
vectors, respectively.

Consider the following diagonal closed-loop matrix function
to ensure complete decoupling between different m inputs

GGGT (s) =




GT11

. . .
GTmm


 . (6)

From (5)

GGG(s) = GGGT (s)[III −GGGT (s)]−1. (7)

Since GGGT is diagonal, [III − GGGT ] and [III − GGGT ]−1 are also
diagonal matrices. Therefore, matrix GGG takes on the diagonal
form

GGG(s) =




GT11
1−GT11

. . .
GT mm

1−GT mm


 . (8)

From Fig. 1, yyy(s) = GGGT (s)rrr(s), where rrr(s) is the reference
vector. The system error eee(t) is given by

eee(s) = rrr(s)− yyy(s) = [III −GGGT (s)]rrr(s). (9)

The necessary condition to make eee(t) = 000 in (9) is

lim
s→0

GGGT (s) = III. (10)

Introducing condition (10) in (5) results

III + GGG(0) = GGG(0). (11)

This requirement means that each element of the diagonal
matrix GGG must contain at least one integrator. Using (4) in
(5), we obtain the MIMO controller GGGc(s) depicted in Fig. 1.
That is

GGGc(s) = [GGGp(s)]−1GGGT (s)[III −GGGT (s)]−1. (12)

Elements of GGGc(s) can be either gains or TF of the form

Kc;
Ki

s
; Kds; GGGx(s) = K

M

Π
i=0

(s + zi)

N

Π
j=0

(s + pj)
, (13)

where Kc, Ki, Kd and K are real gains, and zi and pj are
poles and zeros of GGGx(s). Note in (13) that GGGx(s) is the
general form of a TF. To formulate the FO MIMO controller
denoted as GGGcFO, terms Ki

s and Kds of (13) are written as

Ki

sλ
; Kds

δ, (14)

where δ and λ are positive fractional numbers. It is worth
mentioning that intensive research is performed in finding
the FO counterpart of the TF GGGx(s) of (13). For example,
a particular case of GGGx(s) is the following lead or lag
compensator

K
(1 + s/ωb)
(1 + s/ωh)

. (15)

The corresponding FO counterpart of (15) is written as[9]

K

(
1 + s/ωk

1 + s/ωh

)r

≈ K
N

Π
k=0

(
1 + s/ω

′
k

1 + s/ωh

)
,

where 0 < ωb < ωh, K > 0, and, ωk and ω
′
k are corner

frequencies that are computed recursively. Fig. 2 depicts the
block diagram of the FO feedback control system.

For real-time implementation, it is required to have the dis-
crete form of the controller GGGcFO. The discretization method
by Muir’s recursion[10] establishes

sδ ≈
(

2
T

)δ
An(z−1, δ)

An(z−1,−δ)
, (16)

where T is the sample time. In (16), polynomials An(z−1, δ)
and An(z−1,−δ) can be computed in recursive form from

An(z−1, δ) = An−1(z−1, δ)− cnz−nAn−1(z, δ),
A0(z−1, δ) = 1,

cn =

{
δ/n, if n is odd,

0, if n is even.
(17)
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For n = 3, (17) takes on the form

A3(z−1, δ) = − 1
3δz−3 + 1

3δ2z−2 − δz−1 + 1,

A3(z−1,−δ) = 1
3δz−3 + 1

3δ2z−2 + δz−1 + 1. (18)

The developed design procedure will be validated experi-
mentally with two applications described below.

III. FIRST APPLICATION

Base position q1 and arm position q2 of a manipulator
of 2DOF (2 degrees of freedom) will be controlled using a
MIMO FO controller. Fig. 3 shows the experimental setup.
The base and the arm of the manipulator are driven by two
DC servomotors having reduction mechanism and quadrature
encoder to sense angular positions. A NI cRIO-9073 (Compact
reconfigurable input/output) device was employed to embed
the MIMO FO controller. Modules NI 9263 and NI 9401
were used to acquire angular positions and generate the
control signals, respectively. Such signals were amplified using
two PWM (Pulse width modulation) Galil motion control
amplifiers.

Fig. 3. The experimental setup of the manipulator of 2DOF.

TABLE I
VALUED PARAMETERS OF THE MANIPULATOR

Symbol Description Value Unit
Ma M. I. (Moment of inertia) 0.057 kg ·m2

J1 M. I. 0.0394 kg ·m2

J2 M. I. 0.0767 kg ·m2

Jeq Equivalent M. I. 1.1819 kg ·m2

Bq1 F.C. (Friction constant) 0.02 N ·m · s/rad
Bq2 F. C. 0.02 N ·m · s/rad
Beq Equivalent F. C. 3.2287 N ·m · s/rad
D Torque 1.6481 N ·m
n Gear ratio 12.5

Ra Armature resistance 3.5 Ω

KA Amplifier gain 2.5
Km Servomotor constant 0.0421 N ·m/A
Kb Back EMF constant 0.0565 V · s/rad
g Gravitational constant 9.81 m/s2

The following dynamic model of the manipulator was
obtained using Lagrange equations

MMM(qqq)q̈̈q̈q + PPP (qqq, q̇̇q̇q)q̇̇q̇q + ddd(qqq) = uuu, (19)

MMM =
[

M11 0
0 M22

]
, PPP =

[
P11 P12

P21 P22

]
,

ddd =
[

0
d21

]
, qqq =

[
q1

q2

]
, uuu =

[
u1

u2

]
,

M11 =
Ra

nKmKA

(
J1 + Jeq + 2Ma sin2 q2

)
,

M22 =
Ra

nKmKA
(J2 + Jeq) ,

P11 =
Ra

nKmKA

(
Beq + Bq1 +

n2KmKb

Ra

)
,

P12 =
Ra

nKmKA
(4Maq̇1 sin q2 cos q2) ,

P21 = − Ra

nKmKA
(2Maq̇1 sin q2 cos q2) ,

P22 =
Ra

nKmKA

(
Beq + Bq2 +

n2KmKb

Ra

)
,

d21 = − Ra

nKmKA
(sin q2) .

In (19), MMM = MMMT is the diagonal inertia matrix, matrices PPP
and ddd contain Coriolis and centripetal forces, and gravitational
torques, respectively. uuu represents the control vector. Table I
describes the valued parameters.

Using in (19) the approximations: sin2 q2 ≈ q2
2 ≈ 0,

q̇1 sin q2 cos q2 ≈ q̇1q2 ≈ 0, sin q2 ≈ q2, we obtain

MMM =
[

M11 0
0 M22

]
, PPP =

[
P 11 P 12

P 21 P 22

]
, ddd =

[
0

d21q2

]
,

(20)

M11 =
Ra

nKmKA
(J1 + Jeq) , M22 = M22,

P 11 = P11, P 12 = 0, P 21 = 0, P 22 = P22,

d21 = − Ra

nKmKA
.

Defining as state variables: x1 = q1, x2 = q2, x3 = q̇1, and
x4 = q̇2, the linear model (20) can be transformed into

ẋxx = AxAxAx + BuBuBu, yyy = CxCxCx, (21)

AAA =




0 0 1 0
0 0 0 1
0 0 a33 0
0 a42 0 a44


 , BBB =




0 0
0 0
1

M11
0

0 1
M22




CCC =
[

1 0 1 0
0 1 0 0

]
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a33 = − P 11

M11

, a42 = − d21

M22

, a44 = − P 22

M22

,

b31 = − 1
M11

, b42 = − 1
M22

(22)

It is not difficult to demonstrate that outputs of models given
by (19) and (21) have unstable step responses. In order to
satisfy condition (10), matrix GGGT (s) is selected as

GGGT (s) =
[ 1

1+sT1
0

0 1
1+sT2

]
, (23)

where T1 and T2 are the chosen time constants of the con-
trolled variables q1 and q2. Substituting (23) into (7), we obtain

GGG(s) =
[ 1

sT1
0

0 1
sT2

]
. (24)

Observe that GGG(s) in (24) meets requirement (11).
Note that GGGT (s) matrices having diagonal elements as

M

Π
i=0

(Tis + 1)

N

Π
j=0

(Tjs + 1)

fulfill condition (10) but not requirement (11). Therefore, such
matrices can not be employed to calculate the controller GGGc(s)
using (12).

On the other hand, step responses of first order transfer
functions as used in (23) constitute a good measure of design
specifications to be met by the controlled outputs, because
those show no overshoot, null steady state error, and time
constants that are about one quarter of the settling times of
the outputs under control.

GGGp(s) and GGGc(s) matrices are obtained using equations (3)
and (12), respectively. The controller GGGc(s) has the form

GGGc(s) =
[

Kc11 + Kd11s 0
0 Kc22 + Kd22s + Ki22

s

]
. (25)

Parameters in (25) are function of those of (22). The corre-
sponding FO controller is expressed as

GGGcFO(s) =
[

Kc11 + Kd11s
δ 0

0 Kc22 + Kd22s
δ + Ki22

sλ

]
.

(26)

From Fig. 2, the FO control force is described by

uuu(s) = GGGcFO(s)eee(s). (27)

Substituting (16) with n = 3 into (26), and using the shift
property z−nui(z) = ui(k − n) and z−nei(z) = ei(k − n), i
= 1, 2, where k is the discrete time, we obtain the following
difference equations for the control forces

u1(k) =
1
a0

[
−

6

Σ
i=1

aiu1(k − i) +
6

Σ
j=0

bje1(k − j)
]

,

u2(k) =
1
a0

[
−

6

Σ
i=1

aiu2(k − i) +
6

Σ
j=0

hje2(k − j)
]

. (28)

In (28), all ai, bj and hj are known constants, for instance

a6 = −δλ, a0 = 1,

b6 =
1
9
Kd11δλ(

2
T

)δ − 1
9
Kc11δλ,

h6 =
1
9
Kd22δλ(

2
T

)δ − 1
9
Kc22δλ− 1

9
Ki22δλ(

2
T

)−λ,

where T is the sampling time selected as 1 ms in this work.
The FO control system was simulated in Mathscript with time
constants T1 and T2 and FO parameters δ and λ set to 0.5,
0.5, 0.5 and 0.9, respectively. The other gains were taken from
(25): Kc11 = 10.7, Kd11 = 0.866, Kc22 = 26.74, Kd22 = 4.66,
Ki22 = −13.2786. For the experimentation phase, Kc11 was
set to 15. Figs. 4 and 5 depict the experimental results.

Fig. 4. Controlled base position q1(t) of the manipulator with
respect to step wise references.

Fig. 5. Controlled arm position q2(t) of the manipulator with respect
to step wise references.
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IV. SECOND APPLICATION

The linear position q1 of the car and the angular position q2

of the arm of a translational manipulator of 2DOF shown in
Fig. 6 will be controlled with a MIMO FO controller. The
manipulator possesses two DC servomotors with reduction
mechanism and quadrature encoders to sense angular posi-
tions. One servomotor is attached to the axis of one of the
two pulleys. Those pulleys carry a cable to transmit the force
to translate the car, which is mounted on rails. The other
servomotor is mounted on the car to drive the arm. This
application uses the same experimental setup as the first one.

Fig. 6. The translational manipulator of 2DOF.

The dynamic model of the manipulator was also obtained
employing Lagrange equations. The resulting nonlinear model
takes on the form

MMM(qqq)q̈qq + PPP (qqq, q̇qq)q̇qq + ddd(qqq) = uuu (29)

qqq =
[

q1

q2

]
=

[
r
θ

]
, uuu =

[
u1

u2

]
, ddd =

[
0

d21

]
,

MMM =
[

M11 M12

M21 M22

]
, PPP =

[
P11 P12

0 P22

]
,

M11 =
Jx + m1

KxKA1
, M12 =

m2

KxKA1
cos θ,

M21 =
m2

rpKxKA2
cos θ, M22 =

Jeq2 + Jt

rpKxKA2
,

P11 =
Bx + BF

KxKA1
, P12 = − m2

KxKA1
θ̇ sin θ,

P22 =
n2KmKb

Ra + Beq2 + BT

rpKxKA2
,

d21 = − gm2

rpKxKA2
sin θ.

Observe that matrix MMM in (29) is neither diagonal nor sym-
metric which makes the manipulator more challenging to
be controlled. Recall that matrix MMM in (20) was diagonal.
Table II describes the valued parameters of the translational
manipulator.

TABLE II
VALUED PARAMETERS OF THE MANIPULATOR

Symbol Description Value Units
rp Pulley radio 0.05 m
KA Amplifier gain 2.5
Kx Constant 1.9858 N/A
Kb Emf constant 0.0565 V · s/rad
Ra Armature resistance 5.3 Ω

Km Motor constant 0.0421 N ·m/A
Jx Mass 450.65 kg
Jt Moment of inertia 0.0325 kg ·m2

Jeq2 Moment of inertia 1.126 kg ·m2

BT Friction constant 1.8 N ·m/rad/s
BF Friction constant 2.81 kg/s
Bx Constant 2 039.5 kg/s/m2

Beq2 Friction constant 3.2287 kg/s
m1 Mass 2.2 kg
m2 Work 0.0695 kg ·m
g Gravitational constant 9.81 m/s2

n Gear ratio 12.5

On using the approximations cos θ ≈ 1, sin θ ≈ θ and
θ̇ sin θ ≈ 0 in (29), we obtain

M11 = M11, M12 =
m2

KxKA1
, M21 =

m2

rpKxKA2
,

M22 = M22, P 11 = P11, P 12 = 0, P 22 = P22,

d21 = − gm2

rpKxKA2
. (30)

Defining as state variables: x1 = r, x2 = θ, x3 = ṙ and
x4 = θ̇, the nonlinear model of (29) using (30) can be
transformed into the following state equation

ẋxx = AxAxAx + BuBuBu, yyy = CxCxCx, (31)

AAA =




0 0 1 0
0 0 0 1
0 a32 a33 a34

0 a42 a43 a44


 , BBB =




0 0
0 0

b31 b32

b41 b42


 ,

CCC =
[

1 0 1 0
0 1 0 0

]
,

a32 =
M12d21

den
, a33 = −M22P 11

den
,

a34 =
M12P 22

den
, a42 = −M11d21

den
,

a43 =
M21P 11

den
, a44 = −M11P 22

den
,

b31 =
M22

den
, b32 = −M12

den
,

b41 = −M21

den
, b42 =

M11

den
,

den = M11M22 −M12M21. (32)

It is not difficult to prove that outputs of models given by (29)
and (31) possess unstable step responses. According to (10),
GGGT (s) matrix is chosen as in (23). GGGp(s), GGGc(s) and GGG(s)
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matrices are obtained using (3), (12) and (4), respectively.
GGG(s) results in a matrix that has the same form as (24). The
GGGc(s) matrix is calculated using relation (12)

GGGc(s) =




Kc11 + Kd11s Kc12 + Ki12
s + Kd12s

Kc21 + Kd21s Kc22 + Ki22
s + Kd22s


 . (33)

Parameters of (33) are function of parameters described in
(32). The corresponding FO controller is expressed as

GGGcFO(s)

=




Kc11 + Kd11s
δ Kc12 + Ki12

sλ + Kd12s
δ

Kc21 + Kd21s
δ Kc22 + Ki22

sλ + Kd22s
δ


 . (34)

Compare (33) with (25) and (34) with (26). Replacing (16)
with n = 3 in (34), and then employing the shift property, we
obtain the following difference equations for the vector control
(27)

u1(k) =
1
a0

[
−

6

Σ
i=1

aiu1(k − i) +
6

Σ
j=0

bje1(k − j)

+
6

Σ
j=0

cje2(k − j)
]

,

u2(k) =
1
a0

[
−

6

Σ
i=1

aiu2(k − i) +
6

Σ
j=0

gje2(k − j)

+
6

Σ
j=0

hje2(k − j)
]

. (35)

In (35), k is the discrete time, and all ai, bj and hj are known
constants as in (27). T , the sampling time, was selected to
be 1 ms. The FO control system for this manipulator was
simulated in Mathscript with time constants T1 and T2 and FO
parameters δ and λ set to 0.3, 0.5, 0.6 and 0.75, respectively.
The other gains were taken from (31): Kc11 =220, Kd11 =
1, Kc12 = 0, Ki12 = 0; Kd12 = 0.028, Kc21 = 0, Kd21

= 0.0093, Kc22 = 20, Kd22 = 10, Ki22 = −5. For the
experimentation phase, Kc11 was set to 25. Figs. 7 and 8 depict
the experimental results.

V. CONCLUSIONS

In light of the results in Sections III and IV, the main goal of
this work has been achieved: experimental verification of the
design approach to control nonlinear MIMO processes using
MIMO FO controllers.

The nonlinear model of the plant is necessary to obtain the
linear model required to design the structure of the FO con-
troller, and to test via simulation the designed FO controller. In
the simulation phase, controller parameters were tuned using
the trial and error method. Such valued parameters were used
with few modifications for the experimentation phase.

Fig. 7. Controlled car position q1(t) of the manipulator with respect
to step wise references.

Fig. 8. Controlled arm position q2(t) of the manipulator with respect
to step wise references.

Intensive work has been done in tuning rules development
for FO SISO (Single-input single-output) controllers. It is still
under research to extend the results for FO MIMO controllers.
No tuning methods for controllers of the forms given by (26)
and (34) have been reported. Moreover, depending on the
application, the structure of a FO MIMO controller can change
(compare (26) with (34)), making the development of proper
tuning rules difficult. For such reasons, this work employed
the trial and error method.

MIMO FO controllers designed in [4, 6], and [7] were
tuned using different methods, because such controllers have
diagonal forms with each diagonal element being a FO SISO
controller.

This work is novel because unlike others the designed FO
MIMO controller can be applied not only to stable MIMO
plants, but also to nonlinear unstable MIMO plants. This
approach was tested not only via simulation but also via
experimentation.

The proposed design procedure can also be applied to
MIMO time-delay plants. In order to obtain a LTI state space
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description of the plant, TF containing time-delays need to be
replaced by equivalent TF. For example[11]

1
2s + 1

e−2s ≈ 1
(s + 1)4

It is necessary to perform more research related to the design
of a FO MIMO controller when the structure of the controller,
matrices (25) and (33) for example, has terms of the form

Gx(s) = K

M

Π
i=0

(s + zi)

N

Π
j=0

(s + pj)
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[3] Chen Y, Petrǎš I, Xue D. Fractional order control - a tutorial. In:
Proceedings of the 2009 American Control Conference. St. Louis, MO,
USA: IEEE, 2009. 1397−1411

[4] Banu U S, Lakshmanaprabu S K. Multiloop fractional order PID
controller tuned using cuckoo algorithm for two interacting conical
tank process. World Academy of Science, Engineering and Technology,
International Journal of Mechanical and Mechatronics Engineering, 2015,
2(1): 742

[5] Moradi M. A genetic-multivariable fractional order PID control to multi-
input multi-output processes. Journal of Process Control, 2014, 24(4):
336−343

[6] Sivananaithaperumal S, Baskar S. Design of multivariable fractional or-
der PID controller using covariance matrix adaptation evolution strategy.
Archives of Control Sciences, 2014, 24(2): 235−251

[7] Muresan C I, Dulf E H, Ionescu C M. Multivariable fractional order PI
controller for time delay processes. In: Proceedings of the 2012 Inter-
national Conference on Engineering and Applied Science. Colombo, Sri
Lanka, 2012.

[8] Song X N, Chen Y Q, Tejado I, Vinagre B M. Multivariable fractional
order PID controller design via LMI approach. In: Proceedings of the
18th IFAC World Congress. Milano, Italy: IFAC, 2011. 13960−13965

[9] Malti R, Melchior P, Lanusse P, Oustaloup A. Towards an object
oriented CRONE toolbox for fractional differential systems. In: Pro-
ceedings of the 18th IFAC World Congress. Milano, Italy: IFAC, 2011.
10830−10835
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Controllability of Fractional Order Stochastic

Differential Inclusions with Fractional

Brownian Motion in Finite Dimensional Space
T. Sathiyaraj and P. Balasubramaniam

Abstract—In this paper, sufficient conditions are formulated for
controllability of fractional order stochastic differential inclusions
with fractional Brownian motion (fBm) via fixed point theorems,
namely the Bohnenblust-Karlin fixed point theorem for the
convex case and the Covitz-Nadler fixed point theorem for the
nonconvex case. The controllability Grammian matrix is defined
by using Mittag-Leffler matrix function. Finally, a numerical
example is presented to illustrate the efficiency of the obtained
theoretical results.

Index Terms—Controllability, fractional Brownian motion,
fractional order derivatives, Mittag-Leffler function, stochastic
differential inclusions.

I. INTRODUCTION

MANY real dynamical systems are better characterized
by using a non-integer order dynamic model based

on fractional calculus or, differentiation or integration of
non-integer order. The concept of fractional calculus has
tremendous potential to change the model and control the
nature around us. Fractional differential equations serve as
an appropriate phenomenon such that it can even describe
the real world problems which are impossible to describe
using classical integer order differential equations. Over the
past decades, the theory of fractional differential equation
received more attention, and has obtained a prior position
in the field of physics, signal processing, fluid mechanics,
viscoelasticity, mathematical biology, electro chemistry and
many other science and engineering areas, for details one may
refer the books[1−5]. In recent years, fractional control tech-
niques provide an effective way to control dynamic behaviours
through the model of fractional differential equations[6]. Tun-
ing and auto-tuning of fractional order controllers for industrial
applications have been well developed see [7] and its advanced
applications in various branches of physics, economics and
engineering sciences, see [8−9] and references therein.
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Control theory is an interdisciplinary branch of application-
oriented mathematics which deals with basic principles under-
lying the analysis and design of control systems. The objective
of control theory is to make systems to perform specific tasks
using suitable control actions. Such behaviour is seen in a
range of problems from mechanics, optimal control, ecology,
industrial robotics, aeronautics, transportation, biotechnology,
medical models, etc. Controllability of dynamical systems is
one of the fundamental notions of modern control theory. Gen-
erally speaking, controllability enables one to steer the control
system from an arbitrary initial state to an arbitrary final state
using the set of admissible controls. This concept leads to
some important conclusions regarding the behaviour of linear
and nonlinear dynamical systems. Controllability of fractional
order deterministic and stochastic dynamical systems in finite
dimensional space has been studied in [10−11]. Controllability
for neutral stochastic functional differential inclusions with
infinite delay in abstract space has been studied recently in
[12]. Controllability of linear stochastic systems has been
investigated in [13].

On the other hand, the theory of differential inclusions has
become an active area of investigation due to its applications
in various fields such as mechanics, electrical engineering,
medicine biology, ecology and so on[12,14−15]. Stochastic
differential equations driven by fBm have attracted great inter-
est and potential applications in telecommunication networks,
finance markets, biology and other fields[16−17].

However, to the best of our knowledge there are limited
works considering the existence of solutions, and controlla-
bility results of integer order stochastic differential inclusions
in finite and infinite dimensional space[12,15]. Fractional order
Riemann-Liouville integral inclusions with two independent
variables and multiple delays have been illustrated in [14].
Balasubramaniam[15] proposed existence of solutions of func-
tional stochastic differential inclusions, whereas Balachandran
and Kokila[10] have obtained the controllability of fractional
dynamical systems, although controllability of impulsive neu-
tral stochastic differential equations with fBm was established
in [18]. In this paper, we study the controllability of fractional
order stochastic differential inclusions with fBm,

CDqx(t) ∈ Ax(t) + Bu(t) + f(t, x(t))

+
∫ t

0

G(s, x(s))dWH
(s), t ∈ J,
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x(0) = x0, (1)

where [0, T ] := J , CDq denotes Caputo derivative of frac-
tional order q, A and B are matrices of dimensions n × n
and n ×m respectively, x ∈ Rn, u ∈ Rm are the state and
control vectors. The nonlinear functions f, G are appropriate
functions to be defined later. WH

t is a fBm with the Hurst
parameter H ∈ ( 1

2 , 1) and defined by its stochastic represen-
tation

WH
(t) : =

1
Γ

(
H + 1

2

)
( ∫ 0

−∞
[(t− s)H− 1

2

− (−s)H− 1
2 ]dW (s)

+
∫ t

0

(t− s)H− 1
2 dW (s)

)
, (2)

where Γ represents the Gamma function Γ(α) :=∫∞
0

xα−1 exp(−x)dx and 0 < H < 1. The integrator W is
a stochastic process of ordinary Brownian motion. Note that

W is recovered by taking H =
1
2

in (2). The proposed work
on the controllability of fractional order stochastic differential
inclusions with fBm in finite dimensional space is new to the
literature.

The paper is organized as follows: In Section II, we recall
some essential results on the basic definitions of fractional
integral and derivatives, lemmas, propositions, notations, and
some mild conditions to obtain the controllability results
successfully. In Section III, we study the controllability results
for the fractional system (1) under the fixed point theorems.
Numerical example is illustrated in Section IV to show the
effectiveness of the derived results. Finally, conclusion and
future work is drawn in Section V.

II. PRELIMINARIES

It is well known that the fractional order integral and
derivative operators, namely Riemann-Liouville, Caputo and
Mittag-Leffler function play a vital role to find the solution
of fractional differential equation. The following definitions
and properties are well known, for a suitable function f ∈
L1(R+),R+ = [0,∞). For more details, see [4, 9, 19].

Let q > 0, p > 0 with n− 1 < q < n, n− 1 < p < n, and
n ∈ N. Let Rm be the m-dimensional Euclidean space.

Definition 1. The fractional integral of order q with the
lower limit 0 for a function f is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds, t > 0,

provided the right-hand side is pointwise defined on [0,∞),
where Γ(·) is the gamma function. The Laplace transform of
the Riemann-Liouville fractional integral is given by

L{Iq
t f(t)} =

1
λq

f̂(λ),

where

f̂(λ) =
∫ ∞

0

e−λtf(t)dt, Re(λ) > w.

Definition 2. Riemann-Liouville derivative of order q with
lower limit zero for a function f : [0,∞) −→ R can be written
as

LDqf(t) =
1

Γ(n− q)
dn

dtn

∫ t

0

f(s)
(t− s)q+1−n

ds.

Definition 3. The Caputo fractional derivative of order q
for a function f : [0,∞) −→ R can be written as

CDqf(t) = In−qDnf(t)

=
1

Γ(n− q)

∫ t

0

(t− s)n−q+1fn(s)ds.

In particular, IqCDqf(t) = f(t) − f(0). The following is a
well-known relation

CDqf(t) = LDqf(t)

−
n−1∑

k=0

tk−q

Γ(k − q + 1)
f (k)(0+),

n = R(q) + 1.

Definition 4. Now, consider the well-known Mittag-Leffler
function:
A two parameter function of the Mittag-Leffler type function
is defined by the series expansion

Eq,p(z) =
∞∑

k=0

zk

Γ(kq + p)
, q, p > 0, z ∈ C.

The general Mittag-Leffler function satisfies the following
identity:

∫ ∞

0

e−ttp−1Eq,p(tqz)dt =
1

1− z
for |z| < 1.

The most interesting properties of the Mittag-Leffler function
are associated with their Laplace integral

∫ ∞

0

e−sttp−1Eq,p(±atq)dt =
sq−p

(sq ∓ a)
.

That is,

L{tp−1Eq,p(±atq)}(s) =
sq−p

(sq ∓ a)
,

for R(s) > |a| 1q and R(p) > 0. In particular, for p = 1,

Eq,1(azq) = Eq(azq) =
∞∑

k=0

akzkq

Γ(qk + 1)
, a, z ∈ C,

have the interesting property
CDqEq(azq) = aEq(azq),

and
L{Eq(±atq)}(s) =

sq−1

sq ∓ a
for p = 1.

Let us consider the linear fractional stochastic differential
inclusions with fBm is represented in the following form

CDqx(t) ∈ Ax(t) + Bu(t) + f(t)

+
∫ t

0

G(s)dWH
(s), t ∈ J,

x(0) = x0, (3)
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where CDq, x(t), u(t) and WH
(s) are same as defined above,

f : J −→ Rn and G : J −→ Rn×n. Now applying the
Riemann-Liouville integral operator on both sides[20], we get

x(t) = x0 +
1

Γ(q)

∫ t

0

(t− s)q−1
[
Ax(s) + Bu(s)

+f(s) +
∫ s

0

G(θ)dWH
(θ)

]
ds.

Taking Laplace transformation on both sides, we have

x̂(s) =
1
s
x0 +

1
sq

Ax̂(s) +
1
sq

Bû(s) +
1
sq

f̂(s)

+
1
sq

Ĝ(s).

Taking inverse Laplace transformation on both sides, we get
solution of system (3) by the expression (see [10, 19, 21] given
by

x(t) = Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×
[
Bu(s) + f(s) +

∫ s

0

G(θ)dWH
(θ)

]
ds.

In this paper, we adopt the following notations.
Let (Ω,F , P ) denote the complete probability space with

a right continuous and complete filtration {Ft, t ∈ J} (Ft

the σ−algebra generated by the random variables {WH
(s), s ∈

[0, t]} and P−null set) and satisfying Ft ⊂ F . Let
L2(Ω,F ,Rn) be the space of all square-integrable random
variables with values in Rn. Let B = C(J,Rn) be the Banach
space. Denote the class of Rn− valued stochastic processes
{ξ(t) : t ∈ J} which is Ft− adapted and have a finite second
moments, that is

‖ξ‖ = sup
t

(
E|ξ(t)|2)

1
2 < ∞.

Definition 5. A normalized fBm WH = {WH
(t) : 0 ≤ t <

∞} with 0 < H < 1 on (Ω,F , P ) is uniquely characterized
by the following properties:

1) WH
(t) has stationary increments;

2) WH
(0) = 0, and EWH

(t) = 0 for t ≥ 0;

3) WH
(t) has a Gaussian distribution for t > 0.

From the above three properties it follows that the covariance
function is given by

RH(s, t) = E
(
WH

(s)W
H
(t)

)

=
1
2

{
t2H + s2H − |t− s|2H

}
,

for 0 < s ≤ t. (4)

The values of H determines what kind of process the fBm is:
1) if H = 1

2 then the process is in fact a Brownian motion
or Wiener process,

2) if H > 1
2 then the increments of the process are positively

correlated,
3) if H < 1

2 then the increments of the process are
negatively correlated.

Moreover, WH has the integral representation

WH
(t) =

∫ t

0

KH(t, s)dW(s)

where W is a standard Wiener process and the kernel KH(t, s)
defined as

KH(t, s) = CHs
1
2−H

∫ t

s

(u− s)H− 3
2 uH− 1

2 du

and
∂K

∂t
(t, s) = CH

(
t

s

)H− 1
2

(t− s)H− 3
2

where

CH =
[

H(2H − 1)
W (2− 2H, H − 1

2 )

] 1
2

t > s.

Remark 1. For Gaussian process, the mean and covari-
ance structure determine the finite dimensional distribution
uniquely. Therefore, we conclude from (4) that {WH

(at) :
0 ≤ t < ∞} and {aHWH

(t) : 0 ≤ t < ∞} have the
same finite-dimensional distribution fBm. In fact, fBm is the
only Gaussian process with stationary increments that is self-
similar.

Let (X, ‖ · ‖) be a Banach space. Denote Pcl(X) = {Y ∈
P(X) : Y is closed},Pbd(X) ={Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact} and Pcp,cv(X) =
{Y ∈ P(X) : Y is compact and convex}.

For more details on multivalued maps, readers can refer the
books[22−25].

Definition 6. A multivalued map T : X −→ P(X) is con-
vex (closed) valued if T (x) is convex (closed) for all x ∈ X. T
is bounded on bounded sets if T (B) =

⋃
x∈B T (x) is bounded

in X for all B ∈ Pbd(X)(i.e. supx∈B supy∈T (x) ‖y‖ < ∞).
Definition 7. T is called upper semi-continuous on X if for

each x0 ∈ X, the set T (x0) is a nonempty closed subset of
X, and if for each open set N of X containing T (x0), there
exists an open neighborhood N0 of x0 such that T (N0) ⊆ N.

Definition 8. T is said to be completely continuous if T (B)
is relatively compact for every B ∈ Pbd(X). T has a fixed
point if there is x ∈ X such that x ∈ T (x). The fixed point
set of the multivalued operator T will be denoted by FixT.

Definition 9. A multivalued map T : X −→ Pcl(Rn)
is said to be measurable if for every v ∈ Rn, the function
x 7→ d(v, T (x)) = inf{‖v − z‖ : z ∈ T (x)} is measurable.

For each x ∈ L2(J,Rn), x(t) > 0 defines the set of
selections of G by σ ∈ NG,x = {σ ∈ L2(J,Rn) : σ(t) ∈
G(t, x(t)) for almost everywhere (a.e.) t ∈ J}.

Lemma 1[24]. Let T be a completely continuous multival-
ued map with nonempty compact values, then T is upper
semi-continuous if and only if T has a closed graph (i.e.
xn −→ x, yn −→ y, yn ∈ T (xn) imply y ∈ T (x)).

Definition 10. A multivalued map T : J ×Rn −→ P(Rn)
is said to be L2-Caratheodory if

1) t 7→ T (t, x) is measurable for each x ∈ Rn,
2) x 7→ T (t, x) is upper semi-continuous for almost all

t ∈ J,
3) for each ρ > 0, there exists ϕρ ∈ L1(J,R+) such that

‖T (t, x)‖2 := sup{E‖σ‖2 : σ ∈ T (t, x)} ≤ ϕρ(t)
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for all ‖x‖2Rn ≤ ρ and for a.e. t ∈ J.

Lemma 2[26]. Let X be a Banach space. Let T : J ×
X −→ Pcp,cv(X) be a L2-Caratheodory multivalued map
with NG,x 6= ∅ and let Λ be a linear continuous mapping
from L2(J,X) to C(J,X), then the operator

Λ ◦NG : C(J,X) −→ Pcp,cv(C(J,X)),
x 7→ (Λ ◦NG)(x) := Λ(NG,x)

is a closed graph operator in C(J,X)× C(J,X).
Proposition 1[27]. Let X be a separable Banach space. Let

G1, G2 : J −→ Pcp(X) be measurable multivalued maps,
then the multivalued map t 7→ G1(t) ∩G2(t) is measurable.

Theorem 1[27]. Let X be a separable metric space, (T,L)
be a measurable space, G is a multivalued map from T to
complete nonempty subset of X. If for each open set U in
X, G(U) = {t : G(t) ∩ U 6= ∅} ∈ L, then G admits a
measurable selection.

Definition 11. A stochastic process x ∈ B is said to be a
mild solution of system (1) if x(0) = x0, u(·) ∈ L2

Ft
(J,Rm)

and there exists σ ∈ NG,x such that σ(t) ∈ G(t, x(t)), t ∈ J
and

x(t) = Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)Bu(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×
(∫ s

0

σ(θ)dWH
(θ)

)
ds.

Definition 12. The system (1) is said to be controllable on
J if for every x0, x1 ∈ Rn there exists a control u(t) such
that the solution x(t) of (1) satisfies the conditions x(0) = x0

and x(T ) = x1.
Let (X, d) be a metric space induced from (X, ‖ · ‖) be

a square normed space. Consider Hd : P(X) × P(X) −→
R+ ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where

d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b).

Then (Pbd,cl(X),Hd) is a metric space and (Pcl(X),Hd) is
a generalized metric space (see [25]).

Definition 13. A multivalued operator Φ : X −→ Pcl(X)
is called

1) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(Φ(x),Φ(y)) ≤ γd(x, y)

for each x, y ∈ X,
2) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 3[28] (Bohnenblust-Karlin). Let X be a Banach
space and K ∈ Pcl,cv(X) and suppose that the operator
Φ : K −→ Pcl,cv(K) is upper semi-continuous and the set

Φ(K) is relatively compact in X. Then Φ has a fixed point in
K.

Lemma 4[29] (Covitz-Nadler). Let (X, d) be a complete
metric space. If Φ : X −→ Pcl(X) is a contraction, then Φ
has fixed points.

In order to prove the controllability results we assume the
following mild conditions.

H1) The multivalued map G : J ×Rn −→ P(Rn) be an L2-
Caratheodory function satisfying the following conditions

i) for each t ∈ J, x ∈ Rn the function G(t, ·) :
Rn −→ P(Rn) is upper semi-continuous. The
function G(·, x) : J −→ P(Rn) is measurable and
for each x ∈ Rn the set NG,x = {σ ∈ L2(J,Rn) :
σ(t) ∈ G(t, x(t)) for a.e. t ∈ J} is nonempty,

ii) There exists a positive function ϕρ : J → R+ such
that sup

{∫ t

0
E‖σ(s)‖2ds : σ(t) ∈ G(t, x(t))

}
≤

ϕρ(t) for a.e. t ∈ J and the function s −→ (t −
s)q−1ϕρ(s) ∈ L1([0, t],R+)

lim
ρ−→∞

inf

∫ t

0
(t− s)q−1ϕρ(s)ds

ρ
= η < ∞.

H2) The functions f : J ×Rn −→ Rn, σ : J −→ Rn×n are
continuous and there exists a constant Mf > 0 such that

i) E‖f(t, x)‖2 ≤ Mf (1 + ‖x‖2),
ii) E‖ ∫ t

0
σ(s)dWH

(s)‖2 ≤ 2Ht2H−1
∫ t

0
‖σ(s)‖2L2ds.

H3) The linear stochastic differential inclusions (3) are con-
trollable on J if and only if the controllability Grammian
matrix

W =
∫ T

0

(T − s)q−1[Eq,q(A(T − s)q)B]

×[Eq,q(A(T − s)q)B]∗ds

is positive definite, for some T > 0 (see [20]).
H4) The multifunction G : J × Rn −→ Pcp(Rn) has the

property that G(·, x) : J −→ Pcp(Rn) is measurable for
each x ∈ Rn.

H5) There exists a non-negative function m ∈ L2(J) such
that

Hd(G(t, x), G(t, y)) ≤ m(t)‖x− y‖2

for every x, y ∈ Rn, and

d(0, G(t, 0)) ≤ m(t)

a.e. t ∈ J.

For convenience, let us introduce the following constants
a1 = sup ‖Eq,q(A(T−s)q)‖2, a2 = sup ‖Eq(AT q)x0‖2, l =
‖W−1‖2.
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III. MAIN RESULTS

In this section, we discuss the controllability criteria of
fractional order stochastic differential inclusions with fBm.
The fixed point technique is effectively used to study the
controllability of nonlinear systems. The essential part of this
method is to guarantee the existence of an invariant subset
for an appropriate nonlinear operator. Due to their importance,
several researchers have used different kinds of fixed point the-
orems. Here the controllability results are obtained by adopting
Bohnenblust-Karlin fixed point theorem for the convex case
and the Covitz-Nadler for the nonconvex case.

Theorem 2 (Convex Case). Suppose that the hypotheses
H1)-H3) are satisfied, then the system (1) is controllable on
J, provided that the following holds

1 > 4a2

(
1 + 4

T 2q

q2
a2
1‖B‖2‖B∗‖2l

)
+ 16

T 2q

q2

× a2
1‖B‖2l‖B∗‖2‖x1‖2 + 4

T 2q

q2
a1Mf

× (1 + E‖x‖2)
(

1 + 4
T 2q

q2
a2
1‖B‖2l‖B∗‖2

)

+ 4
T q

q
a12HT 2H−1η

×
(

1 + 4
T 2q

q2
a2
1‖B‖2l‖B∗‖2

)
. (5)

Proof. For any arbitrary function x ∈ Rn, we can define
the control function ux(t)

ux(t) =B∗Eq,q(A∗(T − t)q)W−1
{

x1 − Eq(AT q)x0

−
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)

×
[
f(s, x(s)) +

∫ s

0

σ(θ)dWH
(θ)

]
ds

}

where t ∈ J, σ ∈ NG,x. Using the above control, we show
that the operator Φ : B −→ P(B), defined as

Φ(x) =
{

Ψ ∈ B : Ψ(t) = Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×
[
Bu(s) + f(s, x(s)) +

∫ s

0

σ(θ)dWH
(θ)

]
ds,

t ∈ J, σ ∈ NG,x

}

has a fixed point x, which is a solution of the system (1). We
observe that x1 ∈ (Φx)(T ) which means that ux steers the
system (1) from x0 to x1 in finite time T. This implies that
system (1) is controllable on J.

We now show that Φ satisfies all the conditions of Lemma
3. For the sake of convenience, we subdivide the proof into
four steps.

Step 1. Φ is convex, for each x ∈ B.

In fact, if Ψ1,Ψ2 ∈ Φ(x), then there exists σ1, σ2 ∈ NG,x

such that for each t ∈ J, we have

Ψi(t) =Eq(Atq)x0 +
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×BB∗Eq,q(A∗(T − s)q)W−1
{

x1

−Eq(AT q)x0 −
∫ T

0

(T − s)q−1

×Eq,q(A(T − s)q)
[
f(s, x(s))

+
∫ s

0

σi(θ)dWH
(θ)

]
ds

}
(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
[
f(s, x(s))

+
∫ s

0

σi(θ)dWH
(θ)

]
ds, i = 1, 2.

Let 0 ≤ λ ≤ 1, then for each t ∈ J, we have

[λΨ1 + (1− λ)Ψ2](t)

= Eq(Atq)x0 +
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×BB∗Eq,q(A∗(T − s)q)W−1
{

x1

− Eq(AT q)x0 −
∫ T

0

(T − s)q−1

× Eq,q(A(T − s)q)
[
f(s, x(s))

+
∫ s

0

[λσ1(θ) + (1− λ)σ2(θ)]dWH
(θ)

]
ds

}
(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
[
f(s, x(s))

+
∫ s

0

[λσ1(θ) + (1− λ)σ2(θ)]dWH
(θ)

]
ds.

It is easy to see that NG,x is convex since G has convex values.
So, λσ1 +(1−λ)σ2 ∈ NG,x. Thus, λΨ1 +(1−λ)Ψ2 ∈ Φ(x).

Step 2. For each positive number ρ > 0, let Bρ = {x ∈ B :
‖x‖2B ≤ ρ}. Obviously, Bρ is a bounded, closed and convex
set of B. We claim that there exists a positive number ρ such
that Φ(Bρ) ⊂ Bρ.

If this is not true, then for each positive number ρ, there
exists a function xρ ∈ Bρ, but Φ(xρ) /∈ Bρ i.e. ‖Φ(xρ)‖2B ≡
sup{‖Ψ‖2B : Ψρ ∈ (Φxρ)} > ρ and

Ψρ(t) = Eq(Atq)x0 +
∫ t

0

(t− s)q−1Eq, q (A(T − s)q)

×
[
Buρ

x(s) + f(s, xρ(s)) +
∫ s

0

σρ(θ)dWH
(θ)

]
ds

for some σρ ∈ NG,xρ . Using H2) we have

E‖ux(t)‖2

≤ 4 ‖B∗‖2 ‖Eq,q(A∗(T − t)q)‖2 ∥∥W−1
∥∥2

×
{
‖x1‖2 + ‖Eq(AT q)x0‖2

+ E
∥∥∥

∫ T

0

(T − s)q−1
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× Eq,q(A(T − s)q)f(s, x(s))ds
∥∥∥

2

+ E
∥∥∥

∫ T

0

(T − s)q−1Eq,q(A(T − s)q)

×
(∫ s

0

σ(θ)dWH
(θ)

)
ds

∥∥∥
2}

≤ 4 ‖B∗‖2 a1l‖x1‖2

+ 4 ‖B∗‖2 a1la2 + 4 ‖B∗‖2 a2
1l

T 2q

q2
Mf

× (1 + E‖x‖2) + 4 ‖B∗‖2 a2
1l2HT 2H−1

× T q

q

∫ T

0

(T − s)q−1ϕρ(s)ds,

and, we find that

ρ < E‖(Φxρ)(t)‖2
≤ 4E ‖Eq(Atq)x0‖2

+ 4E
∥∥∥

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×Buρ
x(s)ds

∥∥∥
2

+ 4E
∥∥∥

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

× f(s, xρ(s))ds
∥∥∥

2

+ 4E
∥∥∥

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×
(∫ s

0

σρ(θ)dWH
(θ)

)
ds

∥∥∥
2

≤ 4a2 + 16
T 2q

q2
a2
1‖B‖2l‖B∗‖2‖x1‖2

+ 16
T 2q

q2
a2
1a2‖B‖2l‖B∗‖2 + 4

T 2q

q2
a1‖B‖2

×
(

4‖B∗‖2a2
1l

T 2q

q2
Mf (1 + E‖x‖2)

)

+ 4
T 2q

q2
a1‖B‖2

×
(
4‖B∗‖2a2

1l
T q

q
2HT 2H−1

×
∫ T

0

(T − s)q−1ϕρ(s)ds
)

+ 4
T 2q

q2
a1Mf (1 + E‖x‖2)

+ 4
T q

q
a12HT 2H−1

∫ T

0

(T − s)q−1ϕρ(s)ds

≤ 4a2

(
1 + 4

T 2q

q2
a2
1‖B‖2l‖B∗‖2

)
+ 16

T 2q

q2
a2
1

× ‖B‖2l‖B∗‖2‖x1‖2 + 4
T 2q

q2
a1Mf

× (1 + E‖x‖2)
(

1 + 4
T 2q

q2
a2
1‖B‖2l‖B∗‖2

)

+ 4
T q

q
a12HT 2H−1

∫ T

0

(T − s)q−1ϕρ(s)ds

×
(

1 + 4
T 2q

q2
a2
1‖B‖2l‖B∗‖2

)
.

Dividing both sides of the above inequality by ρ and taking
limit as ρ −→∞, using H1) we get

1 ≤ 4a2

(
1 + 4

T 2q

q2
a2
1‖B‖2l‖B∗‖2

)

+ 16
T 2q

q2
a2
1‖B‖2l‖B∗‖2‖x1‖2 + 4

T 2q

q2
a1Mf

× (1 + E‖x‖2)
(

1 + 4
T 2q

q2
a2
1‖B‖2l‖B∗‖2

)

+ 4
T q

q
a12HT 2H−1η

×
(

1 + 4
T 2q

q2
a2
1‖B‖2l‖B∗‖2

)
,

which is a contradiction to (5). Hence, for some ρ >
0, Φ(Bρ) ⊂ Bρ.

Step 3. Compactness of Φ.
To prove this, we first prove that the set Φ(Bρ) is rela-

tively compact in Bρ. Subsequently, we show that Φ(Bρ) is
uniformly bounded. Note that by using the same method as in
Step 2, it can be manifested that the operator Φ is uniformly
bounded that is

4a2

(
1 + 4

T 2q

q2
a2
1‖B‖2l‖B∗‖2

)
+ 16

T 2q

q2
a2
1

× ‖B‖2l‖B∗‖2‖x1‖2 + 4
T 2q

q2
a1Mf

× (1 + E‖x‖2)
(

1 + 4
T 2q

q2
a2
1‖B‖2l‖B∗‖2

)

+ 4
T q

q
a12HT 2H−1η

×
(

1 + 4
T 2q

q2
a2
1‖B‖2l‖B∗‖2

)
< ∞,

the set Φ(Bρ) is relatively compact. Finally, we prove that
Φ(Bρ) is equicontinuous. For any x ∈ Bρ and t1, t2 ∈ J with
0 < t1 < t2 ≤ T, we get

E‖Ψ(t1)−Ψ(t2)‖2
≤ 7E ‖[Eq(Atq1)− Eq(Atq2)]x0‖2

+ 7E
∥∥∥

∫ t2

t1

(t2 − s)q−1Eq,q(A(t2 − s)q)Bux(s)ds
∥∥∥

2

+ 7E
∥∥∥

∫ t1

0

[
(t1 − s)q−1Eq,q(A(t1 − s)q)

− (t2 − s)q−1Eq,q(A(t2 − s)q)
]
Bux(s)ds

∥∥∥
2

+ 7E
∥∥∥

∫ t2

t1

(t2 − s)q−1Eq,q(A(t2 − s)q)
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× f(s, x(s))ds
∥∥∥

2

+ 7E
∥∥∥

∫ t1

0

[
(t1 − s)q−1Eq,q(A(t1 − s)q)

− (t2 − s)q−1Eq,q(A(t2 − s)q)
]

× f(s, x(s))ds
∥∥∥

2

+ 7E
∥∥∥

∫ t2

t1

(t2 − s)q−1

× Eq,q(A(t2 − s)q)
(∫ s

0

σ(θ)dWH
(θ)

)
ds

∥∥∥
2

+ 7E
∥∥∥

∫ t1

0

[
(t1 − s)q−1Eq,q(A(t1 − s)q)

− (t2 − s)q−1Eq,q(A(t2 − s)q)
]

×
(∫ s

0

σ(θ)dWH
(θ)

)
ds

∥∥∥
2

≤ 7E ‖[Eq(Atq1)− Eq(Atq2)]x0‖2

+
7(t2 − t1)q

q

∫ t2

t1

(t2 − s)q−1

× ‖Eq,q(A(t2 − s)q)‖2‖B‖2E‖ux(s)‖2ds

+ 7t1

∫ t1

0

∥∥∥[(t1 − s)q−1Eq,q(A(t1 − s)q)

− (t2 − s)q−1Eq,q(A(t2 − s)q)]
∥∥∥

2

‖B‖2

× E‖ux(s)‖2ds +
7(t2 − t1)q

q

∫ t2

t1

(t2 − s)q−1

× ‖Eq,q(A(t2 − s)q)‖2Mf (1 + E‖x‖2)ds

+ 7t1

∫ t1

0

∥∥∥[(t1 − s)q−1Eq,q(A(t1 − s)q)

− (t2 − s)q−1Eq,q(A(t2 − s)q)]
∥∥∥

2

×Mf (1 + E‖x‖2)ds +
7(t2 − t1)q

q

×
∫ t2

t1

(t2 − s)q−1‖Eq,q(A(t2 − s)q)‖2ds

× 2HT 2H−1

∫ s

0

E‖σ(θ)‖2dθ

+ 7t1

∫ t1

0

∥∥∥[(t1 − s)q−1Eq,q(A(t1 − s)q)

− (t2 − s)q−1Eq,q(A(t2 − s)q)]
∥∥∥

2

ds

× 2HT 2H−1

∫ s

0

E‖σ(θ)‖2dθ.

As t1 −→ t2, the right-hand side of the above inequality tends
to zero. An application of the Arzela-Ascoli theorem yields
that Φ maps Bρ into B, that is Φ : Bρ −→ P(B) is a compact
operator. Thus Φ(Bρ) is relatively compact.

Step 4. Φ is upper semi-continuous on Bρ.
Let xn −→ x∗, as n −→ ∞ and Ψn −→ Ψ∗ as n −→ ∞.

We need to show that Ψ∗ ∈ Φ(x∗). Since Ψn ∈ Φ(xn) means
that there exists σn ∈ NG,xn such that

Ψn(t) = Eq(Atq)x0 +
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×BB∗Eq,q(A∗(T − s)q)W−1
{

x1

− Eq(AT q)x0 −
∫ T

0

(T − s)q−1

× Eq,q(A(T − s)q)
[
f(s, xn(s))

+
∫ s

0

σn(θ)dWH
(θ)

]
ds

}
(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×
[
f(s, xn(s)) +

∫ s

0

σn(θ)dWH
(θ)

]
ds. (6)

We must show that there exists σ∗ ∈ NG,x∗ such that

Ψ∗(t) = Eq(Atq)x0 +
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×BB∗Eq,q(A∗(T − s)q)W−1
{

x1

− Eq(AT q)x0 −
∫ T

0

(T − s)q−1

× Eq,q(A(T − s)q)
[
f(s, x∗(s))

+
∫ s

0

σ∗(θ)dWH
(θ)

]
ds

}
(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×
[
f(s, x∗(s)) +

∫ s

0

σ∗(θ)dWH
(θ)

]
ds.

Now, we consider the continuous operator

Λ : L2(J,Rn) −→ B, σ 7→ Λ(σ)(t)

such that,

Λ(σ)(t) =
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×
[ ∫ s

0

σ(θ)dWH
(θ) −BB∗Eq,q(A∗(T − s)q)

×W−1

∫ T

0

(T − s)q−1Eq,q(A(T − s)q)

×
(∫ s

0

σ(θ)dWH
(θ)

)
ds

]
(s)ds.

From Lemma 2, it follows that Λ ◦ NG is a closed graph
operator. Clearly, for each t ∈ J, we have

(
Ψn(t)− Eq(Atq)x0 −

∫ t

0

(t− s)q−1

× Eq,q(A(t− s)q)
[
Bun(s) + f(s, xn(s))

]
ds

)

∈ Λ(NG,xn).

Since yn −→ y∗, it follows from Lemma 2 that, for some
y∗ ∈ NG,x∗ , we have

(
Ψ∗(t)− Eq(Atq)x0 −

∫ t

0

(t− s)q−1

× Eq,q(A(t− s)q)
[
Bu∗(s) + f(s, x∗(s))

]
ds

)

∈ Λ(NG,x∗).



SATHIYARAJ AND BALASUBRAMANIAM: CONTROLLABILITY OF FRACTIONAL ORDER STOCHASTIC DIFFERENTIAL INCLUSIONS WITH . . . 407

Clearly, for each t ∈ J, we have
∥∥∥
(
Ψn(t)− Eq(Atq)x0 −

∫ t

0

(t− s)q−1

× Eq,q(A(t− s)q)
[
Bun(s) + f(s, xn(s))

]
ds

)

−
(
Ψ∗(t)− Eq(Atq)x0 −

∫ t

0

(t− s)q−1

× Eq,q(A(t− s)q)
[
Bu∗(s) + f(s, x∗(s))

]
ds

)∥∥∥
2

B
−→ 0,

as n −→∞. From Lemma 1 we can conclude that Φ is upper
semi-continuous. As a consequence of Lemma 3, we deduce
that Φ has a fixed point which is the solution of the system
(1), and it is easy to verify that x(T ) = x1. Hence the system
(1) is controllable on J. ¤

Theorem 3 (Non-Convex Case). Assume that conditions
H3)-H5) are satisfied, then the system (1) has atleast one
solution in J, provided that

8
T 2q

q2
a1m(t)

(
1 + T2HT 2H−1

)
< 1. (7)

Proof. Under the assumption H5) it is easy to see that for
each x ∈ B, the set NG,x is nonempty. Therefore, G has
a nonempty measurable selection (by Theorem 1). We shall
show that Φ defined in Theorem 2 satisfies the assumption of
Lemma 4. The proof will be given in two steps.

Step 1. Φ(x) ∈ Pcl(B) for each x ∈ B.
Indeed, let (Ψn)n≥0 ∈ Φ(x) such that Ψn −→ Ψ. Then,

Ψ ∈ B and there exists σn ∈ NG,x such that, for each
t ∈ J, Ψn(t) is defined in (6). Using H5) we have for a.e.
t ∈ J

|σn(t)| ≤ m(t)‖x‖2 + m(t), n ∈ N.

The Lebesgue dominated convergence theorem implies that

‖σn − σ‖L2 −→ 0 as n −→∞.

Hence σ ∈ NG,x. Then, for each t ∈ J, Ψn(t) −→ Ψ(t),
where

Ψ(t) = Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
[
Bux(s)

+f(s, x(s)) +
∫ s

0

σ(θ)dWH
(θ)

]
ds. (8)

So, Ψ ∈ Φ(x).
Step 2. There exists γ < 1 such that Hd(Φ(x),Φ(y)) ≤

γ‖x − y‖B for each x, y ∈ B. Let x, y ∈ B and Ψ ∈ Φ(x).
Then, there exists σ ∈ NG,x such that Ψ(t) is defined in (8).
From H5), it follows that

Hd(G(t, x(t)), G(t, y(t))) ≤ m(t)‖x(t)− y(t)‖2.
Hence, there exists ω ∈ NG,y such that

‖σ(t)− ω(t)‖2 ≤ m(t)‖x(t)− y(t)‖2, t ∈ J.

Consider U : J −→ P(Rn) given by U(t) = {ω(t)|ω : J −→
Rn is Lebesgue integrable and

‖σ(t)−ω(t)‖2 ≤ m(t)‖x(t)− y(t)‖2}. Since the multivalued
operator U(t)∩G(t, y(t)) is measurable (Proposition 1), there
exists a functions σ(t) which is a measurable selection for U.
So, σ(t) ∈ NG,y, and for each t ∈ J,

‖σ(t)− σ(t)‖2 ≤ m(t)‖x(t)− y(t)‖2.

Let us define

Ψ(t) = Eq(Atq)x0

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
[
Buy(s)

+ f(s, y(s)) +
∫ s

0

σ(θ)dWH
(θ)

]
ds.

Then, for each t ∈ J, we get

E‖Ψ(t)−Ψ(t)‖2

≤ 4E
∥∥∥

∫ T

0

(T − s)q−1Eq,q(A(T − s)q)

× [f(s, y(s))− f(s, x(s))]ds
∥∥∥

2

+ 4E
∥∥∥

∫ T

0

(T − s)q−1Eq,q(A(T − s)q)

×
(∫ s

0

[
σ(θ)− σ(θ)

]
dWH

(θ)

)
ds

∥∥∥∥
2

+ 4E
∥∥∥

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

× [f(s, x(s))− f(s, y(s))]ds
∥∥∥

2

+ 4E
∥∥∥

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)

×
(∫ s

0

[σ(θ)− σ(θ)]dWH
(θ)

)
ds

∥∥∥
2

≤ 4
T 2q

q2
a1E‖f(t, y(t))− f(t, x(t))‖2

+ 4
T 2q

q2
Ta12HT 2H−1E‖σ(t)− σ(t)‖2

+ 4
T 2q

q2
a1E‖f(t, x(t))− f(t, y(t))‖2

+ 4
T 2q

q2
Ta12HT 2H−1E‖σ(t)− σ(t)‖2

≤ 4
T 2q

q2
a1m(t)‖x− y‖2

+ 4
T 2q

q2
Ta12HT 2H−1m(t)‖x− y‖2

+ 4
T 2q

q2
a1m(t)‖x− y‖2

+ 4
T 2q

q2
Ta12HT 2H−1m(t)‖x− y‖2

≤ 8
T 2q

q2
a1m(t)

(
1 + T2HT 2H−1

) ‖x− y‖2.



408 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 3, NO. 4, OCTOBER 2016

Thus, for each t ∈ J, we get

E‖Ψ−Ψ‖2B ≤ 8
T 2q

q2
a1m(t)

× (
1 + T2HT 2H−1

) ‖x− y‖2B.

By an analogous relation obtained by interchanging the roles
of x and y, it follows that

Hd(Φ(x),Φ(y)) ≤ 8
T 2q

q2
a1m(t)

× (
1 + T2HT 2H−1

) ‖x− y‖2B.

By (7), Φ is a contraction and thus, by Lemma 4, Φ has a
fixed point x which is the solution of (1) on J, and it is easy
to verify that x(T ) = x1. Hence the fractional order system
(1) is controllable on J. ¤

Remark 2. Existence of solutions for integer order stochas-
tic differential inclusions without control vector and frac-
tional Brownian motion have been investigated in [15]. Also
the controllability problem for fractional dynamical systems
without stochastic differential equations has been studied in
[10]. Since fBm has dependent increments, it is an interesting
generalization of ordinary Brownian motion to model the
noise process in many applications such as finance, network
simulations and environmental processes. So, it is significant
to study the controllability of fractional order stochastic differ-
ential inclusions with fBm due to the potential applications. It
should be mentioned that different from literature, this paper
makes use of stochastic analysis technique with fBm and the
controllability Grammian martrix which is formulated using
Mittag-Leffler matrix function. The main advantage of the
proposed technique is the utilization of fixed point theorem
for both cases of the multivalued map. Moreover, Covitz-
Nadler fixed point theorem is utilized for the nonconvex case
of the multivalued map to establish controllability of fractional
stochastic systems with fBm.

IV. EXAMPLE

In this section an example is illustrated to show the effec-
tiveness of the proposed technique.

As an application of the derived results, we consider the
fractional Harmonic Oscillator equation[30]

(
mCD2q + k

)
x(t) = 0,

where k and m are appropriate constants. Introducing a
control variable and a nonlinear forcing term, we get the
following controlled fractional Harmonic Oscillator equation
with Brownian motion:

CD2qx(t) + x(t) = u(t) +
x(t)

1 + 3x(t)
+

5x(t)
1 + x(t)

,

t ∈ J,

where x(t) specifies the position of the particle or Oscillator
at time t, u(t) is a control term, x(t)

1+3x(t) is a nonlinear

forcing term and 5x(t)
1+x(t) describes a Brownian motion in an

external quadratic potential. Introduce the auxiliary variables
x1(t) = x(t) and x2(t) =C Dqx1(t). Then

CDqx1(t) = CDqx(t) = x2(t),
CDqx2(t) = CD2qx(t)

=− x1(t) + u(t) +
x1(t)

1 + 3x1(t)

+
5x1(t)

1 + x1(t)
, t ∈ J.

The above system can be rewritten as follows
CDqx(t) = Ax(t) + Bu(t) + f(t, x(t))

+
∫ t

0

G(s, x(s))dWH
(s),

t ∈ J (9)

with

q =
1
2
, A =

(
0 1
−1 0

)
, B =

(
0
1

)
,

x(t) =
(

x1(t)
x2(t)

)
, f(t, x(t)) =

(
0

x1(t)
1+3x1(t)

)

and G(t, x(t)) =

(
5x1(t)

1+x1(t)

0

)
.

The Mittag-Leffler matrix function of the system is given by
(see [8])

Eq(Atq)

=




∞∑
j=0

(−1)jt2jq

Γ[1+2jq]

∞∑
j=0

(−1)jt(2j+1)q

Γ[1+(2j+1)q]

−
∞∑

j=0

(−1)jt(2j+1)q

Γ[1+(2j+1)q]

∞∑
j=0

(−1)jt2jq

Γ[1+2jq]


 .

By simple matrix calculations, one can see that the controlla-
bility matrix

W =
∫ T

0

(T − s)q−1[Eq,q(A(T − s)q)B]

× [Eq,q(A(T − s)q)B]∗ds

=
∫ T

0

(T − s)q−1

×
(

S2
1 + S2

2 S1S3 + S2S4

S1S3 + S2S4 S2
1 + S2

2

)
ds

=
(

3.5363 0
0 3.5363

)
> 0

is positive definite. Here

S1 = S4 =
∞∑

j=0

(−1)j(T − s)2jq

Γ[(1 + 2j)q]
,

S2 = −S3 = −
∞∑

j=0

(−1)j(T − s)(2j+1)q

Γ[2q(j + 1)]
.

Moreover, it is easy to show that for all x ∈
R2, ‖f(t, x(t))‖2 ≤ ‖x1‖2

1+9‖x1(t)‖2 and ‖G(t, x(t))‖2 ≤
25‖x1(t)‖2
1+‖x1(t)‖2 . One can see that the inequalities (5) and (7)
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hold and all other conditions stated in Theorems 2 and 3
are satisfied. Hence, the fractional order stochastic differential
inclusions with fBm (9) are completely controllable on J.

V. CONCLUSION AND FUTURE WORK

This paper has advanced the controllability result of frac-
tional order stochastic differential inclusions with fBm in
finite dimensional space. The results have been obtained upon
suitable fixed point theorems, namely the Bohnenblust-Karlin
fixed point theorem for the convex case and the Covitz-Nadler
for the nonconvex case. Finally, a numerical example has been
given to validate the efficiency of the proposed theoretical
results.

In recent years, the applications of an integro-differential
equations model play an important role in many areas from
science and engineering, particularly in the analysis of elec-
trical circuit. Inspired by the applications of fractional order
system and integro-differential equation, solving the fractional
stochastic integro-differential equations with nonlocal condi-
tion deserves our future concern.
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A Note on Robust Stability Analysis of
Fractional Order Interval Systems by Minimum

Argument Vertex and Edge Polynomials
Baris Baykant Alagoz

Abstract—By using power mapping (s = vm), stability analysis
of fractional order polynomials was simplified to the stability
analysis of expanded degree integer order polynomials in the
first Riemann sheet. However, more investigation is needed
for revealing properties of power mapping and demonstration
of conformity of Hurwitz stability under power mapping of
fractional order characteristic polynomials. Contributions of this
study have two folds: Firstly, this paper demonstrates conser-
vation of root argument and magnitude relations under power
mapping of characteristic polynomials and thus substantiates
validity of Hurwitz stability under power mapping of fractional
order characteristic polynomials. This also ensures implications
of edge theorem for fractional order interval systems. Secondly,
in control engineering point of view, numerical robust stability
analysis approaches based on the consideration of minimum
argument roots of edge and vertex polynomials are presented.
For the computer-aided design of fractional order interval control
systems, the minimum argument root principle is applied for a
finite set of edge and vertex polynomials, which are sampled
from parametric uncertainty box. Several illustrative examples
are presented to discuss effectiveness of these approaches.

Index Terms—Fractional order systems, robust stability, edge
theorem, interval uncertainty.

I. INTRODUCTION

ROBUST stability analysis is very essential for robust
performance of practical control systems working in

real applications. Imprecision in system modeling and tem-
poral deviation of system parameters may cause instability
of real control systems that are designed according to nom-
inal system models. Implementation of practical and robust
control systems requires the system design aspects, which
ensure the stability of control systems within the possible
ranges of system parameter fluctuations. Several theorems
such as Kharitonov’s theorem and edge theorem were de-
veloped to accomplish parametric robust stability analysis of
integer-order system models introducing interval uncertainty
of coefficients[1]. These theorems state sufficient conditions
for robust stability and thus facilitate robust stability analyses
of integer order linear time invariant (LTI) systems with para-
metric uncertainty. They limit stability checking to the certain
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Citation: Baris Baykant Alagoz. A note on robust stability analysis of
fractional order interval systems by minimum argument vertex and edge
polynomials. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4): 411−421

Baros Baykant Alagoz is with the Department of Computer Engineering,
Inonu University, Malatya, Turkey (e-mail: baykant.alagoz@inonu.edu.tr).

number of polynomials sampled from a continuous family
of interval characteristic polynomials. Nowadays, fractional
order systems are on the focus of control community and
confirmation of the validity of well-established robust stability
analysis methods for fractional order system models is very
beneficial. Robust stability analysis and robust stabilization
problems of fractional order systems were addressed in many
aspects during the last two decades[2−15]. It can be briefly
explained as follows: Stability analysis of fractional order
systems according to the pole placement in the complex
plane was addressed by Matignon[15]. Minimum argument
root principle was a milestone for robust stability analy-
sis of fractional order interval systems. Based on minimum
argument of eigenvalues of state space model, an interval
boundary box method was presented for stability testing of
the fractional order LTI systems with interval uncertainties[5].
Then, stabilization of fractional order LTI systems by using
linear matrix inequality (LMI) method was shown in several
works[6−9]. Robust stability check based on four Kharitonov’s
polynomials were also discussed for commensurate order LTI
systems[10−11].

In many works, the power mapping of polynomials in
complex planes, which is also known as conformal mapping,
was employed to simplify stability analysis of fractional or-
der systems by simply transforming them into integer order
polynomials[3−4]. By applying s = vm mapping, stability
analyses in the first Riemann sheet were shown for fractional
order polynomials[13]. Later, a numerical method based on the
exposed edge polynomial sampling was proposed for robust
stability analysis of fractional order interval polynomials by
using s = vm mapping[14]. However, it is obvious that there is
a need for further works to demonstrate impacts of power map-
ping on root locus and stability related properties of systems.
Thus, implication of edge theorem under power mapping of
fractional order characteristic polynomials can be utilized and
the robust stability analysis methods based on edge theorem
can be developed to reduce computational complexity in robust
stability analysis of fractional order interval systems.

In this paper, an investigation on the conformity of Hurwitz
stability under power mapping (s = vm) of characteristic
polynomials of fractional order systems is presented. After
showing that Hurwitz stability is conformal to power mapping,
implications of edge theorem for fractional order characteris-
tic polynomial are discussed. Then, robust stability analysis
schemes considering combinations of edge and vertex polyno-
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mials of the hyper-rectangle are presented and compared
with the application of conventional edge theorem given in
[14]. Computational complexity and effectiveness of presented
methods are discussed by illustrative examples.

II. BASIC DEFINITIONS AND PRELIMINARIES

Definition 1 (Hurwitz stability for integer order polyno-
mials). Let us consider an integer order polynomial with real
coefficient, which is expressed as p(s) =

∑n
i=0 cis

i. Parame-
ters ci ∈ R are real polynomial coefficients, and the parameter
n ∈ Z+ represents the degree of the polynomials. A charac-
teristic polynomial with real coefficients is said to be Hurwitz
stable if and only if all of its roots lie in the left hand side of
complex s plane[16−17]. Accordingly, Hurwitz stable polyno-
mials are defined as {p(s)|p(s) = 0 : ∀s ∈ C ∧ Re{s} < 0}.
If characteristic polynomial of a LTI system model is a
Hurwitz stable polynomial, the LTI system model behaves
asymptotically stable because time domain solutions consist
of exponentially decaying terms. Consequently, root locus
of characteristic polynomials has been widely used for the
asymptotic stability analyses of LTI systems. The left hand
side of complex plane, which is bounded by imaginary axis,
is considered as the stability region for root locus analysis of
integer order characteristic polynomials p(s).

In general, the characteristic polynomial p(s) is a multi-
valued function of the complex variable s, whose domain is
described by the principle sheet (the first sheet) of Riemann
surfaces, defined in an argument range −π < arg(s) < π[2].
As known, Hurwitz stability region (HSR) for characteristic
polynomial roots is the left half plane of the first sheet, which
can be defined according to root arguments as π/2 < arg(s) <
3π/2. It is convenient to call the argument bounds with angles
of −π/2 and π/2 as the Hurwitz stability boundary (HSB) for
characteristic root locus[18]. The set of complex points with
arguments −π/2 and π/2 also refers to the imaginary axis.

Definition 2 (Hurwitz stable fractional order polynomi-
als). Let us consider a fractional order polynomial with real co-
efficients expressed in the form of pf (s) =

∑n
i=0 cis

αi , where
αi ≥ 0 and αi ∈ R+ is the fractional orders of the polynomi-
als. The case of α0 = 0 yields the constant term of polynomi-
als. In order to facilitate root locus analysis of fractional order
LTI systems, s = vm mapping has been used to transform
a fractional order characteristic polynomial to the expanded
degree integer order characteristic polynomials. It was shown
by many works that one can carry out stability analysis of
fractional order systems by examining root locus of the ex-
panded degree integer-order characteristic polynomials, given
as pf (s)|s=vm = pm(v) =

∑n
i=0 civ

mαi [2−3, 5−6, 13−14].
Here, each mαi for i = 0, 1, 2, . . . , n is an integer number.
Following the s = vm mapping, the first Riemann sheet is
confined into a plane slice with the argument range −π/m <
arg(v) < π/m[2] and stability analyses were carried out in
the first Riemann sheet[10−11, 13−14, 18]. In related works, by
applying s = vm mapping, interval characteristic polynomials
were recognized to be stable, in the case that all roots in the
first Riemann sheet lie in complex plane slice with argument
ranges of (π/2m,π/m] and [−π/m,−π/2m). Detailed works

on the solution of fractional order characteristic polynomials
were elaborated in [18] for analysis and design of control
systems. Some useful properties of power mapping can be
stated as follows:

Remark 1 (Magnitude and argument properties of
power mapping). Let us consider the fraction order real
polynomial pf (s), where complex input variable is defined as
s = Mejθ ∈ C. The s = vm transformation maps the function
pf (s) to a real polynomial pm(v), where v = M̃ejφ ∈ C such
that the magnitude is M̃ = M (1/m) and the argument is φ =
θ/m.

Proof. This remark was previously mentioned in [3−4]. In
order to better see mapping properties of s = vm transfor-
mation, one can write reverse transformation as v = s1/m =
M (1/m)ejθ/m for a complex point s = Mejθ, where parame-
ters M and θ stand for the magnitude and argument of points
in s domain. After rearranging v = M (1/m)ejθ/m in the form
of v = M̃ejφ, it is obvious that s = vm transformation maps
the complex point in s domain to a point in v domain, where
the argument is φ = θ/m and the magnitude is M̃ = M (1/m).

¤
Remark 2 (Hurwitz stability region under s = vm map-

ping). An integer order characteristic polynomial is Hurwitz
stable, if all characteristic roots lie in the left half side of
complex plane. In case of s = vm mapping, the Hurwitz
stability region is mapped into (π/2m,π/m] for positive root
arguments and [−π/m,−π/2m) for negative root arguments.

Proof. Let us express Hurwitz stability region, given by
−π/2 < arg(s) < π/2, as combination of π/2 < θ < π for
positive root arguments and −π < θ < −π/2 for negative
root arguments. Here, θ is the argument of a point in s
domain and written as θ = arg(s). By considering root
argument transformation φ = θ/m in Remark 1, Hurwitz
stability region is mapped to (π/2m,π/m] for positive root
arguments and [−π/m, −π/2m) for negative root arguments
under s = vm mapping. Fig. 1 depicts the mapping of Hurwitz
stability region under s = vm mapping for stability analysis.

¤

Fig. 1. Hurwitz stability region of fractional order characteristic
polynomials under s = vm mapping[4].

Lemma 1 (Conservation of argument and magnitude re-
lations). s = vm mapping of real polynomials is conservative
in term of argument and magnitude relations. In other words,
s = vm mapping conserves spatial relations between roots
of s domain while mapping in v domain. For m ∈ Z+, the
following root argument relations are valid,
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θi > θj , θl < θk, θu = θq,

⇒ φi > φj , φl < φk, φu = φq, (1)

and the following root magnitude relations are also valid under
s = vm mapping,

Mi > Mj , Ml < Mk, Mu = Mq,

⇒ M̃i > M̃j , M̃l < M̃k, M̃u = M̃q. (2)

Proof. For m ∈ Z+, one can write the following relations
for arguments according to Remark 1,

θi > θj → θi

m
>

θj

m
→ φi > φj ,

θl > θk → θl

m
>

θk

m
→ φl > φk,

θu > θp → θu

m
>

θp

m
→ φu > φp.

And the following relations for magnitudes,

Mi < Mj → M
( 1

m )
i < M

( 1
m )

j → M̃i < M̃j ,

Ml > Mk → M
( 1

m )

l > M
( 1

m )

k → M̃l > M̃k,

Mu > Mq → M
( 1

m )
u > M

( 1
m )

q → M̃u > M̃q.

¤
This lemma tells us that argument and magnitude relations

are conserved under s = vm mapping.

III. PROBLEM STATEMENT

Fractional order LTI systems are represented by the frac-
tional order differential equations in the form of [19],

anDαny(t) + an−1D
αn−1y(t) + · · ·+ a1D

α1y(t) + a0y(t)
= bmDϕmu(t) + bm−1D

ϕm−1u(t) + · · ·
+ b1D

ϕ1u(t) + b0u(t). (3)

By using Laplace transform L {Dαf(t)} = sαF (s) for f(0+)
= 0[19], fractional order transfer functions are written to
express system model in continuous frequency domain as
follows.

T (s) =
Y (s)
U(s)

=

m∑
i=0

bis
ϕi

n∑
i=0

aisαi

, (4)

where denominator polynomial coefficients ai and numerator
polynomial coefficients bi are real numbers. The fractional
orders of the system are denoted by αi ∈ R (i = 0, 1, 2, 3,
. . . , n) and ϕi ∈ R (i = 0, 1, 2, 3, . . . , m). For α0 = 0 and ϕ0

= 0, the system models have constant terms a0 and b0. Here,
the model orders satisfy αn > αn−1 > αn−2 > · · · > α2 >
α1 > 0 and ϕn > ϕn−1 > ϕn−2 > · · · > ϕ2 > ϕ1 > 0.

In real systems, unpredictable parameter deviations and
change of operating conditions lead to reduce consistency
of system modeling. Therefore, a relevant modeling of real
systems is not always possible to obtain by means of nominal
LTI system models. The system modeling with parametric
interval uncertainty is more convenient for the control sys-
tem design problems compared to nominal system models.

Because, systems can operate more effectively in real control
application when controller performance is designed robust for
possible ranges of system parameter variations. The character-
istic polynomials of transfer functions with interval uncertainty
are expressed as,

∆(s) =
n∑

i=0

[ai āi]sαi , (5)

where the parameters [ai āi] represent uncertainty of the coef-
ficient ai, which refers to deviation between a lower (ai) and
an upper (āi) bound. In practice, interval uncertainty bounds
of the nominal coefficient ai can be expressed by considering
parameter deviation (∆ai) as [ai āi] = [ai −∆ai ai + ∆ai].
The checking of boundary conditions for robust stability is
useful for control system design problems[18]. Example 3 is
devoted to searching of the boundaries for allowable parameter
deviation of robust stable control system according to edge
theorem.

By applying s = vm to (5), one obtains expanded degree
integer order characteristic polynomials in the form of,

∆m(v) =
n∑

i=0

[ai āi]vβi , (6)

where βi ∈ Z+∪{0} is expanded degree integer order, which
is defined as βi = mαi.

The uncertainty box of interval coefficients defines a hyper-
rectangle (n-orthotope) denoted by A, which is written as
Cartesian product of interval polynomial coefficients ai ≤ ai

≤ āi, i = 1, 2, 3, . . . , n,

A =
n∏

i=0

[ai āi]. (7)

A point of the hyper-rectangle is represented by coefficient
vector a = [a1 a2 a3 · · · an]. Each vector a from hyper-
rectangle Astands for a fractional order polynomial from the
interval polynomial family that is denoted by the set Ω ∈
Rn[14]. By considering real positive coefficient vectors, the
hyper-rectangle A can be also expressed as A = {a : 0 < ai

≤ ai ≤ āi, i = 1, 2, 3, . . . , n}[14].
Let us assume that each characteristic polynomial from the

set Ω has ξ numbers of complex roots, denoted by vr in the
complex v plane. The number of complex roots depends on
the degree of ∆m(v) and it can be found by ξ = mαn. The
complex roots of the interval polynomial family Ω form a set
of roots in the first Riemann sheet, which can be written as[14],

R(Ω) = {vr : ∆m(a, vr) = 0 ∧ |arg(vr)| < π

m
,

∀a ∈ A, r = 1, 2, 3, . . . , ξ}. (8)

Since expanded degree integer order characteristic polynomi-
als are real coefficient integer order polynomials, complex
roots lie symmetrically with respect to the real axis in complex
v plane. The root region can be split into three subsets, R(Ω) =
R(Ω)− ∪ R(Ω)0∪R(Ω)+, according to root arguments. Here,
R(Ω)+, R(Ω)− and R(Ω)0 represent subsets of R(Ω) formed
with positive argument roots, negative argument roots and
zero argument roots, respectively. The complex conjugate roots
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present symmetry at positive and negative argument sides[20],
that is, one can state |arg(R(Ω)−)| ≡ |arg(R(Ω)+)| for
complex conjugate root arguments. Therefore, analysis given
for positive arguments roots (φ > 0) is also valid for negative
argument roots (φ < 0). This leads us to the conclusion;
when R(Ω)0 is empty set, if only minimum positive argument
characteristic roots lie in the stability region (π/2m,π/m]
in the first Riemann sheet under s = vm mapping, then the
interval system can be recognized as Hurwitz stable[5, 15, 18].

min{arg(R(Ω))} >
π

2m
. (9)

Edge theorem is conformal under s = vm mapping due to
Lemma 1. Because, conservation of argument and magnitude
relations under power mapping ensures that root constellation
in HSR of complex s plane is preserved in HSR of complex
v plane and vice versa. Since argument relations of all edge
and vertex roots are conserved under power mapping, edge
theorem can be extended to complex v plane. On the other
hand, due to the conservation of root argument relations
according to Lemma 1, it is easy to see that if the minimum
argument root in s domain lies in HSR region, it lies in HSR
region of v domain. Fig. 2 depicts the mapping relations of the
root constellation and vice versa. Lemma 1 also suggests us
that vertex and edge of R(Ω) in v plane are also vertex and
edge polynomials in s plane.

Theorem 1. (Conformity of minimum argument roots un-
der power mapping): Under s = vm mapping (m > 0),
theminimum argument root of a fractional order polynomial
in s plane is mapped to the minimum argument root of its
expanded integer order polynomials in v plane. Therefore,
Hurwitz stability is conserved under power mapping.

Proof. Let us denote set of root arguments of all edges and
vertex roots of R(Ω) as,

ψ = arg(R(Ω)) = {φ1, φ2, φ3, . . . , φk}. (10)

The minimum argument of root set R(Ω) is φmin =
min{arg(R(Ω))}. If the condition φmin > π/2m is satisfied,
the root set R(Ω) lies in Hurwitz stability region defined as
(π/2m, π/m] in Remark 2 due to the fact that ∀φi ∈ ψ, φi ≥
φmin > π/2m. One can rearrange it as mφi ≥ mφmin > π/2,
which refers to θi ≥ θmin > π/2 where θmin = mφmin

and θi = mφi according to Remark 1. Therefore, if the
expanded degree integer order characteristic polynomials are
Hurwitz stable, fractional order characteristic polynomial is
also Hurwitz stable. It is shown for unstable cases in the same
manner. One can state that the stability properties related with
root locus are conformal under power mapping. ¤

It is noteworthy that the root region in v plane is indeed the
scaled and rotated image of root region in s plane according to
magnitudeand argument properties (M̃ = M (1/m), φ = θ/m)
given in Remark 1. A graph defined by edge and vertices roots
on root region R(Ω) is preserved under power mapping.

IV. IMPLICATIONS OF EDGE THEOREM WITH MINIMUM
ARGUMENT ROOT PRINCIPLE FOR FRACTIONAL ORDER

INTERVAL POLYNOMIALS

Edge theorem provides consistent solutions for the robust
stability analyses of integer-order LTI interval systems[1]. For

Fig. 2. Argument and magnitude relations are conformal under
power mappings (Root placements in s and v planes conserve
argument relations).

fractional order interval systems, an application of edge theo-
rem for numerical robust stability analysis was demonstrated
by Senol et al.[14]. The boundary of root region in the first
Riemann sheet was represented by roots of exposed edge
polynomials of interval coefficient hyper-rectangle. In this sec-
tion, with consideration of minimum argument root principle
for vertex and its connected edge polynomials, author aims
to reduce computational complexity of the robust stability
analysis of fractional order system models. Fig. 3 (a) depicts
the exposed edge and vertex polynomials of hyper-rectangle
A, which was drawn for the case of three interval coefficients.
Fig. 3 (b) illustrates the corresponding roots of exposed edge
and vertex polynomials of hyper-rectangle A in the first
Riemann sheet. Fig. 3 (c) indicates the minimum argument
vertex root and roots of its connected edges. This study
suggests that analysis of roots in Fig. 3 (c) can significantly
reduce computational complexity of robust stability analysis
of fractional order interval polynomials.

Edge theorem also implies that boundary of root region is
formed by roots of vertex and exposed edge polynomials of
uncertainty box, which is represented by hyper-rectangle A
of interval coefficients. It is obvious that the change of root
location with respect to the change of polynomial coefficients
is continuous due to the fact that polynomials and their
coefficient intervals are continuous. According to this reason,
the most outer roots of root region R(Ω) can come from
edge and vertex polynomials of hyper-rectangle A. A given
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root region seen in Fig. 4 validates this effect. Boundaries of
root region were formed by roots of vertex and exposed edges
polynomials of A.

Fig. 3. Illustrations for three-dimensional hyper-rectangle and root
placements ((a) An illustration of vertex (u1, u2, u3, . . . , u8) and
exposed edges (e1, e2, e3, . . . , e8) of hyper-rectangle A build for
three interval coefficients; (b) Root locus of exposed edge and vertex
polynomials; (c) Root locus of minimum argument vertex polynomial
and roots of connected exposed edge polynomials.)

As known, n number of uncertain parameters builds 2n

vertices on the hyper-rectangle. Coefficient vectors of vertex
polynomials of A were expressed as Cartesian products of
upper and lower bounds of interval coefficients[14],

uk = {a0, ā0} × {a1, ā1} × {a2, ā2} × · · ·
× {

an−1, ān−1

}× {an, ān} , (11)

where “×” represents Cartesian product operator. Let us
express vertex polynomials of expanded degree integer order
interval polynomials as,

∆uk
= ∆m(uk, v), k = 1, 2, 3, . . . , 2n. (12)

Exposed edges are line segments connecting vertices through
the surfaces of A as illustrated in Fig. 3 (a). The edge poly-

nomials can be obtained by sampling coefficient vectors from
exposed edge of A[14],

ek = {a0, ā0} × {a1, ā1} × {a2, ā2} × · · ·
× s(ak, λ)× · · · × {

an−1, ān−1

}× {an, ān} (13)

where s(ak, λ) is edge sampling function and defined linearly
as s(ak, λ) = λak + (1− λ)āk, λ ∈ [0, 1]. Edge polynomials
of expanded degree integer order interval characteristic poly-
nomial are expressed as,

∆ek
= ∆m(ek, v). (14)

Fig. 4. Root region of expanded degree integer order interval poly-
nomial ∆10(v) = [2.1 2.6]v21 + [1.2 1.7]v8 + [0.7 1.3] in the first
Riemann sheet. Roots from edge polynomials and roots from vertex
polynomials of hyper-rectangle A are indicated by blue dots and red
asterisks, respectively.

It is unnecessary to check all edge polynomials for robust
stability checking. Because, if one can show that minimum
argument root lies in stability region, the interval system is
robust stable. Computational complexity of robust stability
analysis based on root locus strongly depends on the number
of tested polynomials and the number of polynomials to be
solved increases depending on the number of exposed edges
of hyper-rectangle, which is expressed as n2n−1, where n is
the number of interval coefficients.

Our approach to reduce complexity of numerical analysis
is to consider only connected exposed edge polynomials of
the minimum argument vertex polynomial. The number of the
connected edges of a vertex is n. Complexity reduction de-
pending on edge number can be expressed depending on total
edge counts as G(n) = n/(n2n−1) = 2−n+1. This indicates
an exponential decay of complexity reduction depending on
considered edge counts.

Set of vertex roots in the root region R(Ω) can be expressed
as

Ru(Ω) = {v : ∆uk
(a, v) = 0 ∧ |arg(v)| < π

m
,

∀a ∈ A, k = 1, 2, 3, . . . , 2n}. (15)

Set of exposed edge roots in the root region R(Ω) can be
expressed as
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Re(Ω) = {v : ∆ek
(a, v) = 0 ∧ |arg(v)| < π

m
,

∀a ∈ A, k = 1, 2, 3, . . . , n2n−1}. (16)

Edge theorem suggests that stability checking of all exposed
edge polynomials is sufficient to show robust stability of
integer order interval characteristic polynomials. Considering
this theorem and using power mapping, stability analyses
according to test of polynomials taken from all exposed edge
and vertex polynomials (Ru(Ω) ∪ Re(Ω)) were discussed in
[14]. In the case of sampling edges with np polynomials (np

> 2), the method in [14] requires test of npn2n−1 + 2n

polynomials. Here, npn2n−1 polynomials are for sampling
of edges and 2n polynomials are for vertex polynomials. In
order to simplify robust stability analyses, the following two
approaches are proposed in this study:

1) Test of minimum argument vertex with connected edge
polynomials (MVCE): For positive interval coefficient polyno-
mials, it can be possible to reduce number of test polynomials
by only evaluating stability of the minimum argument vertex
polynomial and its connected edge polynomials. It requires
the calculation of roots from Ru(Ω)∪Rce(Ω), where Rce(Ω)
∈ Re(Ω) is a subset of edge roots. It needs only testing
of the exposed edge polynomials connected to the minimum
argument vertex that is defined as min{arg(Ru(Ω))}. In the
case of an edge polynomial sampling with np polynomials,
MVCE approach requires the test of npn + 2n polynomials.
This approach is valid under the assumption that the branch
of edge graph, composed of the minimum argument vertex
and its connected edges, includes the minimum argument root
of A. Since the boundary of root region is formed by only
roots of vertex and exposed edge polynomials of A, minimum
argument root is the most likely to be on the minimum
argument vertex or its connected edge polynomials.

2) Test of minimum argument vertex (MV): It is possible to
reduce further the number of test polynomials by considering
only vertex polynomials of hyper-rectangle A. This approach
requires calculation of min{arg(Ru(Ω))}, so it performs the
test of 2n polynomials. This test relies on the assumption that
minimum argument roots probably come from vertex poly-
nomials of hyper-rectangle because the interval polynomial
coefficients are continuous and lead to continuity of root locus.
The most distant polynomials of hyper-rectangle A are vertex
polynomials. The roots of vertex polynomials of A form the
vertices of root region.

Table I shows the number of the test polynomials re-
quired for robust stability analysis for edge theorem based
approaches. Fig. 5 shows increase of test polynomials with
respect to number of interval coefficients (n) for 20 poly-
nomials edge sampling (np = 20). It can be seen that the
test of minimum argument vertex polynomials (MV) is very
advantageous in term of computational complexity.

Fig. 5. Number of the tested polynomials required for test of all
edge and vertex polynomials (AEAV), for the test of minimum
argument vertex with connected edge polynomials (MVCE) and for
the test of minimum argument vertex polynomials (MV).

V. ILLUSTRATIVE EXAMPLES

Initial conditions of systems were assumed to be zero for
all parameters in numerical analyses.

Example 1. By considering the fractional order LTI nominal
system described by fractional order differential equations[3],

0.8D2.2y(t) + 0.5D0.9y(t) + y(t) = u(t). (17)

Let us check robust stability of this system for interval
uncertainty of coefficients given as 0.8± 0.4 = [0.4 1.2], 0.5
± 0.2 = [0.3 0.7] and 1± 0.3 = [0.7 1.3].

To simplify analysis of interval system, one can express it
in the form of transfer function with zero initial conditions as

G(s) =
Y (s)
U(s)

=
1

[0.4 1.2]s2.2 + [0.3 0.7]s0.9 + [0.7 1.3]
,

(18)

TABLE I
ROBUST STABILITY ANALYSIS APPROACHES BASED ON EDGE THEOREM FOR REAL POSITIVE COEFFICIENT INTERVAL

CHARACTERISTIC POLYNOMIALS

Approaches based on edge theorem Number of test polynomials Basic assumptions

Test of all edge and vertex npn2n−1 + 2n The test of all exposed edge polynomials

polynomials (AEAV)[14] from A is sufficient to show robust stability

Test of minimum argument vertex with npn + 2n Set of minimum argument vertex with connected edge polynomials

connected edge polynomials (MVCE) generally includes minimum argument root of A

Test of minimum argument vertex 2n Minimum argument root is probably

polynomials (MV) the root of vertex polynomials of A



ALAGOZ : A NOTE ON ROBUST STABILITY ANALYSIS OF FRACTIONAL ORDER INTERVAL SYSTEMS · · · 417

and the characteristic polynomial of the system is found as

∆(s) = [0.4 1.2]s2.2 + [0.3 0.7]s0.9 + [0.7 1.3]. (19)

By applying s = vm mapping, the expanded degree integer
order characteristic polynomial is written as,

∆10(v) = [0.4 1.2]v22 + [0.3 0.7]v9 + [0.7 1.3]. (20)

Vertex polynomials of expanded degree integer order interval
characteristic polynomial were obtained as

{∆u1 = ∆10([0.4 0.3 0.7], v), ∆u2 = ∆10([0.4 0.3 1.3], v),

∆u3 = ∆10([0.4 0.7 0.7], v), ∆u4 = ∆10([0.4 0.7 1.3], v),

∆u5 = ∆10([1.2 0.3 0.7], v), ∆u6 = ∆10([1.2 0.3 1.3], v),

∆u7 = ∆10([1.2 0.7 0.7], v), ∆u8 = ∆10([1.2 0.7 1.3], v)}

We performed edge sampling with 19 polynomials (np =
19) in numerical analyses, so edge sampling function can
be written as s(ak, λ) = λak + (1 − λ)āk, where λ ∈
{0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55,
0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95} and k = {1, 2,
3}. Set of edge polynomials were obtained as,

{∆e1 = ∆10([(λ0.4 + (1− λ)1.2) 0.3 0.7], v),

∆e2 = ∆10([(λ0.4 + (1− λ)1.2) 0.3 1.3], v),

∆e3 = ∆10([(λ0.4 + (1− λ)1.2) 0.7 0.7], v),

∆e4 = ∆10([(λ0.4 + (1− λ)1.2) 0.7 1.3], v),

∆e5 = ∆10([ 0.4 (λ0.3 + (1− λ)0.7) 0.7], v),

∆e6 = ∆10([ 0.4 (λ0.3 + (1− λ)0.7) 1.3], v),

∆e7 = ∆10([ 1.2 (λ0.3 + (1− λ)0.7) 0.7], v),

∆e8 = ∆10([ 1.2 (λ0.3 + (1− λ)0.7) 1.3], v),

∆e9 = ∆10([ 0.4 0.3 (λ0.7 + (1− λ)1.3)], v),

∆e10 = ∆10([ 0.4 0.7 (λ0.7 + (1− λ)1.3)], v),

∆e11 = ∆10([ 1.2 0.3 (λ0.7 + (1− λ)1.3)], v),

∆e12 = ∆10([ 1.2 0.7 (λ0.7 + (1− λ)1.3)], v)}.

Figs. 6 (a) and 6 (b) show roots of vertex and edge poly-
nomials of A in the first Riemann sheet. Roots of vertex
polynomials are indicated by blue asterisks. Roots of minimum
argument vertex and connected edge polynomial are indicated
by red dots in complex v plane. Minimum argument root is the
root of vertex polynomial ∆u6 = ∆10([1.2 0.3 1.3], v) and the
value of minimum argument is φmin = min{arg(R(Ω))} =
0.0487 radian. Since it is lower than the stability boundary φs

= π
20 , the interval system is not robust stable.
Fig. 7 shows step response of 8 vertex polynomials. The step

response obtained for u6 = [1.2 0.3 1.3] confirms the unstable
response of the interval system.

Example 2. By considering the closed loop control of
electrical heater, which was modeled by fractional order plant
function, G(s) = Y (s)

U(s) = 1
39.96s1.25+0.598 , and the integer

Fig. 6. Root placement for Example 1 ((a) Roots of vertex and
edge polynomials; (b) Close view of minimum argument vertex and
connected edge polynomials.)

Fig. 7. Step responses of vertex polynomials.

order PD controller, C(s) = 64.47 + 12.46s[3], let us check
robust stability of closed loop control system for interval
uncertainty given as the following:

For electrical heater model, parameter deviations are 39.96
± 5.3 = [34.66 45.26] and 0.58 ± 0.12 = [0.46 0.7], and for
the controller function, parameter deviations are 64.47± 11.5
= [52.97 75.97] and 12.46± 3.36 = [9.10 15.82].

The resulting closed loop transfer function of interval sys-
tem becomes,

T (s) =
Y (s)
U(s)

=
[9.10 15.82]s + [52.97 75.97]

[34.66 45.26]s1.25 + [9.10 15.82]s + [53.43 76.67]
,

(21)
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and then characteristic polynomial of the system can be
expressed as,

∆(s) = [34.66 45.26]s1.25 + [9.10 15.82]s + [53.43 76.67].
(22)

By applying s = v100 mapping, the expanded degree integer
order characteristic polynomial is written as,

∆100(v) = [34.66 45.26]v125 + [9.10 15.82]v100

+ [53.43 76.67]. (23)

Vertex polynomials of expanded degree integer order interval
characteristic polynomial were obtained as

{∆u1 = ∆100([34.66 9.10 53.43], v),

∆u2 = ∆100([34.66 9.10 76.67], v),

∆u3 = ∆100([34.66 15.83 53.43], v),

∆u4 = ∆100([34.66 15.83 76.67], v),

∆u5 = ∆100([45.26 9.10 53.43], v),

∆u6 = ∆100([45.26 9.10 76.67], v),

∆u7 = ∆100([45.26 15.82 53.43], v),

∆u8 = ∆100([45.26 15.82 76.67], v)}.
We used 19 polynomials edge sampling (np = 19) in

numerical analyses. Set of edge polynomials can be written
as,

{∆e1 = ∆100([(λ34.66 + (1− λ)45.26) 9.10 53.43], v),

∆e2 = ∆100([(λ34.66 + (1− λ)45.26) 9.10 76.67], v),

∆e3 = ∆100([(λ34.66 + (1− λ)45.26) 15.82 53.43], v),

∆e4 = ∆100([(λ34.66 + (1− λ)45.26) 15.82 76.67], v),

∆e5 = ∆100([ 34.66 (λ9.10 + (1− λ) 15.82) 53.43], v),

∆e6 = ∆100([ 34.66 (λ9.10 + (1− λ) 15.82) 76.67], v),

∆e7 = ∆100([ 45.26 (λ9.10 + (1− λ) 15.82) 53.43], v),

∆e8 = ∆100([ 45.26 (λ9.10 + (1− λ) 15.82) 76.67], v),

∆e9 = ∆100([ 34.66 9.10 (λ53.43 + (1− λ) 76.67) ], v),

∆e10 = ∆100([ 34.66 15.82 (λ53.43 + (1− λ) 76.67) ], v),

∆e11 = ∆100([ 45.26 9.10 (λ53.43 + (1− λ) 76.67) ], v),

∆e12 = ∆100([ 45.26 15.82 (λ53.43 + (1− λ) 76.67) ], v)}.
Figs. 8 (a) and 8 (b) show roots of vertex and edge poly-

nomials in the first Riemann sheet. Minimum argument root
is the root of vertex polynomial ∆u6 = ∆100([45.26 9.10
76.67], v) and the value of minimum argument is φmin =
min{arg(R(Ω))} = 0.0259 radian. Since minimum argument
root lies in HSR defined with the root argument interval
(π/200, π/100], the interval system is robust stable.

Fig. 9 shows step responses of 8 vertex polynomials and
confirms robust stability of the closed loop electrical heater
control system for the given parameter deviation ranges.

Example 3. By considering the closed loop electrical heater
control system given in previous example as the plant function
G(s) = Y (s)

U(s) = 1
39.96s1.25+0.598 and PD controller of system,

C(s) = 64.47 + 12.46s. By using edge theorem approaches,
let us find out interval uncertainly ranges of γ that make the
closed loop control system robust stable.

Fig. 8. Root placement for Example 2 ((a) Roots of vertex and
edge polynomials; (b) Close view of minimum argument vertex and
connected edge polynomials.)

Fig. 9. Step responses of vertex polynomials.

It is convenient to write closed loop transfer function of
system:

T (s) =
Y (s)
U(s)

=
12.46s + 64.47

(39.96± γ)s1.25 + (12.46± γ)s + (65.068± γ)
.

(24)

Then, the characteristic polynomial was obtained as,

∆(s) = (39.96±γ) s1.25+(12.46±γ)s+(65.068±γ). (25)

By applying s = v100 mapping, the expanded degree integer
order characteristic polynomial is written as,
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∆100(v) = (39.96±γ) v125 +(12.46±γ)v100 +(65.068±γ).
(26)

Vertex polynomials of expanded degree integer order interval
characteristic polynomial were obtained as

{∆u1 = ∆100([(39.96− γ) (12.46− γ) (65.068− γ)], v),

∆u2 = ∆100([(39.96− γ) (12.46− γ) (65.068 + γ)], v),

∆u3 = ∆100([(39.96− γ) (12.46 + γ) (65.068− γ)], v),

∆u4 = ∆100([(39.96− γ) (12.46 + γ) (65.068 + γ)], v),

∆u5 = ∆100([(39.96 + γ) (12.46− γ) (65.068− γ)], v),

∆u6 = ∆100([(39.96 + γ) (12.46− γ) (65.068 + γ)], v),

∆u7 = ∆100([(39.96 + γ) (12.46 + γ) (65.068− γ)], v),

∆u8 = ∆100([(39.96 + γ) (12.46 + γ) (65.068 + γ)], v)}.
We used 19 polynomials edge sampling. Then, edge poly-

nomials were obtained as,

{∆e1 = ∆100([(λ(39.96− γ)
+ (1− λ)(39.96 + γ))(12.46− γ)(65.068− γ)], v),

∆e2 = ∆100([(λ(39.96− γ)
+ (1− λ)(39.96 + γ))(12.46− γ)(65.068 + γ)], v),

∆e3 = ∆100([(λ(39.96− γ)
+ (1− λ)(39.96 + γ))(12.46 + γ)(65.068− γ)], v),

∆e4 = ∆100([(λ(39.96− γ)
+ (1− λ)(39.96 + γ))(12.46 + γ)(65.068 + γ)], v),

∆e5 = ∆100([(39.96− γ)(λ(12.46− γ)
+ (1− λ)(12.46 + γ))(65.068− γ)], v),

∆e6 = ∆100([(39.96− γ)(λ(12.46− γ)
+ (1− λ)(12.46 + γ))(65.068 + γ)], v),

∆e7 = ∆100([(39.96 + γ)(λ(12.46− γ)
+ (1− λ)(12.46 + γ))(65.068− γ)], v),

∆e8 = ∆100([(39.96 + γ)(λ(12.46− γ)
+ (1− λ)(12.46 + γ))(65.068 + γ)], v),

∆e9 = ∆100([(39.96− γ)(12.46− γ)(λ(65.068− γ)
+ (1− λ)(65.068 + γ) )], v),

∆e10 = ∆100([(39.96− γ)(12.46 + γ)(λ(65.068− γ)
+ (1− λ)(65.068 + γ) )], v),

∆e11 = ∆100([[(39.96 + γ)(12.46− γ)(λ(65.068− γ)
+ (1− λ)(65.068 + γ) )], v),

∆e12 = ∆100([(39.96 + γ)(12.46 + γ)(λ(65.068− γ)
+ (1− λ)(65.068 + γ) )], v)}.

Figs. 10 (a)-10 (h) show roots of vertex and edge polynomi-
als in the first Riemann sheet for various values of γ. Table II
lists minimum argument of vertex roots with respect to value
of γ. Graphical results shown in Fig.10 indicate that interval
uncertain control system is robust stable for γ ≤ 27.

In this example, all edge and vertex polynomials (AEAV)
method[14] requires the test of 236 polynomials (19.3.22+23),
minimum argument vertex with connected edge polynomials
(MVCE) method requires the test of 65 polynomials (19.3 +
23) and minimum argument vertex polynomials (MV) method
requires the test of 8 polynomials (23). Examples numerically
reveal that MVCE and MV can reduce computational com-
plexity of robust stability analysis based on edge theorem;
however there is need for theoretical verification of basic
assumptions of MVCE and MV approaches.

VI. CONCLUSIONS

This study confirms that Hurwitz stability analysis of frac-
tional order characteristic polynomials is valid in v plane under
power mapping. As known, it is difficult to calculate root locus
of fractional order characteristic polynomials in s domain.
The s = vm power mapping significantly simplifies stability
analyses of fractional order polynomials. The problem turns
into the Hurwitz stability analysis of expanded degree integer
order polynomials in the first Riemann sheet.

It is important to investigate impacts of power mapping
on root locus and stability related properties. Preliminarily,
this paper revealed properties of s = vm mapping related
with stability analysis and root locus: It was shown that root
argument and magnitude relations are conserved under power
mapping. This is an important remark of power mapping
that leads to conformity of root locus analysis given in v
plane for the fractional order systems defined in s plane. The
conservation of argument and magnitude relations leads to
conservation of the geometrical properties of root constellation
under power mapping transformations between complex s and
v planes. Thus, the minimum argument root of expanded
degree integer order polynomials in complex v plane is also

TABLE II
MINIMUM ARGUMENT OF VERTEX POLYNOMIAL ROOTS AND SYSTEM STABILITY FOR VARIOUS γ

Value of γ Minimum angle vertex polynomial number (1-8) Minimum argument of vertex polynomials (Radian) Robust stability

1 6 0.0263 Stable

5 6 0.0258 Stable

10 6 0.0254 Stable

15 1 0.0246 Stable

20 1 0.0231 Stable

25 1 0.0193 Stable

27 1 0.0158 Stable

28 1 0.0128 Unstable
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Fig. 10. Root regions of vertex and edge polynomials in the first Riemann sheet for (a) γ = 1, (b) γ = 5, (c) γ = 10, (d) γ = 15,
(e) γ = 20, (f) γ = 25, (g) γ = 27 and (h) γ = 28.

minimum argument root of fractional order polynomial in the s
plane. This property provides the validity of Hurwitz stability
and implication of edge theorem under power mapping and it
makes possible the robust stability analysis of fractional order
interval polynomials according to robust stability of expanded
degree integer order polynomials complex v plane.

To utilize edge theorem based approach for robust stability
analysis of fractional order control systems. Author numer-
ically demonstrated two robust stability analysis approaches
based on minimum root argument analyses of vertex and
exposed edge polynomials in v plane. These approaches were
shown to reduce the number of test polynomials for the
parametric robust stability analyses of fractional order systems.
It was observed in numerical calculations that the test of only
vertex polynomials can significantly reduce computational
complexity of robust stability analyses for interval charac-
teristic polynomials with positive real coefficients. It should
be noted that results are valid under the assumption that
minimum argument root comes from vertex and/or connected
edge polynomials of hyper-rectangle. Results of numerical
examples confirm the validity of this assumption. However,
there is need for a future study addressing properties of zeros
in polynomial arithmetics for the theoretical proof of this
assumption.

This study contributes to advance our understanding on
implications of power mapping for root locus and stability
properties of fractional order systems.
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Criteria for Response Monotonicity Preserving

in Approximation of Fractional Order Systems
Mohammad Saleh Tavazoei, Member, IEEE

Abstract—In approximation of fractional order systems, a
significant objective is to preserve the important properties of the
original system. The monotonicity of time/frequency responses is
one of these properties whose preservation is of great importance
in approximation process. Considering this importance, the issues
of monotonicity preservation of the step response and monotonic-
ity preservation of the magnitude-frequency response are inde-
pendently investigated in this paper. In these investigations, some
conditions on approximating filters of fractional operators are
found to guarantee the preservation of step/magnitude-frequency
response monotonicity in approximation process. These condi-
tions are also simplified in some special cases. In addition,
numerical simulation results are presented to show the usefulness
of the obtained conditions.

Index Terms—Fractional order system, approximation, step
response, magnitude-frequency response, monotonicity

I. INTRODUCTION

THESE days, fractional calculus[1] has found a widespread
use in facilitating and dealing with different engi-

neering challenges. On the basis of using fractional or-
der dynamics[2], effective solutions have been proposed for
some engineering problems[3] in different fields such as
control system design[4−5], system identification[6−7], anal-
ysis and synthesis of electrical circuits[8−10], image and
signal processing[11−12], robotics[13], electromagnetics[14],
biomedical informatics[15], vibration reduction[16−17], wave
propagation[18], and viscoelasticity[19].

In practice, sometimes there is a need to approximate frac-
tional order systems. Consequently till now, different useful
methods have been proposed for approximating fractional
operators (for some sample methods, see [20−26]). But a
main concern in using approximation methods is that the
significant properties of the original fractional order systems
may not be preserved after approximation[27−29]. Considering
the importance of preserving the properties of fractional order
systems in approximation process, some studies on this subject
have been done in literature. For example, the problem of
stability preservation has been investigated in [30−31] for
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methods presenting rational continuous-time filters for ap-
proximation of fractional operators. Also, the approximation
methods constructed based on the direct discretization of
fractional operators have been analyzed in the viewpoint of
stability preservation in [32]. In this paper, the aim is to
investigate the problem of response monotonicity preserving
in approximation of fractional order systems by using rational
approximations of fractional operators. Monotonicity of the
step response is known as a feature for dynamical systems
having desired transient responses[33−37]. Also, a necessary
condition to have desired transient response in linear time
invariant dynamical systems is monotonicity of the magnitude-
frequency response[38]. Considering these points, dynamical
systems with monotonic time/frequency responses have been
taken into consideration in different applications[33−40]. In
these applications, if we deal with a fractional order dynamical
system with monotonic time/frequency response (for example
in fractional order control system design or in fractional
order filter synthesis with the aim of achieving a desired
transient response)[41−43], approximating such a system may
be unavoidable in practice. In this case, due to the significance
of the property of response monotonicity, preserving such a
property in approximation process is of great importance. In
this paper, general conditions on rational approximations of
fractional operators are derived that guarantee the preserva-
tion of monotonicity property of the step response or the
magnitude-frequency response in approximation process.

The paper is organized as follows. In Section II, some
preliminaries on approximation of fractional order systems
are presented. Conditions for guaranteeing the preservation
of the monotonicity property of the step response and the
magnitude-frequency response in approximation of fractional
order systems are respectively obtained in Sections III and
IV. In these sections, numerical simulation results are also
presented to confirm the usefulness of the obtained conditions.
Finally, conclusions in Section V close the paper.

II. RATIONAL APPROXIMATION OF
FRACTIONAL ORDER SYSTEMS

Consider a SISO LTI fractional order system described by
the following pseudo-state space equations

{
0D

α
t x(t) = Ax(t) + Bu(t),

y(t) = Cx(t), (1)

where u(t) ∈ R, y(t) ∈ R, and x(t) ∈ Rn are respectively
the input, output, and pseudo-state vector of the system[44].
Also, A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, α ∈ (0, 1), and
0D

α
t denotes the Caputo derivative operator defined by
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0D
α
t x(t) =

1
Γ(1− α)

∫ t

0

x′(τ)
(t− τ)α

dτ, α ∈ (0, 1). (2)

It is worth noting that (1) is the fractional order counterpart
of the integer order system

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t). (3)

The transfer function from input u(t) to output y(t) in
system (1) is given as follows (See Fig. 1).

G(sα) = C (sαI −A)−1
B. (4)

Fig. 1. Block diagram of pseudo-state space system (1).

A common way for approximating fractional order system
(1) is to approximate and replace the operator 1/sα in block
diagram of Fig. 1 by a rational transfer function (Fig. 2)[45].
Assume that the following approximation

sα ≈ P (s), (5)

where

P (s) =
bmsm + bm−1s

m−1 + · · ·+ b1s + b0

sm + am−1sm−1 + · · ·+ a1s + a0
, (6)

ai ≥ 0 for i = 0, 1, . . . , m− 1 and bi ≥ 0 for i = 0, 1, ..., m,
is used for approximating fractional order system (1). In this
case, the approximated system will be described by rational
transfer function G(P (s)).

Fig. 2. Block diagram of the approximated integer order system for
fractional order system (1) obtained by using approximation (5).

Preservation of the principal properties of the system is an
important issue which should be taken into consideration in
the approximation process. Considering this importance, on
the basis of comparing the stability conditions of the original
system (1) and its rational approximation, the stability preser-
vation problem has been previously studied in [31−32]. In this
paper, we focus on the monotonicity preservation problem
for the time/frequency responses, and obtain conditions on
approximation (5) for guaranteeing the preservation of the
response monotonicity. Satisfying these conditions guarantees
that the monotonicity of the system response is preserved in
approximation process, i.e., the approximated integer order
system similar as the original fractional order system has a

monotonic time/frequency response. The main feature of the
conditions obtained in the next sections is the independency
of these conditions from the original system dynamics.

III. STEP RESPONSE MONOTONICITY

A. Preliminaries
Consider a BIBO stable system described by transfer func-

tion H(s). According to the Post-Widder inversion formula[46],
the impulse response of this system (h(t)), as the inverse
Laplace transform of H(s), is given by

h(t) = lim
k→∞

(−1)k

k!

(
k + 1

t

)k+1

H(k)

(
k + 1

t

)
, (7)

where H(k)(s) denotes the k−th derivative of H(s). An
interesting consequence of the Post-Widder inversion formula,
which has been taken into consideration in the literature[47],
is about non-negativeness of the impulse response. According
to this formula, if the BIBO stable transfer function H(s)
satisfies condition

(−1)r H(r)(s)
∣∣∣
s=σ

≥ 0, (8)

for r = 1, 2, . . . and all positive real values of σ, then its
impulse response is non-negative for t > 0. Conversely, by
considering the Laplace transform definition, i.e.

H(s) =
∫ ∞

0

e−sth(t) dt, (9)

it is deduced that

(−1)rH(r)(σ) =
∫ ∞

0

e−σttrh(t) dt, (10)

for σ > 0, where H(s) is a BIBO stable transfer function with
the impulse response h(t). Therefore, if h(t) is non-negative,
then condition (8) is satisfied for r = 1, 2, . . . , and all positive
real values of σ[47].

B. Criteria for Step Response Monotonicity
This subsection deals with finding conditions on approxima-

tion filter (6) to guarantee monotonicity of the step response.
Firstly, the monotonicity condition is derived in a general
case (Theorem 1), and then this condition is simplified in
some special cases (Corollaries 1-3). In addition, numerical
examples are presented to validate the obtained results.

For obtaining the results in this subsection, it is assumed that
the original system (G(sα)), the approximating filter (P (s)),
and the approximated system (G(P (s))) are BIBO stable
(the conditions on approximating filter (P (s)) to preserve the
stability of the system in the approximation process can be
found in [31]). Now, as a first result consider the following
theorem presenting a condition to guarantee the step response
monotonicity in the approximation process.

Theorem 1. Assume that system (1) has a monotonic
non-decreasing step response. The monotonicity of the step
response is preserved by using rational approximation (5) if

(−1)k P̃ (k)(s)
∣∣∣
s=σ

≤ 0, (11)

for all positive real values of σ and k ∈ N, where P̃ (s) =
P 1/α(s).



424 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL.3, NO.4, OCTOBER 2016

Proof. Since the BIBO stable system (1) has a monotonic
non-decreasing step response, according to discussions of
Section III-A

(−1)k Ĝ(k)(s)
∣∣∣
s=σ

≥ 0, (12)

for all k ∈ N and σ > 0 where Ĝ(s) = G(sα) = C(sαI −
A)−1B. By using the rational approximation (5), the approxi-
mated system is described by transfer function Ĝ(P 1/α(s)) =
Ĝ(P̃ (s)). According to the Faàdi Bruno’s formula (gener-
alization of the chain rule for higher derivatives)[48], the r-
th (r ∈ N) derivative of this transfer function with respect to
is given by

dr

dsr
Ĝ

(
P̃ (s)

)
=

∑ r!
k1! k2! · · · kr!1!k12!k2 · · · r!kr

× Ĝ(k1+k2+···+kr)(x)
∣∣∣
x=P̃ (s)

r∏

i=1

(
P̃ (i)(s)

)ki

, (13)

where the sum appeared in the right-hand side of (13) is over
all r-tuples of non-negative integers satisfying the Diophantine
equation

k1 + 2k2 + · · ·+ rkr = r. (14)

The Diophantine equation (14) yields in
∏r

i=1

(
(−1)iP̃ (i)(s)

)
ki

= (−1)r
∏r

i=1

(
(−1)iP̃ (i)(s)

)ki

. From this equality and (13),

(−1)r dr

dsr
Ĝ

(
P̃ (s)

)
=

∑ r!
k1! k2! ...kr!1!k12!k2 · · · r!kr

× Ĝ(k1+k2+···+kr)(x)
∣∣∣
x=P̃ (s)

r∏

i=1

(
(−1)iP̃ (i)(s)

)ki

. (15)

If condition (11) is satisfied for all σ > 0 and k ∈ N,

then
(
(−1)i P̃ (i)(s)

∣∣∣
s=σ

)ki

and (−1)ki have the same signs
for each σ > 0 and non-negative integer ki. Considering this
fact and (15), it is deduced that (−1)r dr

dsr Ĝ
(
P̃ (s)

)∣∣∣
s=σ

and

(−1)k1+k2+···+krĜ(k1+k2+···+kr)(x)
∣∣∣
x=P̃ (σ)

have the same

signs for all σ > 0. Hence, from (12) it is found that

(−1)r dr

dsr
Ĝ

(
P̃ (s)

)∣∣∣∣
s=σ

≥ 0, (16)

for all r ∈ N and σ > 0. According to (16) and the Post-
Widder inversion formula, it is concluded that the BIBO stable
system Ĝ(P̃ (s)) (approximated system) has a monotonic non-
decreasing step response. ¤

If α = 1/N where N ∈ N, condition (11) is written as

(−1)k
(
PN (s)

)(k)
∣∣∣
s=σ

≤ 0. (17)

According to discussions of Section III-A, condition (17) is
satisfied for all k ∈ N, if the BIBO stable transfer function

−PN (s) has a non-negative impulse response for t > 0.
Consequently, since the impulse response of this transfer
function is equal to the negative of the impulse response of
transfer function PN (s), the following corollary is deduced
from Theorem 1.

Corollary 1. Assume that α = 1/N (N ∈ N), and the step
response of system (1) is monotonic non-decreasing. In this
case, the monotonicity of the step response of system (1) is
preserved by using rational approximation (5) if the rational
transfer function PN (s) has a non-positive impulse response
for t > 0.

Example 1. Consider the approximation s0.5 ≈ P (s) with
(18), Shown at the bottom of the page, which is obtained
by the low-frequency continued fraction method[49]. It can
be verified that P 2(s) has a non-positive impulse response
for t > 0 (See Fig. 3). Hence, from Corollary 1 it is con-
cluded that the step response monotonicity is preserved by
using the above-mentioned approximation to approximate each
fractional order system in the form (1) with α = 1/2 and a
monotonic step response. For example, system (1) with α =

1/2, A =
[ −1.8 −1

1 0

]
, B =

[
1 0

]T
, and C = [0 1]

is a BIBO stable system having a monotonic step response.
As shown in Fig. 4, the monotonicity of the step response
of this system is preserved by using the above-mentioned
approximation.

Fig. 3. Impulse response of P 2(s) for t > 0 where P (s) is defined
by (18).

Fig. 4. Monotonic step responses of the original system and its
approximation in Example 1.

———————————————————————————————————————————————————–

P (s) =
s(s + 0.933)(s + 0.75)(s + 0.5)(s + 0.25)(s + 0.06699)

(s + 0.983)(s + 0.8536)(s + 0.6294)(s + 0.3706)(s + 0.1464)(s + 0.01704)
, (18)
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According to [41, Theorem 3], we know that if (3) is a
BIBO stable system with a monotonic step response, then (1)
also has a monotonic step response. Hence in such a case,
the monotonicity condition is reduced as that stated in the
following corollary.

Corollary 2. Assume that the integer order system described
by (3) is a BIBO stable system with a monotonic non-
decreasing step response. In such a case, the step response of
the approximation of system (1) obtained by using (5), similar
as the step response of the original system (1), is monotonic
if P (s) has a non-positive impulse response for t > 0.

It is worth noting that the simple condition presented in
Corollary 2 can be satisfied by a large class of rational
approximations having interlaced real zeros and poles (For
example, the rational approximations proposed in [21, 25,
51]). To show this fact, assume that the transfer function P (s)
described by

P (s) = k

m∏
i=1

(s + zi)

m∏
i=1

(s + pi)
, (19)

where

k > 0 & 0 ≤ z1 < p1 < z2 < p2 < · · · < zm < pm (20)

is used for approximation of fractional operator sα (α ∈
(0, 1)). If condition (20) holds, P (s) can be rewritten as

P (s) = k +
m∑

i=1

ri

s + pi
, (21)

where ri < 0 for i = 1, ..., m (See [50]). Since all ri (i =
1, ..., m) are negative, transfer function (19) has a non-positive
impulse response for t > 0. Therefore, the following result is
deduced.

Corollary 3. Let assumptions of Corollary 2 hold. Then,
the monotonicity of step response is preserved by using
approximation (5) if P (s) is in the form (19) and satisfies
conditions in (20).

For instance, the approximation methods proposed in [21,
25, 51] satisfy conditions of Corollary 3. Consequently, using
these methods results in preservation of the step response
monotonicity in approximation of fractional order systems
having monotonic step responses.

Example 2. In [41, Example 1], the monotonicity of the step
response of a fractional order system is shown. The pseudo-
state space representation of the system considered in [41,
Example 1] is in the form (1) with the following matrices

A =




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
−0.1 −1.05 −4.55 −10.53 −14.07 −11.05 −4.9




,

B =
[

0 0 0 0 0 0 1
]T

,

C =
[

2 1 2 1 0 0 0
]

.

The step response of this system in the case α = 0.9 is
shown in Fig. 5. If the approximation

s0.9 ≈ 501.1872(s + 0.001259)(s + 0.1259)(s + 12.59)
(s + 0.07943)(s + 7.943)(s + 794.3)

,

(22)
obtained based on the CRONE method[51], is used for approx-
imating the above-described system, according to Corollary 3
the monotonicity of the step response is preserved. The step
response of the approximated system shown in Fig. 5 confirms
this point.

Fig. 5. Monotonic step responses of the original system and its
approximation in Example 2.

IV. MAGNITUDE-FREQUENCY RESPONSE MONOTONICITY

The monotonicity of magnitude-frequency response of all-
pole fractional order systems has been studied in [42]. In
the mentioned study, algebraic conditions have been derived
to guarantee the nonexistence of extrema in the magnitude-
frequency response of an all-pole fractional order system. In
continuation of the work done in [42], in this section it is
assumed that (1) describes an all-pole transfer function in the
form

G(s) =
1

n∑
k=0

dkskα

, dn > 0 & dk ≥ 0 for k = 0, ..., n− 1

(23)
with the monotonic magnitude-frequency response |G(jω)|
for ω ∈ (0,∞). Considering this assumption, the following
theorem presents conditions on the approximating filter P (s)
in (5) to preserve the monotonicity of the magnitude-frequency
response of system (1) in the approximation process.

Theorem 2. The magnitude-frequency response monotonic-
ity of any fractional order system in the form (1) with
transfer function (23), which has a monotonic non-increasing
magnitude-frequency response, is preserved in the frequency
range (ωi, ωh) by approximating this system on the basis of
approximation (5) if the following sets of conditions





min
c∈C+

Ψc(ω)
cos( cαπ

2 ) ≥ 0,

min
c∈C+

Ψc(ω)
cos( cαπ

2 ) ≥ max
c∈C−

Ψc(ω)
cos( cαπ

2 ) ,
∀ω ∈ (ωl, ωh) (24)

are satisfied where
C+ =

{
c ∈ {−n, ..., n}| cos( cαπ

2 ) ≥ 0
}

,
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C− =
{

c ∈ {−n, ..., n}| cos( cαπ
2 ) < 0

}
, and

Ψc(ω) =
d |P (jω)|

dω
cos (c]P (jω))

− d]P (jω)
dω

|P (jω)| sin (c]P (jω)) . (25)

Proof. It can be shown that if the magnitude-frequency
response of transfer function (23) is monotonic non-increasing,
then

f(ω) ≥ 0, ∀ω ∈ (0,∞), (26)

where f(ω) is defined as follows (For more details, see [42:
Section 3]).

f(ω) =
n∑

k=0

n∑

l=0

kdkdl cos
(

(k − l)απ

2

)
ωk+l−1. (27)

On the other hand, by using approximation (5) the
magnitude-frequency response of the approximated system
G(P (s)) is given by

|G (P (jω))| = 1√
ρ(ω)

, (28)

where

ρ(ω) =
(

n∑
k=0

dk |P (jω)|k cos (k]P (jω))
)2

+
(

n∑
k=0

dk |P (jω)|k sin (k]P (jω))
)2

.

(29)

The magnitude-frequency response of the approximated
system is monotonic non-increasing in the frequency range

(ωi, ωh) if and only if
dρ(ω)
dω

≥ 0, ∀ω ∈ (ωi, ωh). According
to (29),

dρ(ω)
dω

= 2
(

n∑
k=0

dk |P (jω)|k cos (k]P (jω))
)

×



n∑
k=0

kdk |P (jω)|k−1 d|P (jω)|
dω cos (k]P (jω))

− kdk |P (jω)|k d]P (jω)
dω sin (k]P (jω))




+ 2
(

n∑
k=0

dk |P (jω)|k sin (kP (jω))
)

×



n∑
k=0

kdk |P (jω)|k−1 d|P (jω)|
dω sin (k]P (jω))

+ kdk |P (jω)|k d]P (jω)
dω cos (k]P (jω))


 .

(30)
By some calculations, (30) is simplified as

dρ(ω)
dω

=
n∑

k=0

n∑

l=0

kdkdl |P (jω)|k+l−1 Ψk−l(ω). (31)

It is worth noting that condition (26) results in

f(|P (jω)|)
=

n∑
k=0

n∑
l=0

kdkdl cos
(

(k−l)απ
2

)
|P (jω)|k+l−1 ≥ 0,

(32)

for ω ∈ (0,∞). Define

µ(ω) = min
c∈C+

Ψc(ω)
cos( cαπ

2 )
, ω ∈ (ωl, ωh). (33)

Definition (33) yields in

Ψc(ω) ≥ µ(ω) cos(
cαπ

2
), ∀ω ∈ (ωl, ωh) & ∀c ∈ C+.

(34)
Also if the second part of the conditions in (24) is met, then

Ψc(ω) ≥ µ(ω) cos(
cαπ

2
), ∀ω ∈ (ωl, ωh) & ∀c ∈ C−.

(35)
According to (31), (34), and (35), we have

dρ(ω)
dω

≥
n∑

k=0

n∑

l=0

kdkdl cos
(

(k − l)απ

2

)
µ(ω) |P (jω)|k+l−1

,

(36)
for all ω ∈ (ωl, ωh). If the first part of conditions in (24)
(i.e., µ(ω) ≥ 0,∀ω ∈ (ωl, ωh) is satisfied, from (32) and (36)
it is concluded that dρ(ω)/dω ≥ 0,∀ω ∈ (ωl, ωh). Hence,
if the conditions in (24) hold, the approximated system has
a monotonic non-increasing magnitude-frequency response in
the frequency range (ωi, ωh). ¤

Example 3. The following approximation (37), shown
at the bottom of the page, which has been obtained
by using the low-frequency continued fraction method[49].
For approximation (37), functions min

c∈{−1,0,1}
Ψc(ω)

cos(0.3cπ) and

min
c∈{−1,0,1}

Ψc(ω)
cos(0.3cπ)/ max

c∈{−2,2}
Ψc(ω)

cos(0.3cπ) have been respec-

tively plotted versus ω in Figs. 6 and 7. Plotting these func-
tions specify that the conditions in (24) are simultaneously
satisfied in the frequency range (0.074,∞) for n = 2. Hence,
from Theorem 2 the monotonicity of the magnitude-frequency
response is preserved in the frequency range (0.074,∞)
by using approximation (37) in approximating each all-pole
fractional order system in the form (1) with α = 0.6 and
n = 2 which has a monotonic magnitude-frequency response.
As a sample, consider system (1) with order α = 0.6,

and matrices A =
[ −1/40 −1/10

1/16 0

]
, B = [1/4 0]T,

and C = [0 2/5]. In this case, (1) is an all-pole system
with a monotonic magnitude-frequency response (See Fig. 8).
Although the magnitude-frequency response of the approx-
imation of this system, obtained on the basis of (37), is
not monotonic for all frequencies, the monotonicity of the
magnitude-frequency response is preserved in the frequency
range (0.074,∞) (See Fig. 8).

According to (31), a trivial condition which results in the
monotonicity of the magnitude-frequency response is non-
negative-ness of Ψc(ω). Hence, the following result is de-
duced.

———————————————————————————————————————————————————–

s0.6 ≈ s(s + 0.8961)(s + 0.6405)(s + 0.3316)(s + 0.08734)
(s + 0.9811)(s + 0.8075)(s + 0.5167)(s + 0.2199)(s + 0.03037)

, (37)
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Fig. 6. min
c∈{−1,0,1}

Ψc(ω)
cos(0.3cπ)

versus ω (Example 3).

Fig. 7. min
c∈{−1,0,1}

Ψc(ω)
cos(0.3cπ)

/ max
c∈{−2,2}

Ψc(ω)
cos(0.3cπ)

versus ω

(Example 3).

Fig. 8. Magnitude-frequency responses of the original system and
its approximation in Example 3.

Fig. 9. Ψc(ω) versus ω for c ∈ −3, . . . , 3 (Example 4).

Corollary 4. If Ψc(ω) ≥ 0 for all ω ∈ (ωi, ωh) and
c ∈ −n, ..., n, then the approximation of system (1) with
transfer function (23), which is obtained on the basis of (5),
is monotonic non-increasing in the frequency range (ωi, ωh).

Example 4. Approximation (38), shown at the bottom of
the page, which is obtained by using the CRONE method
[51, Sec. 4.1.1]. For this approximation, functions Ψc(ω)
for c ∈ −3, ..., 3 are non-negative in the frequency range
(0,∞) (See Fig. 9). Therefore according to Corollary 4, using
approximation (38) in approximating system (1) with a transfer
function in the form

G(s) =
1

d3s0.9 + d2s0.6 + d1s0.3 + d0
, (39)

where dk ≥ 0 for k = 0, . . . , 3, results in an approxi-
mated system with a monotonic magnitude-frequency response
(According to [42, Corollary 1], transfer function (39) with
condition dk ≥ 0 for k = 0, . . . , 3 has a monotonic magnitude-
frequency response). For instance if approximation (38) is used
for approximating the system




0D
0.3
t x(t) =



−2 −0.5 −1

1 0 0
0 1 0


x(t) +




1
0
0


u(t),

y(t) =
[

0 0 1
]
x(t),

(40)
as confirmed in Fig. 10 the approximated system similar as
the original system has a monotonic magnitude-frequency
response.

Fig. 10. Magnitude-frequency responses of the original system and
its approximation in Example 4.

V. CONCLUSIONS

In this paper, the problem of preservation of response
monotonicity in approximating fractional order systems by
using rational approximations of fractional operators was
investigated. In this investigation, conditions on the rational
approximation of fractional operators were found to guarantee
the monotonicity of step/magnitude-frequency response in
approximation process (Theorems 1 and 2). These conditions
were also simplified in some special cases (Corollaries 1-4).

———————————————————————————————————————————————————–

s0.3 ≈ 3.9811
(s + 0.01711)(s + 0.07943)(s + 0.3687)(s + 1.711)(s + 7.943)(s + 36.87)
(s + 0.02712)(s + 0.1259)(s + 0.5843)(s + 2.712)(s + 12.59)(s + 58.43)

, (38)
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Moreover, numerical simulations results were presented
to confirm the usefulness of the obtained conditions. The
main significance of the conditions, which were obtained
on approximating filters to guarantee the monotonicity of
step/magnitude-frequency responses in approximation process,
is the independency of these conditions from the original
system dynamics. This means that if an approximating filter
satisfies the obtained conditions, using this filter in approx-
imation of each original system with a monotonic response
results in an approximated system having a monotonic re-
sponse. Generally speaking, this feature can considerably
reduce the computational costs for investigating the problem of
monotonicity preservation, where the aim is approximation of
various fractional order systems having monotonic responses.
In this case, the obtained conditions can be only checked for
the approximating filter, and if these conditions are satisfied,
monotonicity of the response is guaranteed for all the approx-
imated systems resulted from using such an approximating
filter. Proposing new monotonicity preserving methods for
approximation of fractional order operators or determining
the free parameters of the existing approximation methods to
guarantee the preservation of the response monotonicity, on the
basis of the conditions derived in this paper, can be considered
as interesting topics for future research works.
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Fractional-order Generalized Principle of
Self-support (FOGPSS) in Control System Design

Hua Chen and YangQuan Chen

Abstract—This paper reviews research that studies the princi-
ple of self-support (PSS) in some control systems and proposes
a fractional-order generalized PSS framework for the first
time. The existing PSS approach focuses on practical tracking
problem of integer-order systems including robotic dynamics,
high precision linear motor system, multi-axis high precision
positioning system with unmeasurable variables, imprecise sensor
information, uncertain parameters and external disturbances.
More generally, by formulating the fractional PSS concept as a
new generalized framework, we will focus on the possible fields of
the fractional-order control problems such as practical tracking,
λ-tracking, etc. of robot systems, multiple mobile agents, discrete
dynamical systems, time delay systems and other uncertain
nonlinear systems. Finally, the practical tracking of a first-order
uncertain model of automobile is considered as a simple example
to demonstrate the efficiency of the fractional-order generalized
principle of self-support (FOGPSS) control strategy.

Index Terms—Fractional-order, principle of self-support (PSS),
practical tracking, first-order automobile model.

I. INTRODUCTION

THE conception of the principle of self-support (PSS)
can be described by the following crucial characteristics

for the existence of each phenomenon[1]: 1) Self-existence,
each phenomenon (such as thing, fact, single element, unit,
set, system, process, etc.) is an entity with its own being
and nature. It exists as something (of, by) itself, not as any
other thing. 2) Existence as a whole, each phenomenon exists
as a whole. It is, or has a wholeness which includes all
other phenomena. “Whatever comes into existence, always
comes as a whole” (Plato, The Sophist). 3) Existence in
a whole, no phenomenon exists entirely alone. Each is a
part of other phenomena. Indeed, observing Fig. 1, from a
recent report[2], as Alley pointed out that the ice movement
may affect the regional climate change and the changes in
temperature affects the rising of the sea levels, but instead,
changes of the sea surface will also affect the ice movement, so

Manuscript received September 21, 2015; accepted February 28, 2016. This
work was supported by the National Natural Science Foundation of China
(61304004, 61503205), the Foundation of China Scholarship Council (201406
715056), the Foundation of Changzhou Key Laboratory of Special Robot
and Intelligent Technology (CZSR2014005), and the Changzhou Science
and Technology Program (CJ20160013). Recommended by Associate Editor
Antonio Visioli.

Citation: Hua Chen, YangQuan Chen. Fractional-order generalized principle
of self-support (FOGPSS) in control system design. IEEE/CAA Journal of
Automatica Sinica, 2016, 3(4): 430−441

Hua Chen is with the Mathematics and Physics Department, Hohai Uni-
versity, Changzhou 213022, China (e-mails: chenhua112@163.com).

YangQuan Chen is with MESA Laboratory, University of California, CA
95343, USA (e-mail: ychen53@ucmerced.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

they are reciprocally cause and effect, as they are interrelated
and interact and constitute an integral whole (self-support as
a whole).

Fig. 1. Interaction between the ice movement and a rise in sea levels.

Fig. 2. One dragon/Uroboros.

Additionally, as seen in Fig. 2, the best representative exam-
ple for another self-referential (see [1] and references therein)
seems to be a medieval paradox, the Uroboros the archetype
of a vicious circle formed by a snake, or a dragon, looped
in a circle, biting its own tail. How to distinguish where is
the beginning and where is the end, why would such a thing
happen: how to make it clear which is the cause and which
is the effect (Fig. 3)? Based on the PSS idea, it shows just a
self-complete whole — a self support system.

Then, as for control systems, how to consider it with these
three existences above with PSS?
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Fig. 3. Two dragons tail to mouth to tail.

A control signal (which is physically an amount of energy
provided from the outside to a robotic system, in the form
of either an input voltage or current injected to the driving
actuators) might be regarded as a self-supported variable, i.e.,
it is a part of a greater system.

Here, a robotic dynamics is considered as an example by
Novaković[3] for introducing the PSS design,

M(q)q̈ + d(q, q̇) = u, (1)

where q, u, d(q, q̇) ∈ Rn denote the joint coordinates vector,
control vector, and the vector grouping the Coriolis centrifugal
and gravitational forces or external disturbance, respectively.
M(q) = M(q)T ∈ Rn×n is the positive definite non-singular
inertia matrix. By the computing torque technique, one can
design a state feedback law

u = M(q)b+ d(q, q̇), (2)

where b ∈ Rn is to be designed. Using the information about
the joint-coordinates error e = qd−q (qd is the desired motion
of the joints, assuming that the inverse kinematics problem has
been solved), let

b = q̈d +Kdė+Kpe,

which guarantees that system (1) behaves according to

ë+Kdė+Kpe = 0, (3)

where Kd, Kp are diagonal matrices whose elements are
selected so to guarantee e → 0 in advance. But practically, to
consider the issues of robustness to parameter uncertainties,
external disturbances, sensor noise and computational com-
plexity, etc., the controller (2) cannot be obtained directly. To
overcome this difficulty, the author considered

u = M̂(q̃)b+ d̂(q̃, ˙̃q), (4)

where q̃, ˙̃q are available measured values, M̂(q̃), d̂(q̃, ˙̃q) are
the estimated values of M(q) and d(q, q̇) in model (1). From
the basic idea of the PSS, essentially, the controller is seen
as a part of (1), which means u can also be substituted into

the error system by M(q)q̈+d(q, q̇) to cancel some uncertain
terms, thus its maximal limitation umax can be assumed to
be estimated by the bound of |M(qd)q̈d| + |d(q, q̇)|, then the
author proposed some practical tracking control algorithms
based on the principle of self-support.

Under the basic idea of PSS, it is not necessary to know
the accurate values of q, qd, and only the estimated error
information is enough to design u such that e can be driven
into a fixed neighborhood of zero Dε. For simplicity, let q
= [q1, . . . , qn]

T, u = [u1, . . . , un]
T, b = diag{bi} (i = 1,

2, . . . , n), qd = [q1d, . . . , qnd]
T, tracking error e = [e1, . . . ,

en]
T with ei = qid − qi, max{|ui|} = uimax.

When estimating q by q̃, we suppose ẽi = ei −
∫ t

0
ωi(t)dt

for all t, where ωi(t) is the measurement function, which is
supposed to be bounded (|ωi(t)| ≤ ci1) and belong to a class of
bounded integrable functions in the sense of Lebesgue integra-
tion, i.e., ωi(t) ∈ L1

[0,t](f(t)) , {f(t) :
∫
[0,t]

|f(s)|ds ≤ ci2},
where ci1, ci2 are two positive constants given in advance.
A PSS feedback law is proposed by ui = −bisi, where bi
> 0 is a design parameter to be given later, si = ˙̃ei + ρiẽi,
ρi > 0. And next, for a given small positive constant ε, we
will state that the tracking error ei(t) can be driven into the
neighborhood of zero Dε , {ei : |ei| ≤ ρici2+ci1

ρi
+ ε} by

selecting proper design parameters bi.
To show how to select the design parameter bi, take a

Lyapunov function V1 = 1
2

∑n
i=1 e

2
i , its time derivative can

be calculated

V̇1 =
n∑

i=1

ei( ˙̃ei + ωi(t)) =
n∑

i=1

ei(si − ρiẽi + ωi(t))

=

n∑
i=1

ei

(
−ui

bi
− ρi(ei −

∫ t

0

ωi(t)dt) + ωi(t)

)
= −

n∑
i=1

ρie
2
i −

n∑
i=1

ei

(
ui

bi
− ρi

∫ t

0

ωi(t)dt+ ωi(t)

)
,

under the boundedness conditions of ui, ωi(t) and
∫ t

0
ωi(t)dt,

one has

V̇1 ≤ −
n∑

i=1

ρie
2
i +

n∑
i=1

|ei|
(
uimax

bi
+ ρici2 + ci1

)
,

from which, if |ei| > ρici2+ci1
ρi

+ ε, we have

V̇1 ≤−
n∑

i=1

ρi

(
ρici2 + ci1

ρi
+ ε

)
|ei|

+
n∑

i=1

|ei|
(
uimax

bi
+ ρici2 + ci1

)
=−

n∑
i=1

|ei|
(
ρiε−

uimax

bi

)
.

We can select design parameters bi such that η = ρiε− uimax

bi
> 0, so choosing bi >

uimax

ρiε
such that

V̇1 ≤ −η
n∑

i=1

|ei| ≤ 0, (5)

which means ei(t) will enter into the region Dε in a finite
time.
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On the other hand, once ei(t) ∈ Dε, it has |ei(t)| ≤
ρici2+ci1

ρi
+ ε and |ėi(t)| is also shown to be upper bounded,

since
|ėi| = | ˙̃ei + ωi(t)| = |si − ρiẽi + ωi(t)|,

substituting control law and estimated error, we have

|ėi| = | − ui

bi
− ρiẽi + ωi(t)|

= | − ui

bi
− ρi

(
ei −

∫ t

0

ωi(t)dt

)
+ ωi(t)|

≤ uimax

bi
+ ρi

(
ρici2 + ci1

ρi
+ ε+ ci2

)
+ ci1

=
uimax

bi
+ 2ρici2 + 2ci1 + ρiε,

because bi >
uimax

ρiε
, therefore

|ėi| < 2ρi

(
ci2 +

ci1
ρi

+ ε

)
. (6)

This means that the control algorithm guarantees that ei will
lie in Dε if ci2 = ci1 = 0, ε → 0+.

Remark 1. In an ideal world, ci2 = ci1 = 0 means that the
sensors for measuring the tracking error of robotic systems are
accurate without any disturbance or noise, i.e., the properties
of the final neighborhood of zero Dε depend on the accuracy
of sensors. Therefore, a more generalized case (for any given
ci1, ci2) of the tracking problem is discussed here based on
the basic PSS idea. Moreover, our further consideration in the
next will be the case when the estimated error is assumed to
be measured by some cumulative error measurement function
with memorability decided by the previous control effect.

Remark 2. Usually, the desired objects to be tracked are
moving in a bounded feasible region (the size of which may
be very large), for all initial conditions, from (5) and (6), both
ẽi(t) and ei(t) will not escape to infinity before ei(t) enters
into Dε.

Additionally, there are some research results about PSS in
control systems, let us do a brief review on it. In [4], Tan et al.
discussed the precision motion control of a permanent magnet
linear motor (PMLM) for applications which are inherently
repetitive in terms of the motion trajectories, and a feedback-
feedforward control structure is proposed with a modest
amount of modeling effort. An iterative learning controller
(ILC) based on zero-phase filtering is applied as feedforward
controller to the existing relay-tuned PID feedback controller
to enhance the trajectory tracking performance by utilizing
the experience gained from the repeated execution of the
same operations. Considering inputs subjected to bounded con-
straints, Novaković[5] proposed a practical tracking algorithm,
the control law is accelerometer-free (or even tacho-free, also),
robust to sensor noise, allows the prespecification of the error
decay rate, and is realistic from the engineering standpoint
that can be implemented using current microprocessor tech-
nology. The PSS methodology is introduced for kinematic
control of manipulators, in a way that is both mathematically
clear and simple to implement[6]. Ulu et al.[7] proposed a
new method which is computationally more efficient, more
suitable for coupling gain calculations of arbitrary nonlinear

contour and easier to implement on multiaxis systems. The
tracking and contouring performance of the method on a
nonlinear contour is verified through simulations and exper-
iments achieving nanometer level accuracy for the two-axes
system.

However, for complicated systems in engineering, design-
ing an integer-order state feedback control law is imperfect
especially when dealing with some real-world plants which
need the so-called “long term memory property”[8−9]. Com-
pared with integer-order system, fractional calculus has been
proven to describe real systems in interdisciplinary fields more
effectively, since it can offer a deeper insight into the physical
processes underlying a long-range memory behavior[10−14].
To sum up, fractional control related issues can include the
fractional order dynamic system or plant to be controlled and
the fractional-order controller. However, in control practice it
is more common to consider the fractional-order controller[15].
This is due to the fact that the plant model may have already
been obtained as an integer order model in the classical
sense. In most cases, the task is to apply fractional-order
control (FOC) to enhance the system control performance.
For example, in [16], the robust control of perturbed integer-
order LTI systems is considered by using a fractional order
sliding surface design method. A novel control strategy has
been proposed, ensuring that the fractional-order (FO) sliding
manifold will be hit at an infinite sequence of time instants
and becoming denser as time grows. The closed-loop system
is proved to be asymptotically robust with respect to a wide
class of disturbances with the chattering free FO sliding
mode control. To improve control performance or for dealing
explicitly with the fractional order behavior of the plants, in
[17−18], the authors adopted a fractional order PID controller
or the generalized PIλDµ controller. So, naturally, in this
paper, we consider to present a fractional-order generalized
principle self-support (FOGPSS) control for real application,
we also address the questions. What would happen if the
PSS controller (4) is replaced by FOGPSS controller? What
condition should be satisfied compared with (3), and how to
establish a FOGPSS feedback law?

The structure of the article is as follows: Section II presents
the FOGPSS statement and a prospect of some possible
research interests. Section III provides a simple application
example and its simulations. And finally, a conclusion is
summarized in Section IV.

II. PROBLEM FORMULATION OF FOGPSS

There are many different definitions of fractional
operators[19−30], such as Grunwald-Letnikov fractional
derivatives, Hadamard type fractional integrals and fractional
derivatives, Liouville fractional integrals and fractional
derivatives, Marchaud derivatives, Caputo fractional
derivatives, Riemann-Liouville (RL) fractional integrals
and fractional derivatives, etc., among which, commonly used
are Riemann-Liouville and Caputo fractional order operators.
The following subsection will give some basic definitions and
properties about these two.
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A. Preliminaries of Fractional Calculus

Definition 1[20−30]. Given function f(t) ∈ L1[a, b] at time
instant t ≥ 0, Riemann-Louville fractional integral with order
α > 0 is defined as

RLD−αf(t) = Iαf(t) , D−αf(t)

=
1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ,

where Γ(·) is the Euler gamma function,

Γ(s) =

∫ ∞

0

e−tts−1dt, s ∈ C.

The reduction formula for this function holds

Γ(s+ 1) = sΓ(s) ⇒ Γ(m+ 1) = m(m− 1)! = m!,

where m ∈ Z+ = {1, 2, 3, . . .}, and Lp[a, b] is (for 1 ≤ p ≤
∞) the usual Lebesgue space.

Definition 2[20−30]. The Riemann-Louville fractional
derivative of function f(t) with order α > 0 is defined as
follows:

RLDαf(t) =
1

Γ(m− α)

dm

dtm

∫ t

0

f(τ)

(t− τ)α−m+1
dτ,

where m−1 < α ≤ m and m ∈ Z+, dm

dtm f(t) denotes m-order
derivative of f(t).

Definition 3[20−30]. The Caputo derivative of fractional
order α of a function f(t) is described by

CDαf(t) = D−(m−α) d
m

dtm
f(t)

=
1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)1+α−m
dτ,

where m − 1 ≤ α < m ∈ Z+, f (m)(τ) is the m-order
derivative of f(τ) with respect to τ .

For the fractional-order operators, we select some important
properties[20−30] which may be used later:

Property 1. IαIβf(t) = Iα+βf(t), α, β ≥ 0.
Property 2. RLDα

(RL
D−α(f(t))

)
= f(t).

Property 3. CD−αD−βf(t) = D−(α+β)f(t), α, β ≥ 0.
Property 4. CD−αDαf(t) = f(t)− Σm−1

j=0
m−1
i! f (j)(0).

Property 5. CDαIαf(t) = f(t).
Next, we will propose the fractional-order generalized prin-

ciple of self-support (FOGPSS).

B. Conception of FOGPSS

The FOGPSS is proposed by us to define fractional tracking
error signals based on “self-support” to replace the general
control law. For instance, in order to improve the control
performance of robot dynamics (1), we consider to present
a fractional-order error state feedback in the PSS control
law (4). This is not a simple replica of general PSS, but
a challenging task both in control theory and in practical
engineering application.

Since under the fractional PSS framework, the correspond-
ing stability issue becomes the most urgent problem to solve,
it is not clear that the fractional-order asymptotic stability
and Mittag-Leffler stability[31−36] can directly be applied to

solve FOGPSS feedback design. In the same example, if we
propose a fractional state feedback with PSS in (4) , i.e.,
the undetermined term b must satisfy some fractional-order
ordinary differential equation (ODE) corresponding to (3) such
that the closed-loop error system will converge to a bounded
neighborhood of zero given in advance. In theory, this process
will force the original system into a pre-specified fractional-
order error dynamics, it is a big challenge for practical plant
with parametric or non-parametric uncertainty and nonlinearity
due to the imperfect stability criterion of nonlinear fractional-
order systems.

Some useful stability theorems or conclusions of fractional-
order systems are listed as follows:

Lemma 1[37]. For a differentiable vector x(t) ∈ Rn, and
for any time instant t ≥ 0,

1

2
CDα

[
xT(t)x(t)

]
≤ xT(t)CDαx(t).

Lemma 2[31]. Let CDαx(t) ≥ CDαy(t), ∀α ∈ (0, 1) and
x(0) = y(0), then x(t) ≥ y(t).

Lemma 3[38]. The linear fractional-order system with com-
mensurate order 0 < α ≤ 1

CDαx(t) = Ax(t)

is stable at x = 0 if the following conditions are satisfied

|arg(λi)| > α
π

2
,

where λi are eigenvalues of matrix A.
Lemma 4[31]. Consider the non-autonomous nonlinear

fractional-order system

CDαx(t) = f(x, t), α ∈ (0, 1), (7)

where f : [0,∞] × Ω → Rn is piecewise continuous in t
and locally Lipschitz in x on [0,∞] × Ω, and Ω ∈ Rn is
a domain that contains an equilibrium point x = 0. If there
exists a Lyapunov function V (x(t), t) and class-K functions
κi(·) : [0, a) → [0,∞] strictly increasing and κi(0) = 0 (i =
1, 2, 3) satisfying

κ1(∥x∥) ≤ V (x(t), t) ≤ κ2(∥x∥),

CDβV (x(t), t) ≤ −κ3(∥x∥),

where β ∈ (0, 1). Then the origin of system (7) is asymptoti-
cally stable.

On the other hand, to solve the FOGPSS, the available
algorithms of fractional-order controller to be implemented
in real time should be adopted. Two approximation methods
are most frequently used to calculate a linear or nonlinear
fractional differential equation (FDE). One is the Adams-
Bashford-Moulton (ABM) algorithm, the other is the time-
domain method which is a generalization of the ABM ap-
proximation algorithm. This method is based on a predictor-
corrector scheme using the Caputo definition[39]. We give a
brief introduction of this algorithm as follows.

Consider the following fractional-order differential equa-
tion:

Dαx(t) = f(t, x(t)), 0 ≤ t ≤ T, (8)
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with x(k)(0) = x
(k)
0 (k = 0, 1, 2, . . . , ⌈α⌉ − 1). Equation (8)

is equivalent to the following Volterra integral equation

x(t) =

⌈α⌉−1∑
k=0

tk

k!
x
(k)
0 +

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ))dτ. (9)

Set h = T/N (N ∈ Z+), and tn = nh (n = 0, 1, 2, . . . ,
N). Then (9) can be discretized as follows:

xh(tn+1) =

⌈α⌉−1∑
k=0

tkn+1

k!
x
(k)
0 +

hα

Γ(α+ 2)
f(tn+1, x

p
h(tn+1))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1f(tj , xh(tj)),

where

xp
h(tn+1) =

⌈α⌉−1∑
k=0

tkn+1

k!
x
(k)
0 +

1

Γ(α)

n∑
j=0

bj,n+1f(tj , xh(tj)),

aj,n+1 =


nα+1 − (n− α)(n− j)α+1, j = 0,

(n− j + 2)α+1 + (n− j)α+1, j = 0,

−2(n− j + 1)α+1, 1 ≤ j ≤ n,

1, j = n+ 1,

and
bj,n+1 =

hα

α
((n− j + 1)α − (n− j)α).

The estimation error of this technique is

e = max
j=0,1,2,...,N

|x(tj)− xh(tj)| = O(hp),

where p = min(2, 1 + α).

C. Possible Research Framework of FOGPSS

We will discuss possible research framework of FOGPSS in
this subsection, which mainly includes four aspects: λ-tracking
control, tracking of time-delay system, saturated practical
tracking and robotic system control.

1) λ-tracking control
λ-stabilization or λ-tracking means that the output cannot

be controlled to a set-point but into a λ-neighbourhood of the
set-point (or the reference trajectory to be tracked), where λ
> 0 is an arbitrarily small constant given in advance[40−41].
For a large class of multivariable nonlinear minimum-phase
systems of relative degree one, Allgöwer et al.[42] modified a
known adaptive high-gain control strategy u(t) = −k(t)y(t),
k̇(t) = ∥y(t)∥2 to obtain a λ-tracking in the presence of output
corrupted noise. In [43], for a class of high-gain stabilizable
multivariable linear infinite-dimensional systems, an adaptive
control law is proposed to achieve the approximate asymptotic
tracking in the sense that the tracking error converges to a
neighborhood of zero with the arbitrary prescribed radius λ
> 0. And a sampled version of the high-gain adaptive λ-
tracking controller is considered in [44], because the sampling
process from the output of a system may not be available
continuously, but only at discrete time instants. Recently,
Ilchmann et al.[45−48] considered the temperature control for

exothermic chemical reactors by λ-tracking approach with a
feedback law subjected to saturation constraints.

By the research motivation above, it is possible to consider
the adaptive λ-tracking control under FOGPSS framework,
more specifically, we design an error feedback controller

u(t) = −k(t)e(t), e(t) = y(t)− yr(t),

where y(t), yr(t) are output and desired tracking reference sig-
nals, respectively. The control gain k(t) satisfies a fractional-
order λ-adaptive ODE

CDα(k(t)) =

{
f(e(t), λ), ∥e(t)∥ ≥ λ,

0, ∥e(t)∥ < λ,

where the function f(e(t), λ) in the equation above is to
be designed such that e(t) can be driven into a small λ-
neighborhood of zero with pre-given λ. The core task of
FOGPSS control is to find an eligible function f so that the
FO tracking error closed-loop system is asymptotically stable
at zero.

2) Tracking of systems with time-delay
Time delay is the property of a physical system by which

the response to an applied force (action) is delayed in its
effect[49−50]. Time delays are often encountered in many
dynamic systems such as rolling mill systems, biological
systems, metallurgical processing systems, network systems,
and so on[51−52]. It has been shown that the existence of
time delays usually becomes the source of instability and
degraded performance of systems[51]. Many researches have
been devoted to the study of tracking control of systems with
time-delay, for example, Fridman[53] considers the sampled-
data control of linear systems under uncertain sampling with
the known upper bound on the sampling intervals, a time-
dependent Lyapunov functional method in the developed
framework of input delay approach has been introduced for
analysis of this linear system. For a class of perturbed strict-
feedback nonlinear time-delay systems, an adaptive fuzzy
tracking control scheme has been presented by appropriate-
ly choosing Lyapunov-Krasovskii functionals and hyperbolic
tangent functions[54]. In [55], the robust tracking and model
following for a class of linear systems with known multiple
delayed state perturbations, time-varying uncertain parameters,
and disturbance have been considered. A class of continuous
memoryless state feedback controllers for robust tracking of
dynamical signals are proposed, by which, the tracking error
can be guaranteed to decrease asymptotically to zero. By
using separation technique and the norm of neural weight
vector, Wang et al.[56] presented a simple and effective control
approach to address the tracking problem for non-affine pure-
feedback system with multiple time-varying delay states. For
nonlinear discrete-time systems with time delays, the model
reference output feedback fuzzy tracking control design and
optimal tracking control based on heuristic dynamic program-
ming have been discussed in [57] and [58], respectively. The
tracking control for switched linear systems with time-delay
is solved by using single Lyapunov function technique and
a typical hysteresis switching law so that the H∞ model
reference tracking performance can be satisfied[59]. And Cho
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et al.[60] considered the robustness in time-delay control in
the presence of the nonlinear friction dynamics of robot
manipulators that is enhanced with a compensator based on
internal model control.

Considering the following nonlinear dynamical system of
the form[61−62] with input time delay

ẋ = Ax+B[f(x) + g(x)u(t− τ)],

y = Cx,
(10)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 0 0

 , B =


0
0
...
0
1

 , CT =


1
0
...
0
0

 ,

x ∈ Rn is the state vector, y, u ∈ R are the output and control
input, respectively. τ denotes the constant of time-delay. Let
yr be the reference signal, e(t) = y− yr is the tracking error.

Then how to propose a fractional time-delay feedback
controller for system (10) or other nonlinear systems with
input time delay or state time-delay is an important pioneering
research to the best of the authors’ knowledge. This study will
touch on the field of stability issue about fractional-order time-
delay systems combining with the PSS control strategy.

3) Practical tracking with input saturation
From a practical point of view, it is important to design

saturated controllers for any mechanical systems. That is
because any actuator always has a limitation of the physical
control inputs (input saturation)[63−76], while the control input
signals are a function of the system states, large initial con-
ditions or unmodeled disturbances may cause the controller
to exceed physical limitations[77], therefore, lots of saturated
controllers design methods have been proposed. Chen et al.
considered the saturated stabilization or tracking of dynamic
nonholonomic mobile robots[63−65] and robust control for
these robotic systems under a fixed camera feedback with input
saturation[68−73], respectively. For the systems with time delay,
continuous or discrete, linear or nonlinear systems have also
been studied under the feedback law subject to input saturation
constraints in [75−77]. And Lin et al.[66, 78] have given a semi-
global exponential stabilization control strategy including state
feedback law or of output feedback type for both discrete-
time systems and continuous linear time-invariant systems
subject to input saturation. In [67], the robust stabilization
of spacecraft in the presence of input saturation constraints,
parametric uncertainty, and external disturbances has been
addressed by two globally stable control algorithms. In [75],
based on linear matrix inequalities (LMIs) technique, the
theory of the composite nonlinear feedback control method
has been considered for robust tracking and model following
of linear systems with time varying delays and input saturation.
Recently, the saturated control for multi-agent systems has
become a hot research topic, for example, Su et al.[74] studied
the observer-based leader-following consensus of a linear
multi-agent system on switching networks, in which the input
of each agent is subject to saturation. A low-gain output

feedback strategy is considered to design the new observer-
based consensus algorithms, without requiring any knowledge
of the interactive network topology. Also, the global consensus
problem of discrete-time multi-agent systems with input satu-
ration constraints under fixed undirected topologies has been
discussed in [79], in which, two special cases are considered,
where the agent model is either neutrally stable or a double
integrator.

Commonly, the saturation function Satε(·) is a monotoni-
cally increasing function whose saturation level is less than ε,
i.e., |Satε(·)| ≤ ε. Examples of such saturation functions, for
instance[64], are

Satε(z̃) = ε tanh(z̃),

Satε(z̃) =
2ε

π
arctan(z̃),

Satε(z̃) =

{
ε, if |z̃| ≥ ε,

z̃, otherwise.

The difficulty of saturating practical tracking feedback based
on FOGPSS lies in the fact that we are short of theoretical
support because there are only a few results about the control
of fractional-order systems with input saturation[80]. It is
necessary to find a new control technique for fractional-order
system to support this framework in the near future.

4) Robotic dynamics control
There are many types of robot systems such as rigid

robot manipulators[81−90], humanoid robots[91−95], under-
water robots[96−103], space robots[104−106], wheeled mobile
robots[107−113], pipe robots[114−116], and so on. Among which,
studying of a class of robot systems subject to nonholo-
nomic motion constraints becomes a hot point of research,
and control of such mobile robots has attracted consider-
able attention from the research community because of their
practical applications and the theoretical challenges created
by the nonholonomic nature of the constraints on it[117−120].
It is because controlling such systems is full of practical
engineering interest and theoretically challenging, just as re-
ported by Brockett[121], any nonholonomic system cannot be
stabilized to a point with pure smooth (or even continuous)
state feedback control law. In order to overcome this de-
sign difficulty, many ingenious feedback stabilization methods
have been proposed such as discontinuous feedback control
law[68−73], time-varying feedback law[63−65], hybrid feedback
law[122−123], and optimal feedback law[124−126], etc.

As shown in Fig. 4, the posture kinematic model of a class
of nonholonomic wheeled mobile robots can be described by
the following differential equations[107]:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(11)

where (x, y) is the position of the mass center of the robot
moving in the plane. v is the forward velocity, ω is the steering
velocity and θ denotes its heading angle from the horizontal
axis.

Different from current approaches, FOGPSS tracking of the
wheeled mobile robots (11) is independent of its desired traje-
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Fig. 4. Nonholonomic wheeled mobile robot.

ctory (xr, yr, θr) with FO error state feedback (xe, ye, θe) =
(x− xr, y − yr, θ − θr),

ẋr = vr cos θr,

ẏr = vr sin θr,

θ̇r = ωr.

For the strong nonlinear robot system model (9), how to design
some FO velocity controllers (v, ω) such that the error state
(xe, ye, θe) converges to a small neighborhood of zero given
in advance is an important future research objective.

Remark 3. Here, we describe some aspects of control
design problems by using FOGPSS, more detailed technical
progress will proceed in the next coming months, this paper
gives a summarized outline, whereas the most important and
the biggest contribution is to bring up the new design idea
about fractional order research framework for the first time.
And to show the feasibilities of fractional PSS controller, a
simple application example is given in the next section.

III. A SIMPLE APPLICATION EXAMPLE OF FOGPSS

A. A Simple Tracking Example

A number of simple engineering systems of interest may be
represented by a first-order model, for example, the braking
of an automobile, the discharge of an electronic flash, or the
flow of fluid from a tank may be approximately represented
by a first-order differential equation[85]:

ẋ = −apx+ bpu+ d(x, t), (12)

where x, u ∈ R are the state and control input, respectively. ap,
bp > 0 are bounded uncertain parameters (constants), d(x, t)
is the external disturbance signal. Let xd(t) be the desired
reference trajectory, xe = xd − x is the tracking error.

Here, the control objective is to present a FOGPSS feedback
law u such that error state xe can be driven into a specified
ε0-neighbourhood of zero Dε0 with small positive constant ε0
> 0 given in advance.

For practice, we make the following assumptions:
Assumption 1. The position of xd to be tracked is not

directly available, but it moves within a known bounded region
with a constrained velocity, i.e., |xd| ≤ b1, |ẋd| ≤ b2, where
b1, b2 > 0 are known constants.

Assumption 2. There exist positive constants a, ā, b, b̄, d̄
for the follower system (12), such that for all x and t,

a ≤ |ap| ≤ ā, b ≤ |bp| ≤ b̄, |d(x, t)| ≤ d̄.

Assumption 3. The estimate of error measurement xe can
be denoted by

x̃e = xe − Iαω(t), α ∈ (0, 1),

where the estimated error function ω(t) ∈ L1[a, b] satisfies
that

|ω(t)| ≤ c1, |Iαω(t)| ≤ c2.

By Assumption 2, note that the controller u to be designed
in (12) can be seen as an inherent part itself according to
PSS[1, 3, 5−6], that means

|u| =
∣∣∣∣ ẋ+ apx− d(x, t)

bp

∣∣∣∣ ≤ |ẋ|+ ā|x|+ d̄

b
. (13)

Tracking the desired trajectory xd(t), and according to As-
sumption 1, it is entirely normal to suppose the boundedness
of x, ẋ in some estimated, feasible motion region by |xd| and
|ẋd|, hence, from (13), we assume that |u| ≤ umax.

Remark 4. Compared with the existing tracking problem,
we suppose xd cannot be obtained by designer directly in
Assumption 1, which is more general. And therefore, in
Assumption 3, it is reasonable to assume there is an integrable
error function ω(t) between x̃e and xe under the sense of
fractional calculus (Definition 1) due to the possible long term
memory property in estimation of tracking error, because it is
to consider that the current feedback relies on the previous
tracking effects.

For being convenient, we denote the α-order Caputo deriva-
tive CDα by Dα, and the design results will be stated as
follows:

Theorem 1. Under Assumptions 1-3, for system (12),
taking the FOGPSS feedback law

u = β̄s̃, (14)

where β̄ is a design parameter satisfying

β̄ >
umax

δε0
> 0,

where δ > 0 is also a design parameter, s̃ is the fractional-
order estimated error feedback signal

s̃ = Dαx̃e + δx̃e. (15)

Then the real tracking error xe will be driven into Dε0 , {xe :
|xe| ≤ δc2+c1

δ + ε0}.
Proof. Take a Lyapunov function V = 1

2x
2
e, by applying

Lemma 1, we have

DαV = Dα

(
1

2
x2
e

)
≤ xeD

αxe,

by Assumption 3 and Property 5 in Definition 3, we have

DαV ≤ xeD
α(x̃e + Iαω(t)) = xe(D

α(x̃e) + ω(t)).

Substituting (15) into the formula above, it has

DαV ≤ xe(s̃− δx̃e + ω(t))
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= xe

(
u

β̄
− δx̃e + ω(t)

)
= xe

(
u

β̄
− δ(xe − Iαω(t)) + ω(t)

)
.

According to Assumption 3 again, we have

DαV ≤ −δx2
e + |xe|

(
umax

β̄
+ δc2 + c1

)
. (16)

If |xe| > δc2+c1
δ + ε0, from (16), we can obtain

DαV ≤− δ

(
δc2 + c1

δ
+ ε0

)
|xe|

+ |xe|
(
umax

β̄
+ δc2 + c1

)
=− |xe|

(
δ(
δc2 + c1

δ
+ ε0)−

umax

β̄
− δc2 − c1

)
=− |xe|

β̄
(β̄δε0 − umax).

Let β̂ =
(
β̄δε0−umax

)
/β̄, from (14), since β̄ > umax/δε0 >

0, so β̂ > 0, which means

DαV ≤ −β̂|xe| = −β̂
√
2V

1
2 ≤ 0,

by Lemma 4, xe → 0 as t → ∞, hence xe will be driven into
Dε0.

By the similar derivation process as (6) in the introduction
section, once |xe| ≤ (δc2 + c1)/δ + ε0, from (14)-(16), we
have

|Dαxe| = |Dαx̃e + ω(t)|

= |u
β̄
− δ(xe − Iαω(t)) + ω(t)|

≤ 2δ
(
c2 +

c1
δ

+ ε0

)
.

Then |Dαxe| < ε0 → 0+ as c1 = c2 = 0, and according to
Lemma 4. �

Remark 5. System (12) is a very simple example for
describing the FOGPSS idea for the first time in this paper, and
the more technical complex systems will be discussed in the
further research, such as n-order nonlinear dynamic system
with time delay (10), λ-tracking, control of nonholonomic
wheeled mobile robots (11), etc.

Remark 6. Since we suppose the feasible tracking moving
area can be estimated in advance (Assumption 1), which means
the bound of controller umax is not representative of the
mechanical limit of actuator itself but also the constraints of
the bounded moving region. Selecting the high gain feedback
parameter β̄ satisfies the condition below (14), one can always
tune it at real time according to the data from velocity sensor
of controller u(t).

Remark 7. The control process shows that our FOGPSS
controller design exhibits good robustness. More generally,
the conclusion is also valid even if the uncertain terms ap,
bp in Assumption 2 are time varying parameters, because the
method is directly based on the estimated tracking error but
not the model itself.

B. Simulations

In this subsection, when using FOGPSS tracking controller
consisting of (14) and (15), we adopt the approximate numer-
ical ABM algorithms (8) and (9) for solving the fractional
differential equations for corresponding error system of (12).

In the following simulations, according to Theorem 1, for
system (12), given ε0 = 0.3, ap = 1.0 + 0.5 sin t, bp = 1.5 +
0.5 cos t, a = 0.5, ā = 1.5, b = 1.0, b̄ = 2.0, d = 0.5 sin(xt)
and d̄ = 0.5, by Assumptions 1 and 3, suppose b1 = 3.0,
b2 = 0.5, ω(t) = −0.045 cos(t), c1 = 0.1, c2 = 1.5. From
(13), we can estimate that umax = 5.5, then select the design
parameters as follows: δ = 10, β̄ = 12 > umax

δε0
= 1.1, α =

0.3, β̂ =
(
β̄δε0 − umax

)
/β̄ = 0.04. The initial conditions are

x(0) = −1.5, xd(0) = 0.5, xe(0) = x̃e(0) = 2.0.

Some simulation results are shown in Figs. 5-7 performed
with MATLAB. From Fig. 5, we can observe that the tracking
error state xe is driven into the small neighborhood of zero

Fig. 5. The response of tracking error state variable xe with respect
to time.

Fig. 6. The response of estimated error state variable x̃e with respect
to time.
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Fig. 7. The response of FOGPSS state feedback input u with respect
to time.

for given ε0 = 0.3, surely, |xe| ≤ 0.3 at about t ≥ 30 s. The
response of estimated error state x̃e is demonstrated in Fig. 6,
from which, it can be seen that the convergence behavior of
x̃e is not like the xe, since it is assumed that there exist an
error function ω(t) between xe and x̃e, and x̃e goes into the
ε0-neighborhood of zero when t ≥ 20 s. In Fig. 7, the response
of control input u looks more like that of x̃e in Fig. 3 due to
FOGPSS feedback consists of D0.3x̃e and x̃e by (14) and (15).

If all the information of tracking error x1e = x − xd is
precisely known, we assume the desired tracking trajectory
xd satisfies ẋd = −apxd + bpud with ud = − sin te−3t as the
desired input. The error dynamics can be obtained easily ẋ1e =
−apx1e+bp(u1−ud)+d(x, t), here, to distinguish the control
input from it in (12), we denote it as u1. Then according to
the conventional sliding mode design[11, 16], a discontinuous
integer order controller is designed as u1 = ud − kssgn(x1e),
where the design parameter ks ≥ d̄/b.

Under the same initial conditions, and selecting ks = 0.8,
Figs. 8 and 9 show the traditional integer order sliding mode
tracking simulations, compared to the fractional order simula-

Fig. 8. The response of tracking error x1e by sliding-mode control
with respect to time.

Fig. 9. The response of sliding-mode control input u1 with respect
to time.

tions, we find that the tracking error in Fig. 5 using fractional
order controller has a fast convergence speed than the sliding
mode case in Fig. 8, moreover, the continuous fractional order
feedback in Fig. 7 shows more smoothness than the discontin-
uous sliding mode controller u1 in Fig. 9.

Remark 8. Compared to the existing sliding mode control
methods, the FOGPSS proposed in this paper is a model-free
design technique, which is directly based on the estimated
tracking error, while the conventional sliding mode design can
not deal with the case when the tracked objects are unavailable.

IV. CONCLUSION
In this article, a new conception of the generalized

fractional-order principle of self-support (FOGPSS) is pro-
posed for the first time. After a brief review of PSS, the
fractional-order-based framework is considered to deal with
the feedback control for practical complex system, which
cannot be perfectly controlled by integer-order feedback.
And some possible research fields such as practical tracking,
λ-tracking, etc. for robot systems, multiple mobile agents,
discrete dynamical systems, time delay systems and other
uncertain nonlinear systems are discussed using FOGPSS. A
simple example is presented to show the efficiency of the
fractional-order generalized principle of self-support control
strategy.
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Abstract—This paper addresses the problem of designing
disturbance observer for fractional order linear time invariant
(FO-LTI) systems, where the disturbance includes time series
expansion disturbance and sinusoidal disturbance. On one hand,
the reduced order extended state observer (ROESO) and reduced
order cascade extended state observer (ROCESO) are proposed
for the case that the system state can be measured directly. On the
other hand, the extended state observer (ESO) and the cascade
extended state observer (CESO) are presented for another case
when the system state cannot be measured directly. It is shown
that combination of ROCESO and CESO can achieve a highly
effective observation result. In addition, the way how to tune
observer parameters to ensure the stability of the observers and
reduce the observation error is presented in this paper. Finally,
numerical simulations are given to illustrate the effectiveness of
the proposed methods.

Index Terms—Fractional order linear time invariant (FO-LTI)
systems, disturbance observer, reduced order, cascade method.

I. INTRODUCTION

IN recent years, fractional order systems (FOSs) have
attracted considerable attention from control community,

since many engineering plants and processes cannot be de-
scribed concisely and precisely without the introduction of
fractional order calculus[1−6]. Due to the tremendous efforts
devoted by researchers, a number of valuable results on
stability analysis[7−10] and controller synthesis[11−14] of FOSs
have been reported in the literature.

Tracking reference signal and disturbance rejection are two
of the challenging and significant tasks in engineering plants
and processes. It is important to reject disturbance so as to
maintain the controlled system running in a fine manner.
Aimed at disturbance rejection to enhance control perfor-
mance, numerous methods have been presented[15]. Sliding
mode control (SMC) is an effective method which involves
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designing of a sliding surface and reaching motion controller.
Reference [16] gives the detailed contents to introduce the
SMC technique. Guo et al. developed SMC approach to reject
disturbance for the Euler-Bernoulli beam in [17]. However, the
chattering in sliding surface is the main drawback of SMC.
Adaptive control is another method to reject disturbance by
adjusting the control parameters automatically[18−19]. While
both SMC and adaptive control suppress disturbance passively
by improving the robustness of the controller to reduce the
sensitivity to external disturbance in the output channel, rather
than by actively obtaining the characteristics of the disturbance
in time domain or frequency domain. Therefore, the obvious
drawback of the two methods is that there is an undesir-
able trade-off between reference tracking and disturbance
rejection[20].

Another idea for disturbance rejection is to utilize the
information of the external disturbance to build the feedback
compensation, namely, to reject disturbance actively. Active
disturbance rejection control (ADRC)[21] technique is pro-
posed by Han in 1998, in which the uncertainties of system
model and external disturbance are regarded totally as an
extended state which can be observed by an extended state
observer. Internal model control is another method to reject
disturbance actively. Fedele et al. employed an orthogonal
signals generator based on a second-order generalized inte-
grator (OSG-SOGI) to estimate the frequency of the unknown
external sinusoidal disturbance, which can be utilized to build
internal model control (IMC) algorithm for the disturbed
system[22]. However, how to extract the unknown external
disturbance for the OSG-SOGI is a difficult issue. Disturbance
observer (DOB) is a popular approach to compensate distur-
bance actively, which was proposed by Nakao et al.[23] in
1987. Chen et al. investigated the disturbance observer based
control and related methods in [24]. Park et al. developed
DOB algorithm for industrial robots to compensate external
disturbance in [25]. While the main drawback of the DOB
is that the inverse dynamics of the system, which may cause
cancellation of unstable poles and unstable zeros, is required.
Ginoya et al. proposed an extended disturbance observer for
unmatched uncertain systems based on the assumption that
the system state can be measured accurately[26]. However, the
assumption cannot be satisfied in many cases. Therefore, it
is an important and meaningful issue to develop a method to
observe the external disturbance by utilizing the control input
and the measured output of the disturbed system.

Motivated by the discussions above, we develop ROESO
and ROCESO to observe the external disturbance under the
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assumption that the state can be measured and then propose a
way to improve accuracy of the observations. Furthermore,
by considering the case that the state cannot be measured
directly, ESO is developed to observe the disturbance, in which
only the control input and system output signals are utilized.
In addition, the CESO is proposed based on ESO to extend
the scope of the observations and to get a more effective
performance of the observations than the ESO.

The rest of this paper is structured as follows. Section II
provides some background materials and the main problem.
ROESO and ROCESO for measurable system state and ESO
and CESO for unmeasurable system state are presented in
Section III. In Section IV, some numerical simulation examples
are provided to illustrate the effectiveness of the proposed
methods. Conclusions are given in Section V.

Notations. In and 0n are used to denote a n × n identity
matrix and n × n zero matrix, respectively. 0n·m is used to
denote a n×m zero matrix. ‖e(t)‖ represents the Euclidean
norm of e(t). sym(M) = M + MT. Ωn·n = {X tan(πα/2)

+ Y : X, Y ∈ Rn·n,

[
X Y
−Y X

]
> 0}.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following disturbed FO-LTI system with an
assumption that the order α is known in prior:

{
Dαx(t) = Ax(t) + Bu(t) + Fd(t),
y(t) = Cx(t)color1,

(1)

where the order 0 < α < 1; x(t) ∈ Rn, u(t) ∈ Rm,
d(t) ∈ Rq and y(t) ∈ Rp are the system state, the control
input, the disturbance and the measurable output, respectively;
the system matrices A, B, F and C are the constant real
matrices with appropriate dimensions, and F = BJ where J
is a constant matrix, and rank(F ) = q. The definition of the
fractional order derivative can be referred to [1].

The following Caputo’s definition is adopted for fractional
derivatives of order α for function f(t)

Dαf(t) =
1

Γ(m− α)

∫ t

0

(t− τ)m−α−1f (m)(τ)dτ, (2)

where m − 1 < α < m, m ∈ N and Γ(x) =
∫∞
0

e−ttx−1dt.
And the Riemann-Liouville’s fractional order integral is de-
fined as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, (3)

where α > 0.
In this study, the objective is to develop an approach to

ensure the designed observer stable and the external distur-
bance can be observed by the observer under the following
assumptions:

1) Pair {A,B} is controllable;
2) Pair {A,C} is observable.
In this paper, in order to show the generality of the proposed

method, we consider two kinds of disturbances: time series
expansion disturbance and sinusoidal disturbance. The time
series expansion disturbance has the following form

d(t) =
k∑

i=0

dit
ni , (4)

where di (i ∈ {0, 1, . . . , k}) is constant but unknown, ni−1

≤ ni (i ∈ {1, . . . , k}) and nk < 2α holds. Based on the
relationship between nk and α, the disturbance can be divided
into the following two categories:

1) Slowly varying disturbance nk < α;
2) Slope forms disturbance α ≤ nk < 2α.
This paper aims at designing a proper method to observe the

external unknown disturbance. For this purpose, the following
lemmas are first introduced.

Lemma 1[27]. Let x(t) ∈ R be a continuous and differ-
entiable function. Then the α-th derivative of x2(t) has the
following properties

Dαx2(t) ≤ 2x(t)Dαx(t). (5)

Consider a FO-LTI system as follows

Dαx(t) = (A + BKC) x(t). (6)

Based on the system (6), we give our research result in [28]
as a lemma as follows.

Lemma 2[28]. The system in (6) with 0 < α < 1 is
asymptotically stable, if there exist matrices Z ∈ Ωn·n, G
∈ Rm·m, and H ∈ Rm·p, such that[

Ξ ZTB + CTHT −K0
TGT

∗ −sym(G)

]
< 0 (7)

is feasible, and the matrix K is given by

K = G−1H, (8)

where ∗ stands for the symmetrical part matrix, Ξ =
sym(ZTA + ZTBK0), and K0 is an additional initialization
matrix, which is derived from K0 = QP−1. The matrices P ∈
Ωn·n and Q ∈ Rm·n satisfy following linear matrix inequality
(LMI),

sym(AP + BQ) < 0. (9)

III. MAIN RESULTS

A. Reduced Order Extended State Observer (ROESO)
If the state of the FO-LTI system (1) can be measured

directly, we can utilize the state to design a disturbance
observer as follows:




d̂(t) = Λε(t),
ε(t) = F+x(t)− z(t),
Dαz(t) = F+ [Ax(t) + Bu(t)] + d̂(t),

(10)

where F+ = (FTF )−1FT, Λ is a positive definite q × q
diagonal matrix.

Theorem 1. The disturbance can be observed asymptoti-
cally by (10), if the disturbance is slowly varying disturbance,
namely, limt→∞Dαd(t) = 0.

Proof. Define the observation error e(t) = d(t)−d̂(t) which
yields

Dαe(t) = Dαd(t)−Dαd̂(t)
= Dαd(t)− ΛDαε(t)
= Dαd(t)− Λe(t). (11)
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The Laplace transform of (11) is

sαE(s)− sα−1e(0) = sαD(s)− sα−1d(0)− ΛE(s), (12)

where E(s) and D(s) are the Laplace transforms of e(t) and
d(t), respectively. Then using the final-value theorem, yields

e(∞) = lim
s→0

sE(s)

= lim
s→0

(sIq+Λ)−1[s1+αD(s)− sαd(0) + sαe(0)].

(13)

Then if lims→0 s1+αD(s) = 0, that is limt→∞Dαd(t) = 0,
thereby, limt→∞ e(t) = 0. ¤

Remark 1. Since the disturbance can be observed asymp-
totically if limt→∞Dαd(t) = 0, the constant disturbance, etc.
can be observed asymptotically by the ROESO. In addition,
square disturbance also satisfies the condition of Theorem 1
when the hopping points are overlooked.

Remark 2. The gain Λ can change the rate of convergence
of the observer. The larger value of Λ is, the higher rate of
convergence we can get.

B. Reduced Order Cascade Extended State Observer (RO-
CESO)

In order to expand the scope of the disturbance that can
be observed asymptotically based on the system state can be
measured directly, we improve the ROESO to ROCESO as
follows 




d̂(t) = 2Λε(t) + Λ2Iαε(t),
ε(t) = F+x(t)− z(t),
Dαz(t) = F+ [Ax(t) + Bu(t)] + d̂(t),

(14)

where Λ is a positive definite q × q diagonal matrix.
Theorem 2. The disturbance can be observed asymptot-

ically by (14), if the disturbance is of slope form, namely,
limt→∞D2αd(t) = 0.

Proof. Define the observation error e(t) = d(t) − d̂(t), it
yields

Dαe(t) = Dαd(t)−Dαd̂(t)

= Dαd(t)−Dα
[
2Λε(t) + Λ2Iαε(t)

]

= Dαd(t)− 2Λe(t)− Λ2ε(t). (15)

Based on (15), the 2α-th derivative of e(t) can be expressed
as

D2αe(t) = D2αd(t)− 2ΛDαe(t)− Λ2e(t). (16)

If 0 < α ≤ 0.5, the Laplace transform of (16) is

s2αE(s)− s2α−1e(0)

= s2αD(s)− s2α−1d(0)− 2ΛsαE(s)

+ 2Λsα−1e(0)− Λ2E(s), (17)

where E(s) and D(s) are the Laplace transforms of e(t) and
d(t), respectively. Then using the final-value theorem, yields

e(∞) = lim
s→0

(s2αIq + 2Λsα + Λ2)
−1

× [s1+2αD(s)− s2αd(0) + s2αe(0) + 2Λsαe(0)].
(18)

Then if lims→0 s1+2αD(s) = 0, that is limt→∞D2αd(t) =
0, thereby, limt→∞ e(t) = 0. If 0.5 < α ≤ 1, the Laplace
transform of (16) is

E(s) − s2α−1e′(0)− s2α−2e(0)

= s2αD(s)− s2α−1d′(0)− s2α−2d(0)

− 2ΛsαE(s) + 2Λsα−1e(0)− Λ2E(s), (19)

and it is easy to obtain the same conclusion. All of these
discussions establish the Theorem 2. ¤

Remark 3. Since the disturbance can be observed by RO-
CESO if limt→∞D2αd(t) = 0, the scope of the disturbance
observation is expanded from slowly varying disturbance to
time series expansion disturbance, which is defined as (2).
Therefore, not only the square disturbance, but also the saw-
tooth disturbance can be observed asymptotically, if 0.5 < α
≤ 1.

C. Extended State Observer (ESO)

In the former contents, we have developed ROESO and RO-
CESO to observe time series expansion disturbance asymptoti-
cally based on the ability to directly measure the system state.
While, in most cases, the system state cannot be measured
directly. And now we are in the position to utilize the control
input and output signals only to develop ESO to observe
slowly varying disturbance asymptotically and to observe other
disturbances with bounded error based on limt→∞ |Dαd(t)| ≤
µ, with µ > 0. In addition, we will propose a way to lower
the boundary of the observation error.

Theorem 3. {Ā, C̄} is observable, if {A,C} is observable
and rank(FTA(n−1)T[ CT ATCT . . . A(p−1)TCT ]) ≥ q,

where Ā =
[

A F
0q·n 0q

]
, C̄ = [ C 0p·q ].

Proof. According to [1], {A,C} is observable, if and only
if the observability matrix MO is full column rank, where MO

= [ CT ATCT . . . A(n−1)TCT ]T.
As a result, the observability matrix M̄o related to {Ā, C̄}

can be described as

M̄o = [ C̄T ĀTC̄T . . . Ā(n+p−1)TC̄T ]T

=
[

CT

0q·p
ATCT

FTCT
. . .
. . .

A(n+p−1)TCT

FTA(n+p−2)TCT

]T

,

(20)

which implies that

rank(M̄o)

= rank
([

CT

0
ATCT

FTCT
. . .
. . .

A(n+p−1)TCT

FTA(n+p−2)TCT

])

≥ rank([ CT ATCT · · · A(n−1)TCT ])

+ rank ([ FTA(n−1)TCT . . . FTA(n+p−2)TCT ])

= n + rank(FTA(n−1)T
[

CT . . . A(p−1)TCT
]
)

≥ n + q. (21)

Since M̄O ∈ Rp(n+q)·(n+q), we have

rank
(
M̄O

) ≤ min (p(n + q), (n + q))
= n + q.
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Proceeding forward, we have

rank
(
M̄O

)
= n + q. (22)

¤
Theorem 4. If the α-th order derivative of the disturbance

satisfy limt→∞Dαd(t) = 0, the disturbance can be observed
asymptotically by following observer



Dαx̂ (t) = Ax̂ (t) + Bu (t) + F d̂ (t) + L1 [ŷ (t)− y (t)] ,
ŷ (t) = Cx̂ (t) ,

Dαd̂ (t) = L2 [ŷ (t)− y (t)] .
(23)

Proof. Defining state observation error ex (t) = x (t)−x̂ (t)
and disturbance observation error ed (t) = d (t)−d̂ (t), we can
easily get the following equation[

Dαex (t)
Dαed (t)

]
=

([
A F

0q·n 0q

]
+

[
L1

L2

]
[ C 0p·q ]

)

×
[

ex (t)
ed (t)

]
+

[
0n·q
Iq

]
wd(t), (24)

where wd(t) = Dαd(t). If we define the augment state e(t) =
[ eT

x (t) eT
d (t) ]T, then (24) can be written as

Dαe(t) = (Ā + LC̄)e(t) + Gwd(t), (25)

where

Ā =
[

A F
0q·n 0q

]
, L =

[
L1

L2

]
, G =

[
0n·q
Iq

]
,

C̄T =
[

CT

0q·p

]
.

By using Theorem 3, we can easily search suitable L
to make the system (25) asymptotically stable by LMI if
limt→∞Dαd(t) = 0, that is, the disturbance can be observed
accurately. This establishes Theorem 4. ¤

By using LMI, we can select L such that the eigenvalues
of Ā + LC̄ are in the left half plane (LHP), and thereby we
can find a positive definite matrix P such that

(Ā + LC̄)TP + P (Ā + LC̄) = −Q, (26)

for any positive definite matrix Q.
Theorem 5. If the α-th derivative of d(t) is bounded, the

ESO can observe the disturbance and state with bounded error
and the norm of the estimation error is bounded by

‖e(t)‖ ≤ 2µ
∥∥GTP

∥∥
λs

, (27)

where λs is the smallest eigenvalue of Q.
Proof. Consider a Lyapunov function

V (t) = eT(t)Pe(t). (28)

Seeking for the α-th derivative of V (t), yields

DαV (t) ≤ eT(t)[(Ā + LC̄)TP + P (Ā + LC̄)]e(t)

+ 2wd(t)GTPe(t)

≤− eT(t)Qe(t) + 2wd(t)GTPe(t)

≤− λs‖e(t)‖2 + 2µ
∥∥GTP

∥∥ ‖e(t)‖
≤ − ‖e(t)‖ (

λs ‖e(t)‖ − 2µ
∥∥GTP

∥∥)
. (29)

We can easily get that the norm of the observation error is

bounded by
2µ‖GT P‖

λs
. ¤

Remark 4. Theorem 5 shows that the norm of the ob-
servation error is bounded by

2µ‖GT P‖
λs

, therefore, we can
decrease the observation error by increasing the λs, which can
be realized by placing all of the eigenvalues far from imaginary
axis. Then ESO can observe more kinds of disturbance, such
as time series expansion disturbance, sinusoidal disturbance.

D. Cascade Extended State Observer (CESO)

From the former contents, the ESO can observe the distur-
bance d(t) asymptotically if limt→∞Dαd(t) = 0. However,
it is invalid for limt→∞Dαd(t) 6= 0. In order to extend the
scope of the disturbance observation and get more accurate
observation results, the CESO is developed as follows:





Dαx̂ (t) = Ax̂ (t) + Bu (t) + F d̂ (t)
+ L1[ŷ(t)− y(t)] + L2I

α[ŷ(t)− y(t)],
ŷ (t) = Cx̂ (t) ,

Dαd̂ (t) = L3[ŷ(t)− y(t)] + L4I
α[ŷ(t)− y(t)].

(30)

Theorem 6. {Ā, B̄} is controllable if {A,B} is control-
lable; {Ā, C̄} is observable if {A,C} is observable, where

Ā =




A F 0n

0q·n 0q·q 0q·n
In 0n·q 0n


 , B̄ =




In 0n·q
0q·n Iq

0n 0n·q


 ,

C̄ =
[

In 0n·q 0n

0n 0n·q In

]
.

Proof. According to [1], {A,B} is controllable, if and only
if the controllability matrix MC is full row rank, where MC =
[ B AB . . . An−1B ]. {A,C} is observable, if and only
if the observability matrix MO is full column rank, where MO

= [ CT ATCT . . . A(n−1)TCT ]T. ¤
As a result, the controllability matrix M̄c related to {Ā, B̄}

can be described as

M̄c = [ B̄ |ĀB̄| · · · |Ā2n+q−1B̄ ]

=




In 0n·q
0q·n Iq

0n 0n·q

A F
0q·n 0q

In 0n·q
· · ·

A2n+q−1 A2n+q−2F
0q·n 0q

A2n+q−2 0n·q


,

(31)

which implies that

rank
(
M̄c

) ≥ rank







In 0n·q
0q·n Iq

0n 0n·q

A
0q·n
In







= 2n + q. (32)

By virtue of M̄c ∈ R(2n+q)·((n+q)(2n+q)),

rank(M̄c) ≤ min ((2n + q), (2n + q)(n + q))
= 2n + q. (33)

All of the above stated facts lead to the following

rank(M̄c) = 2n + q. (34)

In the other words, {Ā, B̄} is controllable.
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The corresponding observability matrix M̄O satisfies

M̄O = [ C̄T ĀTC̄T · · · Ā(2n+q)TC̄T ]T

=




In 0n·q 0n

0n 0n·q In

A F 0n

In 0n·q 0n

...
...

...
A2n+q−1 A2n+q−2F 0n

A2n+q−2 A2n+q−3F 0n




, (35)

which implies that

rank(M̄O) ≥ rank







In 0n·q 0n

0n 0n·q In

A F 0n







= 2n + q. (36)

Since M̄O ∈ R2n(2n+q)·(2n+q), we have

rank
(
M̄O

) ≤ min (2n(2n + q), (2n + q))
= 2n + q. (37)

Proceeding forward, it follows

rank
(
M̄O

)
= 2n + q. (38)

Consequently, {Ā, C̄} is observable. ¤
Theorem 7. The CESO can observe the state of the dis-

turbed system and α-th order derivative of the disturbance
asymptotically, if limt→∞D2αd(t) = 0.

Proof. Defining the observation error

e(t) =
[

ex(t)
ed(t)

]
=

[
x(t)− x̂(t)
d(t)− d̂(t)

]
. (39)

Considering the α-th order derivative of e(t), yields
[

Dαex(t)
Dαed(t)

]

=
[

(A + L1C)ex(t) + Fed(t) + L2CIαex(t)
Dαd(t) + L3Cex(t) + L4CIαex(t)

]
.

(40)

Based on (38), considering the 2α-th order derivative of e(t),
yields

[
D2αex(t)
D2αed(t)

]

=
[

A + L1C F
L3C 0q

] [
Dαex(t)
Dαed(t)

]

+
[

L2C 0n·q
L4C 0q

] [
ex(t)
ed(t)

]
+

[
0n·q
Iq

]
wd(t),

(41)

where wd(t) = D2αd(t). Defining the augmented state ê(t) =
[ DαeT

x (t) DαeT
d (t) eT

x (t) eT
d (t) ]T, then (41) can be

rewritten as
Dαê(t) = Âê(t) + Gwd(t), (42)

where

Â =




A + L1C F L2C 0n·q
L3C 0q L4C 0q

In 0n·q 0n 0n·q
0q·n Iq 0q·n 0q


 , G =




0n·q
Iq

0n·q
0q


 .

Then we extract the state Dαex(t), Dαed(t) and ex(t) from
ê(t) to compose a new state ē(t). Then the state space equation
related to ē(t) can be written as

Dαē(t)

=




A + L1C F L2C
L3C 0q L4C
In 0n·q 0n


 ē(t) +




0n·q
Iq

0n·q


wd(t)

=
(
Ā + B̄L̄C̄

)
ē(t) + Ḡwd(t), (43)

where

Ā =




A F 0n

0q·n 0q 0q·n
In 0n·q 0n


 , B̄ =




In 0n·q
0q·n Iq

0n 0n·q


 ,

Ḡ =




0n·q
Iq

0n·q


 , L̄ =

[
L1C L2C
L3C L4C

]
,

C̄ =
[

In·n 0 0
0 0n·q In·n

]
.

Based on Theorem 4, we get that {Ā, B̄} is controllable and
{Ā, C̄} is observable. Then based on Lemma 2, we can search
L̄ by using the MATLAB LMI toolbox to make the system
(43) asymptotically stable, if limt→∞D2αd(t) = 0. And the
matrix L is given by

L = L̄C̃−, (44)

where L =
[

L1 L2

L3 L4

]
, C̃ =

[
C 0p·n

0p·n C

]
and C̃− is the

pseudoinverse of C̃, which can be got by command pinv(C) in
MATLAB. That means, the state of the system in (1) and α-th
order derivative of disturbance can be observed accurately by
CESO if only limt→∞D2αd(t) = 0. This establishes Theorem
7. ¤

Remark 5. Although the CESO cannot observe disturbance
asymptotically if limt→∞D2αd(t) = 0, the state of disturbed
system and α-th derivative of disturbance can be observed
asymptotically. Therefore, we can combine the CESO and RO-
CESO to observe the disturbance asymptotically. Hereinafter,
we denote this observation method as CESO + ROCESO.

Remark 6. The disturbance can be observed by CESO +
ROCESO asymptotically if limt→∞D2αd(t) = 0, thereby,
the CESO + ROCESO can asymptotically observe more
disturbance than the ESO. And if limt→∞D2αd(t) ≤ µ, the
CESO + ROCESO can observe it with bounded error, and
Theorem 4 and Remark 4 have given the way to reduce the
observation error.

Remark 7. Four disturbance observers have been designed
in this paper. From the corresponding proofs of Theorem 1,
Theorem 2, Theorem 4, and Theorem 7, we can arrive that if
and only if these related matrices (Λ in (13) and (18), Ā+LC̄)
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in (25), and Ā + B̄L̄C̄ in (43)) are designed stable and the
conditions about the disturbance are satisfied, the convergence
of the relevant observation errors are not affected by the initial
value of these observation errors.

IV. ILLUSTRATIVE EXAMPLES

All the numerical examples illustrated in this paper are
implemented via the piecewise numerical approximation al-
gorithm. For more information about the algorithm one can
refer to [29].

Example 1. Consider a disturbed fractional order gas-
turbine system[30] as follows:

{
D0.84x(t) = Ax(t) + Bu(t) + Fd(t),
y(t) = Cx(t),

(45)

where

A =
[

0 1
−136.24 −18.4741

]
, B =

[
0
1

]
,

F =
[

0
3

]
, CT =

[
0

14164.9

]
,

and assume that the state can be measured directly.
We get that the disturbed system is completely controllable

and observable. Considering the disturbance is square wave
(amplitude = 1 and frequency = 0.5). Fig. 1 shows the distur-
bance observed by ROESO. And in Fig. 1, d(t), d̂1(t), d̂2(t),
and d̂3(t) are the primary disturbance and the observed results
with Λ = 20, 50, 100, respectively, and e1(t), e2(t), e3(t) are
the corresponding observation errors. The observation results
illustrate that the ROESO can asymptotically observe the
slowly varying disturbance (square wave). And the bigger
value of Λ is, the faster observation convergence rate we can
get.

Fig. 1. Observed results for square disturbance of Example 1.

Example 2. Consider system (45) is disturbed by sawtooth
wave (amplitude = 1 and frequency = 0.1) and assume that
the state can be measured directly.

We choose the ROCESO to observe the sawtooth wave and
show the observed results as Fig. 2. In Fig. 2, d(t), d̂1(t),

d̂2(t), and d̂3(t) are the primary disturbance and the observed
results with Λ = 20, 50, 100, respectively, and e1(t), e2(t),
e3(t) are the corresponding observation errors. The observed
results illustrate that the ROCESO can asymptotically observe
the slope forms disturbance (sawtooth), and then the slowly
varying disturbance can be observed by ROCESO certainly.
And the bigger value of Λ is, the faster observation conver-
gence rate we can get.

Fig. 2. Observed results for sawtooth disturbance of Example 2.

Example 3. Considering the disturbances in system (45)
are square wave (amplitude = 1 and frequency = 0.1) and
sinusoidal wave as 1 + sin(2t) + 2.5 cos(3t), and assume that
the state cannot be measured directly.

Figs.3-6 show these states and disturbances observed by
ESO, respectively. And in these figures, x1(t), x̂11(t), x̂12(t),
x̂13(t) are the system state 1 and the corresponding observed
state with LT

1 = [−0.007−0.111], [−0.005−0.158], [−0.022−
2.977] and L2 = −0.811, −1.186, −49.370, respectively.
And e11(t), e12(t), and e13(t) are the corresponding state
observation errors. d̂1(t), d̂2(t), and d̂3(t) are the correspond-
ing observation disturbance and e1(t), e2(t), e3(t) are the
corresponding observation errors. The eigenvalues of Ā+LC̄
in (23) with respect to the different matrixes LT = [LT

1 , LT
2 ]

are shown in Table I. Table I and the simulation results
illustrate that the larger distance between the eigenvalues and
the imaginary axis is, the more accurate observed result we can
get, which demonstrate Theorem 5 and Remark 4 in numerical
simulation.

TABLE I
The eigenvalues of Ā + LC̄ with respect to the different matrixes L

LT
1 [−0.007− 0.111] [−0.005− 0.158] [−0.022− 2.977]

L2 −0.811 −1.186 −49.370

eig1

−20.34− 7.06i

−20.34 + 7.06i

−74.34

−33.97− 30.82i

+33.97 + 30.82i

−23.96

−130.24− 112.63i

−130.24 + 112.63i

−70.76

Example 4. Consider another disturbed system as follows:{
D0.8x(t) = Ax(t) + Bu(t) + Fd(t),

y(t) = Cx(t),
(46)

1The eigenvalues of Ā + LC̄
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where

A =
[

0 1
1 −2

]
, B =

[
1
1

]
,

F =
[

3
3

]
, CT =

[
1
0

]
,

and assume that the state cannot be measured directly.

Fig. 3. Observed results for x1(t) disturbed by square disturbance
of Example 3.

Fig. 4. Observed results for square disturbance of Example 3.

Fig. 5. Observed results for x1(t) disturbed by sinusoidal distur-
bance of Example 3.

Fig. 6. Observed results for sinusoidal disturbance of Example 3.

It is completely controllable and observable. We can easily
get that the system is unstable with poles equal to −2.4142,
0.4142. Consider the disturbances are sawtooth (amplitude =
1 and frequency = 0.2) and sinusoidal as sin(t)+0.5 sin(1.5t).
The matrix L of ESO is set as [−56.59 4135.56 − 1950.61];
the Λ of ROCESO is set as 15; the matrixes L1, L2, L3, and L4

in CESO are set as [−59.81 −21.91]T, [−764.93 −320.81]T,
−141.98 and −2223.81, respectively. The L in ESO and Li

(i ∈ 1, 2, 3, 4) in CESO can be sought by MATLAB LMI tool
box. Fig. 7 and Fig. 8 show observation results of CESO for
the system state, which is disturbed by sawtooth disturbance
and sinusoidal disturbance, respectively. In Fig. 9 and Fig. 10,
d̂1(t), d̂2(t), and d̂3(t) are the disturbance observation results
of ESO, CESO, and ROCESO + CESO, respectively, and
e1(t), e2(t), and e3(t) are the corresponding observation errors
of d̂1(t), d̂2(t), and d̂3(t). The simulation results show that
no matter what the kinds of the disturbance is and no matter
the disturbed system whether or not stable, the ROCESO +
CESO, which utilize the control input and output signals only,
can observe the external unknown disturbance more accurately
than ESO and CESO.

V. CONCLUSION

In this article, disturbance observer design for FO-LTI

Fig. 7. Observed results of CESO for system state disturbed by
sawtooth disturbance of Example 4.
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Fig. 8. Observed results of CESO for system state disturbed by
sinusoidal disturbance of Example 4.

Fig. 9. Observed results for sawtooth disturbance of Example 4.

Fig. 10. Observed results for sinusoidal disturbance of Example 4.

systems has been investigated. For the case that state can be
measured directly, ROESO and ROCESO are proposed. And
then, ESO is developed in the case that the state cannot be
measured easily. Furthermore, the CESO has been presented
to observe the state and α-th order derivative of disturbance,
which can be combined with ROCESO to get a more ac-
curate observation result. In order to show the generality of

the proposed observers, we consider two kinds disturbances:
time series expansion and sinusoidal. And we have given
concrete proofs that the time series expansion can be observed
asymptotically and sinusoidal can be observed with bounded
error, and in addition, the way how to reduce the observation
error has been proposed. The numerical examples have shown
the effectiveness of the proposed designing methods. It is
believed that the approaches provide a new avenue to observe
disturbance. The interesting future topics involve the following
cases:

1) To utilize the designed disturbance observer to realize
disturbance rejection, as well as the unmatched disturbance;

2) To study the problem of noise effect reduction where the
measured output is mixed with measurement noise;

3) To investigate the observer with considering the uncer-
tainties of the system.
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Set-point Filter Design for a Two-degree-of-freedom
Fractional Control System

Fabrizio Padula and Antonio Visioli, Senior Member, IEEE

Abstract—This paper focuses on a new approach to design
(possibly fractional) set-point filters for fractional control sys-
tems. After designing a smooth and monotonic desired output
signal, the necessary command signal is obtained via fractional
input-output inversion. Then, a set-point filter is determined
based on the synthesized command signal. The filter is computed
by minimizing the 2-norm of the difference between the command
signal and the filter step response. The proposed methodology
allows the designer to synthesize both integer and fractional set-
point filters. The pros and cons of both solutions are discussed
in details. This approach is suitable for the design of two degree-
of-freedom controllers capable to make the set-point tracking
performance almost independent from the feedback part of
the controller. Simulation results show the effectiveness of the
proposed methodology.

Index Terms—Fractional control systems, two-degree-of-
freedom control, set-point following, system inversion.

I. INTRODUCTION

FRACTIONAL systems have been proven to be effective in
the design of control systems because of their capability

to model complex phenomena and to achieve more challenging
control specifications[1−12].

Actually, one of the main issues in a control system is often
to achieve a satisfactory performance in the load disturbance
rejection and in the set-point following tasks at the same time.
An effective solution to this problem is the use of a two
degree-of-freedom control system[13], where a suitable set-
point filter should be designed in order to recover the set-
point following performance independently from the employed
feedback controller. Indeed, this approach has been proven to
be effective also in the fractional framework. For example,
in [14] the use of a set-point weight for fractional-order
proportional-integral-derivative controllers is discussed. The
use of a Davidson-Cole filter has then been proposed in [15].
In any case, it has to be stressed that such a kind of filter
cannot decrease the rise time of the step response but it can
just effectively reduce the overshoot[16].

By following another approach, the set-point following
performance can be improved by using a suitably designed
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feedforward control law. In particular, the command signal
to be applied to the closed-loop system is determined by
exploiting the input-output inversion concept[17−19], that is, is
computed in such a way it causes a desired smooth monotonic
process variable transition, which is selected as a transition
polynomial[20]. In this context, constraints on the control and
process variables can be explicitly considered. This technique
has been extended successfully also to fractional control
systems[16] but it has the drawback that the use of a complex
feedforward command signal might lead to implementation
problems, especially considering the memory allocation issue.

Thus, in order to simplify significantly the implementation
of this strategy by using a standard two-degree-of-freedom
control scheme, in this paper, which is an extended version of
[21], a methodology to design a set-point filter based on the
inversion technique is proposed.

Indeed, the set-point filter is determined as the system
that minimizes the 2-norm of the difference between its
step response and the synthesized command signal. For this
purpose, the differintegrals of both the transition polynomial
and the command signal are determined. Then, two techniques
to determine either a fractional-order or an integer-order filter
are proposed. The advantages of both techniques will be
discussed in detail: the integer filter is easier to implement on
a commercial off-the-shelf control system, but may become
unstable for a small transition time and cannot cope with
uncompensated long fractional tails. On the contrary, the
fractional filter (which is more complex to implement) is stable
for every desired output transition time and works properly
independently from the feedback controller tuning.

In this way, the achieved performance is close to the one that
would have been obtained by using the synthesized command
signal, without the memory allocation problems that would
arise from the use of a complex feedforward signal. Moreover,
the performance is still independent from the chosen controller
and, finally, the filter can be fed with a simple step signal,
that is, the overall control system can be implemented in any
control setup.

The effectiveness of the proposed methodologies is proven
through a series of illustrative examples.

Summarizing, the contribution of the paper is in the design
of a (possibly) fractional set-point filter that can be employed
in a standard two-degree-of-freedom control scheme and al-
lows the achievement of high performance in terms of low
settling time and low overshoot at the same time. This is
different from the standard design of set-point filtering that
uses a low-pass filtering approach that allows the reduction of
the overshoot at the expense of the rise time.
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The paper is organized as follows. In Section II the problem
is formalized and, in Section III, the design technique of the
command signal is reviewed. The fractional differintegral of
both transition polynomial and command signal is obtained in
Section IV, while the filter design methodologies are presented
in Section V and their use is discussed in Section VI. Illus-
trative examples are given in Section VII and conclusions are
drawn in Section VIII.

Notation. C(i) denotes the space of the scalar real functions
which are continuous till the ith time derivative. Di denotes
the ith derivative operator. Finally [x] with x ∈ R is the
biggest integer lower than x (note that, when x ∈ R\N, this
is the well-known integer part of x).

II. PROBLEM FORMULATION

Consider the two degree-of-freedom control system shown
in Fig. 1 where the process is a linear time-invariant commen-
surate strictly proper fractional system, L is the delay term
and Ḡ(s) is minimum-phase.

Fig. 1. The two degree-of-freedom unity-feedback control scheme.

G(s) = Ḡ(s)e−Ls (1)

The closed-loop systems transfer function is

T (s) =
K(s)G(s)

1 + K(s)G(s)
(2)

and it is assumed to be strictly proper.
It is also assumed that the controller has been designed in

order to make the considered feedback loop internally stable.
The goal here is to design a filter F (s) such that process

output behaves well. Namely, to obtain, independently from
the chosen controller K(s), an output transition as close as
possible to a desired output function which exhibits a smooth
and monotonic transition from an initial steady-state value to
a new one in a finite time interval τ , given a set of bounds on
the control and process variables and their derivatives.

In order to do that a suitable command signal r(t) is first
synthesized, according to the technique proposed in [16], to
obtain a perfect tracking of the desired output function.

Then, a linear (possibly fractional) filter F (s) whose step
response is the closest in terms of 2-norm to the determined
command signal r(t) is found.

It is worth stressing that in this way, once a suitable filter
has been designed and implemented, the control system can
be fed directly with a simple step signal instead of a complex
command signal r(t), that would require a significant precom-
putation and memory storage. Moreover, this allows the user
to design the feedback controller K(s) independently from
the set-point following performance, hence, for example, by
better addressing the performance/robustness trade-off (such as
focusing the feedback controller design on robustness and/or
disturbance rejection).

III. COMMAND SIGNAL SYNTHESIS

For the reader’s convenience, the technique proposed in [16]
to design r(t) is briefly revisited here. The command signal
design problem can be formalized as follows:

Problem 1. Starting from null initial conditions and given
a new steady-state output value ye, design a “sufficiently
smooth” τ -parametrized desired output ȳ(·; τ) such that
ȳ(0; τ) = 0 and ȳ(t; τ) = 1 ∀t ≥ τ , and ȳ(·; τ) ∈ C(k)

for some k ∈ N. Then, find r(·; τ) such that, for the τ -
parametrized couple (r(·; τ), ȳ(·; τ)), it holds that

L[ȳ(t− L; τ)] = T (s)L[r(t; τ))]. (3)

Moreover, determine the minimum time τ∗ such that u(t; τ∗)
and the first l ∈ N0 (v ∈ N, respectively) derivatives of
u(t; τ∗) (ȳ(t; τ∗)), are bounded:

|Diu(t; τ∗)| < ui
M , ∀t > 0, i = 0, 1, . . . , l;

|Diȳ(t; τ∗)| < yi
M , ∀t > 0, i = 1, 2, . . . , v.

(4)

Note that the requirements of null initial conditions and unitary
transition are without loss of generality in view of the system
linearity.

The simple and computationally efficient τ -parametrized
transition polynomial proposed in [20] is chosen as desired
output function. It has the nice property of being monotonic,
which implies that neither overshoots nor undershoots occur.
In the interval [0, τ ] the desired output function is therefore
selected as a polynomial

ȳ(t) := c0 + c1t + · · ·+ c2n+1t
2n+1, (5)

where the coefficients ci (i = 0, 1, . . . , 2n + 1) are obtained
by solving the following system:

{
ȳ(0) = 0, Dȳ(0) = 0, . . . , Dnȳ(0) = 0;
ȳ(τ) = 1, Dȳ(τ) = 0, . . . , Dnȳ(τ) = 0.

(6)

Eventually, the solution of the previous systems leads to the
desired output function

ȳ(t; τ) :=



0, if t < 0;
(2n+1)!
n!τ2n+1

n∑
r=0

(−1)n−rτrt2n−r+1

r!(n−r)!(2n−r+1) , if 0 ≤ t ≤ τ ;

1, if t > τ.
(7)

Note that, by construction, ȳ(t; τ) allows an arbitrarily smooth
transition between 0 and 1; indeed, it is possible to show that
ȳ(t; τ) ∈ C(n)[20].

Consider a commensurate minimum-phase fractional system
H(s) of commensurate order ν ∈ R. By polynomial division
the inverse of its transfer function can be always represented
as

H−1(s) = γq−msρ +γq−m−1s
ρ−ν + · · ·+γ1s

ν +γ0 +H0(s),
(8)

where qν and mν, with q, m ∈ N, are, respectively, the
numerator and the denominator orders, ρ ∈ R is the relative
order and H0(s) is the zero dynamics of H(s).
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By polynomial division it can be shown that H0(s) is always
stable and strictly proper and that it can be represented as

H0(s) =
m∑

i=1

gi

(sν − λi)ki+1
. (9)

As a consequence, in the time domain, its impulse response
η0(t) can be described as a linear combination of Mittag-
Leffler functions[16, 22], that is:

η0(t) =
m∑

i=1

gi

ki!
εki

(t, λi; ν, ν), (10)

where

εk(t, λ;α, β) := tkα+β−1 dk

d(λtα)k
Eα,β(λtα), (11)

with

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
α > 0, β > 0, (12)

The following lemma solves the problem of computing the
input signal such that a perfect tracking of the desired output
is obtained for the system H(s).

Proposition 1[23]. Consider ȳ(t; τ) defined in (7). If n ≥
[ρ] + 1 then

u(t; τ) = γq−mDρȳ(t; τ) + γq−m−1D
ρ−ν ȳ(t; τ) + · · ·

+ γ1D
ν ȳ(t; τ) + γ0ȳ(t; τ) +

∫ t

0
η0(t− ξ)ȳ(ξ; τ)dξ.

(13)
Eventually, for Problem 1, the command signal can be

computed by applying Proposition 1 to the delay-free part
of the open-loop transfer function, i.e., by defining H(s) =
K(s)Ḡ(s), yielding the signal rol(t; τ). Then, a correction
term rc(t; τ) = ȳ(t − L; τ) must be considered, so that the
command signal is

r(t; τ) = rol(t; τ) + rc(t; τ). (14)

Finally, it can be proven that the existence of a suitable
command signal is guaranteed under the following condition:

n ≥ [ρKḠ] + 1, (15)

where ρkḠ is the relative order of the open-loop transfer
function. {

n ≥ max{v; [ρḠ] + 1 + l},
τ ≥ max{τ∗i ; τ∗o }, (16)

where τ∗o is the minimum transition time satisfying the output
constraints, whereas τ∗i is minimum transition time such that
the input constraints are satisfied for each τ ≥ τ∗i .

IV. COMMAND SIGNAL DIFFERINTEGRALS

In this section, the differintegral of both the transition
polynomial and the command signal are analytically obtained.
Indeed, they are necessary to achieve the final result of
designing an inversion-based set-point filter.

A. Transition Polynomial Fractional Differintegral

Considering that

xn = (x− τ + τ)n =
n∑

j=0

(
n
j

)
(x− τ)n−jτ j (17)

the transition polynomial can be represented as

ȳ(t; τ)=





0, if t < 0,

(2n + 1)!
n!τ2n+1

n∑
r=0

(−1)n−rτ rt2n−r+1

r!(n− r)!(2n− r + 1)
, if 0 ≤ t ≤ τ,

(2n + 1)!
n!τ2n+1

n∑
r=0

(−1)n−rτ r

r!(n− r)!(2n− r + 1)

×[t2n−r+1 −
2n−r+1∑

j=0

(
2n− r + 1

j

)

×(t− τ)2n−r+1−jτ j ] + 1(t− τ), if t > τ,
(18)

where 1(·) is the Heaviside function. The previous expression
can be further simplified considering that the transition poly-
nomial is C(n) by construction. Hence, the summation of all
the terms that by differentiating till the order n the transition
polynomial would lead to impulse-like behaviors at t = τ , is
null. Thus, the summation over j can be truncated at n− r.

Now consider the fractional differintegral of the transition
polynomial. By virtue of the previous reasoning, considering
that Dαxn = n!

Γ(n+1−α)x
n−α, α ∈ R and expanding the

binomial coefficients in (18), the differintegral of the transition
polynomial is finally obtained for −∞ < α ≤ n + 1:

Dαȳ(t; τ) =



0, if t < 0;
(2n+1)!
n!τ2n+1

n∑
r=0

(−1)n−rτr(2n−r+1)!
r!(n−r)!(2n−r+1)Γ(2n−r+2−α)

×t2n−r+1−α, if 0 ≤ t ≤ τ ;
(2n+1)!
n!τ2n+1

n∑
r=0

(−1)n−rτr(2n−r+1)!
r!(n−r)!(2n−r+1)

×
(

t2n−r+1−α

Γ(2n−r+2−α) −
n−r∑
j=0

τjt2n−r+1−j−α

j!Γ(2n−r+2−j−α)

)
, if t > τ.

(19)
It is worth stressing the previous equation can also be

used for a direct computation of the transition polynomial by
selecting α = 0.

B. Command Signal Fractional Differintegral

In order to integrate and differentiate the command signal,
the following signals must be differintegrated: 1) the transition
polynomial (rc in (14)), 2) the fractional derivatives of the
transition polynomial appearing in (13) and 3) the convolution
integral appearing in (13).

In order to solve the first point, (19) can be used directly.
However, (19) cannot be applied straightforwardly to the

second point since, in general, fractional operators do not
commutate[22]. In particular, when using Caputo fractional
derivatives, DmDαy(·) 6= Dm+αy(·),m ∈ N, α ∈ R, unless
Diy(0) = 0 (i = 0, . . . , m). Nevertheless, when differentiat-
ing the fractional derivatives of the transition polynomial, in
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order to guarantee the existence of all the derivatives till a
given order m, a sufficient condition is

n ≥ m + [ρ]. (20)

Hence, (19) can be applied. On the contrary, when in-
tegrating the fractional derivatives of the transition poly-
nomial, Riemann-Liouville and Grünwald-Letnikov frac-
tional operators do not commutate, that is D−mDαy(·) 6=
D−m+αy(·), m ∈ N, α ∈ R unless Diy(0) = 0 (i =
0, . . . , [α]). This condition, considering the transition polyno-
mial, would lead to n ≥ [ρ], and it is automatically satisfied by
the condition of existence for the inverting signal n ≥ [ρ]+1.
Evidently, all these conditions must be applied to the specific
inverting signal, that is ρ = ρKḠ.

Finally, consider the differintegration of the convolution
integral appearing in (13). In this case the operators commuta-
tion is guaranteed, independently from the adopted definition
because of the strict properness of zero order dynamics,
provided (20) is satisfied.

In [0, τ ], considering that the Laplace transform of the
convolution integrals equals the product of the Laplace trans-
forms and that L[tα] = Γ(α + 1) 1

sα+1 , starting from (19)
its differintegral can be derived as an explicit expression in
terms of Mittag-Leffler functions by exploiting the following
equality:

L−1

[
k!sα−β

(sα ± λ)k+1

]
= εk(t,∓λ; α, β). (21)

For t > τ a similar result is achievable by considering
that the transition polynomial (19) can be represented as the
summation of a polynomial and a delayed one. Hence, the
same reasoning previously applied can be used by considering
that L[(t− τ)α] = Γ(α + 1) 1

sα+1 e−τs, that is, the integration
of a polynomial function, possibly delayed, that can be solved
again in terms of Mittag-Leffler functions, leading to

Dα
∫ t

0
η0(t− ξ)y(ξ; τ)dξ

=
m∑

i=1

gi

ki!
(2n+1)!
n!τ2n+1

n∑
r=0

(−1)n−rτr

r!(n−r)!(2n−r+1) (2n− r + 1)!

× [εki
(t, λi; ν, 2n− r + 2 + ν − α)

−





0, if 0 ≤ t ≤ τ
n−r∑
j=0

τj

j!

×εki
(t− τ, λi; ν, 2n− r + 2− j + ν − α), if t > τ


.

(22)
Again, it is worth mentioning that the previous equation can
be used for a direct computation of the convolution integral
appearing in (13) in terms of Mittag-Leffler functions by
selecting α = 0.

It is noteworthy that the computation of (13) by means
of (22) only requires the computation of the Mittag-Leffler
function, that is widely treated in the literature (see for
example [22, 24]). Note that, in the fractional framework,
this is a basic requirement since the Mittag-Leffler function
plays for fractional systems the same role that the exponential
function plays for integer systems.

V. LEAST-SQUARES FILTER DESIGN

In this section, two methodologies will be proposed to
obtain the set-point filter. The first one will lead to a fractional-
order filter, while the second one to an integer-order one. Also,
pros and cons of the two approaches will be discussed in
details.

A. Transition Polynomial-based Filter

The first methodology proposed exploits the design of a
transfer function whose step response is as close as possible
(in terms of 2-norm) to the transition polynomial. In this case,
the following transfer function structure is proposed:

F̃ (s) =
1

o∑
i=1

aisi + 1
. (23)

First o = n + 1 is selected, so that the filter step response
exhibits the same degree of regularity of the transition polyno-
mial. Then, by sampling at each ∆t the transition polynomial
and its derivatives obtained via (19), the following matrices
are created

A =




Doȳ(0; τ) · · · D1ȳ(0; τ)
...

. . .
...

Doȳ(t−∆t; τ) · · · D1ȳ(t−∆t; τ)
Doȳ(t; τ) · · · D1ȳ(t; τ)

Doȳ(t + ∆t; τ) · · · D1ȳ(t + ∆t; τ)
...

. . .
...

Doȳ(3τ ; τ) · · · D1ȳ(3τ ; τ)




, (24)

B =




1(0)− ȳ(0; τ)
...

1(t−∆t)− ȳ(t−∆t; τ)
1(t)− ȳ(t; τ)

1(t + ∆t)− ȳ(t + ∆t; τ)
...

1(3τ)− ȳ(3τ ; τ)




. (25)

Finally the coefficients vector Θ = [ao · · · a1]T is obtained
as Θ = AT(AAT)−1B. Note that, the transfer function (23)
designed in this way has, by construction, unitary dc-gain.
Now, using (23) and the process dynamics, the set-point filter
can be designed as

F (s) = F̃ (s)(e−Ls + (K(s)Ḡ(s))−1). (26)

It is worth noting that, in this case, the obtained filter
is fractional. Hence, it may be difficult to implement with
standard industrial control hardware. In order to overcome
this problem, in the next subsection a second methodology
to design the set point filter is proposed.

B. Command Signal Filter

The second methodology is based on direct design of a filter
whose step response is the closest, in terms of 2-norm, to the
command signal.

Actually, a double approach to solve this problem is pro-
posed. The first approach consists in identifying a suitable
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filter using directly the command signal (14). The second
approach is based on the separate identification of a transfer
function for the transition polynomial and a transfer function
for the inverting part of the command signal rol(t, τ). The re-
sponse of the first transfer function can therefore be arbitrarily
delayed and, by selecting the system delay, a signal close to
rc(t; τ) is obtained.

When the first approach is used, the proposed filter structure
is

F (s) =

o−p∑
j=1

bjs
j + 1

o∑
i=1

aisi + µ
, (27)

where µ is the closed-loop dc-gain and

p = n− [ρKḠ]. (28)

Note that the relative order of the filter is chosen in such a way
that forces the filter step response to have the greater degree
of regularity equal to or smaller than the one of the command
signal. Indeed, considering the possibly fractional nature of
the considered control systems, the degree of regularity of the
command signal is n− ρKḠ. Also, note that the chosen value
of p guarantees the accomplishment of condition (20), hence
the existence of the derivative of the command signal inde-
pendently from the adopted definition of fractional operator.

In this case, o ∈ R is a design parameter, to be chosen large
enough to give to the filter a sufficient number of degrees of
freedom. In this case, the identification would require o − p
differentiations of the step signal. In order to overcome this
problem an integral approach is adopted integrating o−p times
both the step signal and the command signal.

Then, by sampling at each ∆t the command signal and
its integrals obtained via (13), (19) and (22) the following
matrices are created

A =




Dpr(0; τ) · · · D−o+p+1r(0; τ)
...

. . .
...

Dpr(t−∆t; τ) · · · D−o+p+1r(t−∆t; τ)
Dpr(t; τ) · · · D−o+p−1r(t; τ)

Dpr(t + ∆t; τ) · · · D−o+p+1r(t + ∆t; τ)
...

. . .
...

Dpr(3τ ; τ) · · · D−o+p+1r(3τ ; τ)
−1(0) · · · − 1

(o−p+1)!0
(o−p+1)

...
. . .

...
−1(t−∆t) · · · − 1

(o−p+1)! (t−∆t)(o−p+1)

−1(t) · · · − 1
(o−p+1)! t

(o−p+1)

−1(t + ∆t) · · · − 1
(o−p+1)! (t + ∆t)(o−p+1)

...
. . .

...
−1(ψτ) · · · − 1

(o−p+1)! (ψτ)(o−p+1)




,

(29)

B =




1
(o−p)!0

(o−p) − µD−o+pr(0; τ)
...

1
(o−p)! (t−∆t)(o−p) − µD−o+pr(t−∆t; τ)

1
(o−p)! t

(o−p) − µD−o+pr(t; τ)
1

(o−p)! (t + ∆t)(o−p) − µD−o+pr(t + ∆t; τ)
...

1
(o−p)! (τ)(o−p) − µD−o+pr(ψτ ; τ)




,

(30)
where ψ ∈ R is a design parameter that must be big enough
to capture a sufficient part of the command signal transient
(made of action and postaction, see [16] for details) in order to
obtain a satisfactory filter. Finally the coefficients vector Θ =
[ao · · · a1 bo−p · · · b1]T is obtained as Θ = AT(AAT)−1B.

The second approach uses the same filter structure (27) of
the first one, but in order to identify the filter parameters it uses
rol(t; τ) instead of the whole command signal (14) to build
the matrices (29) and (30). In order to do that, the following
procedure should be used:

1) If the open-loop transfer function K(s)G(s) has a finite
dc-gain µol, then substitute µ with µol both in (27) and (30).
Then, use them to compute a filter F̄ (s) having the same
structure of (27) following the standard procedure;

2) If the open-loop transfer function has an integral behavior
of order λ ∈ R, then eliminate from (29) the last [λ] − 1
columns, eliminate from (30) the integrals of the Heaviside
function, set µ = 1 in (30) and use the following filter
structure:

F̄ (s) =

o−p∑
j=[λ]

bjs
j

o∑
i=1

aisi + 1
, (31)

where Θ = [ao · · · a1 bo−p · · · b[λ]]T.
Then, the technique proposed in the Subsection V-A is

employed to design a transfer function F̃ (s) whose step
response is close to the transition polynomial ȳ(·). Finally,
the filter is obtained as

F (s) = F̄ (s) + F̃ (s)e−Ls. (32)

VI. DISCUSSION

Two methodologies have been proposed in Section V. The
first one generates fractional set-point filters, while the second
one can be used to obtain different integer-order set-point
filters.

Clearly, when able to guarantee the same set-point tracking
performance, an integer order filter is preferable for its ease
of implementation.

Nevertheless, the second methodology is not always usable.
In particular it may present two different problems:

1) When the required transition time τ is too small it may
lead to unstable filters. In this case the first methodology
i.e., the fractional filter, offers a great advantage. Indeed, the
first technique gives the same results independently from the
chosen transition time. Actually, when varying the transition
time, the transition polynomial is just scaled along the time
axis (i.e., it is selfsimilar). So, once a stable filter for a given
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τ has been identified, it is possible to obtain many others just
scaling its coefficients in such a way that the filter Bode plot is
rigidly shifted along the jω axes without changing its shape;

2) When the control loop presents uncompensated fractional
dynamics (i.e., it is not properly tuned) the integer filter may
lead to undershoot or overshoot long time after the application
of the step signal. This depends on the fact that the transient
response generated by the filter has already expired while the
loop dynamics exhibits a slow non exponential decay typical
of uncompensated fractional dynamics[25]. It is well known
that it is not possible to match this kind of fractional power-
law decay using integer systems, hence, in this case, the use of
a fractional filter is mandatory in order to obtain a satisfactory
result.

Summarizing, the first methodology always guarantees the
same level of performance and can be successfully employed
on a broader class of control systems, but its use should be
carefully evaluated for the intrinsic complexity of implemen-
tation that fractional order systems have. Indeed, when usable,
the second approach is preferable since, independently from
the adopted approach, it leads to integer-order filters, which
are easy to implement on off-the-shelf control setups. This
issue will be further illustrated in the following section.

VII. SIMULATION EXAMPLES

In this section the proposed techniques will be tested via
simulation examples in order to highlight the benefits and the
problem that may arise from the use of these set-point filters.

For the purpose of simulation, the fractional-order dynamics
has been approximated in the frequency domain by using the
well-known Oustaloup approximation[26]. In order to obtain
a precise approximation of the real fractional system, a high
number of poles and zeros has been used, namely, 20 cells in
a frequency band [0.0001 10000].

A. Example 1

As a first illustrative example consider an unstable fractional
system with the following transfer function[16]:

G(s) =
3s0.5 + 1
s1.5 − 1

e−0.1s, (33)

whose commensurate order is, evidently, 0.5. A very simple
stabilizing controller can be used, indeed a satisfactory set-
point tracking performance can be obtained independently
from the chosen feedback controller by using a suitable set-
point filter. A proportional controller K(s) = 2 is used here.

The control requirement is to obtain a smooth transition of
the output from 0 to 1 constraining both the amplitude and
the slew rate of control and process variables (note that these
are common requirements in practical applications).

Accordingly, considering that the relative order of the
system Ḡ(s) is ρ = 1, n = 3 is chosen, that is sufficient
(not necessary) to satisfy conditions (15) and (16), and the
transition polynomial ȳ(t; τ) is computed via (7):

ȳ(t; τ) = −20
τ7

t7 +
70
τ6

t6 − 84
τ5

t5 +
35
τ4

t4. (34)

Then, the technique proposed in Section III is applied. The
zero dynamics of K(s)Ḡ(s) is obtained as

H0(s) =
−0.5185
3s0.5 + 1

(35)

and its time domain version as

η0(t) =
−0.5185

3
εki

(
t,

1
3
; 0.5, 0.5

)
. (36)

Subsequently, the inversion-based part rol(t; τ) of the com-
mand signal r(t; τ) can be computed via (13), (19) and (22):

rol(t; τ) = 0.1667D1y(t; τ)− 0.0556D0.5ȳ(t; τ) + 0.0185
+

∫ t

0
η0(t− ξ)y(ξ; τ)dξ.

(37)

Now consider the following set of constraints:

u0
M ≤ 1.5, u1

M ≤ 5,
y1

M ≤ 5.
(38)

The minimum transition time can be found by using, for
instance, a simple bisection algorithm. It turns out that the
most tightening constraint is the one imposed on the derivative
of the control variable and the minimum transition time is
τ∗ = τ∗i = 0.72.

Once the command signal has been computed, the set-point
filter is designed. First, the technique proposed in Subsection
V-A is used to identify the parameters of (23) leading to

F̃ (s) =
1/(0.0002416s4 + 0.004027s3 + 0.05374s2 + 0.3418s + 1).

(39)
The step response of F̃ (s) is represented in Fig. 2 where it
immediately shows the effectiveness of its design. Then, the
fractional set-point filter F (s) is obtained via (26) as

F (s) = (s1.5 + 6se−0.1s + 2e−0.1s − 1)/(0.001450s4.5

+0.0004839s4 + 0.02416s3.5 + 0.008054s3 + 0.3224s2.5

+0.1075s2 + 2.0509s1.5 + 0.6836s + 6s0.5 + 2).
(40)

Fig. 2. Transition polynomial (dotted line) and F̃ (s) step response
obtained by using the technique of Subsection V-A (solid line) for
the set of constraints (38). – Example 1.
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Now, also the first methodology proposed in Subsection V-B
is implemented selecting m = 3, leading to the following
integer-order filter

F (s) = (0.272s2 + 15.28s + 1)/(0.001041s5

+0.03607s4 + 0.6633s3 + 5.473s2 + 17.91s + 2). (41)

Fig. 3 shows the responses obtained with the command
signal, the proposed (fractional- and integer-order) set-point
filters and, for the sake of comparison, the step command
signal (scaled by the closed-loop dc-gain). Indeed, the re-
sponse using the proposed fractional-order filter is close to
the optimal one obtained with the inversion-based command
signal and the constraints are almost satisfied. On the con-
trary, the step response does not respect the constraints and
the system is very sluggish. Moreover, because of the long
memory of the fractional dynamics, the 2 % settling time has
the unacceptable value of 3800. Fig. 3 also reveals that the
response of the integer-order filter is not capable to capture
the long tail that the fractional dynamics exhibits, causing an
unacceptable undershoot. Indeed, because of the very simple
controller, the control loop exhibits a sluggish behavior with an
uncompensated slow fractional dynamics and a settling time
approximately close to the one obtained without the filter.

Fig. 3. Process variable (top) and control variable (bottom) obtained
by using the command signal (dotted line), the filter designed with
the technique of Subsection V-A (dashed line) and Subsection V-B
(solid line) and a step command signal (dash-dot line) for the set of
constraints (38). – Example 1.

In this context, the fractional-order filter is the only one that
is capable to completely compensate this phenomena guaran-
teeing very good performance despite the simple (detuned)
controller. This behavior is even clearer by analyzing the filter
responses compared to the ideal command signal, as shown in
Fig. 4. By observing Fig. 5, it turns out that the integer-order
filter cannot match the whole fractional power-law tail, but it
is only capable to match the required command signal only
in the first part of the transient response. As a consequence,
also the performance of the control system is satisfactory only
in the first part of the transient response, as Fig. 6 shows.
This depends on the incapability of integer-order systems to

match power law decays[25]. It is worth stressing that this is
a structural problem that cannot be solved by increasing m
in (29) and (30). Moreover, an excessive growth of m would
cause a loss of information in the first part of the transient with
a consequent decay of the filter performance also in describing
that part, which is usually the most exciting for the system
dynamics.

Finally, a second simulation has been performed, this time

Fig. 4. Command signal (dotted line) and filter step response ob-
tained by using the technique of Subsection V-A (dashed line) and
Subsection V-B (solid line) for the set of constraints (38). – Example
1.

Fig. 5. Zoom of the first part of the command signal (dotted line)
and filter step response obtained by using the technique of Subsection
V-A (dashed line) and Subsection V-B (solid line) for the set of
constraints (38). – Example 1.

neglecting the constraints and reducing the transition time to
τ = 0.3. Using this transition time the second methodology
cannot be applied since it leads to an unstable filter. On the
contrary, the first technique gives the same results indepen-
dently from the chosen transition time. Indeed, when varying
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the transition time, the transition polynomial is just scaled
along the time axis (i.e., it is selfsimilar). Thus, the Bode
plot of the transfer function (23) identified again is identical
to the previous one, but just rigidly shifted along the ω axis,
as show in Fig. 7. The transfer function is

F̃ (s) = 1/(7.28 · 10−6s4 + 0.0002913s3 + 0.009328s2

+0.1424s + 1)
(42)

and the associated fractional set-point filter is

Fig. 6. Zoom of the first part of the process variable (top) and
control variable (bottom) obtained by using the command signal
(dotted line), the filter designed with the technique of Subsection V-A
(dashed line) and Subsection V-B (solid line) and a step command
signal (dash-dot line) for the set of constraints (38). – Example 1.

Fig. 7. Bode diagram of F̃ (s) for τ = 0.72 (dotted line) and
τ = 0.3 (solid line). – Example 1.

F (s) = (s1.5 + 6se−0.1s + 2e−0.1s − 1)/(0.00004368s4.5

+0.00001456s4 + 0.001749s3.5 + 0.0005826s3

+0.05597s2.5 + 0.01865s2 + 0.8545s1.5 + 0.2848s
+6s0.5 + 2).

(43)
Again, the filter is computed via (26), and its step response is
quite close to the ideal command signal, as shown in Fig. 8.

Finally, Fig. 9 shows that, despite the strong transition time
reduction, the process response remains smooth and almost
monotonic, close again to the one obtained with the ideal
command signal.

B. Example 2

As a second example consider a unity feedback control
system where the process and the controller are the ones
proposed in [27] and already used as a benchmark in [16].
The controlled process has the transfer function

Fig. 8. Command signal (dotted line) and filter step response ob-
tained by using the technique of Subsection V-A (dashed line) for
the unconstrained solution. – Example 1.

Fig. 9. Process variable (top) and control variable (bottom) obtained
by using the command signal (dotted line), the filter designed with
the technique of Subsection V-A (dashed line) and a step command
signal (dash-dot line) for the unconstrained solution. – Example 1.

G(s) =
0.25

s(s + 1)
(44)



PADULA AND VISIOLI: SET-POINT FILTER DESIGN FOR A TWO-DEGREE-OF-FREEDOM FRACTIONAL CONTROL SYSTEM 459

and the proposed controller is a fractional-order PID tuned in
order to achieve the isodamping property:

K(s) = 3.8159 +
2.1199
s0.6264

+ 2.2195s0.809. (45)

Using the same reasoning proposed in [16], the actual con-
troller is approximated with the following commensurate one

K̃(s) = 3.8159 +
2.1199
s0.6

+ 2.2195s0.8, (46)

leading to a control system (only used for design purposes)
with commensurate order ν = 0.2. A constraint on the
maximum control variable has been considered:

u0
M ≤ 10. (47)

Note that, in the case of a servomotor, this is a common
choice that means avoiding to saturate the current loop. In
order to select the transition polynomial the relative order of
the approximate closed-loop transfer function ρT̃ = 1.2 and
the relative order of the system ρḠ = 2 have been considered.
Applying (15) and (16), the necessary and sufficient condition
n = 2 is obtained. This choice also satisfies (16) and leads to
the following transition polynomial:

ȳ(t; τ) =
6
τ5

t5 − 15
τ4

t4 +
10
τ3

t3. (48)

Applying the command signal design technique (details are not
given for the sake of brevity, they can be found in [16]) it turns
out that a transition time τ = 1.8 is sufficient to guarantee the
constraint satisfaction.

Finally the filter design methodologies proposed in Section
V have been employed, again selecting m = 3. It turns out
that:

F̃ (s) = 1/(0.068s3 + 0.27s2 + 0.8819s + 1) (49)

that leads to the fractional filter

F (s) = (s2.6 + s1.6 + 0.5549s1.4 + 0.9540s0.6 + 0.5300)/
(0.0377s4.4 + 0.0649s3.6 + 0.1498s3.4 + 0.0360s3

+0.2576s2.6 + 0.4893s2.4 + 0.1431s2 + 0.8413s1.6

+0.5549s1.4 + 0.4674s + 0.9540s0.6 + 0.5300),
(50)

while the resulting integer-order filter transfer function (ob-
tained by using the first approach of Section V-B) is

F (s) = (0.01071s4 − 0.01051s3 + 1.133s2 + 1.222s + 1)/
(0.003553s5 + 0.0363s4 + 0.2631s3 + 0.8111s2

+1.819s + 1).
(51)

Again, both filters have been tested, as well as a step command
signal and the ideal one. It is worth stressing that the tests have
been done using the actual controller and not the approximated
one.

Fig. 10 shows that both step responses of the filters are quite
close to the ideal command signal. Indeed, in this case, as the
fractional slow decay has been well compensated, the integer-
order filter step response remains close to ideal command
signal also after a long time.

Finally, in Fig. 11 the simulation results are shown. It
appears evidently that both methodologies are able to provide

responses close to the one obtained using the ideal command
signal, notably improving the performance despite the already
well-tuned controller.

Among the benefits that both the proposed methodologies
provide, a smaller rise and settling times have to be mentioned,
as well as a continuous control signal. In particular, this allows
the avoidance of a very high peak (or saturation) of the control
variable due to the so called “derivative kick” phenomenon[13].

Fig. 10. Command signal (dotted line) and filter step response
obtained by using the technique of Subsection V-A (dashed line) and
Subsection V-B (solid line) for the set of constraints (47). – Example
2.

Fig. 11. Process variable (top) and control variable (bottom) ob-
tained by using the command signal (dotted line), the filter designed
with the technique of Subsection V-A (dashed line) and Subsection
V-B (solid line) and a step command signal (dash-dot line) for the
set of constraints (47). – Example 2.

C. Example 3

As a third example consider the following delay-dominant
fractional plant
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G(s) =
1

s1.8 + 1
e−3s (52)

and the proportional-integral (PI) controller

K(s) = 0.12
(

1 +
1

0.65s

)
, (53)

tuned in order to achieve a phase margin of approximately 60◦.
The system, because of the fractional order of 1.8, exhibits an
oscillatory behavior. It is well known that a PI controller is not
sufficient to achieve a high performance when dealing with
underdamped systems, but in many cases the use of such a
controller is in force (in particular in the industry). Bearing in
mind this idea, it is shown here how to significantly improve
the set-point following performance by using a two-degree-
of-freedom controller with suitable set-point filters. Also, note
that an integrator is absolutely necessary in the controller in
order to reject possible disturbances, since the proportional
gain must be very small in order to avoid oscillations because
of the strong delay of the plant.

Considering that no constraints are imposed, the condition
n = 2 is sufficient to guarantee the existence of a command
signal. Hence, the transition polynomial (48) is obtained.
Then, by applying the command signal design procedure, the
following results are obtained

H0(s) = 2.1281
s0.2+1.0900 + 3.3834+1.7277i

s0.2+0.3368+1.0366i

+ 3.3834−1.7277i
s0.2+0.3368+1.0366i + 5.4145+1.0678i

s0.2−0.8818+0.6407i

+ 5.4145−1.0678i
s0.2−0.8818−0.6407i ,

(54)

rol(t; τ) = 8.3333D1.8ȳ(t; τ)− 12.8205D0.8ȳ(t; τ)
+8.3333ȳ(t; τ) +

∫ t

0
η0(t− ξ)ȳ(ξ; τ)dξ,

(55)

where the impulse response of the zero-order dynamics is not
reported for the sake of readability, but can be easily obtained
following the procedure proposed in [16].

After selecting the very small transition time τ = 1
(note that it is considerably smaller than the time delay), the
technique of Subsection V-A and the second one of Subsection
V-B have been applied. It results

F̃ (s) = 1/(0.01155s3 + 0.08333s2 + 0.4886s + 1). (56)

Then, the associated fractional-order filter is determined as

F (s) = (s2.8 + s + 1.2se−3s + 0.1846e−3s)/(0.001386s4

+0.01213s3 + 0.07402s2 + 0.2102s + 0.1846),
(57)

while, using the integer-order approach we obtain:

F̄ (s) = (−0.05786s4 + 4.801s3 + 1.347s2 + 5.127s)/
(0.0003913s5 + 0.0132s4 + 0.09208s3 + 0.5454s2

+1.117s + 1).
(58)

and the associated integer-order filter is:

F (s) = (−0.0006684s7 + 0.05064s6 + 0.3873s5 + 2.459
+s4 + 0.01155s3e−3s + 5.886s3 + 0.08333s2e−3s

+3.852s2 + 0.4886se−3s + 5.127s + e−3s)/
(4.52× 10−6s8 + 0.000185s7 + 0.002354s6 + 0.02081s5

+0.1165s4 + 0.463s3 + 1.175s2 + 1.606s + 1).
(59)

It is worth stressing that here the parameter m = 5 has
been used, because of the large process delay and the small
transition time. Indeed, the previous examples choice m = 3
would not be able to capture the first part of the postaction.

Since here a slow decay tail does not appear, both the
techniques work properly. In particular, Fig. 12 shows that both
the filters are capable to satisfactorily match the command
signal.

Fig. 12. Command signal (dotted line) and filter step responses
obtained by using the technique of Subsection V-A (dashed line) and
Subsection V-B (solid line) for the unconstrained problem. – Example
3.

Finally, Fig. 13 shows that both the integer filter and the
fractional one are capable to strongly decrease the rise and
the settling time contemporarily, guaranteeing a clear im-
provement of the set-point tracking performance despite the
significant delay.

VIII. CONCLUSIONS

In this paper, a novel technique to design a set-point filter
for a unity-feedback fractional control loop has been proposed.

It is based on a two-step procedure. First, an ideal com-
mand signal is synthesized in such away that a smooth and
monotonic process output would have been obtained. Then, a
linear filter is designed so that its step response is as close as
possible, in terms of 2-norm, to the ideal command signal.

Two approaches are proposed, the first one based on a
fractional-order filter and the second one on an integer-order
one. Summarizing, the use of an integer-order filter should
be limited to those cases where the feedback loop is tuned
in such a way that no long fractional tails appear (note that
this does not prevent the control system to exhibit a fractional
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dynamics as Examples 2 and 3 show) and the transition time
is big enough to guarantee a stable filter. On the contrary, the
fractional filter is always usable and guarantees a satisfactory
performance, at the price of an increased implementation
complexity.

The proposed technique is suitable for the design of two
degree-of-freedom control structures and allows the user to
design the feedback controller almost independently from the
set-point tracking performance, that, on the contrary, mostly
depends on the set-point filter.

Simulation results have demonstrated the effectiveness of
the proposed methodology.

Fig. 13. Process variable (top) and control variable (bottom) ob-
tained by using the command signal (dotted line), the filter designed
with the technique of Subsection V-A (dashed line) and Subsection
V-B (solid line) and a step command signal (dash-dot line) for the
unconstrained problem. – Example 3.
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[10] Pisano A, Rapaić M R, Jeličić Z, Usai E. Sliding mode control
approaches to the robust regulation of linear multivariable fractional-
order dynamics. International Journal of Robust and Nonlinear Control,
2010, 20(18): 2045−2056

[11] Padula F, Vilanova R, Visioli A. H∞ model matching PID design
for fractional FOPDT systems. In: Proceedings of the 2012 American
Control Conference. Montreal, CA: ACC, 2012. 5513−5518

[12] Padula F, Visioli A. Advances in Robust Fractional Control. Switzerland:
Springer, 2015.

[13] Visioli A. Practical PID Control. London, UK: Springer, 2006.

[14] Padula F, Visioli A. Set-point weight tuning rules for fractional-order
PID controllers. Asian Journal of Control, 2013, 15(3): 678−690

[15] Orsoni B, Melchior P, Oustaloup A, Badie T, Robin G. Fractional motion
control: application to an XY cutting table. Nonlinear Dynamics, 2002,
29(1−4): 297−314

[16] Padula F, Visioli A. Inversion-based feedforward and reference signal
design for fractional constrained control systems. Automatica, 2014,
50(8): 2169−2178

[17] Piazzi A, Visioli A. Optimal inversion-based control for the set-point
regulation of nonminimum-phase uncertain scalar systems. IEEE Trans-
actions on Automatic Control, 2001, 46(10): 1654−1659

[18] Piazzi A, Visioli A. Robust set-point constrained regulation via dynamic
inversion. International Journal of Robust and Nonlinear Control, 2001,
11(1): 1−22

[19] Piazzi A, Visioli A. A noncausal approach for PID control. Journal of
Process Control, 2006, 16(8): 831−843

[20] Piazzi A, Visioli A. Optimal noncausal set-point regulation of scalar
systems. Automatica, 2001, 37(1): 121−127

[21] Padula F, Visioli A. Inversion-based set-point filter design for fractional
control systems. In: Proceedings of the 2014 International Conference
on Fractional Differentiation and Its Applications. Catania: IEEE, 2014.
1−6



462 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 3, NO. 4, OCTOBER 2016

[22] Podlubny I. Fractional Differential Equations. San Diego: Academic
Press, 1999.

[23] Padula F, Visioli A. Optimal set-point regulation of fractional systems.
In: Proceedings of the 6th IFAC Workshop on Fractional Differentiation
and Its Applications. Grenoble: Elsevier, 2013. 911−916

[24] Ortigueira M D, Coito F J V, Trujillo J J. A new look into the discrete-
time fractional calculus: transform and linear systems. In: Proceedings
of the 6th IFAC Workshop on Fractional Differentiation and Its Appli-
cations. Grenoble: Elsevier, 2013. 630−635

[25] Sabatier J, Moze M, Farges C. LMI stability conditions for fractional
order systems. Computer & Mathematics with Applications, 2010, 59(5):
1594−1609

[26] Oustaloup A, Levron F, Mathieu B, Nanot F M. Frequency-band
complex noninteger differentiator: characterization and synthesis. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Appli-
cations, 2000, 47(1): 25−39

[27] Monje C A, Vinagre B M, Chen Y Q, Feliu V, Lanusse P, Sabatier J.
Proposals for fractional PID tuning. In: Preprints IFAC Workshop on
Fractional Differentiation and its Applications. Bordeaux: IFAC, 2004.
156−161

Fabrizio Padula was born in Brescia, Italy, in 1984.
He received the M. Sc degree in industrial automa-
tion engineering in 2009 and the Ph. D. degree in
computer science and automatic control in 2013,
both form the University of Brescia. Currently, he
is Research Fellow at the Department of Mathe-
matics and Statistics of the Faculty of Science and
Engineering at Curtin University, Perth, Australia.
His research activity deals with fractional control,
inversion-based control and tracking control. He is
also interested in robotics and mechatronics.

Antonio Visioli was born in Parma, Italy, in 1970.
He received the Laurea degree in electronic engi-
neering from the University of Parma in 1995 and
the Ph. D. degree in applied mechanics from the
University of Brescia in 1999. Currently he holds
a professor position in automatic control at the De-
partment of Mechanical and Industrial Engineering
of the University of Brescia. He is a senior member
of IEEE and a member of the TC on Education
of IFAC, of the IEEE Control Systems Society TC
on Control Education and of the IEEE Industrial

Electronics Society TC on Factory Automation Subcommittees on Event-
Based Control & Signal and on Industrial Automated Systems and Control,
and of the national board of Anipla (Italian Association for Automation).
His research interests include industrial robot control and trajectory planning,
dynamic inversion based control, industrial control, and fractional control. He
is the author or co-author or editor of four international book, one textbook and
of more than 200 papers in international journals and conference proceedings.



IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 3, NO. 4, OCTOBER 2016 463

Identification and PID Control for a Class of

Delay Fractional-order Systems
Zhuoyun Nie, Qingguo Wang, Ruijuan Liu, and Yonghong Lan

Abstract—In this paper, a new model identification method
is developed for a class of delay fractional-order system based
on the process step response. Four characteristic functions are
defined to characterize the features of the normalized fractional-
order model. Based on the time scaling technology, two identi-
fication schemes are proposed for parameters’ estimation. The
scheme one utilizes three exact points on the step response of
the process to calculate model parameters directly. The other
scheme employs optimal searching method to adjust the frac-
tional order for the best model identification. The proposed two
identification schemes are both applicable to any stable complex
process, such as higher-order, under-damped/over-damped, and
minimum-phase/nonminimum-phase processes. Furthermore, an
optimal PID tuning method is proposed for the delay fractional-
order systems. The requirements on the stability margins and
the negative feedback are cast as real part constraints (RPC)
and imaginary part constraints (IPC). The constraints are im-
plemented by trigonometric inequalities on the phase variable,
and the optimal PID controller is obtained by the minimization
of the integral of time absolute error (ITAE) index. Identification
and control of a Titanium billet heating process is given for the
illustration.

Index Terms—Fractional-order system, time delay, identifica-
tion, PID control, Titanium billet heating furnace.

I. INTRODUCTION

FRACTIONAL order appears in many real dynamical
processes naturally, such as heating furnace[1], flexible

structures[2], materials with memory and hereditary effects[3],
and a new electrical circuit element named “fractance”[4].
Compared with the integer model, fractional-order model often
provides more reliable description for some real dynamical
processes, especially when the Bode diagrams do not show
slopes of integer multiplying of 20 dB/decade[5], or when the
traditional integer models cannot fit the experiments data well.
For these reasons, more and more attention has been paid to
the problems of identification and control of fractional-order
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systems[6−9]. A recent survey of its development is presented
in [10] and its applications are introduced in [11].

For unknown processes, fractional-order system identifica-
tion becomes a difficult problem due to the fractional order
present in the physical systems. The aim of identification of
fractional-order system is to establish a fractional-order model
to describe the system’s physical behavior by the observed
data. Since the model parameters in identifying consist now
not only the coefficients but also the differentiation orders
appearing nonlinearly, some standard tools, such as relay
feedback method for integer models cannot be used directly
to identify fractional-order systems if there is no fundamental
improvement in the relay feedback theory. Therefore, the
researches on the identification problem for fractional-order
system have attracted lots of attention. An overview of the
identification issue of fractional-order system is introduced
in [12].

There have been some methods developed for the fractional-
order system identification using continuous time models. In
[13], linear least square (LS) optimization technique is used
to estimate the coefficients of fractional differential equation,
with the differentiation orders being fixed according to a prior
knowledge. When the fractional differentiation orders are not
available by the prior knowledge, output error methods are
developed in [14], to provide estimation of both coefficients
and differentiation orders by nonlinear optimization techniques
instead of LS. The above two methods are based on classical
identification methods whose parameters are estimated by
minimizing a given criterion and data fitting. It is obvious
that, the identification procedure becomes complicated when
nonlinear optimization is involved[15]. Recently, an optimal
identification algorithm is developed with a carefully selected
initial value for a class of fractional order modeling[16].

Another identification approach has been presented for
fractional-order systems in frequency domain. A new con-
cept of continuous order-distribution is introduced through
the development of a fractional/integer-order system iden-
tification, which allows the identification of both stan-
dard fractional/integer-order systems containing continuous
or discrete terms as well as system with continuous order-
distributions[17] . Recently, frequency response model identifi-
cation for fractional-order systems is provided for the purpose
of PID auto-tuning[18] . The model assumed to be fractional-
order plus time delay form is obtained by model reduction
from identified integer model. To estimate the time delay along
with continuous-time fractional-order model, a linear filter is
introduced for the model identification in an iterative manner
by solving simple linear regression[19].
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To obtain PID controller for a fractional-order process, Luo
et al.[20] designed integer/fractional-order PID controller for
a class of fractional-order system in terms of phase margin
and the robustness against the loop gain variations. Based on
the magnitude and phase measurements of the plant by relay
feedback tests at a frequency of interest, Monje et al.[8−9]

developed a method for the auto-tuning of fractional-order PID
controllers. Combined with the frequency response estimation
for a fractional-order system, an explicit PID tuning rule is
proposed, which incorporates both the set-point tracking and
the disturbance rejection case[18].

In this paper, a new model identification method is de-
veloped for a class of delay fractional-order model. The
step responses of the normalized fractional-order model are
used for the characteristic functions’ definition and fitting.
Combined with characteristic functions, the process is iden-
tified by time scaling technology. Two identification schemes
are developed in the parameter estimation. The scheme one
utilizes three exact points’ data on the step response of the
process to obtain the fractional-order model parameters. The
other scheme employs single-variable optimization to adjust
the fractional order for the proper parameters. The proposed
two identification schemes are both applicable to any stable
complex process, such as higher-order, under-damped/over-
damped, and minimum-phase/nonminimum-phase processes.
Furthermore, an optimal PID tuning method is proposed for
the delay fractional-order model. The requirements on the
stability margins and the negative feedback structure are cast
as real part constraints (RPC) and imaginary part constraints
(IPC). The constraints are implemented by trigonometric in-
equalities on the phase variable, and the optimal controller
is obtained by solving a single-variable optimization problem
to minimize the integral of time absolute error (ITAE) index.
Application results on the Titanium billet heating furnace are
provided for the illustration.

The remaining parts of this paper are organized as follows.
In Section II, the proposed model identification method based
on time scaling technology is developed. In Sections III,
optimal PID controller tuning method is presented using ITAE
rule. The simulation and comparison results in Section IV are
given to illustrate the performance of the proposed methods.
In Section V, application results on the titanium billet heating
furnace are provided for model identification and control.
Finally, conclusion is given in Section VI.

II. PROCESS MODEL AND IDENTIFICATION

In the real-world, many stable physical systems can be well
characterized by fractional-order model with non integer-order
derivatives. Suppose a stable process is modeled by a delay
fractional-order system

G(s) =
K

Tsα + 1
e−Ls, (1)

where L > 0 is time delay, T > 0 is the time constant, K is
the loop gain and 0 < α < 2 is the fractional order.

The step responses of (1) for different values of α with K
= 1, T = 0 and L = 0 are given in Fig. 1, which shows
that the fractional-order model in (1) provides rich complex
dynamics, including oscillations and overshoot, to characterize
any stable engineering process[9, 19]. It is obvious that, the
fractional-order α dominates the behavior of the step response
and results in significant performance difference for the case
of 0 < α ≤ 1 and 1 < α < 2. When 0 < α ≤ 1, the
outputs have no oscillation and tend to the reference signal
very slowly; when 1 < α < 2, the oscillations occur in the
outputs and are stranger when α is increasing. So, it motivates
us to identify the process based on step response depending
on the system parameters.

A. Time Scaling Analysis

The process model is normalized to be KG̃(s̃) = G(s),
where

G̃(s̃) =
1

s̃α + 1
e−τs̃, (2)

s̃ = α
√

Ts and τ = L/ α
√

T . Denote the step responses by y(t)
for the system G(s) and ỹ(t̃ + τ) for the normalized systems
G̃(s̃). Note that, t̃ stands for the time coordinate in the case
of τ = 0, and the data (t̃, ỹ(t̃+0)) will be collected and used
in our identification.

According to definition of Laplace transform,

L[f(t)] = F (s) =
∫ ∞

0

f(t)e−stdt, (3)

it is deduced that

L
[
f(

t

a
)
]

= aF (as), a ∈ R. (4)

Fig. 1. The step responses for 0 < α ≤ 1 and 1 < α < 2 with K = 1 and T = 0.
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Fig. 2. Curve fitting for f1 (p), f2 (α), f3 (α) and f4 (q).

According to (4), when

y(t) = Kỹ(t̃ + τ), (5)

the following equation holds,

t̃ + τ =
t

α
√

T
. (6)

In this way, the relationship between y(t) and ỹ(t̃+ τ) is well
formulated by time scaling.

Denote the step response of the real process by yr(t). Since
the process is modeled by (1), it is reasonable to assume yr(t)
≈ y(t), and specify yr(ti) = Kỹ(t̃i+τ) at some points. Then,
the parameters can be solved directly using (6). Here, two
identifying schemes are proposed for the parameter estimation
based on (6).

B. Identification by Three Points

The process gain K is obtained directly by

K =
yr(∞)
r(∞)

, (7)

for the stable process. Collect the responses data (t̃, ỹ(t̃ + 0))
in Fig. 1, and choose ỹ(t̃1) = β1, ỹ(t̃2) = β2 and ỹ(t̃3) = β3,
where β1 < β2 < β3 and t̃1 < t̃2 < t̃3, in the rising up stage
of the step response. Three points are specified as yr(t1)/K
= β1, yr(t2)/K = β2 and yr(t3)/K = β3, on the process
responses, (6) gives the following equations:





t̃1 + τ =
t1

α
√

T
,

t̃2 + τ =
t2

α
√

T
,

t̃3 + τ =
t3

α
√

T
.

(8)

Before solving (8), four characteristic functions are defined




f1

(
t̃3 − t̃1

t̃2 − t̃1

)
:= α,

f2(α) := t̃2 − t̃1,

f3(α) := t̃2,

f4

(
t̃2

t̃1

)
:= α,

(9)

where

p :=
t3 − t1
t2 − t1

=
t̃3 − t̃1

t̃2 − t̃1
, (10)

q :=
t2
t1

=
t̃2

t̃1
. (11)

Then, the explicit solution of (8) is given by




α = f1 (p) ,

T =
(

t2 − t1
f2(α)

)α

,

L = t2 − f3(α) α
√

T .

(12)
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In (12), α > 0 and T > 0 hold naturally, since t̃1 < t̃2 < t̃3
and t1 < t2 < t3. L < 0 would occur if

t2 < t̃2
α
√

T , (13)

because of the complex dynamics caused by high-order poles
and zeros, actuator nonlinearities or time varying parameters.
In this case, we set L = 0 and find the solutions of α and T
using two points. Take ỹ(t̃1) = β1, ỹ(t̃2) = β2, and we have
the solutions 




α = f4 (q) ,

T =
(

t2 − t1
f2(α)

)α

,

L = 0.

(14)

In this paper, we set β1 = 0.2, β2 = 0.6 and β3 = 0.95
which are listed in Table I as the recommended value for
collection of data. Then, four characteristic functions are
obtained by curve fitting, as shown in Fig. 2,





f1(p) =
0.4053p3 + 22.61p2 + 14.85p− 41.29

p3 + 25.22p2 − 4.519p− 44.52
,

f2(α) =
0.3315α + 0.2876

α− 0.1153
,

f3(α) =
2.96α2 + 1.344α + 4.814

α3 − 5.488α2 + 16.21α− 1.787
,

f4(q) =
0.2789q2 + 14.85q + 11.26

q2 + 19.16q − 18.25
.

(15)

These four functions will play important roles in our process
identification because the features of step responses of the
normalized model (2) can be well characterized by them.
Note that, for any different choice of βi, the accuracy of the
identification results only depend upon the fitting precision.

TABLE I
t̃i FOR DIFFERENT α IN FIG. 1

α
t̃1 t̃2 t̃3

β1 = 0.2 β1 = 0.6 β3 = 0.95

0.1 1/∞ 31.92 ∞
0.2 1/∞ 4.180 ∞
0.3 0.0064 2.102 > 8000

0.4 0.0214 1.497 > 600

0.5 0.0448 1.228 126.3

0.6 0.0744 1.083 41.41

0.7 0.1082 0.9983 17.55

0.8 0.1449 0.952 8.61

0.9 0.1834 0.927 4.71

1.0 0.2233 0.9164 3.02

1.1 0.264 0.9188 2.265

1.2 0.3052 0.9297 1.911

1.3 0.3470 0.9470 1.72

1.4 0.3890 0.9693 1.612

1.5 0.4312 0.9954 1.55

1.6 0.4736 1.0244 1.517

1.7 0.5160 1.0557 1.501

1.8 0.5585 1.0888 1.50

1.9 0.6010 1.1236 1.507

2.0 0.6436 1.1594 1.521

C. Optimal Identification

Theoretically, the model parameters can be calculated ex-
actly if three points are specified on the step response by (12)
or (14), but this would be a strict limitation on the whole curve
matching for the responses. Recall that, the fractional-order α
dominates the behavior or the shape of the step response. A
good choice of α can guarantee a nice shape matching, which
motivates us to develop an optimal identification scheme.

Take β1 = 0.4 and β2 = 0.6 as the recommended value to
have ỹ(t̃1) = β1 and ỹ(t̃2) = β2, and the values of t̃1 and
t̃2 are collected in Table II. The function f2 (α), as shown in
Fig. 3, is updated in (15) by curve fitting

f2(α) =
0.3704

α− 0.1097
. (16)

Fig. 3 Curve fitting for f2 (α).

TABLE II
t̃i FOR DIFFERENT α IN FIG. 2

α
t̃1 t̃2

β1 = 0.4 β1 = 0.6

0.1 0.0099 31.92

0.2 0.0771 4.180

0.3 0.1551 2.102

0.4 0.2236 1.497

0.5 0.2824 1.228

0.6 0.3342 1.083

0.7 0.3816 0.9983

0.8 0.4262 0.952

0.9 0.4690 0.927

1.0 0.5110 0.9164

1.1 0.5524 0.9188

1.2 0.5937 0.9297

1.3 0.6350 0.9470

1.4 0.6764 0.9693

1.5 0.7180 0.9954

1.6 0.7596 1.0244

1.7 0.8014 1.0557

1.8 0.8433 1.0888

1.9 0.8853 1.1236

2.0 0.9274 1.1594
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In our optimal identification, integral square error (ISE)
between y(t) and yr(t) is introduced to find the optimal
solution. Then, the minimization problem can be formulated
by

Jid = min
α

[∫ t∗

0

|y(t)− yr(t)|2dt

]
, (17)

s.t.





T =
(

t2 − t1
f2(α)

)α

,

L = max
(
t2 − f3(α) α

√
T , 0

)
,

(18)

and solved easily by MATLAB function “fminbnd”.

D. Algorithms

The proposed two identification schemes are summarized
by the following algorithms.

Algorithm 1. Three points identification (Model 1)
Step 1. Set the recommended value β1 = 0.2, β2 = 0.6 and

β3 = 0.95, and calculate the process gain K by (7).
Step 2. Collect t1, t2 and t3 from the step response of the

real process to have yr(t1)/K = β1, yr(t2)/K = β2 and
yr(t3)/K = β3.

Step 3. Calculate p, q by (10) and (11), respectively.
Step 4. Calculate the value of four functions in (15) to have

α = f1 (p), t̃2 − t̃1 = f2(α), t̃2 = f3(α) and α = f4 (q).
Step 5. If t2 > t̃2

α
√

T , determine the parameters α, T and
L by (12), otherwise, by (14).

Algorithm 2. Optimal identification (Model 2)
Step 1. Set the recommended value β1 = 0.4 and β2 = 0.6,

and calculate the process gain K by (7).
Step 2. Collect t1 and t2 from the step response of the real

process to have yr(t1)/K = β1 and yr(t2)/K = β2.
Step 3. Set an initial value of α = α∗ ∈ (0, 2).
Step 4. Update f2 (α) by (16), and calculate T and L by

(18).
Step 5. Calculate the cost function (17). If convergent, stop;

otherwise, set a new value α = αi by “fminbnd”, and go to
Step 4.

In (15) and (16), to reduce the fitting error, rational functions
are used with proper order, for curve fitting, which confirms
the accuracy of the identification results. Obviously, Algorithm
1 provides a fast identification with only three points used
in the calculation, while Algorithm 2 provides more accurate
identification results by optimal searching.

Remark 1. The proposed identification procedures in Algo-
rithm 1 and Algorithm 2 allow long dead time, large phase lag
and unstable zeros of the system are due to the introduced time
delay in the fractional-order model. They can be successfully
approximated with equivalent time delay[18].

Remark 2. The proposed identification method is applicable
to a wide range of engineering processes. If the process is
unstable, one can stabilize the process first by a proportional
controller. Then, the method becomes applicable.

Remark 3. The measured noise or disturbance is inevitable
in the real process and brings identification errors. To guaran-
tee the accuracy, a filtering algorithm, such as median filtering,

can be employed to make pretreatment of the measured data.
Then, the measured noise or disturbance is limited.

Remark 4. A similar identification method can be found
in [16] for the same model (1). Based on the step response,
optimal fitting is carried out with carefully selected initial
parameters. For the same points, both methods in this paper
and in [16], are trying to extract some typical features of the
step response for the model identification. Rather than the
direct optimal computation, our basic idea is to make time
scaling analysis for the process model (1) and its normalized
model (2). Based on such time scaling relationship, the pro-
posed two identification schemes are developed under a unified
framework. Then, solving equation set by three exact points or
by optimal response shape matching with two points is logical.

E. Simulation Study

To illustrate the utility of the proposed identification
method, four typical processes, including minimum phase
processes and nonminimum phase processes, are discussed in
the simulations.

Process 1. Over-damped process with zero and time delay

Gp1 =
2s + 1

(s + 1)3
e−0.5s. (19)

Process 2. Under-damped process with zero and time delay

Gp2 =
4s + 1

(9s2 + 3s + 1)(s + 1)
e−0.5s. (20)

Process 3. Over-damped process with positive zero and time
delay

Gp3 =
−3s + 1
(s + 1)3

e−s. (21)

Process 4. Under-damped process with positive zero and
time delay

Gp4 =
−5s + 1

(9s2 + 3s + 1)(s + 1)
e−6s. (22)

The simulations are carried out for the case when the high-
order models Gp1-Gp4 have already known to provide the
step response data. The identification procedures can also
be viewed as model reduction for high-order processes. The
above processes are identified to be fractional-order plus time
delay models in (1) and a zero initial condition is assumed.
The model performance will be compared with a frequency
identification method[18].

The basic idea behind the frequency method[18] is to specify
a point on the frequency response

Gp(jω) = G(jω), (23)

which gives the amplitude condition and phase condition to
solve T and L for a given value ofα. The parameters are finally
determined by solving a single-variable optimization problem
to minimize the norm of the frequency response errors between
the process and the fractional model:
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min
α

[
n∑

i=1

|Gp(jωi)−G(jωi, α)|2
]

,

0 ≤ ω1 < ω2 < · · · < ωu,



k = Gp(0),
T = τα,

L =
−∠Gp(jω) + arctan 2(Ã, B̃)

ω
,

(24)

where




τ =

(
− cos(απ

2 )|GP (jω)|2ωα +
√

A + B

|GP (jω)|2ω2α

) 1
α

A = cos2
(απ

2

)
|Gp(jω)|4ω2α

B = |Gp(jω)|2ω2α(k2 − |Gp(jω)|2)

Ã = − sin
(απ

2

)
ταωα

B̃ = cos
(απ

2

)
ταωα + 1

ω ≈ ωu (the ultimate frequency of GP )

The identification results are given in Table III, and the
performance in step responses and frequency responses are
given in Figs. 4 and 5. It shows that the proposed method suc-
cessfully estimates the fractional-order model by step response
for all the investigated process with fairly good accuracy. Com-
pared with the frequency method[18], the proposed optimal

identification model provides better step response fitting to
the real process.

Regarding the frequency response, the proposed models
can also fit the processes well. The main fitting error for
the nonminimum phase process is caused by the right plane
zero, which is equivalent to time delay in the fractional-order
model. In the proposed method, such equivalent treatment
does not affect the fitting accuracy of the portion of minimum
phase. One can see that, when undershoot is ending in Fig. 4,
the proposed models follow the step responses of Gp3 and
Gp4 with little error. So, it is obvious that, there is a trade-
off between the step response fitting and frequency response
fitting.

III. PID TUNING

In this section, a PID controller tuning method is developed
for delay fractional-order processes. The proposed PID tuning
rule is derived by ITAE minimization with the constraints on
the stability margins.

Since the open loop gain of the Process 1 is less than unity
over high frequency range and will not affect stability, the
paper measures the robustness by the gain margin A and phase
margin φ,

1 + AG(jωp)C(jωp) = 0, (25)

1 + e−jφG(jωg)C(jωg) = 0, (26)

where ωp and ωg are the phase and gain crossover frequencies
of the loop, respectively. According to [21−22], these two

Fig. 4. Results of the process identification method.
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Fig. 5. Frequency responses.

TABLE III
IDENTIFICATION RESULTS FOR FOUR ILLUSTRATIVE EXAMPLES

Process Proposed (Model 1) Jid Proposed (Model 2) Jid Frequency fitting in [18] Jid

1 1
1.2229s1.2417+1

e−0.6786s 0.8508 1
1.0905s1.16+1

e−0.783s 0.2887 1
1.2427s1.2226+1

e−0.7158s 0.7579

2 1
3.5294s1.5216+1

e−0.6265s 10.5945 1
4.2556s1.58+1

e−0.37336s 5.0937 1.0033
3.5277s1.4973+1

e−0.6699s 10.0240

3 1
1.8726s1.0694+1

e−4.2191s 46.8204 1
1.6631s1.02+1

e−4.3594s 46.5919 1.0002
1.5932s1.4409+1

e−4.2965s 80.1147

4 1
3.8241s1.3969+1

e−12.1103s 81.148 1
4.4894s1.44+1

e−11.8618s 80.6847 1
9.1595s1.5844+1

e−10.385s 129.5714

crossover frequencies satisfy ωp ≈ Aωg , which motivates us
to introduce an additional parameter γ in the formulation

ωp = γωg, γ > 1. (27)

This parameter γ plays the same role as ωp, but it will
provide convenience in the analysis of (25) and (26) uniformly
under the same frequency variable ωg .

The constraints on the stability margins are formulated by
A ≥ A∗ and π ≥ φ > φ∗, where A∗ and φ∗ are stability lower
bounds, and they are determined by the maximum closed-loop
amplitude ratio MT

[23],

A∗ = 1 +
1

MT
, φ∗ = 2sin−1

(
1

2MT

)
. (28)

On the other hand, we also require the negative feedback
control

u(t) = kpe(t) + ki

∫ ∞

0

e(t)dt + kdde(t), (29)

with positive controller parameters kp > 0, ki ≥ 0 and kd ≥ 0.
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The transient performance is measured by ITAE index of
the step response, that is

JITAE =
∫ ∞

0

t |e(t)|dt, (30)

where e(t) = r(t) − y(t) is the error signal. Combined with
all the constraints, the controller design problem is formulated
by

min
kp,ki,kdJITAE

=
∫ ∞

0

t |e(t)|dt,

s.t.





A ≥ A∗,

π ≥ φ > φ∗,

kp > 0,

ki ≥ 0,

kd ≥ 0.

(31)

The problem in (31) can be solved by some classical
global searching methods or by intelligent algorithms, such
as particle swarm optimization (PSO) or genetic algorithm
(GA), without theoretical analysis. In this paper, we try to
investigate the constraints (31) and develop an implemented
searching algorithm to solve this problem. The constraints in
(31) will be analyzed and converted to the implemented form:
real parts constraints (RPC) and imaginary parts constraints
(IPC), with the help of two characteristic equations (25) and
(26).

A. RPC

Let us consider the real parts of (25) and (26), which lead
to

kp = Re
[
− 1

AG(jγωg)

]
=

a

A(a2 + b2)
, (32)

kp = Re
[
−exp(jφ)

G(jωg)

]
=

c cos φ + d sinφ

(c2 + d2)
, (33)

where

a = Re(−G(jγωg)), b = Im(−G(jγωg)),
c = Re(−G(jωg)), d = Im(−G(jωg)).

The relationship of gain margin and phase margin is derived
by the following equation

A =
a
√

c2 + d2

sin(φ + α)(a2 + b2)
, (34)

where

α =





arctan
( c

d

)
, c > 0, d > 0,

π − arctan
(

c

|d|
)

, c > 0, d < 0,

−π + arctan
( |c|
|d|

)
, c < 0, d < 0,

− arctan
( |c|

d

)
, c < 0, d > 0.

(35)

Therefore, the constraints kp > 0, and A ≥ A∗, are
equivalent to the following inequalities

RPC :





0 < sin(φ + α) ≤ a
√

c2 + d2

A∗(a2 + b2)
, a > 0,

φ∗ ≤ φ < π.

(36)

B. IPC

The imaginary parts of (25) and (26) are given by

kdγωg − ki

γωg
= Im

[
− 1

AG(jγωg)

]
=

−b

A(a2 + b2)
, (37)

kdωg − ki

ωg
= Im

[
−exp(jφ)

G(jωg)

]
=

c sinφ− d cos φ

(c2 + d2)
, (38)

which are solved to get




ki = −bγωg sin(φ + α)− aωgγ
2 cos(φ + α)

a
√

c2 + d2 (γ2 − 1)
,

kd = −bγ sin(φ + α)− a cos(φ + α)
aωg

√
c2 + d2 (γ2 − 1)

.

(39)

Then, the constraints kd ≥ 0 and ki ≥ 0 are converted to

IPC : max
(

bγ

a
,

b

aγ

)
≤ 1

tan(φ + α)
. (40)

C. Implementing Optimal Tuning

Based on the analysis above, an explicit PID controller
tuning rule and the achieved gain margin are given by





kp =
a

A(a2 + b2)
=

1√
c2 + d2

sin(φ + α),

ki = −bγωg sin(φ + α)− aωgγ
2 cos(φ + α)

a
√

c2 + d2 (γ2 − 1)
,

kd = −bγ sin(φ + α)− a cos(φ + α)
aωg

√
c2 + d2 (γ2 − 1)

,

A =
a
√

c2 + d2

sin(φ + α)(a2 + b2)
.

(41)

Theoretically, a suitable value of (φ, ωg, γ) determines a robust
stabilizing PID controller and the achieved gain margin in
(41). For example, for some typical performance specifications
on gain margin Ao, phase margin φo and the closed-loop
bandwidth ωB , we can set (φ, ωg, γ) ≈ (φo, ωB , Ao) as a
recommended value for a robust PID controller in (41) or as
an initial value for the optimal searching.

Remark 5. In [21−24], (φ, ωg, A), (φ, ωp, A) or (φ, ωg, ωp,
A) are used to calculate PID controller parameters, involving
some complex computation to solve (25) and (26), the two
coupled nonlinear equations. In this paper, with basic variables
(φ, ωg, γ), the gain margin and three controller parameters
are all decoupled from each other in (41). An explicit PID
controller will be more applicable in the practical engineering,
which is one of the advantages of the proposed tuning method.

Since (36) and (40) are formulated as trigonometric inequal-
ities on φ, RPC and IPC are solved to be

φ(ωg, γ) < φ < φ(ωg, γ), (42)
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where φ(ωg, γ) and φ(ωg, γ) stand for the upper bound and
lower bound, respectively. Obviously, these two bounds are
dependent on an admissible (ωg, γ). In this way, (42) gives an
exact parameter’s range, and will help us to find an admissible
region of (φ, ωg, γ), which provides great convenience for the
optimal searching.

With the equivalent constraint in (42), the optimal controller
design problem in (39) can be rewritten in the implemented
form

minJITAE =
∫ ∞

0

t |e(t)|dt,

s.t. φ(ωg, γ) < φ < φ(ωg, γ). (43)

This problem can be solved by MATLAB function “fminbnd”
in three dimensions. Set the initial value of (ωg, γ),
and carry on the single-variable searching on φ within
[φ(ωg, γ), φ(ωg, γ)]. The value of (ωg, γ) will be updated
by “fminbnd” for the iterations. When finishing the optimal
searching in three dimensions, the optimal robust PID con-
troller is decided by (41) accordingly as well as the achieved
gain margin, phase margins and two crossover frequencies.

The proposed tuning scheme is summarized by the follow-
ing algorithm.

Algorithm 3. Optimal PID tuning
Step 1. Give the specification of MT and calculate the lower

bounds of stability margins A∗ and φ∗.
Step 2. Set the initial value of (ωg, γ).
Step 3. Solve RPC and IPC by trigonometric calculations

to obtain [φ(ωg, γ), φ(ωg, γ)].
Step 4. Carry on single-variable searching on φ within

[φ(ωg, γ), φ(ωg, γ)] by “fminbnd”.
Step 5. If convergent, go to Step 6; otherwise, update the

value of (ωg, γ) by “fminbnd”, and go to Step 3.
Step 6. Substitute the resultant value of (φ, ωg, γ) into (41)

for the optimal PID controller.

D. Continuing Simulation Study

Regarding the optimal identified Model 2 in Table III, PID
controllers are designed by the proposed method for different
values of MT . Tuning results are exhibited in Table IV, which
show that, the maximum closed-loop amplitude ratio MT is
proportional to the overshoot in most cases. With a suitable
value of MT specified, the overshoot will be avoided or limited
in the step response.

To illustrate the tuning algorithm, PID controller tuning for
the Model 2 of the Process 1 is considered. In Step 1, set MT

= 1, and calculate the lower bounds of the stability margins,
A∗ = 2 and φ∗ = π/3. Given the initial value of (ωg, γ) =
(0.8, 3) in Step 2, RPC and IPC are obtained in Step 3:





0 < sin(φ + 0.1436) ≤ 1.2568,

π

3
≤ φ < π,

−0.0754 ≤ 1
tan(φ + 0.1436)

,

(44)

1.0472 < φ ≤ 1.4272. (45)

TABLE IV
PROPOSED PID PARAMETERS FOR THE IDENTIFIED

MODEL 2

Process MT kp ki kd Overshoot (%)

1 1.2893 0.7587 0.5747 3.3
1 1.2 1.2624 0.7361 0.5885 2.6

1.4 1.2551 0.7653 0.6021 4.2

1 4.7749 0.9562 4.6739 11.1
2 1.2 6.2443 1.2211 4.3948 14.9

1.4 6.8523 1.505 4.0934 21.1

1 0.266 0.1071 0.3569 0.2
3 1.2 0.5505 0.1579 0.6441 3.2

1.4 0.5510 0.1582 0.6550 3.2

1 0.3010 0.0583 0.9809 4.49
4 1.2 0.3074 0.0580 0.9874 6.87

1.4 0.3157 0.0581 0.9985 7.4

In Step 4, single-variable searching is carried on in the phase
range (45) to obtain the minimized index JITAE = 2.6694.
Update the value of (ωg, γ) for the further searching. Finally,
three variables (φ, ωg, γ) are found convergent to (1.2786,
0.2965, 3.2687), and the optimal PID controller is determined
by (41),

C(s) = 1.2893 +
0.7587

s
+ 0.5747s. (46)

Simultaneously, the achieved control performances are ob-
tained

A = 2.05 (ωg = 0.3), φ = 1.27 (ωp = 0.96), JITAE = 1.74.
(47)

A comparison is made with the design method in [18],
which is also using ITAE tuning rule but with no limitation
on the stability margin. In [18], the controller parameters are
given in Table V, which are obtained based on the frequency
fitting model in Table III. In the comparison, we set the
controller parameters in Table IV with MT = 1.

TABLE V
CONTROLLER PARAMETERS IN [18]

Process kp ki kd

1 1.3447 1.0022 0.6215

2 2.3722 1.1933 4.7102

3 0.3477 0.1731 0.5272

4 0.2624 0.0645 1.3623

Step response and load disturbance rejection are considered
in Fig. 6. Table VI presents ITAE value, overshoot, and the
achieved gain and phase margins of the resultant systems.
From the tuning results, one can find that the proposed method
achieves lower ITAE value and smaller overshoot than results
of [18]. Two reasons can support this result: 1) accurate
identified models allow better tuning performance for model-
based tuning rules. 2) with the limitation on the maximum
closed-loop amplitude ratio MT , ITAE tuning rule would be
more applicable in the practical application.
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TABLE VI
TUNING RESULTS AND COMPARISON

Proposed PID parameters PID parameters[18]

Process (Proposed Model 2) (Frequency fitting model)

ITAE Overshoot (%) Gain margin Phase margin ITAE Overshoot (%) Gain margin Phase margin

1 199.11 5 2.907 70.5 199.6429 17 2.7797 61.2

2 236.72 11.9 1.5399 32.3 302.9330 30 1.7298 53.1

3 1.2462E+03 1.8 2.8741 62.4 1.2614E+03 31 2.2029 42

4 1.1269E+04 20.8 2.0114 56.3 1.1303E+04 24.5 1.7681 50.4

Fig. 6. Closed-loop responses of the PID control systems.

IV. APPLICATION TO TITANIUM BILLET HEATING FURNACE

Fractional-order dynamics appears naturally in the heating
process when heat conduction occurs between the operating
variable (input signal) and the measured physical variable
(output signal). An example of heating furnace was considered
in [25], which shows that the fractional-order model gives
more exact description of the heating process than integer-
order model.

Let us consider the temperature control problem of the
titanium billet furnace[26]. The titanium billet furnace is di-
vided into three heating areas and the temperature is controlled
separately for each area (see Fig. 7). Two kinds of burners,

including twelve 200 kW burners and six 350 kW burners, are
used in parallel for different heating schedules. The mixed nat-
ural gas and air are burned through the 18 burners distributed
on both sides of the furnace symmetrically.

The temperature control system is depicted in Fig. 8. Each
burner is controlled by a pulse-controller PSF778L indepen-
dently. The pulse-controller for each burner provides a precise
control for the ratio of air and gas, and greatly improves the
heating efficiency. All the burners work under the heating
task assignment of burners’ auto-setting controller PFA700
according to the total control actions generated by the con-
troller SE-504, which is implemented in the form of PID. Note
that, PFA700 also controls the process as an inner feedback
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control loop to guarantee the basic dynamic performance of
the heating process. The temperature feedback signals are
measured by 6 thermocouples distributed in three areas.

Fig. 7. Titanium billet heating furnace.

Now, consider the model identification for the heating pro-
cess. We obtain the measured data from a real Titanium billet
heating furnace in the first heating stage, with the target tem-
perature 850 ◦C, which can be viewed as the step response of
the heating process. All the measured data are plotted in Fig. 9.
It is obvious that, the measured noise is inevitably involved in
the sampled data. Especially, the temperature jumping occurs
during the whole response, which is caused by the pulse
flame of the burners near the thermocouples. To attenuate such
temperature jumping and noise, median filtering method is
employed to deal with the measured temperature value. Fig. 10
shows the median filtering results. The identification procedure
for the Heating area 1 is presented to give the illustration. In
the inner control loop, the heating process achieves the setting
temperature slowly, that is y(∞) ≈ 850 ◦C. The process gain
is approximately to be K ≈ 1.

The process is firstly identified by three points method.
Collect t1 = 20 min, t2 = 81min and t3 = 374min by Step
2 in Algorithm 1. The process is identified by (21),

1
55.078s0.909 + 1

e−4.91s. (48)

Then, optimal identification is carried on by Algorithm 2.
The cost function (26) is depicted in Fig. 11, and the optimal

fractional-order is found by single-variable searching. The
process is identified to be

1
67.1867s0.94 + 1

e−5.21s. (49)

It is obvious that the step responses of the two resultant
models, given in Fig. 12, are very close to the response of
the real heating process. In the frequency domain, one can
estimate frequency response with fixed frequency resolution
using spectral analysis in Fig. 13. It can be seen that the

Fig. 9. Step response of three heating areas.

Fig. 10. Step response with median filtering.

Fig. 8. Temperature control system of Titanium billet heating furnace.
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Fig. 11. Cost function for optimal identification.

Fig. 12. Identification results for Heating area 1.

Fig. 13. Frequency spectral analysis.

frequency responses of the resultant models are nearly the
same as the frequency response of the real process at low
frequencies, which meets the requirement for the process
with large inertia time constant. The identification results for
the other two heating areas are given in Table VII and the
responses are shown in Figs. 14 and 15.

Fig. 14. Identification results for Heating area 2.

Fig. 15. Identification results for Heating area 3.

Then, we consider the temperature control for each heating
area. In this case, we only provide the simulation results
to show the control performance. In the simulation, three
heating areas are controlled independently, and each controller
is designed based on the process Model 2 in Table VII. To
avoid overshoot, set MT = 1, and the controller parameters
are given in Table VIII. ITAE indexes are obtained in the step
input response, and the achieved gain and phase margins of
the resultant systems are also exhibited.

A typical heating routine requires the furnace temperature
to reach 900 ◦C in three hours. Rather than the typical step
input, ramp signal would be more practical in the heating
process. According to the heating mechanism, we formulate
the reference heating curve by four stages:

r2(t) =





10t,

600,

3.75(t− 90) + 600,

900.

(50)

The responses, tracking errors and control inputs of three
heating areas are shown in Figs. 16-18. In the first heating
stage, the control inputs are increasing greatly because of the
ramp input with a big slope. As we know, the steady output
error is inevitable for the ramp input under PID control. The
temperature tracking errors are almost kept about 100 ◦C in
three areas. After an hour, the input signals maintain 600 ◦C
in the second stage for the thermal insulation, and the control
inputs decrease when the tracking errors become small. In the
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TABLE VII
IDENTIFICATION RESULTS FOR THREE HEATING AREAS AND COMPARISONS

Process Fractional-order model

Proposed (Model 1) Jid × 106 Proposed (Model 2) Jid × 106

Heating area 1
1

55.078s0.909 + 1
e−4.91s 4.8788

1

67.1867s0.94 + 1
e−5.21s 4.4843

Heating area 2
1

50.006s0.922 + 1
e−6.91s 3.3877

1

56.7735s0.93 + 1
e−5.92s 3.1368

Heating area 3
1

27.593s0.879 + 1
e−13.49s 4.2200

1

42.817s0.95 + 1
e−5.9596s 3.1494

TABLE VIII
PID CONTROLLERS FOR EACH HEATING AREA

Process model kp ki kd ITAE Gain margin Phase margin
1

67.1867s0.94 + 1
e−5.21s 8.2019 0.1153 0.8750 77.2937 2.871 63.8848

1

56.7735s0.93 + 1
e−5.92s 7.1244 0.1090 3.9377 87.3280 2.7074 63.6843

1

42.817s0.95 + 1
e−5.9596s 5.2301 0.1006 5.8289 81.9108 2.8153 65.6896

Fig. 16. Responses of three heating areas under PID control.

Fig. 17. Tracking Errors.

third heating stage, the control inputs increase continues with
the ramp reference inputs, and the tracking errors are about
40 ◦C. Finally, reference inputs are kept 900 ◦C for half an
hour in the last stage and the control inputs decrease and tend
to a constant. After the temperature field distributed uniformly,
all the temperature in three areas achieve 900 ◦C. One can see
that, the proposed three PID controllers provide good control
performance for the heating furnace without any overshoot and
oscillation, in the whole heating process.

Fig. 18. Control inputs.

V. CONCLUSION

This paper has presented a new model identification method
for a class of delay fractional-order system based on the
process step response. In this method, the features of the
normalized fractional-order model were analyzed and formu-
lated by four defined characteristic functions based on the step
responses. Two identification schemes were proposed based
on time scaling analysis. Scheme one utilized three exact
points on the step response of the process to calculate model
parameters directly, and the other scheme employed optimal
searching method to adjust the fractional order for the best
model parameters. Simulation results show that the proposed
two identification schemes were both applicable to any stable
complex process, such as higher-order, under-damped/over-
damped, and minimum-phase/nonminimum-phase processes.

To design a PID controller, an optimal tuning method was
proposed for the delay fractional-order model. The require-
ments on the stability margins and negative feedback were
formulated by RPC and IPC, which were implemented by
trigonometric inequalities on the phase variable. With the basic
variables (φ, ωg, γ), an explicit PID was derived without any
tedious computation, as well as the achieving of gain margins.
Under the constraints of PRC and IPC, an optimal controller
was obtained by the minimization of ITAE index.
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Finally, the proposed method is applied to the Titanium
billet heating process. Step responses of the real process were
obtained and used to identify fractional-order models for three
heating areas. Regarding the identified model, optimal PID
controller was designed for each heating area. The application
results illustrated the effectiveness of the proposed method.
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Robust Output Feedback Control for Fractional
Order Nonlinear Systems with Time-varying Delays

Changchun Hua, Tong Zhang, Yafeng Li, and Xinping Guan

Abstract—Robust controller design problem is investigated for
a class of fractional order nonlinear systems with time varying
delays. Firstly, a reduced-order observer is designed. Then,
an output feedback controller is designed. Both the designed
observer and controller are independent of time delays. By
choosing appropriate Lyapunov functions, we prove the designed
controller can render the fractional order system asymptotically
stable. A simulation example is given to verify the effectiveness
of the proposed approach.

Index Terms—Fractional order systems, time-varying delays,
Laypunov function, backstepping.

I. INTRODUCTION

Fractional calculus is an ancient concept, which can be
dated back to the end of 17th century, the time when the classi-
cal integer order calculus was established. It is a generalization
of the ordinary differentiation and integration to arbitrary or-
der[1]. Although it has a long history, it has not attracted much
attention until recently in the control field. It is found that
many systems with memory feature or complex material can
be more concisely and actually described by fractional order
derivatives, such as the diffusion process, the heat transfer
process and the effect of the frequency in induction machines.
It also has been proved that fractional order controllers, like
fractional order PID controllers and fractional order model
reference adaptive controllers, can capture much better effect
and robustness[2]. For some basic theory of fractional order
calculus and fractional order systems, one can refer to [1−6]
and the references therein.

Stability analysis is one of the most fundamental and
essential issues for the control system. In [7], Matignon
firstly studied the stability of fractional-order linear differ-
ential systems with the Caputo definition. Since then, many
further achievements have been obtained[8−11]. In [8−9], the
authors presented the sufficient and necessary conditions for
the asymptotical stability of fractional order interval systems
with fractional order α satisfying 0 < α < 1 and 1 < α < 2,
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respectively. Reference [10] designed both state and output
feedback controllers for fractional order linear systems in
triangular form by introducing appropriate transformations of
coordinates. Based on Gronwall-Bellman lemma and sector
bounded condition, the stability and stabilization of fractional
order linear systems subject to input saturation were studied in
[11]. For the nonlinear fractional order systems, the stability
analysis is much more difficult than that of the linear systems.
We can find some sufficient conditions in [12−14]. In [15], the
authors introduced Mittag-Leffler stability by using Lyapunov
direct method.

Time delay is an inherent phenomenon in the interconnected
systems or processes, which makes the stability analysis and
controller design challenging. Robust output control problem
for a class of nonlinear time-delay systems was studied in
[16]. The necessary and sufficient stability conditions for linear
fractional-order differential equations and linear time-delayed
fractional differential equations have already been obtained
in [17−19]. Reference [20] investigated the stability of α-
dimensional linear fractional-order differential systems with
order 1 < α < 2. References [21−22] contain the stability
analysis of fractional order nonlinear time delay system based
on Lyapunov direct method and by using properties of Mittag-
Leffler function and Laplace transform.

In recent years, the backstepping technique has attracted
much attention as a powerful method for controlling the strict
feedback nonlinear systems. There are a few works using
backstepping technique to handle fractional order systems.
Using Lyapunov indirect method, the authors of [23] presented
a new method to design an adaptive backstepping controller
for triangular fractional order nonlinear systems. In [24], a new
adaptive fractional-order backstepping method is proposed for
a class of commensurate fractional order nonlinear systems
with uncertain constant parameters. However, for fractional
order nonlinear systems with time-varying delays, there is
none related work. Motivated by the mentioned situation, we
devote to solve the stabilization problem of fractional order
nonlinear systems with time-varying delays.

The contributions of this paper are as follows: 1) A reduced-
order observer is designed to estimate the state of the system;
2) Based on the backstepping method, we design a robust
output feedback controller for a class of fractional order
nonlinear time-varying delay systems; 3) With a novel class
of fractional Lyapunov functions, we prove the stability of
fractional order nonlinear systems.

The remainder of this paper is organized as follows: Section
II presents some basic concepts about fractional order calculus
and the stability of fractional order nonlinear systems. In Sec-
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tion III, as the main part of this note, an adaptive controller
is designed by using the backstepping method for fractional
order nonlinear time-varying delayed systems. An example is
presented to show the effectiveness of the proposed controller
in Section IV. Finally, Section V gives the conclusion of this
paper.

Notations . Throughout this paper, R denotes the set of
real numbers, Rn for n-dimensional Euclidean vector space
and Rn×n for the space of n×n real matrices. XT and X−1

represent the transpose and the inverse of matrix X , respec-
tively. I denotes the unit matrix with proper dimensions. For
any matrix A ∈ Rn×n, λi(A) stands for the i-th eigenvalue
of A. For simplicity, C

0 Dα
t is mentioned as Dα.

II. PRELIMINARIES

In this section, we provide some basic knowledge of frac-
tional calculus and fractional order systems (details can be
found in [1−2]). There are several definitions of fractional
order derivatives, among which the Riemann-Liouville and
Caputo definitions are well known and most commonly used.
In this paper, we choose the Caputo definition for the fractional
order derivatives. The Caputo derivative and fractional integral
are defined as follows.

Definition 1 (Caputo fractional derivative). The Caputo
fractional derivative of order α ≥ 0 for a function f : [0,∞] →
R is defined as

0D
α
t f(t) =

1
Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−n

ds, t > 0, (1)

where n is the first integer that is larger than α and Γ(·) is
the well known Gamma function which is defined as follows:

Γ(t) =
∫ ∞

0

xt−1e−xdx.

Definition 2 (Fractional integral). The fractional integral
of order α ≥ 0 for a function f : [0,∞] → R is defined as

0I
α
t f(t) =

1
Γ(α)

∫ t

0

f(s)
(t− s)1−α

ds, t > 0. (2)

Definition 3 (Class-K function). A continuous function γ :
[0, t) → [0,∞) is said to belong to class-K function if it is
strictly increasing and γ(0) = 0.

Here are some lemmas we could use in this paper.
Lemma 1 (General Leibnitz’s rule). If f and g are

differentiable and continuous functions, the product f · g is
also differentiable and its α-th (α ≥ 0) derivative is given by

Dα(f · g) = (Dαf) · g +
∞∑

k=1

Γ(α + 1)Dα−kf ·Dkg

Γ(k + 1)Γ(α− k + 1)
. (3)

According to Lemma 1, the α-th order time derivative of
V (x) = 2xTx can be extended as DαV (x) = (Dαx)Tx
+ xTDαx + 2γ, where x is a column vector and γ =∑∞

k=1
Γ(α+1)(Dα−kx)TDkx

Γ(k+1)Γ(α−k+1) .
Lemma 2 (Fractional comparison principle). Let Dαx(t)

≥ Dαy(t) and x(0) = y(0), where α ∈ (0, 1). Then x(t) ≥
y(t). In particular, if x(t) = c, where c is a constant, Dαc =
0 and y(0) = c, we will have y(t) ≤ c.

Theorem 1[15]. Let x = 0 be an equilibrium point for
Dαx(t) = f(t, x) and D ⊂ Rn be a domain containing x = 0.
Let V (t, x) : [0,∞)×D → R be a continuously differentiable
function such that for ∀t ≥ 0, ∀x ∈ D, 0 < α < 1,

W1(x) ≤ V (t, x) ≤ W2(x),
DαV (t, x) ≤ −W3(x), (4)

where W1(x), W2(x), and W3(x) are class-K functions on D.
Then x = 0 is asymptotically stable.

Lemma 4[12]. Let x(t) ∈ Rn be a differentiable and
continuous function. Then, for ∀t ≥ t0 and ∀α ∈ (0, 1)

1
2
Dα(xT(t)x(t)) ≤ xT(t)Dαx(t). (5)

Lemma 5 (Schur complement lemma). The linear matrix
inequality (LMI)

M =
[

A B
BT C

]
< 0,

where A = AT, C = CT and C is invertible, is equivalent to

C < 0, A−BC−1BT < 0.

III. MAIN RESULTS

Consider the following fractional order nonlinear system
with 0 < α < 1 and time-varying delays:





Dαx1 = x2 + F1(x1) + H1(y(t), y(t− d1(t))),
Dαxi = xi+1 + Fi(x̄i) + Hi(y(t), y(t− di(t))),
Dαxn = u + Fn(x̄n) + Hn(y(t), y(t− dn(t))),
y = x1,

(6)

where x(t) = [x1 (t) , x2 (t) , . . . , xn (t)]T ∈ Rn is the state
and xi(θ) = φi(θ), θ ∈ [−di(0), 0), i = 1, . . . , n, x(0) = 0,
u(t) ∈ R and y(t) ∈ R are the control input and the output
of the system, respectively; x̄i(t) = [x1(t), x2(t), . . . , xi(t)]T;
Fi (·) and Hi (·) are smooth nonlinear functions and Fi(0, . . . ,
0) = Hi (0, 0) = 0; di(t) is the time-varying delay and there
exists positive scalar ηi such that ḋi(t) ≤ ηi < 1.

We impose the following assumptions on system (6).
Assumption 1. Nonlinear functions Hi(ξ1, ξ2) (i = 1, 2,

. . . , n) satisfy the following inequality:

|Hi(ξ1, ξ2)| ≤ H̄i1(ξ1)ξ1 + H̄i2(ξ2)ξ2, (7)

where H̄i1(·) and H̄i2(·) are known functions.
Let Hi1(ξ1) = 2H̄2

i1(ξ1)ξ1, Hi2(ξ2) = 2H̄2
i2(ξ2)ξ2, then we

can have the following inequality:

|Hi(ξ1, ξ2)|2 ≤ Hi1(ξ1)ξ1 + Hi2(ξ2)ξ2. (8)

Assumption 1 is very common in nonlinear time delay
systems, by which the term y(t−di(t)) can be separated from
the delay-function, so that we can handle the delay problems.

Assumption 2. For nonlinear functions Fi(·), there exist
some positive scalars li such that the following inequalities
hold for i = 1, 2, 3, . . . , n:

|Fi(ζ̄i)− Fi(̂̄ζi)| ≤ li

∥∥∥ζ̄i − ̂̄ζi

∥∥∥ , (9)

where ζ̄i = [ζ1, ζ2, . . . , ζi]T, ̂̄ζi = [ζ1, ζ̂2, . . . , ζ̂i]T and li is a
known positive parameter.

We can use the following expression for Fi(x̄i)
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Fi(x̄i) = ni1x1 + F̄i(x̄i), i = 1, . . . , n, (10)

where ni1 is a constant which could be zero.
In this paper, we focus on solving the following problem.

For system (6) satisfying Assumptions 1 and 2, design a
reduced-order observer based memoryless output feedback
controller to render the closed-loop system stable.

Considering system (6) with unmeasured state variables, we
propose the following reduced-order observer:




Dαλi(t) = λi+1(t) + ki+1x1(t) + Fi(x̂i(t))
−ki(λ2(t) + k2y(t) + F1(y(t))),

Dαλn(t) = u(t) + Fn(x̂n(t))
−kn(λ2(t) + k2y(t) + F1(y(t))),

x̂i(t) = λi + kiy(t), i = 2, . . . , n,

(11)

where x̂i(t) = [x1(t), x̂2(t), . . . , x̂i(t)]T and parameters ki (i
= 2, . . . , n) are to be specified later.

Similar to (10), we can change Fi(x̂i(t)) into

Fi(x̂i(t)) = ni1x1 + F̄i(x̂i(t)).

Remark 1. In this paper, we introduce the reduced-order
observer instead of the full-order one. In this way, some of the
states can be derived from the real output, making the results
more precise and simplifying the structure and computation
complexity. To our best knowledge, it is the first time that
the reduced-order observer is introduced to fractional order
nonlinear systems.

The estimation errors are defined as

ei(t) = xi(t)− x̂i(t). (12)

From (11) and (12), we can get

Dαe(t) = Ae(t) + F̃ (t) + H̃(t), (13)

where

e(t) = [e2(t), . . . , en(t)]T,

A =




−k2 1 0 · · · 0
−k3 0 1 · · · 0

...
...

...
. . .

...
−kn 0 0 · · · 0


 ,

F̃ (t) = [F2(x̄2(t))− F2(x̂2(t)), . . . ,

Fn(x̄n(t))− Fn(x̂n(t))]T, (14)

H̃(t) = [H2(y(t), y(t− d2)))− k2H1(y(t), y(t− d1))),

. . . ,Hn(y(t), y(t− dn)))− knH1(y(t), y(t− d1)))]T.
(15)

Next, we extend the backstepping technique to the fractional
order nonlinear system with time-varying delays described by
(6). The virtual controllers αi (i = 1, . . . , n−1) are developed
at each step. Finally, at step n, the actual controller u is
designed. First, we introduce the following transformation of
states.

z1(t) = y(t),
zi(t) = λi(t)− αi−1, i = 2, . . . , n. (16)

Then we choose the Lyapunov function as

V = Ve + Vz + Vd, (17)

where
Ve = I1−αeTPe, (18)

and P is a real symmetric positive matrix.

Vz = I1−α
n∑

i=1

Mi, (19)

Mi =
1
2
z2
i ,

Vd =

(
2

n∑

i=2

k2
i + 1

)∫ t

t−d1(t)

1
1− η1

H12(y(t))y(t)dt

+ 2
n∑

i=2

∫ t

t−di(t)

1
1− ηi

Hi2(y(t))y(t)dt. (20)

Next, we will give the derivative of Ve, Vz , Vd, and V in
turn. From Lemma 4, the derivative of Ve is:

V̇e = Dαe(t)TPe(t)

≤ (Dαe(t))TPe(t) + eT(t)PDαe(t) (21)

= (Ae(t) + F̃ (t) + H̃(t))TPe(t)

+ eT(t)P (Ae(t) + F̃ (t) + H̃(t))

= eT(t)(ATP + PA)e(t) + F̃T(t)Pe(t)

+ eT(t)PF̃ (t) + H̃T(t)Pe(t) + eT(t)PH̃(t) (22)

According to Assumption 2, we can get

F̃T(t)F̃ (t) =
n∑

i=2

(Fi(x̄i(t))− Fi(x̂i(t)))2

≤
n∑

i=2

l2i
∥∥x̄i − ̂̄xi

∥∥2

≤ ρ
∥∥x̄n − ̂̄xn

∥∥2
,

where ρ =
∑n

i=2 l2i .

V̇e ≤ eT(t)(ATP + PA)e(t) + ρeT(t)e(t)

+ H̃T(t)H̃(t) + 2eT(t)PPe(t)

≤ eT(t)(ATP + PA + ρI + 2PP )e(t) + H̃T(t)H̃(t)

≤ eT(t)(ATP + PA + ρI + 2PP )e(t)

+ 2
n∑

i=2

H2
i + 2

n∑

i=2

k2
i H2

1 (23)

and P and ki (i = 2, . . . , n) satisfy

ATP + PA + ρI + 2PP < − n

2ε1
I. (24)

To solve inequality (24), we decompose A = Ā + kB with

Ā =
[

0 I(n−2)×(n−2)

0 0

]
, k =




k2

...
kn




(n−1)×1

,

B = [−1, 0, . . . , 0]1×(n−1).
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According to Lemma 5, inequality (24) is equivalent to the
following LMI[

PĀ + WB + BTWT + ĀTP + (ρ + n
2ε1

)I P

P −0.5I

]

< 0, (25)

where W = Pk. Further, we can use LMI toolbox in Matlab
to obtain P and k.

The derivative of Vz is:

V̇z =
n∑

i=1

DαMi. (26)

Next, by the backstepping method, the virtual controllers αi

(i = 1, 2, . . . , n−1) and controller u are designed respectively.
Step 1.

DαM1 =
1
2
Dαz2

1 ≤ z1D
αz1

= z1(z2 + α1 + k2x1 + e2 + F1(y(t))
+ H1(y(t), y(t− d1(t))))

≤
(

1
4

+
ε1
2

)
z2
1 +

1
2ε1

e2
2 + H2

1 (y(t), y(t− d1(t)))

+ z1(α1 + k2x1 + F1(x1(t))) + z1z2, (27)

where ε1 is a positive constant.
Choose

α1 =−
(

c1 +
1
4

+
ε1
2

+ k2 + n11

)
z1 − F̄1(y(t))

−
(

2
n∑

i=2

k2
i + 1

)(
H11(y(t)) +

1
1− η1

H12(y(t))
)

− 2
n∑

i=2

(
Hi1(y(t)) +

1
1− ηi

Hi2(y(t))
)

=−K1z1 − ᾱ1, (28)

where ci (i = 1, 2, . . . , n) are positive constants,

K1 = c1 +
1
4

+
ε1
2

+ k2 + n11

ᾱ1 = F̄1(y(t)) +

(
2

n∑

i=2

k2
i + 1

)
(H11(y(t))

+
1

1− η1
H12(y(t))) + 2

n∑

i=2

(Hi1(y(t))

+
1

1− ηi
Hi2(y(t))).

Step 2.

DαM2 =
1
2
Dαz2

2 ≤ z2D
αz2

= z2(z3 + α2 + k3x1 + F2(̂̄x2(t))
− k2(λ2 + k2x1 + F1(x1))−Dαα1)

≤ z2z3 +
1

2ε1
e2
2 + z2(α2 + k3x1 + F2(̂̄x2(t))

− k2(λ2 + k2x1 + F1(x1)) + Dαᾱ1

+ K1(z2 + α1 + k2x1 + F1(y(t))) +
K1ε1

2
z2
2 .

(29)

Choose

α2 =− z1 −
(

c2 +
K1ε1

2

)
z2 − k3x1 − n21z1

− F̄2(̂̄x2(t))−K1(z2 + α1 + k2x1 + F1(y(t)))
+ k2(λ2 + k2x1(t) + F1(x1(t)))−Dαᾱ1

=−K2z1 − ᾱ2, (30)

where

K2 = 1 + (K1 − k2)(n11 + k2) + n21 + k3

ᾱ2 =
(

c2 +
K1ε1

2

)
z2 + F̄2(̂̄x2(t))

+ (K1 − k2)(z2 + α1 + F̄1(y(t))) + Dαᾱ1.

Step iii.

DαMi =
1
2
Dαz2

i ≤ ziD
αzi

= zi(zi+1 + αi + ki+1x1 + Fi(̂̄xi(t))
− ki(λ2 + k2x1(t) + F1(x1(t)))−Dααi−1)

= zizi+1 +
1

2ε1
e2
2 + zi(αi + ki+1x1 + Fi(̂̄xi(t)))

− ki(λ2 + k2x1(t) + F1(x1(t))) + Dαᾱi−1

+ Ki−1(z2 + α1 + k2x1 + F1(y(t)))) +
Ki−1ε1

2
z2
i .

(31)

Choose

αi =− zi−1 −
(

ci +
Ki−1ε1

2

)
zi − ki+1x1 − ni1z1

− F̄i(̂̄xi(t)) + ki(λ2 + k2x1(t) + F1(x1(t)))
−Dαᾱi−1 −Ki−1(z2 + α1 + k2x1 + F1(y(t)))

=−Kiz1 − ᾱi, (32)

where

Ki = (Ki−1 − ki)(n11 + k2) + ni1 + ki+1

ᾱi = zi−1 +
(

ci +
Ki−1ε1

2

)
zi + F̄i(̂̄xi(t))

+ (Ki−1 − ki)(z2 + α1 + F̄1(y(t))) + Dαᾱi−1.

Step nnn.

DαMn =
1
2
Dαz2

n ≤ znDαzn

= zn(u + Fn(̂̄xn(t))− kn(λ2 + k2x1(t)
+ F1(x1(t)))−Dααn−1)

=
1

2ε1
e2
2 +

Kn−1ε1
2

z2
n + zn(u + Fn(̂̄xn(t))

+ Dαᾱn−1 − kn(λ2 + k2x1(t) + F1(x1(t)))
+ Kn−1(z2 + α1 + k2x1 + F1(y(t)))). (33)

Then

u = − zn−1 −
(

cn +
Kn−1ε1

2

)
zn − Fn(̂̄xn(t))

+ kn(λ2 + k2x1(t) + F1(x1(t)))
−Kn−1(z2 + α1 + k2x1 + F1(x1(t)))−Dαᾱn−1.

(34)
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The derivative of Vd is:

V̇d =

(
2

n∑

i=2

k2
i + 1

)

×
(

d
dt

(∫ t

t−d1(t)

1
1− η1

H12(y(t))y(t)dt

))

+ 2
n∑

i=2

(
d
dt

(∫ t

t−di(t)

1
1− ηi

Hi2(y(t))y(t)dt

))

≤
(

2
n∑

i=2

k2
i + 1

)(
1

1− η1
H12(y(t)

)
y(t)

−H12(y(t− d1(t)))y(t− d1(t)))

+ 2
n∑

i=2

(
1

1− ηi
Hi2(y(t))y(t)

−Hi2(y(t− di(t)))y(t− di(t))). (35)

Then, we have

V̇ = V̇e + V̇z + V̇d

≤ eT(t)
(

ATP + PA +
(

ρ +
n

2ε1

)
I + 2PP

)
e(t)

−
n∑

i=1

ciz
2
i . (36)

So
V̇ ≤ −W (e(t), z̄n), (37)

where z̄i = [z1, z2, . . . , zn] and W (·) and W1(·) are class-K
functions.

According to the definition of the Caputo fractional deriva-
tive, Lemma 2 and (37)

DαV = I1−αV̇ ≤ −I1−αW (e(t), z̄n) ≤ −W1(e(t), z̄n)

Finally, we present the main result of this paper as follows:
Theorem 2. For a system described by (6) satisfying

Assumptions 1 and 2, controller (34) can render the closed-
loop system asymptotically stable.

IV. SIMULATION

In this section, an example is given to show the effectiveness
of the proposed controller.

Consider the following system:
{

Dαx1(t) = x2(t)− 0.8x1(t) + 0.5x2
1(t− d1(t)) sin t,

Dαx2(t) = u− 0.8x2(t) + 0.5x3
1(t− d2(t)) sin t,

where d1(t) = 0.5(1 + sin t), d2(t) = 0.5(1 + cos t). We
can see that the aforementioned system satisfies the above
assumptions with P = I , η1 = η2 = 0.5, l = 0.8, ρ = 0.64,
n11 = −0.8, F̄1(x1) = 0, n21 = 0, F̄2(x̄2) = −0.8x2,
H11(t) = H21(t) = 0, H12(t − d1(t)) = 0.25x3

1(t − d1(t))
and H22(t−d1(t)) = 0.25 x5

1(t−d1(t)). Choosing ε1 = 1, k2

= 2, c1 = 0.05 and c2 = 0.8, we can obtain the reduced-order
observer and the function β1(x1(t)):

Dαλ2(t) = u− 2.8λ2(t)− 4x1(t),

α1(x1(t)) = −2x1(t)− 4.5x3
1(t)− x5

1(t).

Then, K1 = 2, ᾱ1 = 4.5x3
1 + x5

1, the controller can be
designed as

u(t) = 0.6x1(t)− λ2(t) + 1.8α1(x1(t))−Dαᾱ1.

The simulation results are shown in Figs. 1 and 2, from
which we can see that the constructed controller renders the
closed-loop system stable.

Fig. 1. The output response of the closed-loop system.

Fig. 2. The trajectories of x2 and x̂2.

V. CONCLUSION

In this paper, we study the controller design problem for
fractional order nonlinear time-varying delay systems, us-
ing the well known backstepping method. Also, we extend
the Lyapunov method to fractional order systems. Both the
designed observer and controller are independent of time
delays. Through the simulation presented in Section IV, the
effectiveness of the proposed controller has been verified. As
put in [25], fractional order systems have a memory feature,
which could make difficulties in the process of controller
design. In the future, we will further consider the memory
feature and its influence. Based on the result of this paper, we
will study the stability and stabilization problems for fractional
nonlinear delayed systems with fractional order 1 < α < 2
and the stability of fractional order nonlinear systems with
fractional order α > 2.
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State Feedback Control for a Class of Fractional

Order Nonlinear Systems
Yige Zhao, Yuzhen Wang, and Haitao Li

Abstract—Using the Lyapunov function method, this paper
investigates the design of state feedback stabilization controllers
for fractional order nonlinear systems in triangular form, and
presents a number of new results. First, some new properties
of Caputo fractional derivative are presented, and a sufficient
condition of asymptotical stability for fractional order nonlinear
systems is obtained based on the new properties. Then, by intro-
ducing appropriate transformations of coordinates, the problem
of controller design is converted into the problem of finding
some parameters, which can be certainly obtained by solving
the Lyapunov equation and relevant matrix inequalities. Finally,
based on the Lyapunov function method, state feedback stabi-
lization controllers making the closed-loop system asymptotically
stable are explicitly constructed. A simulation example is given to
demonstrate the effectiveness of the proposed design procedure.

Index Terms—Fractional order system, triangular system,
asymptotical stabilization, state feedback, Lyapunov function
method.

I. INTRODUCTION

FRACTIONAL order systems have been of great interest
in the last two decades. It is caused both by the intensive

development of the theory of fractional calculus itself and by
the applications. Apart from diverse areas of mathematics,
fractional order systems play an important role in physics,
chemistry, engineering and so on[1−2].

As we all know, stability is an essential issue to control sys-
tems, certainly including fractional order systems. The earliest
study on the stability of fractional differential equations can be
traced back to 1960s[3], where it was shown that the stability
problem of fractional differential equations comes down to
the eigenvalue problem of system matrices. For fractional
order systems, there are many papers related to the stability
theory[4−10] such as root-locus, asymptotical stability, bounded
input bounded output stability, internal stability, external sta-
bility, robust stability, finite-time stability, etc.

Recently, the Lyapunov function method has also been
used to study the stability of fractional order systems[11−17].
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On one hand, some Lyapunov functions were constructed
in works related to fractional sliding mode control[13−14],
and the classic Lyapunov function method was presented to
stabilize fractional order systems. On the other hand, Li et
al. investigated the Mittag-Leffler stability and the asymptot-
ical stability of fractional order nonlinear systems by using
the fractional Lyapunov’s direct method[15−16]. It is usually
difficult to construct a positive definite function and calculate
its fractional derivative for a given fractional order system.
Recently, a new property for Caputo fractional derivative of
a quadratic function has been presented in [17]. The result
allows the use of classic quadratic Lyapunov functions in the
stability analysis of fractional order systems. In some cases,
those simple quadratic functions[17] cannot work, and more
general quadratic Lyapunov functions should be used instead.
These results are very important in the sense that they have
provided a basic tool for the stability analysis and controller
design of fractional order systems.

However, it should be pointed out that it is usually difficult
to construct a positive definite function and calculate its
fractional derivative for a given fractional order system. The
Leibniz rule for Caputo fractional derivative does not work
very well like that for classical derivative. To this end, this
work will present some new and useful properties for Caputo
fractional derivative which allow finding a simple Lyapunov
candidate function for many fractional order systems. Further-
more, to the authors’ best knowledge, fewer works have been
done to study the stabilization problems for fractional order
nonlinear systems in the triangular form. For fractional order
nonlinear systems in the triangular form, such as the ones
considered in this work, it is difficult or even impossible to
solve the feedback stabilizer design problem by the existing
approaches.

In this paper, using the Lyapunov function method, we
investigate the design of state feedback stabilization controllers
for fractional order nonlinear systems in the upper triangular
form. The main contributions of this paper are as follows:
1) Some new properties for Caputo fractional derivative are
presented, which allow finding a simple Lyapunov candidate
function for many fractional order systems. As an application,
a sufficient condition of asymptotical stability for fractional or-
der nonlinear systems is obtained based on the new properties.
2) By introducing appropriate transformations of coordinates,
the problems of controller design are converted into the
problems of finding some parameters, which can be certainly
obtained by solving the Lyapunov equation and relevant matrix
inequalities. By designing state feedback stabilization con-
trollers for fractional order nonlinear systems in the upper
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triangular form, asymptotical stability for closed-loop systems
is considered based on the Lyapunov function method.

The rest of this paper is organized as follows: Section II
presents some necessary preliminaries. Section III gives new
properties on Caputo fractional derivative and presents a suf-
ficient condition of asymptotical stability for fractional order
nonlinear systems. Section IV investigates the design of state
feedback controller for the upper triangular fractional order
nonlinear systems. Section V gives an illustrative example to
illustrate our new results, which is followed by the conclusion
in Section VI.

Notation. R denotes the set of real numbers, Rn denotes
the n-dimensional Euclidean space, and Rn×n denotes the
set of n × n real matrices. For real symmetric matrices X
and Y , the notation X > Y (X ≥ Y ) means that matrix
X − Y is positive definite (positive semi-definite), and simi-
larly, X < Y (X ≤ Y ) means that matrix X − Y is negative
definite (negative semi-definite). I is the identity matrix with
appropriate dimension. XT and X−1 represent the transpose
and the inverse of matrix X , respectively. ‖ · ‖ denotes the
Euclidean norm for a vector, or the induced Euclidean norm
for a matrix.

II. PRELIMINARIES

In this section, we first give some definitions and properties
for Caputo fractional derivative, and then present a Lyapunov-
based stability theorem for fractional order systems. Through-
out this paper, we use Caputo fractional derivative as our main
tools, which is given in [2].

Definition1[2] . Caputo fractional derivative of order α > 0
of a continuous function f(t) is given by

C
0 Dα

t f(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α−n+1

ds,

where n is the smallest integer greater than or equal to α and
Γ(·) denotes the Gamma function, provided that the right side
is pointwise defined on (0,+∞).

The Leibniz rule for Caputo fractional derivative is the
following.

Lemma 1[2]. If ϕ and f along with all its derivatives
are continuous in (0,+∞), then the Leibniz rule for Caputo
fractional derivative takes the form

C
0 Dα

t (ϕ(t)f(t))

=
∞∑

k=0

Γ(1 + α)
Γ(1 + k)Γ(1− k + α)

ϕ(k)(t) C
0 Dα−k

t f(t),

where α ∈ (0, 1), Γ(·) denotes the Gamma function.
Remark 1. By Lemma 1, we can easily see that

C
0 Dα

t (ϕ(t)f(t)) 6=C
0 Dα

t ϕ(t)f(t) + ϕ(t)C
0 Dα

t f(t),

where α ∈ (0, 1). Obviously, the Leibniz rule for Caputo
fractional derivative does not have the form like that for
classical derivative.

The following lemma is the property for Caputo fractional
derivative of a matrix.

Lemma 2. Let A(t) = (ai,j(t))n×n be a time-varying
matrix and ai,j(t) be continuous and derivable functions, and
Q ∈ Rn×n. Then the following equalities:

C
0 Dα

t A(t) =
(
C
0 Dα

t ai,j(t)
)
n×n

,

C
0 Dα

t (QA(t)) = QC
0 Dα

t A(t)

hold, where C
0 Dα

t is Caputo fractional derivative, α ∈ (0, 1].
Proof. The proof is straightforward. ¤
The property for Caputo fractional derivative of a quadratic

function is the following.
Lemma 3[17]. Let x(t) ∈ R be a continuous and derivable

function. Then, for any time instant t ≥ 0,

1
2

C
0 Dα

t x2(t) ≤ x(t)C
0 Dα

t x(t), ∀ α ∈ (0, 1).

Remark 2[17]. In the case when x(t) ∈ Rn, Lemma 3 is
still valid. That is, for ∀ α ∈ (0, 1) and ∀ t ≥ 0,

1
2

C
0 Dα

t

(
xT(t)x(t)

) ≤ xT(t)C
0 Dα

t x(t).

Finally, we recall a useful result on the Lyapunov-based
stability theorem for fractional order systems[15−16].

Lemma 4. Let x̃ = 0 be an equilibrium point of fractional
order systems

C
0 Dα

t x(t) = f(t, x), x0 ∈ Rn, (1)

where C
0 Dα

t denotes Caputo fractional derivative, 0 < α < 1.
Assume that there exists a Lyapunov function V (t, x(t)) and
class-K functions βi (i = 1, 2, 3) satisfying

β1(‖x‖) ≤ V (t, x(t)) ≤ β2(‖x‖),
C
0 Dα

t V (t, x(t)) ≤ −β3(‖x‖).
Then the equilibrium point of the system (1) is asymptotically
stable.

III. NEW PROPERTIES FOR CAPUTO FRACTIONAL
DERIVATIVE

In this section, we give some new properties for Caputo
fractional derivative. To this end, we need the following
lemma, which is about the decomposition of a positive definite
matrix.

Lemma 5. Let A ∈ Rn×n be a positive definite matrix.
Then there exists a positive definite matrix B ∈ Rn×n, such
that A = B2.

Proof. The proof is straightforward. ¤
According to this lemma, some new properties for Caputo

fractional derivative of a general quadratic function are given
in the following.

Theorem 1. Let x(t) = (x1(t), x2(t), . . . , xn(t))T ∈
Rn, xi(t) (i = 1, 2, . . . , n) be continuous and derivable
functions, and α ∈ (0, 1]. Then, for any time instant t ≥ 0,
there exists a positive definite matrix P ∈ Rn×n such that

1
2

C
0 Dα

t

(
xT(t)Px(t)

) ≤ xT(t)PC
0 Dα

t x(t). (2)

Proof. For convenience, we divide the proof into two cases.
Case 1. α = 1.
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This case corresponds to the chain rule for the integer order
derivatives, which states that

1
2

d
dt

(
xT(t)Px(t)

)
= xT(t)P

d
dt

x(t).

Case 2. 0 < α < 1.
By Lemma 5, there exists a positive definite matrix Q ∈

Rn×n such that P = Q2. Then we have

1
2

C
0 Dα

t

(
xT(t)Px(t)

)
=

1
2

C
0 Dα

t

(
xT(t)QTQx(t)

)
.

Let y(t) = Qx(t). From Lemma 2 and Remark 2, we obtain

1
2

C
0 Dα

t

(
xT(t)Px(t)

)
=

1
2

C
0 Dα

t

(
xT(t)QTQx(t)

)

=
1
2

C
0 Dα

t

(
yT(t)y(t)

)

≤ yT(t)C
0 Dα

t y(t)

= xT(t)QTC
0 Dα

t (Qx(t))

= xT(t)QTQC
0 Dα

t x(t)

= xT(t)PC
0 Dα

t x(t).

¤
Remark 3. In the case when P = I , the conclusion of

Theorem 1 turns to be the conclusion of Remark 2.
Remark 4. Inequality (2) is equivalent to any one of the

following inequalities:

1
2

C
0 Dα

t

(
xT(t)Px(t)

) ≤ (
C
0 Dα

t x(t)
)T

Px(t),

C
0 Dα

t

(
xT(t)Px(t)

)≤(
C
0 Dα

t x(t)
)T

Px(t)+xT(t)PC
0 Dα

t x(t).
(3)

As an application of Theorem 1 and inequality (3), we
present a sufficient condition of stability for fractional order
nonlinear system by Lyapunov function method.

Consider the fractional order nonlinear system with Caputo
fractional derivative

C
0 Dα

t x(t) = f(t, x(t)), (4)

where α ∈ (0, 1], x(t) ∈ Rn is the state, f : R×Rn → Rn,
fi (i = 1, 2, . . . , n) are continuous functions.

Theorem 2. The system (4) is asymptotically stable if there
exists a positive definite matrix P ∈ Rn×n and a class-K
function γ such that for ∀ x(t) ∈ Rn, xT (t)Pf(t, x(t)) <
−γ(‖x‖).

Proof. Let V (t) = xT(t)Px(t). Because P ∈ Rn×n is a
positive definite matrix, then V is positive definite. By using
(3), we have

C
0 Dα

t V (t)|4 = C
0 Dα

t xT(t)Px(t)

≤ (
C
0 Dα

t x(t)
)T

Px(t) + xT(t)PC
0 Dα

t x(t)

= fT(t, x(t))Px(t) + xT(t)Pf(t, x(t))

= 2xT(t)Pf(t, x(t)) < −2γ(‖x‖).
Thus, according to Lemma 4, the system (4) is asymptotically
stable. ¤

IV. STATE FEEDBACK STABILIZERS DESIGN

In this section, state feedback stabilizers are designed for
the upper triangular fractional order nonlinear system.

Consider the following fractional order nonlinear system in
the upper triangular form:





C
0 Dα

t x1(t) = x2(t) + φ1(t, x(t)),
C
0 Dα

t x2(t) = x3(t) + φ2(t, x(t)),
...

C
0 Dα

t xn−2(t) = xn−1(t) + φn−2(t, x(t)),
C
0 Dα

t xn−1(t) = xn(t),
C
0 Dα

t xn(t) = u(t),

(5)

where α ∈ (0, 1], x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn

is the state, u ∈ R is the control input. The arguments
of the functions will be omitted or simplified whenever no
confusion can arise from the context. In this paper, xi(t)
and zi(t) are always denoted by xi and zi. The functions
φi : R ×Rn → R, i = 1, 2, . . . , n − 2 are continuous, and
satisfy the following growth condition:

Assumption 1.

|φi(t, x)| ≤ c(|xi+2|+ |xi+3|+ · · ·+ |xn|),
i = 1, 2, . . . , n− 2, (6)

where c ≥ 0 is a constant.
Remark 5. It is noted that the condition (6) was widely

used in the synthesis of nonlinear triangular systems in the
literatures[18−20].

In the following, we consider the state feedback controller
design for system (5).

Theorem 3. Under the Assumption 1, constants ai (i =
1, 2, . . . , n) and r can be chosen, such that the system (5)
is globally asymptotically stable by a linear state feedback
controller of the form

u = −
n∑

i=1

( ai

rn−i+1
xi

)
.

Proof. For the convenience of readers, we divide the proof
into two parts.

Part 1. State transformation of nonlinear system.
Introduce a state transformation for (5):

zi =
xi

rn−i+1
, i = 1, 2, . . . , n, (7)

where r > 1 is a parameter to be determined later. System (5)
can be converted into the following system:

C
0 Dα

t z =
1
r
Ωz +

1
r
Gu + Φ, (8)
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where

z =




z1

z2

...
zn−1

zn




, Ω =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




,

G =




0
0
...
0
1




, Φ =




φ1
rn

φ2
rn−1

...
φn−2

r3

0
0




.

Let aj > 0 (j = 1, 2, . . . , n) be coefficients of the Hurwitz
polynomial

q(s) = sn + ansn−1 + · · ·+ a2s + a1.

Next, choose r > 1 such that the closed-loop system (8) with

u = −(a1z1 + a2z2 + · · ·+ anzn) (9)

is globally asymptotically stable at the equilibrium z = 0.
The closed-loop system consisting of (8) and (9) is

C
0 Dα

t z =
1
r
Az + Φ, (10)

where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a1 − a2 − a3 · · · − an




.

Up to now, the problem of designing controller for (5) is
converted into that of finding an appropriate r, such that the
system (10) is asymptotically stable at z = 0.

Part 2. Stability analysis.
Since q(s) is a Hurwitz polynomial, it can be concluded that

A is a stable matrix. Therefore, there exists a positive definite
matrix P > 0 such that

PA + ATP = −I.

Choose Lyapunov function V = zTPz. Observing Assump-
tion 1, the change of coordinate (7) and r > 1, gives, for any
i(i = 1, 2, . . . , n− 2),

∣∣∣∣
φi

rn−i+1

∣∣∣∣ ≤
c

rn−i+1
(|xi+2|+ |xi+3|+ · · ·+ |xn|)

≤ c

r2

n∑

j=1

|xj |
rn−j+1

=
c

r2

n∑

i=1

|zj | ≤ c
√

n

r2
‖z‖.

Hence,

C
0 Dα

t V
∣∣
(10)

= C
0 Dα

t

(
zTPz

)

≤ (
C
0 Dα

t z
)T

Pz + zTPC
0 Dα

t z

= (
1
r
Az + Φ)TPz + zTP (

1
r
Az + Φ)

≤ −1
r
‖z‖2 + 2‖z‖ · ‖P‖ · ‖Φ‖

≤ −1
r
‖z‖2 + 2‖z‖ · ‖P‖(c

√
n

r2
‖z‖)

· ∥∥(1, 1, · · · , 1, 0, 0)T
∥∥

≤ −1
r
‖z‖2 +

2nc

r2
‖P‖ · ‖z‖2

= − 1
r2

(r − 2nc‖P‖) · ‖z‖2.

Choose

r > max{1, 2nc‖P‖+ η},

where η > 0. By Lemma 4, we can get C
0 Dα

t V
∣∣
(10)

<

− η
r2 ‖z‖2 which indicates that (10) is asymptotically stable

at z = 0. Therefore, the closed-loop system consisting of (8)
and (9) is asymptotically stable at z = 0.

Noticing (9) and the change of coordinate (7), we can get
the state feedback controller of system (5):

u = − 1
rn

(
a1x1 + a2rx2 + a3r

2x3 + · · ·+ anrn−1xn

)
.

¤
Remark 5. The conclusion of Theorem 3 also holds for the

following fractional order nonlinear system:





C
0 Dα

t x1(t) = d1x2(t) + φ1(t, x(t)),
C
0 Dα

t x2(t) = d2x3(t) + φ2(t, x(t)),
...

C
0 Dα

t xn−2(t) = dn−2xn−1(t) + φn−2(t, x(t)),
C
0 Dα

t xn−1(t) = dn−1xn(t),
C
0 Dα

t xn(t) = dnu(t),

(11)

where di, i = 1, 2, . . . , n are known nonzero real constants.
In fact, by introducing an appropriate state transformation,
system (11) can be converted into another system having the
same form as system (5).

Remark 6. It should be pointed out that the recent novel
work presented in [21] investigated the state feedback H∞
control problem for commensurate fractional order linear time-
invariant systems. When w = 0, the system (3) in [21] is
reduced to the general fractional order linear system. The
advantage of [21] was dealing with exogenous disturbance
input w for commensurate linear fractional order systems by
introducing a new flexible matrix variable. Compared with
[21], the main feature of this paper is to deal with the nonlinear
terms in fractional order nonlinear systems by the Lyapunov
function method (also see Remark 8).
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V. EXAMPLE

In this section, we present an example to illustrate the main
results.

Example 1. Consider the following fractional order nonlin-
ear system:





C
0 Dα

t x1 = x2 + sin x1
7+7e−t x3,

C
0 Dα

t x2 = x3,
C
0 Dα

t x3 = u,
(12)

where α ∈ (0, 1].
It is easy to see that Assumption 1 is satisfied with c = 1/7.
Let aj > 0, j = 1, 2, 3 be the coefficients of the Hurwitz

polynomial

q(s) = s3 + a3s
2 + a2s + a1.

Choose a1 = 6, a2 = 11, a3 = 6. Then

A =




0 1 0
0 0 1
−6 − 11 − 6


 .

Solving the Lyapunov equation

ATP + PA = −I

leads to

P =




23/15 − 1/2 − 7/10
−1/2 7/10 − 1/2
−7/10 − 1/2 17/10


 > 0.

Choose r = 2 > 6c‖P‖ = 1.9911, we can get the linear
state feedback controller for the system (12),

u = − 6
r3

x1 − 11
r2

x2 − 6
r
x3. (13)

Figure 1 shows the state response of the closed-loop system
consisting of (12) and (13) with α = 0.8 for the initial
condition (x1(0), x2(0), x3(0)) = (1, 4, 3), which clearly
demonstrates the asymptotic stability of the closed-loop sys-
tem.

Fig. 1 The state of the closed-loop system consisting of (12) and
(13) with α = 0.8.

Remark 7. In Example 1, the nonlinear terms
∣∣ sin x1
7+7e−t x3

∣∣ <
1
7 |x3|, which implies that the condition (6) is satisfied with
c = 1/7.

Remark 8. In Example 1, we can easily deal with the
nonlinear terms “ sin x1

7+7e−t x3” by the method presented in this
paper. However, it is clear that one cannot deal with these
nonlinear terms by the method presented in [21].

VI. CONCLUSION

In this paper, we have investigated the design of state
feedback stabilization controllers for fractional order nonlinear
systems in upper triangular form by the Lyapunov function
method. We have presented some new properties for Caputo
fractional derivative to allow finding a simple Lyapunov can-
didate function for many fractional order systems. As an ap-
plication, we have given a sufficient condition of asymptotical
stability for fractional order nonlinear systems based on the
new properties. By introducing appropriate transformations
of coordinates, we have converted the problem of controller
design into the problem of finding some parameters, which
could be certainly obtained by solving the Lyapunov equation
and relevant matrix inequalities. In addition, based on the
Lyapunov function method, asymptotical stability for closed-
loop systems has been considered by designing state feedback
stabilization controllers for fractional order nonlinear systems
in upper triangular form. The study of an illustrative example
has shown that the new results presented in this paper are very
effective.
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Synthesis of Fractional-order PI Controllers and
Fractional-order Filters for Industrial

Electrical Drives
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Abstract—This paper introduces an electrical drives control
architecture combining a fractional-order controller and a set-
point pre-filter. The former is based on a fractional-order
proportional-integral (PI) unit, with a non-integer order integral
action, while the latter can be of integer or non-integer type. To
satisfy robustness and dynamic performance specifications, the
feedback controller is designed by a loop-shaping technique in
the frequency domain. In particular, optimality of the feedback
system is pursued to achieve input-output tracking. The set-
point pre-filter is designed by a dynamic inversion technique
minimizing the difference between the ideal synthesized com-
mand signal (i.e., a smooth monotonic response) and the pre-
filter step response. Experimental tests validate the methodology
and compare the performance of the proposed architecture with
well-established control schemes that employ the classical PI-
based symmetrical optimum method with a smoothing pre-filter.

Index Terms—Dynamic inversion, electrical drives, fractional-
order PI controller, loop-shaping, set-point pre-filter.

I. INTRODUCTION

IN the last two decades, the applications of fractional calcu-
lus spread across several engineering fields [1], [2], ranging

from control systems [3], [4] to electrical circuits [5], to signal
processing and communications [6]−[8], to antennas and
propagation [9], [10], etc. In particular, several efforts aimed
to take advantage of fractional differentiation/integration for
developing effective and easy-to-use control design methods
and tuning techniques [11]. Frequently, the innovations are
based on the idea of extending the proportional-integral-
derivative (PID) controllers by differential or integral operators
of non-integer order [12].
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These controllers are often named fractional-order con-
trollers (FOC), where the order of differentiation and inte-
gration can be any non-integer number, even complex [13].
However, to be successful in industrial applications, the FOC
must compete with the wide diffusion of PID controllers [14].
Namely, it is well-known that FOC may guarantee superior
robustness and dynamic performance indexes with respect to
PID, especially if the controlled plants are themselves modeled
as fractional-order systems [15]. However, affordable realiza-
tions are required for low-cost implementation. To this aim,
the irrational transfer functions of FOC must be approximated
by rational transfer functions. Then, efficient, easy-to-use, and
convenient realization techniques are necessary. Indeed a good
trade-off between accuracy and efficiency would be a great
benefit for many industrial control loops using PID [14].

Regarding robust control systems, the seminal Bode’s idea is
to approximate an ideal loop gain ωc/sν as much as possible.
This transfer function includes an integrator of non-integer
(fractional) order ν and the gain crossover angular frequency
ωc [11], [12], [16], [17]. The solutions based on integration
of non-integer order reduce the sensitivity of the control
loop to gain variations and to parametric uncertainties and
achieve a better disturbance rejection. However, to be more
accepted in industry, the FOC must easily achieve good time-
or frequency-domain performance specifications and improve
the robustness guaranteed by PID-based solutions. On the
other hand, to obtain the same robustness of FOC, often more
complex high integer-order controllers are necessary.

Hence this paper analyzes the benefits and limits of a
new scheme with fractional-order PI (FOPI) controllers and
fractional-order filters. The control scheme is tested on real
electrical drives, that are important constituent parts of many
industrial control systems. There are many approaches to
design and then realize FOC (e.g., see [11], [12], [17]−[20]).
In this paper, a new methodology is proposed to combine: 1) a
loop-shaping strategy to design a feedback FOPI controller and
2) an input-output inversion technique to design an integer or
non-integer order set-point pre-filter. The main contributions
are the following ones:

1) extending the symmetrical optimum tuning method for
classical PI to the FOPI counterparts, i.e., extending a well-
known and widely used method to FOPI to make easier the
acceptance from the industrial drives area;

2) extending, in this context, the standard combination of
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the PI with a smoothing pre-filter to the combination of the
FOPI with an integer- or fractional-order pre-filter.

The proposed solution improves the control dynamic perfor-
mance and disturbance rejection. Then, it may help reducing
the issues depending on control efforts, energy consumption
to compensate disturbances. Moreover, the control architecture
implies a simple updating of the usually employed elements
(i.e., a FOPI replaces a PI controller and a fractional-order
filter replaces a smoothing filter). The limitations could be
determined by the practical implementation of the irrational
transfer functions. The orders of realization, however, are kept
low both in the controller and in the pre-filter.

The rest of the paper is organized as follows. Section II
provides background on the considered electrical drives. Sec-
tion III describes the approach to design the FOPI controller
and Section IV illustrates the design of set-point pre-filters.
Section V shows results of experimental tests. Finally, Section
VI draws the conclusions.

II. THE MODELED ELECTRICAL SYSTEMS

Many industrial loops employ permanent magnet DC-
motors or permanent magnet synchronous motor (PMSM)
drives. Hence, in this paper, these two systems are test beds for
measuring the performance obtained by the proposed control
architecture. This section briefly recalls the respective char-
acteristics, properties, and operation and presents sufficiently
accurate mathematical system models.

A. The DC-motor
The DC-motor armature voltage equations are given by:

va = Ra (1 + Ta p) ia + Kv Φ ωr (1)

where Ra, La, and Ta = La/Ra are the armature winding
resistance, inductance, and time constant, respectively; Φ
is the constant excitation flux due to permanent magnets
or independent field excitation winding; va, ia and ea are
the armature voltage, current, and back-electromotive force,
respectively; finally ωr is the rotor speed, Kv is the voltage
constant and p = d/dt. The mechanical equations are:

J p ωr = Ce −B ωr − CL and p θr = ωr (2)

where Ce = Kv Φ ia is the electromagnetic torque developed
by the motor, J is the inertia moment of the rotor and
connected load, B is the viscous friction coefficient, CL is
the external load torque, and θr is the rotor position. In the
Laplace-transform s-domain, the previous equations become:

Ia =
1

Ra

1 + Ta s
(Va −Kv ΦΩr)

Ωr =
1

J s + B
(Ce − CL) ⇒ Θr =

1
s(Js + B)

(Ce − CL).

(3)
Taking into account the static friction, the mechanical model

can be extended by including a pure time delay ϑ.

B. The PMSM Drive
The PMSM drives voltage equations in the d-q rotor

reference frame are [21]:

vs,d = Rs is,d + Ls,d
dis,d

dt
− ωr Ls,q is,q

vs,q = Rs is,q + Ls,q
dis,q

dt
+ ωr (Ls,d is,d + ΨPM ) (4)

where vs,d, vs,q , is,d and is,q are the stator voltage and current
vector d-q components, Rs is the resistance of each stator
phase, Ls,d and Ls,q are the d- and q-axis stator inductances,
ΨPM is the permanent magnet flux linked to the stator
windings, and ωr is the electrical motor speed.

The electromagnetic torque developed by the motor is:

Ce = 1.5 np [ΨPM is,q + (Ls,d − Ls,q) is,q is,d] (5)

where np is the number of pole pairs. In case of superficial
PMSM, magnetic isotropy leads to Ls,d = Ls,q . Then Ce does
not contain the term due to saliency (reluctance torque):

Ce = 1.5 np ΨPM is,q = Kc is,q. (6)

Equations (4) show the dynamic coupling between the two
axes. Independent control requires the coupling terms to be
compensated by injecting feed-forward decoupling signals:

vs,dcomp = −ωr Ls,q is,q

vs,qcomp = ωr (Ls,d is,d + ΨPM ). (7)

Thus the control system will give the reference signals of
d-q voltages as follows:

v∗s,d = vs,d+ωrLs,qis,q = Rsis,d + Ls,d
dis,d

dt

v∗s,q = vs,q−ωr(Ls,dis,d+ΨPM ) = Rsis,q + Ls,q
dis,q

dt
. (8)

In the Laplace-transform s-domain, (8) becomes:

V ∗
s,d = (Rs + Ls,d s) Is,d = Rs (1 + Td s) Is,d

V ∗
s,q = (Rs + Ls,q s) Is,q = Rs (1 + Tq s) Is,q (9)

where Td = Tq for superficial PMSM.
The PMSM is controlled by two inner loops for the d-

and q-axis current components, and an outer loop for rotor
speed (Fig. 1). The d-axis current reference signal is set equal
to zero, by the maximum torque per ampere criterion for
a superficial PMSM. Moreover, time delays associated with
several necessary operations are represented as first-order
systems with small time constants. If Tc is the sampling period,
delays are due to: signal sampling (Tc/2) and holding (Tc/2),
inverter operation (Tc/2), computation of the control algorithm
(Tc), and speed (τsp) and current (τL) measurement. Note
that kinv is the converter static gain. Fig. 2 shows the block
diagram for both the d- and q- axis current control loops.

The open-loop transfer function of both the current control
loops is simplified by considering an equivalent unitary feed-
back loop and by summing up all the small time constants
in τΣi = 5Tc/2 + τL. The current PI controller GPIisq

(s) =
Kisq(1 + τisqs)/τisqs is designed by applying the zero-pole
cancelation to the plant pole and the absolute value optimum
criterion [22]. The controller parameters are given by

τisq = Td = Tq and Kisq =
Rs τisq

2 kinv τΣi
(10)

and the closed-loop transfer function of the inner loop is

G0,isq(s) =
1

1− τLs

1
1− Tc

2 s

1
1 + 2 τΣi s + 2 τ2

Σi s2
(11)
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Fig. 1. Scheme of the vector controlled PMSM drive.

Fig. 2. Scheme of the q-axis current control loop.

where the first two factors respectively approximate (1+ τLs)
and (1 + Tcs/2). Namely, these last terms are originated by
the equivalent representation with unitary feedback to include
the time delays τL and Tc/2, respectively, in the forward path.

The block diagram implementing the speed control loop
is shown in Fig. 3. The open-loop transfer function for speed
control is simplified by neglecting the very small term 2 τ2

Σi s2

and by summing up all the small time constants τΣω =
44 Tc/2 + 44 Tc − Tc/2 − τL + 2 τΣi + τsp. Note that the
coefficients in the previous formula are determined by a
sampling in the outer speed loop different from the inner
current loop. Then the process transfer function is

Gp,ωr(s) =
Kc np

J s (1 + τΣω s)
. (12)

The usual choice for speed control is to tune an integer-
order PI controller GPIωr

(s) = Kωr(1 + τωr s)/τωr s by the
symmetrical optimum criterion [23], [24]. The method is based
on tuning the controller parameters as:

τωr = 4 τΣω and Kωr =
J

2 τΣω Kc np
. (13)

The word “symmetrical” refers to the obtained symmetry
of the compensated Bode diagram with respect to the gain
crossover. The word “optimum” refers to the higher ability of
disturbance rejection. Moreover, a smoothing first order filter
with a time constant in (4 τΣω, 4.8 τΣω) lowers the overshoot.

III. FRACTIONAL-ORDER PI CONTROLLER DESIGN

A. The Design Approach

The initial assumption is that both DC-motors and PMSM
drives are modeled as first-order systems with an integrator

Gp(s) =
K

s (1 + T s)
(14)

which is common when controlling position of DC-motors (see
(3)) and speed of PMSM drives (see (12)), respectively, and is
suitable for many industrial applications. In case of DC-motor
speed control, the plant transfer function is

Gp(s) =
K

1 + T s
. (15)

All the elements in the control loop introduce delays that are
associated with an equivalent time constant, which is indicated
by T and is obtained in Section II.

A fractional-order PI controller, FOPI for short, also named
PIν controller, is used. The integrator is of non-integer order
ν. A FOPI controller is chosen because it is the closest one to
the standard integer-order PI controller that is applied in most
industrial control loops. The FOPI transfer function is

Gc(s) = KP +
KI

sν
=

KI (1 + TI sν)
sν

(16)

where KP and KI are the proportional and integral gain,
respectively, and TI = KP /KI . Moreover, the non-integer
order is 1 < ν < 2, such that 1/sν = (1/s) · (1/sµ), with
µ = ν − 1 and 0 < µ < 1. Then, the integer order integrator
1/s rejects common torque disturbances on the motor input,
and the residual non-integer order integrator is given by the
operator 1/sµ. For practical implementation, the irrational
transfer function is approximated as shown in Section III-B.

The open-loop transfer function G(s) = Gc(s)Gp(s) is

G(s) =





a :
K KI (1 + TIs

ν)
sν+1 (1 + Ts)

with plant (14)

b :
K KI (1 + TIs

ν)
sν (1 + Ts)

with plant (15). (17)
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Fig. 3. Scheme of the speed control loop: the reference is given by the employed pre-filter, which is a smoothing one with an integer-order
PI, an integer- or fractional-order pre-filter with a FOPI.

The controller is designed to obtain superior robustness to
parametric variations and to achieve a nearly optimal feedback
system [25]. Let us first consider the robustness requirement.
To this aim, the non-integer integrator must lead to the fractal
robustness. In other words, the open-loop frequency response
(OLFR) must be characterized by a nearly flat phase diagram
and a constant slope of the magnitude diagram in a sufficiently
wide interval around the gain crossover frequency. To this
aim, the fractional integrator provides a constant phase plot of
−νπ/2 and a magnitude plot with slope of −20ν dB/decade.
Then replacing s = jω yields the OLFR G(jω) and the
phase function ∠G(jω) which must guarantee the robustness
specification by imposing the desired phase margin at the
crossover frequency, say ωc. This ensures a stable performance
despite parameter variations.

Regarding the optimality, consider the closed-loop fre-
quency response Gcl(jω) = 1/(1 + G−1(jω)). It is well-
known that a feedback system is optimal if and only if
the magnitude of the return difference |1 + G−1(jω)| is
unitary for all frequencies [26]. In this condition, indeed, a
perfect input/output tracking is achieved, whichever is the
input signal. Unfortunately, this condition cannot be satisfied
by real systems. Moreover, since |G(jω)| À 1 may lead to
instability, the OLFR is shaped around ωc so that the gain is
high at low frequency and rolls off at high frequency. Then,
the optimal requirement is only approximated in a specified
bandwidth, say ωB , in which it is desired to achieve a good
tracking performance.

To start with, consider the OLFR given by

G(jω) =





a :
K KI [1 + TI ων (C + j S)]
ων+1(−S + j C) (1 + jωT )

b :
K KI [1 + TI ων (C + j S)]
ων (C + j S) (1 + j ω T )

(18)

with C = cos(πν/2) and S = sin(πν/2), which can be ex-
pressed in terms of a normalized angular frequency ω = ω T :

G(jω) =





a :
K KI

[
1 + TI

(
ω
T

)ν
(C + j S)

]

(
ω
T

)ν+1
(−S + j C) (1 + j ω)

b :
K KI

[
1 + TI

(
ω
T

)ν
(C + j S)

]

(
ω
T

)ν
(C + j S) (1 + j ω)

. (19)

Then the magnitude of the OLFR is given by

|G(jω)| =





a :
K KI(
ω
T

)ν+1

√
1 + 2 TI

(
ω
T

)ν
C + T 2

I

(
ω
T

)2ν

1 + ω2

b :
K KI(

ω
T

)ν

√
1 + 2 TI

(
ω
T

)ν
C + T 2

I

(
ω
T

)2ν

1 + ω2

(20)
and the phase of the OLFR is given by

∠G(jω)=





a : ϕ1(ω)− ϕ2(ω)− π(ν + 1)
2

b : ϕ1(ω)− ϕ2(ω)− πν

2
(21)

where ϕ1(ω) = tan−1
(
TIS

(
ω
T

)ν
/(1 + TIC

(
ω
T

)ν
)
)

and
ϕ2(ω) = tan−1(ω).

Now, the design procedure begins with choosing the band-
width ωB = ωB T where input/output tracking is desired.
The value ωB is chosen higher than the plant bandwidth.
Moreover, as it will be shown below, the integral time constant
TI depends on ωB . So, TI > 0 must hold true for a stable
controller. More in details, ωB was maximized after a trial-
and-error procedure. It is also remarked that maximizing ωB

reduces the rise time of the closed-loop response, but it also
increases the crossover ωc, which could be shifted too much
with respect to a centered position in the range where the phase
diagram is flat or slowly changing. Then, a tradeoff must be
reached between performance and robustness, as it is usual.

Next, the crossover ωc is determined by a relation that is
commonly used for estimation: ωc ∈ [ωB/1.7, ωB/1.3] [27],
e.g., ωc = ωB/1.5, but this interval allows changing the value
of ωc. Obviously, other methods can be used to set ωc.

Hence, the phase margin specification is enforced as a
robustness measure. Since PM = π + ∠G(jωc), it holds

PM =





a : ϕ1(ωc)− ϕ2(ωc) +
π(1− ν)

2

b : ϕ1(ωc)− ϕ2(ωc) +
π(2− ν)

2
. (22)

Now, ϕ1(ωc)−ϕ2(ωc) = π/2 is set in case a or ϕ1(ωc)−
ϕ2(ωc) = 0 is set in case b. These settings introduce a
constraint on TI but give the advantage of a strict, closed-form,
and simple relation between the specified phase margin and the
required fractional order. Namely, in both cases a and b, the
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previous settings yield PM =π(2− ν)/2. If the specification
PMs is given, then the following relation is established

PMs =(2− ν)π/2 ⇔ ν =2− 2PMs/π. (23)

The introduced constraint yields a closed-form expression
that is used as tuning rule for the integral time constant:

TI =





a :
−1(

ωc

T

)ν

(S ωc + C)

b :
ωc(

ωc

T

)ν

(S − ωc C)
.

(24)

To set the remaining parameter KI , the condition
|G−1(jωc)|2 = 1 uses the gain crossover normalized angular
frequency ωc and leads to another closed-form expression that
is exploited as a rule for the integral gain:

KI =





a :
1
K

(
ωc

T

)ν+1
√√√√ 1 + ω2

c

1 + 2 TI

(
ωc

T

)ν
C + T 2

I

(
ωc

T

)2ν

b :
1
K

(
ωc

T

)ν
√√√√ 1 + ω2

c

1 + 2 TI

(
ωc

T

)ν
C + T 2

I

(
ωc

T

)2ν

(25)
in which TI is the value given by (24). The proportional gain
is KP = KI TI .

If the plant includes a pure time delay ϑ, i.e., Gp(s) of (14)
and (15) is replaced by Gp(s) e−ϑs, or if the control loop
is affected by a significant dead-time ϑ, the OLFR becomes
G(jω) e−jωϑ/T . For example, as already mentioned in Section
II-A, it is necessary to model the static friction effect of
the DC-motor. In this case, the design procedure is easily
extended. Namely, the magnitude does not change, whereas
the argument is modified as

∠G(jω) =





a : ϕ1(ω)− ϕ2(ω)− π (ν + 1)
2

− ω ϑ

T

b : ϕ1(ω)− ϕ2(ω)− π ν

2
− ω ϑ

T
(26)

then the phase margin becomes

PM =





a : ϕ1(ωc)− ϕ2(ωc) +
π (1− ν)

2
− ωc ϑ

T

b : ϕ1(ωc)− ϕ2(ωc) +
π (2− ν)

2
− ωc ϑ

T
. (27)

In this case, the settings are ϕ1(ωc)− ϕ2(ωc)− ωcϑ/T =
π/2 in case a and ϕ1(ωc)−ϕ2(ωc)− ωcϑ/T = 0 in case b.
The formulas for TI are updated as follows:

TI =





a :
ωcγ − 1(

ωc

T

)ν

[(γ + ωc)S + (1− γωc)C]

b :
ωc + γ(

ωc

T

)ν

[(1− γωc)S − (ωc + γ)C]
(28)

where γ = tan (ωcϑ/T ). Note that (28) coincides with (24)
when ϑ → 0. Since the magnitude keeps unchanged, the

crossover specification sets the integral gain by the same rule
(25).

B. Realization of the FOPI Controller
The final step in the synthesis procedure is to realize the

FOPI transfer function. Namely, in (16) the irrational operator
sν requires an approximation as rational transfer function. Lit-
erature discloses several methods [11], [13], [28]−[30]. Here,
a methodology is employed to a priori guarantee that zeros and
poles of the rational transfer function are interlaced with each
other in the negative real half-axis of the s-plane [31], [32].
This method warrants stability and minimum-phase properties,
that are important for control purpose. Finally, it is based on
closed-form formulas that can be easily applied to obtain the
coefficients of the rational transfer function, depending on ν
and the number N of zero-pole pairs in the approximation. The
greater is N , the better is the approximation of sν , but also the
more complex and memory-demanding is the implementation.
More precisely, a continued fractions expansion is truncated
and converted to a rational transfer function

sλ ≈ αN,0(λ) sN + αN,1(λ) sN−1 + · · ·+ αN,N (λ)
βN,0(λ) sN + βN,1(λ) sN−1 + · · ·+ βN,N (λ)

(29)

where 0 < λ < 1, N ≥ 1 is the number of zero-pole
interlaced pairs and the coefficients αN,j(λ) = βN,N−j(λ),
for j = 0, . . . , N , depend on λ. The coefficients can be
computed very easily and rapidly by a closed-form formula:

αN,j(λ) = (−1)j

(
N

j

)
(λ + j + 1)(N−j)(λ−N)(j) (30)

in which (λ+ j +1)(N−j) =(λ+ j +1)(λ+ j +2) · · · (λ+N)
and (λ − N)(j) = (λ − N)(λ − N + 1) · · · (λ − N + j − 1),
with (λ + N + 1)(0) = (λ − N)(0) = 1. Simple algebraic
manipulations lead to [33], [34]:

αN,j = C(N, j) (j + 1 + λ)(N−j) (N − λ)(j)∗ (31)

βN,j = C(N, j) (N − j + 1 + λ)(j) (N − λ)(N−j)∗ (32)

where (N −λ)(j)∗ := (N −λ)(N −λ−1) · · · (N −λ− j +1)
and (N − λ)(N−j)∗ := (N − λ)(N − λ − 1) · · · (j − λ + 1)
are falling factorials, with (N − λ)(0)∗ = 1. Similar methods
and considerations can be applied for digital realizations
[35]−[38].

IV. SET-POINT PRE-FILTER DESIGN

To improve the set-point following performance, the design
is completed by adding a suitable set-point pre-filter. The filter
F (s) is designed by the method recently proposed in [39],
which is briefly revisited here for the reader’s convenience and
suitably adapted for the considered problem, where a feedback
filter has to be taken into account.

The control loop includes the designed fractional-order PI
controller, Gc(s), a linear time-invariant commensurate strictly
proper minimum-phase system, that can be of integer or non-
integer order (a fractional system), and a possible feedback
filter R(s). The set-point pre-filter F (s) aims at obtaining,
independently from Gc(s), an output transition as close as
possible to a desired output function, that is a smooth and
monotonic transition from an initial steady-state value to a new
one in a finite time interval τ . The first step is to employ the
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technique in [40] to synthesize a suitable command signal r(t)
that provides a perfect tracking of the desired output function.
The second step is to find an integer or non-integer (fractional)
pre-filter F (s) that is able to provide a step response as close
as possible, in terms of 2-norm, to the synthesized r(t).

The synthesis of r(t) is as follows [40]. The desired output
signal ȳ(t; τ) was proposed in [41]. It can be represented,
together with its fractional differintegral, as in (33)

Dαȳ(t; τ)

=





0, t < 0

(2n + 1)!
n!τ2n+1

n∑
r=0

(−1)n−rτ r(2n− r)! t2n−r+1−α

r!(n− r)!Γ(2n− r + 2− α)
t ≤ τ

(2n + 1)!
n!τ2n+1

n∑
r=0

(−1)n−rτ r(2n− r)!
r!(n− r)!

×

 t2n−r+1−α

Γ(2n− r + 2− α)
−

n−r∑

j=0

τ jt2n−r+1−j−α

j!Γ(2n− r + 2− j − α)




t > τ
(33)

where −∞ < α ≤ n+1. The previous τ -parameterized signal
exhibits a smooth monotonic transition from 0 to 1 in a finite
time interval τ and its degree of regularity is Cn.

To compute a command signal r(t) such that a perfect
tracking of the τ -parameterized output function ȳ(t; τ) is
obtained, the open-loop transfer function G(s)=Gc(s)Gp(s)
is first considered. The input-output technique in [40] is
straightforwardly applied to G(s) (or to the delay-free part
Ḡ of G(s) = Ḡ(s)e−ϑs if there is a pure time delay ϑ in the
loop), yielding the signal

rol(t; τ) = γn−mDρȳ(t; τ)+γn−m−1D
ρ−νȳ(t; τ)

+· · ·+γ1D
νȳ(t; τ)+γ0ȳ(t; τ)

+
∫ t

0

η0(t− ξ)ȳ(ξ; τ)dξ (34)

where ρ is the relative order of the open-loop transfer function
and η0(t) is its zero order dynamics. Then, a correction term
rc(t; τ) = L−1[R(s)Ȳ (s; τ)e−ϑs] must be considered, so that
the ideal command signal is

r(t; τ) = rol(t; τ) + rc(t; τ). (35)

Details on the computation of (35), together with the proof
of existence of the command signal, can be found in [40].

A. Transition Polynomial-Based Filter

The first method proposed for designing the set-point pre-
filter F (s) relies on the design of a transfer function whose
step response is as close as possible (in terms of 2-norm)
to the transition polynomial. The following transfer function
structure is employed

F̃ (s) =
1

o∑
i=1

aisi + 1
(36)

where o = n + 1, so that the pre-filter step response exhibits
the same degree of regularity of the transition polynomial. By
sampling at each ∆t the transition polynomial and its deriva-
tives obtained via (33), the following matrices are created

A =




Doȳ(0; τ) · · · D1ȳ(0; τ)
...

...
Doȳ(t−∆t; τ) · · · D1ȳ(t−∆t; τ)
Doȳ(t; τ) · · · D1ȳ(t; τ)
Doȳ(t + ∆t; τ) · · · D1ȳ(t + ∆t; τ)

...
. . .

...
Doȳ(3τ ; τ) · · · D1ȳ(3τ ; τ)




(37)

B =




1(0)− ȳ(0; τ)
...

1(t−∆t)− ȳ(t−∆t; τ)
1(t)− ȳ(t; τ)
1(t + ∆t)− ȳ(t + ∆t; τ)

...
1(3τ)− ȳ(3τ ; τ)




. (38)

Finally, the coefficients vector Θ = [ao · · · a1]T is obtained
as Θ = AT (AAT )−1B. Now, using (36) and the process
dynamics, the set-point pre-filter is designed as

F (s) = F̃ (s)(R(s)e−ϑs + Ḡ−1(s)) (39)

where Ḡ−1(s) is obtained straightforwardly by considering
that Ḡ(s) is the delay free-part of the process. Moreover,
it is worth stressing that, given the properness of F̃ (s), the
overall filter F (s) is always proper. Note that, in this case, the
obtained filter is fractional. If a unitary-feedback loop is con-
sidered with no time delay, then F (s) = F̃ (s)(1 + Ḡ−1(s)).

B. Command Signal Filter

The second methodology for designing the set-point pre-
filter F (s) is based on the direct design of an integer order pre-
filter whose step response is the closest, in terms of 2-norm,
to the command signal (35). The proposed filter structure is

F (s) =

o−p∑
j=1

bjs
j + 1

o∑
i=1

aisi + µ
(40)

where µ is the closed-loop dc-gain, p = n− [ρG], with ρG the
relative order of the open-loop transfer function, and o ∈ R
is a design parameter. In this case, the identification would
require o−p differentiation of the step signal. To overcome this
problem, both the step and the command signals are integrated
o − p times yielding (41) – (42), shown at the bottom of the
next page.

Finally, the coefficients vector is defined as Θ =
[ao · · · a1 bo−p · · · b1]T and is obtained by the same formula
Θ = AT (AAT )−1B.
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V. EXPERIMENTAL VALIDATION

In this section, the proposed control scheme combining a
feedback FOPI controller and a set-point pre-filter is tested.
It is also compared with an industrial solution, combining
a PI controller, which is tuned by the classical symmetrical
optimum method, and a smoothing pre-filter. The tests are
done by simulation of identified input/output models and by
experiments performed on real equipment. Two different test
beds are considered.

The first one is a 370 W brushed DC-servomotor (AMIRA
DR300), that is driven by a device equipped with a power
supply, a servo amplifier, a signal adaption unit, and a mod-
ule for measuring outputs. PC-commands to the device are
processed and sent by an interface board (a floating point
250 Mhz Motorola PPC dSPACE board DS1104). Then, all
control functions can be generated directly by the PC which
integrates the board. A 1024 pulses digital incremental encoder
is mounted at the motor free drive-shaft to measure rotor
position or speed. Feedback from the encoder arrives the
board processor, that computes and sends the control action
to the power unit. The board uses 16 bit A/D-D/A converters
to process signals and commands, generates the position and
speed references, applies the Euler’s discretization rule and
runs the controllers in discrete time. The PI or FOPI controllers
and the set-point pre-filters are part of a Simulink block
diagram the board uses to directly control the real plant or
its I/O model. The board compiles the Simulink scheme,

generates a real-time executable code, and downloads it to
the board memory. Fig. 4 shows all the experimental set-up.
The plant parameters are identified by a frequency-domain
technique as: K = 0.9843, T = 0.0651 s, ϑ = 0.02 s. Then,
formulas (28) and (25) are used to design the FOPI controller.

Fig. 4. Experimental set-up for controlling the DC-servomotor.

The second test bed system is a PMSM drive (SIEMENS
series 1FK7 CT) with the characteristics and parameters shown
in Table I. This system is tested by the experimental set-
up in Fig. 5. The diagram in Fig. 1 accurately represents
the controlled system. If Tc = 0.1 ms, τsp = 6 · 10−6 ms,
and τL = 0.7 ms, then τΣi = 0.95 ms and the Absolute
Value Optimum Criterion settings provide τisq =0.0114 s and
Kisq =6.5253 for the current PI controller. Moreover, for the

A =




Dpr(0; τ) · · · D−o+p+1r(0; τ) · · · −1(0) · · · − 1
(o− p + 1)!

0(o−p+1)

...
. . .

...
. . .

...
. . .

...

Dpr(t−∆t; τ) · · · D−o+p+1r(t−∆t; τ) · · · −1(t−∆t) · · · − 1
(o− p + 1)!

(t−∆t)(o−p+1)

Dpr(t; τ) · · · D−o+p+1r(t; τ) · · · −1(t) · · · − 1
(o− p + 1)!

t(o−p+1)

Dpr(t + ∆t; τ) · · · D−o+p+1r(t + ∆t; τ) · · · −1(t + ∆t) · · · − 1
(o− p + 1)!

(t + ∆t)(o−p+1)

...
. . .

...
. . .

...
. . .

...

Dpr(3τ ; τ) · · · D−o+p+1r(3τ ; τ) · · · −1(3τ) · · · − 1
(o− p + 1)!

(3τ)(o−p+1)




(41)

B =




1
(o− p)!

0(o−p) − µD−o+pr(0; τ)

...
1

(o− p)!
(t−∆t)(o−p) − µD−o+pr(t−∆t; τ)

1
(o− p)!

t(o−p) − µD−o+pr(t; τ)

1
(o− p)!

(t + ∆t)(o−p) − µD−o+pr(t + ∆t; τ)

...
1

(o− p)!
(3τ)(o−p) − µD−o+pr(3τ ; τ)




(42)
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speed loop, the I/O plant model parameters in (12) are
K = Kcnp/J = 728.5343 and T = τΣω = 0.0078 s. Then,
for the PI designed with the Symmetrical Optimum Criterion,
τωr = 0.0310 s and Kωr = 0.0886. Whereas, formulas (24)
and (25) (case a) are used to design the FOPI controller.

Fig. 5. Experimental set-up for controlling the PMSM drive.

A. First Case: Control of DC-motor

The control approach is applied both to the position and
speed of the DC-motor. The tests are performed both in
simulation and by experiments. Simulation employs the mod-
els Gp(s) = K e−ϑ s/(s (1 + T s)) for position control and
Gp(s) = K e−ϑ s/(1 + T s) for speed control. Experiments
are made by directly applying the controllers to the real system
through the dSpace board.

As basis for comparison, a PI controller, that is tuned by
the symmetrical optimum method (for position control) or
by the absolute value optimum criterion (for speed control)
with a smoothing pre-filter, is applied. On the other side, the
FOPI controller is designed by (28) and (25). For robustness
specifications, the fractional orders ν = 1.4, 1.5, 1.6 are used

as good trade-off values respectively providing the phase
margins 54◦, 45◦, 36◦ by (23). Moreover, the performance
specifications are ωc = 0.5, for position control, and ωc = 1.8,
for speed control. The designed values of the controller gains
are shown in Table II. All the FOPI controllers are realized by
rational transfer functions with N = 5 zero-pole pairs. Finally,
the integer-order and fractional-order pre-filters are designed
by the method in Section IV.

TABLE I
PMSM NAME PLATE DATA AND PARAMETERS

Description Value (Measure unit)
Nominal power 2.14 (KW)
Nominal current 4.40 (A)
Nominal torque 6.80 (Nm)

Power factor (cos(ϕ)) 0.80
Frequency 200 (Hz)

Nominal speed 3000 (rpm)
No. of pole pairs 4

Stator resistance: Rs 1.09 (Ω)
d- & q- axis inductances: Lsd, Lsq 12.4, 12.4 (mH)

Inertia moment: J 0.006 (Kg m2)
Viscous friction coefficient: B 0 (0.05) (Nms)

Permanent magnets flux: ΨPM 0.1821 (Wb)
Torque constant: Kc 1.0928 (Nm/A)

Fig. 6 shows the reference step responses both for position
control (above) and for speed control (below), corresponding
to the selected values of ν. Moreover, the response to speed
reversal and to load application is shown in the same figure.
The responses obtained with PI control are green, the ones
obtained with FOPI control and an integer-order pre-filter are
blue, and the ones with FOPI control and a fractional-order

Fig. 6. PI and FOPI control of DC-motor position and speed: PI with smoothing filter (green), FOPI with integer-order (blue) or fractional-
order filters (red).
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Fig. 7. Control of the speed of a PMSM by FOPI controllers and integer filters. (a) General view. (b) Zoom in the no-load start period. (c)
Zoom in the full load operational period. (d) Zoom in the period after full load speed reversal.

pre-filter are red. Only experimental results are shown, namely
simulation matches the experiments to a large extent.

TABLE II
FOPI CONTROLLER GAINS FOR DC-MOTOR AND PMSM DRIVES

DC position control DC speed control PMSM Speed control
ν KP KI KP KI KP KI

1.4 8.7936 2.0706 2.5831 148.3770 0.1314 5.9296
1.5 10.0609 43.9481 2.9554 289.8783 0.2004 29.7201
1.6 12.1033 123.7699 3.5553 563.3830 0.3616 119.5887

It is remarkable that the fractional pre-filters almost cancel
the oscillations. The improvement is even more relevant in
the case of speed control. The overshoot is greatly reduced
and the settling and rise times are also reduced with respect
to the PI-controlled system. Disturbance is better rejected by
the FOPI with fractional filters that show a fast settling. The
performance obtained by PI or FOPI when speed is reverted
is comparable. This last result is due to the opposite action of
the brushes when the sense of rotation is not the preferred one.
Regarding the effect of changes in ν, the oscillations increase
with ν (the phase margin decreases according to (23)).

B. Second Case: Control of PMSM Drive

Now the PMSM speed is controlled. The model is given by
(14). Then, (24) and (25) are used for design purpose. Again,
the orders ν =1.4, 1.5, 1.6 are chosen. Moreover, the desired
performance is specified by the maximum bandwidth ωB that

allows TI > 0: by ωc = ωB/1.7, the necessary values are
ωc = 0.6 (ωB = 1.02) for ν = 1.4, ωc = 0.8 (ωB = 1.36) for
ν = 1.5, and ωc = 1.2 (ωB = 2.04) for ν = 1.6. The values
of the controllers’ gains are shown in Table II and realization
is by N =5 zero-pole pairs.

To execute a suitable and intense test to verify performance
and robustness, a reference step input of−150 rad/s (half of the
rated speed) is first applied at t=0.225 s. Then, an operation
period follows in which a load disturbance of 2.2 Nm is
superposed at t=1.253 s. The motion is reverted at t=2.268 s.
Finally, the load is removed at t=3.361s. The control scheme
combining a FOPI controller and an integer/fractional pre-
filter is compared with the traditional scheme that combines a
smoothing pre-filter and a PI controller tuned by the symmet-
rical optimum method [23], [24]. Note that, in both schemes,
the internal current loop includes the PI controller tuned by
the absolute value optimum criterion. Figs. 7(a) and 8(a) show
a general view of the entire test duration with integer filters
and fractional filters, respectively.

First of all, the performance analysis of the reference step
response without load applied, at the start of the operational
test (see zoom in Figs. 7(b) and 8(b), is considered. The
FOPI controllers provide a reasonable fast response and small
overshoot with respect to the PI controller, especially with
ν =1.6 and with fractional filters on the set-point (Fig. 8(b)).

In all the cases employing integer or fractional filters,
improvements are obtained. Namely, the responses provided
by the PI controller with a smoothing filter show lower rise
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Fig. 8. Control of the speed of a PMSM by FOPI controllers and fractional filters. (a) General view. (b) Zoom in the no-load start period.
(c) Zoom in the full load operational period. (d) Zoom in the period after full load speed reversal.

Fig. 9. Control variable when applying FOPI controllers and fractional filters. (a) General view. (b) Zoom in the no-load start period. (c)
Zoom in the full load operational period. (d) Zoom in the period after full load speed reversal.
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times, but they have much more oscillations (see
Figs. 7(b)−7(c) and 8(b)−8(c)) and settle after slower
transients.

In particular, using FOPI and integer filters reduces over-
shoots and undershoots with respect to using a standard PI
with a smoothing pre-filter (see zoom in Fig. 7(b)), especially
if ν is increased (the best response is with ν = 1.6). The
settling time is also reduced. Similar considerations hold true
if fractional filters are employed (see zoom in Fig. 8(b)). The
oscillations are much reduced with respect to the PI controller
and a slightly faster response is obtained also with respect to
integer filters.

Now, consider the ability to reject disturbances, then see the
intermediate test period, which is better shown by Figs. 7(c)
and 8(c). The zoom highlights that FOPI controllers achieve
a better rejection of the applied load, especially if ν = 1.6.
Namely, the amplitude of the undershoot is much lower and the
response settles in almost the same time as with a PI controller.
To synthesize, the FOPI controller is beneficial for disturbance
rejection which is very important in industrial applications.

Finally, Figs. 7(d) and 8(d) exhibit the last period in which
the motion is reverted. Also in this condition, a FOPI controller
with ν = 1.6 reduces oscillations and obtains a fast settlement.

To complete the performance analysis, the control variable
can be examined as well, for ν = 1.4, 1.5, 1.6. Figs. 9(a) –
9(d) show the results with fractional filters. An improvement
is obtained with respect to the PI with a smoothing filter.
Namely, see the reduction in oscillations and a faster response,
which occurs especially after the reference input is applied (see
Fig. 9(b)) and after the motion is reverted (see Fig. 9(d)). In any
case, the speed response obtained by the PI with a smoothing
filter is more rough, not completely clean and sensitive to
disturbances (see Figs. 7 – 8).

VI. CONCLUSIONS

This paper proposes a new control scheme of DC-motor or
PMSM drives, which are modeled as first-order systems plus a
time delay. The scheme employs a fractional-order PI feedback
controller and a set-point pre-filter, that can be of integer
or fractional order. The feedback controller design is based
on systematic closed-form expressions. The formulas allow
easy and fast computation both of the controller parameters
satisfying dynamic performance and robustness specifications
(see (24) and (25) or (28)) and of the rational transfer function
realization (see (29), (31), (32)). The pre-filter is designed by
a dynamic inversion method that allows reducing overshoot
to a large extent. The proposed scheme is compared with
a classical one based on a standard PI controller combined
with a smoothing pre-filter. The PI controller is tuned by the
symmetrical optimum method, which is frequently employed
in industrial cases. An extensive experimental (and simulation)
analysis has shown the superior performance of the novel
scheme and its potential impact.
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Maximum Power Point Tracking With Fractional
Order High Pass Filter for Proton Exchange

Membrane Fuel Cell
Jianxin Liu, Tiebiao Zhao, and YangQuan Chen

Abstract—Proton exchange membrane fuel cell (PEMFC) is
widely recognized as a potentially renewable and green energy
source based on hydrogen. Maximum power point tracking
(MPPT) is one of the most important working conditions to
be considered. In order to improve the performance such as
convergence and robustness under disturbance and uncertainty,
a fractional order high pass filter (FOHPF) is applied for the
MPPT controller design based on the traditional extremum
seeking control (ESC). The controller is designed with integer-
order integrator (IO-I) and low pass filter (IO-LPF) together with
fractional order high pass filter (FOHPF), by substituting the
normal HPF in the original ESC system. With this FOHPF ESC,
better convergence and smoother performance are achieved while
maintaining the robust specifications. First, tracking stability
is discussed under the commensurate-order condition. Then,
simulation results are included to validate the proposed new
FOHPF ESC scheme under disturbance. Finally, comparison
results between FOHPF ESC and the traditional ESC method
are also provided.

Index Terms—Extremum seeking control (ESC), fractional
order high pass filter (FOHPF), fuel cell, fractional controller
stability, maximum power point tracking (MPPT).

I. INTRODUCTION

PROBLEMS Problems about energy crisis and environ-
ment pollution related to fossil fuel are intensively studied

all over the world [1]−[3]. Energy saving and looking for
new-generation reproductive energy source are considered
helpful for attenuating these problems. Nuclear energy, solar
cell, wind, fuel cell, and hydro power are alternative green
power sources [4],[5]. Recently, the fuel cell (FC) has gained
attention as a new power source because of higher energy
density than fossil fuels. Moreover, the FC is eco-friendly
because only water and heat are produced as by-products [6].
Hydrogen fuel cell is a kind of power source to gain electric
power from chemical one under control, which is considered
as an emerging renewable green power source. However, due
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to its low reaction rate and difficulty of hydrogen availabil-
ity, many different fuel cell types have been tried, such as
alkaline (AFC), proton exchange membrane (PEMFC), direct
methanol (DMFC), phosphoric acid (PAFC), molten carbonate
(MCFC), solid oxide (SOFC) [7]. Among various types of
FC, the PEMFC is suitable for some special applications
such as unmanned aerial vehicles (UAVs) because of high
loading capability due to relatively lighter weight, and ease
of miniaturization, low operating temperature at which ion
conductivity is adequate to generate high power and use of
solid-state electrolyte.

Since the cost of PEMFC is a little expensive now, so, in
many cases, efficiency must be the most important factor taken
into consideration when designing a PEMFC and the related
controller. However, sometimes, how to extract the maximum
power fast and stably should be placed on the first position.
For a typical application scenario, a working UAV should
have four stages: taking-off, climbing, cruising and landing, as
shown in Fig. 1. It is well known that taking off and landing
will draw more power from the energy system, requiring the
FC system to work at maximum power point [8]. However, it
is also known that the power output of PEMFC is dependent
not only on internal chemical reaction but also on external load
impedance [9]. And the operating point is the intersection of
PEMFC’s characteristic P-I curve and the load line, as shown
in Fig. 2. If the current drawn from the cell is tuned to the
maximum power point with value of I∗, then the cell works
under the maximum power point P ∗ which is an equilibrium

Fig. 1. Drone trajectory as an example during implementing a task.
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Fig. 2. Typical polarization curve and the maximum power point.

point. It is worthy to point out that the polarization curve is
nonlinear and time-variant. So the setpoint is inclined to shift
when the working parameters are changed, and the MPPT for
PEMFC is in fact a dynamic optimization problem thus control
schemes with capability of more robustness via adaptation are
needed.

The problem of extracting the maximum power from re-
newable energy sources was first done for processes like
photovoltaic panels (PV) and wind turbines [10]. Up to now,
extensive research work has been done on photovoltaic power
applications, such as the perturbation and observe (P&O)
method, the conductance incremental method, the parasitic
capacitance method, the short current method, model-based
methods, and artificial intelligence methods. But relatively few
researches on fuel cell MPPT control have been reported.
Among them the P&O algorithm is by far the most commonly
used in practice because of its ease of implementation [11].
However, due to the limitation that P&O exhibits erratic
and unstable behavior under rapidly changing environments,
thus the algorithm is unsuitable for the job of tracking the
frequently moving MPP.

Extremum seeking is an adaptive nonlinear control method
which has been used since 1950s, but its theoretical foun-
dations for its stability and performance were established
very late by [12]. Yin et al. discussed a class of nonlinear
systems controlled by fractional order slide-mode extremum
seeking control strategy and succeeded in lighting control
applications [13], [14]. Bizon applied an ESC scheme to
PEMFC, by setting the dither amplitude to be proportional
with the magnitude of first harmonics of the processed FC
power [15]. Fig. 3 is the simplest peak searching scheme.
The higher order extremum seeking (hoES) control scheme
is based on the classical control extremum seeking scheme,
which is augmented with a low pass filter (LPF) and/or a
high pass filter (HPF), as shown in Fig. 4. Usually, the HPF is
used to eliminate the slowly changing DC component from
the signal P which is demodulated by multiplication with
sinusoidal signals. The integrator could attenuate the high-
frequency periodical signal around zero. Finally, the gradient
of the output power is calculated.

In Fig. 4, if P is the output power of the controlled fuel
cell with current I , the DC component of P is attenuated
by high pass filter (HPF) and the left component will be
in phase or out of phase with the perturbation signal if the
current is less than or greater than the optimum value. So,
after being modulated using the multiplication operation, the
DC component extracted by the low pass filter (LPF) is greater
or less than zero. Finally, the gradient of I is used to force
the power to converge to the maximum point.

So far, different algorithms have been proposed for fuel cell
MPP tracking. Zhong et al., reported a first attempt to track
MPP by an extremum seeking algorithm [9]. Bizon proposed
an architecture of hybrid power source for vehicle application
operating at MPP of the fuel cell using extremum seeking
[15]. Dargahi et al. proposed MPP tracking for fuel cell in
fuel cell/battery hybrid power systems using perturbation and
observe (P&O) algorithm [16].

The main contribution of this work lies in two aspects. One
is discussing the influence of fractional order integrator and
high pass filter (HPF) on the stability of maximum power
point tracking (MPPT) based on extremum seeking control
(ESC). Another one is demonstrating the response smoothness
of ESC with fractional order HPF (FOHPF) when applied to
PEMFC. The objective is to improve PEMFC performance
and robustness under disturbance, through a fractional order
control scheme instead of an integer order one.

The paper is organized as follows. The preliminaries of
stability of fractional order transfer functions are discussed

Fig. 3. The simplest peak searching scheme.
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Fig. 4. General ESC control scheme.

in Section II; and in Section III, an adaptive MPPT controller
is designed. In Section IV extremum seeking is applied to the
fuel cell power system and simulation results are discussed in
detail.

II. STABILITY OF FRACTIONAL ORDER
TRANSFER FUNCTION (TF)

Usually, linear time invariant (LTI) fractional order (FO)
system can be described by fractional order differential equa-
tion (FODE) of the form
(anDαn + an−1D

αn−1 + · · ·+ a1D
α1 + a0)y(t)

= (bmDβm + bm−1D
βm−1 + · · ·+ b1D

β1 + b0)x(t) (1)

where Dγ =0 Dγ
t ; y(t) and x(t) represent the system out-

put and input signals, respectively; ai (i = 0, . . . , n) and
bj (j = 0, . . . , m) are constants; αi (i = 0, . . . , n) and
βj (j = 0, . . . , m) are arbitrary real numbers.

Under zero initial conditions, the transfer function of frac-
tional order systems can be obtained as

G(s)=
Y (s)
X(s)

=
bmsβm + bm−1s

βm−1 + · · ·+ b1s
β1 + b0

ansαn + an−1sαn−1 + · · ·+ a1sα1 + a0

=
Num(s)
Den(s)

. (2)

Provided that s1/ν is the greatest common factor of
Num(s) and Den(s), G(s) can be transformed to integer
order transfer function in w-domain with w = s1/ν , which is
the so called commensurate-order system.

With this transformation, the Riemann surface consists of
Riemann sheets and the principal Riemann sheet (PRS) located
in the area

−π

ν
< arg(w) <

π

ν
. (3)

The stability condition is expressed as:

|arg(wi)| > 1
ν
· π

2
(4)

where wi is the root of the characteristic polynomial in w-
domain.

III. DESIGN AND STABILITY ANALYSIS OF MPPT
CONTROLLER BASED ON ESC

A. Fractional Order Average Linear Model
The averaged linearized model relating the optimized point

and the error signal for integer order ESC (IO-ESC) in Fig. 4
is [17]:

θ̃

θ∗
=

1
1 + L(s)

(5)

where

L(s) =
ka2

2s
(

s + jω

s + jω + ωh
+

s− jω

s− jω + ωh
). (6)

So,

θ̃

θ∗
=

1
1 + L(s)

=
s(s2+2ωhs+ω2

h+ω2)
s3+(2ωh+ka2)s2+(ω2

h+ω2+ka2ωh)s+ka2ω2
.

(7)
By replacing s with sq, Malek deduced the averaged lin-

earized model for the FO-ESC as shown in Fig. 5 [18]:

θ̃

θ∗
=

1
1 + L(λ)

=
λ(λ2+2ωhλ+ω2

h+ω2)
λ3+(2ωh+ka2)λ2+(ω2

h+ω2+ka2ωh)λ+ka2ω2

(8)
where λ = sq.

When ka2 is small relative to ω, the IO-ESC transfer
function is asymptotically stable for all k > 0, with a pair
of closed-loop poles making the system lightly damped. On
the other hand, in the FO-ESC model, there is no pole
close to the stability boundaries. However, the problem of
stability in the cases of the integrator, LPF and HPF with
different order value q for sq is necessary to be discussed
further. Combinations of integrator, LPF, HPF with or without
fractional order operation are also valuable to discuss. Without
loss of generality, the case considering only an integrator or
a HPF utilizing fractional order operation without a low-pass
filter (LPF) will be discussed first, as shown in Fig. 6.

B. FO-ESC Model With Different Fractional Order of Inte-
grator and HPF

In Fig. 6, the ESC system can be modeled as:

P (t) = f∗(t) + (θ(t)− θ∗(t)) (9)

θ0(t) = a sin(ωt), (10)

θ(t) = θ0(t) +
k

sα
[P3(t)] (11)

θ̃(t) = θ∗ − θ(t) + θ0(t) (12)
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Fig. 5. Fractional order ESC (FO-ESC) control scheme.

Fig. 6. Fractional order ESC (FO-ESC) without LPF.

P3(t) = b sin(ωt)
sβ

sβ + ωh
[P (t)] (13)

where G(s)[u(t)] means a time-domain signal obtained as an
output of system G(s) using u(t) as the input signal [17], and
θ(t) represents input current I of fuel cell and y(t) represents
the output power P . Therefore,

θ̃ = θ∗ − k

sα
[b sin(ωt)

sβ

sβ + ωh
[P ]]

= θ∗ − k

sα
[b sin(ωt)

sβ

sβ + ωh
[f∗ + (θ − θ∗)2]] (14)

θ̃ +
2kab

sα
[sin(ωt)

sβ

sβ + ωh
[θ̃ sin(ωt)]] = θ∗ + ε (15)

where ε is the dynamic response part attenuating to zero.

C. ESC With Fractional Order Integrator
Considering the case of a fractional order integrator working

with an integer order HPF in ESC, which means 1/sα (0 <
α < 1) is adopted as an integrator, the transfer function is:

θ̃

θ∗
=

1

1+L(s)

=
sα(s2+2ωhs+ω2

h+ω2)

sα+2+kabs2+2ωhsα+1 + (ω2
h+ω2)sα+kabωhs+kabω2

.

(16)

And the roots of the characteristic equation determine this
ESC system’s stability.

D(s)= sα+2 + kabs2 + 2ωhsα+1 + (ω2
h + ω2)sα

+ kabωhs + kabω2 = 0. (17)

D. ESC With Fractional Order HPF (FO-HPF)
Considering the case of a FO-HPF working with an integer

order integrator in ESC, here, the FO-HPF is defined as

GFO−HPF(s) =
sβ

sβ + ωh
, 0 < β < 1 (18)

Finally, the transfer function can be obtained as

θ̃

θ∗
=

1

1 + L(s)

=
s(s2β +2ωhs2β +ω2

h+ω2)

s(s2β +2ωhsβ +ω2
h+ω2)+kab(s2β +2ωhsβ +ω2

h+ω2)
.

(19)

E. Approximation of Fractional Order Integrator 1/sα

Since FO-HPF can be represented as a closed-loop with
fractional order integrator as shown in Fig. 7, therefore, the
main calculation in the situation of fractional order integrator
and FO-HPF is related to the approximation of fractional order
integrator 1/sα with integer order rational polynomial. The
MATLAB Toolbox Ninteger [19] is chosen to approximate
the fractional order integrator 1/sα.
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Fig. 7. MPPT controller with FO-HPF in Simulink.

Fig. 8. Fuel cell with MPPT controller in Simulink.

IV. SIMULATION RESULTS AND DISCUSSIONS

The focus of this paper is to discuss the role of frac-
tional order controller in ESC. Here, the fuel cell model
in MATLAB/Simulink as shown in Fig. 8 is adopted. The
fuel cell model is a 6 kW & 45 V PEMFC stack from the
SimPowerSystem Toolbox in MATLAB, which is fueled with
hydrogen (FuelFr value) and air at nominal flow rate of 50 lpm
(liters per minute) and 300 lpm, respectively. As a comparison,
the model in [20] is used as the reference. The simulation
models of the ESC controller with FO-HPF used in Simulink
are shown in Fig. 4. The MPP here for comparison relates to
the case when the FuelFr value is given as 20 lpm, without
loss of generality. Some key parameters are given in Table I.

TABLE I
SIMULATION PARAMETERS

Parameters Formula Value

Frequency f1(Hz) 100
Cutoff radian frequency of HPF ωh 62.8

Perturbation radian frequency 628
Activation area A (cm2) 56

Loop gain K1 4 ∗ f1 400
Sine gain K2 10

Vm 45
Gain k K1/Vm 8.9

Magnitude a 1
Magnitude b K2 ∗H1 ∗A/Vm 12.4 ∗H1
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Fig. 9. Root map of ESC with fractional order integrator.

Fig. 10. Power/voltage output using ESC with fractional order integrator.

A. Performance of ESC Using Fractional Order Integrator
With Order α

During simulation, when α varies between 0.3 and 1, the
tracking of the MPP fails and when α is less than 0.3, no
simulation result can be gained, showing that the tracking
process is nonconvergent and the system is unstable. So, it
is necessary to explain why this phenomenon occurs. Taking
α = 0.95 as an example, the characteristic polynomial is:

D(s) = s
59
20 + c1s

40
20 + c2s

39
20 + c3s

20
20 + c4s

19
20 + c5. (20)

This is a commensurate-order system, and the closed-loop
root map in the λ = s1/20 plane is shown in Fig. 9. It can
be found that there are two roots 1.375 ± j0.115 with angle
of 0.0785 radians very close to the stability boundary angle
of 1/20(π/2). So, the stability condition is very poor which
leads to the abnormal voltage output, and it fails to track the
MPP, as shown in Fig. 10. This phenomenon also exists in
other cases using different order 0.3 < α < 1.

B. Performance of ESC Using FO-HPF With Order β

The characteristic polynomial is:

D(s) = s(s2β+2ωhsβ+ω2
h+ω2)+kab(s2β+2ωhsβ+ω2

h+ω2).
(21)

Given β = 0.95,

D(s) = s
58
20 + d1s

39
20 + d2s

38
20 + d3s

20
20 + d4s

19
20 + d5. (22)

This is also a commensurate-order system, and the closed-
loop root map in the λ = s1/20 plane is shown in Fig. 11. It can
be found that there are roots 1.398±j0.128 with angle of 0.091
radian which is less close to the critical stable boundary angle
of 1/20(π/2) than the case using fractional order integrator,
which means FO-HPF improves the tracking stability. And
the power vs. time curves under different fractional orders
are shown in Fig. 12. It can also be found that the larger
the fractional order α the faster the power responses, but the
integer-order HPF has the fastest response speed.
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Fig. 11. Root map of FO-HPF-ESC.

Fig. 12. Power output with FO-HPF-ESC.

Fig. 13. Power-time curve comparison.

C. Performance of ESC Using FO-HPF With LPF

The ESC controller using fractional high-pass filter, together
with integer-order integrator and integer-order low-pass filter,
has the structure shown in Fig. 7.

1) Power Output Comparison
As shown in Fig. 13, the fuel cell controlled by an integer-

order ESC, which uses dither amplitude proportional to the
magnitude of the first harmonics of the processed FC power,

has faster response speed than the one using FO-HPF ESC
and marked with green color.

2) Attraction Range of MPPT
When the fuel input is 20 lpm, as an example, the rela-

tionship between the fuel cell power output and the current
is shown in Fig. 14. It is obvious that the current fluctuation
when using the FO-HPF ESC (green one) during tracking is
smaller near the maximum power point, with range 52−53,
comparing to 51−57 of the regular ESC method.
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Fig. 14. Power output vs current during tracking.

(a) Power-time curve comparison ESC

(b) Power-current curve comparison

Fig. 15. MPPT performance under white noise.

3) Robustness Under White Noise

If band-limited white noise with power of 0.04 is applied,
fuel cell power outputs are shown in Fig. 15. It is obvious

that the tracking process with FO-HPF (the blue curve) out-
performs the one using normal HPF. Fig. 16 shows the MPPT
when the load varies in the case of Fig. 17. So, FO-HPF-ESC
offers more stable tracking ability than the usual ESC.
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Fig. 16. MPPT performance under variant loads.

Fig. 17. Variant loads.

V. CONCLUSIONS

In this paper, a novel ESC algorithm is presented which is
an ESC with FO-HPF. As discussed in this paper, separate
fractional order integrator may cause the tracking failure
because of the poor tracking stability, and using FO-HPF in
the ESC structure reduces the dynamic response fluctuation.
In addition, FO-HPF-ESC increases the robustness compared
to the regular ESC. As can be seen in our simulation results,
FO-HPF-ESC not only can follow the maximum power point
smoother than the regular ESC, but also shows more robust-
ness in the presence of disturbance in the system. However,
for the given application case, only adjusting the order of FO-
HPF is difficult to improve the response speed. Furthermore,
how to optimize the order of FO-HPF instead of trial-and-error
is still open and worthy of intensive research.
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[12] M. Krstić and H.-H. Wang, “Stability of extremum seeking feedback
for general nonlinear dynamic systems,” Automatica, vol. 36, no. 4,
pp. 595−601, Apr. 2000.

[13] C. Yin, B. Stark, Y. Q. Chen, and S. M. Zhong, “Adaptive minimum
energy cognitive lighting control: integer order vs fractional order
strategies in sliding mode based extremum seeking,” Mechatronics,
vol. 23, no. 7, pp. 863−872, Oct. 2013.

[14] C. Yin, Y. Q. Chen, and S. M. Zhong, “Fractional-order sliding mode
based extremum seeking control of a class of nonlinear systems,”
Automatica, vol. 50, no. 12, pp. 3173−3181, Dec. 2014.

[15] N. Bizon, “FC energy harvesting using the MPP tracking based on
advanced extremum seeking control,” Int. J. Hydrogen Energ., vol. 38,
no. 4, pp. 1952−1966, Feb. 2013.

[16] M. Dargahi, J. Rouhi, M. Rezanejad, and M. Shakeri, “Maximum power
point tracking for fuel cell in fuel cell/battery hybrid power systems,”
Eur. J. Sci. Res., vol. 25, no. 4, pp. 538−548, Jan. 2009.
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Constrained Fractional Variational Problems of
Variable Order

Dina Tavares, Ricardo Almeida, and Delfim F. M. Torres

Abstract—Isoperimetric problems consist in minimizing or
maximizing a cost functional subject to an integral constraint.
In this work, we present two fractional isoperimetric problems
where the Lagrangian depends on a combined Caputo derivative
of variable fractional order and we present a new variational
problem subject to a holonomic constraint. We establish neces-
sary optimality conditions in order to determine the minimizers
of the fractional problems. The terminal point in the cost integral,
as well as the terminal state, are considered to be free, and we
obtain corresponding natural boundary conditions.

Index Terms—Fractional calculus, fractional calculus of varia-
tions, holonomic constraints, isoperimetric constraints, optimiza-
tion, variable fractional order.

I. INTRODUCTION

MANY real world phenomena are better described by
noninteger order derivatives. In fact, fractional deriva-

tives have unique characteristics that may model certain dy-
namics more efficiently. To start, we can consider any real or-
der for the derivatives, and thus we are not restricted to integer-
order derivatives only. Secondly, they are nonlocal operators,
in opposite to the usual derivatives, containing memory. With
the memory property one can take into account the past of the
processes. This subject, called Fractional Calculus, although as
old as ordinary calculus itself, only recently has found numer-
ous applications in mathematics, physics, mechanics, biology
and engineering. The order of the derivative is assumed to
be fixed along the process, that is, when determining what
is the order α > 0 such that the solution of the fractional
differential equation Dαy(t) = f(t, y(t)) better approaches
the experimental data, we consider the order to be a fixed
constant. Of course, this may not be the best option, since
trajectories are a dynamic process, and the order may vary.
So, the natural solution to this problem is to consider the
order to be a function, α(·), depending on time. Then we
may seek what is the best function α(·) such that the variable
order fractional differential equation Dα(·)y(t) = f(t, y(t))
better describes the real data. This approach is very recent,
and many work has to be done for a complete study of the
subject (see, e.g., [1]−[5]).
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The most common fractional operators considered in the
literature take into account the past of the process: they are
usually called left fractional operators. But in some cases
we may be also interested in the future of the process, and
the computation of α(·) to be influenced by it. In that case,
right fractional derivatives are then considered. Our goal is
to develop a theory where both fractional operators are taken
into account, and for that we define a combined fractional
variable order derivative operator that is a linear combination
of the left and right fractional derivatives. For studies with
fixed fractional order see [6]−[8].

Variational problems are often subject to one or more con-
straints. For example, isoperimetric problems are optimization
problems where the admissible functions are subject to integral
constraints. This direction of research has been recently in-
vestigated in [9], where variational problems with dependence
on a combined Caputo derivative of variable fractional order
are considered and necessary optimality conditions deduced.
Here variational problems are considered subject to integral or
holomonic constraints.

The text is organized in four sections. In Section II we
review some important definitions and results about combined
Caputo derivative of variable fractional order, and present
some properties that will be need in the sequel. For more
on the subject we refer the interested reader to [3], [10],
[11]. In Section III we present two different isoperimetric
problems and we study necessary optimality conditions in
order to determine the minimizers for each of the problems.
We end Section III with an example. In Section IV we consider
a new variational problem subject to a holonomic constraint.

II. FRACTIONAL CALCULUS OF VARIABLE ORDER

In this section we collect definitions and preliminary results
on fractional calculus, with variable fractional order, needed
in the sequel. The variational fractional order is a continuous
function of two variables, α : [a, b]2 → (0, 1). Let x : [a, b] →
R. Two different types of fractional derivatives are considered.

Definition 1 (Riemann–Liouville fractional derivatives):
The left and right Riemann–Liouville fractional derivatives of
order α(·, ·) are defined respectively by

aD
α(·,·)
t x(t)

=
d

dt

∫ t

a

1
Γ(1− α(t, τ))

(t− τ)−α(t,τ)x(τ)dτ

and

tD
α(·,·)
b x(t)

=
d

dt

∫ b

t

−1
Γ(1− α(τ, t))

(τ − t)−α(τ,t)x(τ)dτ.
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Definition 2 (Caputo fractional derivatives): The left and
right Caputo fractional derivatives of order α(·, ·) are defined
respectively by

C
a D

α(·,·)
t x(t)

=
∫ t

a

1
Γ(1− α(t, τ))

(t− τ)−α(t,τ)x(1)(τ)dτ

and

C
t D

α(·,·)
b x(t)

=
∫ b

t

−1
Γ(1− α(τ, t))

(τ − t)−α(τ,t)x(1)(τ)dτ.

Of course the fractional derivatives just defined are linear
operators. The next step is to define a new fractional derivative,
combining the previous ones into a single one.

Definition 3: Let α, β : [a, b]2 → (0, 1) be the fractional
orders, and define the constant vector γ = (γ1, γ2) ∈ [0, 1]2.
The combined Riemann–Liouville fractional derivative of a
function x is defined by

Dα(·,·),β(·,·)
γ x(t) = γ1 aD

α(·,·)
t x(t) + γ2 tD

β(·,·)
b x(t).

The combined Caputo fractional derivative of a function x
is defined by

CDα(·,·),β(·,·)
γ x(t) = γ1

C
a D

α(·,·)
t x(t) + γ2

C
t D

β(·,·)
b x(t).

For the sequel, we also need the generalization of fractional
integrals for a variable order.

Definition 4 (Riemann–Liouville fractional integrals): The
left and right Riemann–Liouville fractional integrals of order
α(·, ·) are defined respectively by

aI
α(·,·)
t x(t) =

∫ t

a

1
Γ(α(t, τ))

(t− τ)α(t,τ)−1x(τ)dτ

and

tI
α(·,·)
b x(t) =

∫ b

t

1
Γ(α(τ, t))

(τ − t)α(τ,t)−1x(τ)dτ.

We remark that in contrast to the fixed fractional order case,
variable-order fractional integrals are not the inverse operation
of the variable-order fractional derivatives.

For the next section, we need the following fractional
integration by parts formulas.

Theorem 1 (Theorem 3.2 of [11]): If x, y ∈ C1[a, b], then
∫ b

a

y(t) C
a D

α(·,·)
t x(t)dt

=
∫ b

a

x(t) tD
α(·,·)
b y(t)dt +

[
x(t) tI

1−α(·,·)
b y(t)

]t=b

t=a

and
∫ b

a

y(t) C
t D

α(·,·)
b x(t)dt

=
∫ b

a

x(t) aD
α(·,·)
t y(t)dt−

[
x(t) aI

1−α(·,·)
t y(t)

]t=b

t=a
.

III. FRACTIONAL ISOPERIMETRIC PROBLEMS

Consider the set

D =
{

(x, t) ∈ C1([a, b])× [a, b] : CDα(·,·),β(·,·)
γ x(t)

exists and is continuous on [a, b]
}

endowed with the norm

‖(x, t)‖ := max
a≤t≤b

|x(t)|+ max
a≤t≤b

∣∣∣CDα(·,·),β(·,·)
γ x(t)

∣∣∣+ |t|.

Throughout the text, we denote by ∂iz the partial derivative
of a function z : R3 → R with respect to its i-th argument.
Also, for simplification, we consider the operator

[x]α,β
γ (t) :=

(
t, x(t), CDα(·,·),β(·,·)

γ x(t)
)

.

The main problem of the fractional calculus of varia-
tions with variable order is described as follows. Let L :
C1

(
[a, b]× R2

) → R and consider the functional J : D → R
of the form

J (x, T ) =
∫ T

a

L[x]α,β
γ (t)dt + φ(T, x(T )) (1)

where φ : [a, b] × R → R is of class C1. In the sequel, we
need the auxiliary notation of the dual fractional derivative:

D
β(·,·),α(·,·)
γ,c = γ2 aD

β(·,·)
t + γ1 tD

α(·,·)
c (2)

where γ = (γ2, γ1) and c ∈ (a, b].
Remark 1: Fractional derivatives (2) can be regarded as

a generalization of usual fractional derivatives. For advan-
tages of applying them to fractional variational problems see
[8], [12], [13].

In [9] we obtained necessary conditions that every local
minimizer of functional J must fulfill.

Theorem 2 [9]: If (x, T ) ∈ D is a local minimizer of
functional (1), then (x, T ) satisfies the fractional differential
equation

∂2L[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3L[x]α,β

γ (t) = 0

on [a, T ] and

γ2

(
aD

β(·,·)
t ∂3L[x]α,β

γ (t) −T D
β(·,·)
t ∂3L[x]α,β

γ (t)
)

= 0

on [T, b].
Remark 2: In general, analytical solutions to fractional vari-

ational problems are hard to find. For this reason, numerical
methods are often used. The reader interested in this subject
is referred to [14], [15] and references therein.

Fractional differential equations as the ones given by The-
orem 2, are known in the literature as fractional Euler –
Lagrange equations, and they provide us with a method to de-
termine the candidates for solutions of the problem addressed.
Solutions of such fractional differential equations are called
extremals for the functional. In this paper, we proceed the
study initiated in [9] by considering additional constraints to
the problems. We will deal with two types of isoperimetric
problems, which we now describe.
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A. Problem I

The fractional isoperimetric problem of the calculus of
variations consists to determine the local minimizers of J
over all (x, T ) ∈ D satisfying a boundary condition

x(a) = xa (3)

for a fixed xa ∈ R and an integral constraint of the form
∫ T

a

g[x]α,β
γ (t)dt = ψ(T ) (4)

where g : C1
(
[a, b]× R2

) → R and ψ : [a, b] → R are two
differentiable functions. The terminal time T and terminal state
x(T ) are free. In this problem, the condition of the form (4)
is called an isoperimetric constraint. The next theorem gives
fractional necessary optimality conditions to this isoperimetric
problem.

Theorem 3: Suppose that (x, T ) gives a local minimum
for functional (1) on D subject to the boundary condition (3)
and the isoperimetric constraint (4). If (x, T ) does not satisfies
the Euler–Lagrange equations with respect to the isoperimetric
constraint, that is, if one of the two following conditions is not
verified,

∂2g[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3g[x]α,β

γ (t) = 0 (5)

for t ∈ [a, T ], or

γ2

[
aD

β(·,·)
t ∂3g[x]α,β

γ (t)− T Dt
β(·,·)∂3g[x]α,β

γ (t)
]

= 0 (6)

for t ∈ [T, b], then there exists a constant λ such that, if we
define the function F : [a, b]× R2 → R by F = L−λg, (x, T )
satisfies the fractional Euler – Lagrange equations

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3F [x]α,β

γ (t) = 0 (7)

on the interval [a, T ] and

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t) −T D
β(·,·)
t ∂3F [x]α,β

γ (t)
)

= 0 (8)

on the interval [T, b]. Moreover, (x, T ) satisfies the transver-
sality conditions





F [x]α,β
γ (T ) + ∂1φ(T, x(T ))

+ ∂2φ(T, x(T ))x′(T ) + λψ′(T ) = 0[
γ1 tI

1−α(·,·)
T ∂3F [x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=T

+ ∂2φ(T, x(T )) = 0

γ2

[
T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

−aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=b
= 0. (9)

Proof : Consider variations of the optimal solution (x, T )
of the type

(x∗, T ∗) = (x + ε1h1 + ε2h2, T + ε1∆T ) (10)

where, for each i ∈ {1, 2}, εi ∈ R is a small parameter, hi ∈
C1([a, b]) satisfies hi(a) = 0, and 4T ∈ R. The additional
term ε2h2 must be selected so that the admissible variations

(x∗, T ∗) satisfy the isoperimetric constraint (4). For a fixed
choice of hi, let

i(ε1, ε2) =
∫ T+ε14T

a

g[x∗]α,β
γ (t)dt− ψ(T + ε14T ).

For ε1 = ε2 = 0, we obtain that

i(0, 0) =
∫ T

a

g[x]α,β
γ (t)dt− ψ(T )

= ψ(T )− ψ(T ) = 0.

The derivative
∂i

∂ε2
is given by

∂i

∂ε2
=

∫ T+ε14T

a

(
∂2g[x∗]α,β

γ (t)h2(t)

+ ∂3g[x∗]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)
dt.

For ε1 = ε2 = 0 one has

∂i

∂ε2

∣∣∣∣
(0,0)

=
∫ T

a

(
∂2g[x]α,β

γ (t)h2(t)

+ ∂3g[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)
dt. (11)

The second term in (11) can be written as
∫ T

a

∂3g[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)dt

=
∫ T

a

∂3g[x]α,β
γ (t)

[
γ1

C
a D

α(·,·)
t h2(t)

+ γ2
C
t D

β(·,·)
b h2(t)

]
dt

= γ1

∫ T

a

∂3g[x]α,β
γ (t)C

a D
α(·,·)
t h2(t)dt

+ γ2

[∫ b

a

∂3g[x]α,β
γ (t)C

t D
β(·,·)
b h2(t)dt

−
∫ b

T

∂3g[x]α,β
γ (t)C

t D
β(·,·)
b h2(t)dt

]
. (12)

Using the fractional integrating by parts formula, (12) is
equal to

∫ T

a

h2(t)
[
γ1tDT

α(·,·)∂3g[x]α,β
γ (t)

+ γ2aDt
β(·,·)∂3g[x]α,β

γ (t)
]
dt

+
∫ b

T

γ2h2(t)
[

aD
β(·,·)
t ∂3g[x]α,β

γ (t)

− T Dt
β(·,·)∂3g[x]α,β

γ (t)
]
dt

+

[
h2(t)

(
γ1tIT

1−α(·,·)∂3g[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂3g[x]α,β

γ (t)
)]

t=T

+

[
γ2h2(t)

(
T It

1−β(·,·)∂3g[x]α,β
γ (t)

− aIt
1−β(·,·)∂3g[x]α,β

γ (t)
)]

t=b

.
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Substituting these relations into (11), and considering the
fractional operator D

β(·,·),α(·,·)
γ,c as defined in (2), we obtain

that
∂i

∂ε2

∣∣∣∣
(0,0)

=
∫ T

a

h2(t)
[
∂2g[x]α,β

γ (t) + D
β(·,·),α(·,·)
γ,T ∂3g[x]α,β

γ (t)
]
dt

+
∫ b

T

γ2h2(t)
[

aD
β(·,·)
t ∂3g[x]α,β

γ (t)

− T Dt
β(·,·)∂3g[x]α,β

γ (t)
]
dt

+

[
h2(t)

(
γ1tIT

1−α(·,·)∂3g[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂3g[x]α,β

γ (t)

)]

t=T

+

[
γ2h2(t)

(
T It

1−β(·,·)∂3g[x]α,β
γ (t)

− aIt
1−β(·,·)∂3g[x]α,β

γ (t)

)]

t=b

.

Since (5) or (6) fails, there exists a function h2 such that

∂i

∂ε2

∣∣∣∣
(0,0)

6= 0.

In fact, if not, from the arbitrariness of the function h2 and
the fundamental lemma of the calculus of the variations, (5)
and (6) would be verified. Thus, we may apply the implicit
function theorem, that ensures the existence of a function ε2(·),
defined in a neighborhood of zero, such that i(ε1, ε2(ε1)) = 0.
In conclusion, there exists a subfamily of variations of the form
(10) that verifies the integral constraint (4). We now seek to
prove the main result. For that purpose, consider the auxiliary
function j(ε1, ε2) = J (x∗, T ∗). By hypothesis, function j
attains a local minimum at (0, 0) when subject to the constraint
i(·, ·) = 0, and we proved before that ∇i(0, 0) 6= 0. Applying
the Lagrange multiplier rule, we ensure the existence of a
number λ such that

∇ (j(0, 0)− λi(0, 0)) = 0.

In particular,
∂ (j − λi)

∂ε1
(0, 0) = 0. (13)

Let F = L− λg. The relation (13) can be written as

0 =
∫ T

a

h1(t)
[
∂2F [x]α,β

γ (t)

+ D
β(·,·),α(·,·)
γ,T ∂3F [x]α,β

γ (t)
]
dt

+
∫ b

T

γ2h1(t)
[

aD
β(·,·)
t ∂3F [x]α,β

γ (t)

− T D
β(·,·)
t ∂3F [x]α,β

γ (t)
]
dt

+ h1(T )
[
γ1 tI

1−α(·,·)
T ∂3F [x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3F [x]α,β

γ (t) + ∂2φ(t, x(t))
]

t=T

+ ∆T
[
F [x]α,β

γ (t) + ∂1φ(t, x(t))

+ ∂2φ(t, x(t))x′(t) + λψ′(t)
]

t=T

+ h1(b)γ2

[
T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

− aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=b
. (14)

As h1 and 4T are arbitrary, we can choose 4T = 0 and
h1(t) = 0 for all t ∈ [T, b]. But h1 is arbitrary in t ∈ [a, T ).
Then, we obtain the first necessary condition (7):

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3F [x]α,β

γ (t) = 0

for all t ∈ [a, T ]. Analogously, considering 4T = 0 and
h1(t) = 0 for all t ∈ [a, T ] ∪ {b}, and h1 arbitrary on (T, b),
we obtain the second necessary condition (8):

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t)

−T D
β(·,·)
t ∂3F [x]α,β

γ (t)
)

= 0 ∀t ∈ [T, b].

As (x, T ) is a solution to the necessary conditions (7) and
(8), then (14) takes the form

0 = h1(T )
[
γ1 tI

1−α(·,·)
T ∂3F [x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3F [x]α,β

γ (t) + ∂2φ(t, x(t))
]

t=T

+ ∆T
[
F [x]α,β

γ (t) + ∂1φ(t, x(t))

+ ∂2φ(t, x(t))x′(t) + λψ′(t)
]

t=T

+ h1(b)
[
γ2

(
T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

−aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
)]

t=b
. (15)

Transversality conditions (9) are obtained for appropriate
choices of variations. ¥

In the next theorem, considering the same Problem I,
we rewrite the transversality conditions (9) in terms of the
increment on time ∆T and on the increment of space ∆xT

given by

∆xT = (x + h1)(T + ∆T )− x(T ). (16)

Theorem 4: Let (x, T ) be a local minimizer to the
functional (1) on D subject to the boundary condition (3)
and the isoperimetric constraint (4). Then (x, T ) satisfies the
transversality conditions





F [x]α,β
γ (T ) + ∂1φ(T, x(T )) + λψ′(T )

+x′(T )
[
γ2T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

− γ1tI
1−α(·,·)
T ∂3F [x]α,β

γ (t)
]

t=T
= 0[

γ1 tI
1−α(·,·)
T ∂3F [x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=T

+ ∂2φ(T, x(T )) = 0

γ2

[
T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

− aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=b
= 0. (17)

Proof : Suppose (x∗, T ∗) is an admissible variation of the
form (10) with ε1 = 1 and ε2 = 0. Using Taylor’s expansion
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up to first order for a small ∆T , and restricting the set of
variations to those for which h′1(T ) = 0, we obtain the
increment ∆xT on x:

(x + h1) (T + ∆T ) = (x + h1)(T ) + x′(T )∆T + O(∆T )2.

Relation (16) allows us to express h1(T ) in terms of ∆T
and ∆xT :

h1(T ) = ∆xT − x′(T )∆T + O(∆T )2.

Substituting this expression into (15), and using appropriate
choices of variations, we obtain the new transversality condi-
tions (17). ¥

Theorem 5: Suppose that (x, T ) gives a local minimum for
functional (1) on D subject to the boundary condition (3) and
the isoperimetric constraint (4). Then, there exists (λ0, λ) 6=
(0, 0) such that, if we define the function F : [a, b]×R2 → R
by F = λ0L − λg, (x, T ) satisfies the following fractional
Euler–Lagrange equations:

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3F [x]α,β

γ (t) = 0

on the interval [a, T ], and

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t) − T D
β(·,·)
t ∂3F [x]α,β

γ (t)
)

= 0

on the interval [T, b].
Proof : If (x, T ) does not verifies (5) or (6), then the

hypothesis of Theorem 3 is satisfied and we prove Theorem 5
considering λ0 = 1. If (x, T ) verifies (5) and (6), then we
prove the result by considering λ = 1 and λ0 = 0. ¥

B. Problem II

We now consider a new isoperimetric type problem with
the isoperimetric constraint of form

∫ b

a

g[x]α,β
γ (t)dt = C (18)

where C is a given real number.
Theorem 6: Suppose that (x, T ) gives a local minimum for

functional (1) on D subject to the boundary condition (3) and
the isoperimetric constraint (18). If (x, T ) does not satisfies
the Euler–Lagrange equation with respect to the isoperimetric
constraint, that is, the condition

∂2g[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t) = 0

for t ∈ [a, b] is not satisfied, then there exists λ 6= 0 such that,
if we define the function F : [a, b]×R2 → R by F = L−λg,
(x, T ) satisfies the fractional Euler–Lagrange equations

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3L[x]α,β

γ (t)

− λD
β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t) = 0 (19)

on the interval [a, T ], and

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t)− T D
β(·,·)
t ∂3L[x]α,β

γ (t)
)

−λ
(
∂2g[x]α,β

γ (t) + γ1tD
α(·,·)
b ∂3g[x]α,β

γ (t)
)

= 0 (20)

on the interval [T, b]. Moreover, (x, T ) satisfies the transver-
sality conditions





L[x]α,β
γ (T ) + ∂1φ(T, x(T ))

+ ∂2φ(T, x(T ))x′(T ) = 0[
γ1 tI

1−α(·,·)
T ∂3L[x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3L[x]α,β

γ (t)

+ ∂2φ(t, x(t))
]

t=T
= 0[

−λγ1tI
1−α(·,·)
b ∂3g[x]α,β

γ (t)

+ γ2

(
T I

1−β(·,·)
t ∂3L[x]α,β

γ (t)

− aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
)]

t=b
= 0. (21)

Proof : Similarly as done to prove Theorem 3, let

(x∗, T ∗) = (x + ε1h1 + ε2h2, T + ε1∆T )

be a variation of the solution, and define

i(ε1, ε2) =
∫ b

a

g[x∗]α,β
γ (t)dt− C.

The derivative
∂i

∂ε2
, when ε1 = ε2 = 0, is

∂i

∂ε2

∣∣∣∣
(0,0)

=
∫ b

a

(
∂2g[x]α,β

γ (t)h2(t)

+ ∂3g[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)
dt.

Integrating by parts and choosing variations such that
h2(b) = 0, we have

∂i

∂ε2

∣∣∣∣
(0,0)

=
∫ b

a

h2(t)
[
∂2g[x]α,β

γ (t)

+ D
β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t)
]
dt.

Thus, there exists a function h2 such that

∂i

∂ε2

∣∣∣∣
(0,0)

6= 0.

We may apply the implicit function theorem to conclude that
there exists a subfamily of variations satisfying the integral
constraint. Consider the new function j(ε1, ε2) = J (x∗, T ∗).
Since j has a local minimum at (0, 0) when subject to the
constraint i(·, ·) = 0 and ∇i(0, 0) 6= 0, there exists a number
λ such that

∂

∂ε1
(j − λi) (0, 0) = 0. (22)

Let F = L− λg. Relation (22) can be written as

0 =
∫ T

a

h1(t)
[
∂2F [x]α,β

γ (t)

+ D
β(·,·),α(·,·)
γ,T ∂3L[x]α,β

γ (t)

− λD
β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t)
]
dt

+
∫ b

T

h1(t)
[
γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t)
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− T D
β(·,·)
t ∂3L[x]α,β

γ (t)
)

− λ
(
∂2g[x]α,β

γ (t)

+ γ1tD
α(·,·)
b ∂3g[x]α,β

γ (t)
)]

dt

+ h1(T )
[
γ1 tI

1−α(·,·)
T ∂3L[x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3L[x]α,β

γ (t)

+ ∂2φ(t, x(t))
]

t=T

+ ∆T
[
L[x]α,β

γ (t) + ∂1φ(t, x(t))

+ ∂2φ(t, x(t))x′(t)
]

t=T

+ h1(b)
[
−λγ1tI

1−α(·,·)
b ∂3g[x]α,β

γ (t)

+ γ2

(
T I

1−β(·,·)
t ∂3L[x]α,β

γ (t)

− aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
)]

t=b
.

Considering appropriate choices of variations, we obtain the
first (19) and the second (20) necessary optimality conditions,
and also the transversality conditions (21). ¥

Similarly to Theorem 5, the following result holds.
Theorem 7: Suppose that (x, T ) gives a local minimum

for functional (1) on D subject to the boundary condition
(3) and the isoperimetric constraint (18). Then there exists
(λ0, λ) 6= (0, 0) such that, if we define the function F :
[a, b] × R2 → R by F = λ0L− λg, (x, T ) satisfies the
fractional Euler–Lagrange equations

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3L[x]α,β

γ (t)

− λD
β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t) = 0

on the interval [a, T ], and

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t)− T D
β(·,·)
t ∂3L[x]α,β

γ (t)
)

−λ
(
∂2g[x]α,β

γ (t) + γ1tD
α(·,·)
b ∂3g[x]α,β

γ (t)
)

= 0

on the interval [T, b].

C. An example

Let α(t, τ) = α(t) and β(t, τ) = β(τ). Define the function

ψ(T ) =
∫ T

0

(
t1−α(t)

2Γ(2− α(t))
+

(b− t)1−β(t)

2Γ(2− β(t))

)2

dt

on the interval [0, b] with b > 0. Consider the functional J
defined by

J(x, t) =
∫ T

0

[
α(t) +

(
CDα(·,·),β(·,·)

γ x(t)
)2

+
(

t1−α(t)

2Γ(2− α(t))
+

(b− t)1−β(t)

2Γ(2− β(t))

)2
]

dt

for t ∈ [0, b] and γ = (1/2, 1/2), subject to the initial
condition

x(0) = 0

and the isoperimetric constraint
∫ T

0

CDα(·,·),β(·,·)
γ x(t)

(
t1−α(t)

2Γ(2− α(t))
+

(b− t)1−β(t)

2Γ(2− β(t))

)2

dt

= ψ(T ).

Define F = L− λg with λ = 2, that is,

F = α(t)+
(

CDα(·),β(·)
γ x(t)

− t1−α(t)

2Γ(2− α(t))
− (b− t)1−β(t)

2Γ(2− β(t))

)2

.

Consider the function x(t) = t with t ∈ [0, b]. Because

CDα(·,·),β(·,·)
γ x(t) =

t1−α(t)

2Γ(2− α(t))
+

(b− t)1−β(t)

2Γ(2− β(t))

we have that x satisfies conditions (7), (8) and the two last of
(9). Using the first condition of (9), that is,

α(t) + 2
(

T 1−α(T )

2Γ(2− α(T ))
+

(b− T )1−β(T )

2Γ(2− β(T ))

)2

= 0

we obtain the optimal time T .

IV. HOLONOMIC CONSTRAINTS

Consider the space

U = {(x1, x2, T ) ∈ C1([a, b])× C1([a, b])× [a, b] :
x1(a) = x1a ∧ x2(a) = x2a} (23)

for fixed reals x1a, x2a ∈ R. In this section we consider the
functional J defined in U by

J (x1,x2, T ) =
∫ T

a

L
(
t, x1(t), x2(t), CDα(·,·),β(·,·)

γ x1(t),

CDα(·,·),β(·,·)
γ x2(t)

)
dt + φ(T, x1(T ), x2(T )) (24)

with terminal time T and terminal states x1(T ) and x2(T )
free. The Lagrangian L : [a, b] × R4 → R is a continuous
function and continuously differentiable with respect to its i-th
argument, i ∈ {2, 3, 4, 5}. To define the variational problem,
we consider a new constraint of the form

g(t, x1(t), x2(t)) = 0, t ∈ [a, b] (25)

where g : [a, b]× R2 → R is a continuous function and con-
tinuously differentiable with respect to second and third argu-
ments. This constraint is called a holonomic constraint. The
next theorem gives fractional necessary optimality conditions
to the variational problem with a holonomic constraint. To
simplify the notation, we denote by x the vector (x1, x2); by
CD

α(·,·),β(·,·)
γ x the vector (CD

α(·,·),β(·,·)
γ x1,

CD
α(·,·),β(·,·)
γ x2);

and we use the operator

[x]α,β
γ (t) :=

(
t, x(t), CDα(·,·),β(·,·)

γ x(t)
)

.

Theorem 8: Suppose that (x, T ) gives a local minimum
to functional J as in (24), under the constraint (25) and the
boundary conditions defined in (23). If

∂3g(t, x(t)) 6= 0 ∀t ∈ [a, b]
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then there exists a piecewise continuous function λ : [a, b] →
R such that (x, T ) satisfies the following fractional Euler–
Lagrange equations:

∂2L[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂4L[x]α,β

γ (t)
+ λ(t)∂2g(t, x(t)) = 0 (26)

and

∂3L[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂5L[x]α,β

γ (t)
+ λ(t)∂3g(t, x(t)) = 0 (27)

on the interval [a, T ], and

γ2

(
aD

β(·,·)
t ∂4L[x]α,β

γ (t) − T Dt
β(·,·)∂4L[x]α,β

γ (t)

+ λ(t)∂2g(t, x(t))
)

= 0 (28)

and

aD
β(·,·)
t ∂5L[x]α,β

γ (t)− T Dt
β(·,·)∂5L[x]α,β

γ (t)
+ λ(t)∂3g(t, x(t)) = 0 (29)

on the interval [T, b]. Moreover, (x, T ) satisfies the transver-
sality conditions





L[x]α,β
γ (T ) + ∂1φ(T, x(T ))

+ ∂2φ(T, x(T ))x′1(T )
+ ∂3φ(T, x(T ))x′2(T ) = 0[

γ1 tI
1−α(·,·)
T ∂4L[x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂4L[x]α,β

γ (t)
]

t=T

+ ∂2φ(T, x(T )) = 0[
γ1tIT

1−α(·,·)∂5L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂5L[x]α,β

γ (t)
]

t=T

+ ∂3φ(T, x(T )) = 0

γ2

[
T I

1−β(·,·)
t ∂4L[x]α,β

γ (t)

− aI
1−β(·,·)
t ∂4L[x]α,β

γ (t)
]

t=b
= 0

γ2

[
T I

1−β(·,·)
t ∂5L[x]α,β

γ (t)

− aI
1−β(·,·)
t ∂5L[x]α,β

γ (t)
]

t=b
= 0. (30)

Proof : Consider admissible variations of the optimal solution
(x, T ) of the type

(x∗, T ∗) = (x + εh, T + ε∆T )

where ε ∈ R is a small parameter,

h = (h1, h2) ∈ C1([a, b])× C1([a, b])

satisfies hi(a) = 0, i = 1, 2, and 4T ∈ R. Because

∂3g(t, x(t)) 6= 0 ∀t ∈ [a, b]

by the implicit function theorem there exists a subfamily of
variations of (x, T ) that satisfy (25), that is, there exists a
unique function h2(ε, h1) such that the admissible variation
(x∗, T ∗) satisfies the holonomic constraint (25):

g(t, x1(t) + εh1(t), x2(t) + εh2) = 0 ∀t ∈ [a, b].

Differentiating this condition with respect to ε and consid-
ering ε = 0, we obtain that

∂2g(t, x(t))h1(t) + ∂3g(t, x(t))h2(t) = 0

which is equivalent to

∂2g(t, x(t))h1(t)
∂3g(t, x(t))

= −h2(t). (31)

Define j on a neighborhood of zero by

j(ε) =
∫ T+ε4T

a

L[x∗]α,β
γ (t)dt

+ φ(T + ε4T, x∗(T + ε4T )).

The derivative
∂j

∂ε
for ε = 0 is

∂j

∂ε

∣∣∣∣
ε=0

=
∫ T

a

(
∂2L[x]α,β

γ (t)h1(t)

+ ∂3L[x]α,β
γ (t)h2(t)

+ ∂4L[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h1(t)

+ ∂5L[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)
dt

+ L[x]α,β
γ (T )4T + ∂1φ(T, x(T ))4T

+ ∂2φ(T, x(T )) [h1(T ) + x′1(T )4T ]
+ ∂3φ(T, x(T )) [h2(T ) + x′2(T )4T ] . (32)

The third term in (32) can be written as
∫ T

a

∂4L[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h1(t)dt

=
∫ T

a

∂4L[x]α,β
γ (t)

×
[
γ1

C
a D

α(·,·)
t h1(t) + γ2

C
t D

β(·,·)
b h1(t)

]
dt

= γ1

∫ T

a

∂4L[x]α,β
γ (t)C

a D
α(·,·)
t h1(t)dt

+ γ2

[∫ b

a

∂4L[x]α,β
γ (t)C

t D
β(·,·)
b h1(t)dt

−
∫ b

T

∂4L[x]α,β
γ (t)C

t D
β(·,·)
b h1(t)dt

]
. (33)

Integrating by parts, (33) can be written as
∫ T

a

h1(t)
[
γ1tDT

α(·,·)∂4L[x]α,β
γ (t)

+ γ2aDt
β(·,·)∂4L[x]α,β

γ (t)
]
dt

+
∫ b

T

γ2h1(t)
[

aD
β(·,·)
t ∂4L[x]α,β

γ (t)

− T Dt
β(·,·)∂4L[x]α,β

γ (t)
]
dt

+

[
h1(t)

(
γ1tIT

1−α(·,·)∂4L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂4L[x]α,β

γ (t)
)]

t=T
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+

[
γ2h1(t)

(
T It

1−β(·,·)∂4L[x]α,β
γ (t)

− aIt
1−β(·,·)∂4L[x]α,β

γ (t)

)]

t=b

.

By proceeding similarly to the 4th term in (32), we obtain
an equivalent expression. Substituting these relations into (32)
and considering the fractional operator D

β(·,·),α(·,·)
γ,c as defined

in (2), we get

0 =
∫ T

a

[
h1(t)

[
∂2L[x]α,β

γ (t)

+D
β(·,·),α(·,·)
γ,T ∂4L[x]α,β

γ (t)
]

+ h2(t)
[
∂3L[x]α,β

γ (t)

+D
β(·,·),α(·,·)
γ,T ∂5L[x]α,β

γ (t)
]]

dt

+ γ2

∫ b

T

[
h1(t)

[
aD

β(·,·)
t ∂4L[x]α,β

γ (t)

− T Dt
β(·,·)∂4L[x]α,β

γ (t)
]

+ h2(t)
[

aD
β(·,·)
t ∂5L[x]α,β

γ (t)

− T Dt
β(·,·)∂5L[x]α,β

γ (t)
]]

dt

+ h1(T )

[
γ1tIT

1−α(·,·)∂4L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂4L[x]α,β

γ (t) + ∂2φ(t, x(t))

]

t=T

+ h2(T )

[
γ1tIT

1−α(·,·)∂5L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂5L[x]α,β

γ (t) + ∂3φ(t, x(t))

]

t=T

+4T

[
L[x]α,β

γ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x′1(t)

+ ∂3φ(t, x(t))x′2(t)

]

t=T

+ h1(b)

[
γ2

(
T It

1−β(·,·)∂4L[x]α,β
γ (t)

− aIt
1−β(·,·)∂4L[x]α,β

γ (t)

)]

t=b

+ h2(b)

[
γ2

(
T It

1−β(·,·)∂5L[x]α,β
γ (t)

− aIt
1−β(·,·)∂5L[x]α,β

γ (t)

)]

t=b

.

(34)

Define the piecewise continuous function λ by

λ(t) =





−∂3L[x]α,β
γ (t)

∂3g(t, x(t))
− D

β(·,·),α(·,·)
γ,T ∂5L[x]α,β

γ (t)
∂3g(t, x(t))

t ∈ [a, T ]

− (aD
β(·,·)
t ∂5L[x]α,β

γ (t)
∂3g(t, x(t))

+
T D

β(·,·)
t ∂5L[x]α,β

γ (t)
∂3g(t, x(t))

t ∈ [T, b]. (35)

Using (31) and (35), we obtain that

λ(t)∂2g(t, x(t))h1(t)

=





(∂3L[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂5L[x]α,β

γ (t))h2(t)

t ∈ [a, T ]

(aD
β(·,·)
t ∂5L[x]α,β

γ (t)−T D
β(·,·)
t ∂5L[x]α,β

γ (t))h2(t)

t ∈ [T, b].

Substituting in (34), we have

0 =
∫ T

a

h1(t)
[
∂2L[x]α,β

γ (t)

+ D
β(·,·),α(·,·)
γ,T ∂4L[x]α,β

γ (t) + λ(t)∂2g(t, x(t))
]
dt

+ γ2

∫ b

T

h1(t)
[

a

D
β(·,·)
t ∂4L[x]α,β

γ (t)

− T Dt
β(·,·)∂4L[x]α,β

γ (t) + λ(t)∂2g(t, x(t))

]
dt

+h1(T )

[
γ1tIT

1−α(·,·)∂4L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂4L[x]α,β

γ (t) + ∂2φ(t, x(t))

]

t=T

+h2(T )

[
γ1tIT

1−α(·,·)∂5L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂5L[x]α,β

γ (t) + ∂3φ(t, x(t))

]

t=T

+4T

[
L[x]α,β

γ (t) + ∂1φ(t, x(t))

+ ∂2φ(t, x(t))x′1(t) + ∂3φ(t, x(t))x′2(t)

]

t=T

+h1(b)

[
γ2

(
T It

1−β(·,·)∂4L[x]α,β
γ (t)

− aIt
1−β(·,·)∂4L[x]α,β

γ (t)

)]

t=b

+h2(b)

[
γ2

(
T It

1−β(·,·)∂5L[x]α,β
γ (t)

− aIt
1−β(·,·)∂5L[x]α,β

γ (t)

)]

t=b

.
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Considering appropriate choices of variations, we obtained
the first (26) and the third (28) necessary conditions, and also
the transversality conditions (30). The remaining conditions
(27) and (29) follow directly from (35). ¥

We end this section with a simple illustrative example.
Consider the following problem:

J(x, t) =
∫ T

0

[
α(t) +

(
CDα(·,·),β(·,·)

γ x1(t)

− t1−α(t)

2Γ(2− α(t))
− (b− t)1−β(t)

2Γ(2− β(t))

)2

+
(

CDα(·,·),β(·,·)
γ x2(t)

)2
]
dt −→ min

x1(t) + x2(t) = t + 1, x1(0) = 0, x2(0) = 1.

It is a simple exercise to check that x1(t) = t, x2(t) ≡ 1
and λ(t) ≡ 0 satisfy our Theorem 8.

V. CONCLUSION

Nowadays, optimization problems involving fractional
derivatives constitute a very active research field due to sev-
eral applications [14], [16], [17]. Here we obtained optimality
conditions for two isoperimetric problems and for a new
variational problem subject to a holonomic constraint, where
the Lagrangian depends on a combined Caputo derivative of
variable fractional order. Main results include Euler-Lagrange
and transversality type conditions. For simplicity, we con-
sidered here only linear combinations between the left and
right operators. Using similar techniques as the ones developed
here, one can obtain analogous results for fractional variational
problems with Lagrangians containing left-sided and right-
sided fractional derivatives of variable order. More difficult
and interesting, would be to develop a “multi-term fractional
calculus of variations”. The question seems however nontriv-
ial, even for the nonvariable order case, because of difficulties
in application of integration by parts. For the variable order
case, as we consider in our work, there is yet no formula
of fractional integration by parts for higher-order derivatives.
This is under investigation and will be addressed elsewhere.
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Speck, Eds. Basel: Birkhäuser Verlag, 2013, pp. 291−301.

[11] T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, “Noether’s
theorem for fractional variational problems of variable order,” Cent. Eur.
J. Phys., vol. 11, no. 6, pp. 691−701, Jun. 2013.

[12] J. Cresson, “Fractional embedding of differential operators and La-
grangian systems,” J. Math. Phys., vol. 48, no. 3, Art. ID 033504, 34
pages, Mar. 2007.

[13] A. B. Malinowska and D. F. M. Torres, “Towards a combined fractional
mechanics and quantization,” Fract. Calc. Appl. Anal., vol. 15, no. 3,
pp. 407–417, Sep. 2012.

[14] R. Almeida, S. Pooseh, and D. F. M. Torres, Computational Methods in
the Fractional Calculus of Variations, London: Imperial College Press,
2015.

[15] D. Tavares, R. Almeida, and D. F. M. Torres, “Caputo derivatives of
fractional variable order: numerical approximations,” Commun. Nonlin-
ear Sci. Numer. Simul. vol. 35, pp. 69−87, Jun. 2016.

[16] A. B. Malinowska, T. Odzijewicz, and D. F. M. Torres, Advanced
methods in the fractional calculus of variations. Cham: Springer, 2015.

[17] A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional
Calculus of Variations. London: Imperial College Press, 2012.

Dina Tavares is a Ph. D. student in the doctoral
programme in mathematics and applications of Uni-
versities of Aveiro and Minho. She obtained her
bachelor and master degrees in mathematics from
University of Aveiro. She is a teaching assistant
in the Polytechnic Institute of Leiria since 2006.
Her research interests include fractional calculus,
calculus of variations and mathematics education.

Ricardo Almeida received his bachelor and master
degrees in mathematics from University of Porto,
Portugal, and his Ph. D. degree in mathematics
from University of Aveiro, Portugal. He is currently
an assistant professor in the University of Aveiro.
His research interests include fractional calculus,
calculus of variations and optimal control theory.
Corresponding author of this paper.

Delfim F. M. Torres is a full professor of math-
ematics at the University of Aveiro since 2015
and coordinator of the Systems and Control Group
of CIDMA since 2010. He obtained his Ph. D. in
mathematics in 2002 and his D. Sc. (Habilitation)
in mathematics in 2011. Professor Torres has been
awarded in 2015 with the title of ISI Highly Cited
Researcher. He has written more than 350 pub-
lications, including two books with Imperial Col-
lege Press, in 2012 and 2015, and two books with
Springer, in 2014 and 2015. Torres was, from 2011

to 2014, a key scientist of the European Marie Curie Project SADCO,
a Network for Initial Training. He is the director of the FCT Doctoral
Programme of Excellence in mathematics and applications of Universities
of Minho, Aveiro, Porto and UBI since 2013. Eleven Ph. D. students in
mathematics have successfully finished under his supervision.



IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 1, JANUARY 2017 89

Robust Attitude Control for Reusable Launch
Vehicles Based on Fractional Calculus and

Pigeon-inspired Optimization
Qiang Xue and Haibin Duan, Senior Member, IEEE

Abstract—In this paper, a robust attitude control system based
on fractional order sliding mode control and dynamic inversion
approach is presented for the reusable launch vehicle (RLV)
during the reentry phase. By introducing the fractional order
sliding surface to replace the integer order one, we design robust
outer loop controller to compensate the error introduced by
inner loop controller designed by dynamic inversion approach. To
take the uncertainties of aerodynamic parameters into account,
stochastic robustness design approach based on the Monte Carlo
simulation and Pigeon-inspired optimization is established to
increase the robustness of the controller. Some simulation results
are given out which indicate the reliability and effectiveness of
the attitude control system.

Index Terms—Attitude control, fractional calculus, pigeon-
inspired optimization, reusable launch vehicle (RLV), sliding
mode control.

I. INTRODUCTION

W ITH the necessity of the development of reusable
space transportation system as well as the hypersonic

weapons with high penetration ability and kill efficiency,
reusable launch vehicle (RLV) technology becomes a hot
research field all over the world [1]. Unpowered gliding
reentry vehicle is one of the implementations which have the
aerodynamic configuration with high lift-to-drag ratio (L/D).
During the reentry phase, the flight envelope ranges from over
Mach 20 to Mach 1 and altitude ranges from 100 km to 20 km
[2]. When reusable launch vehicle maneuvers in the so called
near space, the flow field around the vehicle would present
the hypersonic flow dynamic characteristics, such as viscous
interference, thin shock layer, low density effect and so on [3].
Thus, complex coupling between state variables and control
variables, high nonlinear terms and strongly time varying
characteristics take into the dynamics of reentry vehicles.

Facing with these challenges, the guidance and control
technology becomes one of the key issues in the development
process of reusable launch vehicles [4]. Guidance subsystem
leads the vehicle to steer the reference trajectory or predict
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trajectory onboard, while control subsystem stabilizes the atti-
tude and takes attitude maneuver to track guidance commands.
By introducing advanced control theories such as adaptive
control theory, dynamic inversion approach and sliding mode
control, the robustness and effectiveness of the flight control
systems were obviously improved [4], compared with some
classical design techniques such as gain-scheduling methods.
Recently, the dynamic inversion technique was applied into
the flight control law design process, especially in reentry
flight control and high angle of attack maneuver, demonstrated
several advantages [5]. However, it required a precise model to
avoid the error introduced by inversion, which might strongly
influence the control qualities. The saturation of actuators is
also an additional serious problem which should be avoided.
However, another nonlinear control method named sliding
mode control approach as a robust control technique has
been widely applied in the flight control law design which
could tolerate the uncertainties of models and disturbance.
Unfortunately, there are some problems when applying the
sliding mode method directly. For example, the order of the
sliding mode method would be high when the controlled model
is complex, which might make the algorithm difficult to be
employed.

Fractional calculus theory, which is about integration and
differential with non-integer orders, has a rapid development
with an increasing attention since hundred years ago. More and
more attention focuses on the application of fractional calculus
in the modeling and control in engineering viewpoint [6].
Some designs based on fractional calculus for flight control
system also present the possibility of the application and the
advantages compared with traditional integer control approach
[7]. In general, the fractional order of integral or derivation
is more flexible and widely used than the integer order. To
introduce the fractional calculus in these control method,
the performance of closed-loop systems could probably be
improved and control inputs could be reduced. Therefore,
applying fractional calculus in reusable launch vehicle attitude
control would be a beneficial trial.

In fact, the uncertainties of aerodynamic coefficients are
also necessary to be taken into consideration in the process
of control law design. It demands that the control system
could tolerate these uncertainties of the coefficients and
endure any dispersion. In order to improve the robustness of
control system, the stochastic robustness method based on
Pigeon-inspired optimization is introduced. By this procedure,
the optimal parameters of the controller have been obtained
and the controller is optimal in terms of stochastic robustness.
Therefore, a combined and robust control structure based
on stochastic robustness design method is established to
overcome these challenges mentioned previously. In this
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structure, the dynamic inversion is applied to design the inner
loop controller, while the fractional sliding mode approach is
applied to design the outer loop controller. The fractional slid-
ing mode approach could weak the integral action and decrease
the control input. It could also smooth the time history of
controlled variables. The stochastic robustness method based
on PIO algorithm allows us to obtain the optimal controller
in terms of stochastic robustness. The organization of this
paper is as follows. In Section II, the description of the
reusable launch vehicle model is presented. In Section III,
the control system including control law and control allocation
algorithm is established. The control law is based on fractional
sliding mode control (FSMC) and dynamic inversion (DI)
approach, and the control allocation algorithm is a commonly
used algorithm. In Section IV, the stochastic robustness design
method based on a new swarm intelligent algorithm, i.e.,
pigeon-inspired optimization is introduced, based on which
we design stochastic robustness optimal controller. In Section
V, we give the design examples and simulation results to
demonstrate the robustness and effectiveness of the control
system, and the influence of different fractional orders of
FSMC to the closed-loop system is discussed.

II. ATTITUDE CONTROL PROBLEM

A. Mathematical Model of Attitude Dynamics
The mathematical equations of reentry dynamics consist of

the translational motion associated with flight path variables
and the rotational motion associated with attitude angles which
used to be aerodynamic angles during the reentry phase. The
three-degree-of-freedom model of unpowered reentry attitude
dynamics is given out as follows [8]:

α̇ = q − (p cos α + r sinα) tan β − γ̇ cos µ/ cos β

− χ̇ cos γ sinµ/ cos β (1)

β̇ = p sinα− r cos α− γ̇ sinµ + χ̇ cos γ cos µ (2)
µ̇ = p cos α/ cos β + r sinα/ cos β

+ χ̇(sin γ + tanβ sinµ cos γ) + γ̇ tanβ cos µ (3)

where α is the angle of attack, β is the angle of sideslip, µ is
the bank angle, γ is the flight-path angle, and χ is the airspeed
heading angle.

The rotational dynamic equation is as follows:

ṗ = IlpMx + InpMz +
(Iy − Iz)Iz − I2

xz

IxIz − I2
xz

qr

+
(Ix − Iy + Iz)Ixz

IxIz − I2
xz

pq (4)

q̇ = ImqMy +
Iz − Ix

Iy
pr − Ixz

Iy
(p2 − r2) (5)

ṙ = IlrMx + InrMz +
Ix(Ix − Iy) + I2

xz

IxIz − I2
xz

pq

− (Ix − Iy + Iz)Ixz

IxIz − I2
xz

qr (6)

Ilp =
Iz

IxIz − I2
xz

, Inp =
Ixz

IxIz − I2
xz

, Imq =
1
Iy

Ilr =
Ixz

IxIz − I2
xz

, Inr =
Ix

IxIz − I2
xz

(7)

where ~w = (p, q, r)T are the roll rate, the pitch rate and the
yaw rate, ~M = (Mx,My,Mz)are the moments acting on the
vehicle, consisting of aerodynamic trim moments and control
torques generated by aerodynamic surfaces and reaction con-
trol systems.

I =

[
Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

]

which is the inertia matrix.

B. Improved Aerodynamic Model of RLV
The aerodynamic moments generated by the aerodynamic

control surfaces could be calculated by the following standard
formulation:

L̄ = Cl,totalqbarSLref (8)

M = Cm,totalqbarSLref (9)

N = Cn,totalqbarSLref (10)

where L̄ is the roll aerodynamic moment, M is the pitch
aerodynamic moment, N is the yaw aerodynamic moment,
qbar is the dynamic pressure, S is the reference area, Lref is
the reference length, Cl,total is the non-dimensional roll mo-
ment coefficient, Cm,total it he non-dimensional pitch moment
coefficient, and Cn,total is the non-dimensional yaw moment
coefficient.

The reusable launch vehicle used in this study is configured
with several aerodynamic surfaces: four body flaps placed at
the tail, two elevons and one rudder. In order to simplify
the relationship between the motion channel and the control
surface deflection, nominal control surfaces are introduced to
replace the actual aerodynamic surfaces with the transforma-
tional matrix as follows [9]:



0 0 0 0 0.5 −0.5 0
0 0 0 0 0.5 0.5 0
0 0 0 0 0 0 1

0.5 0.5 0 0 0 0 0
0 0 0.5 0.5 0 0 0

0.5 −0.5 0.5 −0.5 0 0 0







δLLBP

δLRBP

δULBP

δURBP

δWL

δWR

δr




=




δa

δe

δr

δf+

δf−
δ∆f




.

(11)

As for our specific developed reentry vehicle, the orig-
inal formulations of the moment coefficients are shown in
(12)−(14) [10].

Cl,total = Clβ,basicβ + ∆Cl,BF + ∆Cl,rudder

+ ∆Cl.Elevon + ∆Clβ,GEβ + ∆Clβ,LGβ

+ ∆Clp
pb

2V
+ ∆Clr

rb

2V
(12)

Cm,total = Cm,basic + ∆Cm,BF + ∆Cm,Elevon

+ ∆Cm,rudder + ∆Cm,GE + ∆Cm,LG + ∆Cmq
qc

2V
(13)

Cn,total = Cnβ,basicβ + ∆Cn,BF + ∆Cn,elevon

+ ∆Cn,rudder + ∆Cnβ,GEβ + ∆Cnβ,LGβ

+ ∆Cnp
pb

2V
+ ∆Cnr

pr

2V
. (14)

According to the relations between the actual surfaces and
nominal surfaces, and converting the aerodynamic coefficients
to the aerodynamic derivatives by Ci,j = ∆Ci,j/∆δj , the
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developed formulation of the moment coefficients could be
obtained as follows:

Cl,total = Clβ,basicβ + Clδa
δa

+ Clδrδr + Clδ∆f
δ∆f + Clp

pb

2V
+ Clr

rb

2V
(15)

Cm,total = Cm,basic + Cmδe
δe

+ Cmδf+δf+ + Cmδf−δf− + ∆Cmq
qc

2V
(16)

Cn,total = Cnβ,basicβ + Cnδaδa

+ Cnδr
δr + Cnp

pb

2V
+ Cnr

pr

2V
(17)

where δ = [δa δe δr δf+ δf− δ∆f ] is deflection vector of the
aerodynamic control surfaces ranking as the aileron, elevator,
rudder, body flap positive deflection, body flap negative de-
flection and body flap differential deflection.

These aerodynamic coefficients and derivatives mentioned
above could be obtained from the complete set of the coef-
ficient and derivative lookup table vs Mach and AOA using
interpolation algorithm.

C. Attitude Control Strategy

In the design process of reentry flight attitude control
law, adequate engineering practices present the feasibility
and effectiveness of the application of time-scale separation
principle to deal with the flight state variables [5], [11]. The
aerodynamic angles including angle of attack and slip slide
angle and bank angle are regarded as the slow variables of the
outer loop, while the angle rates around body axis are regarded
as the fast variables of the inner loop. Dual loop control
framework could be designed for the inner loop and outer loop:
the function of inner loop controller is to track the angular rate
commands generated by the outer loop, while the outer loop
controller operates to control aerodynamic commands.

In this study, dynamic inversion approach is chosen to
design the dual loop controller and obtain three channel
decoupling model of aerodynamic angles, and sliding mode
technique improved by fractional calculus is used to design
to provide the desired time-scale separation [2]. Thus, when
guidance commands are given out from guidance subsystem,
the required total control torque would be generated by the
control law. The control torque allocation algorithm presents
the mapping relation between the control torque and control
surface deflections. By combining control law and control
torque allocation, the complete attitude control system is
established. The framework of the whole system is shown in
Fig. 1.

Fig. 1. The diagram of control system.

III. IMPLEMENTATION OF THE ATTITUDE CONTROL
SYSTEM

A. Fractional Calculus and Approximate Form of Fractional
Calculus Operator

The Caputo’s definition of the fractional derivative of order
α with respect to variable t and initial point at t = 0 is as
follows [12]:

0D
α
t f(t) =

1
Γ(1− δ)

∫ t

0

f (m+1)(τ)

(t− τ)δ
dτ

(α = m + δ; m ∈ Z; 0 < δ ≤ 1) (18)

where Γ(·) is the gamma function [12]:

Γ(ξ) =
∫ ∞

0

e−mmξ−1dm. (19)

The Grunwald-Letnikov’s fractional derivative of order m
is defined as follows:

aDm
t f(t) = lim

h→∞
h−m

t−m
h∑

j=0

(−1)j

(
m
j

)
f(t− jh) (20)

where h is the step size, a is the lower limit of integral and t is
the upper limit of integral. The Laplace transform of fractional
derivative is given as follows:

L{0Dα
t f(t)} = sαF (s)− [0Dα−1

t f(t)]t=0 (21)

L{0D−α
t f(t)} = s−αF (s). (22)

One of the digital implement of fractional derivative is
using the discrete filter to approximate it which can be easily
applied in engineering practice [13]. In this study, the directly
discretization method is conducted to obtain the equivalent dis-
crete filter. Firstly, apply Tustin mapping function to transform
the fractional derivative from S domain to Z domain:

s±α = (w(z−1))
±α

(23)

where w(·) is the Tustin mapping function as follows:

w(z−1) =
2
T

1− z−1

1 + z−1
. (24)

Then the CFE (continued fraction expansion) method is
used to obtain the rationalization result of the fractional
derivative model in Z domain. The whole procedure of Tustin
with CFE method is as follows [14]:

D±α
E (z)=

(
1
T

)±α

CFE{(1− z−1)
±α}p,q =

(
1
T

)±α
Pp(z−1)
Qq(z−1)

(25)

B. Dual Loop Control Law Designed by Nonlinear Dynamic
Inversion Approach

According to time-scale separation principle, control law
could be designed separately for the fast loop variables and
the slow loop variables. It is assumed that the dynamic of fast
loop is so fast that does not affect the responses of slow loop.

For the fast loop, a first-order desired dynamic could be
chosen as follows [2], [5]:

[
ṗ
q̇
ṙ

]

des

= Kw

( [
pc

qc

rc

]
−

[
p
q
r

] )
. (26)
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Combined with the rotational dynamic (4)−(6), the required
total torque could be calculated as follows:

[
Mx

My

Mz

]
=

[
Ilp 0 Inp

0 Imq 0
Ilr 0 Inr

]−1

×




[
ṗ
q̇
ṙ

]

des

−




(Iy−Iz)Iz−I2
xz

IxIz−I2
xz

qr + (Ix−Iy+Iz)Ixz

IxIz−I2
xz

pq
Iz−Ix

Iy
pr − Ixz

Iy
(p2 − r2)

Ix(Ix−Iy)+I2
xz

IxIz−I2
xz

pq − (Ix−Iy+Iz)Ixz

IxIz−I2
xz

qr





 .

(27)

Subtracting the basic aerodynamic moments and damping
aerodynamic moments from the total required torque, the
required control torque is obtained as in (28).

Mc = M −Ma. (28)

The fast loop control law allows the angular rates to be able
to track the angular rate commands, while the angular rate
commands are generated by the slow loop. The characteristics
of fast loop dynamic such as the bandwidth depend on
parameter Kw.

For the slow loop, the rotational motion equations about
aerodynamic angles could be rearranged in vector form as
follows [2]:




α̇

β̇
µ̇


 =

[− cos α tanβ 1 − sinα tanβ
sinα 0 − cos α

cos α/ cos β 0 sin α/ cos β

][
p
q
r

]
+

[
vα

vβ

vµ

]

= L

[
p
q
r

]
+

[
vα

vβ

vµ

]
(29)

[
vα

vβ

vµ

]
=

[ −1/ cos β(γ̇ cos µ + χ̇ cos γ sinµ)
χ̇ cos µ cos γ − γ̇ sinµ

γ̇ cos µ tanβ + χ̇(cos γ sinµ tanβ + sin γ)

]
.

(30)

When β satisfies the inequality β 6= ±90◦, matrix L is
invertible, while in the reentry flight phase this condition is
always satisfied. Thus, assuming v is the virtual control input,
the fast loop input, i.e., angular rate commands could be
obtained as follows:

[
p
q
r

]

c

=

[0 sin α cos α cos β
1 0 sin β
0 − cos α sinα cos β

](
v −

[
vα

vβ

vµ

])
. (31)

According to time-scale separation principle, the fast loop
dynamic is so fast compared with the dynamic of the slow
loop which allows us to suppose that the angular rate is equal
to the angular rate command.

By introducing the dual loop control law, the three channels
have been decoupled and a linear system is obtained as
follows:




α̇

β̇
µ̇


 = v. (32)

C. Sliding Mode Control Design Based on Fractional Calcu-
lus

For the decoupling linear system about three aerodynamic
angle channels, a sliding mode control law based on fractional
calculus is designed to obtain the virtual control input v of
dual loop dynamic inversion law and compensating the error
generated by dynamic inversion approach.

First, define the attitude error as in (33), and choose the
fractional sliding surface function as in (34).

e = [αc − α βc − β µc − µ]T (33)

S = e + K · 0Dt
λe. (34)

The fractional exponential reaching law is chosen as fol-
lows:

0Dt
ηS = −κS − σ sign(S) (35)

where the parameters above are defined as:

κ = diag{κα, κβ , κµ}, σ = diag{σα, σβ , σµ}
κα, κβ , κµ > 0; σα, σβ , σµ > 0.

Combine (34) and (35), the virtual control input v could be
obtained.

Ṡ =
d

dt
(e + K · 0Dt

λe)

= ė + K · 0Dt
λ+1e = 0Dt

1−η(−κS − σ sign(S)) (36)

v=




α̇

β̇
µ̇




=




α̇c+kα0Dt
λ+1(αc−α) + 0Dt

1−η[καSα+σα sign(Sα)]
β̇c+kβ0Dt

λ+1(βc−β) + 0Dt
1−η[κβSβ+σβ sign(Sβ)]

µ̇c+kµ0Dt
λ+1(µc−µ) + 0Dt

1−η[κµSµ+σµ sign(Sµ)]




(37)

where S = [Sα Sβ Sµ]T . In the next, Dλ is used to replace
the description 0Dt

λ.

D. Control Allocation Algorithm
The control law designed above generates the required

control torque command to steer the guidance commands,
while the control torque is generated by vehicle’s control sur-
faces. For reentry vehicles, they always configure with hybrid
control surfaces including aerodynamic control surfaces and
reaction control systems (RCS). During early reentry phase,
both aerodynamic control surfaces and RCS are operated,
while pure aerodynamic control surfaces are operated during
final reentry phase. In this study, the terminal of reentry phase
is focused on and pure aerodynamic control surfaces are used
to generate all the control torques:

[
Mcx

Mcy

Mcz

]
= qSLrefC




δa

δe

δr

δf+

δf−
δ∆f




= qSLrefCδ (38)

where C is the control matrix with aerodynamic derivatives:

C =




Clδa
0 Clδr

0 0 Clδ∆f

0 Cmδe
0 Cmδf+ Cmδf− 0

Cnδa 0 Cnδr 0 0 0




(39)
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rank(C) = 3. (40)

The reference control allocation strategy is chosen in [8],
[15]:

δc,rtd = Q−1CT [CQ−1CT ]
−1 Mc

qSLref
. (41)

If the rated deflection of aerodynamic surfaces is saturated,
the saturated value is chosen to be the deflection command,
although it is important to try to avoid these conditions.

IV. PRINCIPLES OF PIO ALGORITHM AND STOCHASTIC
ROBUSTNESS DESIGN

A. PIO Algorithm Description and Principles
PIO algorithm, firstly proposed by Duan and Qiao, is a

swarm intelligence algorithm inspired by the behavior of
homing pigeons [16]. As presented in [16], homing pigeons
are considered to go home by three homing tools: magnetic
field, sun and landmarks. The homing behaviors depending on
different homing tools are mapping to the update formulations
in this new evolution algorithm. The detailed description of
PIO is as follows [16]:

Individual in the pigeon swarm is initialized with initial
velocity Vi and the initial position Xi in D-dimension research
space randomly, while the position is the vector formed by
parameters to be optimized and the velocity is the vector
to update the position vector. Each individual is related to
a value named the fitness value which is the cost function
and always depends on the position of the individual. The
evolution algorithm is to find the best position which has the
maximum or minimum cost function. Two operators, map and
compass operator and landmark operator, are introduced to
model the two homing behaviors as mentioned early. At the
early moment, pigeons are supposed to adjust their direction to
the destination by the map shaped in their brains and compass.
Thus, in this map and compass operator, the pigeon is trend to
the global best position by the update formulations as follows:

Vi(t) = Vi(t− 1) · e−Rt + rand · (Xg,best −Xi(t− 1)) (42)

Xi(t) = Xi(t− 1) + Vi(t) (43)

where R is defined as the map and compass factor, Xg,best

denotes the global best position among all individual in current
iteration, rand signifies a random number.

With pigeons approaching to the destination, they switch
their homing tool from map and compass to landmark, which
means the landmark operator starts. In the landmark operator,
pigeons are halved in every iteration generation. The pigeons
which are familiar to the landmark fly straight to the desti-
nation, while others are supposed to follow the ones which
are familiar to the landmark. In this model, the destination
is regarded as the center of all pigeons in current iteration
generation and can be calculated by weighted average of the
position, the formulation is as follows:

Xc(t) =

∑
Np

Xk(t) · fitness(Xk(t))
∑
Np

fitness(Xk(t))
. (44)

In addition, the number of pigeons would be updated as
follows:

Np(t) =
Np(t− 1)

2
. (45)

In this operator, the update formulation of the position of
pigeons can be written as follows:

Xi(t) = Xi(t− 1) + rand · (Xc(t)−Xi(t− 1)). (46)

Several papers indicate the effectiveness and robustness to
solve some optimization problems or converted optimization
problem, such as target detection, air robot path planning
problem, UAVs formation cooperative control problem and so
on [16]−[19]. In this study, PIO algorithm is selected to design
parameters of the controller using stochastic robustness design
method.

B. Stochastic Robustness Design Method
Due to the difficulties of the application of classical robust

control theoretics in engineering practice, R.F. Stengel et al.
introduced the concept of stochastic robustness and estab-
lished a new robust control design method named stochastic
robustness analysis and design (SRAD) in 1990s, which has
been widely applied in engineering practice especially in flight
control area in the past years [20]−[22].

In Stengel’s theoretic, for linear time invariant (LTI) sys-
tem, suppose that there are uncertain parameters v ∈ Q, the
instability probability can be defined as follows [23]:

Pinstability = 1−
∫

v∈Q,g(v)≤0

f(x)dx (47)

where g(v) = [σ1(v)σ2(v) · · ·σn(v)]T is the vector formed
by the real parts of the eigenvalues of closed-loop system,
f [g(v)] is the combined probability density distribution func-
tion. In practical application, the instability probability can
be calculated by sample frequency calculation instead of the
integral calculation, i.e.,

∫

v∈Q,g(v)≤0

f(x)dx = lim
N→∞

M [gmax(v) ≤ 0]
N

∣∣∣∣
v∈Q

(48)

where gmax(v) = max{σ1(v), σ2(v), . . . , σn(v)}, M(·) is the
number of the maximum real part of eigenvalue less than zero
in N times estimates. Moreover, the stochastic robust stability
and stochastic robust performance can be introduced.

Similar to the definition of the instability probability, the
probability that the dynamic out of performance envelope or
the control variable saturated could be weighted summed to
describe the performance of the closed-loop system. The sum
is which named stochastic robustness cost function. When the
structure of the controller has been chosen, the parameters of
the controller can be designed by optimizing the cost function.
The optimal control law from the point of stochastic robustness
concepts is obtained.

For each performance demand, a two-valued indicator func-
tion is introduced to tell whether the closed-loop system
satisfies this requirement in once simulation:

I[G(v), C(d)] =
{

0, satified,
1, unsatified,

v ∈ Q (49)

where d is the parameters to be designed, Q is the value set
of uncertain parameters. Supposing that f(v) is the combined
probability density distribution function about v, the probabil-
ity that closed-loop system violate this performance demand
can be defined as follows [20]:

p =
∫

v∈Q
I[G(v), C(d)]f(v)dv. (50)
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In practical application, this integral can be approximately
calculated through Monte-Carlo simulation:

p̂ =
1
N

N∑

k=1

I[H(vk), G(d)] (51)

where N is the simulation times, and p̂ is the estimate of the
violate probability.

Synthesize all the performance violate probability and insta-
bility probability, the stochastic robustness cost function can
be defined as follows:

J (d) =
M∑

i=1

[wip̂i (d)] (52)

where wi is the weight, and M is the number of the indicators.
After the stochastic robustness cost function is defined, the

last step is to use an optimization method to optimize this
cost function. PIO algorithm introduced previously is applied
in this optimization procedure. So far, the main principle of
the stochastic robustness method has been presented.

V. SIMULATION RESULTS AND ANALYSIS

In this section, the simulation results of the closed-loop
system composed of the RLV and the controller designed
by stochastic robustness design method are presented. Firstly,
some simulation parameters setting are given out at the begin-
ning of this section.

The test flight condition of the reusable launch vehicle is
selected to give a design instance and evaluate the performance
of the controller. This flight condition is selected refer to the
flight envelope of the X-38. The flight condition selected is in
Table I.

TABLE I
THE SELECTED FLIGHT CONDITION

h (m) Ma γ dγ/dt χ dχ/dt

30 000 2.8 −5 0 0 0

The evaluation commands are: angle of attack 5 degree step
command, angle of side slip remains at the zero point, bank
angle −5 degree step command.

The uncertainties of aerodynamic coefficients are supposed
to subject to normal distribution, i.e.,:

v ∼ N(1, 0.152), Cij = vCij (53)

where Cij is the aerodynamic coefficients.
The design process goes for the different fractional order of

the fractional SMC to give a preliminary study of the influence
of the fractional orders. The parameters and performance
indicators of stochastic robustness design method are set as in
Table II, while the simulation times of Monte Carlo simulation
N = 50.

The parameters to be optimized are the control parameters:
d = [kw kα kβ kµ σα σβ σµ κα κβ κµ]T .

The parameters of PIO algorithm are set as follows: the
number of pigeon n = 20, the map and compass operator
R = 0.02, the iteration times of the map and compass operator
T1 = 30, the iteration times of landmark operator T2 = 5.

Case 1: In this case, the stochastic robustness design for
selected fractional order is focused on and the Monte-Carlo
simulation is carried out to evaluate the designed parameters
of the controller.

TABLE II
THE STABILITY AND PERFORMANCE METRICS

Index Weight Indicator Performance demand

1 8 I1 outputs convergence

2 0.1 I2 Regulation time at point 10% less than 1s

3 1 I3 Regulation time at point 10% less than 2s

4 1 I4 Overshoot less than 20%

5 0.1 I5 Overshoot less than 10%

6 1 I6 Deflection of aileron less than 40 deg

7 0.5 I7 Deflection of aileron less than 30 deg

8 1 I8 Deflection of elevator less than 40 deg

9 0.5 I9 Deflection of elevator less than 30 deg

10 1 I10 Deflection of rudder less than 40 deg

11 0.5 I11 Deflection of rudder less than 30 deg

12 1 I12 Deflection of body flap less than50 deg

13 0.5 I13 Deflection of body flap less than 40 deg

The fractional order of FSMC selected: λ = −0.8, η = 0.9.
The result of design parameter is:

d = [1.8359 1.0651 2.1960 1.0364 3.4948× 10−5

8.1261× 10−5 6.2807× 10−5 0.7458 1.2157 1.4024]

Fig. 2 shows the history of the stochastic robustness cost
function in the design process based on PIO algorithm. Then
the Monte-Carlo simulation goes for the closed loop system
with the designed control parameters. Fig. 3 is the simulation
results from which we can evaluate the robustness of the
control system. The time history of attitude angles shows
that they can steer the evaluation step command quickly and
robustly though angle of attack has a tolerant steady-state error.

Fig. 2. The fitness value curve of PIO algorithm.

From the simulation results, the controller based on FSMC
and DI can tolerate the uncertainties of aerodynamic parame-
ters through the stochastic robustness design process.

Case 2: In this case, the design results based on stochastic
robustness design method for the different fractional orders
are compared, from which we can find out the influence of
the fractional order in FSMC to the closed loop system.

Six groups of the fractional order are selected:

λ1 = −1, η1 = 0.9; λ2 = −0.9, η2 = 0.9
λ3 = −0.8, η3 = 0.9; λ4 = −0.7, η4 = 0.9
λ5 = −0.7, η5 = 1; λ6 = −1, η6 = 1.
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Fig. 3. Results of Monte Carlo simulation experiments.

These groups include different fractional order in the slid-
ing surface function and fractional reaching law, as well as
integral order sliding surface and reaching law. Through the
stochastic robustness design procedure above, we obtain the
optimal design parameters of the each controller with different
fractional orders and integral order. The simulations of these
closed-loop systems with different FSMC and SMC have been
carried out. Fig. 4 gives the compared results of these closed-
loop systems.

It should be noted that in these figures, symbol a represents
the fractional integral order, while symbol b represents the
fractional integral order. These compared results show how the

different fractional orders in FSMC influence the performance
of the closed loop system. For the group 1 to group 4, these
groups all have the same fractional order of the reaching law
and different fractional order of the sliding surface. The group
2 and group 3 have the similar performance, the response
of the attitude angle is smoother and faster which means a
shorter settling time and a smaller overshoot. Compared the
control surface deflection, the group 2 and group 3 have a
smaller control effectors but the group 1 and group 4 have
one aerodynamic surface saturated. With the above factors
combined, the group 2 and group 3 have more desirable
performance. By Comparing the group 3 with the group 6
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Fig. 4. Results of simulation experiments of different FSMC.

which has integral order sliding surface and reaching law,
we can see that the attitude angle response of group 3 is
smoother and faster than that of group 6. The control surface
deflection in the group 6 is smaller than that in the group
3. Comparing the group 1, group 4, group 5 and group 6,
we can see that the fractional order obviously influence the
control variables. So the optimal fractional order or integral
order in FSMC should been chosen by taking both the dynamic
characters and control effects into count. In this study, the
stochastic robustness design method for the different fractional
orders also influence the performance of these controllers. The
more credible mean to find the optimal fractional order in the

controller remains a question.

VI. CONCLUSIONS

In this paper, we have established a robust controller for
reusable launch vehicle based on fractional sliding mode tech-
nology and dynamic inversion approach. For the parameters
of the controller, stochastic robustness design method based
on PIO algorithm and Monte-Carlo simulations is applied to
obtain the optimal values. The influence of different fractional
order of the FSMC to the performance of closed loop system is
discussed. The experimental results validate the effectiveness



XUE AND DUAN: ROBUST ATTITUDE CONTROL FOR REUSABLE LAUNCH VEHICLES BASED ON FRACTIONAL CALCULUS · · · 97

and robustness of the combined robust controller when con-
sidering sufficient dispersion of aerodynamic coefficients. In
addition, the fractional orders in sliding mode method improve
the performance of the closed-loop system.

It should be pointed out that FSMCs with several different
fractional orders in our control law are designed to com-
pare the performance of the closed-loop systems. The direct
analysis to obtain the optimal fractional order in FSMC for
the closed-loop system has not been given out. In addition,
how to simply the algorithm and make it more convenient in
engineering is still a challenge. The more relative further work
and details would be conducted in these issues in the future.
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Numerical Solutions of Fractional Differential
Equations by Using Fractional Taylor Basis

Vidhya Saraswathy Krishnasamy, Somayeh Mashayekhi, and Mohsen Razzaghi

Abstract—In this paper, a new numerical method for solving
fractional differential equations (FDEs) is presented. The method
is based upon the fractional Taylor basis approximations. The
operational matrix of the fractional integration for the fractional
Taylor basis is introduced. This matrix is then utilized to reduce
the solution of the fractional differential equations to a system
of algebraic equations. Illustrative examples are included to
demonstrate the validity and applicability of this technique.

Index Terms—Caputo derivative, fractional differential equa-
tions (FEDs), fractional Taylor basis, operational matrix,
Riemann-Liouville fractional integral operator.

I. INTRODUCTION

THE fractional differential equations (FDEs) have drawn
increasing attention and interest due to their important

applications in science and engineering. A history of the
development of fractional differential operators can be found
in [1]−[3].

Many mathematical modelings contain FDEs. To mention a
few, fractional derivatives are used in visco-elastic systems [4],
economics [5], continuum and statistical mechanics [6], solid
mechanics [7], electrochemistry [8], biology [9] and acoustics
[10]. Generally speaking, most of the FDEs do not have exact
analytic solutions. Therefore, seeking numerical solutions of
these equations becomes more and more important. Recently,
several numerical methods to solve FDEs have been given,
such as Fourier transforms [11], Laplace transforms [12], Ado-
mian decomposition method [13], variational iteration method
[14], the power series method [15], truncated fractional power
series method [16], fractional differential transform method
(FDTM) [17], homotopy analysis method [18], fractional-
order Legendre functions method [19], modified homotopy
perturbation method (MHPM) [20] and enhanced homotopy
perturbation method (EHPM) [21].

Moreover, for solving FDEs in [22], the Bernstein polyno-
mials are used to solve the fractional Riccati type differen-
tial equations. In [22], the Bernstein polynomials were first
expanded into fractional Taylor polynomials. The operational
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matrix of fractional differentiation (OMFD) of fractional Tay-
lor polynomials were then used for calculating OMFD for
Bernstein polynomials. In addition, the Chebyshev, Legendre
and Bernoulli wavelets operational matrices of fractional in-
tegration (OMFI) were calculated in [23]−[25], respectively.
For obtaining OMFI in [23], [24], these wavelets were first
expanded into block-pulse functions. Then, OMFI of block-
pulse were used for calculating OMFI for Chebyshev and
Legendre wavelets in [23], [24], respectively. In [25], for
obtaining the OMFI for Bernoulli wavelets, these wavelets
were expanded into Bernoulli polynomials.

In this paper, a new numerical method for solving the initial
and boundary value problems for fractional differential equa-
tions is presented. The method is based upon the fractional
Taylor basis approximations. The OMFI for the fractional
Taylor basis is calculated. This matrix is then utilized to reduce
the solution of the FDEs to the solution of algebraic equations.
This method is applicable for linear equations or nonlinear
equations with square nonlinearities.

The outline of this paper is as follows: In Section II, we in-
troduce some necessary definitions and properties of fractional
calculus. Section III is devoted to the basic formulation of the
fractional Taylor basis. In Section IV, we derive the Fractional
Taylor OMFI. In Section V, the problem statement is given.
Section VI is devoted to the numerical method for solving the
initial and boundary value problems for FDEs and, in Section
VII we report our numerical findings and demonstrate the
accuracy of the proposed numerical scheme by considering
five numerical examples.

II. PRELIMINARIES

A. The Fractional Integral and Derivative

In this section, we present some notations, definitions, and
preliminary facts of the fractional calculus theory which will
be used further in this work.

Definition 1: The Riemann-Liouville fractional integral op-
erator of order α is defined as [12]

Iαy(t) =

{
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds, α > 0

y(t), α = 0.

The Riemann-Liouville fractional integral operator has the
following properties:

Iα tγ =
Γ(γ + 1)

Γ(γ + α + 1)
tγ+α, α ≥ 0; γ > −1 (1)

IαIβy(t) = IβIαy(t) = Iα+βy(t), α, β > 0. (2)
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Also the fractional integral is a linear operator, that is for
constants λ1 and λ2, we have

Iα(λ1y1(t) + λ2y2(t)) = λ1I
αy1(t) + λ2I

αy2(t).
Definition 2: The Caputo fractional derivative of order α is

defined as [12]

Dαy(t) = In−α

(
dn

dtn
y(t)

)
, n−1 < α ≤ n; n ∈ N. (3)

The fractional integral operator and fractional derivative
operator do not commute in general, but we have the following
property

Iα(Dαy(t)) = y(t)−
n−1∑

k=0

y(k)(0)
tk

k!
. (4)

III. THE PROPERTIES OF FRACTIONAL TAYLOR BASIS

A. Fractional Taylor Basis Vector

In this paper, we define the fractional Taylor basis vector as

Tmγ(t) = [1, tγ , t2γ , . . . , tmγ ]T (5)

where m is a positive integer and γ > 0, is a real number.

B. Function Approximation

Let H = L2[0, 1], and assume that Tmγ(t) ⊂ H , S = span
{1, tγ , t2γ , . . . , tmγ} and y be an arbitrary element in H . Since
S is a finite dimensional vector subspace of H , y has a unique
best approximation out of S such as y0 ∈ S, that is

∀ŷ ∈ S, ||y − y0|| ≤ ||y − ŷ||.
Since y0 ∈ S, there exist unique coefficients

c0, c1, c2, . . . , cm, such that

y ' y0 =
m∑

i=0

cit
iγ = CT Tmγ(t) (6)

where
CT = [c0, c1, c2, . . . , cm]. (7)

C. Error Bound for the Best Approximation

To obtain the error bound for the best approximation, we
use the following formula.

Generalized Taylor formula [15]: Suppose that Dkγy(t) ∈
C[0, 1] for k = 0, 1, . . . , m, where 0 < γ ≤ 1, then

y(t) =
m∑

i=0

(t)iγ

Γ(iγ + 1)
[Diγy(t)]t=0 + Rγ

m(t, 0) (8)

where Diγ = DγDγ · · ·Dγ︸ ︷︷ ︸
i times

, with Dγ defined similar to Dα

in (3), and

Rγ
m(t, 0) =

(t)(m+1)γ

Γ((m + 1)γ + 1)
[D(m+1)γy(t)]t=ξ

0 ≤ ξ ≤ t; ∀t ∈ [0, 1].

Theorem 1: Let y0 be the best approximation of y out of S
and suppose Dkγy(t) ∈ C[0, 1], k = 0, 1, . . . , then

||y(t)− y0(t)||L2[0,1] ≤
Mγ

Γ((m + 1)γ + 1)

√
1

2(m + 1)γ + 1

where
Mγ = sup

t∈[0,1]

|D(m+1)γy(t)|.

Proof: Similar to [19], since y0 is the best approximation
of y out of S, by using (8) we have

||y − y0||2L2[0,1]≤
M2

γ

(Γ((m + 1)γ + 1))2
∫ 1

0
(t)2(m+1)γdt

=
M2

γ

(Γ((m + 1)γ + 1))2
1

2(m + 1)γ + 1
. (9)

By using (9), the result can be obtained. ¥

D. Error Bound for Fractional Integration

In this section we obtain the error bound for Iαy(t).
Theorem 2: Suppose all the conditions in Theorem 1 are

true and α > 1, then
||Iαy(t)− Iαy0(t)||L2[0,1]

≤ Mγ

Γ((m + 1)γ + 1)Γ(α)

√
1

2(m + 1)γ + 1
.

Proof: By using Definition 1, we have

||Iαy(t)− Iαy0(t)||L2[0,1]

= ||Iα (y(t)− y0(t)) ||L2[0,1]

≤ 1
Γ(α)

∫ t

0

||(t− s)α−1(y(s)− y0(s))||L2[0,1] ds

≤ 1
Γ(α)

∫ 1

0

||(1− s)α−1(y(s)− y0(s))||L2[0,1] ds

≤ 1
Γ(α)

∫ 1

0

||(y(s)− y0(s))||L2[0,1] ds. (10)

By using (9) and (10), the result can be obtained. ¥

IV. THE OPERATIONAL MATRICES

A. Operational Matrix of the Fractional Integration

In this section we derive the fractional Taylor operational
matrix of the fractional integration.

By using (1) and (5), we have

Iα(Tmγ(t)) =
[

1
Γ(α + 1)

tα,
Γ(γ + 1)

Γ(γ + α + 1)
tγ+α,

Γ(2γ + 1)
Γ(2γ + α + 1)

t2γ+α, . . . ,
Γ(mγ + 1)

Γ(mγ + α + 1)
tmγ+α

]T

= tαFαTmγ(t) (11)

where

Fα = diag
[

1
Γ(α + 1)

,
Γ(γ + 1)

Γ(γ + α + 1)
,

Γ(2γ + 1)
Γ(2γ + α + 1)

,

. . . ,
Γ(mγ + 1)

Γ(mγ + α + 1)

]
.

Equation (11) can be rewritten as

Iα(Tmγ(t)) = tαGα ∗ Tmγ(t) (12)

where
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Gα =
[

1
Γ(α + 1)

,
Γ(γ + 1)

Γ(γ + α + 1)
,

Γ(2γ + 1)
Γ(2γ + α + 1)

,

. . . ,
Γ(mγ + 1)

Γ(mγ + α + 1)

]T

and * denotes term by term multiplication of two matrices of
the same dimensions.

B. Operational Matrix of Product

The following property of the product of two fractional
Taylor vectors will also be used.

Iα(Tmγ(t)TT
mγ(t)) = tαSα ∗ (Tmγ(t)TT

mγ(t)) (13)

where Sα is given by
Sα =



1
Γ(α+1)

Γ(γ+1)
Γ(γ+α+1) . . . Γ(mγ+1)

Γ(mγ+α+1)

Γ(γ+1)
Γ(γ+α+1)

Γ(2γ+1)
Γ(2γ+α+1) . . . Γ((m+1)γ+1)

Γ((m+1)γ+α+1)

Γ(2γ+1)
Γ(2γ+α+1)

Γ(3γ+1)
Γ(3γ+α+1) . . . Γ((m+2)γ+1)

Γ((m+2)γ+α+1)

...
...

. . .
...

Γ(mγ+1)
Γ(mγ+α+1)

Γ((m+1)γ+1)
Γ((m+1)γ+α+1) . . . Γ(2mγ+1)

Γ(2mγ+α+1)




.

(14)

To illustrate the calculation procedure, by using (5), we have

Tmγ(t)TT
mγ(t)

=




1 tγ t2γ · · · tmγ

tγ t2γ t3γ · · · t(m+1)γ

t2γ t3γ t4γ · · · t(m+2)γ

...
...

...
. . .

...
tmγ t(m+1)γ t(m+2)γ · · · t2mγ




. (15)

From (1) and (15), we get (16), shown at the bottom of the
page.

Therefore from (13) and (15), we get Sα in (14).

V. PROBLEM STATEMENT

In this paper we focus on the following FDE problems [24].

A. Problem a

Caputo fractional differential equation

Dαy(t) = f(t, y(t), Dβy(t))
0 ≤ t ≤ 1; 0 < α ≤ 2; 0 ≤ β ≤ α

(17)

with the initial conditions

y(0) = Y0, y′(0) = Y1. (18)

The existence and uniqueness results for solution of this
problem are given in [26].

B. Problem b

Caputo fractional differential equation in (17) with the
boundary conditions

y(0) = Y0, y(1) = Ȳ1. (19)

For this problem, we have the following Lemma 1.
Lemma 1: Assume that f : [0, 1]×R×R→ R is continuous.

Then y(t)∈C[0, 1] is a solution of the boundary value problem
in (17) and (19) if and only if y(t) is the solution of [24].

y(t) = Iαf(t, y(t), Dβy(t))−tIαf(1, y(1), Dβy(1))
+(Ȳ1 − Y0)t + Y0.

(20)
The existence and uniqueness results for solution of this

problem are given in [24].

VI. THE NUMERICAL METHOD

In this section, we use the fractional Taylor vector in (5)
for solving Problem a given in (17) and (18) and Problem b
given in (17) and (19).

A. Problem a

In this case, by using (4) and (17), we have

y(t)−
n−1∑

k=0

yk(0)
tk

k!
= Iαf(t, y(t), Dβy(t)). (21)

———————————————————————————————————————————————————–

Iα(Tmγ(t)TT
mγ(t)) =




1
Γ(α+1) t

α Γ(γ+1)
Γ(γ+α+1) t

γ+α . . . Γ(mγ+1)
Γ(mγ+α+1) t

mγ+α

Γ(γ+1)
Γ(γ+α+1) t

γ+α Γ(2γ+1)
Γ(2γ+α+1) t

2γ+α . . . Γ((m+1)γ+1)
Γ((m+1)γ+α+1) t

(m+1)γ+α

Γ(2γ+1)
Γ(2γ+α+1) t

2γ+α Γ(3γ+1)
Γ(3γ+α+1) t

3γ+α . . . Γ((m+2)γ+1)
Γ((m+2)γ+α+1) t

(m+2)γ+α

...
...

. . .
...

Γ(mγ+1)
Γ(mγ+α+1) t

mγ+α Γ((m+1)γ+1)
Γ((m+1)γ+α+1) t

(m+1)γ+α . . . Γ(2mγ+1)
Γ(2mγ+α+1) t

2mγ+α




(16)
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Substituting (6) and (18) in (21), we obtain

CT Tmγ(t)−Y0−Y1t = Iαf
(
t, CT Tmγ(t), Dβ(CT Tmγ(t)

)
.

(22)
Next, we use the operational matrices obtained in Section

4 as needed and collocate (22) at the following equidistant
nodes ti given by

ti =
i

m
, i = 0, 1, 2, . . .m. (23)

These equations give m+1 algebraic equations, which can
be solved for the unknown vector CT using Newton’s iterative
method. It is known that the initial guess for Newton’s iterative
method is very important. According to the conditions in (18)
the solution y(t) will pass through the point (0, Y0) and have
a slope Y1 at this point. We choose our initial guess y0(t) such
that y0(t) = Y1t + Y0.

B. Problem b

For Problem b, by substituting (6) in (20) we get (24),
shown at the bottom of the page.

By using the operational matrices obtained in Section IV
wherever needed and collocating (24) at the equidistant nodes
ti, given in (23), we get a system of algebraic equations, which
can be solved for the unknown vector CT using Newton’s
iterative method. In this case, the initial values required to
start Newton’s iterative method have been chosen by taking
y(t) as a linear function between the initial value y(0) = Y0

and the final value y(1) = Ȳ1.

VII. ILLUSTRATIVE EXAMPLES

In this section, five examples are given to demonstrate the
applicability and accuracy of our method. Examples 1−4 are
initial value problems and Example 5 is a boundary value
problem. Example 1 is an initial value FDE, which was first
considered in [19]. The exact solution of Example 1 is a
polynomial, and the exact solution can be obtained using the
proposed method. Examples 2 and 3 are FDEs describing
the fractional Riccati equation, which were first considered
in [20] by using modified homotopy perturbation method, it
was also studied in [21] by applying the enhanced homotopy
perturbation method, in [22] by using Bernstein polynomials
and in [25] by applying Bernoulli wavelets. For Examples 2
and 3, we compare our findings with the numerical results
in [20]−[22], [25]. Example 4 was first considered in [27]
by using a predictor corrector approach; it was also solved
in [28] by converting the FDE to a Volterra type integral
equation and in [24] by using Legendre wavelet method. For
Example 4 we compare our method with [24] which has been
shown to be comparable or superior to [27], [28]. Example 5

was solved in [24] by using Legendre wavelet. For Example
5, we compare our results with [24]. In Examples 2−5 the
package of Mathematica ver. 9.0 has been used to solve the
test problems. Here, we first give a method for selecting γ in
(5) for our examples. We select γ = 1 if α = 1 or α = 2.
Otherwise, we select γ = α. For Example 5, similar to [29]
we have also used γ = α−bαc, and we get better results than
α. Here bαc is the floor function which is the greatest integer
less than or equal to the α.

A. Example 1

Consider the following linear fractional differential equation
given in [19].

D2y(t) + D
3
2 y(t) + y(t) = 1 + t

0 < t ≤ 1; y(0) = 1; y′(0) = 1. (25)

The exact solution of this problem is

y(t) = 1 + t.

Here, we solve this problem by using the proposed method
with γ = 1 and m = 1.

Let

y(t) ∼= CT Tmγ(t) = [c0, c1]
[

1
t

]
. (26)

By using (1)−(4) and (25), we have

y(t)− 1− t + I
1
2

(
I

3
2 D

3
2 y(t)

)
+ I2y(t) =

t2

2
+

t3

6
. (27)

By substituting (26) in (27), we get

CT Tmγ(t)− 1− t + I
1
2

(
CT Tmγ(t)− y(0)− y′(0)t

)

+ I2CT Tmγ(t) =
t2

2
+

t3

6
.

From (12), we have (28), shown at the bottom of the page.
where

G 1
2

= [
1

Γ( 3
2 )

,
1

Γ( 5
2 )

]T , G2 = [
1
2
,
1
6
]T . (29)

Substituting (29) in (28) and collocating the resulting equa-
tion at t0 = 0 and t1 = 1, we get

c0 = 1, c1 = 1.

Then, by using (26), we get y(t) = 1+t, which is the exact
solution.

B. Example 2

Consider the fractional Riccati differential equation [22].

Dαy(t) + y2(t) = 1, y(0) = 0; 0 < α ≤ 1. (30)

———————————————————————————————————————————————————–

CT Tmγ(t)− Iαf(t, CT Tmγ(t), DβCT Tmγ(t)) + tIα ( f(1, CT Tmγ(t), DβCT Tmγ(t))|t=1

)− (Ȳ1 − Y0)t− Y0 = 0 (24)

CT Tmγ(t)− 1− t + t
1
2 CT

(
G 1

2
∗ Tmγ(t)− t

1
2

Γ( 3
2 )

− t
3
2

Γ( 5
2 )

)
+ t2CT (G2 ∗ Tmγ(t)) =

t2

2
+

t3

6
(28)
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TABLE I
COMPARISON OF NUMBERICAL RESULTS FOR α = 0.75

ti BPM [22], N = 8 Proposed method, m = 8 BPM [22], N = 11 Proposed method, m = 11 IABMM [21] EHPM [21] MHPM [20]

0 0 0 0 0 0 0 0

0.2 0.30996891 0.30997496 0.30997552 0.30997528 0.3117 0.3214 0.3138

0.4 0.48162749 0.48163161 0.48163184 0.48163169 0.4855 0.5077 0.4929

0.6 0.59777979 0.59778262 0.59778277 0.59778267 0.6045 0.6259 0.5974

0.8 0.67884745 0.67884945 0.67884957 0.67884949 0.6880 0.7028 0.6604

1 0.73684181 0.73683663 0.73683686 0.73683667 0.7478 0.7542 0.7183

TABLE II
COMPARISON OF NUMBERICAL RESULTS FOR α = 0.9

ti BPM [22], N = 8 Proposed method, m = 8 BPM [22], N = 11 Proposed method, m = 11 IABMM [21] EHPM [21] MHPM [20]

0 0 0 0 0 0 0 0

0.2 0.23878798 0.23878894 0.23878915 0.23878913 0.2393 0.2647 0.2391

0.4 0.42258214 0.42258305 0.42258309 0.42258308 0.4234 0.4591 0.4229

0.6 0.56617082 0.56617156 0.56617157 0.56617156 0.5679 0.6031 0.5653

0.8 0.67462642 0.67462706 0.67462700 0.67462699 0.6774 0.7068 0.6740

1 0.75460256 0.75458885 0.75458901 0.75458880 0.7584 0.7806 0.7569

TABLE III
COMPARISON OF ABSOLUTE ERROR FOR α = 1

ti BPM [22], N = 5 Proposed method, m = 5 BPM [22], N = 11 Proposed method, m = 11 Proposed method, m = 20 MHPM [20]

0 0 0 0 0 0 0

0.2 5.1734E−05 1.1440E−06 2.6847E−10 4.3055E−11 5.5511E−17 3.2022E−7

0.4 2.5969E−05 8.4839E−08 2.5057E−10 1.2536E−11 1.1102E−16 4.9622E−6

0.6 4.0657E−05 1.0711E−06 2.1577E−10 1.4442E−11 0 0.0001925

0.8 1.2390E−05 1.0920E−06 2.9392E−10 5.7991E−11 1.1102E−16 0.0023307

1 7.5141E−04 5.8350E−06 6.8444E−08 1.8625E−10 1.1102E−16 0.0155622

The exact solution of this problem for α = 1 is

y(t) =
e2t − 1
e2t + 1

.

To compare the proposed method with [20]−[22], we solve
(30) for α = 0.75, α = 0.9, and α = 1. Now, we solve (30),
with m = 3 and γ = α = 0.75.

Let
y(t) ∼= CT Tmγ(t) (31)

where
CT = [c0, c1, c2, c3]

and
Tmγ(t) = [1, t0.75, t1.5, t2.25]T .

By using (22), (30), and (31), we get

CT Tmγ(t)+ tα CT (Sα ∗ (Tmγ(t)TT
mγ(t))C− tα

Γ(α + 1)
= 0

(32)
where

Tmγ(t).TT
mγ(t) =




1 t0.75 t1.5 t2.25

t0.75 t1.5 t2.25 t3

t1.5 t2.25 t3 t3.75

t2.25 t3 t3.75 t4.5




and

Sα(t) =




1.08807 0.691367 0.521462 0.424876
0.691367 0.521462 0.424876 0.361746
0.521462 0.424876 0.361746 0.316877
0.424876 0.361746 0.316877 0.283147


 .

By collocating (32) at the nodes given in (23), and solving
the resulting equations we get,

c0 = 0, c1 = 1.03094, c2 = −0.165321, and c3 = −0.1044.

Then, by using (31), we have

y(t) = 1.03094 t0.75 − 0.165321 t1.5 − 0.1044 t2.25.

In Tables I and II, we compare our results with the
solutions of the modified homotopy perturbation method
(MHPM) in [20], the improved Adams-Bashforth-Moulton
method (IABMM) in [21], the enhanced homotopy perturba-
tion method (EHPM) in [21] and with the Bernstein polynomi-
als method (BPM) in [22] for γ = α = 0.75 and γ = α = 0.9
for different values of m. In Table III, we compare the absolute
error of our method for γ = α = 1 with MHPM [20] and BPM
[22], for different values of m. In Tables I−III, N represents
the degree of the Bernstein polynomial used in [22]. Also,
Fig. 1 shows the approximate solutions obtained for different
values of α using the proposed method with m = 5. From
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these results, it is seen that the approximate solutions converge
to the exact solution for α=1. In addition, the absolute diff-
erence between the exact and approximate solutions for α = 1
with m = 5 is plotted in Fig. 2. The absolute difference be-
tween the exact and approximate solutions for k = 1 and
M = 5 or m̂ = 2k−1M = 5 and α = 1 by Bernoulli wavelets
method is plotted in [25]. Here, k and M are the order of
wavelets and Bernoulli polynomials respectively. From our
figures and those in [25], we can conclude that the result
obtained by the proposed method has less error compared to
Bernoulli wavelets method.

Fig. 1. Comparison of the computed solutions for different values
of α with exact solution for γ = α = 1 for Example 2 with m = 5.

Fig. 2. The absolute error for γ = α = 1 for Example 2 with
m = 5.

C. Example 3

Consider the following Riccati fractional differential equa-
tion given in [22].

Dαy(t) = 2 y(t) −y2(t)+1, y(0) = 0; 0 < α ≤ 1. (33)

To solve this problem by using the proposed method, we
let

y(t) ∼= CT Tmγ(t) (34)

where CT and Tmγ(t) are given in (5) and (7) respectively.
Using (22), (33), and (34), we have

CT Tmγ(t)− 2tαCT (Gα ∗ Tmγ(t))
+ tαCT (Sα ∗ (Tmγ(t)TT

mγ(t)))C − tα

Γ(α+1) = 0. (35)

Now, by collocating (35) at the nodes given in (23), we
get m + 1 nonlinear algebraic equations which can be solved
for the unknown vector CT using Newton’s iterative method.
It is well known that the initial guesses for Newton’s itera-
tive method are very important. For this problem, by using
y(0) = 0, and (34), we choose the initial guesses such that
CT Tmγ(0) = 0. The exact solution of this problem for α = 1
is

y(t) = 1 +
√

2 tanh
(√

2t +
1
2

ln(
√

2− 1√
2 + 1

)
)

.

Table IV shows the comparison of our numerical results
with [20]−[22] for γ = α = 0.9. In Table V, we compare the
absolute error of our numerical method with [20] and [22] for
α=1. Also, Fig. 3 shows the approximate solutions obtained for
different values of α using the proposed method with m = 5.
From these results, it is seen that the approximate solutions
converge to the exact solution for α = 1. From Table V it
is seen that our results with m=18 has less error than the
results in the table given in [25], with k = 2 and M = 10 or
m̂ = 2k−1M = 20 using Bernoulli wavelets method.

Fig. 3. Comparison of the computed solutions for different values
of α with exact solution for α = 1 for Example 3 with m = 5.

D. Example 4

Consider the FDE [24]

Dαy(t) + y(t) = 0, 0 < α ≤ 2 (36)

with y(0) = 1 and y′(0) = 0. The condition y′(0) = 0 is for
1 < α ≤ 2 only.

The exact solution of this problem is y(t) = Ea(−tα) [24],
where

Ea(z) =
∞∑

k=0

zk

Γ(αk + 1)

is the Mittag-Leffler function with order α. To solve this
problem by using the proposed method, similar to (34) in
Example 3 we let

y(t) ∼= CT Tmγ(t). (37)

Using (22), (36), and (37), we have

CT Tmγ(t)− 1 + tαCT (Gα ∗ Tmγ(t)) = 0.
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TABLE IV
COMPARISON OF NUMBERICAL RESULTS FOR α = 0.9

ti BPM [22], N = 8 Proposed method, m = 8 BPM [22], N = 11 Proposed method, m = 11 IABMM [21] EHPM [21] MHPM [20]

0 0 0 0 0 0 0 0

0.2 0.31488815 0.31485423 0.31486902 0.31486367 - - -

0.4 0.69756771 0.69751826 0.69754441 0.69753816 - - -

0.5 0.90369502 0.90364539 0.90367312 0.90366680 0.8621 1.4614 0.9010

0.6 1.10789047 1.10783899 1.10786695 1.10786083 - - -

0.8 1.47772823 1.47768008 1.47770748 1.47770236 - - -

1 1.76452008 1.76525852 1.76529044 1.76527469 1.7356 2.0697 1.8720

TABLE V
COMPARISON OF ABSOLUTE ERROR FOR α = 1

ti BPM [22], N = 5 Proposed method, m = 5 BPM [22], N = 11 Proposed method, m = 11 Proposed method, m = 18 MHPM [20]

0 0 0 0 0 0 0

0.2 6.9332E−04 1.7402E−04 2.3521E−07 5.7111E−08 5.2301E−12 0.00001

0.4 6.2509E−04 1.9080E−04 3.0542E−07 6.3894E−08 6.7869E−12 0.00030

0.6 9.1370E−04 2.1689E−04 3.3836E−07 7.0059E−08 7.4832E−12 0.00469

0.8 3.9346E−04 2.0848E−04 3.4201E−07 7.1896E−08 7.0779E−12 0.01887

1 7.1367E−03 1.3840E−04 1.1799E−05 3.1903E−08 5.9701E−12 0.03431

TABLE VI
COMPARISON OF ABSOLUTE ERROR WITH [24] FOR α = 1.5

ti LWM [24], M̂ = 384 Proposed method, m = 3 Proposed method, m = 4 Proposed method, m = 5 Proposed method, m = 10

0.1 4.207E−7 3.06933E−6 3.60303E−8 2.8731E−10 2.5259E−17

0.2 1.944E−7 4.52543E−6 2.57570E−8 1.17022E−11 2.3353E−16

0.3 5.705E−8 1.45914E−6 3.43268E−8 3.89751E−10 7.0728E−17

0.4 4.605E−8 4.53425E−6 6.35744E−8 3.84075E−12 3.6902E−18

0.5 1.282E−7 8.96162E−6 1.91067E−10 6.05008E−10 7.2132E−17

0.6 1.944E−7 6.66709E−6 1.10701E−7 2.24834E−11 2.6174E−16

0.7 2.471E−7 5.03679E−6 1.02038E−7 1.58912E−9 6.2367E−17

0.8 2.878E−7 2.24058E−5 1.90389E−7 2.93859E−11 3.0854E−16

0.9 3.176E−7 3.05511E−5 5.93256E−7 7.70141E−9 2.8515E−16

TABLE VII
ABSOLUTE ERROR OF OUR METHOD FOR DIFFERENT VALUES OF α WITH m = 10

ti α = 1.1 α = 1.3 α = 1.5 α = 1.6 α = 1.8 α = 2

0.1 1.95877E−16 4.86487E−17 2.52589E−17 6.61786E−17 8.17143E−18 5.5437E−17

0.2 1.48822E−16 2.00823E−16 2.33527E−16 2.28488E−16 1.70503E−16 1.02528E−18

0.3 2.9433E−16 1.60699E−17 7.07283E−17 1.87274E−17 1.90848E−17 2.66293E−17

0.4 4.38831E−17 3.31082E−17 3.69019E−18 1.86397E−17 9.881E−17 7.59506E−17

0.5 2.29268E−16 1.72008E−16 7.21322E−17 6.88831E−17 1.32945E−16 4.27994E−17

0.6 4.46312E−16 1.77538E−18 2.61743E−16 3.10642E−17 1.78043E−17 3.43499E−17

0.7 4.04245E−16 1.85026E−16 6.23670E−17 9.06418E−17 1.30585E−16 1.05295E−16

0.8 4.16117E−16 1.31649E−16 3.08539E−16 2.75084E−16 7.1246E−17 1.84848E−17

0.9 5.21935E−16 1.84856E−17 2.85145E−16 1.22344E−16 2.10206E−17 6.86984E−17

1 9.45424E−17 1.87242E−16 1.70220E−17 8.38901E−18 1.07569E−16 5.90071E−17

By collocating at the points given in (23) we get m + 1
algebraic equations, which can be solved for the unknown
vector CT . Table VI shows the absolute error obtained for
different values of t and for α=1.5 by using the proposed
method with different values of m and the Legendre wavelets

method (LWM) in [24], with k = 8 and M1 = 3 or M̂ =
2k−1M1 = 384. Here, M1 shows the order of Legendre
polynomials. In Table VII, the absolute error obtained using
the proposed method for different values of α with m = 10
is given.
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TABLE IX
ABSOLUTE ERROR FOR DIFFERENT α WITH M = 3

ti α = 1.1 α = 1.3 α = 1.5 α = 1.6 α = 1.8 α = 2

0.1 1.33357E−17 5.01444E−18 2.71728E−18 7.76899E−18 5.36765E−18 8.84514E−19

0.2 1.04083E−17 6.07153E−18 1.22515E−17 1.85399E−17 1.55041E−17 2.19551E−18

0.3 6.93889E−18 0 3.1225E−17 2.38524E−17 2.32019E−17 2.1684E−19

0.4 2.77556E−17 1.04083E−17 5.89806E−17 1.9082E−17 2.34188E−17 1.04083E−17

0.5 5.55112E−17 1.38778E−17 9.71445E−17 0 1.04083E−17 3.1225E−17

0.6 5.55112E−17 0 1.38778E−16 2.77556E−17 1.38778E−17 6.93889E−17

0.7 5.55112E−17 0 1.38778E−16 5.55112E−17 2.77556E−17 9.71445E−17

0.8 0 5.55112E−17 1.66533E−16 5.55112E−17 5.55112E−17 1.66533E−16

0.9 1.11022E−16 1.11022E−16 1.11022E−16 0 1.11022E−16 1.11022E−16

1 3.33067E−16 3.33067E−16 0 0 3.33067E−16 0

E. Example 5

Consider the following FDE with boundary value conditions
[24]

Dαy(t) + ayn(t) = g(t), y(0) = 0; y(1) = 1 (38)

where 1 < α ≤ 2, a = exp(−2π) and n = 2. For α = 1.5
and g(t) = 105

√
πt2/32 + exp(−2π)t7, the exact solution is

given by
y(t) = t

7
2 .

Using (20) and (38), we have

y(t) = Iαg(t)− aIαy2(t)− t(Iαg(t))|t=1

− a t(Iαy2(t))|t=1 + t. (39)

Similar to (34) in Example 3, we let

y(t) ∼= CT Tmγ(t). (40)

Using (39) and (40), we get

CT Tmγ(t)− 105
√

πΓ(3)
32Γ(3 + α)

t2+α − exp(−2π)Γ(8)
Γ(8 + α)

t7+α

+ exp(−2π)tαCT (Sα ∗ Tmγ(t) TT
mγ(t))C

+ t
105
√

πΓ(3)
32Γ(3 + α)

+ t
exp(−2π)Γ(8)

Γ(8 + α)
+ exp(−2π)tCT (Sα ∗ Tmγ(1) TT

mγ(1))C − t = 0.

By collocating at the points given in (23) we get m + 1
algebraic equations, which can be solved for the unknown
vector CT . Table VIII shows the absolute error obtained for
different values of t and for m = 10 by using the proposed
method for α = 1.5 with γ = α and γ = α−bαc, together with
the absolute error obtained by the Legendre wavelets method
in [24], with k = 3 and M1 = 3 or M̂ = 2k−1M1 = 12.
Here, M1 shows the order of Legendre polynomials.

More generally, the exact solution for (38) with

g(t) =
Γ(3α + 1)
Γ(2α + 1)

t2α + exp(−2π)t6α

and keeping the other coefficients the same is

y(t) = t3α.

In Table IX, we show the absolute error of our numerical
results for different values of α with m = 3.

TABLE VIII
COMPARISON OF ABSOLUT ERROR FOR α = 1.5

ti
LWM[24]

M̂ = 12

Proposed method

m = 10

γ = α

Proposed method

m = 10

γ = α− bαc
0.1 9.6996E−5 1.34431E−9 1.06794E−17

0.2 9.3927E−4 2.68845E−9 1.38778E−17

0.3 1.5087E−3 4.03315E−9 8.67362E−18

0.4 3.3989E−4 5.37645E−9 4.16334E−17

0.5 2.4163E−3 6.72324E−9 2.77556E−17

0.6 3.1023E−4 8.05974E−9 2.77556E−17

0.7 1.4799E−3 9.43278E−9 0

0.8 6.3407E−4 1.06306E−8 1.66533E−16

0.9 4.6701E−3 1.30547E−8 2.22045E−16

VIII. CONCLUSION

In the present work the fractional Taylor basis is used
to solve FDEs. The integral operational matrix Fα and Sα

have been derived. The error bounds are also included. The
problem has been reduced to a problem of solving a system of
algebraic equations. Illustrative examples are solved by using
the proposed method to show that this approach can solve the
problem effectively.
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Artificial Bee Colony Algorithm-based Parameter
Estimation of Fractional-order Chaotic

System with Time Delay
Wenjuan Gu, Yongguang Yu, and Wei Hu

Abstract—It is an important issue to estimate parameters of
fractional-order chaotic systems in nonlinear science, which has
received increasing interest in recent years. In this paper, time
delay and fractional order as well as system’s parameters are
concerned by treating the time delay and fractional order as
additional parameters. The parameter estimation is converted
into a multi-dimensional optimization problem. A new scheme
based on artificial bee colony (ABC) algorithm is proposed
to solve the optimization problem. Numerical experiments are
performed on two typical time-delay fractional-order chaotic
systems to verify the effectiveness of the proposed method.

Index Terms—Artificial bee colony (ABC) algorithm,
fractional-order chaotic system, parameters estimation, time
delay.

I. INTRODUCTION

FRACTIONAL calculus is a branch of mathematics which
deals with differentiation and integration of arbitrary

orders and is as old as calculus [1]. Although the classical
calculus has been playing a dominant role in explaining and
modeling dynamical processes observed in real world, the
fractional calculus has gradually attracted the attention of
scientists during the last decades because of its capability
in describing important phenomena of non-local dynamics
and memory effects. It has been introduced into various
engineering and science domains, such as image processing
[2], robotics [3], diffusion [4], mechanics [5], and others [1].

Time delay is commonly encountered in real systems,
such as chemistry, climatology, biology, economy and crypto
systems [6]. Time-delay differential equation is a differential
equation in which the derivative of the function at any time
depends on the solution at previous time. Introduction of time
delay in the model can enrich its dynamics and provide a
precise description of real life phenomenon [7]. Particularly,
since Mackey and Glass [8] firstly detected chaos in time-delay
systems, control and synchronization of time-delay chaotic
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systems have obtained increasing attention [9], [10], which
can produce more complex and adequate dynamic behavior
than those free of time delays.

Recently, chaotic behavior has been found in time-delay
fractional-order systems, such as fractional-order financial sys-
tem [11], fractional-order Chen system [12], fractional-order
Liu system [13] and so on. Many control methods are valid for
the fractional-order chaotic systems with known parameters
and time-delays [14]−[16]. However, in some applications
such as secure communications and chaos synchronization,
the chaotic system is partially known. It means that the form
of differential equation is known, but some or all of the time
delays, fractional orders and system’s parameters are unknown.
Therefore, estimating the unknown parameters of time-delay
fractional-order chaotic system is of vital significance in
controlling and utilizing chaos.

Up to now, for the parameter estimation of chaotic systems,
considerable methods have been put forward, such as the least-
squares method [17], the symbolic time series analysis-based
method [18], the adaptive control method [19]. Besides, by
transforming the parameter estimation in dynamical systems as
a multi-dimensional optimization problem, many evolutionary
algorithms have been proposed to deal with the problem,
such as differential evolution (DE) [20], particle swarm opti-
mization (PSO) [21], cuckoo search (CS) [22], biogeography-
based optimization (BBO) [23]. However, most of the works
mentioned so far are involved mainly with integer-order
chaotic systems or fractional-order chaotic systems without
time delays. That is, very few have addressed the estimation
problem on fractional-order chaotic systems with time delay.

Artificial bee colony (ABC) algorithm is a relatively new
optimization technique which is developed by Karaboga in
2005 based on simulating the foraging behavior of honey-
bee swarm. It has been shown to be competitive to other
population-based algorithms for global numerical optimization
problem with the advantage of employing fewer control pa-
rameters [24]−[26]. For example, apart from the maximum
iteration number and population size, a standard GA has
three more control parameters (crossover rate, mutation rate,
generation gap) [27], a standard DE has at least two control
parameters (crossover rate, scaling factor) [28] and a basic
PSO has three control parameters (cognitive and social factors,
inertia weight) [29]. Besides, limit values for the velocities
vmax have a significant effect on the performance of PSO.
The ABC algorithm has only one control parameter (limit)
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apart from colony size and maximum cycle number. Although
it uses less control parameters, the performance of ABC
algorithm is better than or similar to that of these algorithms
and it can be efficiently used for solving multimodal and
multidimensional optimization problems.

Based on the above discussion, in this paper, a scheme based
on artificial bee colony algorithm is firstly proposed to estimate
the parameters of unknown time-delay fractional-order chaotic
system. Numerical simulations are performed to estimate two
well-known fractional-order chaotic systems with time delay.
The simulation results demonstrate the good performance of
the ABC algorithm, and thus the ABC algorithm proves to be
a promising candidate for parameter estimation of time-delay
fractional-order chaotic systems.

The rest of the paper is organized as follows. In Section
II, the Caputo fractional-order derivative is introduced. In
Section III, the problem of parameter estimation for time-delay
fractional-order chaotic system is formulated from the view of
optimization. In Section IV, a parameter estimation scheme
is proposed after briefly introducing the ABC algorithm.
Numerical simulations and conclusions are given in Sections
V and VI.

II. CAPUTO FRACTIONAL-ORDER DERIVATIVE

In general, three best-known definitions of fractional-order
derivatives are widely used: Grunwald-Letnikov, Riemann-
Liouville and Caputo definitions [1]. In particular, the main
advantage of Caputo fractional-order derivative is that it owns
same initial conditions with integer-order derivatives, which
have well-understood features of physical situations and more
applicable to real world problems. Thus, the Caputo fractional-
order derivative is employed in this paper.

Definition 1 (Caputo fractional-order derivative): The Ca-
puto fractional-order derivative of order α > 0 for a function
f(t) ∈ Cn+1([t0,+∞), R) is defined as

t0D
α
t f(t) =

1
Γ(n− α)

∫ t

t0

f (n)(τ)
(t− τ)α+1−n

dτ (1)

where Γ(·) denotes the gamma function and n is a positive
integer such that n− 1 < α ≤ n.

Property 1: When C is any constant, t0D
α
t C = 0 holds.

Property 2: For constants µ and ν, the linearity of Caputo
fractional-order derivative is described by

t0D
α
t (µf(t) + νg(t)) = µ t0D

α
t f(t) + ν t0D

α
t g(t).

III. PROBLEM FORMULATION

The problem formulation of parameter estimation for time-
delay fractional-order chaotic systems is presented in this
section.

Let us consider the following time-delay fractional-order
chaotic system described by delay differential equation

0D
α
t Y (t) = f(Y (t), Y (t− τ), Y0, θ) (2)

where Y (t) = (y1(t), y2(t), . . . , yn(t))T ∈ Rn denotes the
state vector of system (2), Y0 = Y (0) denotes the initial
value for t ≤ τ , θ = (θ1, θ2, . . . , θm)T denotes the set of

system’s parameters, α = (α1, α2, . . . , αn) (0 < αi < 1,
i = 1, 2, . . . , n) is the fractional derivative orders. f(Y (t),
Y (t− τ), Y0, θ) = (f1(Y (t), Y (t− τ), Y0, θ), f2(Y (t), Y (t −
τ), Y0, θ), . . ., fn(Y (t), Y (t− τ), Y0, θ))T . In this paper, the
delay time τ and fractional order α are treated as additional
parameters to be estimated.

Suppose the structure of system (2) is known, then the
corresponding estimated system can be written as

0D
α̃
t Ỹ (t) = f(Ỹ (t), Ỹ (t− τ̃), Y0, θ̃) (3)

where Ỹ (t) = (ỹ1(t), ỹ2(t), . . . , ỹn(t))T ∈ Rn is the state
vector of the estimated system (3), θ̃ = (θ̃1, θ̃2, . . ., θ̃m)T is a
set of estimated systematic parameters, α̃ = (α̃1, α̃2, . . . , α̃n)T

is the estimated fractional orders, and τ̃ is the estimated time
delay. Besides, systems (2) and (3) have the same initial
conditions Y0.

Based on the measurable state vector Y (t) = (y1(t), y2(t),
. . . , yn(t))T ∈ Rn, we define the following objective function
or fitness function

J(α̃, θ̃, τ̃) = arg min
(α̃,θ̃,τ̃)∈Ω

F

= arg min
(α̃,θ̃,τ̃)∈Ω

N∑

k=1

‖Yk − Ỹk‖2 (4)

where k = 1, 2, . . . , N is the sampling time point and N
denotes the length of data used for parameter estimation. Yk

and Ỹk respectively denote the state vector of the original
system (2) and the estimated system (3) at time kh. h is the
step size employed in the predictor-corrector approach for the
numerical solutions of time-delay fractional-order differential
equations [7]. ‖ · ‖ is Euclid norm. Ω is the searching area
suited for parameters α̃, θ̃ and τ̃ .

Obviously, the parameter estimation for system (2) is multi-
dimensional continuous optimization problem, where the de-
cision vectors are α̃, θ̃ and τ̃ . The optimal solution can be
achieved by searching suitable α̃, θ̃ and τ̃ in the searching
space Ω such that the objective function (4) is minimized.
In this paper, a novel scheme based on artificial bee colony
algorithm is proposed to solve this problem.

The time-delay fractional-order chaotic systems are not easy
to estimate because of the unstable dynamics of the chaotic
system and the complexity of the fractional-order nonlinear
systems. Besides, due to multiple variables in the problem and
multiple local search optima in the objective functions, it is
easily trapped into local optimal solution and the computation
amount is great. So it is not easy to search the global optimal
solution effectively and accurately using the traditional general
methods. Therefore, we aim to solve this problem by the
effective artificial bee colony algorithm in this paper. The
general principle of parameter estimation by ABC algorithm
is shown in Fig. 1.

IV. A NOVEL PARAMETER ESTIMATION SCHEME

A. An Overview of the Original Artificial Bee Colony Algo-
rithm

In the natural bee swarm, there are three kinds of honey bees
to search foods generally, which include the employed bees,
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the onlookers and the scouts (both onlookers and the scouts
are also called unemployed bees). The employed bees search
the food around the food source in their memory. At the same
time, they pass their food information to the onlookers. The
onlookers tend to select good food sources from those found
by the employed bees, then further search the foods around the
selected food source. The scouts are transformed from a few
employed bees, which abandon their food sources and search
new ones. In short, the food search of bees is collectively
performed by the employed bees, the onlookers and the scouts.

Fig. 1. The general principle of parameter estimation by ABC
algorithm.

By simulating the foraging behaviors of honey bee swarm,
Karaboga proposed a competitive optimization technique
called artificial bee colony (ABC) algorithm [24]−[26]. In
the original ABC algorithm, each cycle of the search consists
of three steps: moving the employed and onlooker bees onto
the food sources and calculating their nectar amounts; and
determining the scout bees and directing them onto possible
food sources. A food source position represents a possible
solution to the problem to be optimized. The amount of
nectar of a food source corresponds to the quality of the
solution represented by that food source. Onlookers are placed
on the food sources by using a probability based selection
process. As the nectar amount of a food source increases, the
probability value with which the food source is preferred by
onlookers increases, too. Every bee colony has scouts that are
the colony’s explorers. The explorers do not have any guidance
while looking for food. They are primarily concerned with
finding any kind of food source. As a result of such behavior,
the scouts are characterized by low search costs and a low
average in food source quality. Occasionally, the scouts can
accidentally discover rich, entirely unknown food sources. In
the case of artificial bees, the artificial scouts could have the
fast discovery of the group of feasible solutions as a task. In
this work, one of the employed bees is selected and classified
as the scout bee. The selection is controlled by a control
parameter called limit. If a solution representing a food source
is not improved by a predetermined number of trials, then
the food source is abandoned by its employed bee and the
employed bee is converted to a scout. The number of trials for
releasing a food source is equal to the value of limit which
is an important control parameter of ABC. In a robust search
process, exploration and exploitation process must be carried
out together. In the ABC algorithm, while onlookers and
employed bees carry out the exploitation process in the search
space, the scouts control the exploration process. Besides, the

number of employed bees is equal to the number of onlooker
bees which is also equal to the number of food sources. The
detailed searching process is described as following:

At the first step, the ABC algorithm produces a randomly
distributed initial population with the following equation:

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j) (5)

where i = 1, 2, . . . , SN , j = 1, 2, . . . , D. SN is the size
of the solutions (food sources), D is the dimension of the
optimization parameters. xmin,j and xmax,j are the lower and
upper bounds for the dimension j, respectively.

After initialization, the population of the food sources
(solutions) is subjected to repeated cycles. An employed bee
makes a modification on the position in her memory depending
on the local information as

vi,j = xi,j + φi,j(xi,j − xk,j) (6)

where k = 1, 2, . . . , SN and j = 1, 2, . . . , D. k and j are
randomly generated, and k must be different from i. φi,j is a
random number in [−1, 1]. Then, the employed bee tests the
nectar amount of the new source. If the nectar amount of the
new one is higher than that of the previous one in her memory,
the bee memorizes the new position and forgets the old one.
Otherwise, she keeps the position of the previous one in her
memory.

Then, an onlooker bee evaluates the nectar information
taken from all employed bees and chooses a food source with
a probability related to its nectar amount and calculated as

pi =
fiti

SN∑
j=1

fitj

(7)

where fiti denotes the fitness value of solution Xi. As in the
case of the employed bee, she produces a modification on the
position in her memory and checks the nectar amount of the
candidate source. Besides, the fitness value fiti is defined as
follows:

fiti =





1
1 + f(Xi)

, if f(Xi) ≥ 0

1 + |f(Xi)|, if f(Xi) < 0
(8)

where f(Xi) represents the objective function value of the
decision vector Xi.

In ABC, if a position cannot be improved further through
a predetermined number of cycles (called limit), then that
food source is assumed to be abandoned. The corresponding
employed bee becomes a scout bee and a new food source is
generated with (5).

Some more details can be found from [24]−[26] and the
main steps of the original ABC algorithm are described in
Algorithm 1 (see the top of next page).

B. A Novel Parameter Estimation Scheme

As far as we are concerned, little research has been done
for the parameter estimation of time-delay fractional-order
chaotic systems. Thus, in this paper, the parameter estimation
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Algorithm 1 The main procedure of the original artificial bee colony algorithm

Step 0: Predefine some parameters: SN (population size number), D (searching dimension), LOWER (lower bound), UPPER (upper bound),
limit (control parameter), MCN (maximum cycle number)
Step 1: The population initialization phase:

Step 1.1: Randomly generate 0.5× SN points in the search space to form an initial population via (5).
Step 1.2: Evaluate the objective function values of population.
Step 1.3: cycle=1.

Step 2: The employed bees phase:
For i = 1 to 0.5× SN do

Step 2.1:
Step 2.1.1: Generate a candidate solution Vi by (6).
Step 2.1.2: Evaluate f(Vi).

Step 2.2: If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali + 1.
End For

Step 3: Calculating the probability values pi by (7), set t = 0, i = 1.
Step 4: The onlooker bees phase:

While t ≤ 0.5 × SN, do
Step 4.1:

If rand(0, 1) < pi

Step 4.1.1: Generate a candidate solution Vi by (6).
Step 4.1.2: Evaluate f(Vi).
Step 4.1.3: If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali + 1.
Step 4.1.4: Set t = t + 1.

End If
Step 4.2: Set i = i + 1, if i = 0.5× SN , set i = 1.

End While
Step 5: The scout bees phase:

If max(triali) > limit, replace Xi with a new candidate solution generated via (5).
Step 6: Set cycle = cycle + 1, and if cycle > MCN , then stop and output the best solution achieved so far, otherwise, go to Step 2.

for time-delay fractional-order chaotic systems is studied. It
is converted into a nonlinear optimization problem via a
functional extreme model in Section III. In Section IV-A,
the artificial bee colony algorithm is described in details. In
this subsection, a method based on ABC algorithm is firstly
proposed and applied to estimate the unknown parameters of
the time-delay fractional-order chaotic systems. The procedure
of the new method for parameter estimation of time-delay
fractional-order chaotic systems is outlined in Algorithm 2
(see the top of next page).

V. SIMULATIONS

To test the effectiveness of ABC algorithm, two typical
time-delay fractional-order chaotic systems are selected to
show the performance. The simulations were done using
MATLAB 7.1 on Intel (R ) Core (TM) i5-3470 CPU, 3.2 GHz
with 4 GB RAM. The predictor-corrector approach for the
numerical solutions of time-delay fractional-order differential
equations is used, which can be found in [7]. It is obvious that
if the population and the maximum cycle number are larger,
the corresponding probability of finding the global optimum
is larger as well. However, a larger population and maximum
cycle number need a larger number of function evaluations.
In the following simulations, for the ABC algorithm, the
population size (SN ) and maximum cycle number (MCN )
are set as: SN = 100, MCN = 300. Besides, the control
parameter limit is chosen as 15. The ABC algorithm is run
for 15 independent times for each example, and all runs are
terminated after the predefined maximum number of iterations
is reached.

Example 1: Fractional-order financial system with time-
delay [11] is described as:





0D
α1
t x(t) = z(t) + (y(t− τ)− a)x(t)

0D
α2
t y(t) = 1− by(t)− x2(t− τ)

0D
α3
t z(t) = −x(t− τ)− cz(t)

(9)

when (α1, α2, α3) = (0.76, 1, 1), (a, b, c) = (3, 0.1, 1), τ =
0.08 and initial point is (0.1, 4, 0.5), system (9) is chaotic.
In order to demonstrate the performance of ABC algorithm
clearly, the true values of fractional order α1, system’s param-
eter c and time delay τ are assumed as unknown parameters
which need to be estimated. The searching spaces of the
unknown parameters are set as (α1, c, τ) ∈ [0.4, 1.4] × [0.5,
1.5]× [0.01, 0.1]. The No. of samples is set as N = 250 and
the step size h = 0.01.

The corresponding objective function can be written as

F (α̃1, c̃, τ̃) =
N∑

k=1

‖Yk − Ỹk‖2 (10)

therefore, the parameter estimation of system (9) is converted
into a nonlinear function optimization problem as (10). In par-
ticular, the smaller F is, the better combination of parameters
(α1, c, τ) is. The distribution of the objective function value for
the time-delay fractional-order financial system (9) is shown
in Fig. 2. As viewed in different colors in Fig. 2, it can be
found that the objective function values are smaller in the
neighborhood of the point (α1, c, τ) = (0.76, 1, 0.08) than
those in other places.

To show the performance of ABC algorithm, the statistical
results in terms of the best, the mean, and the worst estimated
parameters over 15 independent runs are listed in Table I, it
can be easily seen that the estimated value obtained via the
ABC algorithm is close to the true parameter value, implying
that it can estimate the unknown parameters of the time-delay
fractional-order chaotic system accurately. The evolutionary
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Algorithm 2 A novel parameter estimation method based on ABC algorithm

Step 1: The initialization phase:
Step 1.1: Initialize the parameters for ABC algorithm and time-delay fractional-order chaotic system (2).
Step 1.2: Generate the initial population in the feasible domain Ω referred to in Section III.

Step 2: The optimization phase:
Repeat

Optimize the function (4) by ABC algorithm (Algorithm 1).
Until Termination condition is satisfied.

curves of the parameters and fitness values estimated by ABC
algorithm are shown in Figs. 3 and 4 in a single run, which
can also illustrate the effectiveness of the proposed method.

Fig. 2. The distribution of the objective function values for system
(9).

TABLE I
SIMULATION RESULTS FOR SYSTEM (9) OVER

15 INDEPENDENT RUNS

Best Mean Worst

α1 0.7599999995 0.7600001772 0.7600028911
|α1 − 0.76|

0.76
5.06E−10 1.77E−07 2.89E−06

c 0.9999999791 0.9999994842 0.9999723488
|c− 1|

1
2.09E−08 5.16E−07 2.77E−05

τ 0.0794338076 0.0796012039 0.0844809056
|τ − 0.08|

0.08
5.66E−04 3.99E−04 4.48E−03

F 1.57E−07 2.39E−05 1.41E−04

Example 2: Fractional-order Chen system with time-delay
[12] is described as:




0D
α1
t x(t) = a(y(t)− x(t− τ))

0D
α2
t y(t) = (c− a)x(t− τ)− x(t)z(t) + cy(t)

0D
α3
t z(t) = x(t)y(t)− bz(t− τ)

(11)

when α1 = α2 = α3 = 0.94 = α, (a, b, c) = (35, 3, 27), τ =
0.009 and initial point is (0.2, 0, 0.5), system (11) is chaotic.
In this example, the fractional order α, system parameter b
and time delay τ are treated as unknown parameters to be
estimated. The searching spaces of the unknown parameters
are set as (α, b, τ) ∈ [0.4, 1.4]× [2.5, 3.5]× [0.001, 0.015].

The No. of samples is set as N = 250 and the step size h
= 0.001. Similarly, the corresponding objective function can
be written as

Fig. 3. Evolutionary curve in terms of estimated error values with
the ABC algorithms on system (9) in a single run.

Fig. 4. Evolutionary curve in terms of fitness values with the ABC
algorithms on system (9) in a single run.

F (α̃, b̃, τ̃) =
N∑

k=1

‖Yk − Ỹk‖2 (12)

therefore, the parameter estimation of system (11) is converted
into a nonlinear function optimization problem as (12). Fig. 5
shows the distribution of the objective function value for the
time-delay fractional-order Chen system (11).

The statistical results of the best, the mean and the worst
estimated parameters with their corresponding relative error
values over 15 independent runs are displayed in Table II.
From Table II, it can be seen that the ABC algorithm can
efficiently estimate the parameters of system (11). Figs. 6 and
7 depict the convergence profile of the evolutionary processes
of the estimated parameters and the fitness values. From the
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figures, it can be seen that ABC algorithm can converge to the
optimal solution rapidly.

Fig. 5. The distribution of the objective function values for system
(11).

TABLE II
SIMULATION RESULTS FOR SYSTEM (11)

OVER 15 INDEPENDENT RUNS

Best Mean Worst

α 0.9400000256 0.9400899098 0.9415600675
|α− 0.94|

0.94
2.56E−08 8.99E−05 1.56E−03

b 2.9999503453 2.9925101632 3.2099938577
|b− 3|

3
4.97E−05 7.49E−03 2.10E−01

τ 0.0089214355 0.0089894034 0.0099489787
|τ − 0.009|

0.009
7.86E−05 1.06E−05 9.49E−04

F 1.48E−04 1.21E−01 1.11E+00

Fig. 6. Evolutionary curve in terms of estimated error values with
the ABC algorithms on system (11) in a single run.

VI. CONCLUSIONS

In this paper, the parameter estimation of time-delay
fractional-order chaotic systems is concerned by converting
it into an optimization problem. A method based on artificial

bee colony algorithm is proposed to deal with the optimization
problem via functional extreme model. In simulations, the
proposed method is applied to identify two typical time-delay
fractional-order chaotic systems. And the simulation results
show that the fractional order, the time delay and the system’s
parameter of chaotic system can be successfully estimated with
the proposed scheme.

Fig. 7. Evolutionary curve in terms of fitness values with the ABC
algorithms on system (11) in a single run.

The aim of this paper is to design a scheme based on ABC
algorithm to estimate the unknown fractional orders, system’s
parameters and time delays. The proposed method can avoid
the design of parameter update law in synchronization anal-
ysis of the time-delay fractional-order chaotic systems with
unknown parameters. Though it is not good enough, we hope
this method will contribute to the application of chaos control
and synchronization for the time-delay fractional-order chaotic
systems.
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Stability Analysis, Chaos Control of Fractional
Order Vallis and El-Nino Systems and Their

Synchronization
Subir Das and Vijay K Yadav

Abstract—In this article the authors have studied the stability
analysis and chaos control of the fractional order Vallis and
El-Nino systems. The chaos control of these systems is stud-
ied using nonlinear control method with the help of a new
lemma for Caputo derivative and Lyapunov stability theory.
The synchronization between the systems for different fractional
order cases and numerical simulation through graphical plots for
different particular cases clearly exhibit that the method is easy
to implement and reliable for synchronization of fractional order
chaotic systems. The comparison of time of synchronization when
the systems pair approaches from standard order to fractional
order is the key feature of the article.

Index Terms—El-Nino system, fractional derivative, nonlinear
control method, stability analysis, synchronization, Vallis systems.

I. INTRODUCTION

THE chaotic system is a nonlinear deterministic system
which possess complex dynamical behaviors which are

extremely sensitive to initial conditions and having bounded
trajectories in the phase space. The study of dynamic behavior
in nonlinear fractional order systems has become an interesting
topic to the scientists and engineers. Fractional calculus is
playing an important role for the analysis of nonlinear dy-
namical systems. Through fractional calculus approach many
systems in interdisciplinary fields can be described by the
fractional differential equation such as dielectric polariza-
tion, viscoelastic system, electrode-electrolyte polarization and
electronic wave [1]−[4]. Another importance of fractional
calculus is that it provides an excellent tool for the description
of memory and hereditary properties, for which it is used
in various physical areas of science and engineering such
as material science [5], fluid mechanics [6], colored noise,
biological modeling [7], [8], etc.

Effect of chaos in nonlinear dynamics is studied during last
few decades by the researchers from different parts of the
world. This effect is most common and has been detected in
a number of dynamical systems of various types of physical
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nature. In practice it is usually undesirable and restricts the
operating range of many mechanical and electrical devices.
This type of control of dynamical system has attracted a great
deal of attention by the researchers in society of engineering.
The chaos control of systems can be divided into two cate-
gories, first one is to suppress the chaotic dynamical behaviors
and second one is to generate or enhance chaos in nonlinear
systems known as chaotincation or anti-control of chaos. So far
various types of methods and techniques have been proposed
for control of chaos such as feedback and non-feedback control
[9]−[11], adaptive control [12], [13] and backstepping method
[14] etc. Synchronization of two dynamical systems is the
phenomenon where one dynamical system behaves according
to the behavior of the other dynamical system. In chaos
synchronization, two or more chaotic systems are coupled or
one chaotic system drives another system. L. M. Pecora and T.
L. Carroll [15] were first to introduce a method to synchronize
drive and response systems of two identical or non-identical
systems with different initial conditions.

In this manuscript, the authors have studied the chaos
control and stability analysis of Vallis and El-Nino systems
with fractional order, and also the synchronization between
the considered systems. A nonlinear control method is used for
chaos control of fractional order Vallis and El-Nino systems,
and also during their synchronization. Both the systems were
proposed by Vallis in 1986 for the description of temperature
fluctuations in the western and eastern parts of equatorial
ocean, which have a strong influence on the Earth’s global
climate. The first model Vallis system does not allow trade
winds, whereas the second model El-Nino system describes
the nonlinear interactions of the atmosphere, and trade winds
in the equatorial part of pacific ocean. The main feature of
this article is the study of time of synchronization between the
systems through numerical simulation for different particular
cases as systems’ pair approaches fractional order from integer
order.

II. SOME PRELIMINARIES AND STABILITY CONDITION

A. Definitions and Lemma

Definition 1 [16]: The Caputo derivative for fractional order
q is defined as

c
aDq

t φ(t) =
1

Γ(n− q)

∫ t

a

φ(n)(τ)
(t− τ)q+1−n

dτ, t > a
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where q ∈ R+ on the half axis R+ and n = min{k ∈ N/k >
q}, q > 0.

Lemma 1 [17]: Let x(t) ∈ R be a continuous and derivable
function. Then for any time instant t ≥ t0,

1
2

c
t0D

q
t x

2(t) ≤ x(t)c
t0D

q
t x(t) ∀ q ∈ (0, 1).

Definition 2 [18]: An equilibrium point E of a system is
called a saddle point of index 1 if the Jacobian matrix at
point E has one eigenvalue with a non-negative real part (i.e.,
unstable).

Definition 3: An equilibrium point E of a system is called
a saddle point of index 2 if the Jacobian matrix at point E
has two unstable eigen values.

The scrolls are generated only around the saddle points
of index 2. Saddle point of index 1 is responsible only for
connecting scrolls.

B. Stability of the System

Consider a fractional order dynamical system as

Dq
t x(t) = f1(x, y, z)

Dq
t y(t) = f2(x, y, z)

Dq
t z(t) = f3(x, y, z) (1)

where q ∈ (0, 1) and Dq
t is the Caputo derivative. The

Jacobian matrix at equilibrium points of the above system is

J =




∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z


 . (2)

Theorem 1 [19], [20]: The system (1) is locally asymptoti-
cally stable if all the eigenvalues of the Jacobian matrix at its
equilibrium point satisfy the condition

|arg(λ)| > qπ

2
. (3)

III. DESIGN OF CONTROLLER FOR FRACTIONAL ORDER
CHAOTIC SYSTEM USING NONLINEAR CONTROL METHOD

Consider the fractional order chaotic system as the master
system as

Dq
t x = Px + Qf(x) (4)

where 0 < q ≤ 1 is the order of the fractional time derivative,
x = [x1, x2, . . . , xn]T ∈ Rn is the state vector, P and Q are
the n × n matrices consisting of the system parameters and
f : Rn → Rn is a nonlinear function of the system.

Consider another fractional order chaotic system as a slave
system described as

Dq
t y = P1y + Q1g(y) + u(t) (5)

where y = [y1, y2, . . . , yn]T ∈ Rn is the state vector of the
system, P1 and Q1 are the n × n matrices of the system
parameters, g : Rn → Rn is a nonlinear part of the function
of the system and u(t) is the controller of the system (5).

During synchronization, defining the error as e = y−x, the
error dynamical system is obtained as

Dq
t e = P1e + Q1g(y) + (P1 − P )x−Qf(x) + u(t). (6)

During the synchronization, our aim is to find the appropri-
ate feedback controller u(t), so that we may stabilize the error
dynamics (6) in order to get limt→∞ ‖e(t)‖ = 0, ∀ e(0) ∈ Rn.

Now, we define the following Lyapunov function as V (e) =
1
2eT e, whose q-th order fractional derivative w. r. to t is (using
Lemma 1)

dqV (e)
dtq

=
1
2

dq(eTe)
dtq

=
1
2

dq

dtq
(
e2
1 + e2

2 + · · ·+ e2
n

)

≤
(

e1
dqe1

dtq
+ e2

dqe2

dtq
+ · · ·+ en

dqen

dtq

)
. (7)

Substituting the values of dqe1
dtq , dqe2

dtq , . . . , dqen

dtq and choosing
appropriate control function u(t), the q-th order derivative of
the Lyapunov function V (e) becomes negative i.e., dqV (e)

dtq <
0, which helps to get synchronization between the systems (4)
and (5).

IV. SYSTEM DESCRIPTION AND ITS STABILITY

A. Fractional Order Vallis System

The Vallis model [21], [22] is described by

dx

dt
= µy − ax

dy

dt
= xz − y

dz

dt
= 1− xy − z (8)

where x is the speed of water molecules on the surface of
ocean, y = (Tw − Te)/2, z = (Tw + Te)/2, Tw and Te

are temperatures accordingly in western and eastern parts of
ocean, µ and a are positive parameters.

The fractional order Vallis system can be described as

dqx

dtq
= µy − ax

dqy

dtq
= xz − y

dqz

dtq
= 1− xy − z, 0 < q < 1. (9)

1) Equilibrium Points and Stability: To find the equilibrium
points of the system (9), we have

Dq
t x = Dq

t y = Dq
t z = 0

where Dq
t = dq

dtq .
The equilibrium points are obtained as

E1 = (0, 0, 1)

E2, 3 =

(
±

√
(µ− a)

a
, ±

√
a(µ− a)

µ
,

a

µ

)
.

For convenience the point E1 is shifted to the point of origin
through the transformation z → z + 1 and the system (9)
reduces to
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dqx

dtq
= µy − ax

dqy

dtq
= xz + x− y

dqz

dtq
= −xy − z (10)

where 0 < q < 1. For the parameters µ = 121 and a = 5 and
the initial condition (0.1, 1.2, 0.5), the trajectories of the Vallis
system are depicted through Figs. 1 (a)−1 (d) for fractional
order q = 0.97. Again for the same parameters’ values and
initial conditions the Vallis system shows chaotic behavior at
the lowest fractional order q = 0.981, the trajectories of which
are described through Figs. 2 (a)−2 (d).

The equilibrium points of the system (10) are E1 = (0, 0,
0), E2 = (4.8166, 0.1990, −0.9586) and E3 = (−4.8166,
−0.1990, −0.9586).

The Jacobian matrix of the Vallis system (10) at the equi-
librium point Ē(x̄, ȳ, z̄) is

J(Ē) =




−a µ 0
z̄ + 1 −1 x̄
−ȳ −x̄ −1


 . (11)

Putting the values of a = 5 and µ = 121, the characteristic
polynomial of the above Jacobian matrix will be

P (λ) = λ3 + 7λ2 − (−x̄2 + 121z̄ + 110)λ

− 121z̄ + 5x̄2 + 121x̄ȳ − 116. (12)

At the equilibrium point E1 = (0, 0, 0), (12) becomes

P (λ) = λ3 + 7λ2 − 110λ− 116. (13)

The eigenvalues of the equation (13) are λ1 = −14.1803,
λ2 = 8.1803, λ3 = −1.0000.

It is seen that the equilibrium point E1 is a saddle point of
index 1 and from Definition 2 it is unstable for 0 < q < 1.

At the equilibrium point E2 = (4.8166, 0.1990, −0.9586),
the equation (12) becomes

P (λ) = λ3 + 7λ2 + 29.1902λ + 231.9676. (14)

The eigenvalues of (14) are λ1 = −7.3331, λ2,3 = 0.1666±
5.6219i. The equilibrium point E2 is the saddle point of index
2 (Definition 2). E2 is stable for 0 < q < 0.981. Similarly the
equilibrium point E3 = (−4.8166, −0.1990, −0.9586) is also
stable for 0 < q < 0.981.

2) Control of Chaos Using Nonlinear Control Method:
Let the fractional order Vallis system is taken as a controlled
system with control functions ui(t), i = 1, 2, 3 to stabilize
unstable periodic orbit or fixed point as given in (10).

Let (x̄, ȳ, z̄) is the solution of the system (10), then we
have

dqx̄

dtq
= µȳ − ax̄

dq ȳ

dtq
= x̄z̄ + x̄− ȳ

dq z̄

dtq
= −x̄ȳ − z̄. (15)

Fig. 1. Phase portraits of fractional order Vallis system for fractional
order q = 0.97.
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Fig. 2. Phase portraits of fractional order Vallis system for fractional
order q = 0.981.

Defining error functions as e1 = x− x̄, e2 = y − ȳ and e3

= z − z̄, we obtain the following error system as

dqe1

dtq
= µe2 − ae1 + u1(t)

dqe2

dtq
= e1 − e2 + xz − x̄z̄ + u2(t)

dqe3

dtq
= −e3 − xy + x̄ȳ + u3(t). (16)

To stabilize the error system, define the Lyapunov function
as

V =
1
2
e2
1 +

1
2
e2
2 +

1
2
e2
3

whose q-th order fractional derivative is (from Lemma 1)

dqV

dtq
=

1
2

dqe2
1

dtq
+

1
2

dqe2
2

dtq
+

1
2

dqe2
3

dtq

≤ e1
dqe1

dtq
+ e2

dqe2

dtq
+ e3

dqe3

dtq

i.e.,

dqV

dtq
≤ e1[µe2 − ae1 + u1(t)]

+ e2[e1 − e2 + xz − x̄z̄ + u2(t)]
+ e3[−e3 − xy + x̄ȳ + u3(t)].

If we take u1(t) = −µe2, u2(t) = −e1 − xz + x̄z̄ and
u3(t) = xy − x̄ȳ, it becomes dqV

dtq ≤ −ae2
1 − e2

2 − e2
3 < 0.

This shows that the trajectories (x(t), y(t), z(t)) converge to
the point (x̄, ȳ, z̄).

3) Stabilizing the Points E1, E2 and E3: It is clear from
Figs. 3 (a)−3 (c) that at (x̄, ȳ, z̄) = (0, 0, 0) = E1, the system
(10) is stable at the point E1 for the order 0 < q < 1.
Similarly for (x̄, ȳ, z̄) = (4.8166, 0.1990, −0.9586) = E2

and (x̄, ȳ, z̄) = (−4.8166, −0.1990, −0.9586) = E3, the
system (10) is also stable for the order 0 < q < 1. The plots of
the control functions u1(t), u2(t), u3(t) used to stabilize the
fractional order chaotic system are depicted through Fig. 3 (d),
which clearly show that the chosen functions tend to zero as
time approaches infinity at the equilibrium point E1. It can
be shown that the nature of the above functions at other two
equilibrium points E2 and E3 are similar.
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Fig. 3. Plots of x(t), y(t), z(t) of the controlled system (10). (a)
At equilibrium point E1. (b) At the equilibrium point E2. (c) At
the equilibrium point E3. (d) Plots of control functions u1(t), u2(t),

u3(t) at E1.

B. Fractional Order El-Nino System

El-Nino system is nonlinear and non-autonomous system
represented by three differential equations as [21], [22]

dx

dt
= µ′(y − z)− b(x− f(t))

dy

dt
= xz − y + c

dz

dt
= −xy − z + c (17)

where x, y and z are the speed of surface ocean current,
temperature of water accordingly on western and eastern
bounds of water pool respectively, f(t) is the periodic function
considering influence of trades winds.

Taking f(t) = 0 to make an autonomous system as

dx

dt
= µ′(y − z)− bx

dy

dt
= xz − y + c

dz

dt
= −xy − z + c. (18)

The fractional order El-Nino system is described as

dqx

dtq
= µ′(y − z)− bx

dqy

dtq
= xz − y + c

dqz

dtq
= −xy − z + c, 0 < q < 1. (19)

1) Equilibrium Points and Stability: To find the equilib-
rium points of the system (19), we have

µ′(y − z)− bx = 0
xz − y + c = 0
− xy − z + c = 0.

The equilibrium points are obtained as

P1 = (0, c, c)

P2 =

(√
2µc

b
− 1,

b +
√

2µbc− b2

2µ
,

b−
√

2µbc− b2

2µ

)

P3 =

(
−

√
2µc

b
− 1,

b−
√

2µbc− b2

2µ
,

b +
√

2µbc− b2

2µ

)
.

Making a shifting through y → y + c and z → z + c, the
system (19) will be reduced to the following form

dqx

dtq
= µ′(y − z)− bx

dqy

dtq
= xz + xc− y

dqz

dtq
= −xy − xc− z. (20)

For the parameters µ′ = 83.6, b = 10 and c = 12 and
the initial condition (−2, 3, 5), the El-Nino system shows
chaotic behavior at q = 0.934, the lowest fractional order
(see Figs. 4 (a)−4 (d)). For the same values of parameters and
initial conditions the trajectories of the system at q = 0.93 are
described through Figs. 5 (a)−5 (d).

The equilibrium points of the system (20) are calculated as

P1 = (0, 0, 0)
P2 = (14.1294, −11.0951, −12.7852)
P3 = (−14.1294, −12.7852, −11.0951).
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Fig. 4. Phase portraits of fractional order El-Nino system for frac-
tional order q = 0.934.

Fig. 5. Phase portraits of fractional order El-Nino system for frac-
tional order q = 0.93.



120 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 1, JANUARY 2017

The Jacobian matrix of the El-Nino system (20) at the
equilibrium point P̄ (x̄, ȳ, z̄) is

J(P̄ ) =



−b µ′ −µ′

z̄ + c −1 x̄
−ȳ − c −x̄ −1


 .

Putting the values of µ′ = 83.6, b = 10 and c = 12, we
obtain characteristic polynomial of the above Jacobian matrix
as

P (λ) = λ3 + 12λ2 − (−x̄2 + 83.6ȳ + 83.6z̄ + 1985.40)λ

+ 10x̄2 − 83.6ȳ − 83.6z̄ + 83.6x̄ ȳ

− 83.6x̄ z̄ − 1996.40.

At the equilibrium point P1 = (0, 0, 0),

P (λ) = λ3 + 12λ2 − 1985.40λ− 1996.40

which gives λ1 = −50.5183, λ2 = 39.5183, λ3 = −1.0000.

Now P1 is a saddle point of index 1 and from Definition
2 it is unstable for 0 < q < 1. At the equilibrium point
P2 = (14.1294, −11.0951, −12.7852),

P (λ) = λ3 + 12λ2 + 210.6330λ + 3992.7687

and thus the eigenvalues are λ1 = −15.2956, λ2, 3 = 1.6478
±16.0725i. P2 is the saddle point of index 2 (Definition
2). So P2 is stable for 0 < q < 0.934. Similarly at
P3 = (−14.1294, −12.7852, −11.0951), the eigenvalues are
obtained as λ1 = −15.2956, λ2, 3 = 1.6478 ± 16.0725i, and
this shows that P3 is stable for 0 < q < 0.934.

2) Control of Chaos Using Nonlinear Control Method:
Consider the fractional order El-Nino system as a controlled
system with control functions u1(t), u2(t) and u3(t), for sta-
bilizing unstable periodic orbit and (x̄, ȳ, z̄) be the solution
of the system (20) so that

dqx̄

dtq
= µ′(ȳ − z̄)− bx̄

dq ȳ

dtq
= x̄z̄ + x̄c− ȳ

dq z̄

dtq
= −x̄ȳ − x̄c− z̄. (21)

Defining the error function e(t) and Lyapunov function V
as in Section IV-A for stabilizing the error system, we get the
q-th order derivative of V as

dqV

dtq
≤ e1[µ′(e2 − e3)− be1 + u1(t)]

+ e2[ce1 − e2 + xz − x̄z̄ + u2(t)]
+ e3[−ce1 − e3 − xy + x̄ȳ + u3(t)].

Taking u1(t) = −µ′(e2 − e3), u2(t) = −ce1 − xz + x̄z̄ and
u3(t) = ce1 + xy − x̄ȳ, we get dqV

dtq ≤ −be2
1 − e2

2 − e2
3 < 0,

which implies the trajectories (x(t), y(t), z(t)) converge to
(x̄, ȳ, z̄).

3) Stabilizing the Points P1, P2, and P3: It is seen from
Figs. 6 (a)−6 (c) that at P1 = (0, 0, 0), P2 = (14.1294,
−11.0951, −12.7852) and P3 = (−14.1294, −12.7852,
−11.0951), the system (20) is stable for the order 0 < q
< 1. Like previous system, the chosen control functions for
this fractional order chaotic system converge to zero at all the
equilibrium points P1, P2, P3 as time approaches infinity. The
plots at P1 are shown through Fig. 6 (d).

V. SYNCHRONIZATION BETWEEN FRACTIONAL ORDER
VAALLIS AND EL-NINO SYSTEMS USING NONLINEAR

CONTROL METHOD

In this section to study the synchronization between frac-
tional order Vallis and El-Nino systems, we consider the
fractional order Vallis system as the master system as

dqx1

dtq
= µy1 − ax1

dqy1

dtq
= x1z1 + x1 − y1

dqz1

dtq
= −x1y1 − z1 (22)

and the fractional order El-Nino system as slave system as

dqx2

dtq
= µ′(y2 − z2)− bx2 + v1(t)

dqy2

dtq
= x2z2 + x2c− y2 + v2(t)

dqz2

dtq
= −x2y2 − x2c− z2 + v3(t) (23)

where v1(t), v2(t) and v3(t) are the control functions. Defining
error functions as

e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1.
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Fig. 6. Plots of x(t), y(t), z(t)of the controlled system (20). (a)
At the equilibrium point P1. (b) At the equilibrium point P2. (c) At
the equilibrium point P3. (d) Plots of control functions u1(t), u2(t),

u3(t) at P1.

We obtain the following error system as

dqe1

dtq
= µ′(e2 − e3)− be1 + (a− b)x1 + (µ′ − µ)y1

− µ′z1 + v1(t)

dqe2

dtq
= ce1 − e2 + (c− 1)x1 + x2z2 − x1z1 + v2(t)

dqe3

dtq
= − ce1 − e3 − x1c− x2y2 + x1y1 + v3(t). (24)

In order to stabilize the error system, let us consider the
Lyapunov function as

V (e) =
1
2

(
e2
1 + e2

2 + e2
3

)
. (25)

Choosing the control functions as

v1(t) = −µ′(e2 − e3)− (a− b)x1 − (µ′ − µ)y1 + µ′z1

v2(t) = −ce1 − (c− 1)x1 − x2z2 + x1z1

v3(t) = ce1 + x1c + x2y2 − x1y1

the q-th order derivative of the Lyapunov function V (e)
becomes dqV (e)

dtq ≤ −be2
1− e2

2− e2
3 < 0, which concludes that

limt→∞ ‖e(t)‖ = 0, and hence the synchronization between
master and response systems is achieved.

VI. NUMERICAL SIMULATION AND RESULTS

In this section, we take the earlier considered values of
the parameters of systems. The initial conditions of master
and slave systems are (x1(0), y1(0), z1(0)) = (0.1, 1.2,
0.5) and (x2(0), y2(0), z2(0)) = (−2, 3, 5), respectively.
Hence the initial conditions of error system will be (e1(0),
e2(0), e3(0)) = (−2.1, 1.8, 4.5). During synchronization
of the systems the time step size is taken as 0.005. The
synchronization between x1 − x2, y1 − y2 and z1 − z2 are
depicted through Figs. 7−10 at q = 0.7, 0.9, 0.981, 1.0. The
time for synchronization of the considered fractional order
chaotic systems clearly exhibits that it takes less time for
synchronization when the order of the derivative approaches
from standard order to the fractional order.

VII. CONCLUSION

The authors have achieved four important goals through
the analysis of the present study. First one is the stability
analysis to locate the range of fractional order beyond which
the systems show chaotic behavior. Second one is the syn-
chronization between the considered fractional order systems
and also chaos control of both the systems using nonlinear
control method. The third one is the proper design of the
control functions so that the error states decay to zero as
time approaches infinity which helps to get the required time
for synchronization. The most important part of the study is
the comparison of time of synchronization through effective
numerical simulation and graphical presentations for different
particular cases as systems pair approaches from standard
order to fractional order. The authors believe that the outcome
of the results will be appreciated and utilized by the scientists
and engineers working in the field of atmospheric science and
oceanography.
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Fig. 7. State trajectories of master system (22) and slave system (23)
for fractional order q = 0.7. (a) Synchronization between x1 and x2.
(b) Synchronization between y1 and y2. (c) Synchronization between
z1 and z2. (d) The evolution of the error functions e1(t), e2(t) and
e3(t).

Fig. 8. State trajectories of the systems (22) and (23) for fractional
order q = 0.9. (a) Synchronization between x1 and x2. (b) Synchro-
nization between y1 and y2. (c) Synchronization between z1 and z2.
(d) The evolution of the error functions e1(t), e2(t) and e3(t).
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Fig. 9. State trajectories of the systems (22) and (23) for order
q = 0.981. (a) Synchronization between x1 and x2. (b) Synchro-
nization between y1 and y2. (c) Synchronization between z1 and z2.
(d) The evolution of the error functions e1(t), e2(t) and e3(t).

Fig. 10. State trajectories of the systems (22) and (23) for q = 1.
(a) Synchronization between x1 and x2. (b) Synchronization between
y1 and y2. (c) Synchronization between z1 and z2. (d) Evolution of
the error functions e1(t), e2(t) and e3(t).
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The Exp-function Method for Some Time-fractional
Differential Equations
Ahmet Bekir, Ozkan Guner, and Adem Cevikel

Abstract—In this article, the fractional derivatives in the sense
of modified Riemann-Liouville derivative and the Exp-function
method are employed for constructing the exact solutions of
nonlinear time fractional partial differential equations in math-
ematical physics. As a result, some new exact solutions for them
are successfully established. It is indicated that the solutions
obtained by the Exp-function method are reliable, straightfor-
ward and effective method for strongly nonlinear fractional
partial equations with modified Riemann-Liouville derivative by
Jumarie’s. This approach can also be applied to other nonlinear
time and space fractional differential equations.

Index Terms—Exact solution, exp-function method, fractional
differential equation.

I. INTRODUCTION

FRACTIONAL partial differential equations (FPDEs) have
gained much attention as they are widely used to describe

various complex phenomena in various applications such
as the fluid flow, signal processing, control theory, systems
identification, finance and fractional dynamics, physics and
other areas. Oldman and Spanier first considered the partial
fractional differential equations arising in diffusion problems
[1]. The fractional partial differential equations have been
investigated by many researchers [2]−[4].

In recent decades, a large amount of literature has been
provided to construct the exact solutions of fractional ordi-
nary differential equations and fractional partial differential
equations of physical interest. Many powerful and efficient
methods have been proposed to obtain exact solutions of
fractional partial differential equations, such as the fractional
sub-equation method, the first integral method, the (G’/G)-
expansion method exp-function method and so on [5]−[19].

The exp-function method [20]−[27] can be used to con-
struct the exact solutions for some time and space fractional
differential equations. The present paper investigates for the
first time the applicability and effectiveness of the exp-function
method on fractional nonlinear partial differential equations.
The objective of this paper is to extend the application of the
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exp-function method to obtain exact solutions to some frac-
tional partial differential equations in mathematical physics.
These equations include Fitzhugh-Nagumo equation and KdV
equation.

This Letter is organized as follows: In Section II, some basic
properties of Jumarie’s modified Riemann-Liouville derivative
are given. The main steps of the exp-function method is given
in Section III. In Sections IV and V, we construct the exact
solutions of the time fractional Fitzhugh-Nagumo and KdV
equations via this method. Some conclusions and discussions
are shown in Section VI.

II. MODIFIED RIEMANN-LIOUVILLE DERIVATIVE

In decades years, in order to improve the local behavior of
fractional types, a few local versions of fractional derivatives
have been proposed, i.e., the Caputo’s fractional derivative
[28], the Grünwald-Letnikov’s fractional derivative [29], the
Riemann-Liouville’s derivative [29], the Jumarie’s modified
Riemann-Liouville derivative [30], [31]. The Jumarie’s deriva-
tive is defined as

Dα
t f(t)=

1
Γ(1−α)

d

dt

∫ t

0
(t−ξ)−α

[
f(ξ)−f(0)

]
dξ, 0<α<1

(1)
where f : R → R, t → f(t) denotes a continuous (but not
necessarily first-order-differentiable) function. We list some
properties for the modified Riemann–Liouville derivative as
follows:

Property 1:

Dα
t tγ =

Γ(1 + γ)
Γ(1 + γ − α)

tγ−α, γ > 0. (2)

Property 2:

Dα
t (cf(t)) = cDα

t f(t), c = constant. (3)

Property 3:

Dα
t {af(t) + bg(t)} = aDα

t f(t) + bDα
t g(t) (4)

where a and b constants.
Property 4:

Dα
t c = 0, c = constant. (5)

III. THE EXP-FUNCTION METHOD

We consider the following general nonlinear FPDE of the
type

F (u,Dα
t u,Dβ

xu,Dψ
y u,Dα

t Dα
t u,Dα

t Dβ
xu,Dβ

xDβ
xu,Dβ

xDψ
y u,

Dψ
y Dψ

y u, . . . ) = 0, 0 < α, β, ψ < 1
(6)
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where u is an unknown function, and F is a polynomial of
u and its partial fractional derivatives, in which the highest
order derivatives and the nonlinear terms are involved. In the
following, we give the main steps of the exp-function method.

Step 1: Li and He [32] proposed a fractional complex trans-
form to convert fractional differential equations into ordinary
differential equations (ODE), so all analytical methods devoted
to the advanced calculus can be easily applied to the fractional
calculus. The traveling wave variable

u(x, y, t) = U(ξ)

ξ =
τxβ

Γ(1 + β)
+

δyψ

Γ(1 + ψ)
+

λtα

Γ(1 + α)
(7)

where τ, δ and λ are non zero arbitrary constants.
By using the chain rule

Dα
x u = σ

′
x

dU

dξ
Dα

x ξ

Dα
y u = σ

′
y

dU

dξ
Dα

y ξ

Dα
t u = σ

′
t

dU

dξ
Dα

t ξ (8)

where σ
′
x, σ

′
y and σ

′
t are called the sigma indexes see

[33], [34], without loss of generality we can take σ
′
x = σ

′
y =

σ
′
t = l, where l is a constant.
Substituting (7) with (2) and (8) into (6), we can rewrite (6)

in the following nonlinear ODE

Q(U,U
′
, U ′′, U ′′′, . . . ) = 0 (9)

where the prime denotes the derivation with respect to ξ. If
possible, we should integrate (9) term by term one or more
times.

Step 2: According to exp-function method, which was
developed by He and Wu [35], we assume that the wave
solution can be expressed in the following form

U(ξ) =

d∑
n=−c

an exp
[
nξ

]

q∑
m=−p

bm exp
[
mξ

] (10)

where p, q, c and d are positive integers which are known to
be further determined, an and bm are unknown constants. We
can rewrite (10) in the following equivalent form.

U(ξ) =
a−c exp

[− cξ
]
+ · · ·+ ad exp

[
dξ

]

b−p exp
[− pξ

]
+ · · ·+ bq exp

[
qξ

] . (11)

Step 3: This equivalent formulation plays an important and
fundamental part for finding the analytic solution of problems.
To determine the value of c and p, we balance the linear
term of lowest order of equation (9) with the lowest order
nonlinear term. Similarly, to determine the value of d and q,
we balance the linear term of highest order of (9) with highest
order nonlinear term [36]−[39].

In the remaining sections, we will show the exact solutions
to nonlinear time fractional differential equations using exp-
function method.

IV. THE TIME FRACTIONAL FITZHUGH-NAGUMO
EQUATION

We take into account the time fractional Fitzhugh-Nagumo
equation

∂αu

∂tα
=

∂2u

∂x2
+ u(1− u)(u− µ), t > 0; 0 < α ≤ 1;x ∈ R

(12)
subject to the initial condition

u(x, 0) =
1

(1 + e
− x√

2 )
(13)

which is an important nonlinear reaction-diffusion equation,
applied to model the transmission of nerve impulses [40], [41],
and also used in biology and the area of population genetics
in circuit theory [42]. When µ = −1, the Fitzhugh-Nagumo
equation reduces to the real Newell-Whitehead equation [43].

For our goal, we present the following transformation

u(x, t) = U(ξ), ξ = cx− λtα

Γ(1 + α)
(14)

where c and λ 6= 0 are constants.
Then by use of (14) with (2) and (8) into (12), (12) can be

turned into an ODE

λU ′ + c2U ′′ + U(1− U)(U − µ) = 0 (15)

where U ′ =
dU

dξ
.

Balancing the order of U ′′ and U3 in (15), we have

U3 =
c1 exp

[
(3c + p)ξ

]
+ · · ·

c2 exp
[
4pξ

]
+ · · · (16)

and

U ′′ =
c3 exp

[
(3p + c)ξ

]
+ · · ·

c4 exp
[
4pξ

]
+ · · · (17)

where ci are determined coefficients only for simplicity. Bal-
ancing lowest order of exp-function in (16) and (17) we have

3p + c = 3c + p (18)

which leads to the result

p = c. (19)

Similarly to determine values of d and q, we balance the
linear term of highest order in (15)

U ′′ =
· · ·+ d1 exp

[− (3q + d)ξ
]

· · ·+ d2 exp
[− 4qξ

] (20)

and

U3 =
· · ·+ d3 exp

[− (3d + q)ξ
]

· · ·+ d4 exp
[− 4qξ

] (21)

where di are determined coefficients only for simplicity. From
(20) and (21), we obtain

−(3q + d) = −(3d + q) (22)

and this gives
q = d. (23)
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To simplify, we set p = c = 1 and q = d = 1, so (11)
degrades to

u(ξ) =
a1 exp(ξ) + a0 + a−1 exp(−ξ)
b1 exp(ξ) + b0 + b−1 exp(−ξ)

. (24)

Substituting (24) into (15), and by the help of symbolic
computation, we have

1
A

[
R3 exp(3ξ) + R2 exp(2ξ) + R1 exp(ξ) + R0

+R−1 exp(−ξ) + R−2 exp(−2ξ) + R−3 exp(−3ξ)
]

= 0
(25)

where
A = (b−1 exp(−ξ) + b0 + b1 exp(ξ))3

R3 = a2
1b1 + a2

1kb1 − a1b
2
1k − a3

1

R2 = a2
1b0 − 3a2

1a0 + c2a0b
2
1 + 2a1b1a0 − λa0b

2
1 + ka2

1b0

−a0b
2
1k+2a1a0kb1−2a1b1kb0−c2a1b1b0+λa1b1b0

R1 = a2
1b−1 − 3a2

1a−1 − 3a1a
2
0 + a2

0b1 + c2a1b
2
0

− 2λa−1b
2
1 − a1b

2
0k + 4c2a−1b

2
1 + 2a1b1a−1

− a−1b
2
1k + λa1b

2
0 + a2

1b−1k + a2
0kb1 + 2a1b0a0

− c2a0b1b0 + 2a1b0a0k − 4c2a1b1b−1 − 2a1b1b−1k
− λa0b1b0 − 2a0b1b0k + 2λa1b1b−1 + 2a1b1a−1k

R0 = −a3
0 − a0b

2
0k + a2

0kb0 − 2a1b0kb−1

+ 2a1a0kb−1 − 2a−1b1kb0 + 2a1b0a−1 + 2a1b−1a0

+ a2
0b0 + 3λa1b0b−1 − 3λa−1b1b0 + 3c2a1b0b−1

+ 3c2a−1b0b1 − 6c2a0b1b−1 − 6a1a0a−1

+2a0b1a−1+2a1a−1kb0−2a0b1kb−1+2a0a−1kb1

R−1 = a2
0b−1 − 3a−1a

2
0 − 3a1a

2
−1 + b1a

2
−1 − 2λa−1b1b−1

+2a1a−1kb−1+λa0b−1b0+2a0a−1kb0−c2a0b0b−1

−2a−1b1kb−1−2a0b0kb−1−4c2a−1b1b−1+2λa1b
2
−1

−λa−1b
2
0+a2

−1kb1+2a1b−1a−1−a1b
2
−1k+4c2a1b

2
−1

+ a2
0kb−1 + 2a0b0a−1 + c2a−1b

2
0 − a−1b

2
0k

R−2 = −3a0a
2
−1 + b0a

2
−1 − 2a−1b0kb−1 + 2a0a−1kb−1

− c2a−1b0b−1 − λa−1b0b−1 + 2a0b−1a−1

− a0b
2
−1k + λa0b

2
−1 + a2

−1kb0 + c2a0b
2
−1

R−3 = a2
−1b−1 + a2

−1kb−1 − a−1b
2
−1k − a3

−1.

Solving this system of algebraic equations by using Maple,
we obtain the following results

Case 1:

a0 = 0, b−1 =
1
5
a−1, b0 = 0, b1 = a1

µ = 5, λ = 6, c = ±√2 (26)

where a−1 and a1 are free parameters. Substituting these
results into (24), we obtain the exact solution (27), shown
at the bottom of the page.

The evolution of exact solution for (27) with α = 0.5 and
α = 1.0 is shown in Fig. 1.

Fig. 1. The exact solution for (27) with (a) α = 0.5 and (b) α = 1,
respectively, when a1 = 1, a−1 = −1.

Case 2 :

a0 = 0, b−1 = a−1, b0 = 0, b1 =
1
5
a1

µ = 5, λ = −6, c = ±√2
(28)

where a−1 and a1 are free parameters. Substituting these
results into (24), we obtain the exact solution (29), shown
at the bottom of the page.

Case 3:

a0 = 0, b−1 = b−1, b0 = 0, b1 = a1

µ =
a−1

b−1
, λ =

a2
−1 − b2

−1

4b2
−1

, c = ±
√

2
4b−1

(a−1 − b−1)

(30)
where a−1 and b−1 are free parameters which exist provided
that b−1 6= 0 and a2

−1 6= b2
−1. Substituting these results into

(24), we obtain the exact solution (31), shown at the bottom
of the page.

———————————————————————————————————————————————————–

u(x, t) =
a1 exp(±√2x + 6tα

Γ(1+α) ) + a−1 exp(−(±√2x + 6tα

Γ(1+α) ))
a1
5 exp(±√2x + 6tα

Γ(1+α) ) + a−1 exp(−(±√2x + 6tα

Γ(1+α) ))
(27)

u(x, t) =
a1 exp(±√2x + 6tα

Γ(1+α) ) + a−1 exp(−(±√2x + 6tα

Γ(1+α) ))
a1
5 exp(±√2x + 6tα

Γ(1+α) ) + a−1 exp(−(±√2x + 6tα

Γ(1+α) ))
(29)

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))

a1 exp(cx− λtα

Γ(1+α) ) + b−1 exp(−(cx− λtα

Γ(1+α) ))
(31)
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Case 4 :
a0 = 0, b−1 = a−1, b0 = 0, b1 = b1

µ =
a1

b1
, λ = −a2

1 − b2
1

4b2
1

, c = ±
√

2
4b1

(a1 − b1)

(32)
where a1 and b1 are free parameters which exist provided that
b1 6= 0 and a2

1 6= b2
1. Substituting these results into (24), we

obtain the exact solution (33), shown at the bottom of the page.
Case 5 :
a0 = 0, b−1 = 2a−1, b0 =

√−a1a−1, b1 = a1

µ =
1
2
, λ = −3

8
, c = ±

√
2

4
(27)

where a1 and a−1 are free parameters. Substituting these
results into (24), we obtain the exact solution (35), shown
at the bottom of the page.

Obtained exact solution is described in Fig. 2.

Fig. 2. The exact solution for (35) with (a) α = 0.5 and (b) α = 1,
respectively, when a1 = 1, a−1 = −1.

Case 6 :

a0 = 0, λ =
a2
−1 − b2

−1

2b2
−1

b−1 = b−1, b0 = ±
√
− a1

a−1
(a−1 − b−1) , b1 = a1

µ =
a−1

b−1
, c = ±

√
2

2b−1
(a−1 − b−1)

(36)

where a1 and a−1 are free parameters which exist provided
that b−1 6= 0 and a2

−1 6= b2
−1. Substituting these results into

(24), we obtain the exact solution (37), shown at the bottom
of the page.

Case 7 :
a0 = 0, b−1 = a−1, b0 =

√−a1a−1

2
, b1 =

a1

2

µ = 2, λ = −3
2
, c = ±

√
2

2
(38)

where a1 and a−1 are free parameters. Substituting these
results into (24), we obtain the exact solution (39), shown
at the bottom of the page.

Case 8 :

a0 = 0, λ =
a2
1 − b2

1

2b2
1

b−1 = a−1, b0 = ±
√
−a−1

a1
(a1 − b1) , b1 = b1

µ =
a1

b1
, c = ±

√
2

2b1
(a1 − b1)

(40)

where a1 and a−1 are free parameters which exist provided
that b1 6= 0 and a2

1 6= b2
1. Substituting these results into (24),

we obtain the exact solution (41), shown at the bottom of the
page.

V. THE TIME FRACTIONAL KDV EQUATION

We consider the time fractional KdV equation

∂α

∂tα
u + 6u

∂u

∂x
+

∂3u

∂x3
= 0, t > 0; 0 < α ≤ 1;x ∈ R (42)

subject to the initial condition:

u(x, 0) =
1
2
sech2

(1
2
x
)

(43)

———————————————————————————————————————————————————–

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))

b1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))
(33)

u(x, t) =
a1 exp(±

√
2

4 x + 3tα

8Γ(1+α) ) + a−1 exp(−(±
√

2
4 x + 3tα

8Γ(1+α) ))

a1 exp(±
√

2
4 x + 3tα

8Γ(1+α) ) +
√−a1a−1 + 2a−1 exp(−(±

√
2

4 x + 3tα

8Γ(1+α) ))
(35)

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))

a1 exp(cx− λtα

Γ(1+α) ) +
√−a1a−1 + 2a−1 exp(−(cx− λtα

Γ(1+α) ))
(37)

u(x, t) =
a1 exp(±

√
2

2 x + 3tα

2Γ(1+α) ) + a−1 exp(−(±
√

2
2 x + 3tα

2Γ(1+α) ))
a1
2 exp(±

√
2

2 x + 3tα

2Γ(1+α) ) +
√−a1a−1

2 + a−1 exp(−(±
√

2
2 x + 3tα

2Γ(1+α) ))
(39)

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))

b1 exp(cx− λtα

Γ(1+α) )±
√
−a−1

a1
(a1 − b1) + a−1 exp(−(cx− λtα

Γ(1+α) ))
(41)
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where α is a parameter describing the order of the fractional
time-derivative. The function u(x, t) is assumed to be a causal
function of time.

For our purpose, we introduce the following transforma-
tions;

u(x, t) = U(ξ), ξ = cx− λtα

Γ(1 + α)
(44)

where c and λ are non-zero constants.
Substituting (44) with (2) and (8) into (42), we can show

that (42) reduced into following ODE

−λU ′ + 6cUU ′ + c3U ′′′ = 0 (45)

where U ′ =
dU

dξ
.

Integrating (45) with respect to ξ yields

−λU + 3cU2 + c3U ′′ + ξ0 = 0 (46)

where ξ0 is a constant of integration.
By the same procedure as illustrated in Section III, we can

determine values of c and p by balancing terms U2 and U ′′

in (46). By symbolic computation, we have

U ′′ =
c1 exp

[
(3p + c)ξ

]
+ · · ·

c2 exp
[
4pξ

]
+ · · · (47)

and

U2 =
· · ·+ c3 exp

[
2cξ

]

· · ·+ c4 exp
[
2pξ

] (48)

where ci are determined coefficients only for simplicity. Ac-
cording to exp-function method, balancing lowest order of (47)
and (48), we have

3p + c = 2c + 2p (49)

that gives
p = c. (50)

In the same way, we balance the linear term of highest order
in (46)

U ′′ =
· · ·+ d1 exp

[− (3q + d)ξ
]

· · ·+ d2 exp[−4qξ]
(51)

and

U2 =
d3 exp

[− 2dξ
]
+ · · ·

d4 exp
[− 2qξ

]
+ · · · (52)

where di are determined coefficients only for simplicity. From

(51) and (52), we get

−(3q + d) = −(2d + 2q) (53)

and this gives
q = d. (54)

For simplicity, we set p = c = 1 and q = d = 1, so (11)
reduces to

U(ξ) =
a1 exp(ξ) + a0 + a−1 exp(−ξ)
b1 exp(ξ) + b0 + b−1 exp(−ξ)

. (55)

Substituting (55) into (46), and by the help of Maple, we
have

1
A

[
R3 exp(3ξ) + R2 exp(2ξ) + R1 exp(ξ) + R0

+R−1 exp(−ξ) + R−2 exp(−2ξ) + R−3 exp(−3ξ)
]

= 0
(56)

where

A = (b−1 exp(−ξ) + b0 + b1 exp(ξ))3

R3 = −λa1b
2
1 + kb3

1 + 3ca2
1b1

R2 = c3a0b
2
1 + 3kb2

1b0 − λa0b
2
1 + 3ca2

1b0 − 2λa1b1b0

+ 6ca1a0b1 − c3a1b1b0

R1 = −2λa0b1b0 + 6ca1b0a0 − c3a0b1b0 + 3kb1b
2
0 − λa1b

2
0

+ 3ca2
0b1 + c3a1b

2
0 + 4c3a−1b

2
1 + 3kb2

1b−1 + 3ca2
1b−1

− λa−1b
2
1 − 2λa1b1b−1 + 6ca1a−1b1 − 4c3a1b1b−1

R0 = 3ca2
0b0 + 6ca0a−1b1 + kb3

0 − λa0b
2
0 + 6kb−1b1b0

+3c3a1b0b−1+3c3a−1b1b0−6c3a0b1b−1−2λa1b0b−1

− 2λa0b1b−1 − 2λa−1b1b0 + 6ca1a0b−1 + 6ca1a−1b0

R−1 = −2λa0b−1b0 + 6ca0a−1b0 − c3a0b0b−1 + 3kb2
0b−1

−λa−1b
2
0+3ca2

0b−1+c3a−1b
2
0+3ca2

−1b1+4c3a1b
2
−1

+ 3kb1b
2
−1 − λa1b

2
−1 − 2λa−1b1b−1 + 6ca1a−1b−1

− 4c3a−1b1b−1

R−2 = c3a0b
2
−1+3kb0b

2
−1−λa0b

2
−1+3cb0a

2
−1−2λa2b0b−1

+ 6ca0a−1b−1 − c3a−1b0b−1

R−3 = −λa−1b
2
−1 + 3ca2

−1b−1 + kb3
−1.

(57)
Solving this system of algebraic equations by using Maple,

we obtain the following results

a1 = a1, a0 =
b0

b1
(c2b1 + a1), a−1 =

a1b
2
0

4b2
1

b1 = b1, b0 = b0, b−1 =
b2
0

4b1

ξ0 =
a1c(c2b1 + 3a1)

b2
1

, λ =
c(c2b1 + 6a1)

b1

(58)

where a1 , b0 and b1 are free parameters which exist provided
that b1 6= 0 and c2b1 +6a1 6= 0. Substituting these results into
(56), we obtain the exact solution (59), shown at the bottom
of the page.

Also, u(x, t) in (59) is represented in Fig. 3.

———————————————————————————————————————————————————–

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + b0
b1

(c2b1 + a1) + a1b20
4b21

exp(−(cx− λtα

Γ(1+α) ))

b1 exp(cx− λtα

Γ(1+α) ) + b0 + b20
4b1

exp(−(cx− λtα

Γ(1+α) ))
(59)
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Fig. 3. The exact solution for (59) with (a) α = 0.5 and (b) α = 1

respectively, when c = 1, a1 = 0, b1 = 1, b0 = 2.

Comparing our results with the results [45], it can be seen
that our results are new.

VI. CONCLUSION

exp-function method known as very powerful and an ef-
fective method for solving nonlinear problems and ordinary,
partial, difference, fractional equations and so many other
equations. The basic idea described in this paper is expected to
be further employed to solve other similar nonlinear equations
in fractional calculus. To our knowledge, these new solutions
have not been reported in former literature, they may be of
significant importance for the explanation of some special
physical phenomena. As a result, many new and more rational
solitary wave solutions are obtained, from which hyperbolic
function and trigonometric function solutions.
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An Iterative Learning Approach to Identify
Fractional Order KiBaM Model

Yang Zhao, Yan Li, Fengyu Zhou, Zhongkai Zhou, and YangQuan Chen, Senior Member, IEEE

Abstract—This paper discusses the parameter and differenti-
ation order identification of continuous fractional order KiBaM
models in ARX (autoregressive model with exogenous inputs)
and OE (output error model) forms. The least squares method is
applied to the identification of nonlinear and linear parameters,
in which the Grünwald-Letnikov definition and short memory
principle are applied to compute the fractional order derivatives.
An adaptive P-type order learning law is proposed to estimate
the differentiation order iteratively and accurately. Particularly,
a unique estimation result and a fast convergence speed can be
arrived by using the small gain strategy, which is unidirectional
and has certain advantages than some state-of-art methods. The
proposed strategy can be successfully applied to the nonlinear
systems with quasi-linear characteristics. The numerical simula-
tions are shown to validate the concepts.

Index Terms—Fractional calculus, iterative learning identifica-
tion, KiBaM model, system identification.

I. INTRODUCTION

DYNAMIC system identification which deals with set-
ting up mathematical models to represent input-output

relationships has attracted considerable research interest from
engineering and science. For nonlinear dynamic systems iden-
tification, numerous real applications exist such as neural
networks [1], fuzzy logic [2], kernels models [3], multi-
models [4], and the well known block-oriented KiBaM model
[5]. Although the introduction of KiBaM model dates back
to the 1960’s [6], with its structural simplicity and quasi-
linear properties, its identification is still an active area of
research [7], [8]. The model has been effective in several
practical application fields, such as pH neutralization process
[9], RF amplifiers technology [10], biological systems [11],
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physiology [12], acoustics [13] and identification of nonlinear
systems [14]. To date, many algorithms were elaborated for
the identification of the KiBaM system, for instance, the over-
parameterization method [15], the stochastic method [16], the
least squares approach [5], the blind method [14], the subspace
method [17] and so forth. All the methods have their superi-
ority and effectiveness and limitations in finding the desir-
able parameters. Well-established strength of fractional-order
system characterization and identification looks a promising
alternative to be merged into this domain.

As a generalization of traditional calculus, fractional cal-
culus has witnessed a growing development in various fields
in the past few decades [18]−[20]. It also shows that some
unique characteristics of fractional order operator, for instance
hereditary, have given great advantages in describing real
dynamic systems more accurately. Identification of fractional
order systems was initiated in the late nineties [21], [22].
The fractional order models have been utilized for a wide
spectrum of physical systems including thermal diffusion [23],
viscoelastic materials [24], lithium-ion batteries [25], crowd
of pedestrians [26] as well as electrical circuit [27], etc. In
view of the present achievements on modeling of fractional
order systems, different types of fractional order nonlinear
models have been proposed. Boroomand et al. [28] applied a
generalized capacitor whose voltage and current are related by
the fractional-order differential equation to propose a fractional
order Hopfield neural network. Extended Volterra series to
fractional order models, [29] estimates the thermal system
for large temperature variations. Fractional multi-models were
proposed to model heat diffusion process [30] and gastrocne-
mius muscle structure [4].

Since 1994, the ubiquitous of fractional order capacitors
has become the new norm that opens a new era of fractional
calculus and its engineering applications [31]. In the 21st
century, a series of fundamental researches [32] points out
that ion batteries are also fractional order ones due to the
anomalous diffusion in different parts inside the battery. For
example, the fractional order of Warburg impedance (constant
phase element) are about 0.5 for many Li-ion batteries. This
fact of fractional order battery, super capacitor or ion battery,
has become more and more clear in various levels covering
atomic scale and external characteristics [33]. The accurate
modeling of battery is a key factor to battery states estimations
and simulation, thus fractional order modeling undoubtedly
becomes cutting edge. It should be noted that the model
structure of batteries usually is a single-input single-output



ZHAO et al.: AN ITERATIVE LEARNING APPROACH TO IDENTIFY FRACTIONAL ORDER KIBAM MODEL 323

system, where the linear part can be determined by impedance
spectroscopy analysis. Besides, the nonlinearity of battery
can be successfully described by using the KiBaM structure
[34] that represents temporary and available capacities. Given
the structural information, all parameters are expected to be
identified approximately or accurately by using part of input-
output data.

In this paper, we will focus on the problem of complete
parametric identification of commensurate fractional order
KiBaM model which is assumed to be a quasi-linear one.
The remainder of this paper is organized as follows: Some
mathematical preliminaries are introduced in Section II. Sec-
tion III presents the proposed solution in details. Section IV
is devoted to testify the proposed method with simulation
examples. Finally, we conclude this paper with some remarks
on future research.

II. PRELIMINARIES

A. Fractional Calculus

Fractional calculus [35], [36] is the general expression of
calculus, which plays an important role in modern science.
There are several commonly used definitions for fractional
derivatives, such as the Grünwald-Letnikov (GL) definition,
Riemann-Liouville (RL) definition and Caputo definition.

The GL fractional derivative of continuous function f(t) is
defined as

t0D
α
t f(t) = lim

h→0

1
hα

[ t−a
h ]∑

j=0

ω
(α)
j f(t− jh)

ω
(α)
j =

(−1)jΓ(α + 1)
Γ(j + 1)Γ(α− j + 1)

and the discrete GL form is:

t0Dt
αf(t) ≈ ∆α

hf((k + 1)h)

=
1
hα

k+1∑

j=0

(−1)j

(
α

j

)
f((k + 1− j)h). (1)

In this equation, α ∈ R is the fractional order, t0 is the
initial time instant, t is the current time, h ∈ R is the sampling
period or time increment. The term

(
α
j

)
is calculated by

(
α

j

)
=

{
1, j = 0
α(α−1)···(α−j+1)

j! , j > 0

where (t− t0)/h represents a truncation.
Remark 1: The short memory principle is employed to

obtain the approximate solutions for the differential equation
of fractional order.

t0D
α
t f(t) ≈t−L Dα

t f(t), (t > a + L). (2)

The above equation denotes that we consider behavior of
f(t) only for the “recent past”, i.e., in the interval [t − L, t],
where L is the “memory length”.

B. Identification Problem Statement

Two continuous-time KiBaM models are considered which
are shown in Fig. 1 [37]. The stimulation input u is firstly
scaled by the static nonlinear function f and then passed to
a linear time-invariant system described by a fractional order
transfer function G(p) = B(p)/A(p). The internal signal w is
not measurable and the noise v is white noise. The difference
between the two KiBaM models lies in the form of the noisy
part. In Fig. 1 (a), an auto regressive external (ARX) model is
used, in which the noise filter H = 1/A(p) is coupled to the
linear component of the plant model. In Fig. 1 (b), an output-
error (OE) model is illustrated with H = 1.

Fig. 1. Two continuous-time KiBaM model structures where f̂(u) =

f(u, θ̂n). (a) ARX model, (b) OE model.

The special class of linear systems considered in this paper
is of commensurate order α that is represented by the transfer-
function

G(p) =
B(p)
A(p)

=

r∑
i=0

bip
iα

1 +
h∑

j=1

ajpjα

. (3)

The given system can be approximated by rational transfer
functions of n zeros and m poles, depending on the order
of approximation. When model (3) is applied, the linear
parameter vector is composed of a vector of h + r + 1
coefficients,

θl =
[

θa

θb

]
= [ah, . . . , a1, br, . . . , b0]T .

The values of two positive integers r and h are assumed
to be known, pαk denotes the kαth fractional differentiator.
And the fractional orders α is allowed to be arbitrary positive
constants.

The nonlinear static characteristic function f(u) is known
up to a finite number of parameters β0, . . . , βm and is a
generalized polynominal

f(u) = β0 + β1u + β2u
2 + · · ·+ βmum. (4)

The nonlinear parameter vector is composed of a vector
with m + 1 coefficients
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θn =
[

β0 β1 β2 · · · βm

]T
.

The physical meaning of θn is the diffusions in different
parts of battery, and the nonlinear part is corresponding to
the “buffer of electrons” relating to various working load and
electrode materials.

The identification problem is now defined as follows: given
the collected input/output data

((u(1), y(1)), . . . , (u(N), y(N)))

find a parameter vector

θ =
[

θl

θn

]
= [ar, . . . , a1, bh, . . . , b0, β0, . . . , βm]T

that minimizes the cost function

‖v‖22 =
N∑

k=1

v2(k) (5)

where

1
Â(p)

v = y −G(p, θ̂l)f(u, θ̂n) = y − B̂(p)
Â(p)

f(u, θ̂n) (6)

in the case of the ARX noise model and

v = y −G(p, θ̂l)f(u, θ̂n) = y − B̂(p)
Â(p)

f(u, θ̂n) (7)

in the case of the OE noise model.
The models in Fig. 1 have more names such as Hammerstein

model, Quasi-linear model, KiBaM model, etc. To improve
readability, some useful information can be found in [37].

C. Motivations of Fractional Order Modeling

A detailed modeling of all processes that may occur in
batteries is a mission impossible, or too complicated to warrant
the initial motivation. Until today, for engineers and electro-
chemists, the most widely used model of battery is based on
the so called equivalent circuit model that is made up of
ideal resistors, capacitors, inductances, perhaps memristors,
and possibly various element networks. In such a way, a
resistor can correspond to a conductive path, or even some
chemical steps. Similarly, capacitors and inductances represent
polarization, adsorption and electrocrystallization processes,
etc. Furthermore, the I/V characteristics, state estimations, and
simulations are also closely related to those equivalent circuits.
It should be noted that traditional circuit elements, such as
resistors and capacitors, are always considered as ideal ones.
But, all real resistors are of finite size, and involve some
inductance, capacitance, and time delay of response as well
as resistance. For capacitors, the ideal ones are universally
unexisted [31], [38], and also contain side effects in certain
frequency ranges. Nevertheless, the above facts have not
impacted the extensive use of ideal equivalent circuits, because
some residual properties are unimportant over wide frequency
domains such as (jω)α or 1/(1 + (jω))α tends to a constant

with respect to ω → ∞ or ω → 0 in spite of α = 1 or
α ∈ (0, 1), where α 6= 1 is nonideal but widely existed in
reality. Now, we cannot wait to show out the word “fractional
order”, but before that there are two more concerns relating,
but in different ways, to the extension of real batteries. The first
is directly pointed to the nonlocal property that can be easily
observed in both frequency and time domains, and in both
micro- or macro-scales [39], [40]. The other one is associated
with the constant-phase element (CPE) that is related to
the inhomogeneous and anisotropic natures of materials, and
represents some physical and chemical properties of different
batteries [41], [42]. Totally, nonideal, nonlocal and CPE can be
finally and uniformly defined as “fractional order” ones [43],
[44].

In engineering fields of batteries, which usually are power
batteries, the test, simulation and management systems in-
evitably involve dynamic characteristics, extreme situations,
true traffic conditions, etc that are far beyond the above
electrochemistry test that runs in a small region of interest. The
modeling of such nonlinearities is still cutting edge. Totally,
the modeling of electrochemical impedance spectroscopy is
non-destructive but only suitable for static situations; the iden-
tification method requires structural information and the esti-
mated parameters can maintain physical meanings if and only
if the effective structure is applied; the KiBaM model focuses
on the modeling of real-time condition, extreme situation, low
SOC of battery, where some physical meanings are omitted.
In this paper, allow for the ubiquitous nature of fractional
order battery and a number of external characteristics of power
batteries, such as the nonlinear capacity, the fractional order
KiBaM (FO-KiBaM) model and its parametric identification
are proposed that provide an efficient and practical strategy
to many power battery relevant fields. By doing so, the
advantages of equivalent circuits can be completely inherited,
and some nonlinear problems can be solved as well in this
scheme.

III. IDENTIFICATION ALGORITHM

The objective of this section is to identify the fractional
commensurate order continuous time KiBaM model. To start
the process, an initialization of the linear parameter and differ-
entiation order are first given so that the nonlinear parameters
can be estimated firstly. Then the linear parameters and the
system order can be renewed with the identified nonlinear
parameters, and so forth. The identification procedures are
shown in Fig. 2.

A. Nonlinear Parameter Identification

Assume that an initial estimation of the linear parameter
vector θ̂l and differentiation order vector α̂ are available.
Then the nonlinear parameters can be identified by using the
following strategy.
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Fig. 2. System parameters identification procedure.

1) ARX Model: Multiplying (6) by Â(p) and substituting
the resulting expression for v in (5) yields

θ̂n = arg min
θn

‖Â(p)y − B̂(p)f(u, θn)‖2. (8)

From (4), it follows that f(u, θn) is linear in θn, and hence

(B̂(p)f(u, θn))(k)

=β0 (b̂r + · · ·+ b̂0)︸ ︷︷ ︸
f0(u(k),θ̂b)

+β1 (b̂rp
αru(k) + · · ·+ b̂0u(k))︸ ︷︷ ︸

f1(u(k),θ̂b)

+ · · ·+ βm (b̂rp
αru(k)m + · · ·+ b̂0u(k)m)︸ ︷︷ ︸

fm(u(k),θ̂b)

.

Therefore, (8) can be rewritten as an ordinary least squares
problem

θ̂n = arg min
θn

‖Yn(y, θ̂a)− Φn(u, θ̂b)θn‖2 (9)

where assuming that h > r,

Yn(y, θ̂a) =




âhpαhy(t1)+ · · · +y(t1)
âhpαhy(t2)+ · · · +y(t2)

...
. . .

...
âhpαhy(tN )+ · · · +y(tN )




and

Φn(u, θ̂b) =




f0(u(t1), θ̂b) · · · fm(u(t1), θ̂b)
f0(u(t2), θ̂b) · · · fm(u(t2), θ̂b)

...
. . .

...
f0(u(tN ), θ̂b) · · · fm(u(tN ), θ̂b)


 .

The solution of (8) is

θ̂n = (Φn(u, θ̂b)T Φn(u, θ̂b))−1Φn(u, θ̂b)T Yn(y, θ̂a). (10)

2) OE Model: Rewriting (7) as:

v = Â(p)
(

1
Â(p)

y
)
− B̂(p)

(
1

Â(p)
f(u, θn)

)

= Â(p)y∗ − B̂(p)f∗(u, θn).
(11)

where y∗ = y/Â(p) and f∗(u, θn) = f(u, θn)/A(p).
Substituting (11) into (5) yields

θ̂n = arg min
θn

‖Â(p)y∗ − B̂(p)f∗(u, θn)‖2 (12)

and

(B̂(p)f∗(u, θn))(k)

=β0
1

Â(p)
(b̂r+· · ·+b̂0)

︸ ︷︷ ︸
f∗0 (u(k),θ̂b)

+β1
1

Â(p)
(b̂rp

αru(k)+· · ·+b̂0u(k))
︸ ︷︷ ︸

f∗1 (u(k),θ̂b)

+ · · ·+ βm
1

Â(p)
(b̂rp

αru(k)m + · · ·+ b̂0u(k)m)
︸ ︷︷ ︸

f∗m(u(k),θ̂b)

.

Therefore, (12) can be rewritten as the following matrix
equation

θ̂n = arg min
θn

‖Y ∗
n (y, θ̂a)− Φ∗n(u, θ̂b)θn‖2 (13)

where assuming that h > r,

Y ∗
n (y, θ̂a) =




âhpαhy∗(t1)+ · · · +y∗(t1)
âhpαhy∗(t2)+ · · · +y∗(t2)

...
. . .

...
âhpαhy∗(tN )+ . . . +y∗(tN )




and

Φ∗n(u, θ̂b) =




f∗0 (u(t1), θ̂b) · · · f∗m(u(t1), θ̂b)
f∗0 (u(t2), θ̂b) · · · f∗m(u(t2), θ̂b)

...
. . .

...
f∗0 (u(tN ), θ̂b) · · · f∗m(u(tN ), θ̂b)


 .

The solution of (8) is

θ̂n = (Φ∗n(u, θ̂b)T Φ∗n(u, θ̂b))−1Φ∗n(u, θ̂b)T Y ∗
n (y, θ̂a). (14)

B. Linear Parameters Identification

Given an estimation of θ̂n, the internal signal w can be
estimated as: w(k) = f(u, θ̂n)u(k), which is the input of
the linear system. Then the fractional order linear part can
be written as follows:

ahpαhyk + · · ·+ a1p
αyk + yk = brp

αrŵk + · · ·+ b0ŵk.

The above equation can be rewritten as



Yk

Yk−1

...




Yl

=




ϕ̂k

ϕ̂k−1

...




Ψl

θl (15)

where

ϕ̂k =
[ −pαhytk

· · · − pαytk
pαrŵtk

· · · ŵtk

]
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θ̂l =
[

ah · · · a1 br · · · b0

]T
, Yk = [ytk

] .

The estimated value of θ̂l can be calculated as

θ̂l = (Ψl
T Ψl)−1)Ψl

T Yl.

C. Differentiation Order Estimation

After the above coefficient identification method, a general
and applicable iterative learning identification technique is
applied to differentiation orders by using the P-type order
learning law [45].

For systems (3) and (4), the linear and nonlinear coefficients
are derived from the above proposed identification methods
with the knowledge of αk−1. The order identification is to
estimate the value of α from the following P-type order
learning law

αk+1 , αk + Γkek(T ), αk+1 ∈ [0, 1] (16)

where , denotes

αk+1 =





0, αk + Γkek(T ) < 0
αk + Γkek(T ), 0 ≤ αk + Γkek(T ) ≤ 1
1, αk + Γkek(T ) > 1.

Theorem 1: For system (3) and (4) and order learning law
(16), it can be proved that αd−αk → 0 monotonically if there
exists a ρ ∈ [0, 1) satisfying either of the following conditions:

1) any Γk satisfying |1− ΓkΛk| ≤ ρ,
2)

{ ‖Γ̂k‖ · [max
αξ,αη

‖Λ̃k‖] ≤ 1 + ρ,

1 ≤ Γ̃kek−1(T ),
⇒ Γk =

Γ̃k

(−1)ksgn{δα0} ,

3)
{ ‖Γ̂k‖ · [max

αξ,αη

‖Λ̃k‖] ≤ 1,

1− ρ ≤ Γ̃kek−1(T ),
⇒ Γk =

Γ̃k

sgn{δα0}

where Λk, Λ̃k, Γ̂k, Γ̃k and the order learning gains Γk are
defined in the following proof, f is locally Lipschitz on yk

with Lipschitz constant K, and

‖Λ̃k‖ =
∫ T

0

(T−τ)αξ−1Eαξ,αξ
[K(T−τ)αξ ]

∥∥∥∥∥
∂εk(τ)

∂α

∣∣∣∣
α̃ξ

∥∥∥∥∥ dτ.

Proof: This proof is divided into two parts.
Part I:
It can be proved that

y
(αd)
d (t)− y

(αk)
k (t) = f(t, yd, ud)− fk(t, yk, ud)

⇔ ∂y
(α)
d (t)
∂α

∣∣∣∣
αξ

δαk + e
(αk)
k (t) = f(t, yd, ud)− fk(t, yk, ud)

where ek(t) = yd(t) − yk(t) and δαk = αd − αk, It follows
from yd0 = yk0 that there exists a kernel function H(·) and
the order sensitivity function ∂εk

α satisfying

ek(t) =
∫ t

0

H(t, τ, αk, hk(t, τ))
∂εk(τ)

∂α

∣∣∣∣
α̃ξ

dτδαk (17)

where hk(t, τ) is iteration dependent and related to the esti-
mation of other coefficients. Thus the convergence condition
can be written as

|1− ΓkΛk| ≤ ρ < 1 (18)

where Λk =
∫ T

0
H(T, τ, αk, hk(t, τ))∂εk(τ)

∂α

∣∣∣∣
α̃ξ

dτ .

Part II:
It is obvious that (18) holds if either of the following

conditions is satisfied:

1 ≤ ΓkΛk ≤ 1 + ρ (19)

1− ρ ≤ ΓkΛk ≤ 1 (20)

which are sufficient conditions.
Moreover, applying Lemma 1 of [45] to ΓkΛk yields

ΓkΛk ≤ ‖Γk‖‖Λ̃k‖.
On the other hand, because δαk = [1− ΓkΛk]δαk−1,

1) for (19), sgn{δαk} = −sgn{δαk−1} = (−1)ksgn{δα0},

2) for (20), sgn{δαk} = sgn{δαk−1} = sgn{δα0}.

Firstly, for (19), the order leaning gain Γk is derived from
the following steps:

Step 1: Find Γ̂k satisfying ‖Γ̂k‖ ·
[
max
αξ,αη

‖Λ̃k‖
]
≤ 1 + ρ.

Step 2: Choose Γ̃k∈{Γ̂k,−Γ̂k} satisfying 1 ≤ Γ̃kek−1(T ).

Step 3: It follows that

1 ≤ Γ̃kek−1(T ) ≤ Γ̃kek−1(T )
sgn{δαk} δαk =

Γ̃kek−1(T )
(−1)ksgn{δα0}δαk

.

Step 4: Let Γk =
Γ̃k

(−1)ksgnδα0
, we have





ΓkΛk ≤ ‖Γk‖‖Λ̃k‖ ≤ 1 + ρ

1 ≤ Γkek−1(T )
δαk

= ΓkΛk.

It follows from δαk = [1−ΓkΛk]δαk−1 that limk→∞ αk =
αd.

Secondly, for (20), the order learning gain Γk is derived
from the following steps:

Step 1: Find Γ̂k satisfying ‖Γ̂k‖ ·
[
max
αξ,αη

‖Λ̃k‖
]
≤ 1.

Step 2: Choose Γ̃k ∈ {Γ̂k,−Γ̂k} satisfying 1 − ρ ≤
Γ̃kek−1(T ).

Step 3: It follows that

1−ρ ≤ Γ̃kek−1(T ) ≤ Γ̃kek−1(T )
sgn{δαk} δαk =

Γ̃kek−1(T )
(−1)ksgn{δα0}δαk

.

Step 4: Let Γk =
Γ̃k

sgnδα0
, we have





ΓkΛk ≤ ‖Γk ‖ ‖Λ̃k‖ ≤ 1

1− ρ ≤ Γkek−1(T )
δαk

= ΓkΛk.
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It follows from δαk = [1−ΓkΛk]δαk−1 that limk→∞ αk =
αd.

Lastly, the universal way to determine sgn{δα0} is

sgn{δα0} = sgn{αd−α0} =
{

+1, if α0 = 0
−1, if α0 = 1. ¥

Remark 2: Comparing to the identification of integer
order KiBaM model, an extra parameter “fractional order
α” is introduced to the linear part of the model, and the
computations of other parameters are accordingly related to
the fractional order derivatives of certain variables. Thus, there
exist two essential difficulties: how to find α accurately, and
how to compute fractional order derivatives accurately. On
one hand, the identification of α is just dependent on the
structure of system, i.e., the linear part of the model is a SISO
one due to the physical meanings of the system such as the
distributed property or the averaging method, and the input
and output can represent the current and voltage. A small gain
can always guarantee the convergence of the iterative learning
identification method. Besides, this method arrives at a unique
value of α̂, and the initial α0 can be chosen as 0 or 1. Besides,
it will be shown in the next section that a number of state-
of-art methods such as internal partition method, GA, NN,
etc, may fail to find the real α. On the other hand, the short
memory principle guarantees the accuracy of fractional order
derivatives, and reveals the importance of preconditioning
before real experiments [46]. To sum up, because of the
adaptiveness of α estimation, a faster convergence speed and
a more accurate result can surely be expected.

IV. ILLUSTRATED EXAMPLES

Example 1: In this simulation example a FO-KiBaM model
is considered where the nonlinear and linear parts (structural
information) are assumed as:

f(u, θn) = βu3

G(s) =
b1s

α + b0

a2s3α + a1s2α + a0sα + 1
(21)

where the true values are

α = 0.5, β = 2

b1 = 3, b0 = 2

a2 = 2, a1 = 3, a0 = 5

and the input signal is u = 0.5 sin(t).
Given the initial value of α0 = 0.1, and N = 6693

samples of the input/output data for the identification of
structure (21). The linear coefficient vector was initialized as
a2 = 1, a1 = 1, a0 = 1, b1 = 1, b0 = 1. The matrices of Φn

and Yn in the nonlinear identification process are:

Yn(y, θ̂a) =




â2p
3αy(t1)+ · · · +y(t1)

â2p
3αy(tk+1)+ · · · +y(tk+1)

...
. . .

...
â2p

3αy(tN )+ · · · +y(tN )




and

Φn(u, θ̂b) =




b̂1p
αu3(t1) + b̂0u

3(t1)
b̂1p

αu3(tk+1) + b̂0u
3(tk+1)

...
b̂1p

αu3(tN ) + b̂0u
3(tN )


 .

The matrices of ϕ̂k and Yk in the linear identification
process are:

ϕ̂k =
[ −p3αytk

− p2αytk
− pαytk

pαŵtk
ŵtk

]

θ̂l =
[

a2 a1 b1 b0

]T
, Yk = [ytk

] .

Refer to the above fractional order KiBaM system (21),
two identification strategies are discussed by using different
order identification methods, i.e., the interval partition method
and the iterative learning order identification method. With
the interval partition method, the identification procedure is
basically as follows:

1) Given the increment of α, such as ∆α = 0.1, that
divides [0, 1] into α/∆α parts, identify the linear and nonlinear
parameters with the α/∆α values of α, respectively.

2) Compare the α/∆α identification results according to
the 2-norm of their output error. Find the two smaller results
which construct the renewed domain of α.

3) Repeat the above procedure until the domain cannot be
divided or the precision of α has arrived to the requirement.

Fig. 3 illustrates the 2-norm of output errors according to
different α ∈ [0, 1]. As shown in Fig. 3, the 2-norm of the iden-
tified system’s output error is not monotonically convergent to
the real value α = 0.5, which restricts the validation of the
interval partition method in fractional order identification, and
this phenomenon always happens in fractional order nonlinear
system identifications.

Fig. 3. The 2-norm of output errors by using the interval partition method,

where the minimum point corresponds to α = 0.79 instead of the true value

0.5.

On the other hand, by using the iterative learning order
identification method, the learning laws of αk are assumed as:

αk+1 , αk + 0.01ek(T ).
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Combined with the nonlinear and linear parameters learning
laws (10) and (14), the identification process is proceeded as
Fig. 2 shown and the result is shown as follows:

f(u, θn) = 1.6174u3

G(s) =
1.7397s0.4988 + 2.1601

0.9852s1.4964 + 1.7439s0.9976 + 3.2185s0.4988 + 1

which is very precise for there is no noise introduced into the
example system. Simulate the above identified system with the
input data u. After 12 iterations, the iteration converges when
the 2-norm of the output error arrived at 0.0388. Comparison
between the identified system output and the original system
output is illustrated in Fig. 4.

Example 2: Consider a FO-KiBaM model described as

f(u, θn) = βu2

G(s) =
b1s

α + b0

a1s2α + a0sα + 1
(22)

with

α = 0.5, β = 1, b1 = 3, b0 = 2, a1 = 3, a0 = 1

and the input signal is u = 0.5 sin(t).

Fig. 4. Comparisons of the outputs between the ideal system and the iden-

tified one in Example 1.

With N = 6693 samples of the input/output data of the
structure (22), parameter estimation is performed using the
approaches proposed in Section III. Besides the order learning
law is assumed as: αk+1 , αk + 0.01ek(T ). Fig. 5 presents
the results of modeling of the actual and modeled outputs of
the KiBaM system (22). The estimation results are:

f(u, θn) = 1.496u2

G(s) =
1.9965s0.4988 + 1.2598

2.9216s0.9976 + 0.9464s0.4988 + 1
.

Example 3: A real-world application of this paper is illus-
trated in this example. Given the structure of fractional order
KiBaM model in Fig. 6, where Rs represents the nonlinear
term, and a linear circuit is cascaded after it. Based on the
standard of dynamic stress test (DST), the I/V data is applied
to estimate those parameters, where the order of Warburg
impedance β = 0.5 is assumed due to the property of Lithium-
ion battery (β = 0.25 for fuel cells), then it, follows that

Fig. 5. Comparisons of the outputs between the ideal system and the iden-

tified one in Example 2.

Rs = 19.1 MΩ, Rp = 15.6 MΩ, Y0 = 1.24 mho, Y1 = 370 mho,
α=0.665. Thus the electrochemical impedance spectroscopy is

G(s) = Rs +
RpY0s

α + RpY1s
β + 1

RpY0Y1sα+β + Y1sβ

where the nonlinear term Rs is varying according to the error
e. The measured fractional order and fractional order KiBaM
outputs are compared in Fig. 7, where Rs ∈ [34, 37.7]. It can
be seen that the nonlinear term plays crucial role in the above
real-time traffic test.

Remark 3: It should be noted that, given an accurate α,
many methods can derive accurate models for sure, such as
the prony technique. This α is a key parameter in FO KiBaM
model which reveals a number of physical, chemical and
distributed characteristics as introduced in Section II-C.

Fig. 6. Structural information of a fractional order KiBaM model.

Fig. 7. Comparisons of the outputs between the fractional order model

(FOM) and the discussed fractional order KiBaM model in Example 3.
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Besides, the computations of other parameters are accordingly
related to the fractional order derivatives of certain variables.
Thus how to find α accurately, and how to compute fractional
order derivatives accurately become primary tasks. In Example
1, the interval partition method failed to work because a too
different α was obtained. But, the proposed method in Section
III-C is adaptive to those linear parameters, and can converge
to the real α in terms of other parameters in less than 20
iterations, where the errors are set to be in range 0.01−0.05.
The similar convergence accuracy and speed can be observed
in various other simulations that we have done previously
which are excluded in this paper such as more complicated
nonlinear terms [25], [47]−[53].

Lastly, in the above examples, the small gain learning law
guarantees the convergence, but sacrifices the convergence
speed. But fortunately, this learning gain can be tuned from
a small enough one to a large and optimized one so that the
convergence speed is improved accordingly, where the whole
tuning process is unidirectional. By doing so, the accuracy and
convergence speed can be improved simultaneously.

V. CONCLUSIONS AND FUTURE WORKS

This paper deals with the parameter and order identifica-
tions of commensurate fractional order KiBaM systems in
continuous-time domain. The least square method is applied
to the linear and nonlinear parameters identification. A P-type
order learning law associated with the terminal value of system
error is applied to identify the system order accurately. The
performance of the proposed algorithms has been testified by
illustrative examples. Based on results presented in this paper,
it is anticipated that the proposed identification algorithms will
lead to more precise construction of fractional order quasi-
linear systems. The other part of this work is the identification
of variable order system which is another representation of
nonlinearity.
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Pinning Synchronization Between Two General
Fractional Complex Dynamical Networks With

External Disturbances
Weiyuan Ma, Yujiang Wu, and Changpin Li

Abstract—In this paper, the pinning synchronization between
two fractional complex dynamical networks with nonlinear
coupling, time delays and external disturbances is investigated.
A Lyapunov-like theorem for the fractional system with time
delays is obtained. A class of novel controllers is designed
for the pinning synchronization of fractional complex networks
with disturbances. By using this technique, fractional calculus
theory and linear matrix inequalities, all nodes of the fractional
complex networks reach complete synchronization. In the above
framework, the coupling-configuration matrix and the inner-
coupling matrix are not necessarily symmetric. All involved
numerical simulations verify the effectiveness of the proposed
scheme.

Index Terms—External disturbance, fractional complex net-
work, nonlinear coupling, pinning control, time delay.

I. INTRODUCTION

FRACTIONAL calculus is as old as the conventional
calculus. However, fractional calculus has become a hot

topic in recent two decades due to its advantages in appli-
cations of physics and engineering. As a generalization of
ordinary differential equation, fractional differential equation
can capture non-local relations in space and time. Thus,
the fractional-order models are believed to be more accurate
than the integer-order models. Fractional models have been
proven to be excellent instrument to describe the memory
and hereditary properties of various materials and processes,
such as dielectric polarization, electrode-electrolyte polariza-
tion, electromagnetic waves, viscoelastic systems, quantitative
finance and waves [1]−[4].

It is demonstrated that fractional differential systems also
behave chaotically or hyperchaotically, such as the fractional
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Lorenz system [5], the fractional Chua system [6], and the
fractional Chen system [7]. Many complex networks usually
consist of a large number of highly interconnected fractional
dynamical units. Generally speaking, there are two main
advantages of the fractional complex dynamical networks: one
is infinite memory; the other is that the derivative order of
a parameter enriches the system performance by increasing
one degree of freedom. A fractional neural network is made
up of thousands of neurons and their interactions. On the
other hand, fractional differentiation provides neurons with
a fundamental and general computation ability which can
contribute to efficient information processing. Time delays are
ubiquitous in neural networks due to finite switching speed
of amplifiers. They usually occur in the signal transmission
among neurons [8]−[10]. Therefore, it is more valuable and
practical to investigate fractional complex networks with time
delays.

Following these findings, synchronization of fractional
chaotic systems becomes a challenging and interesting realm
due to its potential applications in secure communication and
control processing [11]−[16]. Many of complex networks
normally have a large number of nodes, therefore it is usually
expensive to control a complex network by designing the
controllers for all nodes. To reduce the number of controllers,
a pinning control method is proposed. Wang and Chen in-
vestigated a scale-free dynamical network by controlling a
fraction of network nodes [17]. Sorrentino et al. explored the
pinning controllability of the complex networks [18]. Liang
and Wang revealed the relationship between the coupling
matrix and the synchronizability of complex networks via
pinning control [19]. Yu et al. studied synchronization via
pinning control of general complex dynamical networks [20].
Nian and Wang investigated the optimal scheme of pinning
synchronization of directed networks [21]. In addition, Liang
and Wang proposed a method to quickly calculating pinning
nodes on pinning synchronization in complex networks [22].
In [23]−[25], the authors investigated the pinning control of
integer-order complex networks with time delays. However,
pinning synchronization of integer-order complex networks
was well-studied. Due to global dependent property of frac-
tional complex networks, as far as we know, the literature on
pinning synchronization of fractional complex networks is still
sparse. In [26], based on the eigenvalue analysis and fractional
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stability theory, local stability properties of pinned fractional
networks were derived. The pinning synchronization of new
uncertain fractional unified chaotic systems were discussed
in [27]. In [28], Chai et al. proposed a global pinning
synchronization for fractional complex dynamical networks.
Xiang et al. investigated the robust synchronization problem
for a class of systems with external disturbances [29]. Wang
et al. provided a method to achieve projective synchronization
of two fractional chaotic systems with external disturbances
[30]. However, the effects of both time delay and external
disturbance of the fractional complex network have seldom
been considered.

Lyapunov direct method is important for synchronization
analysis of complex networks with integer-order, but this
method is difficult to be directly extended to fractional case
[28], [31], [32]. Thus, to find out new ways to cope with
these problems is still challenging. Motivated by the above dis-
cussions, pinning synchronization between the drive-response
fractional complex networks with nonlinear coupling and time
delays is studied. A novel modified Lyapunov method is used
to analyze the global asymptotical synchronization criteria of
fractional systems with time delays. These criteria rely on
the coupling strength and the number of nodes pinned to the
networks, there is no extra constraint on the two coupling
matrices, such as symmetric or irreducible case.

The rest of this paper is arranged as follows. In Section II,
the general drive and response fractional complex dynamical
network models are introduced and some necessary preliminar-
ies are given. A Lyapunov-like criteria for delayed fractional
system is obtained. In Section III, based on the Lyapunov
stability theorem, pinning controllers are designed to ensure
the drive and response systems with external disturbances
achieve synchronization. The illustrative numerical simula-
tions are displayed in Section IV. Section V concludes this
paper.

Throughout this paper, let ‖ · ‖ the Euclidean norm, In the
identity matrix. If A is a vector or matrix, its transpose is
denoted by AT . Let λmin(A) and λmax(A) be the smallest
and largest eigenvalue of symmetric matrix A, respectively.

II. PRELIMINARIES AND MATHEMATICAL MODELS

A. Fractional Complex Dynamical Networks With Nonlinear
Coupling and Time Delays

In this section, we introduce some notations, definitions and
preliminaries which will be used later on.

At present, there are several definitions of fractional dif-
ferential operators [4], such as Grünwald-Letnikov definition,
Riemann-Liouville definition, Caputo definition. Among them,
the initial conditions for Caputo derivatives have the same
form as those for integer-order ones. And Caputo derivative not
only has a clearly interpretable physical meaning, but can also
be properly measured to initializing in the simulation. So it
may be the most appropriate choice for practical applications.
Now we give the definition of Caputo fractional derivative
CDα

0,tf(t), of order α with respect to time t as follows

CDα
0,tf(t) =

1
Γ(m− α)

∫ t

0

(t− τ)m−α−1f (m)(τ)dτ (1)

where m− 1 < α < m ∈ Z+.
Consider a general fractional delayed dynamical system

consisting of N nodes, which can be described as follows:

CDα
0,txi(t) = Axi(t) + f(xi(t)) + c

N∑

j=1

bijHxj(t)

+ c̄
N∑

j=1

b̄ijH̄g(xj(t− τ)) + ξi(t) (2)

where i = 1, 2, . . . , N , 0 < α < 1 is the fractional order,
xi(t) = (xi1(t), . . . , xin(t))T ∈ Rn is the state variable of
the ith node. A ∈ Rn×n is a given linear matrix, and f(xi) =
[f1(xi), f2(xi), . . . , fn(xi)]T : Rn → Rn is a smooth function
describing the nonlinear dynamics of the node. c and c̄ are
two parameters of the non-delay and delay coupling strengths,
respectively. H ∈ Rn×n and H̄ ∈ Rn×n are inner coupling
matrices. B = (bij)N×N and B̄ = (bij)N×N denote the
coupling configuration matrices of the network. If there is
a connection from node i to node j (i 6= j), then bij > 0
(or b̄ij > 0); otherwise, bij = 0 (or b̄ij = 0). The diagonal
elements of matrix B and B̄ are given by bii = −∑N

j=1,j 6=i bij

and b̄ii = −∑N
j=1,j 6=i b̄ij , respectively. g(xi(t − τ)) =

[g1(xi(t− τ)), g2(xi(t− τ)), . . . , gn(xi(t− τ))]T : Rn → Rn

is the nonlinear coupling function. ξi(t) ∈ Rn are external
disturbance vectors.

If model (2) is referred as the drive system, the response
complex network can be chosen as

CDα
0,tyi(t) = Ayi(t) + f(yi(t)) + c

N∑

j=1

bijHyj(t)

+ c̄

N∑

j=1

b̄ijH̄g(yj(t− τ)) + ηi(t) + ui(t) (3)

where yi(t) = (yi1(t), yi2(t), . . . , yin(t))T ∈ Rn is the
response state vector of the ith node; ηi(t) ∈ Rn are external
disturbance vectors. ui(t) ∈ Rn (i = 1, 2, . . . , N) are the
controllers to be designed; the other parameters have the same
meanings as those in (2).

It is not necessary to assume that the inner coupling
matrix H (or H̄) and coupling configuration matrix B (or B̄)
are symmetric and irreducible. Meanwhile, the corresponding
topological graph can be directed or undirected. Throughout
the paper, we always assume that nonlinear functions f(x)
and g(x) satisfy the uniform Lipschitz conditions,

‖f(x)− f(y)‖ ≤ L‖x− y‖ (4)

‖g(x)− g(y)‖ ≤ L̄‖x− y‖. (5)

We also assume the time-varying disturbances ξi(t) and
ηi(t) are bounded and satisfy the following condition

‖ξi(t)− ηi(t)‖ ≤ L̃i (6)

where L̃i > 0.
According to systems (2) and (3), the error system is

described by

CDα
0,tei(t) = Aei(t) + f(yi(t))− f(xi(t))
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+ c
N∑

j=1

bijHej(t) + [ηi(t)− ξi(t)] + ui(t)

+ c̄
N∑

j=1

b̄ijH̄[g(yj(t− τ))− g(xj(t− τ))] (7)

where ei(t) = yi(t) − xi(t), i = 1, 2, . . . , N . Thus, our
objective is to design a suitable controller ui(t) such that error
dynamical system (7) is asymptotically stable, i.e.,

lim
t→∞

‖yi(t; t0, x0)− xi(t; t′0, x
′
0)‖ = 0, i = 1, 2, . . . , N

which implies the drive system (2) and the response system
(3) are synchronized.

B. Some Lemmas

Now we present some lemmas for later use.
Lemma 1 [33]: Let x(0) = y(0) and CDα

0,tx(t) ≥
CDα

0,ty(t), where α ∈ (0, 1). Then x(t) ≥ y(t).
Lemma 2 [9], [10]: Consider the following linear fractional

system with time delays:

CDα
0,tX(t) = AX(t) + X(tτ ), α ∈ (0, 1) (8)

where A = (aij)n×n, X(t) = (x1(t), x2(t), . . . , xn(t))T ,
X(tτ ) = (

∑n
j=1 k1jxj(t − τ1j),

∑n
j=1 k2jxk(t− τ2j), . . . ,∑n

j=1 knjxj(t − τnj))T . Let M = (kij + aij)n×n and B =
(kij exp(−sτij)+aij)n×n. If all the eigenvalues of M satisfy
| arg(λ)| > π/2 and the characteristic equation det(∆(s)) =
|sαIn − B| = 0 has no purely imaginary roots for any τij >
0, i, j = 1, 2, . . . , n, then the zero solution of system (8) is
Lyapunov asymptotically stable.

Lemma 3 [34]: Let x(t) = (x1(t), . . . , xn(t))T ∈ Rn be a
real continuous and differentiable vector function. Then

CDα
0,t[x

T (t)Px(t)] ≤ 2xT (t)P CDα
0,tx(t)

where 0 < α < 1, P is a symmetric and positive definite
matrix.

Lemma 4 [35]: Let X and Y be arbitrary n-dimensional
real vectors, K a positive definite matrix, and H ∈ Rn×n.
Then, the following matrix inequality holds:

2XT HY ≤ XT HK−1X + Y T KY.

Lemma 5 [36]: Assume that Q = (qij)N×N is symmetric.
Let M∗ = diag{m∗

1,m
∗
2, . . . , m

∗
l , 0, . . . , 0︸ ︷︷ ︸

N−l

}, 1 ≤ l ≤ N , m∗
i

> 0 (i = 1, 2, . . . , l), Q − M∗ =
(

E − M̃∗ S
ST Ql

)
, M̃∗

= diag{m∗
1, . . . , m

∗
l }, m∗ = min1≤i≤l{m∗

i }, Ql is the minor
matrix of Q by removing its first l (1 ≤ l ≤ N) row-column
pairs, E and S are matrices with appropriate dimensions.
When m∗ > λmax(E − SQ−1

l ST ), then Q − M∗ < 0 is
equivalent to Ql < 0.

C. Lyapunov-like Method for Fractional Nonlinear System
With Time Delays

Consider the Caputo fractional non-autonomous system
with time delays

CDα
0,tx(t) = f(t, x(t), x(t− τ)) (9)

with initial condition x(t) = x0(t), t ∈ [−τ, 0], where
α ∈ (0, 1), f : [0,∞) × Ω → Rn is piecewise continuous
on t and locally Lipschitz with respect to x. Ω ∈ Rn is a
domain that contains the origin x = 0. We always assume
that (9) has an equilibrium x = 0.

It is well known, by using the Lyapunov direct method,
we can get the asymptotic stability of the non-delays systems.
Next, we extend the Lyapunov direct method to the time delays
case, which leads to the Lyapunov asymptotic stability. Based
on [9], [10], [33], we could obtain the following theorem.

Theorem 1: Let x = 0 be an equilibrium point of system
(9). If there exists a Lyapunov-like function V (t, x(t)) : [−τ,
∞] × Ω → R which is continuously differentiable and locally
Lipschitz with respect to x such that

α1‖x(t)‖a ≤ V (t, x(t)) ≤ α2‖x(t)‖ab (10)

CDα
0,tV (t, x(t)) ≤ −α3‖x(t)‖ab

+ α4‖x(t− τ)‖a (11)

ν < µ sin
(απ

2

)
(12)

where a, b, α1, α2, α3 are positive constants, µ = α3/α2

and ν = α4/α1. Then x = 0 of system (9) is Lyapunov
asymptotically stable.

Proof: It follows from (10) and (11) that

CDα
0,tV (t, x(t))

≤ −α3

α2
V (t, x(t)) +

α4

α1
V (t− τ, x(t− τ)) (13)

where t ≥ 0.
Consider the following system:

CDα
0,tW (t, x(t))

= −µW (t, x(t)) + νW (t− τ, x(t− τ)) (14)

where W (t, x(t)) has the same initial conditions with
V (t, x(t)), µ = α3/α2 and ν = α4/α1. Using Lemma 1,
we have

0 ≤ V (t, x(t)) ≤ W (t, x(t)). (15)

By Lemma 2, the characteristic equation of (14) is
det(∆(s)) = sα + µ− ν exp(−sτ) = 0. Suppose that s = ωi
= |ω|(cos(π/2)+ i sin(±π/2)). Substituting s into det(∆(s))
gives

|ω|α
(
cos

(απ

2

)
+ i sin

(
±απ

2

))
+ µ

− ν (cos(τω)− i sin(τω)) = 0.

Separating real and imaginary parts gives

|ω|α cos
(απ

2

)
+ µ = ν cos (τω) (16)

|ω|α sin
(
±απ

2

)
= −ν sin (τω) . (17)
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According to (16) and (17), one has

|ω|2α + 2µ cos
(απ

2

)
|ω|α + µ2 − ν2 = 0. (18)

Obviously, when ν < µ sin(απ/2), no real number ω
satisfies (18). Furthermore, the eigenvalue of M in equation
is ν − µ. When ν < µ sin(απ/2), that is ν < µ, implying
| arg(λ(M))| > π/2. So, W (t, x(t)) → 0, as t → +∞.

From (15), V (t, x(t)) → 0, as t → +∞, which means all
the solutions of system (9) converge to x = 0. ¥

III. PINNING SYNCHRONIZATION OF FRACTIONAL
COMPLEX NETWORKS WITH NONLINEAR COUPLING AND

EXTERNAL DISTURBANCES

In this section, some global asymptotically stable criteria
are presented below.

To realize synchronization between (2) and (3), assume that
first l (1 ≤ l ≤ N) nodes are pinned, the pinning controllers
are chosen as




ui(t) = −piei(t)− q
sgn(ei(t))
n∑

j=1

|eij(t)|
, 1 ≤ i ≤ l

ui(t) = 0, l + 1 ≤ i ≤ N

(19)

where pi > 0 are feedback gains, sgn(ei(t)) = (sgn(ei1(t)),
sgn(ei2(t)), . . . , sgn(ein(t)))T are signum vectors, and q =
1
2l

∑N
i=1 L̃2

i .
Theorem 2: Suppose that the dynamical function f and

nonlinear coupling function g satisfy Lipschitz conditions (4)
and (5), respectively. If there exists a matrix P satisfying the
following conditions

1) µ̄ =− λmax

[(
a + L +

1
2

+
c̄β2h̄(1 + L̄)

2

)
IN

+ chB̂ − P

]
> 0 (20)

2) ν̄ < µ̄ sin
(απ

2

)
(21)

where a = ‖A‖, h = ‖H‖, h̄ = ‖H̄‖, β1 = max{b̄ij , j 6= i},
β2 = max{|b̄ii|} and ν̄ = c̄L̄

2 (Nβ1L̄ + h̄β2), then the

fractional response network (3) asymptotically synchronizes
to the drive network (2).

Proof: Construct the following Lyapunov-like function:

V (t, e(t)) =
1
2

N∑

i=1

eT
i (t)ei(t). (22)

Using (7) and Lemma 3, the fractional derivative of
V (t, e(t)) yields

CDα
0,tV (t, e(t)) ≤

N∑

i=1

eT
i (t) CDα

0,tei(t)

=
N∑

i=1

eT
i (t)Aei(t) +

N∑

i=1

eT
i (t)[f(yi(t))− f(xi(t))]

+ c
N∑

i=1

N∑

j=1

bije
T
i (t)Hej(t) +

N∑

i=1

eT
i (t)[ηi(t)− ξi(t)]

+ c̄
N∑

i=1

N∑

j=1

b̄ije
T
i (t)H̄[g(yj(t− τ))− g(xj(t− τ))]

−
l∑

i=1

pie
T
i (t)ei(t)−

l∑

i=1

q
eT
i (t)sgn(ei(t))

n∑
j=1

|eij(t)|

≤ (a + L)
N∑

i=1

eT
i (t)ei(t) + c

N∑

i=1

N∑

j=1

bije
T
i (t)Hej(t)

−
l∑

i=1

pie
T
i (t)ei(t)− lq

+ c̄

N∑

i=1

N∑

j=1

b̄ije
T
i (t)H̄[g(yj(t− τ))− g(xj(t− τ))]

+
N∑

i=1

eT
i (t)[ηi(t)− ξi(t)]. (23)

From Lemma 4, we have (24), shown at the bottom of this
page, and

N∑

i=1

N∑

j=1

b̄ije
T
i (t)H̄

[
g(yj(t− τ))− g(xj(t− τ))

]

≤
N∑

i=1

N∑

j=1,j 6=i

b̄ij

[
(g(yj(t− τ))− g(xj(t− τ)))T (g(yj(t− τ))− g(xj(t− τ)))

+ eT
i (t)H̄ei(t)

]
+ 2h̄L̄

N∑

i=1

|b̄ii| · ‖ei(t)‖ · ‖ei(t− τ)‖

≤
N∑

i=1

N∑

j=1,j 6=i

b̄ij

[
L̄2eT

j (t− τ)ej(t− τ) + h̄eT
i (t)ei(t)

]

+ h̄L̄
N∑

i=1

|b̄ii|
[
eT
i (t)ei(t) + eT

i (t− τ)ei(t− τ)
]

≤ β2h̄(1 + L̄)
N∑

i=1

eT
i (t)ei(t) + L̄(Nβ1L̄ + β2h̄)

N∑

i=1

eT
i (t− τ)ei(t− τ) (24)
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N∑

i=1

N∑

j=1

bije
T
i (t)Hej(t)

=
N∑

i=1

N∑

j=1,j 6=i

bije
T
i (t)Hej(t)

+
N∑

i=1

biie
T
i (t)

(
H + HT

2

)
ei(t)

≤ h
N∑

i=1

N∑

j=1,j 6=i

bij‖ei(t)‖ · ‖ej(t)‖

+ ρmin

N∑

i=1

biie
T
i (t)ei(t) (25)

where ρmin is the minimum eigenvalue of the matrix (H +
HT )/2. Using Lemma 4 and (6), we get

N∑

i=1

eT
i (t)[ηi(t)− ξi(t)]− lq

≤ 1
2

N∑

i=1

eT
i (t)ei(t)

+
1
2

N∑

i=1

[ηi(t)− ξi(t)]T [ηi(t)− ξi(t)]− lq

≤ 1
2

N∑

i=1

eT
i (t)ei(t) +

1
2

N∑

i=1

L̃2
i − lq

=
1
2

N∑

i=1

eT
i (t)ei(t). (26)

Substituting (24)−(26) into (23), and from Lemma 3, we
obtain that

CDα
0,tV (t, e(t))

≤ ‖e(t)‖T

[(
a + L +

1
2

+
c̄β2h̄(1 + L̄)

2

)
IN

+ chB̂ − P

]
‖e(t)‖

+
c̄L̄

2
(Nβ1L̄ + h̄β2)‖e(t− τ)‖T · ‖e(t− τ)‖

≤ − µ̄
N∑

i=1

eT
i ei(t) + ν̄

N∑

i=1

ei(t− τ)T ei(t− τ) (27)

where ‖e(t)‖ = (‖e1(t)‖, ‖e2(t)‖, . . . , ‖eN (t)‖)T , P =
diag(p1, p2, . . . , pl︸ ︷︷ ︸

l

, 0, 0, . . . , 0︸ ︷︷ ︸
N−l

), B̂ = (B̃T + B̃)/2 and B̃ is

a modifying matrix of B via replacing the diagonal elements
bii by (ρmin/h)bii.

According to Theorem 1, we have ‖ei(t)‖ → 0, that is
‖yi(t) − xi(t)‖ → 0 as t → ∞, which means that the
asymptotical synchronization between drive system (2) and
response system (3) is realized. ¥

Furthermore, from (27), let Q = (a + L + 1/2 + c̄β2h̄(1 +

L̄)/2)IN + chB̂, and Q − P =
(

E − P ∗ S
ST Ql

)
, where 1

≤ l ≤ N , P ∗ = diag{p1, p2, . . . , pl}, Ql is the part matrix

of Q by removing its first l row-column pairs, E and S are
matrices with appropriate dimensions. Based on Lemma 5, and
supposing that pi (i = 1, . . . , l) are suitably large, Q−P < 0
is equivalent to Ql = [(a+L+1/2+c̄β2h̄(1+L̄)/2)IN +chB̂]l
< 0. One has λmax[(a+L+1/2+ c̄β2h̄(1+ L̄)/2)IN +chB̂]l
= (a+L+1/2+ c̄β2h̄(1+ L̄)/2)+ chλmax(B̂l) < 0. So, the
following corollary can be immediately obtained.

Corollary 1: Under assumptions (4) and (5), the fractional
response network (3) asymptotically synchronizes to the drive
one (2) under the controller (28), where pi (i = 1, . . . , l) are
sufficiently large, and the following conditions satisfied :

µ̄ = −
[(

a + L +
1
2

+
c̄β2h̄(1 + L̄)

2

)

+ chλmax(B̂l)
]

> 0

ν̄ < µ̄ sin
(απ

2

)

in which ν̄ = c̄L̄
2 (Nβ1L̄ + h̄β2).

Corollary 2: If g(xj(t−τ)) = xj(t−τ) and g(yj(t−τ)) =
yj(t− τ), the synchronous conditions between (2) and (3) are
reduced to:

µ̄ = − λmax

[(
a + L +

1
2

+ c̄β2h̄

)
IN

+ chB̂ − P

]
> 0

ν̄ < µ̄ sin
(απ

2

)

where ν = c̄
2 (Nβ1 + h̄β2).

Corollary 3: Assume ξi(t) = ηi(t) = 0, the fractional
complex networks (2) and (3) do not contain the disturbances.
Under the assumptions (4) and (5), fractional systems (2) and
(3) can be asymptotically synchronized under the controllers





ui(t) = −piei(t), 1 ≤ i ≤ l

ui(t) = 0, l + 1 ≤ i ≤ N
(28)

and the following control conditions:

µ̄ = − λmax

[(
a + L +

c̄β2h̄(1 + L̄)
2

)
IN

+ chB̂ − P

]
> 0

ν̄ < µ̄ sin
(απ

2

)

where ν̄ = c̄L̄
2 (Nβ1L̄ + h̄β2).

IV. NUMERICAL EXAMPLE

In this section, a numerical example is presented. Consider
a complex network with 10 nodes, the fractional dynamical
equation of each node is described by the following fractional
chaotic Lorenz system





CDα
0,txi1 = aL(xi2 − xi1)

CDα
0,txi2 = bLxi1 − xi1xi3 − xi2

CDα
0,txi3 = xi1xi2 − cLxi3

(29)
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where i = 1, 2, . . . , 10. The parameters are chosen as aL = 10,
bL = 28, cL = 8/3 and α = 0.995. From (2) and (3), we know

that A =



−a a 0
b −1 0
0 0 −c


, f(xi(t)) =




0
−xi1xi3

xi1xi2


,

and that system (29) is chaotic, see Fig. 1.

Fig. 1. Chaotic attractor of fractional Lorenz system with order α = 0.995.

For convenience, let H = H̄ = I , the coupling configura-
tion matrices B and B̄ are given as follows,



−2 1 0 1 0 0 0 0 0 0
0 −2 1 0 1 0 0 0 0 0
1 0 −3 0 0 1 1 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 1 0 1 −3 0 0 0 1 0
0 0 1 0 1 −2 0 0 0 0
0 0 0 0 0 1 −3 1 0 1
0 1 0 1 0 0 0 −3 1 0
1 0 1 0 0 0 1 0 −4 1
0 0 1 1 0 0 0 0 0 −2




.

The nonlinear coupling function is chosen as

g(xj(t− τ)) = (xj1(t− τ) + sin(xj1(t− τ)),
xj2(t− τ) + sin(xj2(t− τ)),

xj3(t− τ) + sin(xj3(t− τ)))T .

It is known that the Lorenz system is bounded. Actually,
‖xi1‖ ≤ 25, ‖xi2‖ ≤ 30, ‖xi3‖ ≤ 60, ‖yi1‖ ≤ 25,
‖yi2‖ ≤ 30, ‖yi3‖ ≤ 60, i = 1, 2, . . . , 10, and

‖f(xi)− f(yi)‖
≤

√
(−xi1xi3 + yi1yi3)2 + (xi1xi2 − yi1yi2)2

≤ 75.83‖ei‖
that is L = 75.83. Obviously, L̄ = 2. According to the method
proposed in [15], whose out-degrees are bigger than their in-
degrees, it should be selected as pinned candidates. The out-
degrees of nodes 2, 3 and 4 are bigger than their in-degrees, so
we choose them as the pinned nodes. Rearrange the network
nodes and the new order will be 4, 3, 2, 1, 6, 10, 5, 7, 8, 9.

Under the no disturbance case, that is ξi(t) = ηi(t) = (0,
0, 0)T , let pi = 910, i = 1, 2, 3, when α = 0.9, c = 100,
c̄ = 0.01, one has µ̄ sin(απ/2) = 0.2808 and ν̄ = 0.2400.
From Corollary 3, it is clear that pinning conditions hold.
The simulation results are shown in Fig. 2, which shows
the time waveforms of errors ei1, ei2, ei3, i = 1, 2, . . . , 10.

From the figures, fractional complex networks (2) and (3)
are synchronized, which demonstrate the effectiveness of the
proposed method.

Now, we come to the disturbance case. Let pi = 930,
i = 1, 2, 3, ξi(t) = (0, 0, 0)T , ηi(t) = (0.3 sin t cos t, 0.1 sin t,
0.5 cos t)T , α = 0.9, c = 100, c̄ = 0.01, one has q = 0.5833,
µ̄ sin(απ/2) = 0.2489 and ν̄ = 0.2400. From Theorem 2,
it is clear that pinning conditions hold. Fig. 3 illustrates the
synchronization phenomenon in noisy environment. It shows
the error trajectories of drive and response networks, from
which we can see that the synchronization between the driving
and response networks is achieved successfully.

Fig. 2. Time evolution of the error states e1i, e2i and e3i with no distur-
bance.

V. CONCLUSION

In this paper, we proposed a fractional pinning controller
and presented a synchronization law for the delayed fractional
complex networks with nonlinear couplings and disturbances.
Some new synchronization criteria are proposed based on the
Lyapunov-like stability theory. This method can be applied
to many types of fractional complex networks. Furthermore,
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the coupling configuration matrices and the inner-coupling
matrices are not assumed to be symmetric or irreducible. It
means that this method is more general. The numerical results
showed the effectiveness of the proposed controllers.

Fig. 3. Time evolution of the error states e1i, e2i and e3i with disturbances.
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Variational Calculus With Conformable
Fractional Derivatives

Matheus J. Lazo and Delfim F. M. Torres

Abstract—Invariant conditions for conformable fractional
problems of the calculus of variations under the presence of ex-
ternal forces in the dynamics are studied. Depending on the type
of transformations considered, different necessary conditions of
invariance are obtained. As particular cases, we prove fractional
versions of Noether’s symmetry theorem. Invariant conditions
for fractional optimal control problems, using the Hamiltonian
formalism, are also investigated. As an example of potential
application in Physics, we show that with conformable derivatives
it is possible to formulate an Action Principle for particles under
frictional forces that is far simpler than the one obtained with
classical fractional derivatives.

Index Terms—Conformable fractional derivative, fractional
calculus of variations, fractional optimal control, invariant vari-
ational conditions, Noether’s theorem.

I. INTRODUCTION

FRACTIONAL calculus is a generalization of (integer)
differential calculus, allowing to define integrals and

derivatives of real or complex order [1] – [3]. It had its
origin in the 1600 s and for three centuries the theory of
fractional derivatives developed as a pure theoretical field
of mathematics, useful only for mathematicians. The theory
took more or less finished form by the end of the 19th
century. In the last few decades, fractional differentiation
has been “rediscovered” by applied scientists, proving to be
very useful in various fields: physics (classic and quantum
mechanics, thermodynamics, etc.), chemistry, biology, eco-
nomics, engineering, signal and image processing, and control
theory [4]. One can find in the existent literature several
definitions of fractional derivatives, including the Riemann-
Liouville, Caputo, Riesz, Riesz-Caputo, Weyl, Grunwald-
Letnikov, Hadamard, and Chen derivatives. Recently, a simple
solution to the discrepancies between known definitions was
presented with the introduction of a new fractional notion,
called the conformable derivative [5]. The new definition is
a natural extension of the usual derivative, and satisfies the
main properties one expects in a derivative: the conformable
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derivative of a constant is zero; satisfies the standard formulas
of the derivative of the product and of the derivative of the
quotient of two functions; and satisfies the chain rule. Besides
simple and similar to the standard derivative, one can say that
the conformable derivative combines the best characteristics of
known fractional derivatives [6]. For this reason, the subject is
now under strong development: see [7] – [10] and references
therein.

The fractional calculus of variations was introduced in
the context of classical mechanics when Riewe [11] showed
that a Lagrangian involving fractional time derivatives leads
to an equation of motion with non-conservative forces such
as friction. It is a remarkable result since frictional and
non-conservative forces are beyond the usual macroscopic
variational treatment [12]. Riewe generalized the usual cal-
culus of variations for a Lagrangian depending on Riemann-
Liouville fractional derivatives [11] in order to deal with
linear non-conservative forces. Actually, several approaches
have been developed to generalize the calculus of varia-
tions to include problems depending on Caputo fractional
derivatives, Riemann-Liouville fractional derivatives, Riesz
fractional derivatives and others [13] – [19] (see [20] – [22] for
the state of the art). Among theses approaches, recently it was
shown that the action principle for dissipative systems can be
generalized, fixing the mathematical inconsistencies present
in the original Riewe’s formulation, by using Lagrangians
depending on classical and Caputo derivatives [23].

In this paper we work with conformable fractional
derivatives in the context of the calculus of variations and
optimal control [20]. In order to illustrate the potential
application of conformable fractional derivatives in physical
problems we show that it is possible to formulate an action
principle with conformable fractional calculus for the frictional
force free from the mathematical inconsistencies found in the
Riewe original approach and far simpler than the formulations
proposed in [23]. Furthermore, we obtain a generalization
of Noether’s symmetry theorem for fractional variational
problems and we also consider conformable fractional optimal
control problems. Emmy Noether was the first who proved,
in 1918, that the notions of invariance and constant of motion
are connected: when a system is invariant under a family
of transformations, then a conserved quantity along the
Euler-Lagrange extremals can be obtained [24], [25]. All
conservation laws of Mechanics, e.g., conservation of energy
or conservation of momentum, are easily explained from
Noether’s theorem. In this paper we study necessary conditions
for invariance under a family of continuous transformations,
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where the Lagrangian contains a conformable fractional
derivative of order α ∈ (0, 1). When α → 1, we obtain some
well-known results, in particular the Noether theorem [25].
The advantages of our fractional results are clear. Indeed,
the classical constants of motion appear naturally in closed
systems while in practical terms closed systems do not exist:
forces that do not store energy, so-called nonconservative or
dissipative forces, are always present in real systems. Frac-
tional dynamics provide a good way to model nonconservative
systems [11]. Nonconservative forces remove energy from the
systems and, as a consequence, the standard Noether constants
of motion are broken [26]. Our results assert that it is still
possible to obtain Noether-type theorems, which cover both
conservative and nonconservative cases, and that this is done
in a particularly simple and elegant way via the conformable
fractional approach. This is in contrast with the approaches
followed in [27] – [30].

The paper is organized as follows. In Section II we collect
some necessary definitions and results on the conformable
fractional calculus needed in the sequel. In Section III we
obtain the conformable fractional Euler-Lagrange equation and
in Section IV we formulate an action principle for dissipative
systems, as an example of application and motivation to
study the conformable calculus of variations. In Section V,
we present an immediate consequence of the Euler-Lagrange
equation that we use later in Sections VI and VII, where we
prove, respectively, some necessary conditions for invariant
fractional problems and a conformable fractional Noether
theorem. We then review the obtained results using the Hamil-
tonian language in Section VIII. In Section IX, we consider
the conformable fractional optimal control problem, where the
dynamic constraint is given by a conformable fractional deriva-
tive. Using the Hamiltonian language, we provide an invariant
condition. In Section X we consider the multi-dimensional
case, for several independent and dependent variables.

II. PRELIMINARIES

In this section we review the conformable fractional calculus
[5] – [7]. The conformable fractional derivative is a new well-
behaved definition of fractional derivative, based on a simple
limit definition. We review in this section the generalization
of [5] proposed in [6].

Definition 1: The left conformable fractional derivative of
order 0 < α ≤ 1 starting from a ∈ R of a function f : [a, b] →
R is defined by

dα
a

dxα
a

f(x) = f (α)
a (x)

= lim
ε→0

f(x + ε(x− a)1−α)− f(x)
ε

. (1)

If the limit (1) exist, then we say that f is left α-
differentiable. Furthermore, if f

(α)
a (x) exist for x ∈ (a, b),

then
f (α)

a (a) = lim
x→a+

f (α)
a (x)

and
f (α)

a (b) = lim
x→b−

f (α)
a (x).

The right conformable fractional derivative of order α ∈
(0, 1] terminating at b ∈ R of a function f : [a, b] → R is
defined by

bd
α

bdxα
f(x) = bf

(α)(x)

= − lim
ε→0

f(x + ε(b− x)1−α)− f(x)
ε

. (2)

If the limit (2) exist, then we say that f is right α-
differentiable. Furthermore, if bf

(α)(x) exist for x ∈ (a, b),
then

bf
(α)(a) = lim

x→a+
bf

(α)(x)

and
bf

(α)(b) = lim
x→b−

bf
(α)(x).

It is important to note that for α = 1 the conformable
fractional derivatives (1) and (2) reduce to first order ordinary
derivatives. Furthermore, despite the definition of the con-
formable fractional derivatives (1) and (2) can be generalized
for α > 1 [6], we consider only 0 < α ≤ 1 in the present
work. Is is also important to note that, differently from the
majority of definitions of fractional derivative, including the
popular Riemann-Liouville and Caputo fractional derivatives,
the fractional derivatives (1) and (2) are local operators and are
related to ordinary derivatives if the function is differentiable
(see Remark 1). For more on local fractional derivatives, we
refer the reader to [31], [32] and references therein.

Remark 1: If f ∈ C1[a, b], then we have from (1) that

f (α)
a (x) = (x− a)1−αf ′(x) (3)

and from (2) that

bf
(α)(x) = −(b− x)1−αf ′(x) (4)

where f ′(x) stands for the ordinary first order derivative of
f(x).

From (3) and (4) it is easy to see that the conformable
fractional derivative of a constant is zero, differently from the
Riemann-Liouville derivative of a constant, and for the power
functions (x− a)p and (b− x)p one has

dα
a

dxα
a

(x− a)p = p(x− a)p−α

and
bd

α

bdxα
(b− x)p = p(b− x)p−α

for all p ∈ R.
The most remarkable consequence of definitions (1) and

(2) is that the conformable fractional derivatives satisfy very
simple fractional versions of chain and product rules.

Proposition 1 [5], [6]: Let 0 < α < 1 and f and g be
α-differentiable functions. Then,

1)

(c1f + c2g)(α)
a (x) = c1f

(α)
a (x) + c2g

(α)
a (x)

and

b(c1f + c2g)(α)(x) = c1bf
(α)(x) + c2bg

(α)(x)
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for all c1, c2 ∈ R.
2)

(fg)(α)
a (x) = f (α)

a (x)g(x) + f(x)g(α)
a (x)

and

b(fg)(α)(x) = bf
(α)(x)g(x) + f(x)bg

(α)(x).

3)
(

f

g

)(α)

a

(x) =
f

(α)
a (x)g(x)− f(x)g(α)

a (x)
g2(x)

and

b

(
f

g

)(α)

(x) = bf
(α)(x)g(x)− f(x)bg

(α)(x)
g2(x)

.

4) If g(x) ≥ a, then

(f ◦ g)(α)
a (x) = f (α)

a (g(x))g(α)
a (x)(g(x)− a)α−1.

5) If g(x) ≤ b, then

b(f ◦ g)(α)(x) = bf
(α)(g(x))bg

(α)(x)(b− g(x))α−1.

6) If g(x) < a, then

(f ◦ g)(α)
a (x) = −af (α)(g(x))g(α)

a (x)(a− g(x))α−1.

7) If g(x) > b, then

b(f ◦ g)(α)(x) = −f
(α)
b (g(x))bg

(α)(x)(g(x)− b)α−1.

The simple chain and product rules given in Proposition 1
justify the increasing interest in the study of the conformable
fractional calculus, since it enable us to investigate its poten-
tial applications as a tool to practical modeling of complex
problems in science and engineering.

The conformable fractional integrals are defined as follows
[5], [6].

Definition 2: The left conformable fractional integral of
order 0 < α ≤ 1 starting from a ∈ R of a function f ∈ L1[a, b]
is defined by

Iα
a f(x) =

∫ x

a

f(u)dα
au =

∫ x

a

f(u)
(u− a)1−α

du (5)

and the right conformable fractional integral of order 0 < α ≤
1 terminating at b ∈ R of a function f ∈ L1[a, b] is defined
by

bI
αf(x) =

∫ b

x

f(u)bd
αu =

∫ b

x

f(u)
(b− u)1−α

du. (6)

It is important to mention that the conformable fractional
integrals (5) and (6) differ from the traditional fractional
Riemann-Liouville integrals [1] – [3] only by a multiplicative
constant. Moreover, for α = 1, the conformable fractional
integrals reduce to ordinary first order integrals.

In addition to these definitions, in the present work we
make use of the following properties of conformable fractional
derivatives and integrals.

Theorem 1: Let f ∈ C [a, b] and 0 < α ≤ 1. Then,

dα
a

dxα
a

Iα
a f(x) = f(x)

and
bd

α

bdxα bI
αf(x) = f(x)

for all x ∈ [a, b].

Theorem 2 (Fundamental theorem of conformable fractional
calculus): Let f ∈ C1[a, b] and 0 < α ≤ 1. Then,

Iα
a f (α)

a (x) = f(x)− f(a)

and
bI

α
bf

(α)(x) = f(x)− f(b)

for all x ∈ [a, b].

Theorem 3 (Integration by parts): Let f, g : [a, b] → R be
two functions such that fg is differentiable. Then,

∫ b

a

f(x)g(α)
a (x)dα

ax = f(x)g(x)|ba −
∫ b

a

g(x)f (α)
a (x)dα

ax

(7)

and
∫ b

a

f(x)bg
(α)(x)bd

αx

= −f(x)g(x)|ba −
∫ b

a

g(x)bf
(α)(x)bd

αx. (8)

If f, g : [a, b] → R are differentiable functions, then
∫ b

a

f(x)g(α)
a (x)dα

ax = f(x)g(x)|ba +
∫ b

a

g(x)bf
(α)(x)bd

αx.

The proof of Theorem 1 follows directly from (3), (4),
(5) and (6) since Iα

a f(x) and bI
αf(x) are differentiable. On

the other hand, the fundamental theorem of the conformable
fractional calculus (Theorem 2) is a direct consequence of
(3), (4) and definitions (5) and (6) since f, g : [a, b] → R are
differentiable functions. Finally, the integration by parts (7)
and (8) follow from Proposition 1 and Theorem 1. We also
need the following result.

Theorem 4 (Chain rule for functions of several variables):
Let f : RN → R (N ∈ N) be a differentiable function in all
its arguments and y1, . . . , yN : R → R be α-differentiable
functions. Then,

dα
a

dxα
a

f(y1(x), . . . , yN (x))

=
∂f

∂y1
y1

(α)
a +

∂f

∂y2
y2

(α)
a + · · ·+ ∂f

∂yN
yN

(α)
a

(9)

and

bd
α

bdxα
f(y1(x), . . . , yN (x))

=
∂f

∂y1
by1

(α) +
∂f

∂y2
by2

(α) + · · ·+ ∂f

∂yN
byN

(α).
(10)

Proof : For simplicity, we prove (9) only for N = 2. The
proofs for a general N and of (10) are similar. From (1) we
have for N = 2 that (by writing x = x + ε(x − a)1−α for



LAZO AND TORRES: VARIATIONAL CALCULUS WITH CONFORMABLE FRACTIONAL DERIVATIVES 343

simplicity)

dα
a

dxα
a

f(y1(x), y2(x))

= lim
ε→0

f(y1(x), y2(x))− f(y1(x), y2(x))
ε

= lim
ε→0

f(y1(x), y2(x))− f(y1(x), y2(x))
y1(x)− y1(x)

y1(x)− y1(x)
ε

+ lim
ε→0

f(y1(x), y2(x))− f(y1(x), y2(x))
y2(x)− y2(x)

y2(x)− y2(x)
ε

=
∂f

∂y1
y1

(α)
a +

∂f

∂y2
y2

(α)
a

since f is differentiable. ¥

III. THE CONFORMABLE EULER–LAGRANGE EQUATION

Let us first consider the fractional variational integral

J (y) =
∫ b

a

L
(
x, y(x), y(α)

a (x)
)

dα
ax (11)

defined on the set of continuous functions y : [a, b] → R
such that y

(α)
a exists on [a, b], where the Lagrangian L,

L(x, y, y
(α)
a ) : [a, b] × R2 → R, is of class C1 in each

of its arguments. The fundamental problem of the calculus
of variations consists in finding which functions extremize
functional (11). In order to obtain a necessary condition for
the extremum of (11) we need the following Lemma.

Lemma 1 (Fundamental lemma for the conformable calculus
of variations): Let M and η be continuous functions on [a, b].

If ∫ b

a

η(x)M(x)dα
ax = 0 (12)

for any η ∈ C [a, b] with η(a) = η(b) = 0, then

M(x) = 0 (13)

for all x ∈ [a, b].
Proof : We do the proof by contradiction. From (12) we

have that
∫ b

a

η(x)M(x)dα
ax =

∫ b

a

η(x)
M(x)

(x− a)1−α
dx = 0. (14)

Suppose that there exist an x0 ∈ (a, b) such that M(x0) 6=
0. Without loss of generality, let us assume that M(x0) > 0.
Since M is continuous on [a, b], there exists a neighborhood
N δ(x0) ⊂ (a, b) such that

M(x) > 0 for all x ∈ N δ(x0).

Let us choose

η(x) =

{
(x− x0 − δ)2(x− x0 + δ)2, if x ∈ N δ(x0)
0, if x /∈ N δ(x0).

(15)
Clearly, η(x) given by (15) is continuous and satisfy η(a) =

0 and η(b) = 0. Inserting (15) into (14), we obtain that
∫ b

a

η(x)M(x)dα
ax

=
∫ x0+δ

x0−δ

(x− x0 − δ)2(x− x0 + δ)2
M(x)

(x− a)1−α
dx > 0

which contradicts our hypothesis. Thus,

M(x)
(x− a)1−α

> 0 for all x ∈ (a, b).

Since (x−a)1−α > 0 for x ∈ (a, b), and since M ∈ C [a, b],
we get

M(x) = 0 for all x ∈ [a, b].

¥
Theorem 5 (The conformable fractional Euler–Lagrange

equation): Let J be a functional of form (11) with L ∈ C1(
[a, b]× R2

)
, and 0 < α ≤ 1. Let y : [a, b] → R be a α-

differentiable function with y(a) = ya and y(b) = yb, ya,

yb ∈ R. Furthermore, let y ∂L

∂y
(α)
a

be a differentiable function

and ∂L

∂y
(α)
a

be α-differentiable. If y is an extremizer of J , then

y satisfies the following fractional Euler–Lagrange equation:

∂L

∂y
− dα

a

dxα
a

(
∂L

∂y
(α)
a

)
= 0. (16)

Proof : Let y∗ give an extremum to (11). We define a family
of functions

y(x) = y∗(x) + εη(x) (17)

where ε is a constant and η is an arbitrary α-differentiable

function satisfying η ∂L

∂y∗(α)
a

∈ C1 and the boundary conditions

η(a) = η(b) = 0 (weak variations). From (17), the boundary

conditions η(a) = η(b) = 0, and the fact that y∗(a) = ya and

y∗(b) = yb, it follows that function y is admissible: y is α-

differentiable with y(a) = ya, y(b) = yb, and y ∂L

∂y∗(α)
a

is dif-

ferentiable. Let the Lagrangian L be C1([a, b]×R2). Because

y∗ is an extremizer of functional J , the Gateaux derivative

δJ (y∗) needs to be identically null. For the functional (11),

δJ (y∗) = lim
ε→0

1
ε

(∫ b

a

L
(
x, y, y(α)

a

)
dα

ax

−
∫ b

a

L
(
x, y∗, y∗(α)

a

)
dα

ax

)

=
∫ b

a


η(x)

∂L
(
x, y∗, y∗(α)

a

)

∂y∗

+η(α)
a (x)

∂L
(
x, y∗, y∗(α)

a

)

∂y∗(α)
a


 dα

ax = 0.

Using the integration by parts formula (7) (η ∂L

∂y∗(α)
a

is
differentiable), we get

δJ (y∗) =
∫ b

a

η(x)


∂L

(
x, y∗, y∗(α)

a

)

∂y∗

− dα
a

dxα
a

∂L
(
x, y∗, y∗(α)

a

)

∂y∗(α)
a


dα

ax = 0

(18)
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since η(a) = η(b) = 0. The fractional Euler–Lagrange equa-
tion (16) follows from (18) by using the fundamental Lemma
1. ¥

Definition 3: A continuous function y solution of (16) is
said to be an extremal of (11).

Remark 2: For α = 1, the functional J given by (11)
reduces to the classical variational functional

J (y) =
∫ 1

0

L (x, y(x), y′(x)) dx

and the associated Euler–Lagrange equation (16) is

∂L

∂y
− d

dx

(
∂L

∂y′

)
= 0. (19)

Let us now consider the more general case where the
Lagrangian depends on both integer order and fractional order
derivatives. In this case the following theorem holds.

Theorem 6 (The generalized conformable fractional Euler–
Lagrange equation): Let J be a functional of form

J (y) =
∫ b

a

L
(
x, y(x), y′(x), y(α)

a (x)
)

dx (20)

with L ∈ C1
(
[a, b]× R3

)
, and 0 < α ≤ 1. Let y : [a, b] → R

be a differentiable function with y(a) = ya and y(b) = yb,
ya, yb ∈ R. If y is an extremizer of J , then y satisfies the
following fractional Euler–Lagrange equation:

∂L

∂y
− d

dx

(
∂L

∂y′

)
− 1

(x− a)1−α

dα
a

dxα
a

(
∂L̃

∂y
(α)
a

)
= 0 (21)

where L̃
(
x, y, y′, y(α)

a

)
= (x− a)1−αL

(
x, y, y′, y(α)

a

)
.

Proof : Let y∗ give an extremum to (20). We define a
family of functions as in (17) but with y ∈ C1[a, b]. From
(17) and the boundary conditions η(a) = η(b) = 0, and the
fact that y∗(a) = ya and y∗(b) = yb, it follows that function
y is admissible. Because y∗ is an extremizer of J , the
Gateaux derivative δJ (y∗) needs to be identically null. For
the functional (20) we have

δJ (y∗) = lim
ε→0

1
ε

(∫ b

a

L
(
x, y, y′, y(α)

a

)
dx

−
∫ b

a

L
(
x, y∗, y′∗, y∗(α)

a

)
dx

)

=
∫ b

a


η(x)

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗

+η′(x)
∂L

(
x, y∗, y′∗, y∗(α)

a

)

∂y′∗


 dx

+
∫ b

a

η(α)
a (x)

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗(α)
a

dx

=
∫ b

a

η(x)


∂L

(
x, y∗, y′∗, y∗(α)

a

)

∂y∗

− d

dx

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y′∗


 dx

+
∫ b

a

η(α)
a (x)

∂L̃
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗(α)
a

dα
ax = 0

where we performed an integration by parts in the second
term in the first integral (since η(a) = η(b) = 0), and we
rewrote the second integral as a conformable integral by
using definition (5). Using the integration by parts formula
(7) (η ∂L

∂y∗(α)
a

is differentiable), we get

δJ (y∗) =
∫ b

a

η(x)


∂L

(
x, y∗, y′∗, y∗(α)

a

)

∂y∗

− d

dx

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y′∗


 dx

−
∫ b

a

η(x)
dα

a

dxα
a

∂L̃
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗(α)
a

dα
ax

=
∫ b

a

η(x)


(x− a)1−α

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗

−(x− a)1−α d

dx

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y′∗

− dα
a

dxα
a

∂L̃
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗(α)
a


 dα

ax = 0

(22)

since η(a) = η(b) = 0. The fractional Euler–Lagrange equa-
tion (21) follows from (22) by using the fundamental Lemma
1. ¥

IV. LAGRANGIAN FORMULATION FOR
FRICTIONAL FORCES

As an example of potential application of the variational
calculus with conformable fractional derivatives, we formulate
an action principle for dissipative systems free from the
mathematical inconsistencies found in the Riewe approach
[23] and far simpler than the formulation proposed in [23].
The action principle we propose states that the equation of
motion for dissipative systems is obtained by taking the limit
a → b in the extremal of the action

S =
∫ b

a

L
(
x, x′, x(α)

a

)
dt (23)

that satisfy the fractional Euler–Lagrange equation (see (21))

∂L

∂x
− d

dt

∂L

∂x′
− 1

(t− a)1−α

dα
a

dtαa

∂L̃

∂x
(α)
a

= 0 (24)
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where L̃
(
x, x′, x(α)

a

)
= (t − a)1−αL

(
x, x′, x(α)

a

)
, x(t) is

the path of the particle and t is the time. It is important to
emphasize that the condition a → b (also considered in the
original Riewe’s approach) applied to the action principle does
not imply any restrictions for conservative systems, since in
this case x(t) is the action’s extremal for any time interval
[a, b], even when a → b. Furthermore, our action principle
is simpler than the formulation in [23] and free from the
mathematical inconsistencies present in Riewe’s approach (see
[23] for a detailed discussion). In order to show that our
method provides us with physical Lagrangians, let us consider
the simple problem of a particle under a frictional force
proportional to velocity. A quadratic Lagrangian for a particle
under a frictional force proportional to the velocity is given
by

L
(
x, x′, x( 1

2 )
a

)
=

1
2
m (x′)2 − U(x) +

γ

2

(
x

( 1
2 )

a

)2

(25)

where the three terms in (25) represent the kinetic energy,
potential energy, and the fractional linear friction energy,
respectively. Note that, differently from Riewe’s Lagrangian
[11], our Lagrangian (25) is a real function with a linear
friction energy, which is physically meaningful. Since the
equation of motion is obtained in the limit a → b, if we
consider the last term in (25) up to first order in ∆t = t− a,
we get

γ

2

(
x

( 1
2 )

a

)2

=
γ

2

(
x′∆t

1
2

)2

≈ γ

2
x′∆x

that coincides, apart from the multiplicative constant 1/2, with
the work from the frictional force γx′ in the displacement
∆x ≈ x′∆t. The appearance of an additional multiplicative
constant is a consequence of the use of fractional derivatives in
the Lagrangian and does not appear in the equation of motion
after we apply the action principle [23].

Remark 3: It is important to stress that the order of the
fractional derivative should be fixed to α = 1/2 in order
to obtain, by a fractional Lagrangian, a correct equation of
motion of a dissipative system. For α different from 1/2,
the Lagrangian does not describe a frictional system under a
frictional force proportional to the velocity. Consequently, the
fractional linear friction energy makes sense only for α = 1/2.

The Lagrangian (25) is physical in the sense it provides
physically meaningful relations for the momentum and the
Hamiltonian. If we define the canonical variables

q1 = x′, q 1
2

= x
( 1
2 )

a

and
p1 =

∂L

∂q1
= mx′, p 1

2
=

∂L

∂q 1
2

= γx
( 1
2 )

a

we obtain the Hamiltonian

H = q1p1+q 1
2
p 1

2
−L =

1
2
m (x′)2+U(x)+

γ

2

(
x

( 1
2 )

a

)2

. (26)

From (26) we can see that the Lagrangian (25) is physical
in the sense it provides us a correct relation for the momentum
p1 = mẋ and a physically meaningful Hamiltonian (it is the
sum of all energies). Furthermore, the additional fractional
momentum p 1

2
= γx

( 1
2 )

a goes to zero when we take the limit

a → b, since x ∈ C2[a, b].
Finally, the equation of motion for the particle is obtained

by inserting our Lagrangian (25) into the Euler–Lagrange
equation (24),

mx′′+γ(t− a)−
1
2

d
1
2
a

dt
1
2
a

[
(t− a)

1
2 x

( 1
2 )

a

]

= mx′′ + γx′ + γ(t− a)x′′ = F (x) (27)

where we have used (3) since x ∈ C2[a, b] and

F (x) = − d

dx
U(x)

is the external force. By taking the limit a → b with t ∈ [a, b],
we finally obtain the correct equation of motion for a particle
under a frictional force:

mx′′ + γx′ = F (x).

V. THE CONFORMABLE DUBOIS–REYMOND CONDITION

In the remainder of the present work, we are going to
consider only the simplest case where we have no mixed
integer and fractional derivatives. We now present the DuBois–
Reymond condition in the conformable fractional context. It
is an immediate consequence of the chain rule (9) and the
Euler–Lagrange equation (16).

Theorem 7 (The conformable fractional DuBois-Reymond
condition): If y is an extremal of J as in (11), then

dα
a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)
=

∂L

∂x
· (x− a)1−α. (28)

Proof : By the chain rule (9) and the Leibniz rule in
Proposition 1:

dα
a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)

=
∂L

∂x
x(α)

a +
∂L

∂y
y(α)

a +
∂L

∂y
(α)
a

dα
a

dxα
a

y(α)
a

− dα
a

dxα
a

(
∂L

∂y
(α)
a

)
y(α)

a − ∂L

∂y
(α)
a

dα
a

dxα
a

y(α)
a

=
∂L

∂x
x(α)

a + y(α)
a

[
∂L

∂y
− dα

a

dxα
a

(
∂L

∂y
(α)
a

)]

=
∂L

∂x
· (x− a)1−α.

¥
Corollary 1: If (11) is autonomous, that is, if L = L(y, y

(α)
a )

does not depend on x, then

dα
a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)
= 0

along any extremal y.
Remark 4: When α = 1 and y ∈ C1, Theorem 7 is the

classical DuBois–Reymond condition: if y ∈ C1 is an extremal
of J (y) =

∫ 1

0
L(x, y, y′)dx (i.e., y satisfies (19)), then

d

dx

(
L− ∂L

∂y′
y′

)
=

∂L

∂x
.
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VI. FRACTIONAL INVARIANT CONDITIONS

We consider invariance transformations in the (x, y)-space,
depending on a real parameter ε. To be more precise, we
consider transformations of type

{
x = x + ετ(x, y(x))
y = y + εξ(x, y(x)) (29)

where the generators τ and ξ are such that x ≥ a and there
exist τ

(α)
a and ξ

(α)
a .

Definition 4: We say that the fractional variational integral
(11) is invariant under the family of transformations (29) up
to the Gauge term Λ, if a function Λ = Λ(x, y) exists such
that for any function y and for any real x ∈ [a, b], we have

L

(
x, y,

dα
ay

dxα
a

)
dα

ax

dα
ax

= L(x, y, y(α)
a ) + ε

dα
aΛ

dxα
a

(x, y) + o(ε)

(30)
for all ε in some neighborhood of zero, where dα

a x
dα

a x stands for

dα
ax

dxα
a

dα
ax

dxα
a

= 1 + ε
τ

(α)
a

(x− a)1−α
. (31)

We note that for α = 1 our Definition 4 coincides with the
standard approach (see, e.g., [33]). When Λ ≡ 0, one obtains
the concept of absolute invariance. The presence of a new
function Λ is due to the presence of external forces in the
dynamical system, like friction. The function Λ is called a
Gauge term. In fact, many phenomena are nonconservative
and this has to be taken into account in the conservation laws
[26], [34]. We give an example.

Example 1: Consider the transformation
{

x = x
y = y + ε 1

2α (x− a)α (32)

and the functional

J (y) =
∫ b

a

(
y(α)

a (x)
)2

dα
ax. (33)

Since
dα

a

dxα
a

1
2α

(x− a)α =
1
2

it is easy to verify that (33) is invariant under (32) up to the
Gauge function Λ = y.

Definition 5: Given a function C = C(x, y, y
(α)
a ), we say

that C is a conserved quantity for (11) if

dα
aC

dxα
a

(x, y(x), y(α)
a (x)) = 0 (34)

along any solution y of (16) (i.e., along any extremal of (11)).

Remark 5: Applying the conformable integral (5) to
both sides of equation (34), Definition 5 is equivalent to
C(x, y(x), y(α)

a (x)) ≡ const.

We now provide a necessary condition of invariance.

Theorem 8: If J given by (11) is invariant under a family

of transformations (29), then

∂L

∂x
τ +

∂L

∂y
ξ

+
∂L

∂y
(α)
a

[
ξ(α)
a − y(α)

a

(
(α− 1)

τ

(x− a)
+

τ
(α)
a

(x− a)1−α

)]

+ L
τ

(α)
a

(x− a)1−α
=

dα
aΛ

dxα
a

.

(35)

Proof : By the fractional chain rule (see Proposition 1),

dα
ay

dxα
a

=

dα
ay

dxα
a

(x− a)α−1
dα

ax

dxα
a

=
y
(α)
a + εξ

(α)
a

(x + ετ − a)α−1[(x− a)1−α + ετ
(α)
a ]

.

Substituting this formula into (30), differentiating with
respect to ε and then putting ε = 0, we obtain relation (35).¥

Remark 6: Allowing α to be equal to 1, for Λ ≡ 0 our
equation (35) becomes the standard necessary condition of
invariance (cf., e.g., [24]):

∂L

∂x
τ +

∂L

∂y
ξ +

∂L

∂y′
(ξ′ − y′τ ′) + Lτ ′ = 0.

For α = 1 and an arbitrary Λ, see [33].
In particular, if we consider “time invariance” (i.e., τ ≡ 0),

we obtain the following result.
Corollary 2: Let y = y + εξ(x, y(x)) be a transformation

that leaves invariant J in the sense that

L(x, y, y(α)
a ) = L(x, y, y(α)

a ) + ε
dα

aΛ
dxα

a

(x, y) + o(ε).

Then,
∂L

∂y
ξ +

∂L

∂y
(α)
a

ξ(α)
a =

dα
aΛ

dxα
a

.

VII. THE CONFORMABLE NOETHER THEOREM

Noether’s theorem is a beautiful result with important
implications and applications in optimal control [35]−[37].
We provide here a conformable fractional Noether theorem in
the context of the calculus of variations. Later, in Section IX,
we provide a conformable fractional optimal control version
(see Theorem 11).

Theorem 9 (The conformable fractional Noether theorem):
If J given by (11) is invariant under (29) and if y is an
extremal of J , then

dα
a

dxα
a

[(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

∂L

∂y
(α)
a

ξ(x− a)1−α

]

= (1− α)
∂L

∂y
(α)
a

[
ξ(x− a)1−2α − y

(α)
a τ

(x− a)α

]

+
dα

aΛ
dxα

a

(x− a)1−α. (36)
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Proof : From Theorem 8, and using the conformable frac-
tional Euler-Lagrange equation (16) and the DuBois-Reymond
condition (28), we deduce successively that

dα
aΛ

dxα
a

(x− a)1−α

=

[
dα

a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ

(x− a)1−α

+
dα

a

dxα
a

(
∂L

∂y
(α)
a

)
ξ +

∂L

∂y
(α)
a

ξ(α)
a

]
(x− a)1−α

− ∂L

∂y
(α)
a

y(α)
a

[
(α− 1)τ
(x− a)α

+ τ (α)
a )

]
+ Lτ (α)

a

=

[
dα

a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

dα
a

dxα
a

(
∂L

∂y
(α)
a

ξ

)
(x−a)1−α

]

− ∂L

∂y
(α)
a

y(α)
a

[
(α− 1)τ
(x− a)α

+ τ (α)
a )

]
+ Lτ (α)

a

=
dα

a

dxα
a

[(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

∂L

∂y
(α)
a

ξ(x− a)1−α

]

− ∂L

∂y
(α)
a

y(α)
a

[
(α− 1)τ
(x− a)α

+ τ (α)
a

]

+ Lτ (α)
a −

(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ (α)
a

− ∂L

∂y
(α)
a

ξ(1− α)(x− a)1−2α

=
dα

a

dxα
a

[(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

∂L

∂y
(α)
a

ξ(x− a)1−α

]

+
∂L

∂y
(α)
a

y(α)
a

(1− α)τ
(x− a)α

− ∂L

∂y
(α)
a

ξ(1− α)(x− a)1−2α.

Thus, we obtain equation (36). ¥

Remark 7: When α = 1, equation (36) is simply Noether’s
conservation law in the presence of external forces: for any
extremal of J and for any family of transformations (x, y)
for which J is invariant, the conservation law

(
L− ∂L

∂y′
y′

)
τ +

∂L

∂y′
ξ = Λ + constant

holds [33, Theorem 2.1]. In addition, if system is conservative
(Λ ≡ 0), then one has the classical Noether theorem

(
L− ∂L

∂y′
y′

)
τ +

∂L

∂y′
ξ = constant.

Corollary 3 (The conformable fractional Noether theorem
under the presence of an external force f ): If J given by (11)
is invariant under (29), y is an extremal of J , and the function
f = f(x, y, y

(α)
a ) satisfies the equation

dα
af

dxα
a

=(1− α)
∂L

∂y
(α)
a

[
ξ(x− a)1−2α − y

(α)
a τ

(x− a)α

]

+
dα

aΛ
dxα

a

(x− a)1−α

then (
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

∂L

∂y
(α)
a

ξ(x− a)1−α − f

is a conserved quantity.
Corollary 4: If J given by (11) is invariant under the

transformation x = x, y = y + εξ(x, y(x)), and if y is an
extremal of J , then

∂L

∂y
(α)
a

ξ − Λ

is a conserved quantity.
Proof : Given that

dα
a (x− a)1−α

dxα
a

= (1− α)(x− a)1−2α

the result follows immediately from Theorem 9. ¥

VIII. THE HAMILTONIAN FORMALISM

The Hamiltonian formalism is related to the Lagrangian one
by the so called Legendre transformation, from coordinates
and velocities to coordinates and momenta. Let the momenta
be given by

p(x) =
∂L

∂y
(α)
a

(x, y(x), y(α)
a (x)) (37)

and the Hamiltonian function by

H(x, y, v, ψ) = −L(x, y, v) + ψ v. (38)

To simplify notation, [y](x) and {y}(x) will denote
(x, y(x), y(α)

a (x)) and (x, y(x), y(α)
a (x), p(x)), respectively.

Differentiating (38), and using definition (37), it follows that

dα
aH

dxα
a

{y}(x)

= −∂L

∂x
[y](x)x(α)

a − ∂L

∂y
[y](x) · y(α)

a (x)

− ∂L

∂v
[y](x) · dα

a

dxα
a

y(α)
a (x) + p(α)

a (x) · y(α)
a (x)

+
∂L

∂v
[y](x) · dα

a

dxα
a

y(α)
a (x)

= −∂L

∂x
[y](x) · (x− a)1−α − ∂L

∂y
[y](x) · y(α)

a (x)

+ p(α)
a (x) · y(α)

a (x). (39)

On the other hand, by the definition of Hamiltonian (38),
one has immediately that





∂H

∂x
(x, y, v, ψ) = −∂L

∂x
(x, y, v)

∂H

∂y
(x, y, v, ψ) = −∂L

∂y
(x, y, v)

∂H

∂ψ
(x, y, v, ψ) = v
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and so we can write (39) in the form

dα
aH

dxα
a

{y}(x)

=
∂H

∂x
{y}(x)(x− a)1−α

+
∂H

∂y
{y}(x) · y(α)

a (x) +
∂H

∂ψ
{y}(x) · p(α)

a (x). (40)

If y is an extremal of J , then by the conformable fractional
Euler-Lagrange equation (16) one has

∂L

∂y
[y](x)− dα

a

dxα
a

(
∂L

∂v
[y]

)
(x) = −∂H

∂y
{y}(x)−p(α)

a (x) = 0

and we can write



y(α)
a (x) =

∂H

∂ψ
{y}(x)

p(α)
a (x) = −∂H

∂y
{y}(x).

(41)

The system (41) is nothing else than the conformable
fractional Euler-Lagrange equation in Hamiltonian form. Sub-
stituting the expressions of (41) into (40), we get the analog
to the DuBois–Reymond condition (28) in Hamiltonian form:

dα
aH

dxα
a

{y}(x) =
∂H

∂x
{y}(x)(x− a)1−α. (42)

If the Lagrangian L is autonomous, i.e., L does not depend
on x, then

∂L

∂x
= 0

and, consequently, by (42) H is a conserved quantity. If the
Lagrangian L does not depend on y, then

∂L

∂y
= −∂H

∂y
= 0

and so p
(α)
a = 0, i.e., p is a conserved quantity.

We now exhibit Corollary 3 within the Hamiltonian frame-
work.

Theorem 10 (Conformable fractional Noether’s theorem in
Hamiltonian form under the presence of an external force f ):
If J given by (11) is invariant under (29), y is an extremal of
J , and function f = f(x, y(x), y(α)

a (x)) satisfies the equation

dα
af

dxα
a

(x, y(x), y(α)
a (x))

= (1− α)p(x)

[
ξ(x− a)1−2α − y

(α)
a (x)τ

(x− a)α

]

+
dα

aΛ
dxα

a

(x, y(x))(x− a)1−α

then

p(x)ξ(x− a)1−α −H{y}(x)τ − f(x, y(x), y(α)
a (x))

is a conserved quantity.

IX. CONFORMABLE FRACTIONAL OPTIMAL CONTROL

The conformable fractional optimal control problem is
stated as follows: find a pair of functions (y(·), v(·)) that

minimizes

J (y, v) =
∫ b

a

L(x, y(x), v(x)) dα
ax (43)

when subject to the (nonautonomous) fractional control system

y(α)
a (x) = ϕ(x, y(x), v(x)). (44)

A pair (y(·), v(·)) that minimizes functional (43) subject to
(44) is called an optimal process. The reader interested on the
fractional optimal control theory is referred to [28], [29], [38].
Here we note that if α = 1, then (43) and (44) is the standard
optimal control problem: to minimize

J (y, v) =
∫ b

a

L(x, y(x), v(x)) dx

subject to the control system

y′(x) = ϕ(x, y(x), v(x)).

We assume that the Lagrangian L and the velocity vector ϕ
are functions at least of class C1 in their domain [a, b]× R2.
Also, the admissible state trajectories y are such that y

(α)
a exist.

Remark 8: In case ϕ ≡ v, the previous problem (43) and
(44) reduces to the fundamental problem of the conformable
fractional variational calculus (11), as stated in Section III.

Following the standard approach [37], [39], we consider the
augmented conformable fractional functional

I(y, v, p) =
∫ b

a

[L(x, y(x), v(x)) + p(x)(y(α)
a (x)

− ϕ(x, y(x), v(x)))] dα
ax

(45)

where p is such that p
(α)
a exists. Consider a variation vector

of type (y + εy1, v + εv1, p + εp1) with |ε| ¿ 1. For conve-
nience, we restrict ourselves to the case y1(a) = y1(b) = 0.
If (y(·), v(·)) is an optimal process, then the first variation
is zero when ε = 0. Thus, using the conformable fractional
integration by parts formula (Theorem 3), we obtain that

0 =
∫ b

a

[
∂L

∂y
y1 +

∂L

∂v
v1 + p1(y(α)

a − ϕ)

+p
(
y1

(α)
a − ∂ϕ

∂y y1 − ∂ϕ
∂v v1

)]
dα

ax

=
∫ b

a

[
y1

(
∂L

∂y
− p

∂ϕ

∂y
− p(α)

a

)
+ v1

(
∂L

∂v
− p

∂ϕ

∂v

)

+p1(y(α)
a − ϕ)

]
dα

ax.

By the arbitrariness of the the variation functions, we obtain
the following system, called the Euler–Lagrange equations for
the conformable fractional optimal control problem:




y
(α)
a (x) = ϕ(x, y(x), v(x))

p
(α)
a (x) =

∂L

∂y
(x, y(x), v(x))− p(x)

∂ϕ

∂y
(x, y(x), v(x))

∂L

∂v
(x, y(x), v(x))− p(x)

∂ϕ

∂v
(x, y(x), v(x)) = 0.

(46)
These equations give necessary conditions for finding the



LAZO AND TORRES: VARIATIONAL CALCULUS WITH CONFORMABLE FRACTIONAL DERIVATIVES 349

optimal solutions of problem (43) and (44). We remark that
they are similar to the standard ones, in case of integer order
derivatives, but in this case they contain conformable fractional
derivatives, as expected. The solution can be stated using the
Hamiltonian formalism. Consider the Hamiltonian function

H(x, y, v, p) = −L(x, y, v) + p(x)ϕ(x, y, v). (47)

Then (46) gives:

1) The fractional Hamiltonian system




y(α)
a (x) =

∂H

∂p
(x, y, v, p)

p(α)
a (x) = −∂H

∂y
(x, y, v, p).

(48)

2) The stationary condition

∂H

∂v
(x, y, v, p) = 0. (49)

Definition 6: Any triplet (y, v, p) satisfying system (48) and
(49) is called a conformable fractional Pontryagin extremal.

Remark 9: In the particular case ϕ ≡ v, i.e., when the
conformable fractional optimal control problem is reduced
to the fundamental conformable fractional problem of the
calculus of variations, we obtain

H = −L(x, y, v) + pv , y(α)
a = v

and the equations

p(α)
a = −∂H

∂y
=

∂L

∂y
, p =

∂L

∂v
.

Therefore, we obtain the conformable fractional Euler–
Lagrange equation (16):

∂L

∂y
=

dα
a

dxα
a

(
∂L

∂y
(α)
a

)
.

Let us now considerer the augmented fractional variational
functional (45) written in the Hamiltonian form:

I(y, v, p) =
∫ 1

0

(−H(x, y(x), v(x), p(x))+ p(x)y(α)
a (x)) dα

ax

(50)
where H is given by expression (47). For a parameter ε, with
|ε| ¿ 1, consider the family of transformations





x = x + ετ(x, y(x), v(x), p(x))
y = y + εξ(x, y(x), v(x), p(x))
v = v + εσ(x, y(x), v(x), p(x))
p = p + επ(x, y(x), v(x), p(x)). (51)

We now define the notion of invariance of (43)−(44) in
terms of the Hamiltonian H and the augmented conformable
fractional variational functional (50).

Definition 7: The conformable fractional optimal control
problem (43) and (44) is invariant under the transformations
(51) up to the Gauge term Λ, if a function Λ = Λ(x, y)
exists such that for any functions y, v and p, and for any real

x ∈ [0, 1], the following equality holds:
[
−H (x, y, v, p) + p

dα
ay

dxα
a

]
dα

ax

dα
ax

= −H(x, y, v, p) + py(α)
a + ε

dα
aΛ

dxα
a

(x, y) + o(ε) (52)

for all ε in some neighborhood of zero, where as in Definition 4
dα

a x
dα

a x stands for (31).
Theorem 11 (Fractional Noether’s theorem for the fractional

optimal control problem (43)−(44)): If (43) and (44) is invari-
ant under (51) in the sense of Definition 7, and if (y, v, p) is
a conformable fractional Pontryagin extremal, then

dα
a

dxα
a

(pξ)− τ

(
∂H

∂x
+ (α− 1)

py
(α)
a

x− a

)

−H
τ

(α)
a

(x− a)1−α
=

dα
aΛ

dxα
a

. (53)

Proof : Differentiating (52) with respect to ε, then choosing
ε = 0, we get

− ∂H

∂x
τ − ∂H

∂y
ξ − ∂H

∂v
σ − ∂H

∂p
π + πy(α)

a

+ p

[
ξ(α)
a − y(α)

a

(
(α− 1)

τ

x− a
+

τ
(α)
a

(x− a)1−α

)]

+
[
−H + py(α)

a

] τ
(α)
a

(x− a)1−α
=

dα
aΛ

dxα
a

.

Equation (53) follows because (y, v, p) is a conformable
fractional Pontryagin extremal. ¥

Remark 10: When α = 1 and Λ = 0, equation (53) becomes

d

dx
(pξ)− τ

∂H

∂x
−Hτ ′ = 0.

Using relations (48) and (49) with α = 1, we deduce that

−Hτ + pξ ≡ constant

which is the optimal control version of Noether’s theorem
[35]−[37]. For α ∈ (0, 1), Theorem 11 extends the main result
of [28].

X. THE MULTI-DIMENSIONAL CASE

In this section, we show a necessary condition of invariance,
when the Lagrangian depends on two independent variables
x1 and x2 and on m functions y1, . . . , ym. First, we define
conformable fractional partial derivatives and conformable
multiple fractional integrals in a natural way, similarly as
done in the integer case. In addition, we are going to use
the following properties.

Theorem 12 (Conformable Green’s theorem for a rectangle):
Let f and g be two continuous and α-differentiable functions
whose domains contain R = [a, b]× [c, d] ⊂ R2. Then,
∫ b

a

(f(x1, c)−f(x1, d)) dα
ax1+

∫ d

c

(g(b, x2)−g(a, x2)) dα
c x2

=
∫

R

(
∂α

a

∂x1
α
a

g(x1, x2)− ∂α
c

∂x2
α
c

f(x1, x2)
)

dα
ax1d

α
c x2.

(54)
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Proof : By Theorem 2, we have

f(x1, d)− f(x1, c) =
∫ d

c

∂α
c

∂x2
α
c

f(x1, x2)dα
c x2

and

g(b, x2)− g(a, x2) =
∫ b

a

∂α
a

∂x1
α
a

g(x1, x2)dα
ax1.

Therefore,
∫ b

a

(f(x1, c)−f(x1, d)) dα
ax1+

∫ d

c

(g(b, x2)−g(a, x2)) dα
c x2

= −
∫ b

a

∫ d

c

∂α
c

∂x2
α
c

f(x1, x2)dα
c x2d

α
ax1

+
∫ d

c

∫ b

a

∂α
a

∂x1
α
a

g(x1, x2)dα
ax1d

α
c x2

=
∫

R

(
∂α

a

∂x1
α
a

g(x1, x2)− ∂α
c

∂x2
α
c

f(x1, x2)
)

dα
ax1d

α
c x2.

¥
Remark 11: From Definition 2 and Remark 1, it is easy

to verify that for C1 functions our fractional Green’s theo-
rem over a rectangular domain (Theorem 12) reduces to the
conventional Green’s identity for

f̃(x1, x2) = f(x1, x2)(x1 − a)α−1

and
g̃(x1, x2) = g(x1, x2)(x2 − a)α−1.

Lemma 2: Let F , G and h be α-differentiable continuous
functions whose domains contain R = [a, b]× [c, d]. If h = 0
on the boundary ∂R of R, then

∫

R

(
G(x1, x2)

∂α
a

∂x1
α
a

h(x1, x2)

−F (x1, x2)
∂α

c

∂x2
α
c

h(x1, x2)
)

dα
ax1d

α
c x2

= −
∫

R

(
∂α

a

∂x1
α
a

G(x1, x2)− ∂α
c

∂x2
α
c

F (x1, x2)
)

× h(x1, x2)dα
ax1d

α
c x2. (55)

Proof : By choosing f = Fh and g = Gh in Green’s for-
mula (54), we obtain that

∫ b

a

(F (x1, c)h(x1, c)− F (x1, d)h(x1, d)) dα
ax1

+
∫ d

c

(G(b, x2)g(b, x2)−G(a, x2)h(a, x2)) dα
c x2

=
∫

R

(
∂α

a

∂x1
α
a

G(x1, x2)

− ∂α
c

∂x2
α
c

F (x1, x2)
)

h(x1, x2)dα
ax1d

α
c x2

+
∫

R

(
G(x1, x2)

∂α
a

∂x1
α
a

h(x1, x2)

−F (x1, x2)
∂α

c

∂x2
α
c

h(x1, x2)
)

dα
ax1d

α
c x2.

Since h = 0 on the boundary ∂R of R, we have
∫

R

(
G(x1, x2)

∂α
a

∂x1
α
a

h(x1, x2)

−F (x1, x2)
∂α

c

∂x2
α
c

h(x1, x2)
)

dα
ax1d

α
c x2

=−
∫

R

(
∂α

a

∂x1
α
a

G(x1, x2)− ∂α
c

∂x2
α
c

F (x1, x2)
)

× h(x1, x2)dα
ax1d

α
c x2.

¥

Remark 12: In the very recent and general paper [40], a
vector calculus with deformed derivatives (as the conformable
derivative) is formally introduced. We refer the reader to [40]
for a detailed discussion of a vector calculus with deformed
derivatives and more properties on the multi-dimensional
conformable calculus.

Let us now consider the fractional variational integral

J (y) =
∫

R

L

(
x, y,

∂α
a y

∂xα
a

)
dα

ax (56)

where for simplicity we choose R = [a, b]× [a, b], and where
x = (x1, x2), y = (y1, . . . , ym), dα

ax = dα
ax1d

α
ax2, and

∂α
a y

∂xα
a

=
(

∂α
a y1

∂x1
α
a

,
∂α

a y1

∂x2
α
a

, . . . ,
∂α

a ym

∂x1
α
a

,
∂α

a ym

∂x2
α
a

)
.

We are assuming that the Lagrangian

L = L(x1, x2, y1, . . . , ym, v1,1, v1,2, . . . , vm,1, vm,2)

is at least of class C1, that the domains of yk, k ∈ {1, . . . , m},
contain R, and that all these partial conformable fractional
derivatives exist.

Theorem 13 (The multi-dimensional fractional Euler-Lagr-
ange equation): Let y be an extremizer of (56) with

y|∂R = ψ(x1, x2)

for some given function ψ = (ψ1, . . . , ψm). Then, the follow-
ing equation holds:

∂L

∂yk
− ∂α

a

∂x1
α
a

(
∂L

∂vk,1

)
− ∂α

a

∂x2
α
a

(
∂L

∂vk,2

)
= 0 (57)

for all k ∈ {1, . . . , m}.

Proof : Let y∗ = (y∗1 , . . . , y∗m) give an extremum to (56).
We define m families of functions

yk(x1, x2) = y∗k(x1, x2) + εηk(x1, x2) (58)

where k ∈ {1, . . . , m}, ε is a constant, and ηk is an arbitrary
α-differentiable function satisfying the boundary conditions
ηk|∂R = 0 (weak variations). From (58), the boundary condi-
tions ηk|∂R = 0 and yk|∂R = ψk(x1, x2), it follows that func-
tion yk is admissible. Let the Lagrangian L be C1. Because
y∗ is an extremizer of functional J , the Gateaux derivative
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δJ (y∗) needs to be identically null. For the functional (56),

δJ (y∗) = lim
ε→0

1
ε

(∫

R

L

(
x, y,

∂α
a y

∂xα
a

)
dα

ax

−
∫

R

L

(
x, y∗,

∂α
a y∗

∂xα
a

)
dα

ax

)

=
m∑

k=1

∫

R


ηk(x1, x2)

∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂y∗k

+
∂α

a

∂x1
α
a

ηk(x1, x2)
∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂vk,1

+
∂α

a

∂x2
α
a

ηk(x1, x2)
∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂vk,2


 dα

ax

= 0.

Using (55), we get that

m∑

k=1

∫

R

ηk(x1, x2)




∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂y∗k

− ∂α
a

∂x1
α
a

∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂vk,1

− ∂α
a

∂x2
α
a

∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂vk,2


 dα

ax = 0 (59)

since ηk|∂R = 0. The fractional Euler–Lagrange equation (57)
follows from (59) by using the fundamental lemma of the
conformable fractional calculus of variations (Lemma 1). ¥

Let ε be a real, and consider the following family of
transformations:{

xi = xi + ετi(x, y(x)), i ∈ {1, 2},
yk = yk + εξk(x, y(x)), k ∈ {1, . . . , m} (60)

where τi and ξk are such that there exist ∂α
a τi

∂xj
α
a

and ∂α
a ξk

∂xj
α
a

for

all i, j ∈ {1, 2} and all k ∈ {1, . . . , m}. Denote by
[

∂α
a x

∂α
a x

]
the

matrix




∂α
a x1

∂x1
α
a

∂α
a x1

∂x1
α
a

∂α
a x1

∂x2
α
a

∂α
a x2

∂x2
α
a

∂α
a x2

∂x1
α
a

∂α
a x1

∂x1
α
a

∂α
a x2

∂x2
α
a

∂α
a x2

∂x2
α
a




=




1 +
ε

(x1 − a)1−α

∂α
a τ1

∂x1
α
a

ε

(x2 − a)1−α

∂α
a τ1

∂x2
α
a

ε

(x1 − a)1−α

∂α
a τ2

∂x1
α
a

1 +
ε

(x2 − a)1−α

∂α
a τ2

∂x2
α
a


 .

Definition 8: Functional J as in (56) is invariant under the
family of transformation (60) if for all yk and for all xi ∈ [0, 1]
we have

L

(
x, y,

∂α
a y

∂xα
a

)
det

[
∂α

a x

∂α
a x

]

= L

(
x, y,

∂α
a y

∂xα
a

)
+ ε

dα
aΛ

dxα
a

(x, y) + o(ε)

for all ε in some neighborhood of zero.
Using the same techniques as in the proof of Theorem 8,

we obtain a necessary condition of invariance for the fractional
variational problem (56).

Theorem 14: If J given by (56) is invariant under transfor-
mations (60), then

2∑

i=1

∂L

∂xi
τi +

m∑

k=1

∂L

∂yk
ξk +

m∑

k=1

2∑

i=1

∂L

∂vk,i

[
∂α

a ξk

∂xi
α
a

−∂α
a yk

∂xi
α
a

(
(α− 1)

τi

xi − a
+

1
(xi − a)1−α

∂α
a τi

∂xi
α
a

)]

+ L

(
1

(x1 − a)1−α

∂α
a τ1

∂x1
α
a

+
1

(x2 − a)1−α

∂α
a τ2

∂x2
α
a

)
=

dαΛ
dxα

.

(61)

Proof : Using relations

∂α
a yk

∂xi
α
a

=

∂α
a yk

∂xi
α
a

+ ε
∂α

a ξk

∂xi
α
a

(xi + ετi − a)α−1

[
(xi − a)1−α + ε

∂α
a τi

∂xi
α
a

]

and
d

dε
det

[
∂αx

∂αx

]∣∣∣∣
ε=0

=
1

(x1 − a)1−α

∂α
a τ1

∂x1
α
a

+
1

(x2 − a)1−α

∂α
a τ2

∂x2
α
a

we conclude that (61) holds. ¥
Remark 13: When α = 1 and Λ ≡ 0, Theorem 14 reduces

to the standard one [24]: equality (61) simplifies to
2∑

i=1

∂L

∂xi
τi +

m∑

k=1

∂L

∂yk
ξk +

m∑

k=1

2∑

i=1

∂L

∂vk,i

[
∂ξk

∂xi
− ∂yk

∂xi

∂τi

∂xi

]

+ L

(
∂τ1

∂x1
+

∂τ2

∂x2

)
= 0.

Corollary 5: If J given by (56) is invariant under (60),
τ1 ≡ 0 ≡ τ2, and no Gauge term is involved (i.e., Λ ≡ 0),
then

m∑

k=1

∂L

∂yk
ξk +

m∑

k=1

2∑

i=1

∂L

∂vk,i

∂α
a ξk

∂xi
α
a

= 0.

It remains an open question how to obtain a Noether
constant of motion for the conformable fractional multi-
dimensional case.
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Abstract—The bearing weak fault feature extraction is crucial
to mechanical fault diagnosis and machine condition monitoring.
Envelope analysis based on Hilbert transform has been widely
used in bearing fault feature extraction. A generalization of the
Hilbert transform, the fractional Hilbert transform is defined
in the frequency domain, it is based upon the modification of
spatial filter with a fractional parameter, and it can be used to
construct a new kind of fractional analytic signal. By performing
spectrum analysis on the fractional envelope signal, the fractional
envelope spectrum can be obtained. When weak faults occur
in a bearing, some of the characteristic frequencies will clearly
appear in the fractional envelope spectrum. These characteristic
frequencies can be used for bearing weak fault feature extraction.
The effectiveness of the proposed method is verified through
simulation signal and experiment data.

Index Terms—Fractional analytic signal, fractional envelope
analysis, fractional Hilbert transform, rolling element bearing,
weak fault feature extraction.

I. INTRODUCTION

ROLLING element bearings are at the heart of almost
every rotating machine. Therefore, they have received

a lot of attention in the field of vibration analysis as they
represent a common source of faults, which can be detected
at an early stage [1]. Recently, to ensure the reliability and
safety of modern large-scale industrial processes, data-driven
methods have been receiving considerably increasing attention,
particularly for the purpose of process monitoring [2], [3].
The collected vibration data from defective rolling element
bearings are generally non-stationary. If processed properly by
a fault feature extraction technique, this data can indicate the
existence and location of certain faults. However, the vibration
signal is still an indirect source of information, as it is often
severely corrupted by various noise effects. As a result, the

Manuscript received September 11, 2015; accepted March 15, 2016. This
work was supported by National Natural Science Foundation of China
(61074161, 61273103, 61374061) and Nantong Science and Technology Plan
Project (MS22016051). Recommended by Associate Editor Antonio Visioli.

Citation: J. H. Wang, L. Y. Qiao, Y. Q. Ye, and Y. Q. Chen, “Fractional
envelope analysis for rolling element bearing weak fault feature extraction,”
IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 2, pp. 353−360, Apr.
2017.

J. H. Wang is with the School of Science, Nantong University, Nantong
226019, China (e-mail: ntuwjh@163.com).

L. Y. Qiao and Y. Q. Chen are with the School of Engineering, Uni-
versity of California, Merced CA 95343, USA (e-mail: qiaoliyan@163.com;
yqchen@ieee.org).

Y. Q. Ye is with the College of Automation Engineering, Nanjing Uni-
versity of Aeronautics and Astronautics, Nanjing 210016, China (e-mail:
melvinye@nuaa.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2016.7510166

weak signature is even more difficult to be detected at the
early stage of defect development. Its effectiveness in fault
feature extraction largely relies on the availability of proper
signal processing techniques [4]. A signal feature enhancing
method is required to provide more evident information for
incipient defect detection of rolling element bearings.

While operating a roller bearing with local faults impulse is
created, the high-frequency shock vibration is then generated
and the amplitude of vibration is modulated by the pulse
force. Therefore resonance demodulation technique provides
an important and effective approach to analyze the fault signals
of high-frequency impact vibration. Envelope analysis, some-
times known as the high frequency resonance demodulation
technique is by far the most successful method for rolling
element bearings diagnostics [5]−[9]. At present, the Hilbert
transform based envelope analysis has been widely used in
rolling element bearings fault diagnosis as one of the most
common envelope analysis methods because the characteristic
information can be obtained by Hilbert transform, which has
quick algorithm and could extract envelope of the rolling
element bearings fault vibration signal effectively [10], [11].

However, in the traditional Hilbert transform based envelope
analysis method, the fault is identified through the peak value
of envelope spectrum. Thus, this traditional method has inher-
ent disadvantages. Fast Fourier transform method is widely
used in the spectrum analysis of envelope signals; however, it
could only give the global energy-frequency distributions and
fail to reflect the details of a signal. So it is hard to analyze
a signal effectively when the fault signal is weaker than the
interfering signal. At the same time, it is easy to diffuse and
truncate the signal’s energy as fast Fourier transform regards
harmonic signals as basic components, which will lead to
energy leakage and cause lower accuracy.

One of the early works in connection with fractional is
that of Lohmann et al. [12], who proposed two fractional
generalizations of the classical Hilbert transform. One defi-
nition is a modification of the spatial filter with a fractional
parameter, and the other is based on the fractional Fourier
transform. In [13], Pei and Yeh developed the discrete version
of the fractional Hilbert transform and applied it to the
edge detection of images. Tseng and Pei [14] considered
optimized design strategies for finite impulse response designs
and infinite impulse response models of the discrete-time
fractional Hilbert transform, and proposed a novel secure SSB
communication application. So far, the research application of
fractional Hilbert transform is very young and needs to be
explored.

A generalization of Hilbert transform based envelope anal-
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ysis, called fractional envelope analysis, is introduced here,
which provides a tool to process signal in the fractional Fourier
plane instead of a conventional Fourier plane. This method
hugs the signal optimally, and could reduce the interference
of noise to some extent. Thus, this relatively new signal
processing technique has the capability of providing more
diagnostic information than conventional Hilbert transform
based envelope analysis. Reference [5] describes that the Kur-
tosis value is very sensitive to bearing fault signal. Therefore,
the Kurtosis is feasible to be the index for selecting the optimal
fractional order envelope analysis.

The remainder of the paper is organized as follows: Section
II presents necessary theoretical background of Hilbert trans-
form. The fractional envelope analysis based upon the modifi-
cation of spatial filter with a fractional parameter is introduced
in Section III. Simulations and experimental validations are
performed consequently in Sections IV and V. Conclusions
are drawn in Section VI.

II. HILBERT TRANSFORM

The Hilbert transform of the function x(t) is defined by an
integral transform [11], [15]:

H[x(t)] = x̂(t) =
1
π

∫ ∞

−∞

x(τ)
t− τ

dτ. (1)

Because of a possible singularity at t = τ , the integral has
to be considered as a Cauchy principal value. Mathematically,
the Hilbert transform x̂(t) of the original function represents
a convolution of x(t) and 1/(πt), which can be written as:

x̂(t) = x(t) ∗
(

1
πt

)
. (2)

Note that the Hilbert transform of a time-domain signal x(t)
is another time-domain signal x̂(t). If x(t) is real-valued, then
so is x̂(t). The transfer function of Hilbert transform becomes

H1(ω) = −jsgn(ω) =





−j, ω > 0
0, ω = 0
j, ω < 0.

(3)

Physically, the Hilbert transform can be viewed as a filter
of unity amplitude and phase ±90◦ depending on the sign of
the frequency of the input signal spectrum. The Hilbert filter
takes an input signal and returns the Hilbert transform of the
signal as an output signal. This is also referred to as a Hilbert
transformer, a quadrature filter, or a 90◦ phase shifter.

III. FRACTIONAL ENVELOPE ANALYSIS

Note that the Heaviside step function, or unit step function,
is defined by [12], [15]:

H(ω) =
1
2
(1 + sgn(ω)) =





1, ω > 0
1
2
, ω = 0

0, ω < 0.

(4)

Equation (3) can be rewritten in terms of the Heaviside step
function as follows:

H1(ω) = −jH(ω) + jH(−ω). (5)

Equation (5) can be put in the following form:

H1(ω) = exp
(
−j

π

2

)
H(ω) + exp

(
j
π

2

)
H(−ω). (6)

A fractional generalization of this result can be written as
follows:

Hp(ω) = exp
(
−jp

π

2

)
H(ω) + exp

(
jp

π

2

)
H(−ω). (7)

This can be conveniently rewritten as

Hp(ω) = cos
(
p
π

2

)
− jsgn(ω) sin

(
p
π

2

)
(8)

or

Hp(ω) = cos
(
p
π

2

)
H0(ω) + sin

(
p
π

2

)
H1(ω). (9)

In fact, the transfer function of Hilbert transform (3) can be
written as

H1(ω) = −jsgn(ω)

=





exp
(−j π

2

)
, ω > 0

exp
(−j π

2

)
+ exp

(
j π

2

)

2
, ω = 0

exp
(
j π

2

)
, ω < 0.

(10)

We introduce the kth-order Hilbert operator Hk = Hk to
represent the kth-repetition of the Hilbert transform. Thus, the
Fourier transform of the kth-order Hilbert transform can be
expressed as

F [Hkx(t)] = F (ω) · [−jsgn(ω)]k. (11)

The formula (11) can be generalized to a non-integer p and
the transfer function of the pth-order Hilbert operator Hp is

Hp(ω) = [−jsgn(ω)]p

=





exp
(−jpπ

2

)
, ω > 0

exp
(−jpπ

2

)
+ exp

(
jpπ

2

)

2
, ω = 0

exp
(
jpπ

2

)
, ω < 0.

(12)

This can be conveniently rewritten as (8). Thus, the pth-
order Hilbert operator Hp can be expressed as

Hp = cos
(
p
π

2

)
· I + sin

(
p
π

2

)
·H1 (13)

where H0 = I is the identity operator. The pth-order Hilbert
transform is

x̂(t) = Hp[x(t)] = cos
(
p
π

2

)
· x(t) + sin

(
p
π

2

)
·H1(t).

(14)

The parameter p is called the order. The above definition of
fractional Hilbert transform is a weighted sum of the original
signal and its conventional Hilbert transform, and it is based
upon modifying the spatial filter with fractional parameter. The
magnitude response and the phase response are

|Hp(ω)| = 1 (15)

and

ϕ(ω) =




−pπ

2 , ω > 0

pπ
2 , ω < 0

(16)
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respectively.
Fig. 1 shows the block diagram for implementing the gen-

eralized fractional Hilbert transform.

Fig. 1. Block diagram for implementation of the generalized fractional
Hilbert transform.

As we know, Fourier transform is fundamental tool in
fractional-order systems and controls [16]. In fact, among
Hilbert, fractional Hilbert, and fractional calculus there are
the following transfer function, magnitude response, and phase
response relations (Table I).

TABLE I
COMPARISON OF HILBERT, FRACTIONAL HILBERT, AND

FRACTIONAL CALCULUS

Hilbert Fractional Hilbert Fractional calculus

Transfer −isgn(ω) [−isgn(ω)]p (iω)ν

Magnitude 1 1 |ω|ν
Phase −π

2
sgn(ω) − pπ

2
sgn(ω) νπ

2
sgn(ω)

From Table I, the phase characteristic of the fractional
calculus operator (ν = −p) is the same as the phase char-
acteristic of the fractional Hilbert. However, the fractional
calculus operator is actually a singular low-pass (ν < 0) filter,
or a singular high-pass (ν > 0) filter (Fig. 2), although the
fractional Hilbert is an all-pass filter.

Fig. 2. Magnitude response of the fractional calculus operator.

The real signal x(t) and its fractional Hilbert transform x̂(t)
can form a new complex signal, which is called the fractional
analytical signal, such that

y(t) = x(t) + jx̂(t). (17)

The envelope A(t) of the complex signal y(t) is defined as

A(t) = |x(t) + jx̂(t)| =
√

x2(t) + x̂2(t). (18)

The application to fractional envelope analysis is shown
in Fig. 3 [5]. Fig. 3 depicts the envelope as the modulus of
the analytic signal obtained by inverse transformation of the
selected one-sided frequency band.

Fig. 3. Procedure for envelope analysis using the fractional Hilbert transform
method.

By performing spectrum analysis on the envelope signal
A(t), the fractional envelope spectrum can be obtained. When
faults occur on a bearing, some of the characteristic frequen-
cies will clearly appear in the fractional envelope spectrum.
These characteristic frequencies can be used for bearing weak
fault feature extraction.

The algorithm for rolling element bearing fractional enve-
lope analysis consists of the following steps:

Step 1: Rolling element bearing vibration signal acquisition.
Step 2: Taking fractional Hilbert transform of vibration

signal.
Step 3: Taking magnitude of fractional analytical signal to

obtain fractional envelope signal.
Step 4: Taking fast Fourier transform (FFT) of fractional

envelope signal.
Step 5: Analyzing envelope spectrum at bearing fault fre-

quencies.

IV. SIMULATION ANALYSIS

In this section, a simple simulation is used to illustrate the
fractional envelope characteristic of the bearing fault signal
with strong background noise. The bearing system including
the transducer is simplified as a single degree of freedom
(SDOF) system and the vibration induced by a single defect
in the rolling element bearing can be given by [8]

x(t) =
+∞∑

k=0

Ake−ξωn(t−Tk) × sin(ωn(t− Tk)) (19)

where ωn denotes the resonance angular frequency of the
system and ωn = 2πfn, where fn denotes the resonance
frequency. The amplitude of the kth transient response Ak



356 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 2, APRIL 2017

is set to be 5, the sampling frequency fs is 20 kHz, the
resonance frequency fn of system is 3 kHz, the maximal slip
ratio of its period T is 0.01 s, the relative damping ratio ξ is
0.1. The profile of a typical signal, contaminated with −2 dB
additive Gaussian noise, (i.e., SNR = −2), is shown in Fig. 4.
Figs. 4 (a) and 4 (b) display the time waveform of the original
signal and noisy signal. The frequency spectrum of the noisy
signal is shown in Fig. 4 (c). It is hard to reveal some useful
information from Fig. 4 (c). Therefore, the proposed method is
used to achieve the enhancement of fault detection.

Fig. 4. Simulated signal: (a) time waveform of original signal, (b) time
waveform of signal contaminated with −2 dB additive Gaussian noise and
(c) frequency spectrum waveform.

As a matter of fact, the Kurtosis has often been employed
in the signal processing community to solve “blind” problems:
blind identification and equalisation of systems by output
Kurtosis maximisation, blind separation of mixed signals by
individual maximisation of the source Kurtosis, etc [17]. Here,
the sample version of the Kurtosis (20) is used to blindly
identify the optimal order of fractional Hilbert transformer.
This Kurtosis is taken as the normalised fourth order moment
given by [5]

K =
m4

m2
2

=

1
N

N∑
i=1

(xi − x̄)4

(
1
N

N∑
i=1

(xi − x̄)2
)2 (20)

where m4 is the fourth sample moment about the mean, m2 is
the second sample moment about the mean (sample variance),
N is the number of samples, xi is the ith sample and x̄ is the
sample mean. For symmetric unimodal distributions, positive
Kurtosis indicates heavy tails and peakedness relative to the
normal distribution, whereas negative Kurtosis indicates light
tails and flatness [18].

Table II presents the comparison of Kurtosis using differ-
ent order Hilbert transformer filtering simulation signal (19)
contaminated with −2 dB additive white Gaussian noise. Note

that, 0.2-order is suitable for this envelope spectrum analysis.
For this reason, our method has larger design flexibility than
the integer (1-order) Hilbert transform-based method. The 0.2-
order envelope signal and 0.2-order envelope spectrum of
the 0.2-order Hilbert transformer filtered signal are shown
in Fig. 5. It can be seen that in Fig. 5 (b) the characteristic
frequencies clearly appear in the 0.2-order envelope spectrum.
These characteristic frequencies can be used for bearing fault
diagnosis.

TABLE II
COMPARISON OF KURTOSIS BETWEEN DIFFERENT ORDER

HILBERT TRANSFORM

Order 0 0.1 0.2 0.3 0.4

Kurtosis 3.0461 3.3907 3.7015 3.5582 2.9891

0.5 0.6 0.7 0.8 0.9 1.0

2.5702 2.7531 3.1859 3.3133 3.0536 2.7558

Fig. 5. Envelope spectrum obtained by the 0.2-order Hilbert transform.

V. EXPERIMENTAL VALIDATION

The success of the proposed method in detecting early
defect under strong additive stationary noise is clearly demon-
strated in the above simulation. In this section, the application
to actual vibration signals collected in a rolling element
bearing accelerated life test is presented.

Generally, the vibration spectrum of a healthy bearing
contains only the information related to the shaft rotation speed
and its harmonics, which is shown as Zone I in Fig. 6. Any
other frequencies might indicate noise, or frequencies related
to other rotating parts operating at the same time with the
bearing under test [19]. A rolling element bearing fault could
appear at the outer, the inner race and (or) on the rolling
elements. During its early stages, the damage on the surface
is mostly only localized. The vibration signal in this case
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includes repetitive impacts of the moving components on the
defect. These impacts might create repetition frequencies that
depend on whether the defect is on the outer or the inner race,
or on the rolling element (Fig. 7).

Fig. 6. Frequency content of a vibration signal of a damaged rolling element
bearing.

Fig. 7. A series of bearing components with faults induced in them indicated
in bold line [20].

The repetition rates are denoted bearing frequencies. The
formulae for the ball passing frequency outer (BPFO) race, ball
passing frequency inner (BPFI) race, and ball fault frequency
(BFF) are as follows [5]:

fBPFO =
n

2
fr

(
1− d

D
cos θ

)

fBPFI =
n

2
fr

(
1 +

d

D
cos θ

)

fBFF =
D

2d
fr

[
1−

(
d

D
cos θ

)2
]

(21)

where n is the number of rolling elements, fr is the shaft
rotational frequency (RPM), d is the diameter of rolling
element, (i.e., ball) diameter, D is the pitch diameter, and θ is
the angle of the load from the radial plane.

For early faults, the repetition impulses could create initially
an increase of frequencies in the high frequency range (Zone
IV), and may excite the resonant frequencies of the bearing
parts later in Zone III, as well as the repetition frequencies of
Zone II (BPFO, BPFI, BFF).

The vibration signals collected in the bearing center of case
western reserve university (CWRU) [21] are used to illustrate
the fractional envelope analysis. The test stand consists of
a 2 hp drive induction motor, a torque transducer/encoder,
a dynamometer, and control electronics (Figs. 8 and 9). The
test bearings which support the motor shaft have single point
faults with the diameters of 0.007 inch, 0.014 inch, 0.021
inch, and 0.028 inch on the outer race, inner race, and ball
of the drive end bearings produced by an electro-discharge
machine. Faulted bearings were reinstalled into the test motor
and vibration data was recorded for motor loads of 0 to 3
horsepower (motor speeds of 1797 to 1720 rpm). The number
n of rolling elements is 9 and the angle θ of the load from
the radial plane is 0◦. Vibration data was collected using a
16 channel DAT recorder at 12 000 samples per second. The
bearing is a deep groove ball bearing and the model is 6205-
2RS JEM SKF. The diameter and depth of the pit are 0.18 mm
and 0.28 mm respectively. The geometry (outside diameter,
inside diameter, thickness, ball diameter, and pitch diameter)
and defect frequencies of the bearing are listed in Tables III
and IV.

Fig. 8. Experimental test rig, composed of a 2 hp drive induction motor, a
torque transducer/encoder, load [21].

Fig. 9. Schematic of the experimental test rig [22].
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TABLE III
SIZE OF ROLLING ELEMENT BEARING (MM)

Type Outside Inside Thickness Ball Pitch

SKF6025 51.9989 25.0012 15.0012 7.9400 39.0398

TABLE IV
DEFECT FREQUENCIES OF ROLLING ELEMENT BEARING,

(MULTIPLE OF RUNNING SPEED)

Type Outer ring Inner ring Rolling element

SKF6025 3.5848 5.4152 4.7135

A. Case 1: Outer Race Fault
The outer race fault is located at the 6 o’clock position and

the accelerometer is attached to the housing with a magnetic
base. In this case, the shaft frequency fr is 29.17 Hz (1750/60,
shaft rotates at the speed of 1750 rpm). The characteristic bear-
ing defect frequency fBPFO is equal to 3.5848 times the shaft
rotation speed based on (21). Thus, the fault characteristic
frequency fBPFO is 104.56 Hz.

Fig. 10 (a) gives the temporal waveform of outer race fault
diameter of 0.007 inch. Fig. 10 (b) shows the corresponding
optimal fractional (0.1-order, Table V) envelope spectrum. The
fault characteristic frequency fBPFO is located at 105 Hz, and
its associated harmonics, at 209.8 Hz, 314.8 Hz, 419.7 Hz, and
so on, can be easily detected.

Fig. 10. The temporal waveform of the signal of OR007@6-2 and the
corresponding envelope spectrum obtained by the 0.1-order Hilbert transform.

B. Case 2: Inner Race Fault
In this case, the shaft frequency fr is 29.13 Hz (shaft rotates

at the speed of 1748 rpm). The characteristic bearing defect
frequency fBPFI is equal to 5.4152 times the shaft rotation
speed based on (22). Thus, the fault characteristic frequency
fBPFI is 157.76 Hz.

TABLE V
COMPARISON OF KURTOSIS BETWEEN DIFFERENT ORDER

HILBERT TRANSFORM

Order 0 0.1 0.2 0.3 0.4

Kurtosis 5.8875 5.9120 5.8019 5.3508 4.2234

0.5 0.6 0.7 0.8 0.9 1.0

3.0349 1.3953 0.4235 0.3769 0.9572 1.8214

Fig. 11 (a) gives the temporal waveform of inner race fault
diameter of 0.007 inch and the corresponding optimal frac-
tional (0.5-order, Table VI) envelope spectrum is shown in
Fig. 11 (b). It can be seen that the 1×, 2×, 3× BPFI are very
clear in Fig. 11 (b).

Fig. 11. The temporal waveform of the signal of IR007-2 and the corre-
sponding envelope spectrum obtained by the 0.5-order Hilbert transform.

TABLE VI
COMPARISON OF KURTOSIS BETWEEN DIFFERENT ORDER

HILBERT TRANSFORM

Order 0 0.1 0.2 0.3 0.4

Kurtosis 4.7495 4.7805 4.7163 4.2787 3.1397

0.5 0.6 0.7 0.8 0.9 1.0

6.2135 0.4184 0.4780 1.1967 1.6665 1.6513

C. Case 3: Ball Fault

In this case, the shaft frequency fr is 29.13 Hz (shaft rotates
at the speed of 1748 rpm). The characteristic bearing defect
frequency fBFF is equal to 4.7135 times the shaft rotation
speed based on (23). Thus, the fault characteristic frequency
fBFF is 137.30 Hz.

Fig. 12 (a) gives the temporal waveform of ball fault diam-
eter of 0.028 inch. It can be seen that there are many obvious
periodic impulses in Fig. 12 (a), which may be caused by the
interaction between the faulty parts and connected rolling
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element surfaces. In order to obtain clear fault information,
the corresponding optimal fractional (0.9-order, Table VII)
envelope spectrum is shown in Fig. 12 (b). It can be seen
that the characteristic frequencies are 1×, 2×, 3× BFF and
its harmonics modulated by fr (Fig. 6), which implies the
occurrence of ball fault. Moreover, there are some frequency
components in Fig. 12 (b). The fault information can hardly be
obtained from single fractional envelope analysis without prior
filtration. The possible reason for other frequency components
may be that the signals collected are usually disturbed by the
nearby bearings or other background noise [19].

Fig. 12. The temporal waveform of the signal of B028-2 and the correspond-
ing envelope spectrum obtained by the 0.9-order Hilbert transform.

TABLE VII
COMPARISON OF KURTOSIS BETWEEN DIFFERENT ORDER

HILBERT TRANSFORM

Order 0 0.1 0.2 0.3 0.4

Kurtosis 1.9349 1.9552 1.9037 1.5660 0.6402

0.5 0.6 0.7 0.8 0.9 1.0

0.9391 1.0778 1.4084 1.7998 2.1421 1.0845

Figs. 10−12 altogether show that the proposed fractional
Hilbert transform based envelop analysis provides better en-
velop detection results and achieves better Kurtosis perfor-
mance than the envelop analysis based on traditional Hilbert
transform on the studied bearing fault signals. These results
demonstrate the excellent compromise capability of the frac-
tional Hilbert transformer in detect accuracy and filtering noisy
bearing fault signal. This method may therefore serve as an
effective framework for the model-based detection of noisy
rolling element bearings.

VI. CONCLUSION

The fractional Hilbert transform signal detect model based
upon the modification of spatial filter with a fractional pa-

rameter technique is constructed in this work, which breaks
the thought that the traditional fault detect model can only be
based on integer-order Hilbert transform. By setting a flexible
fractional order, our model can better enhance the compromise
capability in detect accuracy and filtering noisy bearing fault
signal. The effectiveness of the method is demonstrated on
both simulated signal and actual data are collected in rolling
bearing accelerated life test. The proposed technique exhibits
excellent performances on visual sense and quantitative com-
parison. While the cyclic frequency error has some influence
on the performance of the proposed method, how to reduce
the cyclic frequency error and extract the coupled faults are
worthy of further study.
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Abstract—In this paper, we propose a delayed fractional-order
congestion control model which is more accurate than the original
integer-order model when depicting the dual congestion control
algorithms. The presence of fractional orders requires the use
of suitable criteria which usually make the analytical work so
harder. Based on the stability theorems on delayed fractional-
order differential equations, we study the issue of the stability
and bifurcations for such a model by choosing the communication
delay as the bifurcation parameter. By analyzing the associated
characteristic equation, some explicit conditions for the local
stability of the equilibrium are given for the delayed fractional-
order model of congestion control algorithms. Moreover, the
Hopf bifurcation conditions for general delayed fractional-order
systems are proposed. The existence of Hopf bifurcations at the
equilibrium is established. The critical values of the delay are
identified, where the Hopf bifurcations occur and a family of
oscillations bifurcate from the equilibrium. Same as the delay,
the fractional order normally plays an important role in the
dynamics of delayed fractional-order systems. It is found that
the critical value of Hopf bifurcations is crucially dependent on
the fractional order. Finally, numerical simulations are carried
out to illustrate the main results.

Index Terms—Congestion control algorithm, fractional-order
congestion control algorithm model, Hopf bifurcation, stability.

I. INTRODUCTION

FRACTIONAL calculus and its applications to physics,
biology and engineering have become a subject of intense

research activities. It has been found that dynamical equations
using fractional derivatives are useful and more accurate in
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the mathematical modeling of real world phenomena arising
from several interdisciplinary fields, such as diffusion and
wave propagation [1], electromagnetic waves [2], viscoelastic
liquids [3], dielectric polarization [4], control [5], and biology
[6]. As a result of growing applications, the study of dynamics
of fractional-order systems has attracted considerable interest
of many researchers and numerous important results have been
reported, including the stability [7], bifurcations [8], chaos [9],
and synchronization [10].

With the rapid development of the Internet, the congestion
control mechanism is a focus of interest to many researchers
in the past few years [11]−[13] since the seminal work
[14]. One of the important properties of congestion control
algorithms is the stability. Sufficient conditions for stability
are given for congestion control systems [15]−[18]. However,
it is found in [19], [20] that some common AQM (active queue
management) schemes coupled with the current congestion
avoidance TCP (transmission control protocol) algorithm may
lose the local stability due to an increase in delays or capacity,
or a decrease in the number of connections. The loss of
stability causes some nonlinear dynamical behaviors such as
chaos and bifurcation. Therefore, in addition to investigation
of stability, the Hopf bifurcation and control have also begun
to draw much attention from researchers [21]−[26].

Unlike integer-order derivatives that are local operators,
fractional-order derivatives are non-local integro-differential
operators [27]. As such, they can be used to represent mem-
ory effects and long-range dispersion processes. In the last
decade, fractional-order models have been an active field of
research both from a theoretical and applied perspective. For
instance, the resistance-capacitance-inductance (RLC) inter-
connect model of a transmission line is a fractional-order
model [28]. Heat conduction can be more adequately modeled
by fractional-order models than by their integer order counter-
parts [29]. In biology, it has been shown that the membranes
of cells of biological organism have a fractional-order elec-
trical conductance [30]. In economics, it is known that some
financial systems can display fractional-order dynamics [31].

There have been many results on Hopf bifurcations for a
variety of delayed integer-order congestion control systems
recently [21]−[26]. However, to the best of our knowledge,
few studies of Hopf bifurcations for delayed fractional-order
congestion control systems have been, reported. It should be
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mentioned that the qualitative theory of Hopf bifurcations
for the case of fractional-order dynamical systems has not
completely settled yet. Thus, the Hopf bifurcation theory in
fractional-order dynamical systems is still an open problem.
In this paper, we will establish some bifurcation conditions for
delayed fractional-order dynamical systems.

Motivated by the above discussions, this paper is devoted
to investigating the stability and bifurcations for a delayed
fractional-order congestion control model. The sufficient con-
ditions for the stability of the equilibrium are given for the
delayed fractional-order congestion control model. The Hopf
bifurcation conditions are proposed for delayed fractional-
order systems when the delay is chosen as the bifurcation
parameter. Then, the critical values of the delay are identi-
fied in the delayed fractional-order congestion control model,
where Hopf bifurcations occur and a family of oscillations
bifurcate from the equilibrium. It is worth mentioning that
the observations in this paper can help to design the Hopf
bifurcation of congestion control systems with the desired
bifurcation point via adjusting the delay and fractional-order.

The paper is organized as follows. In Section II, some
preliminaries on delayed fractional-order systems are sum-
marized. In Section III, a delayed fractional-order model
of fair dual congestion control algorithms is proposed. In
Section IV, by analyzing the associated characteristic equation,
the stability condition is derived for the delayed fractional-
order congestion control model. The existence of the Hopf
bifurcation is established when the communication delay is
chosen as the bifurcation parameter. In Section V, numerical
simulations are given to illustrate the results. Finally, the
conclusions are drawn in Section VI.

II. PRELIMINARIES

Generally speaking, there are three definitions of fractional
derivative, i.e., the Grünwald-Letnikov fractional derivative,
Riemann-Liouville fractional derivative, and Caputo fractional
derivative [27]. Due to taking on the same form as integer
order differential on the initial conditions, which has well-
understood physical meanings and has more applications in
engineering, here we only discuss the Caputo derivative which
is defined as follows:

C
a Dα

t f(t) =
1

Γ(n− α)

∫ t

a

(t− τ)n−α−1f (n)(τ)dτ (1)

where n−1 < α < n, n ∈ N, and Γ(·) is the Gamma function.
The symbol α denotes the value of the fractional order that is
usually chosen in the range 0 < α ≤ 1 in engineering.

The Laplace transform of the Caputo fractional derivative
(1) at a = 0 is given by

L {C
0 Dα

t f(t)} = sαF (s)−
n−1∑

k=0

sα−k−1f (k)(0). (2)

If f (k)(0) = 0, k = 0, 1, . . . , n − 1, then L {C
0 Dα

t f(t)} =
sαF (s).

A class of n-dimensional linear fractional-order systems
with multiple time delays can be represented in the following
form [32]:

dα1x1

dtα1
= a11x1(t− τ11) + a12x2(t− τ12)

+ · · ·+ a1nxn(t− τ1n)
dα2x2

dtα2
= a21x1(t− τ21) + a22x2(t− τ22)

+ · · ·+ a2nxn(t− τ2n)
...

dαnxn

dtαn
= an1x1(t− τn1) + an2x2(t− τn2)

+ · · ·+ annxn(t− τnn) (3)

where 0 < αi ≤ 1 for i = 1, 2, . . . , n, and the notation
dαi

dtαi

is chosen as the Caputo fractional derivative (1). The initial
values xi(t) = φi(t) are given for −τmax ≤ t ≤ 0, i =
1, 2, . . . , n, where τmax = max1≤i,j≤n{τij}.

Next, we introduce some stability results on the delayed
fractional-order system (3). The stability of the zero solution
of system (3) depends on the distribution of roots of the
associated characteristic equation (4), as shown at the bottom
of this page.

Theorem 1 [32]: The zero solution of system (3) is
Lyapunov globally asymptotically stable if all the roots of the
characteristic equation (4) have negative real parts.

Remark 1: If αi = 1, i = 1, 2, . . . , n , then the character-
istic equation of (3) is reduced to the characteristic equation of
delay differential equations. If τij = 0, i, j = 1, 2, . . . , n
and αi = 1, i = 1, 2, . . . , n, then the characteristic equation
of (3) is reduced to det (sI − A) = 0, where the coefficient
A = (aij)n×n. This coincides with the definition of the
characteristic equation for ordinary differential equations.

Corollary 1 [32]: Suppose that τij = 0, i, j =
1, 2, . . . , n and αi = α ∈ (0, 1], i = 1, 2, . . . , n. If all
the roots of the characteristic equation det (sI − A) = 0
satisfy | arg(s)| > απ/2, then the zero solution of system (3)
is Lyapunov globally asymptotically stable.

Corollary 1 is the Matignon criterion (Theorem 2 of [33]).
Corollary 2 [32]: If αi = α ∈ (0, 1], i = 1, 2, . . . , n, all

the eigenvalues λs of A satisfy | arg(s)| > απ/2 and the

———————————————————————————————————————————————————–

det




sα1 − a11e
−sτ11 −a12e

−sτ12 · · · −a1ne−sτ1n

−a21e
−sτ21 sα2 − a22e

−sτ22 · · · −a2ne−sτ2n

...
...

. . .
...

−an1e
−sτn1 −an2e

−sτn2 · · · sαn − anne−sτnn


 = 0 (4)
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characteristic equation (4) has no purely imaginary roots for
any τij > 0, i, j = 1, 2, . . . , n, then the zero solution of
system (3) is Lyapunov globally asymptotically stable.

There are a number of substantial differences between
integer-order dynamical systems and fraction-order dynamical
systems. Therefore, most results on the delayed integer-order
model of congestion control algorithms cannot be simply
extended to the case of fractional order one. As is well known,
limit cycles of integer-order dynamical systems are isolated
periodic oscillations, whose appearance can be explained us-
ing the Hopf bifurcation theory [34]. However, to the best
of our knowledge, there is no Hopf bifurcation qualitative
theory developed thoroughly for the case of fractional-order
dynamical systems yet, and thus, the Hopf bifurcation theory
in fractional-order dynamical systems is still an open problem.

The Hopf bifurcation conditions for fractional-order dy-
namical systems without delays were proposed based on
numerical simulations, but were not proved in [35], [36].
There are seldom reports about the Hopf bifurcation of delayed
fractional-order dynamical systems.

In this paper, we are interested in the stability and bifurca-
tion in delayed fractional-order congestion control systems.

III. MODEL DESCRIPTIONS

The dual algorithms are a subset of a larger class of con-
gestion control mechanisms. In these algorithms the resource
determines its congestion measure or price, by an averaging
process at the link, which is then communicated back to the
end-systems. To facilitate a control theoretic study, caricatures
of rate control or window-based algorithms are often con-
verted into delayed integer-order differential equations [19],
[37]−[39]. It has been found from the study of such integer-
order equations that some congestion control mechanisms may
lose the local stability with an increase in delays or capacity,
or a decrease in the number of connections, which is triggered
by the Hopf bifurcation.

Raina [19] introduced the following dynamical representa-
tion of a fair dual congestion control algorithm:

d

dt
p(t) = κp(t)(x(t− τ)− C) (5)

where the variable p is the price at the link, τ is the com-
munication delay, κ > 0 is the gain parameter, and the scalar
C > 0 is the capacity. In addition, x(t) = D(p(t)) with D(p),
p ≥ 0, a non-negative, continuous and strictly decreasing
demand function, and D(p) can be expressed by (w/p)1/γ ,
where w > 0 may be viewed as a willingness to pay parameter
of the user, and γ > 0 is the fair allocation parameter [40].

The integer-order dual algorithm model (5) has been exten-
sively studied regarding its bifurcation and control by many
researchers in the past years [19], [23], [41]. The local Hopf
bifurcation was studied for model (5) by choosing the non-
dimensional parameter κ as the bifurcation parameter [19].
Explicit conditions were derived to ensure the onset of stable
limit cycles as model (5) just loses its local stability, and
the direction of Hopf bifurcations was also determined by
applying the normal form theory and center manifold theorem.
On the other hand, unlike the work in [19] where the gain

parameter κ was considered as the bifurcation parameter, the
authors used the communication delay τ as the bifurcation
parameter [23]. It was demonstrated that model (5) loses its
stability and a Hopf bifurcation occurs when the delay τ passes
through a critical value. Moreover, the bifurcating periodic
solution was calculated by means of the perturbation method.
A hybrid control strategy using both the state feedback and
parameter perturbation was applied to control the undesirable
Hopf bifurcation of model (5) [41]. It was shown that this pro-
posed method can delay the onset of bifurcations effectively,
and thus extend the stable range in the parameter space and
improve the performance of congestion control systems.

Compared with the classical integer-order models,
fractional-order models are characterized by infinite memory.
Congestion control systems include round trip propagation
delays. Therefore, the incorporation of a memory term
into a congestion control model is an extremely important
improvement. Moreover, the fractional-order congestion
control models are more accurate than the original integer-
order models when modeling some congestion control
algorithms. Thus, studying fractional-order congestion control
models is of great significance.

In this paper, we replace the usual integer-order derivative
by the fractional-order Caputo derivative (1) in the fair dual
congestion control algorithm model (5). The new model is then
described by the following delayed fractional-order differential
equation:

dαp

dtα
= κp(t)(x(t− τ)− C) (6)

where α ∈ (0, 1].
Suppose that p∗ is a non-zero equilibrium of (6). Then it

satisfies the following equation:

D(p∗) = C. (7)

It should be underlined that p∗ is an equilibrium of model
(6) with the fractional order α if and only if it is an equilibrium
of the integer-order model (5).

IV. STABILITY AND BIFURCATION ANALYSIS

In this section, we investigate the stability and bifurcation of
the delayed fractional-order model (6) of fair dual congestion
control algorithms.

A. Stability Analysis
Let u(t) = p(t) − p∗ and the equilibrium p∗ is shifted to

the origin. The linearized model of (6) is
dαu

dtα
= κp∗D′(p∗)u(t− τ) (8)

with the characteristic equation

sα − κp∗D′(p∗)e−sτ = 0. (9)

Theorem 2: If [−κp∗D′(p∗)]1/α 6= [(2k + 1)π − απ/2]/τ ,
where k ∈ Z, then the equilibrium p∗ of model (6) is Lyapunov
globally asymptotically stable.

Proof: Let s = iω = ω(cos π/2 + i sinπ/2)(ω > 0) be a
root of (9). Then

ωα(cos
απ

2
+ i sin

απ

2
)− κp∗D′(p∗)(cos ωτ − i sinωτ) = 0.
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Separating the real and imaginary parts gives

ωα cos
απ

2
− κp∗D′(p∗) cos ωτ = 0

ωα sin
απ

2
+ κp∗D′(p∗) sin ωτ = 0. (10)

Taking square on the both sides of (10) and summing them
up give

(ωα)2 + [κp∗D′(p∗)]2
−2ωακp∗D′(p∗) cos(απ

2 + ωτ) = 0.
(11)

Notice that κ > 0, p∗ > 0, and D′(p∗) < 0. It is
straightforward to obtain that

(ωα)2 + [κp∗D′(p∗)]2 − 2ωακp∗D′(p∗) cos(
απ

2
+ ωτ)

≥ (ωα)2 + [κp∗D′(p∗)]2 + 2ωακp∗D′(p∗)
= [ωα + κp∗D′(p∗)]2.

Obviously, if [−κp∗D′(p∗)]1/α 6= [(2k + 1)π − απ/2]/τ ,
then (11) has no positive real roots, meaning that (9) has no
purely imaginary roots with positive imaginary parts.

Let s = iω = −ω[cos π/2+ i sin(−π/2)] (ω < 0) be a root
of (9). It is similar to prove that (9) has no purely imaginary
roots with negative imaginary parts under the assumption
[−κp∗D′(p∗)]1/α 6= [(2k + 1)π − απ/2]/τ .

Thus, if [−κp∗D′(p∗)]1/α 6= [(2k + 1)π − απ/2]/τ , then
the characteristic equation (9) has no purely imaginary roots.

On the other hand, it is easy to see that the coefficient A of
the linearized model (8) has one eigenvalue s = κp∗D′(p∗) <
0 satisfying | arg(s)| > απ/2.

Applying Corollary 2, the equilibrium p∗ of model (6) is
Lyapunov globally asymptotically stable. ¥

Remark 2: Although nonlinear dynamics of integer-order
congestion control systems were investigated in [19], [23],
[37]−[41], to date, the theoretical results on the stability with
respect to the system parameters and order have not been
reported yet for fractional-order congestion control systems.

For illustration of Theorem 2, we consider the fractional-
order model (6) with κ = 0.02, C = 40, τ = 1, α = 0.9,
and the proportional fairness [19] with γ = 1, w = 1. The
equilibrium can be found by solving (7), yielding p∗ = 0.025.
It is easy to verify that the condition [−κp∗D′(p∗)]1/α 6=
[(2k + 1)π − απ/2]/τ holds. Fig. 1 shows that the state p(t)
of model (6) is globally asymptotically decreasing toward the
equilibrium p∗.

B. Hopf Bifurcation

It is well known that the Hopf bifurcation is the birth of a
limit cycle from an equilibrium in integer-order dynamical sys-
tems, when the equilibrium changes the stability via a pair of
purely imaginary eigenvalues. However, the qualitative theory
of Hopf bifurcations for fractional-order dynamical systems
has not been constructed yet. In this Subsection, we study the
local bifurcation of the delayed fractional-order model (6) by
regarding the delay τ as the bifurcation parameter.

Fig. 1. Equilibrium p∗ = 0.025 of model (6) is Lyapunov globally asymp-
totically stable when κ = 0.02, C = 40, τ = 1, γ = 1, w = 1, α = 0.9,
and the initial condition p0 = 0.1.

First, we put forward the Hopf bifurcation conditions for
general delayed fractional-order systems. Consider the follow-
ing n-dimensional fractional-order system with delay:

dαxi

dtα
= fi(x1, x2, . . . , xn; τ), i = 1, 2, . . . , n (12)

where 0 < α ≤ 1 and the time delay τ ≥ 0. According to
Corollary 2, we propose the conditions of (12) to undergo
a Hopf bifurcation at the equilibrium x∗ = (x∗1, x

∗
2, . . . , x

∗
n)

when τ = τ0 as follows:
1) All the eigenvalues of the coefficient matrix of the

linearized system of (12) satisfy | arg(s)| > απ/2.
2) The characteristic equation of (12) has a purely imaginary

roots ±iω0 when τ = τ0.

3)
dRe[s(τ)]

dτ

∣∣
τ=τ0

> 0, where Re{·} denotes the real part

of the complex eigenvalue.
Remark 3: The condition 1) guarantees the stability of

the equilibrium x∗ of the delayed fractional-order system (12)
when τ = 0. It is well known that the Routh-Hurwitz criterion
is the necessary and sufficient condition for the stability of the
equilibrium of integer-order dynamical systems. It should be
noted that this criterion can also ensure the stability of the
equilibrium of fractional-order dynamical systems.

Remark 4: The condition 3) is the transversality condition
of Hopf bifurcations of the delayed fractional-order system
(12).

Remark 5: The Hopf bifurcation conditions for fractional-
order dynamical systems without time delays by the observa-
tions from numerical simulations were proposed in [35], [36].
We formulate the conditions of Hopf bifurcation of fractional-
order dynamical systems with time delays in this paper.

Lemma 1: If τ = τk, k = 0, 1, . . . , then (9) has a purely
imaginary roots ±iω0(ω0 > 0), where

τk =
(2k + 1)π − απ

2

[−κp∗D′(p∗)]1/α

ω0 = [−κp∗D′(p∗)]1/α. (13)
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Proof: From the proof of Theorem 2, we can see that (9)
has a pair of purely imaginary roots when [−κp∗D′(p∗)]1/α =
[(2k + 1)π − απ/2]/τ . Therefore, the conclusion follows
immediately. ¥

Remark 6: Lemma 1 illustrates that the proposed condition
2) of Hopf bifurcation is reached for the delayed fractional-
order model (6).

Lemma 2: Let s(τ) = ρ(τ) + iω(τ) be the root of (9)
satisfying ρ(τk) = 0 and ω(τk) = ω0 > 0, k = 0, 1, . . . .
Then,

dRe[s(τ)]
dτ

∣∣
τ=τk

> 0.

Proof: Substituting s(τ) into (9) and differentiating both
sides of the resulting equation with respect to τ , we obtain

αsα−1 ds

dτ
+ κp∗D′(p∗)e−sτ [τ

ds

dτ
+ s] = 0.

Thus
ds

dτ
=

−κp∗D′(p∗)se−sτ

αsα−1 + κp∗D′(p∗)τe−sτ
.

Note that s(τ) = ρ(τ) + iω(τ) = r(cos θ + i sin θ) is the
root of (9). Then we have

ds

dτ
=

−κp∗D′(p∗)[ρ + iω]e−ρτ [cos(ωτ)− i sin(ωτ)]
α[ρ + iω]α−1+κp∗D′(p∗)τe−ρτ [cos(ωτ)− i sin(ωτ)]

.

From this we obtain
dRe[s(τ)]

dτ
= −κp∗D′(p∗)e−ρτ P (τ)M(τ) + Q(τ)N(τ)

M2(τ) + N2(τ)

in which
P (τ) = ρ cos ωτ + ω sinωτ

Q(τ) = ω cos ωτ − ρ sinωτ

M(τ) = αrα−1 cos(α− 1)θ + κp∗D′(p∗)τe−ρτ cos ωτ

N(τ) = αrα−1 sin(α− 1)θ − κp∗D′(p∗)τe−ρτ sinωτ.

Replacing τ by τk, it follows that:

dRe[s(τ)]
dτ

∣∣∣∣
τ=τk

= −κp∗D′(p∗)P (τk)M(τk) + Q(τk)N(τk)
M2(τk) + N2(τk)

= −κp∗D′(p∗)
α(ω0)α sin[ω0τk + (α− 1)

π

2
]

M2(τk) + N2(τk)

where
P (τk) = ω0 sin(ω0τk)
Q(τk) = ω0 cos(ω0τk)

M(τk) = α(ω0)α−1 cos(α− 1)
π

2
+ κp∗D′(p∗)τk cos(ω0τk)

N(τk) = α(ω0)α−1 sin(α− 1)
π

2
− κp∗D′(p∗)τk sin(ω0τk).

It can be seen from (13) that ω0τk = (2k + 1)π − απ/2,
implying that sin [ω0τk + (α − 1)π/2] = 1. Moreover, note
that −κp∗D′(p∗) > 0. Therefore

dRe[s(τ)]
dτ

∣∣∣∣
τ=τ+

k

> 0.

The conclusion follows. ¥

Remark 7: Lemma 2 implies that the transversality con-
dition 3) of Hopf bifurcations is satisfied for the delayed
fractional-order model (6).

Theorem 3: For model (6), the following results hold.
1) The equilibrium p∗ of model (6) is asymptotically stable

for τ ∈ [0, τ0), and unstable when τ > τ0.
2) Model (6) undergoes a Hopf bifurcation at the equilib-

rium p∗ when τ = τ0.
Proof: Note that the coefficient matrix of the linearized

(8) has the eigenvalue λ = κp∗D′(p∗) < 0 satisfying the
inequality | arg(s)| > απ/2. Thus, the condition 1) of Hopf
bifurcations is satisfied for model (6).

1) It is easy to see that all the roots of (9) with τ = 0
have negative real parts. From Lemma 1, the definition of τ0

implies that all the roots of (9) have negative real parts for
τ ∈ [0, τ0). The conclusion in Lemma 2 indicates that (9) has
at least one root with positive real part when τ > τ0. Thus,
the conclusion follows.

2) From Remarks 6 and 7, we know that the conditions 2)
and 3) of Hopf bifurcations are satisfied for model (6). Hence,
a Hopf bifurcation occurs at the equilibrium p∗ when τ = τ0.¥

Remark 8: The Hopf bifurcation theory in fractional-
order dynamical systems is still an open problem. The Hopf
bifurcation conditions for fractional-order systems without
delays are proposed based on the observations from numerical
simulations [35], [36]. However, there are few results on the
Hopf bifurcation of delayed fractional-order systems.

Remark 9: The integer-order congestion control model
(5) may display a Hopf bifurcation when the delay τ passes
through the critical values [23]. However, the corresponding
fractional-order model (6) will not produce the bifurcation
at the same values, which will be confirmed by numerical
simulations later.

Remark 10: The order and system parameter were chosen as
the bifurcation parameters in fractional-order neural network
models in [8]. In this paper, we use the delay τ as the
bifurcation parameter in fractional-order congestion control
models.

V. NUMERICAL SIMULATIONS

In this section, we present some numerical results to illus-
trate the analytical results obtained in the previous section,
displaying the Hopf bifurcation phenomenon of the delayed
fractional-order model (6) of fair dual congestion control
algorithms. Simulations are performed using the method intro-
duced in [42] to find the solution of delayed fractional-order
differential equations. This method is the improved version
of the Adams-Bashforth-Moulton algorithm and is proposed
based on the predictor correctors scheme.

For a consistent comparison, we discuss model (6) with the
same system parameters used in [23]: κ = 0.01, C = 50, and
the proportional fairness [19] with D(p) = 1/p. From (7),
model (6) has a unique non-zero equilibrium p∗ = 0.02. For
model (6) with α = 1 (integer-order model (5)), it follows
from Theorem 1 in [23] that

τ0 = 3.1416, ω0 = 0.5.

The dynamical behavior of the integer-order model (5) is
illustrated in Figs. 2−4. From Theorem 1 in [23], it is shown
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Fig. 2. The equilibrium p∗ = 0.02 of the integer-order model (5) is
asymptotically stable, where κ = 0.01, C = 50,D(p) = 1/p, the initial
condition p0 = 1, and τ = 2.95 < τ0 = 3.1416.

Fig. 3. A periodic oscillation bifurcates from the equilibrium p∗ = 0.02 of
the integer-order model (5), where κ = 0.01, C = 50,D(p) = 1/p, the
initial condition p0 = 0.1, and τ = 3.25 > τ0 = 3.1416.

Fig. 4. A periodic oscillation bifurcates from the equilibrium p∗ = 0.02 of
the integer-order model (5), where κ = 0.01, C = 50,D(p) = 1/p, the
initial condition p0 = 0.1, and τ = 3.45 > τ0 = 3.1416.

Fig. 5. The equilibrium p∗ = 0.02 of model (6) with α = 0.92 is
asymptotically stable, where κ = 0.01, C = 50,D(p) = 1/p, the initial
condition p0 = 0.1, and τ = 3.45 < τ0 = 3.6037.

that when τ < τ0, the trajectory converges to the equilibrium
p∗ (see Fig. 2), while as τ is increased to pass through τ0, p∗

loses its stability and a Hopf bifurcation occurs (see Figs. 3
and 4).

Next, using our Theorem 3, we display the Hopf bifurcation
for the fractional-order model (6) with α∈(0, 1). For example,
by choosing α = 0.92, we can apply (13) in Lemma 1 to obtain

τ0 = 3.6037, ω0 = 0.4708.

Note that the fractional-order model (6) with α = 0.92 has
the same equilibrium as that of the integer-order model (5), but
the critical value τ0 increases from 3.1416 to 3.6037, implying
that the onset of Hopf bifurcations is delayed.

When α = 0.92, we choose τ = 3.45 < τ0 = 3.6037, which
is the same value as that used in Fig. 4. According to Theorem
3, we conclude that instead of having a Hopf bifurcation, the

fractional-order model (6) with α = 0.92 converges to the
equilibrium p∗ = 0.02, as shown in Fig. 5.

When α = 0.92, we choose τ = 3.8 > τ0 = 3.6037. From
Theorem 3, the equilibrium p∗ = 0.02 is unstable, as shown
in Fig. 6. It can be seen that when τ passes through the critical
value τ0 = 3.6037, a Hopf bifurcation occurs (see Figs. 5 and
6).

When α = 0.92, we choose τ = 3.45 < τ0 = 3.6037, which
is the same value as that used in Fig. 4. According to Theorem
3, we conclude that instead of having a Hopf bifurcation, the
fractional-order model (6) with α = 0.92 converges to the
equilibrium p∗ = 0.02, as shown in Fig. 5.

When α = 0.92, we choose τ = 3.8 > τ0 = 3.6037. From
Theorem 3, the equilibrium p∗ = 0.02 is unstable, as shown
in Fig. 6. It can be seen that when τ passes through the critical
value τ0 = 3.6037, a Hopf bifurcation occurs (see Figs. 5 and
6).
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Fig. 6. A periodic oscillation bifurcates from the equilibrium p∗ = 0.02 of
model (6) with α = 0.92, where κ = 0.01, C = 50,D(p) = 1/p, the initial
condition p0 = 0.1, and τ = 3.8 > τ0 = 3.6037.

It can be shown that if we choose a smaller value of α,
then the fractional-order model (6) may not have a Hopf
bifurcation even for the larger values of τ . This indicates that
the order α can delay the onset of Hopf bifurcations, thus
guaranteeing a stationary sending rate for the larger values
of τ . For example, when choosing α = 0.86, the fractional-
order model (6) converges to the equilibrium p∗ = 0.02 if
τ < τ0 = 4.0092, as shown in Fig. 7.

Fig. 7. Equilibrium p∗ = 0.02 of model (6) with α = 0.86 is asymptotically
stable, where κ = 0.01, C = 50,D(p) = 1/p, the initial condition p0 = 0.1,
and τ = 3.9 < τ0 = 4.0092.

The effect of the order α on the values of τ0 and ω0 is
shown in Table I. The critical value τ0 decreases clearly with
the order α, which means that the value of τ0 is sensitive to
the change of the order α.

VI. CONCLUSION

In this paper, we have extended a delayed integer-order
model of dual congestion control algorithms to a fractional-

order counterpart. We have considered the stability and bifur-
cations of network congestion control in the presence of com-
munication delays and fractional order. A stability criterion
for the delayed fractional-order congestion control model has
been established. We have also proposed some conditions of
Hopf-type bifurcations for delayed fractional-order systems.
The delayed fractional-order congestion control model can
exhibit a Hopf bifurcation (i.e., periodic oscillations appear)
as the delay achieves a critical value which can be determined
exactly. It is observed that an increase in the order may lead
to a decrease of the critical value. The observations allow
us to design Hopf bifurcations of congestion control systems
with the desired bifurcation points by adjusting the delays and
order.

TABLE I
VALUES OF ω0 AND τ0 FOR (6) WITH κ = 0.01, C = 50, D(P ) =
1/P , AND DIFFERENT VALUES OF α : α = 1, 0.9, 0.8, 0.7, 0.6,

0.5, 0.4, 0.3, 0.2, AND 0.1

Fractional order of model (6) ω0 τ0

α = 1 0.5 3.1416

α = 0.9 0.4629 3.7324

α = 0.8 0.4204 4.4832

α = 0.7 0.3715 5.4968

α = 0.6 0.3150 6.9818

α = 0.5 0.2500 9.4248

α = 0.4 0.1768 14.2172

α = 0.3 0.0992 26.9155

α = 0.2 0.0313 90.4779

α = 0.1 9.7656E−004 3.0561E + 003
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[6] V. D. Djordjević, J. Jarić, B. Fabry, J. J. Fredberg, and D. Stamenović,
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Modified Grey Model Predictor Design Using
Optimal Fractional-order Accumulation Calculus

Yang Yang, and Dingyü Xue

Abstract—The major advantage of grey system theory is
that both incomplete information and unclear problems can
be processed precisely. Considering that the modeling of grey
model (GM) depends on the preprocessing of the original data,
the fractional-order accumulation calculus could be used to do
preprocessing. In this paper, the residual sequence represented by
Fourier series is used to ameliorate performance of the fractional-
order accumulation GM (1, 1) and improve the accuracy of
predictor. The state space model of optimally modified GM (1, 1)
predictor is given and genetic algorithm (GA) is used to find the
smallest relative error during the modeling step. Furthermore,
the fractional form of continuous GM (1, 1) is given to enlarge
the content of prediction model. The simulation results illustrated
that the fractional-order calculus could be used to depict the GM
precisely with more degrees of freedom. Meanwhile, the ranges
of the parameters and model application could be enlarged with
better performance. The method of modified GM predictor using
optimal fractional-order accumulation calculus is expected to be
widely used in data processing, model theory, prediction control
and related fields.

Index Terms—Fractional-order accumulation, grey model
(GM), genetic algorithm (GA), fourier series.

I. INTRODUCTION

GREY system theory was firstly proposed in 1982 and
GM was built for prediction or decision-making with

unclear and incomplete information [1]. Compared with the
conventional statistical models, only small samples of data
is required to estimate the behavior of unknown systems in
the GM using a special differential equation according to the
output data predicted [1]−[4]. GM (1, 1) is the basic form
and most commonly used due to its computational efficiency
and prediction accuracy [3]−[5]. Furthermore, extraordinary
differential equations (for example Non-linear, Delayed and
Fractional-order) are also popularly used in mathematical
modeling of many engineering and scientific problems.

Although, fractional-order differential equations (FODEs)
have been efficient tools for model simulation and theoretical
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analysis, it is difficult to get the solution due to the existence
of fractional derivatives, especially with the initial value
problem [6]−[9]. Several Matlab programs and interfaces
have been given for fractional-order systems. For example,
Simulink model method for fractional-order nonlinear system
is proposed in ref [10] for initial value problem. A Ninteger
toolbox is developed for fractional-order controllers [11] and
FOMCON is a modeling and control toolbox for fractional-
order system [12]. The state space representation [13], [14],
robust stability research and system analysis are also hot
topics. In ref [13], two methods for the state space representa-
tion are presented based on the differentiation and integration
operator approximation respectively. The robust stability of
Fractional-order Linear Time Invariant (FO-LTI) system with
interval uncertainties has been investigated in ref [14], [15].
Furthermore, parameter and differentiation order estimation in
fractional models are discussed in ref [16].

Based on the fractional-order accumulation, many re-
searches have been carried out to study the model performance
in the GMs, for example, the model properties, perturba-
tion problems and stability analysis of the fractional-order
accumulation calculus by α = p/q [17]−[22]. Furthermore,
several new GMs are proposed based on the fractional-
order accumulation, for example, non-homogenous discrete
grey model (NDGM) with fractional-order accumulation is
put forward in ref [19], the fractional-order accumulating
generation operator is applied in the GM (2, 1) in ref [20],
the grey discrete power GM (1, 1) model is constructed by the
fractional-order accumulation in ref [21], the fractional-order
accumulation time-lag model GM (1, N, τ ) is proposed in [22].
Apart from this, the residual information are also used in some
modified GMs. For example, Fourier residual, Markov Chain
model and Artificial Neural Network have been used to correct
the periodicity and randomness of residuals and improve the
model performance [23]−[25].

Compared with the work being published, the GM using
fractional-order accumulation, the modified optimal model and
the model state space descriptions are all practical questions.
In order to settle the problems above, the works described in
this paper include the discrete GM (1, 1) using fractional-order
accumulation and the fractional form of continuous GM (1, 1)
by fractional calculus are studied; the modified optimal model
is obtained based on GA and Fourier series; the state space
models for the predictor are also given.

The rest of this paper is organized as follows. In Section
II, the basic knowledge of fractional accumulation calculus is
introduced. In Section III, the form and model by fractional-
order accumulation calculus in GM (1, 1) is analyzed. In Sec-
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tion IV, the state space models of modified optimal fractional
accumulation GM (1, 1) predictor are studied. In Section V, the
fractional form of continuous GM (1, 1) is given. In Section
VI, the properties of fractional-order accumulation calculus
are showed by a simple sequence and one case of modified
optimal fractional-order accumulation GM (1, 1) predictor is
discussed and tested. The conclusion part is given finally.

II. FRACTIONAL ACCUMULATION CALCULUS

A. Fractional Calculus

Fractional calculus is a generalization of differentiation
and integration to non-integer-order fundamental operator. The
continuous differential-integral operator is

aDγ
t =

dγ

dtγ
, γ > 0 (1a)

aDγ
t = 1, γ = 0 (1b)

aDγ
t =

∫ t

a

(dτ)−γ , γ < 0 (1c)

where γ is a complex number, a is a real number related to
initial value. Γ(n) is Euler’s Gamma function and

Γ(n) =
∫ ∞

o

tn−1e−tdt for Re(n) > 0 (2)

It is also called Euler’s integral of the second kind. It
is clear that the restriction Re(n) > 0 assures the con-
vergence of the integral. The Grünwald–Letnikov (GL), the
Riemann–Liouville (RL) or Caputo derivative are the three
most frequently used definitions for the general fractional
differintegral, and the GL definition [26]−[28] is given as

aDγ
t f(t) =

dγf(t)
dtγ

= lim
h→0

1
hγ

(t−a)/h∑

j=0

(−1)j

(
γ
j

)
f(t− jh)

(3)
where the binomial coefficients are defined as

(
γ
j

)
=

γ!
j! (γ − j)!

(4)

For arbitrary non-integer and even complex γ 6= −1,−2, · · ·
and j:

(
γ
j

)
=

Γ(1 + γ)
Γ(1 + j)Γ(1 + γ − j)

=
sin[(j − γ)π]

π

Γ(1 + γ)Γ(j − γ)
Γ(1 + j)

(5)

For an integer j = n and non-integer γ

(
γ
n

)
=

γ(γ − 1) · · · (γ − n + 1)
n!

=
(−1)n−1µΓ(n− γ)

n!Γ(1− µ)
= O(n−µ−1), n →∞ (6)

B. Fractional Accumulation Calculus

In the accumulation theory, for α is arbitrary positive
integer number, the definition of integral-order accumulation
for sequence x(j) j = 1, 2, · · · ,m is given as in (7) [29].

m∑

j=1

(1)x(j) =
m∑

j=1

Cm−j
m−j x(j) =

m∑

j=1

x(j) α = 1

m∑

j=1

(2)x(j) =
m∑

j=1

j∑

i=1

(1)x(j) =
m∑

j=1

Cm−j
m−j+1x(j)

=
m∑

j=1

C1
m−j+1x(j) α = 2

...
m∑

j=1

(k)x(j) =
m∑

j=1

j∑

i=1

(k−1)x(j)

=
1

(k − 1)!

m∑

j=1

(m− j + 1)(m− j + 2)

· · · [m− j + (k − 1)]x(j)

=
m∑

j=1

Cm−j
m−j+k−1x(j)

=
(m− j + k − 1)(m− j + k − 2) · · · (k + 1)k

(m− j)!
· x(j) α = k (7)

where α = 1, 2, · · · , k are the integer-orders. For α = p
q ,

the accumulation for sequence x(j) j = 1, 2, · · · ,m has been
given in ref [17] and the definition is

m∑

j=1

( p
q )x(j) =

m∑

j=1

Cm−j
m−j+ p

q−1
x(j) (8)

where

C0
p
q−1 = 1,

Cm−j
m−j+ p

q−1
=

(m− j + p
q − 1)(m− j + p

q − 2) · · · (p
q + 1)p

q

(m− j)!
.

Based on the fractional-order and accumulation theory
[9], [17], [29], the definition of fractional-order accumulation
is given by Gamma function in this paper. For sequence x(j)
j = 1, 2, · · · ,m, the fractional-order accumulation is defined
as in (9) with the order k > 0.

m∑

j=1

(k)x(j) =
m∑

j=1

Γ(m− j + k)
Γ(m− j + 1)Γ(k)

x(j) (9)

and
m∑

j=1

(k) =
Γ(m− j + k)

Γ(m− j + 1)Γ(k)
= (10)

{
C0

k−1 = 1 m = j

Cm−j
m−j+k−1 = (m−j+k−1)(m−j+k−2)···(k+1)k

(m−j)! m 6= j

The proof can be easily obtained using the properties of
Gamma function. The expression by (9) is generalization of
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integer or α = p
q . The parameter wj is defined as the weighting

factor of accumulation as in (11).

wj =
Γ(m− j + k)

Γ(m− j + 1)Γ(k)
j = 1, 2, · · · ,m (11)

Using the fractional-order calculus, the weighted form of
the overall data information is considered. Therefore, the
fractional-order accumulation can be used to do data prepro-
cessing and mine the information from the data. The estimated
data by the model can be obtained from the following equation.

x̂(0)(m) = x(1)(m)−
m−1∑

j=1

Γ(m− j + k)
Γ(m− j + 1)Γ(k)

x̂(0)(j) (12)

III. FRACTIONAL-ORDER ACCUMULATION IN GM (1, 1)

Suppose x(0) =
(
x(0) (1) , x(0) (2) , · · · , x(0) (m)

)
is the

sequence of raw data with non-nonnegative values usually.
Denote its fractional-order accumulation generated sequence
by x(1) =

(
x(1) (1) , x(1) (2) , · · · , x(1) (m)

)
.

The image form for continuous data of GM (1, 1) is
[30]−[32].

dx(1)

dt
+ ax(1) = b (13)

where a and b are referred as the development coefficient and
grey action quantity, respectively. Using the difference instead
of differential form, ∆t = (t+1)− t = 1, as in (13), it can be
rewritten as x(1)(i + 1)− x(1)(i) + ax(1)(i + 1) = b, which is
the basic form of the fractional-order accumulation GM (1, 1).
The matrix form can be given as




x(1)(2)− x(1)(1)
x(1)(3)− x(1)(2)

...
x(1)(m)− x(1)(m− 1)


 =




−x(1)(2) 1
−x(1)(3) 1

... 1
−x(1)(m) 1




[
a
b

]
(14)

Suppose

xx(j) =
Γ(m− j + k)

Γ(m− j + 1)Γ(k)
x(j) = wjx(j) j = 1, 2, · · · ,m.

By using the least squares to estimate the model as in (14), it
satisfies that

[a b]T = B−1Y (15)

where

B =




−x(1)(2) 1
−x(1)(3) 1

...
...

−x(1)(m) 1




=




−
2∑

j=1

Γ(m− j + k)
Γ(m− j + 1)Γ(k)

x(j) 1

−
3∑

j=1

Γ(m− j + k)
Γ(m− j + 1)Γ(k)

x(j) 1

...
...

−
m∑

j=1

Γ(m− j + k)
Γ(m− j + 1)Γ(k)

x(j) 1




=




1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1




(m−1)×m




−xx(1) 1
−xx(2) 0

...
...

−xx(m) 0




m×2

Y = [x(1)(2)− x(1)(1), x(1)(3)− x(1)(2), · · · ,

x(1)(m)− x(1)(m− 1)]T .

If k = 1, the model by (15) becomes the traditional one-order
GM (1, 1).

Denote the fractional-order accumulation generated se-
quence by x(1) and z(1), z(1) is the average value of the
adjacent neighbors of x(1)(k) and it can be expressed as

z(1)(i) =
x(1)(i) + x(1)(i + 1)

2
, i = 1, 2, · · · ,m− 1.

The matrix form is




x(1)(2)− x(1)(1)
x(1)(3)− x(1)(2)

...
x(1)(m)− x(1)(m− 1)


 =




−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(m) 1




[
a
b

]
(16)

By using the least squares to estimate the model in equation
(16), the parameters which also satisfies as in (15) are

B =




−1
2

−1
2

0 . . . 0 0

0 −1
2

−1
2

. . . 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1
2

−1
2




(m−1)×m




1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1




m×m




xx(1) −1
xx(2) 0

...
...

xx(m) 0




m×2
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=




−1
2

−1
2

0 . . . 0 0

0 −1
2

−1
2

. . . 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1
2

−1
2




(m−1)×m




w1 0 · · · 0
w1 w2 · · · 0
...

...
. . .

...
w1 w2 · · · wm




m×m




x(0)(1) − 1
w1

x(0)(2) 0
...

...
x(0)(m) 0




m×2

Y = [x(1)(2)− x(1)(1), x(1)(3)− x(1)(2), . . . ,

x(1)(m)− x(1)(m− 1)]T .

IV. FRACTIONAL ACCUMULATION GM (1, 1) PREDICTOR
THEORY

A. Prediction Theory

Suppose the original data and the fractional-order accumu-
lation generated sequence are (x(0)(1), x(0)(2), · · · , x(0)(m)),
(x(1)(1), x(1)(2), · · · , x(1)(m)) and (z(1)(1), z(1)(2), · · · ,
z(1)(m)). z(1)(i) = [x(1)(i) + x(1)(i + 1)]/2,
i = 1, 2, · · · ,m − 1. For 0 < k ≤ 1, the estimated data
from the model can be obtained by (12) and x̂(0) = (x̂(0)(1),
x̂(0)(2), · · · , x̂(0)(m)). The estimated prediction data
x(0)(m + 1) can be obtained from the following equation.

x̂(0)(m + 1) = x(1)(m + 1)−
m∑

j=1

Γ(m + 1− j + k)
Γ(m− j + 2)Γ(k)

x̂(0)(j)

(17)
The relative error is defined as

∆ =
∣∣∣∣
x̂(0) − x(0)

x(0)

∣∣∣∣× 100%

=
( ∣∣∣∣

x̂(0)(1)− x(0)(1)
x(0)(1)

∣∣∣∣× 100%,

∣∣∣∣
x̂(0)(2)− x(0)(2)

x(0)(2)

∣∣∣∣

× 100%, · · · ,

∣∣∣∣
x̂(0)(m)− x(0)(m)

x(0)(m)

∣∣∣∣× 100%
)

(18)

and ∆ =
1
m

m∑
i=1

∆i is the average relative error for the series

modeling.
GA is a stochastic technique and popularly used in the

optimization problems. It is inspired by the natural genetics
and biological evolutionary process. Reproduction, crossover
and mutation are three basic operators used to manipulate
the genetic composition of a population. GA evaluates a
population and generates a new one iteratively with each
successive population (generation) [33]. In this paper, the
fitness function is the minimization of the average model error

and mink ∆ =
1
m

m∑
i=1

∆i.

B. Modified Predictor Model

The model residual sequence can be written as

ε(0) = (ε(0)(2), ε(0)(3), · · · , ε(0)(m))T

= (x(0) (2)− x̂(0) (2) , x(0) (3)− x̂(0) (3) , · · · ,

x(0) (m)− x̂(0) (m))T

The periodical feature hidden in the residual series can be
extracted by the Fourier series and it is

ε(0)(j) = 0.5a0 +
z∑

i=1

[
ai cos

2πi

T
j + bi sin

2πi

T
j

]

j = 2, 3, · · · ,m, T = m− 1, z = [(m− 1)/2]− 1 (19)

where z is the integral part of (m− 1)/2− 1. It can be also
written in the matrix form as below [25], [34].




ε(0)(2)
ε(0)(3)

...
ε(0)(m)


 =




0.5 cos
4π

T
sin

4π

T
· · · cos

4πz

T
sin

4πz

T

0.5 cos
6π

T
sin

6π

T
· · · cos

6πz

T
sin

6πz

T
...

...
...

. . .
...

...

0.5 cos
2mπ

T
sin

2mπ

T
· · · cos

2mπz

T
sin

2mπz

T







a0

a1

b1

...
az

bz




(20)

If

P =




0.5 cos
4π

T
sin

4π

T
· · · cos

4πz

T
sin

4πz

T

0.5 cos
6π

T
sin

6π

T
· · · cos

6πz

T
sin

6πz

T
...

...
...

. . .
...

...

0.5 cos
2mπ

T
sin

2mπ

T
· · · cos

2mπz

T
sin

2mπz

T




,

C =




a0

a1

b1

...
az

bz




, then the matrix can be written as ε(0) = PC.

Based on the least square method, Ĉ = (PT P )−1PT ε(0).
Therefore, the estimated residual error can be given as

ε̂(0)(j) = 0.5â0 +
z∑

i=1

[
âi cos

2πi

T
j + b̂i sin

2πi

T
j

]

j = 2, 3, · · · ,m, T = m− 1, z =
[m− 1]

2
− 1 (21)

The modified model output x̂
(0)
F (j) by Fourier series is

x̂
(0)
F (j)=x̂(0)(j)+ε̂(0)(j) (22)
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The process of calculating modified optimal fractional ac-
cumulation GM (1, 1) is:

(1)
1) Use GA to find the optimal fractional-order model

with the minimization of the average relative error for
modeling;

2) Analyze the estimated residual error using Fourier series;
3) Obtain the modified prediction model;
4) Analyze the model and the prediction results.

C. State Space Model for Prediction

For the data sequence x(j) j = 1, 2, · · · ,m, suppose we
obtain the optimal fractional accumulation data sequence x(1)

by GA, the fractional-order accumulation GM (1, 1) can be
also represented by the state variable and the form is

x(1)(n + 1) = A(1)x(1)(n) + B(1)u(n)

y(1)(n + 1) = x(1)(n + 1)
(23)

where x(1) is the state variable vector and

x(1)(n) =
n∑

j=1

(k)x(0)(j) =
n∑

j=1

Γ(n− j + k)
Γ(n− j + 1)Γ(k)

x(j),

y is the output variable, u is the input variable and equal to
1. Compared with the basic fractional accumulation GM (1, 1),
when the model form is x(1)(i+1)−x(1)(i)+ax(1)(i+1) = b,
A(1) = 1/(1 + a), B(1) = b/(1 + a). When the model form is
x(1)(i + 1)− x(1)(i) + az(1)(i + 1) = b, A(1) = (2− a)/(2 +
a), B(1) = b/(2 + a). For n < m and n ≥ m, the state space
model becomes a constructing and predicting model equation
respectively.

As in (23), it can be also written as
n+1∑

j=1

(k)x(0)(j) = A(1)
n∑

j=1

(k)x(0)(j) + B(1)u(n)

and

x(0)(n + 1) = A(0)x(0)(n)+B(0)u(n) + ω(n) (24)

where, A(0) = A(1) − k
Γ(2) , B

(0) = B(1), ω(n) =
n−1∑
j=1

A(1)Γ(n−j+k)Γ(n−j+2)−Γ(n−j+1)Γ(n−j+k+1)
Γ(n−j+1)Γ(n−j+2)Γ(k) x(0)(j).

The solution of (23) can be obtained using irritation method,
and

x(1)(n) = Φ(n, 1)x(1)+
n−1∑

j=1

Φ(n, j + 1)B(1)(j)u(j),

where, Φ(n, p) = A(1)(n−1)A(1)(n−2)...A(1)(p), Φ(p, p) =
I . For n < m, take a difference operation on the left and right
side in (23), then the difference of the state space equation
can be written as:

∆x(1)(n + 1) = A(1)∆x(1)(n)

y(1)(n + 1)− y(1)(n) = ∆x(1)(n + 1)

= A(1)(x(1)(n)−x(1)(n− 1)).

The modeling process in (23) can be rewritten as
[
∆x(1)(n + 1)
y(1)(n + 1)

]
=

[
A(1) OT

m

A(1) 1

] [
∆x(1)(n)
y(1)(n)

]

y(1)(n) =
[
Om 1

] [
∆x(1)(n)
y(1)(n)

] ,

where Om =
[
0 0 · · · 0

]
. Define new variables y(k) and

z(k) =
[
∆x(1)(k)
y(1)(k)

]
. It can be also given as

z(k + 1) = Az(k)
y(k) = Cz(k) ,

where A =
[
A(1) OT

m

A(1) 1

]
, C =

[
Om 1

]
.

The characteristic equation of A can be calculated as

det(λI −A) = det
[
λI −A(1) −OT

m

−A(1) λI − 1

]

= (λ− 1) det(λI −A(1)).

The future state variables for the prediction can be calcu-
lated from the following equation. That is Y = Fz(k), where

F =




A
A2

...
Ah


 and h is number of samples predicted for the

future state variables.
Base on the Fourier series, the modified state space model

for prediction is given as

x̂(n + 1) = Âx̂(n)+B̂u(n) + e(n + 1)
ŷ(n + 1) = x̂(n + 1)

(25)

where,

e(n+1)=0.5â0+
z∑

i=1

[
âi cos

2πi

T
(n+1)+b̂i sin

2πi

T
(n+1)

]
.

V. FRACTIONAL-ORDER GREY MODEL

The fractional form for continuous data of GM (1, 1) model
is defined as GM (α, 1), and it is

dαx

dtα
+ ax = b (26)

where a and b are referred as the development coefficient and
grey action quantity, respectively, the fractional-order α should
be more than zero and the number of variables is one. It can
also be written as

Dα
t x + ax = b, or

1
b
Dα

t x +
a

b
x = 1.

The state space representation for GM (α, 1) is

Dα
t x(t) = Ax(t) + Bu(t)

y(t) = x(t)

where A,B, u(t) are the state, input and output vectors of the
system and A = −a,B = b, u(t) = 1.
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In order to simplify the problem, here, we only consider the
zero initial condition. The model solution can be obtained by
using Laplace transform X(s) = b

s(sα+a) and

x(t) = bε0(t,−a;α, α + 1) = btαEα,α+1(−atα),

where

εk(t, λ;µ, v) = tµk+v−1E(k)
µ,v(λtµ)(k = 0, 1, 2, · · · )

is the Mittag-Leffler type introduced by Podlubny.
If x(0) = (x(0)(1), x(0)(2), · · · , x(0)(m)) is a sequence of

raw data which are usually non-negative values, its fractional-
order accumulation generated sequence is given by x(1) =
(x(1)(1), x(1)(2), · · · , x(1)(m)), then Dα

t x(1) + ax(1) = b is
referred to fractional-order whitenization or image equation of
the GM (α, 1).

By using forward difference with G-L definition, the fol-
lowing equation is obtained [35] which can be used for the
discretization of continuous models.

Dαx(kT ) ≈ 1
Tα

k+1∑

i=0

(−1)i

(
α
i

)
x((k + 1− i)T )

=
1

Tα
(x((k + 1)T )−

(
α
1

)
x(kT )

+
k+1∑

i=2

(−1)i

(
α
i

)
x((k + 1− i)T ) (27)

VI. SIMULATION EXPERIMENTS

Consider a discrete sequence x(0)(j) = (1, 2, 3, 4, 5), j =
1, 2, · · · , 5. The results of fractional-order weighted factor and
accumulation generated sequence can be seen from Fig. 1 and
Fig. 2. The fractional-order in the range of zero and one could
model the system well compared with one-order generation
and obey the new information priority rule.

Fig. 1. Weighted factor with fractional-order less than and larger
than one.

The original data of main indicators on internet development
(based on number of users) taken at the end of years (2006-
2012), from China statistical yearbook-2013, People’s Repub-
lic of China National Bureau of Statistics, which can be seen
in Table I. The model and error analysis results based on two
models with fractional-order from 0.1 to 1.0 can be seen from

Fig. 3 and Fig. 4, the prediction result and error analysis also
show the predictor has better performance than the traditional
GM (1, 1). The modified model result using Fourier series can
be seen in Fig. 5 and Fig. 6. The optimal model and prediction
result are obtained and can be seen in Fig. 7 and Fig. 8. The
state space model for optimal order result is given in Table II.
Error analysis of different fractional-order accumulations using
Fourier series are given in Table III. The data of modified
optimal fractional-order accumulation model can be seen in
Table IV. In Table III, we can see that the average model
and prediction error in the classical GM (1, 1) is larger than
fractional-order accumulation ones. The modified model has
better results than the traditional ones without using Fourier
series in modeling and prediction. From Table IV, the modified
GM using optimal fractional-order accumulation can obtain
good performance compared with some classical GMs.

Fig. 2. Accumulation generated sequence with fractional-order.

Table I
ORIGINAL DATA OF NUMBER OF USERS TAKEN AT THE AND OF

YEARS

Year 2006 2007 2008 2009 2010 2011 2012

Number of

Internet Users 137.0 210.0 298.0 384.0 457.3 513.1 564.0

(106 persons)

Fig. 3. Internet data modeling and error analysis using x(1)(k+1)−
x(1)(k) + ax(1)(k + 1) = b.
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Fig. 4. Internet data modeling and error analysis using x(1)(k+1)−
x(1)(k) + az(1)(k + 1) = b.

Table II
STATE SPACE MODEL FOR OPTIMAL ORDER

GM Optimal
A(1) B(1) A C

model order

x(1)(k + 1)

−x(1)(k) 0.2311 1.0112 114.9412

[
1.0112 0

1.0112 1

] [
0 1

]

+ax(1)(k + 1) = b

x(1)(k + 1)
1.6736

−x(1)(k) ×10−5
0.9427 46.1318

[
0.9427 0

0.9427 1

] [
0 1

]

+az(1)(k + 1) = b

Fig. 5. Modified model output of internet data modeling using Fourier series analysis based on x(1)(k + 1)− x(1)(k) + ax(1)(k + 1) = b.

Table III
ERROR ANALYSIS USING SERIES OF INTERNET DEVELOPMENT

order method
x(1)(k + 1)− x(1)(k) +ax(1)(k + 1) = b x(1)(k + 1)− x(1)(k) +az(1)(k + 1) = b

∆ (%) ∆7 (%) ∆ (%) ∆7 (%)

0.10
common 1.9236 3.7190 1.8549 2.5575

Fourier series 0.1118 1.5075 0.1927 0.6877

0.25
common 1.9736 2.7617 2.0085 3.4366

Fourier series 0.2456 1.0420 0.1693 1.3721

0.50
common 4.1491 0.5578 2.5374 5.7856

Fourier series 0.8681 0.1029 0.2047 3.1108

0.75
common 7.2293 2.1057 3.4459 9.6037

Fourier series 1.7676 1.5565 0.3419 5.8862

0.80
common 7.9322 2.6635 3.6752 10.5827

Fourier series 1.9792 1.8657 0.3842 6.5982

0.90
common 9.4185 3.7836 4.3567 12.7859

Fourier series 2.4345 2.4880 0.0168 8.2046

1.00
common 11.0073 4.8934 5.1734 15.3407

Fourier series 2.9336 3.1033 0.6211 10.0767
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Fig. 6. Modified model output of internet data modeling using Fourier series analysis based on x(1)(k + 1)− x(1)(k) + az(1)(k + 1) = b.

Fig. 7. Internet data optimal modeling and error analysis using
x(1)(k + 1)− x(1)(k) + ax(1)(k + 1) = b.

Fig. 8. Internet data optimal modeling and error analysis using
x(1)(k + 1)− x(1)(k) + az(1)(k + 1) = b.

Table IV
OPTIMAL MODEL ANALYSIS AND PREDICTION RESULT DATA USING GA BY FOURIER SERIES

x(1)(k + 1)− x(1)(k) +ax(1)(k + 1) = b ∆(%) Prediction value ∆7(%)
GA method 1.9044 580.3567 2.9001

GA method by Fourier series 0.2176 570.2651 1.1108
One-order accumulation GM(1,1) 11.0073 536.4013 4.8934

x(1)(k + 1)− x(1)(k) + az(1)(k + 1) = b ∆(%) Prediction value ∆7(%)
GA method 1.8126 576.0692 2.1399

GA method by Fourier series 0.2240 565.9218 0.3407
One-order accumulation GM(1,1) 5.1734 650.5216 15.3407

Model ∆(%) Prediction value ∆7(%)
DGM(1,1) 5.7740 653.7459 15.9124

Model ∆(%) Prediction value ∆7(%)
DGM(2,1) 11.0738 618.3561 9.6376

From the above results, the model prediction performance
can be greatly improved by Fouries series method, and the
modified optimal predictor could describe the system more
precisely than the traditional GM(1,1) in model construction

and prediction. The difference of x(1)(k + 1) − x(1)(k) +
ax(1)(k+1) = b and x(1)(k+1)−x(1)(k)+az(1)(k+1) = b
is that the latter model considers the neighbour information
in the data modeling. From the optimal order analysis and
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other data results, when the model is different, the optimal
fractional-order is also different for the same problem. Several
other results also show the proposed method of fractional
accumulation order using GA by Fourier series can improve
the model performance greatly and can be perfectly put into
the application of predictor design and model construction.

VII. CONCLUSION

Fractional calculus studies the possibility of differentiation
and integration with arbitrary real or complex orders of
the differential operator. The fractional-order accumulation
model can mine the data information more precisely than
the classical order, which can reduce the randomness of the
original data and exhibit better performance. The GM (1, 1)
predictor based on the fractional-order accumulation has more
degrees of freedom and better performance compared with the
traditional one-order GM. The modified optimal fractional-
order accumulation method can be used to ameliorate the
model performance and improve the accuracy of predictor.
The GM (α, 1) application scope will also be enlarged with
more freedom. The proposed method can be widely used
in data processing, modeling theory, multi-step prediction,
predictor design and related fields. The discrete and continuous
forms for GM by fractional calculus, other forms of GMs
by fractional accumulation, for example, delay model, power
exponent model and feedback model, which also need our
further researches.
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Applications of Fractional Lower Order
Time-Frequency Representation to Machine Bearing

Fault Diagnosis
Junbo Long, Haibin Wang, Peng Li and Hongshe Fan

Abstract—The machinery fault signal is a typical non-Gaussian
and non-stationary process. The fault signal can be described by
SαS distribution model because of the presence of impulses.
Time-frequency distribution is a useful tool to extract helpful
information of the machinery fault signal. Various fractional
lower order (FLO) time-frequency distribution methods have
been proposed based on fractional lower order statistics, which
include fractional lower order short time Fourier transform
(FLO-STFT), fractional lower order Wigner-Ville distributions
(FLO-WVDs), fractional lower order Cohen class time-frequency
distributions (FLO-CDs), fractional lower order adaptive kernel
time-frequency distributions (FLO-AKDs) and adaptive frac-
tional lower order time-frequency auto-regressive moving average
(FLO-TFARMA) model time-frequency representation method.
The methods and the exiting methods based on second order
statistics in SαS distribution environments are compared, simula-
tion results show that the new methods have better performances
than the existing methods. The advantages and disadvantages of
the improved time-frequency methods have been summarized.
Last, the new methods are applied to analyze the outer race
fault signals, the results illustrate their good performances.

Index Terms—Alpha stable distribution; non-stationary signal;
adaptive function; auto-regressive (AR) model; parameter esti-
mation; time frequency representation.

I. INTRODUCTION

THe machinery vibration signal is a non-stationary
signal, its spectrum characteristic changes with the

time. The time-frequency analysis is a powerful tool to
provide the frequency spectrum information for the non-
stationary signals. The traditional short time Fourier transform
(STFT) time-frequency distributions[1], Wigner-Ville distribu-
tions (WVDs)[2], wavelet transform (WT) time-frequency[3],
Hilbert-Huang transform (HHT) time-frequency[4−6], the time-
frequency analysis methods have been widely used in me-
chanical fault diagnosis. Recently, some improved methods
based on traditional time-frequency distribution are also used
in fault diagnosis, such as the evolutionary spectrum based
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on STFT[6] and the improved cyclic WVD spectrum analysis
based on WVD[7]. The time-frequency distribution cannot
change according to the signal’s characteristic, hence, the
adaptive time-frequency analysis method has been focused and
applied to the mechanical fault diagnosis because of its high
performance. The time-frequency analysis method based on
adaptive kernel function is proposed in literature[8], and the
adaptive optimization criterion can adaptively adjust the kernel
function according to the characteristics of the signals.

Recently, the adaptive time-frequency analysis method is
developed rapidly, such as adaptive time-frequency distribution
based on radial Gaussian kernel function, cone-shaped kernel
function[9−10] and butterworth kernel function[11]. The new
adaptive parabola kernel function time-frequency distribution
method has been proposed in [12]. The improved basis func-
tion chirplet adaptive time-frequency method is introduced in
literature[13], and it is applied to the bearings and gear box fault
analysis. An improved radial parabolic kernel time-frequency
method has been used to the bearing fault diagnosis, which can
effectively improve the bearing fault diagnosis time-frequency
resolution and suppress the cross-term interference[14]. Shi
Dong-feng proposed a kind of adaptive time-frequency de-
composition algorithm based on Gaussian linear frequency-
modulation[15], the method has good performance in the
machinery critical vibration analysis. Recently, the adaptive
time-frequency method is proposed based on AR parameter
model by Michael Jachan[16−17], whereafter, the improved
vector time-frequency AR (VTFAR) and TFARMA adaptive
time-frequency algorithm are put forward[18−19]. The model
time-frequency methods have been applied in mechanical
engineering[20−21], the TFAR model method has illustrated
fine time-frequency resolution when it is used to analyze the
vibration signals of a faulty gearbox[20], more application
examples with parametric models method could be found in
literature[21]. However, the TFARMA model method has not
been applied for the machinery fault signals analysis.

Gaussian model and second order statistics are used to
analyze the fault signals in the above methods, but some actual
mechanical fault signals have obvious pulsing characteristics,
and they are non-Gaussian, hence there will be a certain
deviation. Therefore, Nikias first proposed a new statistical
model for the typical signal Alpha (α) stable distribution
process[22−25]. When 0 < α < 2, the performance of the
time-frequency analysis method based on Gaussian model
degenerates, therefore, the new methods based on α stable
distribution model are put forward, and they are applied to
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the mechanical fault diagnosis. Chang-Ning Li proved that
the bearing fault signals belong to α stable distribution[26]. A
new support vector machine fault diagnosis algorithm based
on the stable distribution model is proposed in [27], it can
effectively improve small sample learning and convergence
speed. A rolling bearing fault diagnosis method is put forward
with fractional lower order statistics instead of second order
statistics based on α stable model and kurtogram[28], which
effectively improve the performance. However, few research
works are studied on applications of time-frequency distri-
bution in machine fault diagnosis with α stable distribution
model. The adaptive time-frequency analysis method based
on α stable distribution is worth investigating. More realis-
tic statistical model will bring new machine fault detection
and diagnosis methods for rotating machines. In addition,
the fractional-order differential calculus methods have been
applied in many fields[29−31].

In this paper, several new time-frequency representation
methods based on α stable distribution statistical modeling are
proposed for machine fault diagnosis. The paper is structured
in the following manner. α stable distribution and its statis-
tical moment are introduced in Section 2. The bearing fault
signals are introduced in Section 3. The improved fractional
lower order time-frequency representation methods are demon-
strated, and the simulations comparisons with the conventional
methods are performed to demonstrate justifiability of the

proposed methods in Section 4. The simulations of the outer
race fault signals diagnosis are presented in Section 5. Finally,
the conclusions and future research are given in Section 6.

II. α STABLE DISTRIBUTION AND ITS STATISTICS

A. α stable distribution

α stable distribution is a kind of generalized Gaussian
distribution, the process is not limited in variance and its
probability density function has a serious tail, its characteristic
function can be described as[22−25]

φ(t) = exp {jµt− γ|t|α[1 + jβsign(t)ω(τ, α)]} (1)

where α is the characteristic index, when 0 < α < 2 it
(type 1) is lower order α stable distribution, when α = 2
it is Gaussian distribution. β is the symmetry coefficient, γ is
the dispersion coefficient, µ is the location parameter. When
β = 0, µ = 0, γ = 1, When α= 0.5, 1.0, 1.5 and 2.0, the time-
domain waveforms of SαS distribution are shown in Fig. 1,
and their probability density function (PDF) are shown in Fig.
2.

Waveforms of SαS stable dαvariance are shown in Fig.
3 when sample numbers successively increase with α =
0.5, 1.0, 1.5 and 2.0. When 0 < α < 2, the results show
that variances are not limited, the variance is convergent when
α = 2 (Gaussian distribution), γ = 2σ2 = 2(σ = 1).

Fig. 1 Waveform of SαS distribution under α = 0.5, 1.0, 1.5 and 2.0 in time domain
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Fig. 2 PDF of SαS distribution with different alpha α

Fig. 3 Variance of SαS distribution with successively increase of sample numbers with different alpha (α)

B. fractional lower order statistics

1) Fractional lower order covariation coefficient: The co-
variance of SαS distribution is not existing because of its
limited variance. Hence, the covariation concept is put forward
by Miller in 1978, it is similar to the covariance of Gaussian
random process. Covariation of two SαS distribution random

variables X and Y is defined as

[X, Y ]α =
∫

s

xy<α−1>µ(ds), 1 < α ≤ 2 (2)

where S denotes the unit circle, < > denotes the operation
z<α> = |z|αsign(z), the covariation coefficient of Xand Y is
defined as

λXY =
[X, Y ]α
[Y, Y ]α

(3)
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If the dispersion coefficient of Y is γy , the covariation and
covariation coefficient can be written as

[X, Y ]α =
E(XY <p−1>)

E(|Y |p) γy, 1 ≤ p < α ≤ 2 (4)

λXY =
E(XY <p−1>)

E(|Y |p) , 1 ≤ p < α ≤ 2 (5)

According to the definition of covariation coefficient, the co-
variation coefficient of a real observation sequence X(n)(n =
0, 1, . . . N)can be defined as[21]:

λ(m) =
E(X(n)X(n + m)<p−1>)

E(|X(n + m)|p) , 1 ≤ p < α ≤ 2 (6)

λ̂(m) =

N∑
m=1

X(n)|X(n + m)|p−1
sign[X(n + m)]

N∑
m=1

|X(n + m)|p
,

1 ≤ p < α ≤ 2 (7)

where λ̂(m) is the approximate estimation of λ(m). The
simplified fractional lower order moment is used in array
signal processing, and it is expressed as[23, 24]:

λFLOM (m) = E(X(n)X(n + m)<p−1>), 1 ≤ p < α ≤ 2
(8)

when X(n) is real

λ̂FLOM (m) =

1
L2 − L1

L2∑

n=L1+1

X(n)|X(n + m)|p−1
sign[X(n + m)] (9)

when X(n) is complex

λ̂FLOM (m) =

1
L2 − L1

L2∑

n=L1+1

X(n)|X(n + m)|p−2
X∗(n + m) (10)

where 1 ≤ p < α ≤ 2, L1 = max(0,−m), L2 = min(N −
m,N).

2) Fractional lower order covariance: Because the frac-
tional lower order covariation and fractional lower order
moment define α as 1 < α ≤ 2 and the range from 0 to 1 is not
defined, hence, fractional lower order covariance (FLOC) is
given in [25], in which 0 < α ≤ 2 is defined. Fractional lower
order auto-covariance (FLOAC) of N pairs of the observations
X(n)(n = 0, 1, · · ·N) based on the definition of FLOC[25] can
be defined as:

Rd(m) = E
{

X(n)<a>
X(n + m)<b>

}
,

0 ≤ a < α/2, 0 ≤ b < α/2 (11)

where 0 < α ≤ 2, if X(n) is real, the FLOAC can be
estimated with the sample FLOAC R̂d(m).

R̂d(m) =
1

L2 − L1

L2∑

n=L1+1

|X(n)|a|X(n + m)|bsign[X(n)X(n + m)] (12)

And if X(n) is complex, the FLOAC is estimated with the
sample FLOAC R̂d(m)

R̂d(m) =
1

L2 − L1

L2∑

n=L1+1

|X(n)|a−1|X(n + m)|b−1
X∗(n)X∗(n + m) (13)

where L1 = max(0,−m), L2 = min(N −m,N), ∗ denotes
the conjugate operation.

III. BEARING FAULT SIGNALS

The data of real bearing fault signals are got from the Case
Western Reserve University (CWRU) bearing data center[29].
As shown in Figure 4, the diameter of the bearing fault in the
test motor is 0.007 inches, and the fault points include inner
race fault, ball fault and outer race fault. The experiments
are conducted with a 2hp reliance electric motor, and the
acceleration data are measured at proximal and distal points of
motor bearings, the points include the drive end accelerometer
(DE), fan end accelerometer (FE) and base accelerometer
(BA). The motor speed is 1797 RPM (revolutions per minute),
and the digital data are collected with a speed of 12, 000
samples per second.

Fig. 4 The apparatus of bearing fault test data

When the single fault point appears in inner race, outer race
or ball, we collect the fault signals. Waveforms are shown in
Figure 4 a, b, c and d, where it is shown that fault points
cause different impulse intensities. The ball fault has very
small impulse intensity, while the impulse intensity of outer
race is higher.

Statistical characteristics of these bearing fault signals
should be analyzed to obtain the condition information. Hence,
the stable distribution statistical model is used to estimate
parameters of the inner race fault signals, ball fault signals
and outer race fault signals, the estimated four parameters
are shown in Table 1. As it can be seen, bearing signals
in normal condition are Gaussian distribution for α = 2,
and they are non-Gaussian α stable distribution for
α < 2. Probability density function (PDF) of the inner race
fault signals, the ball fault signals and the outer race fault
signals are shown in Figure 6. By comparing PDF of normal
signals and fault signals, we know that PDF of fault signals
have serious trailing. Table 1 shows that the β value around
zero, and Fig. 6 shows that bearing fault signals generally have
symmetric PDF, hence, SαS distribution statistical model is
concise and accurate for bearing fault signals.
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Fig. 5 Bearing fault waveforms (a. The waveform of normal signals in DE and FE b. the waveform of the inner race fault signals in DE,
FE and BA c. the waveform of the ball fault signals in DE, FE and BA d. the waveform of the outer race fault signals in DE, FE and BA)

Table I α stable distribution model parameter estimates of bearing
fault signals

parameters α β γ µ

Normal
DE 2.000 –0.283 0.1304 0.1317
FE 2.000 1.000 0.0583 0.0236
BA 1.7682 0.0872 0.0590 0.0062

Inner race DE 1.4195 0.0155 0.2407 0.0175
FE 1.8350 0.0322 0.1495 0.0291
BA 1.9790 0.0592 0.0293 0.0055

Ball DE 1.8697 0.1215 0.0772 0.0193
FE 1.998 –0.0371 0.0674 0.0321
BA 1.6077 –0.1731 0.0530 0.0012

Outer race DE 1.1096 0.0433 0.1341 0.0367
FE 1.5435 –0.0169 0.0968 0.0296

IV. FRACTIONAL LOWER ORDER TIME-FREQUENCY
DISTRIBUTIONS

A. Fractional lower order short-time Fourier transform

1) Principle: Short time Fourier transform (STFT) time-
frequency distribution is free from cross-term interference, but
the time-frequency resolution is low and it is governed by the

Heisenberg uncertainty principle. The conventional STFT of
an analytic signal x(t) is defined as

STFTx(t, ω) =
∫ +∞

−∞
x(τ)h(τ − t)e−jωτdτ (14)

The discrete equation is defined as

STFTx(n,$) =
∑
m

x(m)h(m− n)e−jn$ (15)

STFT is one of Fourier transform, which is added with time
window h(t) at each specific time of x(t), in α stable distri-
bution environment, fractional low order short time Fourier
transform (FLO-STFT) based on P order moment can be
defined as

FLOSTFTx(t, ω) =
∫ +∞

−∞
x<P>(τ)h(τ − t)e−jωτdτ

(16)

FLO-STFT discrete equation is defined as

FLOSTFTx(n,$) =
∑
m

x<P>(m)h(m− n)e−jn$ (17)
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Fig. 6 PDF of the bearing fault signals (a. PDF of inner race fault
signals in DE, FE and BA; b. PDF of the ball fault signals in DE, FE
and BA; c. PDF of the outer race fault signals in DE, FE and BA)

In the equations 16-17, the moving window function can
satisfy that P moment of non-stationary signal is stationary
and integrable within the time window, however, the traditional
STFT method is no longer stationary and integrable because
E[|s|] = ∞ when α < 1.

2) Application review: We apply FLO-STFT time-
frequency distribution to estimate the time-varying spectral,

the signal x added with SαS distribution noise is defined as

x = e−a(n−80)2+jω1(n−80) + e−a(n−190)2+jω2(n−190) + SαS

= y + SαS (18)

Fig. 7 Time-frequency representations of the signal x in SαS noise
environment. (a. Waveform of x and y ; b. STFT time-frequency
representation of the signal x; c. FLO-STFT time-frequency repre-
sentation of the signal x)

where a = 0.002, ω1 = 1.85, ω2 = 1.2, n =
1, 2, · · · 256, α = 1.5,MSNR = 15 db (Mixed Signal
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to Noise Ratio), MNSR = 10 log(E
{
|s(t)|2

}
/γα). The

traditional STFT method and FLO-STFT method are used
to estimate time-frequency representations of the signal x,
simulation results are shown in Figure 7.

3) Remarks: Figure 7. b shows that the traditional STFT
time-frequency method fails in noise environment, the im-
proved FLOC-STFT method shows good robustness in
Fig. 7.c. However, the time-frequency resolution of the FLO-
STFT method is controlled by the length of the window
function like STFT method. In real application, the shorter
time window should be used when we want to get the
information of higher frequency components, and if we wish
to closely localize the frequency location of lower frequency
components, a longer time window is preferred. As a result,
STFT time-frequency method is only suitable to analyze
signals in Gaussian environment, but FLO-STFT can work
in Gaussian and noise environment, which is robust.

B. Fractional lower order Wigner-Ville Distributions
1) Principle: Wigner-Ville Distribution (WVD) of the sig-

nal x(t) is defined as

WV Dx(t, ω) =
∫ +∞

−∞
x(t + τ/2)x(t− τ/2)e−jωτdτ (19)

WVD time-frequency is a quadratic transformation, it has
serious cross-terms, hence, the smoothing window function
h(τ) is used to reduce the cross-term interference, Pseudo
WVD (PWVD) is expressed as

PWV Dx(t, ω) =
∫ +∞

−∞
h(τ)x(t + τ/2)x(t− τ/2)e−jωτdτ

(20)

In α stable distribution environment, Fractional Low Order
Wigner-Ville Distribution (FLO-WVD) based on P order mo-
ment can be expressed as

FLOWV Dx(t, ω)

=
∫ +∞

−∞
x<P>(t + τ/2)x−<P>(t− τ/2)e−jωτdτ (21)

The FLO-WVD discrete equation of the signal x(t) is ex-
pressed as

FLOWV Dx(n,$)

= 2
∑
m

x<P>(n + m)x−<P>(n−m)e−jm$ (22)

FLO-PWVD of the signal x(t) can be defined as

FLOPWV Dx(t, ω) =∫ +∞

−∞
h(τ)x<P>(t + τ/2)x−<P>(t− τ/2)e−jωτdτ (23)

The instantaneous auto-covariance of the signal x(t) is defined
as

RC
x (t, τ) = x<P>(t + τ/2)x−<P>(t− τ/2) (24)

According to the equation (24), FLO-WVD changes as

FLOWV Dx(t, ω) =
∫ +∞

−∞
RC

x (t, τ)e−jωτdτ (25)

According to the equation (24), we can know that FLO-WVD
of the signal x(t) is the Fourier transform of instantaneous
auto-covariance in time delay τ .

2) Application review: The traditional WVD method,
PWVD method, the improved FLO-WVD method and FLO-
PWVD method are used to estimate time-frequency distribu-
tions of the signal x(t), and their simulation results are shown
in Figure 8.

3) Remarks: Fig. 8.a and Fig. 8.c respectively are WVD
and PWVD time-frequency representations of the synthetic
signal x, Fig8. b and Fig8. d respectively are FLO-WVD
and FLO-PWVD of the synthetic signal x. Simulation results
show WVD and PWVD time-frequency methods cannot work,
but FLO-WVD and FLO-PWVD time-frequency methods have
good performance in SαS environment. FLO-WVD method
is an improved WVD time-frequency method, FLO-WVD has
high time-frequency resolution, but it has serious cross-term
interference. Hence, its application is inevitably hindered by
the cross-term interference. FLO-PWVD is FLO-WVD added
the window function, it can better suppress the cross term
interference.
Fractional lower order Cohen class time-frequency distributions

1) Principle : The Cohen-class time-frequency distribution
is intended to obtain the expected properties like higher
resolution, non-negativeness and removal of cross-terms with
a kernel function, Cohen class Time-frequency distribution
(CTFD) of the analytic signal x(t) is defined as

Cx(t, ω) =
1
2π

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
x(t + τ/2)x(t− τ/2)Φ(θ, τ)ejθt−jωτ−jθudθdτdu (26)

Ambiguity function (AF) of the signal x(t) is expressed as

AFx(θ, τ) =
∫ +∞

−∞
x(t + τ/2)x(t− τ/2)e−jθtdt

=
∫ +∞

−∞
RC

x (t, τ)e−jθtdt (27)

Fractional Low Order Ambiguity function (FLOAF) of the
analytic signal x(t) based on P order moment is defined as

FLOAFx(θ, τ) =
∫ +∞

−∞
RC

x (t, τ)e−jθtdt

=
∫ +∞

−∞
x<P>(t + τ/2)x−<P>(t− τ/2)e−jθtdt (28)

When the inverse Fourier transform of equation (28) is com-
puted, we can get:

RC
x (t, τ) =

1
2π

∫ +∞

−∞
FLOAFx(θ, τ)ejθtdθ (29)
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Fig. 8 Time-frequency representations of the signal x in SαS noise environment (a. WVD time-frequency representation of the signal
x; b. FLO-WVD time-frequency representation of the signal x; c. PWVD time-frequency representation of the signal x; d. FLO-PWVD
time-frequency representation of the signal x)

If the equation (29) is substituted to equation (25), we get
the following form.

FLOWV Dx(t, ω) =

1
2π

∫ +∞

−∞

∫ +∞

−∞
FLOAFx(θ, τ)ejθt−jωτdθdτ (30)

From the equation (30), we know that FLOWVD of the
signal x(t) is two-dimensional Fourier transform of FLOC-
AF, FLOWVD is three-dimensional (3-D) indication of the
signal x(t) in time, frequency and energy, and FLOC-AF
is 3-D indication in time-delay, frequency deviation and the
correlation. The images of FLOWVD and FLOC-AF have the
components and cross-terms, the components of FLOWVD
method are on both sides, and the cross terms are in the
middle. However, the components of FLOC-AF are in the
middle, and the cross terms are in both sides. When FLOC-AF
of the signal x(t) is computed, and a low-pass filter is used
to filter cross-terms in AF plane, finally, the time-frequency
distribution is calculated. FLO-Cohen distribution of the signal

x(t) is defined as

FLO − Cx(t, ω) =
1
2π

∫ +∞

−∞

∫ +∞

−∞
Φ(θ, τ)

FLOAFx(θ, τ)ejθt−jωτdθdτ (31)

Φ(θ, τ) is the kernel function, a different distribution is got
when a different kernel function is used. If Φ(θ, τ) = 1,
FLO-Cohen time-frequency representation degenerates into
FLOWVD method, when Φ(θ, τ) is a moving window func-
tion, FLO-Cohen method is called pseudo FLOWVD time-
frequency representation, if Φ(θ, τ) = cos(θτ/2), FLO-
Cohen method is called FLO- Rihaczek time-frequency rep-
resentation, when Φ(θ, τ) = ejθτ/2, FLO-Cohen method is
called FLO-Page time-frequency representation, if Φ(θ, τ) =
e−θ2τ2/σ , FLO-Cohen method is called FLO-Choi-Williams
time-frequency representation, σis a constant between 0.2-8, if
Φ(θ, τ) = g(τ) |τ | sin(βθτ)/βθτ , it is called as FLO-conical
kernel distribution.

4) Application review: Choi-Williams and FLO-Choi-
Williams time-frequency methods are used to estimate time-
frequency distributions of the synthetic signal x (equation 18),
simulation results are shown in Figure 9.
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Fig. 9 Time-frequency representations of the signal x in SαS noise
environment. (a. Choi-Williams time-frequency representation of the
signal x;b. FLO-Choi-Williams time-frequency representation of the
signal x)

5) Remarks Fig. 9.a shows the Choi-Williams time-
frequency representation of the synthetic signal x, and Fig.
9.b is the FLO-Choi-Williams time-frequency representation
of the synthetic signal x. In view of the SαS stable distri-
bution noise environment, the Choi-Williams method fails,
and FLO-Choi-Williams method can better represent time-
frequency distribution. FLO-Choi-Williams time-frequency
method smoothing by the kernel function get rid of most of
the cross-terms, but the time-frequency resolution is reduced.

C. FLO adaptive kernel time-frequency representation method

1) Principle: The kernel functions of traditional Cohen-
class time-frequency method and fractional lower order
Cohen-class time-frequency method are fixed, a class ker-
nel function is only suitable for one type of signal, which
can not meet all the signals. However, the adaptive ker-
nel time-frequency distribution can change optimal kernel
functionΦ(θ, τ)according to the feature of the different signals.
Hence, adaptive optimal kernel time-frequency method is
focused, and adaptive optimal kernel time-frequency repre-
sentation in stable distribution environment will be a new
direction.

According to the definition of FLOC-Cohen method, we
use the optimal kernel function Φopt(θ, τ) instead of the fixed
kernel function Φ(θ, τ), then we can get a new fractional low-
order adaptive kernel time-frequency distribution. the polar
coordinates expression of optimal kernel can be defined as:

max
Φ

∫ 2π

0

∫ +∞

0

|AFx(r, φ)Φ(r, φ)|2rdrdφ (32)

when the kernel function is a radial Gaussian kernel function,
the optimal kernel function is defined as:

Φ(r, φ) = e
− r2

2σ2(φ) (33)

Where φ is radial angleφ = arctan τ
θ σ(φ) is radial extension

functionit controls the radial shape of Φ(θ, τ), constraint
condition in polar coordinates is defined as:

1
4π2

∫ 2π

0

∫ +∞

0

|Φ(r, φ)|2rdrdφ

=
1

4π2

∫ 2π

0

∫ +∞

0

∣∣∣∣e
− r2

2σ2(φ)

∣∣∣∣
2

rdrdφ

=
1

4π2

∫ 2π

0

σ2(φ)dφ ≤ β (34)

When Φopt(θ, τ) is a radial optimal parabolic kernel function,
its function is defined as:

Φ(θ, τ) = 1− w(θ2 + τ2)
2σ2(φ)

, (0 ≤ w(θ2 + τ2)
2σ2(φ)

≤ 1) (35)

The constraint condition in polar coordinates is expressed as:

1
6wπ

∫ π

0

σ2(φ)dφ ≤ β (36)

If we use the equation (32), (33) and (34) to choose kernel
function, the method can be called fractional lower order
adaptive Gaussian-kernel time-frequency distribution (FLO-
AGK-TFD). When we use the equation (32), (35) and (36)
to choose kernel function, it is called fractional lower order
adaptive parabolic kernel time-frequency distribution (FLO-
APK-TFD).

2) Application review: The adaptive kernel function time-
frequency distribution and FLO-adaptive kernel function time-
frequency distribution are used to estimate time-frequency
distributions of the synthetic signal x(the equation 18), the
optimal radial Gaussian kernel function is used in the methods.
Simulation results are shown in Figure 10.

3) Remarks: The adaptive kernel time-frequency distribu-
tions of synthetic signal x are illustrated in Fig. 10.a, and
Fig. 10.b illustrate the FLO-adaptive optimal kernel time-
frequency distributions of synthetic signal x. As shown in
the figures, two components of the FLO-adaptive optimal
kernel time-frequency method can be clearly resolved in fine
resolution, but adaptive optimal kernel time-frequency method
cannot represent time-frequency distributions. From Figure
10.b, we know that the FLO-adaptive kernel function method
can effectively suppress the cross-terms, and it has a better
timeCfrequency resolution. The FLO-adaptive kernel method
requires that the auto-terms of the signals concentrate around
the origin on the ambiguity plane, the cross-terms distribute
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in an area is far from the origin, and it will not be effective
to separate the auto-terms and cross-terms when they overlap
regardless of what volume of parameter is used.

Fig. 10 Time-frequency representations of the signal x in SαS

noise environment. (a. Adaptive kernel time-frequency representation
of the signal x; b. FLO- adaptive kernel time-frequency representation
of the signal)

D. Adaptive FLO-TFARMA Time-Frequency Representation
method

TFARMA model of a non-stationary random process is
defined as[19]

x[n] =−
M∑

i=1

ai[n]x[n− i]+

L∑

i=0

bi[n]e[n− i], n = 0, 1, 2, · · ·N − 1 (37)

Where ai[n] and bi[n] are the time-varying parameters of
the TFAR and TFMA part, M and L are orders, e(n) is
stationary white noise. When the noise e(n) is a stationary
SαS distribution process u(n), according to the definition
method of the equation (37) TFARMA, we can also define a

non-stationary time-frequency auto-regressive moving average
SαS process TFARMA (M , L, A, B) as

x[n] =−
M∑

i=1

ai[n]x[n− i]+

L∑

i=0

bi[n]u[n− i], n = 0, 1, 2, · · ·N − 1 (38)

where

ai[n] =
A∑

l=−A

ai,lfl[n] =

A∑

l=−A

ai,le
j 2π

N nl, n = 0, 1, 2, · · ·N − 1

bi[n] =
B∑

l=−B

bi,lfl[n] =

B∑

l=−B

bi,le
j 2π

N nl, n = 0, 1, 2, · · ·N − 1

fl[n] = ej 2π
N nl, l = 0, 1, 2, · · · ,max {A,B} (39)

We call it as fractional lower order time-frequency auto-
regressive moving average (FLO -TFARMA) process, where
M , L, A and B are the orders of the model, and M and
L are the order in time domain, A and B are the order in
frequency domain (the bandwidth of the model are [−A,A]
and [−B,B]), ai[n] and bi[n] are the parameters of the FLO
-TFAR model, the numbers are as high as N(M + L + 1),
ai,l and bi,l are basis expansion of the parameter functions,
the number of ai,l is M(2A + 1), the number of bi,l is
(L + 1)(2B + 1). When L = 0, B = 0, FLO - TFARMA
model will degrade into FLO-TFAR (M , A) model, and if
A = 0, B = 0, it will degrade into FLO-TFMA (M , L)
model. fl[n] is the basis functions, u(n) is a stationary white
noise SαS process, γ is its dispersion coefficient(γ = 1).

1) FLO-TFMA Time-Frequency Representations: The α
spectrum of the α stable distribution process is defined as

Sα(z) =


X[n],

q∑

i=−q

X(n− i)zi




= γ

[
(
1
z
)
<α−1>]

[H(z)]<α−1> (40)

When inserting z = ejω into the equation (40), α spectrum
on the unit circle is calculated as

Sα(ejω) = γH(ejω) · [H(ejω)]
<α−1>

= γ
∣∣H(ejω)

∣∣α (41)

When Z transformation with respect to both sides of the
equation (38) is computed, we obtain

H[Z] =
1 +

L∑
i=1

bi[n]Z−i

1 +
M∑
i=1

ai[n]Z−i

=
B(Z)
A(Z)

(42)
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By inserting the equation (42) into the equation (40), FLO-
TFARMA model spectrum estimation of a SαS process X[n]
can be defined as

Sα(n, k) = γ

∣∣∣∣∣∣∣∣

1 +
L∑

i=1

bi[n]e−j 2π
N ik

1 +
M∑
i=1

ai[n]e−j 2π
N ik

∣∣∣∣∣∣∣∣

α

= γ

∣∣∣∣∣∣∣∣∣

1 +
L∑

i=1

B∑
l=−B

bi,le
−j 2π

N (ik−nl)

1 +
M∑
i=1

A∑
l=−A

ai,le−j 2π
N (ik−nl)

∣∣∣∣∣∣∣∣∣

α

(43)

For getting ai,l and bi,l of FLO-TFARMA model parameters,
we solve the parameters ai,l of FLO-TFAR model, and then
solve the parameters bi,l of FLO - TFMA model.

2) FLO-TFAR parameters estimation: If both sides of the
equation (38) are multiplied by x<P−1>[n − i′] and taken
expectation, it can be written as

M∑

i′=0

ai[n]E
{
x[n− i′]x<P−1>[n− i′]

}

=
L∑

i′=0

bi[n]E
{
U [n− i′]x<P−1>[n− i′]

}
(44)

A simplified fractional lower order covariance is defined in
[21], it simplifies to equation (44), and then we can get

M∑

i′=0

A∑

l′=−A

ai′,l′Cx[n− i′, i− i′]ej 2π
N nl′

=
L∑

i′=0

B∑

l′=−B

bi′,l′CU,x[n− i′, i− i′]ej 2π
N nl′ (45)

where Cx[n− i′, i− i′]∆=E
{
x[n− i′]x<P−1>[n− i′]

} ∆=
E

{
x[n− i′]|x[n− i′]|P−2

X∗[n− i′]
}

is auto-covariance
function of x[n],

CU,x[n − i′, i − i′]∆=E
{
U [n− i′]x<P−1>[n− i′]

} ∆=
E

{
U [n− i′]|x[n− i′]|P−2 · x∗[n− i′]

}
is cross-covariance

of x[n] and U [n], N points of discrete Fourier transform
(DFT) with respect to both sides of the equation (45) can be
expressed as

M∑

i′=0

A∑

l′=−A

ai′,l′λx[i− i′, l − l′]e−j 2π
N i′(l−l′)

=
L∑

i′=0

B∑

l′=−B

bi′,l′λU,x[i− i′, l − l′]e−j 2π
N i′(l−l′) (46)

λx[i− i′, l − l′]∆=
N−1∑
n=0

Cx[n− i′, i− i′]e−j 2π
N nl′

λU,x[i− i′, l − l′]∆=
N−1∑
n=0

CU,x[n− i′, i− i′]e−j 2π
N nl′ (47)

where λx[i − i′, l − l′] and λU,x[i − i′, l − l′]are similar to
Cohen-class time-frequency distribution expected ambiguity

function (EAF) based on the second-order correlation func-

tion Ax[i, l]∆=
N−1∑
n=0

RX [n, i]e−j 2π
N nl, its auto-correlation is re-

placed by auto-covariance, it can be named as fractional order
discrete expect ambiguity function (FLO-EAF), it represents
statistical covariance of the time shift and frequency shift in
time-frequency domain. When i ≥ A, x[n], U [n] are statisti-
cally independent from each other and CU,x[n− i′, i− i′] = 0,
the equation (46) can be written as

M∑

i′=0

A∑

l′=−A

ai′,l′λx[i− i′, l − l′]e−j 2π
N i′(l−l′) = 0

M∑

i′=1

A∑

l′=−A

ai′,l′λx[i− i′, l − l′]e−j 2π
N i′(l−l′) = −λx[i, l]

A + 1 ≤ i ≤ A + M − L ≤ l ≤ L (48)

The equation (48) can be written as

Γa = −θ or a = −Γ−1θ (49)

where Γ is (2L+1)M×(2L+1)M Toeplitz-block matrix, a =
[a1

T , a2
T , · · · , aM

T ]T , am = [ai,−L, ai,−L+1, · · · , ai,L]T ,
θ = [θA+1

T , θA+2
T , · · · θA+M

T ]
T

.
The equation (49) has (2L + 1)M independent equations,

and the required parameters ai′,l′ are (2L+1)M . The lengths
of θ and a are (2L+1)M , and through the solution of Toeplitz
matrices using equation (49), we can obtain the vector a and
FLO - TFAR model parameters ai,l.

3) FLO-TFMA parameters estimation: A SαS distribution
signal y[n] can be produced by SαS noise distribution U [n]
through causal linear time-varying (LTV) system (TFMA), we
can also obtain it when U [n] is passed through a TFARMA
system and then through a TFAR model system. Then, we
can take advantage of the observation sequence x[n] that is
discussed in Section 5.2 with the help of TFAR model filter
to obtain TFMA process y[n], this whole process can be
expressed as

y[n] =
L∑

i=0

bi[n]U [n− i] =
L∑

i=0

B∑

l=−B

bi,l[n]ej 2π
N nlU [n− i]

(50)

The both sides of the equation (50) are multiplied by
x<P−1>[n − i′] and taken expectation, then, N points of
discrete Fourier transform (DFT) with respect to both sides
of the equation (50) can be written as

L∑

i′=0

B∑

l′=−B

bi′,l′ [n]λU,y[i− i′, l − l′]e−j 2π
N i′(l−l′) = λy[i, l]

0 ≤ i ≤ L −B ≤ i ≤ B (51)

When LB << N , phase factor e−j 2π
N i′(l−l′) ≈ 1, it can be

expressed as

L∑

i′=0

B∑

l′=−B

bi′,l′ [n]λU,y[i− i′, l − l′] = λy[i, l]

0 ≤ i ≤ L −B ≤ i ≤ B (52)
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According to the method in section 5.2, the equation (49) is
written as Toeplitz matrix form Γb = θ, and then the model
parameters bi,l are solved.

However, U [n] and λU,y[i − i′, l − l′] are unknown from
the observations of a random signal x[n], in that way, we
cannot evaluate bi,l through the above method. We can use
improved fractional lower order complex time-frequency spec-
trum (FLO-CTFC) algorithm to calculate FLO-TFMA coeffi-
cient bi,l[17], where, the second order correlation is replaced
by fractional low-order covariance.

4) Application review: We will study the performances of
the TFAR, TFMA and TFARMA, the proposed FLO-TFAR,
FLO-TFMA and FLO-TFARMA, they are applied to estimate
the time frequency representations of the synthetic signal x
(the equation 18) in SαS stable distribution noise environ-
ment. The length of the signal N=256, its time frequency
representations are shown in Fig. 11-Fig. 13.

Fig. 11 The model time-frequency representations of the signal x

in SαS noise environment (a. TFAR (5, 1) model time-frequency
representation of the signal x; b. FLO- TFAR (5, 1) model time-
frequency representation of the signal)

5) Remarks: The results show that TFAR (5, 1) model
time-frequency spectrum is a failure in Fig. 11.a, the overall

resolution of FLO-TFAR (5, 1) is poorer than that of
the nonparametric FLO-PWVD in Fig. 11.b. but it can better
suppress the cross term interference. TFMA (2, 2) method
failed in Fig. 12.a, and FLO-TFMA (2, 2) spectrum is very
poor in Fig. 12.b. Finally, TFARMA (2, 2, 1, 2) model method
cannot work in SαS noise environment in Fig. 13.a, but
FLO-TFARMA (2, 2, 1, 2) model time-frequency spectrum
exhibits better resolution than FLO-TFAR and FLO-TFMA in
Fig. 13.b, and it does not contain any cross terms as does
FLO-PWVD.

Fig. 12 The model time-frequency representations of the signal x

in SαS noise environment (a. TFMA (2, 2) model time-frequency
representation of the signal x; b. FLO- TFMA (2, 2) model time-
frequency representation of the signal)

The improved FLO-TFAR, FLO-TFMA and FLO-
TFARMA methods are effective for slowly time-varying
signals, and they are free from cross-term interference. The
timeCfrequency resolution of the FLO-TFAR and FLO-TFMA
methods are relatively low, and FLO-TFARMA method
illustrates better resolution. In addition, the complicated
algorithm for estimating model parameters makes FLO-
TFARMA method computationally demanding. Therefore,
some works will be made to improve the time-frequency
resolution and model parameter estimation process for
practical fault signal analysis.
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Fig. 13 The model time-frequency representations of the signal x in SαS noise environment (a. TFARMA (2, 2, 1, 2) model time-frequency
representation of the signal x; b. FLO- TFARMA (2, 2, 1, 2) model time-frequency representation of the signal)

Fig. 14 The conventional time-frequency representations of the outer race fault signal in α stable distribution environment (a. The
conventional STFT time-frequency representation; b. The conventional PWVD time-frequency representation; c. The conventional CWD
time-frequency representation; d. The conventional adaptive kernel time-frequency representation; e. The TFAR model time-frequency
representation; f. The TFARMA model time-frequency representation)
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V. APPLICATION SIMULATIONS

The impulse of the outer race fault signals in the vibration
position of the drive end accelerometer, the fan end accelerom-
eter and the base accelerometer is generated because of the lo-
cal defects of rolling element bearings, as shown Fig. 5.d and
Table. 1. The fault signals are non-Gaussian and non-stationary
α stable distribution because of the presence of impulses.
α stable distribution noises are added to the fault signals
in the experiment, setting α=0.8, MSNR=20 dB, and letting
N=2400. The conventional time-frequency distribution meth-
ods including STFT, PWVD, CWD, the adaptive kernel time-

frequency method, TFMA, TFARMA model time-frequency
method, and the improved lower order time-frequency dis-
tribution methods including FLO-STFT, FLO-PWVD, FLO-
CWD, the FLO-adaptive kernel time-frequency method, FLO-
TFMA and FLO-TFARMA model time-frequency method are
applied to analyze the vibration signal of a bearing with an
artificially seeded defect on outer race in the position of DE
in α stable distribution environment. FLO-TFMA (2, 2) and
FLO-TFARMA (2, 2, 1, 2) model time-frequency spectrum
methods are used to analyze the signals in the experiment.
The results are shown in Fig. 14 and Fig. 15.

Fig. 15 The new time-frequency representations of the outer race fault signal in α stable distribution environment (a. The FLO-STFT
time-frequency representation; b. The FLO-PWVD time-frequency representation; c. The FLO-CWD time-frequency representation; d. The
FLO-adaptive kernel time-frequency representation; e. The FLO-TFAR model time-frequency representation; f. The FLO-TFARMA model
time-frequency representation;)
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Table II The comparison of various FLO-time-frequency distribution methods

Methods Advantages Disadvantages Application to fault Diagnosis
FLO-STFT time-frequency Free from cross-terms, Low time-frequency resolution Revealing the time-frequency

distribution Low computational complexity, structure of the fault signals as
Definite physical meaning a preprocessing tool

FLO-WVD time-frequency High time-frequency resolution Serious cross-terms interference Analyzing the fault signals after
distribution getting the signals structure

FLO-Cohen class time-frequency Suppressed cross-terms Reduced time-frequency resolution, Analyzing the fault signals after
distribution compared with FLO-WVD method certain cross-term interference getting the signals structure

FLO-adaptive kernel time-frequency Suppressed cross-terms, improved High computationally complex Suitable to the computational
distribution timeCfrequency resolution complexity fault signals

FLO-ARMA time-frequency Free from cross-terms High computational complexity, Suitable to analyzing the slowly
distribution low time-frequency resolution time-varying fault signals

STFT time-frequency representation of the outer race fault
signal is shown in Figure. 14.a, Fig. 14.b is the PWVD time-
frequency distribution, CWD method time-frequency repre-
sentation is shown in Fig. 14.c, the adaptive kernel time-
frequency representation is in Figure. 15.d, Figure. 15.e and
Figure. 15.f respectively are TFAR model time-frequency rep-
resentation and TFARMA model time-frequency distribution.
The results show that the conventional time-frequency methods
fail in α stable distribution environment. FLO-STFT time-
frequency representations of the outer race fault signal in
Figure. 15.a show the shock pulse is mainly distributed in
low-frequency band from 0 Hz to 4000 Hz, and the transient
harmonic vibration components of about 600 Hz, 2800 Hz and
3500 Hz dominate frequency-domain. Its vertical resolution is
bad, the fault characteristic frequency cannot be seen. FLO-
PWVD time-frequency representations in Fig. 15.b have a
good vertical resolution, but there are serious cross terms,
which render it not conducive to observe. FLO-CWD method
preferably restrains the cross-term interference in Fig. 15.c, it
can be seen clearly that the gap regularly changes between
the impact, the interval between the impulses A, B, C, D, E
and F is approximately 30ms, the interval corresponds to the
characteristic frequency of outer race as 33.333Hz. We can
also know the interval between A, B, C, D, E and F is about
30ms from FLO-adaptive kernel time-frequency representation
in Figure. 15.d, the impact frequency band expanded into 0-
6000 Hz because of its poor lateral resolution. The results
show that the transient harmonic vibration components are
600Hz, 2800Hz and 3500Hz from the FLO-TFAR model time-
frequency representation in Fig. 15.e, but its vertical resolution
is bad, so we cannot see the effect of the time interval.
However, FLO-TFARMA model time-frequency distributions
in Fig. 15.f show the interval between the impulses A, B, C, D,
E and F is approximately 30ms, as well as that the dominant
frequency of 600Hz, 2800Hz and 3500Hz, FLO-TFARMA has
certain ability in the horizontal and vertical, but the overall
resolution is low.

The simulations show that the improved methods have their
respective advantages and disadvantages as shown in this
paper. The fractional lower order short time Fourier transform
time-frequency representation has low computational com-
plexity and definite physical meaning, but the time-frequency

resolution is low, hence it is suitable to analyze the non-
stationary machinery fault signals whose local stationary is
larger. The fractional lower Wigner-ville time-frequency rep-
resentation has high time-frequency resolution, however, there
are serious cross-terms interference. The fractional lower order
pseudo Wigner-Ville time-frequency representation added win-
dow function and the different kernel function fractional low-
order Cohen class time-frequency distribution can suppress
certain cross-term interference, but it leads to reduced the
time-frequency resolution. The fractional lower order adap-
tive kernel time-frequency representation can suppress cross-
term interference, and effectively improve the time-frequency
resolution, but the computational complexity is higher. The
fractional lower order ARMA model time-frequency repre-
sentation has no interference of cross-terms, but the time-
frequency resolution is low, hence it is suitable for analyzing
the changing slowly non-stationary machinery fault signals.
The methods are summarized in Table 2. In real applications,
several methods can be selected to analyze the fault signals
according to their specific characteristics.

VI. CONCLUSIONS

The paper has presented an accurate statistical parameter
model SαS distribution for bearing fault signals diagnosis.
The time-frequency analysis methods are key tools for ma-
chinery fault diagnosis, they can be used to identify the
constituent components and time variation of the signals. We
have presented FLO-STFT, FLO-WVD, FLO-PWVD, FLO-
CWD, FLO-AKTFD and FLO-ARMA time-frequency analy-
sis methods based on SαS stable distribution statistical model.
The methods have better performances than the conventional
methods including STFT, WVD, PWVD, CWD, AKTFD and
ARMATFD. The traditional methods fail in SαS stable distri-
bution environment, but the proposed methods can regularly
work in the noise environment, which shows robustness. The
proposed time-frequency analysis methods are used to analyze
the bearing fault signals, they have respective advantages and
disadvantages, the FLO-STFT method has low computational
complexity and low resolution. FLO-WVD has better reso-
lution, but there are serious cross terms. The FLO-PWVD
and FLO-CWD methods suppress the cross-term interference
through adding the window function, but they still suffer from
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cross-term interference. The FLO-AKTFD methods could be
effective to improve time-frequency resolution and suppress
cross-terms. The FLO-TFARMA model method is free from
cross-term interference, however, the timeCfrequency resolu-
tion is not as high as expected. The improved time-frequency
analysis method is applied to the bearing fault diagnosis, which
can better get fault features of the signals. In the actual bearing
fault diagnosis analysis, we can use the above several kinds
of comprehensive methods to analyze together, and take their
respective advantages to comprehensive judgment, and hence
better results can be obtained.
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An Exploration on Adaptive Iterative Learning
Control for a Class of Commensurate High-order

Uncertain Nonlinear Fractional Order Systems
Jianming Wei, Yun-an Hu, and Meimei Sun

Abstract—This paper explores the adaptive iterative learning
control method in the control of fraction order systems for
the first time. An adaptive iterative learning control (AILC)
scheme is presented for a class of commensurate high-order
uncertain nonlinear fractional order systems in the presence
of disturbance. To facilitate the controller design, a sliding
mode surface of tracking errors is designed by using sufficient
conditions of linear fraction order. To relax the assumption of
the identical initial condition in iterative learning control (ILC),
a new boundary layer function is proposed by employing Mittag-
Leffler function. The uncertainty in the system is compensated
for by utilizing radial basis function neural network. Fractional
order differential type updating laws and difference type learning
law are designed to estimate unknown constant parameters and
time-varying parameter, respecitvely. The hyperbolic tangent
function and a convergent series sequence are used to design
robust control term for neural network approximation error and
bounded disturbance, simultaneously guaranteeing the learning
convergence along iteration. The system output is proved to
converge to a small neighborhood of the desired trajectory
by constructing Lyapnov-like composite energy function (CEF)
containing new integral type Lyapunov function, while keeping
all the closed-loop signals bounded. Finally, a simulation example
is presented to verify the effectiveness of the proposed approach.

Index Terms—Adaptive iterative learning control, fractional
order nonlinear systems, Mittag-Leffler function, boundary layer
function, composite energy function, fractional order differential
learning law .

I. INTRODUCTION

PAST decades have witnessed tremendous research efforts
aiming at the development of systematic design methods

for the iterative learning control (ILC) of nonlinear systems
performing control task over a finite interval repeatedly. ILC
has been proven to be the most suitable and effective control
scheme for such repeatable control tasks owing to its capacity
of achieving perfect tracking by learning along iteration.
Generally, according to the stability analysis tool, ILC can
be categorized into two classes: traditional ILC [1]−[5] and
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adaptive ILC (AILC) [6]−[16]. The basic idea of traditional
ILC is to use information of the previous execution to design
the control signal for current operation by a learning mecha-
nism, which allows to achieve improving performance from
iteration to iteration. Furthermore, the stability conclusion
of traditional ILC is usually obtained by using contraction
mapping theorem and fixed point theorem, which enables
traditional ILC to deal with nonlinear plants without needing
any information of the system. Traditional ILC has been
developed greatly in theory and application because of its
simplicity and availability. However, the main drawback of
traditional ILC lies in the requirement of the global Lipschitz
continuous condition, which restricts its application to certain
nonlinear systems. Besides, the usage of contraction mapping
theorem rather than Lyapunov method as the key tool of
stability analysis in traditional ILC makes it difficult to relax
the global Lipschitz condition to local Lipschitz or even
non-Lipschitz condition and cooperate with the mainstream
methods of nonlinear control theory, such as adaptive control
and neural control. To overcome the constraints of traditional
ILC, some researchers tried to introduce the idea of adaptive
control into ILC and proposed adaptive iterative learning
control (AILC) [6], [7]. AILC takes advantage of both adaptive
control and ILC, which successfully overcomes the restriction
of global Lipschitz condition, thus it enables us to use fuzzy
logic systems or neural networks as approximators to deal with
nonlinear uncertainties. In general, the control parameters of
AILC methods are tuned along the iteration axis, and the so-
called composite energy function (CEF) [8] is usually con-
structed to analyze the stability and convergence property of
the closed-loop systems. The past decade has witnessed great
progress in AILC of uncertain nonlinear systems [9]−[16].

Fractional calculus is a promising topic for more than 300
years. But the researches are mainly in the field of mathemati-
cal sciences [17], [18]. Until recent decade, the applications of
fractional calculus develop rapidly [19], [20]. Fractional order
systems allow us to describe and model a real object more
accurately than the classical integer order dynamical systems.
Among the investigations of fractional order systems in the
past decades, control design for some fractional order systems
has been a hot topic. Many different control methods have been
proposed for various kinds of fractional systems [20]−[28].
Especially, the research on control and synchronization control
design for fractional order chaotic systems is very active
[29]−[39].

Comparing with such a large number of results, the papers
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on the ILC control of fractional order systems are relatively
less. Only a few works are reported in the filed of ILC [40]-
[53]. Moreover, all these literatures are from the viewpoint
of traditional ILC and the stability conclusions are obtained
by using contraction mapping theorem method. Therefore, as
results of integer-order systems, global Lipschitz condition is
required for traditional ILC schemes. As for AILC problem of
fractional order systems, to the best of our knowledge, there
are no results having been reported.

In this paper, we present an AILC scheme for a class of
nonlinear fractional order system with both parametric and
nonparametric uncertainties in the presence of disturbance. As
far as we know, up till now no works have been presented
for such a problem. In the proposed AILC scheme, adaptive
iterative learning controller with fractional order differential
type and difference type learning laws are presented and
the CEF containing new integral type Lyapunov function is
constructed to analyze the stability and convergence property.
The main contributions of the proposed AILC scheme and
stability analysis are highlighted as follows: 1) To the best
of our knowledge, it is the first time, in the literature, that
AILC problem of fractional order system is investigated. 2) A
sliding mode surface of tracking errors is designed by using
the sufficient condition for linear fractional order systems. 3)
A new boundary layer function using Mittag-Leffler function
is designed to deal with the initial condition problem in the
ILC design of fractional order system. 4) Fractional order
differential type learning laws with alignment method for
unknown constant parameters is used in the AILC method
for the first time and integral type Lyapunov function is
used to analyze the convergence of estimation errors. 5) The
hyperbolic tangent function is used to design robust control
term for neural network approximation error and bounded
disturbance, and a convergent series is introduced to guarantee
the learning convergence along iteration index.

The rest of this paper is organized as follow. The problem
formulation and preliminaries are given in Section II. The
AILC design with parameter updating laws is developed in
section III. In Section IV, the CEF-based stability analysis is
presented. A simulation example is presented to verify the
validity of the proposed scheme in Section V, followed by
conclusion in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Preliminaries

In this subsection, some basic definitions and useful lemmas
are given.

Definition 1 [18]: Fractional calculus is a generalization of
integration and differentiation to noninteger-order fundamental
operator aDα

t , where a and t are the bounds of the operation
and α ∈ R. The continuous integro-differential operator is
defined as

aDα
t =





dα

dtα , α > 0,

1, α = 0,∫ t
a (dσ)α , α < 0.

(1)

Definition 2 [17]: The most important function used in
fractional calculus-Euler’s gamma function is defined as

Γ(α) =
∫ ∞

0
e−σ σα−1dσ . (2)

Definition 3 [17]: Another important function in the frac-
tional calculus named Mittag-Leffler type with two parameters
is defined as

Eα, β (z) =
∞

∑
j=0

z j

Γ(α j +β )
, α > 0, β > 0. (3)

Especially, when β = 1, we obtain the Mittag-Leffler func-
tion with one parameter

Eα, 1 (z) =
∞

∑
j=0

z j

Γ(α j +1)
, Eα (z) . (4)

For integer values of α , (4) reduces to the well-known
Cauchy repeated integration formula.

The three most frequently used definitions for the general
fractional differintegral are: The Grünwald-Letnikov (GL)
definition, the Riemann-Liouville (RL) and Caputo definitions.

Definition 4 [17]: The Grünwald-Letnikov derivative defi-
nition of order α is described as

aDα
t f (t) = lim

h→0

1
hα

∞

∑
j=0

(−1) j
(

α
j

)
f (t− jh) (5)

with (
α
j

)
=

α!
j!(α− j)!

=
Γ(α +1)

Γ( j−1)Γ(α− j +1)
. (6)

Definition 5 [54]: The Riemann-Liouville fractional integral
of order α of function f (t) at a time instant t ≥ 0 is defined
as:

aIα
t f (t) = aD−α

t f (t) =
1

Γ(α)

∫ t

a
f (σ)(t−σ)α−1dσ . (7)

From (7) we can write formula for the Riemann-Liouville
definition of fractional derivative of order α in the following
form

aDα
t f (t) =

1
Γ(n−α)

dn

dtn

∫ t

a

f (σ)

(t−σ)α−n+1 dσ , (8)

for n−1 < α < n.
Definition 6 [17]: The Caputo fractional integral of order

α of function f (t) at time t ≥ 0 is defined as

aDα
t f (t) =

1
Γ(n−α)

∫ t

a

f (n) (σ)

(t−σ)α−n+1 dσ , (9)

for n−1 < α < n.
Remark 1: Actually, the above three definitions are equiva-

lent under some conditions. We will use the Caputo definition
in this paper. In the rest of this paper, the notation Dα (·)
indicates the Caputo derivative of order α with a = 0, i.e.,
Dα (·) , 0Dα

t (·).
Lemma 1 [55], [56]: Consider the following fractional order

autonomous system

Dα x(t) = Ax(t) , x(0) = x0, (10)
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where 0 < α < 1, x ∈ Rn and A ∈ Rn×n. This system is
asymptotically stable if and only if |arg(λ (A))|> α π

2 . In this
situation, the components of the state vector decay toward zero
like t−α .

Fig. 1. Stability domain for fractional order linear systems with
0 < α < 1.

Lemma 1 [57]: The fractional system Dα y(t) = u(t), 0 <
α < 1, is equivalent to the following continuous frequency
distributed model{

∂ z(ω,t)
∂ t =−ωz(ω, t)+u(t) ,

y(t) =
∫ ∞

0 µ (ω)z(ω, t)dω,

(11)

with weighting function µ (ω) = sin(απ)
πωα , z(ω, t) ∈ R.

B. Problem Formulation

In this paper, we consider a class of commensurate high-
order uncertain nonlinear systems in the presence of distur-
bance which runs on a finite interval [0,T ] repeatedly given
by





Dα xi,k (t) = xi+1,k (t) , i = 1, · · · ,n−1,

Dα xn,k (t) = f (xk (t))+θ (t)ξ (xk (t))+uk (t)+d (t)
yk (t) = x1,k (t) ,

,

(12)
where t ∈ [0,T ] is the time, k ∈ N denotes the times
of iteration; xi,k (t) ∈ R i = 1, · · · ,n and yk (t) are the
pseudo state and output variables, respectively; xk (t) =[
x1,k (t) ,x2,k (t) , · · · ,xn,k (t)

]T ∈ Rn is the pseudo state vec-
tor; f (·) is an unknown smooth function. d (t) is unknown
bounded external disturbance. uk (t) ∈ R is the control input.
The control objective of this paper is to design the adaptive
iterative learning controller to steer the output yk (t) to follow
the desired reference signal r (t).

Define r1 (t) = r (t) and ri+1 (t) = Dα ri (t), i = 1,2, · · · ,n−
1. Then we can write the desired reference vector as
xd (t) = [r1 (t) ,r2 (t) , · · · ,rn (t)]T. Define the tracking errors
as ei,k (t) = xi,k (t)− ri (t), i = 1,2, · · · ,n. Then the track-
ing error vector can be given by ek (t) = xk (t)− xd (t) =

[
e1,k (t) ,e2,k (t) , · · · ,en,k (t)

]T. In the rest of this paper, the
denotation t will be omitted when no confusion arises.

Choose the sliding surface as es,k =
[
ΛT 1

]
ek, where Λ =

[λ1,λ2, · · · ,λn−1]
T and λ1, · · · ,λn−1 are chosen suitably such

that the eigenvalues of the matrix B satisfy condition of
Lemma 1, where the matrix B is given by

B =




0
... In−2
0
−λ1 · · · −λn−1


 , (13)

with In−2 as unit matrix of n−2 dimensions. Then keeping the
system’s errors on this surface leads to the asymptotic stability
of error systems and therefore output tracking of the desired
reference signal.

To facilitate control system design, the following reasonable
assumptions are made.

Assumption 1: The unknown external disturbance is
bounded.

Assumption 2: The desired state trajectory xd (t) is contin-
uous, bounded and available.

Assumption 3: The initial state errors ei,k (0) at each iteration
are not necessarily zero, small and fixed, but assumed to be
bounded.

C. RBF Neural Networks

In control engineering, two types of artificial neural net-
works are usually used to approximate unknown smooth
functions, which specifically are linearly parameterized neural
networks (LPNNs) and multilayer neural networks (MNNs).
As a kind of LPNNs, the radial basis function (RBF) neural
network (NN) [58] is usually used as a tool to model unknown
nonlinear functions owing to its nice approximation capabili-
ties. The RBF NN can be seen as a two-layer network in which
hidden layer performs a fixed nonlinear transformation with no
adjustable parameters, i.e., the input space is mapped into a
new space. The output layer then combines the outputs in the
latter space linearly. Generally, the RBF NN approximates the
continuous function Q(Z) : Rq → R as follows

Qnn (Z) = W Tφ (Z) ,

where Z ∈ΩZ ⊂Rq is the input vector, W = [w1,w2, · · · ,wl ]
T ∈

Rl is the weight vector, the NN node number l > 1; and φ (Z) =
[ϕ1(Z), · · · ,ϕl(Z)]T, with ϕi(Z) as the commonly used Gaus-
sian functions, i.e., ϕi(Z) = e−(Z−µi)

T(Z−µi)/σ2
i , i = 1, · · · , l,

where µi = [µi1,µi2, · · · ,µiq] is the center of the receptive field
and σi is the width of the Gaussian function. It has been proven
that if l is chosen sufficiently large, W Tφ (Z) can approximate
any continuous function, Q(Z), to any desired accuracy over a
compact set ΩZ ⊂Rq in the form of Q(Z) =W ∗Tφ(Z)+ε (Z),
∀Z ∈ΩZ ⊂ Rq where W ∗ is the ideal constant weight vector,
and ε (Z) is the approximation error which is bounded over
the compact set, i.e., |ε (Z)| ≤ ε∗, ∀Z ∈ΩZ , where ε∗ > 0 is an
unknown constant. The ideal weight vector W ∗ is an artificial
quantity required for analytical purposes. W ∗ is defined as the
value of W that minimizes |ε (Z)| for all Z ∈ ΩZ ⊂ Rq, i.e.,
W ∗ := argminW∈Rl

{
supZ∈ΩZ

∣∣h(Z)−W Tφ (Z)
∣∣}.
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III. AILC SCHEME DESIGN

According to the systems dynamic equation (10) and defini-
tion of tracking errors, we can have the dynamics of tracking
errors




Dα ei,k (t) = ei+1,k (t) , i = 1, · · · ,n−1,

Dα en,k (t) = f (xk (t))+θ (t)ξ (xk (t))+uk (t)
+d (t)−Dα rn.

(14)

By taking the derivative of order α of sliding surface, one
has

Dα es,k = Dα en,k +Dα

(
n−1

∑
i=1

λiei,k

)

= Dα en,k +
n−1

∑
i=1

λiDα ei,k

= f (xk (t))+θ (t)ξ (xk (t))+uk (t)+d (t)

−Dα rn +
n−1

∑
i=1

λiei+1,k. (15)

According to Assumption 3, there exist known constants εi,
such that,

∣∣ei,k(0)
∣∣≤ εi, i = 1,2, · · · ,n for any k ∈ N. In order

to overcome the uncertainty from initial resetting errors, we
define a novel boundary layer function by employing Mittag-
Leffler function

η(t) = εEα (−Kt) , K > 0, (16)

where ε =
[
ΛT 1

]
[ε1,ε2, · · · ,εn]

T.
Remark 2: As the boundary layer function[13−15] in integer

order case, η(t) has good property of decreasing along time
axis with initial condition η(0) = ε . Moreover, it is clear that
Dα η (t) = εDα Eα (−Kt) =−KεEα (−Kt) =−Kη (t).

Then we can define an auxiliary error signal as

sk(t) = es,k(t)−η(t)sat
(

es,k(t)
η(t)

)
, (17)

where sat(·) is the saturation function which is defined as

sat(·) = sgn(·) ·min{|·| ,1} , (18)

with sgn(·) =





1, if · > 0
0, if · = 0
−1, if · < 0

as the sign function.

Subsequently, it can be easily obtained that

|esk (0)|= ∣∣λ1e1,k (0)+λ2e2,k (0)+ · · ·+ en,k (0)
∣∣

≤ λ1
∣∣e1,k (0)

∣∣+λ2
∣∣e2,k (0)

∣∣+ · · ·+ ∣∣en,k (0)
∣∣

≤ λ1ε1 +λ2ε2 + · · ·+ εn = η (0) , (19)

which implies that sk (0) = esk (0)−η (0) esk(0)
η(0) = 0 is satisfied

for all k ∈ N. Moreover, there exists the fact that

sk (t)sat
(

esk(t)
η(t)

)
=





0, if
∣∣∣ esk(t)

η(t)

∣∣∣≤ 1

sk (t)sgn(esk (t)) , if
∣∣∣ esk(t)

η(t)

∣∣∣ > 1

= sk (t)sgn(sk (t)) = |sk (t)| . (20)

To overcome the design difficulty from uncertainty
f (xk (t)), we employ radial basis function neural network to
approximate f (xk (t)) in the form of

f (xk (t)) = W ∗Tφ (xk)+ ε (xk) . (21)

From Lemma 2, we can obtain the equivalent continuous
frequency distributed model of dynamical system of sk{

∂ zk(ω,t)
∂ t =−ωzk (ω, t)+Dα sk,

sk (t) =
∫ ∞

0 µ (ω)zk (ω, t)dω,

(22)

with weighting function µ (ω) = sin(απ)
πωα , zk (ω, t) ∈ R is the

true error variable.
Define a smooth scalar positive function as

Vs,k (t) =
1
2

∫ ∞

o
µ (ω)z2

k (ω, t)dω. (23)

The time derivative of Vs,k (t) can be expressed as

V̇s,k (t) =
∫ ∞

0
µ (ω)zk (ω, t)

∂ zk (ω, t)
∂ t

dω

=
∫ ∞

0
µ (ω)zk (ω, t)(−ωzk (ω, t)+Dα sk)dω

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + skDα sk

=





−∫ ∞
0 µ (ω)ωz2

k (ω, t)dω
+sk

(
Dα es,k−Dα η (t)sgn(sk)

)
,
∣∣es,k

∣∣ > η (t)
−∫ ∞

0 µ (ω)ωz2
k (ω, t)dω,

∣∣es,k
∣∣≤ η (t)

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + sk
(
Dα es,k−Dα η (t)sgn(sk)

)

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + sk
(
W ∗Tφ (xk)+ ε (xk)

+θ (t)ξ (xk)+uk +d (t)−Dα rn +
n−1

∑
i=1

λiei+1,k

+Kη (t)sgn(sk))

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + sk
(
W ∗Tφ (xk)+ ε (xk)

+θ (t)ξ (xk)+uk +d (t)−Dα rn +
n−1

∑
i=1

λiei+1,k

−Kes,k +Kes,k +Kη (t)sgn(sk)
)

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + sk
(
W ∗Tφ (xk)+θ (t)ξ (xk)

+uk + d̄ (t)−Dα rn +
n−1

∑
i=1

λiei+1,k +Kes,k

)
−Ks2

k , (24)

where d̄ (t) = d (t)+ ε (xk) and using the equality

sk (t)(−Kesk (t)+Kη (t)sgn(sk (t)))

= sk (t)
(
−Ksk (t)−Kη (t)sat

(
esk (t)
η (t)

)

+Kη (t)sgn(sk (t)))

=−Ks2
k (t)−Kη (t) |sk (t)|+Kη (t) |sk (t)|

=−Ks2
k (t) . (25)

Obviously, d̄ (t) is bounded, i.e., there exists an unknown
positive constant ρ such that

∣∣d̄ (t)
∣∣≤ ρ .
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Then we can determine the control law as

uk (t) =Dα rn−
n−1

∑
i=1

λiei+1,k−Kes,k−Ŵ T
k φ (xk)

− θ̂k (t)ξ (xk)− ρ̂k tanh
(

skρ̂k

∆k

)
, (26)

where Ŵk, θ̂k (t) and ρ̂k are the estimates of W ∗, θ (t) and
ρ , respectively, ∆k is a convergent series sequence which is
defined as ∆k = q

km , l and q are constant design parameters and
q(∈ R) > 0, m(∈ Z+) ≥ 2. For preceding analysis, we need
the following lemmas.

Lemma 3 [59]: For any ∆k > 0 and x ∈ R, the inequality
|x|− x tanh(x/∆k )≤ γ∆k is established, where γ is a positive
constant and γ = e−(γ+1) or γ = 0.2785.

Lemma 4 [60]: limk→∞ ∑k
j=1 ∆ j ≤ 2q.

The adaptive learning laws for unknown parameters are
designed as

{
DαŴk (t) = ΓW sk (t)φ (xk) ,
Ŵk (0) = Ŵk−1 (T ) , Ŵ1 (0) = 0,

(27)

{
θ̂k (t) = θ̂k−1 (t)+qθ sk (t)ξ (xk) ,
θ̂0 (t) = 0, t ∈ [0,T ],

(28)

{
Dα ρ̂k (t) = qρ |sk (t)| ,
ρ̂k (0) = ρ̂k−1 (T ) , ρ̂1 (0) = 0,

(29)

where ΓW ∈ Rl×l is a positive square matrix and qθ ,qρ > 0
are design parameters. In the following parts, we define the
estimation error of Θ(t) as Θ̃k (t) = Θ̂k (t)−Θ(t) where Θ(t)
denotes W ∗, θ (t) and ρ .

Substituting the controller (26) back into (24) yields

V̇s,k (t)≤−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω− skW̃ T
k φ (xk)

− skθ̃k (t)ξ (xk)+ |sk|ρ−|sk| ρ̂k

+ |sk| ρ̂k− skρ̂k tanh
(

skρ̂k

∆k

)
−Ks2

k

≤−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω− skW̃ T
k φ (xk)

− skθ̃k (t)ξ (xk)−|sk| ρ̃k + γ∆k−Ks2
k

≤−skW̃ T
k φ (xk)− skθ̃k (t)ξ (xk)

−|sk| ρ̃k + γ∆k−Ks2
k . (30)

From adaptive updating laws (27) and (29) it follows

DαW̃k = DαŴk−DαW ∗ = DαŴk, (31)

Dα ρ̃k = Dα ρ̂k−Dα ρ = Dα ρ̂k. (32)

According to Lemma 2, we can obtain the distributed
frequency model of (31) and (32) as follows

{
∂ zW,k(ω,t)

∂ t =−ωzW,k (ω, t)+ΓW sk (t)φ (xk) ,
W̃k (t) =

∫ ∞
0 µ (ω)zW,k (ω, t)dω,

(33)

{
∂ zρ,k(ω,t)

∂ t =−ωzρ,k (ω, t)+qρ |sk (t)| ,
ρ̃k (t) =

∫ ∞
0 µ (ω)zρ,k (ω, t)dω,

(34)

where zW,k (ω, t)∈Rl and zρ,k (ω, t)∈R are the true estimation
error variables.

Define a positive scalar positive function of parameter
estimation errors as

Vp,k (t) =
1
2

∫ ∞

o
µ (ω)zT

W,k (ω, t)Γ−1
W zW,k (ω, t)dω

+
1

2qρ

∫ ∞

o
µ (ω)z2

ρ,k (ω, t)dω. (35)

Taking the time derivative of Vp,k (t) results in

V̇p,k (t) =
∫ ∞

o
µ (ω)zT

W,k (ω, t)Γ−1
W

∂ zW,k (ω, t)
∂ t

dω

+
1

qρ

∫ ∞

o
µ (ω)zρ,k (ω, t)

∂ zρ,k (ω, t)
∂ t

dω

=−
∫ ∞

o
µ (ω)ωzT

W,k (ω, t)Γ−1
W zW,k (ω, t)dω

+Γ−1
W DαW̃ T

k

∫ ∞

o
µ (ω)zW,k (ω, t)dω

− 1
qρ

∫ ∞

o
µ (ω)ωz2

ρ,k (ω, t)dω

+
1

qρ
Dα ρ̃k

∫ ∞

o
µ (ω)zρ,k (ω, t)dω

≤skW̃ T
k φ (xk)+ |sk| ρ̃k. (36)

Define a Lyapunov candidate as Vk (t) = Vs,k (t) +Vp,k (t).
Hence, we can obtain the derivative of Vk (t) with respect to
time by combining (30) and (36)

V̇k ≤−Ks2
k − skθ̃k (t)ξ (xk)+ γ∆k. (37)

IV. ANALYSIS OF STABILITY AND CONVERGENCE

In this section, we will prove that the controller can guaran-
tee the stability of the closed-loop system and the convergence
of tracking errors.

The stability of the proposed AILC scheme is summarized
as follows.

Theorem 1: Considering the fractional order system (12),
and designing adaptive iterative learning controller (26) and
with parameter adaptive learning algorithms (27)−(29), the
following properties can be guaranteed: 1) all the signals
of the closed-loop system are bounded; 2) the pseudo
error variable sk (t) converges to zero as k → ∞, i.e.,
limk→∞

∫ T
0 (sk (σ))2dσ ≤ 0.

Proof: Define the Lyapunov-like CEF as

Ek (t) = Vk (t)+
1

2qθ

∫ t

0
θ̃ 2

k (σ)dσ . (38)

The proof includes four parts.
1) Difference of Ek (t)
Compute the difference of Ek (t), which is

∆Ek (t) =Ek (t)−Ek−1 (t)
=Vk (t)−Vk−1 (t)

+
1

2qθ

∫ t

0

[
θ̃ 2

k (σ)− θ̃ 2
k−1 (σ)

]
dσ . (39)
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Considering (37), one has

Vk (t)≤Vk (0)+
∫ t

0

(−Ks2
k − skθ̃k (t)ξ (xk)+ γ∆k

)
dσ

= Vp,k (0)−K
∫ t

0
s2

kdσ −
∫ t

0
skθ̃k (σ)ξ (xk)dσ + γ∆kt.

(40)

Utilizing the algebraic relation (aaa−bbb)T (aaa−bbb) −
(aaa−ccc)T (aaa−ccc) = (ccc−bbb)T [2(aaa−bbb)+(bbb−ccc)] and taking the
adaptive learning laws (28) into consideration, we have

1
2qθ

∫ t

0

[
θ̃ 2

k (σ)− θ̃ 2
k−1 (σ)

]
dσ

=
∫ t

0
skθ̃k (σ)ξ (xk)dσ − qθ

2

∫ t

0
s2

k (σ)ξ 2 (xk)dσ . (41)

Substituting (40) and (41) back into (39), it follows that

∆Ek (t)≤Vp,k (0)−Vk−1 (t)−K
∫ t

0
s2

kdσ + γ∆kt. (42)

Let t = T in (42). From the adaptive parameter updating
laws we know Vp,k (0) =Vp,k−1 (T ). Therefore, it follows from
(42) that

∆Ek (T )≤Vp,k (0)−Vp,k−1 (T )−Vs,k−1 (T )

−K
∫ t

0
s2

kdσ + γ∆kT

≤−K
∫ t

0
s2

kdσ + γ∆kT. (43)

2) The finiteness of Ek (T )
According to (38), we know

E1 (t) = V1 (t)+
1

2qθ

∫ t

0
θ̃ 2

1 (σ)dσ . (44)

Recalling adaptive updating law (28), we can have θ̂1 (t) =
qθ s1 (t)ξ (x1), which leads to time derivative of E1 (t) as
follows

Ė1 (t) = V̇1 (t)+
1

2qθ
θ̃ 2

1 (t)

≤−Ks2
1− s1θ̃1 (t)ξ (x1)+ γ∆1

+
1

2qθ

(
θ̃ 2

1 (t)−2θ̃1 (t) θ̂1 (t)
)
+

1
qθ

θ̃1 (t) θ̂1 (t)

=−Ks2
1− s1θ̃1 (t)ξ (x1)+ γ∆1+s1θ̃1 (t)ξ (x1)

+
1

2qθ

[(
θ̂1 (t)−θ (t)

)2−2
(
θ̂1 (t)−θ (t)

)
θ̂1 (t)

]

≤−Ks2
1 + γ∆1 +

1
2qθ

θ 2 (t) . (45)

Denote c = maxt∈[0,T ]
{

θ 2 (t)/(2qθ )
}

. Integrating the
above inequality over [0, t] yields

E1 (t)−E1 (0)≤−K
∫ t

0
s2

1 (σ)dσ + t · c+θ∆1t. (46)

According to the adaptive updating laws it is clear that
E1 (0) = Vp,1 (0), which is determined by W ∗ and ρ . Thus
the boundedness of E1 (t) can be ensured since

E1 (t)≤−K
∫ t

0
s2

1 (σ)dσ + t · c+θ∆1t +Vp,1 (0) , t ∈ [0,T ] .
(47)

Letting t = T in (47), we can obtain the boundedness of
E1 (T )

E1 (T )≤−K
∫ T

0
s2

1 (σ)dσ +T (c+ γ∆1)+Vp,1 (0)

< ∞. (48)

Applying (43) repeatedly, we may have

Ek (T ) = E1 (T )+
k

∑
j=2

∆E j (T )

≤−K
k

∑
j=1

∫ T

0
s2

j (σ)dσ +T · cmax + γT
k

∑
j=1

∆k +Vp,1 (0)

≤ T · cmax + γT
k

∑
j=1

∆k +Vp,1 (0) . (49)

Recalling Lemma 4 we have γT ∑k
j=1 ∆k ≤

limk→∞ γT ∑k
j=1 ∆k ≤ 2γT q, which further implies the bound-

edness of Ek (T ).
3) The finiteness of Ek (t)
Next we will prove the boundedness of Ek (t) by induction.

The boundedness of Ek (T ) is guaranteed for all iterations.
Consequently, ∀k ∈ N, there exists a constant M1 satisfying∫ T

0 θ̃ 2
k (σ)dσ ≤M1, thus it follows

Ek (t) = Vk (t)+
∫ t

0
θ̃ 2

k (σ)dσ

≤Vk (t)+
∫ T

0
θ̃ 2

k (σ)dσ

≤Vk (t)+M1. (50)

On the other hand, from (42), we obtain

∆Ek+1 (t)≤Vp,k+1 (0)−Vk (t)−K
∫ t

0
s2

k+1dσ + γ∆k+1t. (51)

Adding (51) to (50) leads to

Ek+1 (t) = Ek (t)+∆Ek+1 (t)
≤Vk (t)+M1 +Vp,k+1 (0)−Vk (t)

−K
∫ t

0
s2

k+1dσ + γ∆k+1t

≤M1 +Vp,k (T )+ γ∆k+1t. (52)

As we have proven that E1 (t) is bounded, therefore Ek (t)
is finite by induction. In the sequel, we can obtain the
boundedness of Ŵk (t), θ̂k (t) and ρ̂k.

4) Learning convergence property
Rewrite inequality (49) as

k

∑
j=1

∫ T

0
s2

j (σ)dσ

≤

(
T · cmax + γT

k
∑
j=1

∆k +Vp,1 (0)−Ek (T )

)

K
. (53)
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Taking the limitation of (53), it follows that

lim
k→∞

k

∑
j=1

∫ T

0
s2

j (σ)dσ

≤ lim
k→∞

(
T · cmax + γT

k

∑
j=1

∆k +Vp,1 (0)−Ek (T )

)
/K

≤ T · cmax +2γqT +Vp,1 (0) . (54)

According to the convergence theorem of the sum of series,
limk→∞

∫ T
0 s2

k (σ)dσ = 0. Since xd is bounded, the bounded-
ness of xk is established. Based on the above reasoning, we
can arrive at that uk (t) is bounded. ¤

V. SIMULATION STUDY

In this section, a simulation study is presented to verify
the effectiveness of the AILC scheme. Consider the following
second-order nonlinear fractional order system:





Dα x1,k (t) = x2,k (t) ,
Dα x2,k (t) = f (xk)+θ (t)ξ (xk)+uk (t)+d (t) ,
yk (t) = x1,k (t) ,

where α = 0.9, f (xk) = −x1,kx2,k sin
(
x1,kx2,k

)
, θ (t) = 1 +

0.5sin t, ξ (xk) = sin
(
x1,k

)
cos

(
x2,k

)
, d (t) = 0.1∗ rand ∗ sin(t)

with rand presenting a Gaussian white noise. The desired
reference trajectory is given by r (t) = sin t. The design param-
eters are chosen as ε1 = ε2 = 1, λ = 2, K = 6, ΓW = diag{0.6},
qθ = 2, qρ = 0.8, ε = λε1 + ε2 = 3. It is clear that |λ |> α

2 π .
Additionally, the boundary layer function is specified by
η(t) = 3E0.9 (−Kt), a graphic representation of η(t) is shown
in Fig. 2.

Fig. 2. Mittag-Leffler type boundary layer function η(t).

The parameters for neural network are chosen as l = 30,
µ j = 1

l (2 j− l) [2,3], σ j = 2, j = 1,2, · · · , l. The initial con-
dition x1,k (0) and x2,k (0) are randomly taken as r (0) +
0.5(1−2rand) and r1 (0)+0.5(1−2rand) , respectively. For
ease of programming, we use the Grünwald-Letnikov defini-
tion in the simulation. The system runs on [0,2π] repeatedly.
Parts of the simulation results are shown in Fig. 3∼Fig. 7.

Fig. 3. System output yk (t) on r (t) (k = 1).

Fig. 4. Control input (k = 1).

Fig. 5. System output yk (t) on r (t) (k = 30).

Figs. 3∼ 4 and Figs. 5∼ 6 show the output tracking trajec-
tory and control input of the 1st and the 30th iteration. Obvi-
ously, the signals are bounded and the tracking performance
of 1st iteration is much worse than that of 30th iteration.
Fig. 7 gives the convergence of

∫ T
0 s2

k (t)dt along the iteration
axis, which indicates that the proposed AILC scheme achieves
perfect tracking by learning.
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Fig. 6. Control input (k = 30).

Fig. 7.
∫ T

0 s2
k (t)dt versus the number of iterations.

VI. CONCLUSIONS

In this paper, an adaptive iterative learning control scheme
has been presented for a class of nonlinear fractional order
systems in the presence of disturbance. A new boundary layer
function by introducing Mittag-Leffler function is designed
to deal with the initial condition problem of ILC. RBF
NN is utilized to approximate the system uncertainty while
fractional order differential type updating laws are designed
to estimate ideal neural weight and the upper bound of neural
approximation error and disturbance. The hyperbolic tangent
function with a convergent series sequence is employed to
form the robust control term. Theoretical analysis by con-
structing Lyapunov-like CEF has been presented to show the
boundedness of all signals and convergence along iteration
of tracking error. Simulation results have been provided to
show the validity the proposed scheme. This is the first time
consideration of the AILC problem of fractional order system.
Compared with traditional ILC of fractional systems, our
AILC scheme relaxes the global Lipschitz condition and a new
framework of stability analysis by using Lyapunov-like CEF is
presented. Although we only consider the class of fraction as
(12), the idea of the proposed AILC method can be applied to
more kinds of fractional order systems and provide a reference
for AILC design of fractional order systems.
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Design and Implementation of Digital Fractional
Order PID Controller using Optimal Pole-Zero

Approximation Method for Magnetic
Levitation System

Amit S. Chopade, Swapnil W. Khubalkar, A. S. Junghare, M. V. Aware, and Shantanu Das

Abstract—The aim of this paper is to employ fractional order
proportional integral derivative (FO-PID) controller and integer
order PID controller to control the position of the levitated object
in a magnetic levitation system (MLS), which is inherently non-
linear and unstable system. The proposal is to deploy discrete
optimal pole-zero approximation method for realization of digital
fractional order controller. An approach of phase shaping by
slope cancellation of asymptotic phase plots for zeros and poles
within given bandwidth is explored. The controller parameters
are tuned using dynamic particle swarm optimization (dPSO)
technique. Effectiveness of the proposed control scheme is verified
by simulation and experimental results. The performance of
realized digital FO-PID controller has been compared with that
of the integer order PID controllers. It is observed that effort
required in fractional order control is smaller as compared
with its integer counterpart for obtaining the same system
performance.

Index Terms—Digital control, Position control, Fractional
calculus, Particle swarm optimization (PSO), Approximation
methods, Magnetic levitation, Discretization, Fractional order
PID controller (FOPID).

I. INTRODUCTION

IN 1914, American inventor Emile Bachelet presented his
idea of a magnetically levitated (maglev) vehicle with a dis-

play model. In magnetic levitation system (MLS), ferromag-
netic object levitate by the electromagnetic force induced due
to electric current flowing through coil around a solenoid[1−5].
The MLS is inherently nonlinear and unstable[6−10]. However,
the advantage is that, as the suspended object has no mechan-
ical support, there is no friction and noise. This allows us to
position it accurately - a major advantage, explored in many
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applications such as magnetically levitated train, magnetic
bearing, conveyor system, etc.[1].

In recent years, various methods have been proposed to
improve control in MLS-based applications. In 2006, Chiang
et al. proposed the concept of integral variable-structure grey
control[2]. Yang et al. introduced the concept of adaptive robust
output-feedback control with K-filter approach in 2008[3].
In 2011, Chih-Min Lin et al. developed an adaptive PID
controller and a fuzzy compensation controller for MLS[1].
In the same year, Rafael Morales et al. proposed generalized
proportional integral output feedback controller[4]. Recently in
2014, Chih-Min Lin et al. proposed a function-link cerebellar
model articulation control system design based on the neural
network concept[5]. However, in spite of all these develop-
ments, there is scope for improving efficiency of the controller.
The energy required to achieve and maintain the object’s
position (in the face of disturbances) form an important part
of improving the control action. The aim of this paper is to
control and maintain the desired object’s position, with lesser
controller effort. The controller effort minimization is reported
in literature[11−14].

The conventional integer order controllers such as, PD and
PID controller have been applied in industry for over half-a-
century to control linear and nonlinear systems[15]. Recently,
such control schemes have been extended to their generalized
form using fractional calculus[16−17] (differentiation and inte-
gration of an arbitrary order). The FO-PID controller has frac-
tional differ-integrator operations. This makes the controller
have memory (i.e. its action will memorize its past states)
and avoids instantaneous actions. Using the definition of con-
volution integral, the expression for the fractional integration
(which also is embedded in the fractional differentiation) can
be written as the convolution of the function and the power
function, which is elaborately explained in [17].

In last few decades, the fractional order approach to rep-
resent the plant and its controllers are increasingly used to
describe the dynamic process accurately[17]. The fractional or-
der transfer function is approximated by integer order transfer
function using various methods[16−20]. The proposed method
can achieve the desired accuracy over a much larger bandwidth
than has been achieved using earlier methods. In applications,
where non-integer order controllers are used for integer order



2 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

plant, there is more flexibility in adjusting the gain and phase
characteristics as compared to integer order controllers. This
flexibility makes fractional order control a more versatile tool
in designing robust and precise control systems.

This paper presents the control of magnetic levitation sys-
tem using FO-PID controller based on optimal pole-zero ap-
proximation method. An algorithm is developed to realize digi-
tal FO-differentiators and FO-integrators. The proposed design
procedure aims to ensure that the performance is within re-
quired tolerance bandwidth. Five parameters (kp, ki, kd, α, β)
of FO-PID need to be tuned for designing the controller. This
paper utilizes dynamic PSO optimization (dPSO) method to
achieve the required values. Finally, a comparative study of
the performance parameters of the controller is presented to
evaluate the advantages of deployment of FO-PID against
the conventionally used integer-order controllers. The control
effort minimization by FO-PID controller is quantified and
demonstrated.

This work is organized as follows: section II presents the
system description. Design procedure of proposed digital FO-
PID controller using discrete optimal pole-zero approximation
method and dPSO technique is discussed in section III. In
section IV simulation and experimental results on MLS are
provided to validate effectiveness of the proposed controller.
Paper concludes with a summary of the results obtained in
section V.

II. SYSTEM IDENTIFICATION OF MLS MODEL

A laboratory scale magnetic levitation system is used to
evaluate the performance of proposed controller in a controlled
environment. MLS levitates an object (metallic ball with mass
m) in a desired position by controlling the electromagnetic
field counteracting the gravitational force. The applied control
input is voltage, which is converted into current via embedded
driver[21]. Fig.1 shows the schematic diagram of MLS. The
system model is nonlinear, that means at least one of the two
states (i–current, x–ball position) is an argument of a non-
linear function. The nonlinear model of MLS relating the ball
position x and coil current i is given as (1):

Fig. 1. Schematic diagram of MLS.

mẍ = mg − k
i2

x2
(1)

i = k1u (2)

where, k is a constant depending on coil (electromagnet)
parameters, m is the mass of sphere, g is gravitational force,
k1 is an input conductance, u is control voltage, and x is
a ball position. The values of these parameters are given in
Appendix-A. A relation between control voltage x and coil
current i is given in (2). The control signal ranges between
[−5V, +5V ].

A. Linearization of MLS Model

The nonlinear form of maglev model is linearized for
analysis of the system[21]. The linear form of the model is
obtained from (1) as follows:

ẍ = g − f(x, i) (3)

where, f(x, i) = k i2

mx2

Equilibrium point is calculated by setting ẍ = 0,

g = f(x, i)|io,xo
(4)

Linearization is carried out about the equilibrium point of
xo = −1.5V (the position is expressed in volts), io = 0.8A[8].
Using series expansion method, (5) is obtained.

ẍ = −
(∂f(i, x)

∂i

∣∣∣
io,xo

4i +
∂f(i, x)

∂x

∣∣∣
io,xo

4x
)

(5)

Application of Laplace Transform on (5) simplifies it to (6).

4X(s)
4I(s)

=
−Ki

s2 + Kx
(6)

where, Ki = 2mg
io

and Kx = − 2mg
xo

Linearized model transfer function (6) has two poles, one of
which is in the right half plane at

√
(2mg/x0), which makes

the MLS open-loop unstable. Transfer function, obtained by
the linearization, is verified using system identification proce-
dure.

B. Integer Order System Identification of MLS Model

System identification is a process for obtaining mathe-
matical model using input and output system response. The
identified model response should fit with measured response
for input applied to the system model[21]. Usually there are two
methods for system identification, least mean square (LMS)
method and instrumental variable method. The identification
of MLS is generally accomplished via traditional least squares
method, and is implemented in MATLAB[21−22].

As MLS is unstable, it has to be identified with a run-
ning, stabilizing controller i.e. closed loop identification. Fig.2
shows the scheme of unstable system identification. LMS
method minimizes error between the model and plant output.
The optimal model parameters, for which the square of the
error is minimal is the result of identification. In order to
carry out identification experiment, a discrete controller has
to be applied, in the absence of which, the ball falls down,
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rendering dentification impossible. The reference signal r(t)
i.e. random binary sequence signal is given to excite the MLS
and output y(t) is monitored. 2500 samples of the input, output
signals are collected from the system with sampling period of
0.01s.

Fig. 2. Block diagram of MLS control and close loop system
identification.

Fig.3 presents the comparison between measured and iden-
tified model output. Input and output data is taken from MLS
system for real-time identification. The best fit obtained is
90.78% for integer order identification, which gives close loop
discrete transfer function as in (7):

Fig. 3. Measured and simulated model output.

Y (z−1) =
G(z−1)

1 + C(z−1)G(z−1)
(7)

where, Y (z−1) is complete system transfer function, C(z−1)
is controller transfer function, and G(z−1) is MLS model
transfer function in discrete domain.

III. DESIGN OF DIGITAL FRACTIONAL ORDER PID
CONTROLLER

A. Fractional Calculus

Fractional calculus is a branch of mathematics that studies
the possibility of taking real or complex number powers of
differential and integral operator. Basic definitions of fractional
calculus and approximation of fractional integrator and frac-
tional differentiator are described in the literature[16−17]. The
real order operator is generalized as follows in (8):

Dα =





dα

dt α > 0
1 α = 0∫ t

a
(dτ)−α α < 0



 (8)

where, α ∈ R

Some popular definitions used for general fractional deriva-
tives/integrals in fractional calculus are :

1) : Riemann-Liouville (RL) definition is given in (9).

aDα
t f(t) =

1
Γ(n− α)

(
d
dt

)n ∫ t

a

f(τ)
(t− τ)α−n+1

dτ (9)

for (n− 1) ≤ α < n
where, n is an integer, α is a real number, and Γ is Euler
gamma function. Laplace transform of the RL fractional
derivative/integral (9), under zero initial conditions, is given
in (10).

L{aD±α
t f(t)} = s±αF (s) (10)

2) : Another definition is based on the concept of fractional
differentiation i.e. Grunewald-Letnikov (GL) definition. It is
given in (11).

aDα
t f(t) = lim

h→0
h−αΣ

[
t−a

h

]
j=0 (−1)j

(
α

j

)
f(t− jh) (11)

where,
[

t−a
h

] −→ Integer
3) : One more option for computing fractional derivatives

is Caputo fractional derivative, its definition is as follows (12):

C
a Dα

t f(t) =
1

Γ(n− α)

∫ t

a

fn(τ)
(t− τ)α+1−n

dτ (12)

where, (n − 1) ≤ α < n, n is an integer, and α is a real
number.

Initial conditions for Caputo’s derivatives are expressed in
terms of initial values of integer order derivatives. It is noted
that for zero initial conditions RL, GL, and Caputo fractional
derivatives coincide. Hence, any of the mentioned methods
may be used, using the case of zero initial conditions. That
would then eliminate the differences arising due to different
initial conditions (amongst the three methods).

B. Digital Realization of Fractional Order Differintegrals with
Optimal Pole-Zero for Phase Shaping

The aim behind the choice of frequency domain rational
approximation of FO-PID controller is to realize the controller
in real time using existing analog/digital filters[16−20, 23−25].
Precise hardware implementation of multi-dimensional na-
tured of fractional order operator is difficult. However, re-
cent research work revealed that band-limited implementation
of FO-PID controllers using higher order integer transfer
function approximation of the differintegrals give satisfactory
performance[26]. This paper, hence utilizes optimal pole-zero
algorithm to realize fractional differintegrals in the frequency
domain.

1) Optimal pole-zero approximation for phase shaping:
Any rational transfer function is characterized by its poles and
zeros. The Bode magnitude plot of non-integer order transfer
function has a slope of ±α20 dB/dec and the Bode phase
plot lies in the range of ±α90o (α is a real number). This is
achieved by the interlacing of real poles and zeros alternately
on the negative real axis[19−20, 27−28]. Thus, depending on
the error band ε around required phase angle αreq = α90o
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and the frequency band of interest (ωL, ωH), the nth order
approximation is obtained[28]. The proposed algorithm is de-
veloped to obtain the number of optimal pole-zero pairs to
maintain the phase value within the tolerance, of around 1o.
In this algorithm, poles and zeros given by (13) are obtained
as follows:

First pole, p1 = 10[
φreq+45logωl

45 +1]

First zero, z1 = 10ωl

Second pole, p2 = 10[log(p1)+2−µ]

Second zero, z2 = 10[log(z1)+2−µ]

...
till pn ≥ ωh

(13)

As a particular case, asymptotic phase plot for fractional
order integrator circuit having α = −0.4, φreq = −36o,
ωL = 0.1rad/s and ωH = 100rad/s is given in Fig.4 - Fig.6.
The selection of three pairs of poles and zeros with α = −0.4
fraction is shown in Fig.4. The asymptotic phase plot is a
straight line at φreq , but the actual phase plot is oscillating
about asymptotic phase plot, apart from that the average value
of phase angle −37.31o is also different from φreq . In Fig.4 the
required correction of phase is achieved over three decades by
three pole-zero pairs only, which is however less in pursuit
of more accuracy. This problem is rectified by increasing
the pole-zero density, i.e. having more pole-zero pairs in the
desired frequency band. Number of pole-zero pairs depend on
the permissible error and the desired band of frequency.

Fig. 4. Asymptotic phase plot with three pole-zero pairs for α =

−0.4(−36o).

Generally, three pole-zero pairs per decade give the phase
plot within ε = ±1o error, but it depends on the value of α
as well. For the same parameters, i.e. α = −0.4, φreq = 36o,
ωL = 0.1rad/s and ωH = 100 rad/s with seven pole-zero
pairs, phase plot is shown in Fig.5. The actual phase plot is
oscillating with rms error of 0.6471o(< 1o). Apart from that,
average value of phase angle (−35.9999o ≈ −36o) is same as
φreq . Moreover, this is achieved over 3 decades of cycle by
seven pole-zero pairs. In order to maintain the phase margin
tolerance within the lower limits, more pole-zero pairs in the
desired frequency band are required. This can be done by
adjusting z1, p2, z3.... closer towards left. To achieve this shift,
design parameter µ is introduced. Frequency band of constant
phase shrinks on both the ends with increasing µ for constant

number of pole-zero pairs. Fig.6 shows the basic idea of
frequency band tightening. The problem regarding frequency
band shrinking is tackled by designing the rational approx-
imation on wider frequency band ( ωl

10γ , 10δωh) followed by
curtailing the frequency overhang on either side, such that the
phase remains within φreq ± ε in range of (ωl, ωh). Nominal
values to expand frequency band are γ = 3, δ = 2.

Fig. 5. Asymptotic phase plot with seven pole-zero pairs.

Fig. 6. The basic idea of frequency band tightening.

2) Design of Digital Fractional Order Integrator: The key
point in digital implementation of fractional order controller
is discretization of fractional order differintegral[24, 27−29].
Contributions related to the discretization have been reported
in literature[30−33]. The pole-zero pairs obtained by algo-
rithm in the above case are discretized using first order hold
(foh), zero order hold (zoh), Tustin operator, impulse invari-
ant, matched pole-zero, and Tustin with pre-warp frequency
methods. In Fig.7, Bode plot for s−0.4 digital integrator
is shown and it depicts that digital integrator with Tustin
approximation method matches closely with continuous time
integrator. Tustin approximation method with a sample time
of 0.01s is used for discretization. To relate s-domain and z-
domain transfer functions, Tustin and bilinear methods use the
following approximation as (14).

z = esTs ≈ 1 + sTs/2
1− sTs/2

(14)

The optimal pole-zero algorithm for digital fractional in-
tegrator of s−0.4 within desired band of frequency ωL =
0.1rad/s and ωH = 100rad/s gives pole-zero pairs which are
listed in Table 1 with gain value 0.010127.
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Fig. 7. Bode plot of s−0.4 digital integrator.

Table I
THE POLE-ZERO PAIRS OF THE RATIONAL

APPROXIMATION OF s−0.4 ON (10−1, 102)rad/s

i 1 2 3 4 5 6 7
zi −0.9253 −0.4842 0.9307 0.992 0.9991 1 0.5136

pi −0.8286 0.7651 0.9707 0.9967 1 1 −0.0875

Digital fractional differentiator is designed along the lines
of approach similar to that of digital fractional integrator. The
architecture of digital FO-PID with digital fractional integrator
and digital fractional differentiator is shown in Fig.8.

Fig. 8. Digital FO-PID controller.

3) dynamic Particle Swarm Optimization: Recently, many
researchers have focused on fractional order controllers tuning,
and have obtained meaningful results[34−47]. In this work,
dPSO method is used to tune the gains and orders of the
controller. PSO is a method for optimizing hard numerical
functions, analogous to social behavior of flocks of birds,
schools of fish, etc. Here, each particle in swarm represents
a solution to the problem defined by its instantaneous po-
sition and velocity[48]. The position vector of each particle
is represented by unknown parameters to be ascertained. In
present case, five control parameters (kp, ki, kd, α, β) of FO-
PID controller need to be ascertained. The desired number of
particles is known as population. The population is varied to
carry out a search in multidimensional space. Each particle in
population will travel with the updated velocity and direction
to converge as early as possible to the optimal solution point.
Dynamic PSO is an improvement in PSO by adding the
product of differences in objective function value between

a particle and its individual best or the global best. Here,
the change in position of a particle is directly proportional
to iteration, which further depends on individual best, global
best, and a random velocity[49]. dPSO searches the workspace
similar to a simple PSO and velocity of a particle is obtained
by (15):

vid = (f(pid)− f(xid))× (pid − xid)× sf1

+ (f(pgd)− f(xid))× (pgd − xid)× sf2

+ rand()× signis()× sf3 (15)

where, vid: velocity of a particle, pid: individual best, xid:
current position of a particle, pgd: global best, rand: random
function, sf1, sf2, sf3: to scale the calculated value in the
range of the control variable, signis: function which generates
random positive or negative value.

Population size is taken as 100, maximum iteration is set
as 50, lower and higher translation frequencies are taken as
ωL = 0.1rad/s and ωH = 100rad/s. ITAE (Integral Time Ab-
solute Error) is chosen as performance criterion. The values of
controller parameters, obtained from dPSO, are implemented
in PD, PID, and FO-PID controller in simulation as well
as in real time mode on MLS. The optimized values of the
controllers are presented in Table II.

Table II
dPSO OPTIMIZED GAIN AND FRACTIONAL ORDER VALUES

USED FOR DIFFERENT CONTROLLERS ( α :ORDER OF
INTEGRATOR, β :ORDER OF DIFFERENTIATOR)

Sr. No. Controllers
Gain and Fractional Order Value
Kp Ki Kd α β

1. PD 4 – 2 – 1

2. PID 5.5 2 0.2 1 1

3. FOPID 7 12 1 0.4 0.8

IV. MLS CONTROL: SIMULATION AND
HARDWARE

A. Closed-Loop Control System Simulation

Control of MLS using optimized PD, PID, and FO-PID con-
troller is studied by MATLAB simulation. A sinusoidal excita-
tion signal is used to study the effects. The controller generates
a compensating control signal (based on the positional error) to
achieve desired ball position. Controller parameters are tuned
using dPSO method as discussed in section III-B-3. Fig.9 -
Fig.11 present simulation results of the controlled output of
MLS using PD, PID, and FO-PID controller respectively. Here,
encircled part pointed by an arrow shows deviation between
desired and actual ball position.

Fig. 9. Controlled output result of MLS using PD.
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Fig. 10. Controlled output result of MLS using PID.

The measured and desired ball positions with PD, PID,
and FO-PID controllers are quantitatively presented in Table
III. The simulation results indicate that deviation between
measured and desired ball positions by using dPSO tuned FO-
PID controller, is less as compared to PD or PID controllers.

Fig. 11. Controlled output result of MLS using FO-PID.

Error values presented in Table III are calculated using (16):

Percent error =
desired position− actual position

actual position
× 100%

(16)

From the data presented in Table III, it is observed that FO-
PID controller tracks the desired position more efficiently than
PD or PID controllers.

B. Real Time Implementation of Closed-Loop System

The MLS used for experimentation is shown in Fig.12. Due
to high nonlinearity and open-loop instability, MLS system
is a very challenging plant. Assembly of MLS consists of a
mechanical unit labeled A in Fig.12. Analogue control inter-
face unit labeled A is used to transfer control signals between
computing system and MLS. Advanced PCI1711 I/O card has
been inserted into a PCI computer slot and connected with
SCSI adapter box using SCSI cable. Mathworks software tools

are used to implement control algorithm. It includes MATLAB
control toolbox, real time windows workshop (RTW), real
time windows target (RTWT), and visual C as programming
environment. The flowchart required to obtain executable file
is shown in Fig.13. RTW builds a C++ source code from
the Simulink Model. C code compiler compiles and links the
code to produce executable program. RTWT communicates
with executable program acting as the control program and
interfaces with hardware through input/output board. The
block diagram of MLS close loop control is shown in Fig.14.

Fig. 12. Experimental setup.

1) Experimental Results using a PD Controller: The mea-
sured and desired ball positions using real time PD controller
is shown in Fig.15(a) and control signal c(t) before digital to
analog (D/A) conversion is given in Fig.15(b). This control
signal is used to levitate the object at desired position. The
plant input signal m(t) after D/A conversion and output signal
y(t), captured on the digital storage oscilloscope (DSO), is
presented in Fig.16.

The control effort required by controller to maintain object’s
position can be observed from the control signal c(t). The
ball position is tracked by infrared sensor and is fed back to
Simulink environment via analog to digital (A/D) converter. It
is observed from Fig.15 - Fig.16 that there is more deviation
in ball position and control effort required by the controller,
and is higher in case of PD controller. Hence, integral action is
added to the PD controller to achieve an improved control over
desired ball position. The quantitative analysis of desired and
actual ball position achieved by the controller is presented in
Table IV and the control effort analysis of controller is shown
in Table V.

Table III
MEASURED AND DESIRED BALL POSITIONS FOR DIFFERENT CONTROLLERS IN SIMULATION

Ball Positions (m)
Controllers

PD PID FO-PID

Measured ball position
Max. 8.12× 10−3 6.92× 10−3 5.94× 10−3

Min. −4.83× 10−3 −6.68× 10−3 −5.65× 10−3

Desired ball position
Max. 5.5× 10−3 5.5× 10−3 5.5× 10−3

Min. −5.5× 10−3 −5.5× 10−3 −5.5× 10−3

Error 23.06% 19.09% 5.03%
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Fig. 13. Control system development flow diagram.

Fig. 14. Block diagram of MLS close loop control.

Fig. 15. (a) Controlled output result of MLS using a PD controller
(b) Control signal of PD controller.

2) Experimental Results using a PID Controller: Fig.17(a)
shows measured and desired ball positions using PID con-
troller and output of controller c(t) is shown in Fig.17(b). The
captured controller output signal c(t) and output signal are
presented in Fig.18. The deviation in the ball position is mini-
mized to an extent by employing the PID controller. However,
the control effort required by controller is still similar to that

of PD controller while achieving the improvement.

Fig. 16. Experimental PD controller output and object’s trajectory
captured on DSO.

3) Experimental Results using a FO-PID Controller: The
deviation in ball positions using real time FO-PID controller is
shown in Fig.19(a). It depicts that error in desired and actual
ball positions has reduced in comparison to both PD or PID
control actions. The control signal c(t) of FO-PID controller
is presented in Fig.19(b). It shows that effort required by the
controller is least as compared to PD or PID controllers. Plant
input signal m(t) and output signal y(t) are presented in Fig.20.
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Table IV
MEASURED AND DESIRED BALL POSITIONS FOR DIFFERENT CONTROLLERS IN REAL TIME IMPLEMENTATION

Ball Positions (m)
Controllers
PD PID FO-PID

Measured ball position
Max. 16.8× 10−3 13.1× 10−3 12.6× 10−3

Min. 8.3× 10−3 4.85× 10−3 5.24× 10−3

Desired ball position
Max. 12.5× 10−3 12.5× 10−3 12.5× 10−3

Min. 5.5× 10−3 5.5× 10−3 5.5× 10−3

Error 29.66% 8.95% 5.75%

Fig. 17. (a) Controlled output result of MLS using a PID controller
(b) Control signal of PID controller.

Fig. 18. Experimental PID controller output and object’s trajectory
captured on DSO.

Fig. 19. (a) Controlled output result of MLS using a FO-PID
controller (b) Control signal of FO-PID controller.

From the data presented in Table IV it is observed that FO-

PID controller has improved the position accuracy of MLS
compared to PD or PID controllers in real time implementa-
tion. Also, the percentage error is least for FO-PID controller.

Fig. 20. Experimental FO-PID controller output and object’s trajec-
tory captured on DSO.

Table V
CONTROL EFFORT ANALYSIS OF DIFFERENT

CONTROLLERS IN REAL TIME IMPLEMENTATION

Performance Indices
Controllers

PD PID FO-PID

IAE
Error Signal 51.97 14.56 12.79

Control Signal 208 181 151.5

ITAE
Error Signal 609 455.7 425.5

Control Signal 900.6 797.9 602.5

ISE
Error Signal 28.38 4.978 2.488

Control Signal 832.6 647.2 347.2

Fig. 21. Control effort analysis.

The control effort required by PD, PID, and FO-PID
controllers is calculated using IAE (Integral Absolute Error),
ITAE, and ISE (Integral Square Error). The analysis has been
carried out for a period of 100s and is tabulated in Table V.
Fig.21 represents the control effort analysis in pictorial form.
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The error signal is maximum in the case of PD controller
and least in the case of FO-PID controller. The control signal
also follows the same pattern and is least in case of FO-PID
controller, leading to inference that the control effort in terms
of power required by the FO-PID controller to maintain the
ball position is least amongst the three controllers.

From the analysis, it infers that PID controller is better
than PD controller through performance characteristic. FO-
PID controller shows slight improvement over PID controller,
but the effort required is appreciably less for the same im-
provement. Thus proving superiority of FO-PID over integer
order controllers.

4) Disturbance Injection Analysis of Controllers: The ef-
fect of disturbance is studied by injecting step input to MLS
and effect of increased load is studied by introducing another
metallic ball in levitation system as shown in Fig.22. The step
is applied after interval of 25s on initiation of the input while
another ball is introduced manually after 35s. The measured
and desired ball positions using a PD controller are presented
in Fig.23(a) and the control signal of a controller is shown
in Fig.23(b). PD controller output and object’s trajectory as
captured on DSO is presented in Fig.24.

Fig. 22. Levitation of two metallic balls.

Fig. 23. (a) Controlled output result of MLS using a PD controller
(b) Control signal of PD controller.

The instant of step applied in input signal and the instant of
the addition of extra load are demonstrated by circles marked
on figures. Overshoot is observed at the instant of step and
after introducing second ball in levitation system.

Fig. 24. Experimental PD controller output and object’s trajectory
captured on DSO.

Fig. 25. (a) Controlled output result of MLS using a PID controller
(b) Control signal of PID controller.

Fig. 26. Experimental PID controller output and object’s trajectory
captured on DSO.

Fig. 27. (a) Controlled output result of MLS using a FO-PID
controller (b) Control signal of FO-PID controller.
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The deviation in ball position is higher as load is increased
and greater amount of effort (power consumption, as indicated
by high switching fluctuations in the voltage graph) is required
by controller to achieve desired ball position.

Similar analysis for PID and FO-PID controllers is pre-
sented in Fig.25 - Fig.28. These figures lead to inference that in
case of PID controller, the deviation in ball position is high and
greater amount of effort is required by controller to achieve
ball position as compared to FO-PID controller. Comparison
shows that FO-PID controller requires lesser effort to levitate
the object and effect of disturbance is less as compared to PD
or PID controllers.

Fig. 28. Experimental FO-PID controller output and object’s trajec-
tory captured on DSO.

V. CONCLUSION

In this paper, digital FO-PID controller is applied on MLS
to improve the positional accuracy and control effort. A new
discrete optimal pole-zero approximation method is proposed
for realization of controller. This method provides the optimal
number of pole-zero pairs to maintain the phase value within
the tolerance, of around 1o. dPSO method is used for tuning
the parameters of controller. The performance analysis for
integer and fractional order controllers have been carried out
in both simulation and experimentation. The results show that
a better control over position accuracy with lesser efforts (over
conventional methods) can be achieved. In practical terms, this
efficiency improvement translates to better fuel efficiency. This
paper provides a basis for evaluating the utility of fractional
order control to improve the performance of power conversion
systems and precision robotic applications.

Table VI
PARAMETERS OF THE MLS

Symbol Parameters Values
i Input Current in the Coil [0− 3]A

u Input Voltage [0− 5]V

m Mass of the Steel Sphere 20× 10−3 kg

k Magnetic Constant 8.54× 10−5 kg

k1 Input Conductance 0.3971/Ω

g Gravitational Acceleration 9.81m/s2
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Optimal Nonlinear System Identification Using
Fractional Delay Second-Order Volterra System

Manjeet Kumar, Apoorva Aggarwal, Tarun Rawat and Harish Parthasarathy

Abstract—The aim of this work is to design a fractional delay
second order Volterra filter that takes a discrete time sequence
as input and its output is as close as possible to the output of a
given nonlinear unknown system which may have higher degree
nonlinearities in the least square sense. The basic reason for
such a design is that rather than including higher than second
degree nonlinearities in the designed system, we use the fractional
delay degrees of freedom to approximate the given system. The
advantage is in terms of obtaining a better approximation of the
given nonlinear system than is possible by using only integer
delays (since we are giving more degrees of freedom via the
fractional delays) and simultaneously it does not require to
incorporate higher degree nonlinearities than two. This work
hinges around the fact that if the input signal is a decimated
version of another signal by a factor of M , then fractional delays
can be regarded as delays by integers less than M . Using the
well known formula for calculating the discrete time Fourier
transform (DTFT) of a decimated signal, we then arrive at an
expression for the DTFT of the output of a fractional delay
system in terms of the unknown first and second order Volterra
system coefficients and the fractional delays. The final energy
function to be minimized is the norm square of the difference
between the DTFT of the given output and the DTFT of the
output of the fractional delay system. Minimization over the
filter coefficients is a linear problem and thus the final problem
is to minimize a highly nonlinear function of the fractional
delays which is accomplished using search techniques like the
gradient-search and nature inspired optimization algorithms. The
effectiveness of the proposed method is demonstrated using two
nonlinear benchmark systems tested with five different input
signals. The accuracy of the stated models using the globally
convergent metaheuristic, cuckoo-search algorithm (CSA) are
observed to be superior when compared with other techniques
such as real-coded genetic algorithm (RGA), particle swarm
optimization (PSO) and gradient-search (GS) methods. Finally,
statistical analysis affirms the potential of the proposed designs
for its successful implementation.

Index Terms—Fractional delay, second-order Volterra sys-
tem, gradient-search method, stochastic search algorithm, mean
square error

I. INTRODUCTION

THE modeling of unknown systems is of significant im-
portance in different fields of engineering[1]. Various

linear systems have been utilized owing to the simplicity in
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solving the system identification problems and in developing
different signal processing techniques[2−8]. Such linear sys-
tems have been extensively applied with the comprehensive
mathematical analysis and simplified simulations. However,
most of the practical systems exhibit nonlinear behaviour due
to which the estimation using linear systems is not accurate.
To state some, in estimating the saturation-type nonlinear
systems[9], development of nonlinear behaviour due to brake
sequel conditions in automotive industry[10], identification of
nonlinear dynamical structures[11], using linear models can
often give corrupt results. The application of nonlinear systems
have been extensively researched by practitioners in various
science and engineering fields such as in communication
engineering, signal processing, biomedical engineering and
system identification[12]. Some typical applications[13] in com-
munication systems include amplifier nonlinearities, nonlinear
satellite channel, compensation of nonlinearities, equalization
of nonlinear channels, blind identification, nonlinearities in
orthogonal frequency division multiplexing systems and digital
magnetic recording. In speech and image processing, the
nonlinear systems are employed for the compensation of loud-
speaker nonlinearities, in adaptive quadratic filters, nonlinear
echoes cancelation and many more.

In the past, much research has been carried out for esti-
mating practical systems using a variety of nonlinear systems
based on different models. These nonlinear models and func-
tions include Volterra and Wiener series[14,15], Hammerstein
model[16], Walsh functions[17], Kautz models[18], Laguerre
transform[19], Uryson model[20] and neural networks[21] etc.
The aforementioned models have been substantially imple-
mented in nonlinear system identification problems. Conven-
tionally, the modeling of unknown systems was practiced using
the gradient based search methods. Based on the successful
implementation of metaheuristic algorithms in the system
identification problems, the trend has been shifted towards the
use of these algorithms. In [14], Chang efficiently utilized the
improved particle swarm optimization algorithm for the differ-
ent memory size Volterra filter models of nonlinear discrete-
time systems. The implementation of the gravitational search
algorithm for the nonlinear and linear system identification
problem was proposed by Rashedi et al. in [22]. Gotmare et
al. applied the CSA for the improvement of nonlinear system
identification of adaptive Hammerstein model[16].

The above referred techniques implemented the concept of
integer delays to obtain a nonlinear system with significantly
accurate estimations. In this paper, we propose to model a
highly nonlinear system with quadratic, cubic and even higher
order nonlinearities in the presence of noise using a fractional
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delay second order Volterra nonlinear system. The input-output
equation for such an approximating system is the usual relation
for a system involving an FIR linear system and an FIR
second order Volterra system but with fractional delays. Both
the continuous time and the discrete time models have been
addressed. The fractional delay Volterra system is an LIP
(Linear in parameters) model as far as the filter coefficients
are concerned, but it is an NLIP (nonlinear in the parameters)
model as far as the fractional delays are concerned. Thus,
using the standard least squares algorithm, the first and second
order filter coefficient estimates from input-output data can be
obtained using standard orthogonal projection theory, but with
the orthogonal projection being a highly nonlinear function
of the fractional delays. By substituting this expression for
the filter coefficient estimation into the original least squares
energy function, we obtain an energy function that is a
nonlinear function of the time delays but not involving the
filter coefficients. Then, a search algorithm is used to minimize
this energy function w.r.t. the fractional delays and hence
obtain good estimates for the latter. The computation has
been carried out entirely in the frequency domain because
time delays appear as exponentials which multiplies with the
Fourier transform of the signals. These exponentials can be
represented as steering vectors which depend on the fractional
time delays and elegant expressions for the energy function in
terms of these steering vectors can be derived. If however,
we work in the time domain, then the fractional delays
appear inside the time argument of the signals involved and
hence optimization algorithms are impossible to carry out. For
practical implementation using MATLAB the signals must be
discrete time and we have formulated this discrete time version
by representing the input signal as a decimated version of the
original input by an integer factor of M > 1 and the fractional
delays by integers in the range 0, 1, . . . ,M−1. The simulation
results show that it is possible to approximate complicated
nonlinear systems like the ratio of two nonlinear Volterra
systems using this second order system involving fractional
delays. The advantage of the proposed approach is that no
extra filter coefficient energy is required. Indeed, fractional
delays do not change the signal energy, they merely shift
the signal and superpose. Here, we identify the parameters
of a fractional delay second-order Volterra system from input
data. This model gives a more accurate system identification
with fewer filter coefficients, especially for nonlinear systems
like multipath systems with interaction between the different
paths shown in Fig. 1. Further, the gradient-search (GS)
and stochastic-search approaches are employed to obtain a
close approximation of the unknown nonlinear systems. The
optimization algorithms utilized are, real-coded genetic algo-
rithm (RGA), particle swarm optimization (PSO) and cuckoo-
search algorithm (CSA). The results and analysis presented,
demonstrate high accuracy using the proposed design methods.

The paper is organized in 6 sections. Following the lit-
erature survey in Section I, the nonlinear system identifica-
tion problem is modeled as a second order Volterra system
using fractional delays in Section II. Section III presents
the gradient-search optimization technique articulated for the
Volterra system identification problem. A brief overview of
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Fig. 1. Multipath system with interaction between the different paths.

stochastic algorithms for the formulated problem is discussed
in Section IV. In Section V, two design examples are illustrated
and analyzed for different input signals. Finally, Section VI
concludes the paper.

II. VOLTERRA SYSTEM MODELING USING FRACTIONAL
DELAY

Suppose yd(t) is the desired nonlinear system output and it
is well approximated using a third order Volterra system with
p integer delays, given by

y(t) =

p∑

k=0

h(k)x(t− kΔ)

+

p∑

k,m=0

g(k,m)x(t− kΔ)x(t−mΔ)

+

p∑

k,m,r=0

f(k,m, r)x(t− kΔ)x(t−mΔ)x(t− rΔ) (1)

where, x(t), y(t) are the input and corresponding output of the
Volterra system, {h(k)} are the first order kernels of the linear
system response with integer delays, kΔ and {g(k,m)} are
the second order kernels associated with the nonlinear system
response with integer delays, kΔ,mΔ and {f(k,m, r)} are
the third order kernels associated with the nonlinear system
response with integer delays, kΔ,mΔ and rΔ.

To implement this filter, we require O(p3) multiplications
and further, the right hand side of the above expression is
modeled as

M0

p∑

k=0

|h(k)|+M2
0

p∑

k,m=0

|g(k,m)|+M3
0

p∑

k,m,r=0

|f(k,m, r)|

(2)

where, M0 = max
t

|x(t)|.
In this system identification problem, the aim is to esti-

mate the filter coefficients of a second order Volterra system
modeled using the fractional delays, such that it matches the
response of an unknown system with higher order nonlin-
earities. In Fig. 2, this concept is demonstrated by applying
the gradient-search and stochastic optimization algorithms.
The Volterra system mathematically models the linear and
nonlinear combinations of its input signal using the infinite
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Volterra series expansion in the form of convolution integrals.
The second order Volterra system can be expressed as [23]

y(t) = h(0) +

p∑
k=1

h(k)x(t− τk)

+

p∑
k,m=0

g(k,m)x(t− τk)x(t− τm) (3)

where, h(0) is the constant kernel, {h(k)} are the first order
kernels of the linear system response with fractional delays,
τk and {g(k,m)} are the second order kernels associated with
the nonlinear system response with fractional delays, τm.

Here, τk is varied in addition to the {h(k)} and {g(k,m)},
to get an equally good output match, with O(p2) multiplica-
tions. The right hand side of eq. (3) is modeled as

M0

p∑
k=0

|h(k)|+M2
0

p∑
k,m=0

|g(k,m)| (4)

which is likely to be much smaller than eq. (2). Thus, by
spending less energy and fewer multiplications, we are able to
obtain nearly the same output error.
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Fig. 2. Volterra System Modeling of nonlinear system using gradient search,
RGA, PSO and CSA.

The objective is to optimize the parameters, {τk}, {h(k)}
and {g(k,m)}, such that τk ∈ [kΔ, (k+1)Δ), 0 ≤ k, m ≤ p
and

ξ(h,g, τ) =

∫ T

0

(
yd(t)− y(t)

)2
dt

=

∫ T

0

(
yd(t)−

p∑
k=1

h(k)x(t− τk)

−
p∑

k,m=0

g(k,m)x(t− τk)x(t− τm)

)2

dt (5)

is minimum. Here, yd(t) is the desired output. Let τ =
{τk}pk=0, h = {h(k)}pk=0, g = vec(g(k,m)) and

ζ(t, τ) =

⎡
⎢⎢⎢⎣

x(t− τ1)
x(t− τ2)

...
x(t− τp)

⎤
⎥⎥⎥⎦ (6)

then,

ξ(h,g, τ) =

∫ T

0

(y(t)− hTζ(t, τ)

− gT(ζ(t, τ)⊗ ζ(t, τ)))2dt (7)

where ζ(t, τ)⊗ζ(t, τ) = vec(x(t− τα)x(t− τβ)), 1 ≤ α, β ≤
p. The optimal equations are

∂ξ

∂h
= 0,

∂ξ

∂g
= 0,

∂ξ

∂τ
= 0 (8)

Calculating the first two terms, we get∫ T

0

ζ(t, τ)y(t)dt =

(∫ T

0

ζ(t, τ)ζ(t, τ)Tdt

)
h

+

(∫ T

0

ζ(t, τ)(ζ(t, τ)⊗ ζ(t, τ))dt

)
g (9)

Calculating the third term, we obtain∫ T

0

(ζ(t, τ)⊗ ζ(t, τ))y(t)dt

=

(∫ T

0

(ζ(t, τ)⊗ ζ(t, τ))(ζ(t, τ))Tdt

)
h

+

(∫ T

0

(ζ(t, τ)⊗ ζ(t, τ))(ζ(t, τ)⊗ ζ(t, τ))Tdt

)
g (10)

Defining the nonlinear filter vector

k =

[
h
g

]
∈ Rp+p2

(11)

and the (p+ p2)× (p+ p2) matrix is given by eq. (12). Also
define

b(τ) =

[ ∫ T

0
ζ(t, τ)y(t)dt∫ T

0
(ζ(t, τ)⊗ ζ(t, τ))y(t)dt

]
∈ Rp+p2

(13)

Then, the optimal equations for k = [hT,gT]T are solved as

k̂(τ) = A(τ)
−1

b(τ) =

[
ĥ(τ)
ĝ(τ)

]
(14)

Further, τ is extended as

τ̂ = argmin
τ

ξ(ĥ(τ), ĝ(τ), τ) (15)

= argmin
τ

ξ(k̂(τ), τ) (16)

Now

ξ(k̂(τ), τ) =

[∫ T

0

y2d(t)dt− k̂(τ)
T
b(τ)

]
(17)

= [σ2
y − b(τ)

T
A(τ)b(τ)] (18)

So the optimal fractional delays are

τ̂ = argmin
τ

b(τ)
T
A(τ)b(τ) (19)

The proposed method can be applied to better equalization of
nonlinear channels with random delays, for better forecasting
of system and better system identification. Less power loss
is there since loss depends on the number of coefficients and
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A(τ) =

[ ∫ T

0
ζ(t, τ)ζ(t, τ)Tdt

∫ T

0
ζ(t, τ)(ζ(t, τ)⊗ ζ(t, τ))dt∫ T

0
(ζ(t, τ)⊗ ζ(t, τ))(ζ(t, τ))Tdt

∫ T

0
(ζ(t, τ)⊗ ζ(t, τ))(ζ(t, τ)⊗ ζ(t, τ))Tdt

]
(12)

not on the delay given to each one. Moreover, the Volterra
fractional delay system can be made adaptive, resulting in
better adaptive noise cancelation, when the noise is generated
from nonlinearities with delays like hysteresis. The optimal
values of these fractional delays and Volterra kernels of first
and second order are computed using the gradient-search and
metaheuristic algorithms, described in the following section.

III. GRADIENT SEARCH METHOD

This section focusses on the implementation of the gradient-
search method to approximate the response of the unknown
nonlinear system. This optimization is carried out using a
gradient descent approach explained as follows.

ζ(t, τ) =

(∫
R

X(ω)ejω(t−τk)dω

)p

k=1

(20)

where, X(ω) is the DTFT of input signal x(t) and R ∈ (0, T ).
Now,

ζ(t, τ)⊗ ζ(t, τ)

=vec

(∫
R

X(ω1)X(ω2)

× ej(ω1+ω2)tej(ω1τk+ω2τm)dω1dω2

)p

k,m=0

(21)

Substituting eqs. (20) and (21) in eq. (13), we get (22) at the
top of next page. The derivative of b(τ) in eq. (22) w.r.t. the
fractional delays, τk is expressed as (23) at the top of next
page, where

ek =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0

1(kthrow)
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

and ∂A(τ)
∂τk

can be calculated using eq. (20), we get

∂ζ(t, τ)

∂τk
=

∂

∂τk

(∫
X(ω)ejω(t−τm)dω

)p

m=0

=

(
−j

∫
ωX(ω)ejω(t−τk)dω

)
ek (25)

∂A(τ)

∂τk
=

[
a11 a12
a21 a22

]
(26)

where

a11 =

∫ T

0

(
∂ζ(t, τ)

∂τk
ζ(t, τ)T) + ζ(t, τ)

(
∂ζ(t, τ)

∂τk

)T
)
dt

a12 =

∫ T

0

(
∂ζ(t, τ)

∂τk

(
ζ(t, τ)⊗ ζ(t, τ)

)T

+ ζ(t, τ)

(
∂ζ(t, τ)

∂τk
⊗ ζ(t, τ)

)T

+ ζ(t, τ)

(
ζ(t, τ)⊗ ∂ζ(t, τ)

∂τk

)T)
dt

a21 =

∫ T

0

((
∂ζ(t, τ)

∂τk
⊗ ζ(t, τ)

)(
ζ(t, τ)

)T

+

(
ζ(t, τ)⊗ ∂ζ(t, τ)

∂τk

)(
ζ(t, τ)

)T

+

(
ζ(t, τ)⊗ ζ(t, τ)

)(
∂ζ(t, τ)

∂τk

)T)
dt

a22 =

∫ T

0

((
∂ζ(t, τ)

∂τk
⊗ ζ(t, τ)

)
(ζ(t, τ)⊗ ζ(t, τ))T

+

(
ζ(t, τ)⊗ ∂ζ(t, τ)

∂τk

)
(ζ(t, τ)⊗ ζ(t, τ))T

+ (ζ(t, τ)⊗ ζ(t, τ))

(
∂ζ(t, τ)

∂τk
⊗ ζ(t, τ)

)T

+ (ζ(t, τ)⊗ ζ(t, τ))

(
ζ(t, τ)⊗ ∂ζ(t, τ)

∂τk

)T)
dt

Now,

F (τ) = b(τ)TA(τ)−1b(τ) (27)

The designed system can be formulated using the above
equations with

τk[m+ 1] = τk[m]− μ
∂

∂τk[m]

(
b(τ [m])TA(τ [m])−1b(τ [m])

)
(28)

Eq. (28) updates the gradient-search algorithm for the frac-
tional delay values.

IV. STOCHASTIC SEARCH ALGORITHMS

The stochastic search algorithms are proven to produce
optimal solutions to the complex problems in a reasonably
practical time. These algorithms are characterized as heuris-
tic, adaptive and learning with which they produce effective
optimizations. Genetic algorithm, particle swarm optimization
and cuckoo-search algorithm are population based, since they
use a set of strings, particles and host nest, respectively to
obtain the solution which are globally optimal. Further, these
algorithms are briefly reviewed in this section.
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b(τ) =

⎡
⎣

(∫
X(ω)Y (ω)e−jωτkdω

)p

k=0

vec
(∫

X(ω1)X(ω2)Y (ω1 + ω2)e
−j(ω1τk+ω2τm)dω1dω2

)p

k,m=0

⎤
⎦ (22)

∂b(τ)

∂τk
=

⎡
⎢⎢⎢⎣

(
−j

∫
ωX(ω)Y (ω)e−jωτkdω

)
ek(

−j
∫
ω2X(ω1)X(ω2)Y (ω1 + ω2)e

−j(ω1τm)dω1dω2

)p

m=0
⊗ ek

+ek ⊗
(
−j

∫
ω2X(ω1)X(ω2)Y (ω1 + ω2)e

−j(ω1τm)dω1dω2

)p

m=0

⎤
⎥⎥⎥⎦ (23)

A. Real-Coded Genetic Algorithm

The basic concept of GA was introduced by Holland in
1975[24] and it is an adaptive population based optimization
method. This bio-inspired technique is based on the evolu-
tionary ideas of natural selection and genetics, wherein a
set of coefficient chromosomes is selected and encoded as
binary strings. To avoid the precision problems, the final
local tuning potential of a binary coded GA is improved with
the use of RGA. Using real values, the natural form of the
strings is maintained, thus, avoiding the coding and decoding
processes. A considerable increase in the speed of operation,
efficiency and precision in the results can be observed. RGA is
universally employed to obtain the set of optimal solutions[25].
The algorithm undergoes three main processes after random-
ly generating the initial population. The selection process
chooses better individual genotype chromosome depending on
computing the fitness of each individual and produce a new
generation of offspring chromosomes. The use of tournament
operator allows a competition amongst the chromosomes on
the grounds of their fitness values, where winners are selected
with better fitness values. The crossover process is responsible
for combining two chromosomes to produce new generations
in search of a better fitness. A heuristic crossover operator aims
towards determining the direction towards a better solution.
Finally, the mutation process makes random changes to incor-
porate diversity in the results for achieving the global solution.
The adaptive feasible mutation generates random variations
adaptively with respect to the last successful or unsuccessful
generation. The implementation steps of GA for the nonlinear
system modeling using second order Volterra system model
are adopted from [26].

B. Particle-Swarm Optimization

The social behavior of certain animals within a team
such as fish schooling, insect swarming and bird flocking is
transformed into an artificial swarm and is mathematically
modeled as the PSO algorithm. It is a robust, population-
based stochastic search technique which is suitable for non-
differentiable and multiple objective functions. It was devel-
oped in 1995[27], and is successfully being applied to many
engineering applications. In this algorithm, each particle acts
as agent and is a potential solution. It is characterized by
its position in the solution space and velocity with which
it moves towards the optimal solution evaluated by the best

fitness value. At every iteration, each particle is attracted
towards the position of the current global best location. The
velocity of the ith particle in the current iteration (let l),
is adapted by evaluating the sum of three terms: the global
best position vector, gbest, its personal best value, pbest and
the particle’s present velocity, vl. This new velocity vector is
determined by the following formula considering the initial
velocity, vl=0

i = 0.

vl+1
i =W ∗ vli + αC1[gbest

l − xl
i]

+ βC2[pbest
l
i − xl

i] (29)

where W is the inertia weight parameter that controls the
tradeoff between gbest and pbest of the swarm. Its value
is set less than one. C1, C2 are the learning parameters that
indicates the relative attraction towards gbest and pbest and
α, β are random numbers ranging between [0, 1]. Also, the
new position, xl+1

i of the ith particle is updated by using

xl+1
i = xl

i + vl+1
i (30)

vi can be bounded with the range [vmin, vmax]. On calculation
of the new position, the particle flies to that location and ulti-
mately at the final iteration, the global best solution becomes
the optimal solution searched by PSO. The implementation
steps of PSO for the nonlinear system modeling using second
order Volterra system model are adopted from [28].

C. Cuckoo-Search Algorithm

CSA is a mathematical conceptualization which simulates
the breeding strategy of the cuckoo birds. It was developed in
2009 by Yang and Deb[29]. It is based on the unique parasitic
behaviour of some cuckoo bird species in combination with the
Lévy flight. These bird species reproduce and lay their eggs in
the nests of other birds. The host birds sometimes belligerently
throw away the foreign eggs to increase the probability of
hatching their own eggs. Whereas, some host birds simply
abandon their nests and build a new nest at a new location.
In CSA, each cuckoo egg in the host’s nest symbolizes to
a potential solution of the design problem. Each solution is
characterized by its fitness value. The objective of CSA is to
exchange a low fitness value solution with a better solution.
In the process of generating a new solution, the concept of
random walk performed by Lévy flights is applied. In this, the
next step of the random walk is based on the current location
(solution) and the transition probability to the next location.
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In order to simplify the algorithm, it is governed by three
guiding rules[29]. (i) Each bird is allowed to lay only one egg
at once, which is randomly placed among the host bird’s nests.
(ii) The nest with the high quality eggs (solutions with high
fitness values) will be imparted over to the next generation.
(iii) A predetermined number of host nests are available, in
which the probability of identification of alien eggs by host
birds is also fixed (Pa ∈ [0, 1]). In instance of discovery, the
host bird can either throw the alien egg or abandon the nest.

While generating a new solution, the Lévy flight is per-
formed, represented in eq. (31). It is a Markov chain in which
the next step depends on the current location and the transition
probability.

al+1 = al + δ ⊕ Lévy(λ) (31)

where al is the solution vector which is the location of current
solution at iteration, l, δ (δ > 0) is the step size that determines
the distance of the random walk. If δ is too big, then al+1 will
be too far away from al. Similarly, if δ is too small, then al+1

will be very close to al to be of any importance. Lévy(λ) is
adopted from the Lévy distribution with an infinite variance
and infinite mean[29].

The steps involved in the optimization algorithm utilizing
the strategy of cuckoo birds for the process of evolving their
generations along with their parasitic behavior are as follows.
Step 1: Initialize the maximum number of iterations (N ) and
randomly generate an initial population of nc host nests, al.
Step 2: Compute the fitness value, say El, of randomly
generated host nest, al.
Step 3: Generate a new nest using the Lévy flights given in
eq. (31) and compute the fitness value, say El+1, of the new
nests.
Step 4: Compare the two fitness values. For a minimization
problem, if El > El+1, the initial host nests al are replaced
by new nests, al+1, generated by Lévy flights.
Step 5: Abandon a fraction of worst nests depending on the
probability parameter pa and build new nests, an using the
random flights.
Step 6: Calculate the fitness of all the new nests and update
the best nest, ab of the generation until the current iteration.
Compare it with the fitness value of the nest of next iteration
and update the best nest.
Step 7: Repeat Steps 2-6 till the maximum number of iter-
ations has reached. The best solution, ab gives the optimal
solution to the problem.

V. SIMULATION AND ANALYSIS

In this section, the discrete time nonlinear system identifi-
cation problem is formulated and the simulated results have
been presented. In order to implement the above formulated
continuous time Volterra system using MATLAB, the discrete
time signals are incorporated, by decimating the original input
with integer factor of M > 1 and the fractional delays by
integers in the range 0, 1, · · · ,M − 1.

A. Fractional delay system in discrete time
Given an input signal x[n] = z[Mn]. It is delayed by a

fraction of r/M , where r is an integer in 0, 1, · · · ,M−1, given

by x[n−r/M ] = z[Mn−r]. Let rk be an integer of the form
(Mk+ sk) where sk ∈ 0, 1, · · · ,M − 1, k = 1, 2, · · · , p. The
output generated by passing the input signal x[n] through a
second order Volterra filter with fractional delays of r1, · · · , rp
is given by

y[n] = h[0] +

p∑
k=1

h[k]x[n− rk/M ]

+

p∑
k,m=0

g[k,m]x[n− rk/M ]x[n− rm/M ]

= h[0] +
∑
k

h[k]z[Mn− rk]

+
∑
k,m

g[k,m]z[Mn− rk]z[Mn− rm] (32)

Considering a noisy signal, eq. (32) is an approximate relation.
Now, the aim is to determine the coefficients h[k], g[k,m] and
the integers r1, · · · , rp such that the difference between the left
hand side and right hand side of eq. (32) has minimum error
energy. The Fourier transform (DTFT) of z[Mn− r] is given
by

DTFT{z[Mn− r]} =

M−1
M−1∑
l=0

e(−jr(ω−2πl)/M)Z

(
ω − 2πl

M

)
(33)

The Fourier transform of y1[n] =
∑

k h[k]z[Mn − rk] in eq.
(32) is

Y1(ω) = M−1
∑
k,l

h[k]e(−j(ω−2πl)rk/M)Z

(
ω − 2πl

M

)
(34)

where, k ranges over 1, 2, · · · , p and l ranges over
0, 1, · · · ,M − 1. The Fourier transform of y2[n] =∑

k,m g[k,m]z[Mn− rk]z[Mn− rm] in eq. (32) is given by

Y2(ω) = M−1
∑
k,m,l

g[k,m]

∫ π

−π

e(−j(ω1rk+((ω−2πl)/M−ω1)rm))

× Z(ω1)Z

(
ω − ω1 − 2lπ

M

)
dω1 (35)

Let Ω be a discrete set of frequencies in [−π, π] which are
equispaced. For each integer, r, a column vector of size equal
to the cardinality of Ω is defined by

ê(r) = (e(−jωr/M))ω∈Ω (36)

Further the diagonal matrix is defined as

DZ [α] = M−1 × diag
[
Z

(
ω − α

M

)
, ω ∈ Ω

]
(37)

Assume that the inter-frequency spacing of Ω is Δ. Then
we have

Y1 =(Y1(ω))ω∈Ω

=
∑
k,l

h[k]e(j2πlrk/M)DZ [2πl]D(rk)ê(rk) (38)

where

D(r) = diag
[
e(−jωr/M) : ω ∈ Ω

]
(39)
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Y2 =(Y2(ω))ω∈Ω

=Δ×
∑

k,m,l,ω1

g[k,m]e(−jω1(rk−rm))

× Z(ω1)e
(j2πlrm/M)DZ(ω1 + 2lπ)ê(rm) (40)

Considering the vectors

Q[k,m|r] = Δ×
∑
l,ω1

e(−jω1(rk−rm))

× Z(ω1)e
(j2πlrm/M)DZ(ω1 + 2lπ)ê(rm) (41)

and

P [k|r] =
∑
l

e(j2πlrk/M)DZ(2πl)D(rk)ê(rk) (42)

where
r = (rm)pm=0

Then,

Y1 =
∑
k

h[k]P [k|r]

Y2 =
∑
k,m

g[k,m]Q[k,m|r] (43)

Further, in terms of the matrices

P [r] = Col[P [k|r] : k = 1, 2, · · · , p]
Q[r] = [Q[k,m|r] : k,m = 1, 2, · · · , p] (44)

Thus,

Y ≈ Y1 + Y2 = P [r]h+Q[r]g (45)

Here,

h = (h[k]) ∈ Rp, g = vec(g[k,m]) ∈ Rp2

(46)

h, g, r are estimated by minimizing

E[h, g, r] =‖ Y − P [r]h−Q[r]g ‖2 (47)

Now, writing (
h
g

)
= q ∈ Rp2+p (48)

and

[P [r]|Q[r]] = S[r] (49)

gives

E[q, r] =‖ Y − S[r]q ‖2 (50)

Eq. (50) has to be minimized w.r.t q, r. Firstly, minimizing E
w.r.t. q gives

q̂(r) = (S[r]TS[r])−1S[r]TY (51)

Substituting eq. (51) into the expression for E gives

E[r] = E[q̂(r), r] =‖ Y ‖2 − ‖ PS[r]Y ‖2 (52)

Minimizing this w.r.t. r is equivalent to maximizing

F (r) =‖ PS[r]Y ‖2 (53)

w.r.t r. Here, PS[r] is the orthogonal projection onto R(S[r]):

PS[r] = S[r](S[r]TS[r])−1S[r]T (54)

The above result has been simulated using the MATLAB
software and the results are illustrated in the next subsection.

TABLE I
CONTROL PARAMETERS FOR FILTER DESIGN.

Parameters Symbol RGA PSO CSA

Population Size ng, np, nc 55 55 25
Max. Iteration Cycle N 200 200 200
Tolerance 10−6 10−6 10−6

Limits of System
Coefficients -10,+10 -10,+10 -10,+10
Selection Tournament Size: 4 - -
Crossover Rate, Ratio Heuristic 0.8, 1.2 - -
Mutation rate Adaptive feasible 0.01 - -
Learning Parameters C1, C2 - 2, 2 -
Particle Velocity vmin, vmax - 0.01, 1 -
Inertia Weight W - 0.4 -
Discovering Rate Pa - - 0.25
of alien eggs

B. Nonlinear System Modeling Examples

Extensive simulations have been conducted with two non-
linear system examples to evaluate the performance of the
proposed method based on second order Volterra system
using fractional delay. The unknown nonlinear system and
a second order Volterra system are tested with five different
input signals. The results obtained are presented in terms
of the comparison between the actual system output and
the estimated output using gradient search, RGA, PSO and
CSA. Mean square error (MSE), accuracy and statistical data
are investigated in order to demonstrate the effectiveness of
the proposed nonlinear system modeling method. The fitness
function is minimized such that the output of the estimated
Volterra system closely approximates the actual nonlinear
system output. The mean square error objective function is
defined as

E =
1

M

M∑
n=1

(ŷ[n]− y[n])2 (55)

where ŷ[n] and y[n] are the response of the actual nonlinear
system and the second order Volterra system, respectively,
M is the number of samples utilized to compute the fitness
function. The two examples are expressed below.

1) Example 1: A standard nonlinear model is considered
to carry out the simulations as utilized by Chang in [14]. This
system is input with the discrete-time signal, x[n] and the
system output is given as

d[n] =
0.3d2[n− 1] + 0.8x[n− 1] + 0.6d[n− 2]

1 + x2[n− 1] + d2[n− 1]
(56)

The eq. (56) is considered as the actual output which is
approximated with the discrete-time output of the second-order
Volterra system, y[n] given in eq. (32). Table 1 summarizes
the control parameters of the stochastic algorithms to perform
the system identification task. Several simulation runs have
been performed with different initial conditions in order to
obtain an accurate approximation to the nonlinear system
under consideration.

Computations are performed with the Volterra kernel size,
p = 5 and with following five different discrete-time input
signals, (i) sinusoidal signal, x[n] = 0.8 sin(π9n), (ii) noisy
sinusoidal signal, x[n] = 0.8 sin(π9n) + w[n], (iii) square
input, x = 0.4 × square(n), (iv) noisy square input, x =
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Fig. 3. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for sinusoidal input signal x(n) = 0.8 sin(π
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n) in example 1.
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Fig. 4. Comparison of MSE for second order fractional delay Volterra system
model output using gradient search, RGA, PSO and CSA for sinusoidal input
signal x(n) = 0.8 sin(π
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Fig. 5. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for noisy sinusoidal input signal x(n) = 0.8 sin(π

9
n)+w(n)

in example 1.

TABLE II
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR SINUSOIDAL INPUT SIGNAL

x(n) = 0.8 sin(π
9
n) FOR EXAMPLE 1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 4.7819 -2.6580 -0.2483 -1.1851
h(1) 6.9289 7.0705 0.9464 0.3521
h(2) -1.6173 -6.4367 -0.6477 0.3159
h(3) -7.6525 0.3392 -0.1653 -0.2498
h(4) -0.4248 -3.5871 0.3371 -0.1913
h(5) 6.3502 5.5849 0.4426 0.6771
g(0, 0) -2.6945 10.0000 -0.2351 -0.2155
g(0, 1) -8.0000 -6.5660 0.5631 2.7324
g(0, 2) 7.4322 0.3116 -1.4216 -0.1614
g(0, 3) 1.7955 0.4281 0.3063 0.5090
g(0, 4) 6.2381 -0.3697 -0.9874 -3.9133
g(1, 1) -6.6592 -6.8174 -0.3265 -1.5858
g(1, 2) -0.4924 9.3514 1.5749 0.5226
g(1, 3) -1.4650 -0.3788 0.1068 1.5532
g(1, 4) -4.5295 -4.4736 -1.0289 1.0851
g(2, 2) 7.9095 -2.0326 1.0759 0.9137
g(2, 3) -7.3655 -2.9788 -1.0691 -0.5968
g(2, 4) -6.1501 -0.4481 0.3015 0.1160
g(3, 3) 7.7976 9.8700 0.3764 -0.9234
g(3, 4) 1.9988 -0.0004 1.2163 0.8949
g(4, 4) -7.6527 0.0220 -0.8601 1.0284

TABLE III
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR NOISY SINUSOIDAL INPUT SIGNAL

x(n) = 0.8 sin(π
9
n) + w(n) FOR EXAMPLE 1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) -0.0517 -0.2039 -0.0371 0.6549
h(1) 2.7845 -1.6059 0.7056 -2.6148
h(2) -2.3396 1.3792 0.2225 0.2798
h(3) 0.0679 -0.7032 0.4377 2.8849
h(4) 1.2805 0.0966 -1.1508 1.5909
h(5) 0.3900 -1.0010 1.6167 -2.9161
g(0, 0) -1.3171 1.7034 0.6819 -0.4359
g(0, 1) -0.0356 0.8047 -0.4647 0.8494
g(0, 2) -0.2043 0.0536 -0.3457 1.9477
g(0, 3) -0.5186 2.8425 0.0924 -2.9480
g(0, 4) 1.7869 0.1401 0.0518 1.6660
g(1, 1) 0.3328 -0.9125 -0.8096 2.1944
g(1, 2) 1.4369 -2.3005 -1.1969 -2.5532
g(1, 3) 2.1203 -2.4689 -1.0682 0.9425
g(1, 4) -2.7382 -1.5798 1.9820 -0.9348
g(2, 2) -0.2732 1.5571 1.6017 -2.8826
g(2, 3) -3.4732 -0.8132 1.3062 0.1963
g(2, 4) -0.3665 2.1578 -2.5803 0.0648
g(3, 3) 1.1350 0.7772 0.5590 0.7749
g(3, 4) 0.8235 -1.1588 -1.3976 4.0653
g(4, 4) 0.0337 1.9707 0.5623 -2.7554

0.4×square(n)+w[n] and (v) random input signal. The noise
factor, w[n] is taken to be 0.5. Fig. 3 shows the comparison
of the actual system output by simulating eq. (56) with the
sinusoidal input signal and the estimated signal using gradient-
search, RGA, PSO and CSA. The mean square error between
the actual and estimated system output with sinusoidal input
signal is depicted in Fig. 4 for gradient-search, RGA, PSO and
CSA. The Volterra system coefficients, h(k) and g(k,m) with
kernel memory size, p = 5, optimized using aforementioned
algorithms are listed in Table II. The mean value of MSE with
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Fig. 6. Comparison of MSE for second order fractional delay Volterra system
model output using gradient search, RGA, PSO and CSA for noisy sinusoidal
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Fig. 7. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for square input signal in example 1.

a sinusoidal signal using gradient-search, RGA, PSO and CSA
is observed to be 0.0028, 0.0036, 0.0016, and 8.6450× 10−4,
respectively. Based on the observations of MSE values and
the graphical comparison in Figs. 3 and 4, it is inferred that
CSA gives a better approximation to the nonlinear system
coefficients. The performance of the employed methodologies
is sequenced as, CSA > PSO > GS > RGA. The comparison
of output response of the system when tested with noisy
sinusoidal signal is demonstrated in Fig. 5. The MSE obtained
when the system is subjected to noisy sinusoidal signal using
gradient-search, RGA, PSO and CSA is shown in Fig. 6.
Table III indicates the kernel parameters of Volterra system
with noisy sinusoidal input signal. The mean MSE values
obtained are 0.0013, 0.0020, 9.5133×10−4 and 5.3905×10−4,
respectively, with gradient-search, RGA, PSO and CSA when
the system is tested with noisy sinusoidal input signal. Thus,
a better approximation to the nonlinear system coefficients
is achieved with CSA and optimization techniques can be
arranged according to the performance as, CSA > PSO >
GS > RGA.

TABLE IV
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR SQUARE INPUT SIGNAL FOR EXAMPLE 1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 0.2427 -0.0773 -0.3601 -0.3919
h(1) 0.3044 0.2828 -0.0349 0.0153
h(2) 1.1082 0.7179 0.5309 0.5852
h(3) -0.1549 -0.1826 -0.1097 -0.1126
h(4) 0.5619 0.6813 0.3180 0.3600
h(5) 0.4230 -0.0164 -0.1591 -0.1024
g(0, 0) 0.1047 1.2752 0.1685 0.5475
g(0, 1) 0.1606 0.4552 0.6614 0.6311
g(0, 2) 0.2924 0.3694 -0.0932 -0.5869
g(0, 3) 0.7192 0.1017 0.2101 0.4265
g(0, 4) 1.1304 0.7404 0.6378 0.4574
g(1, 1) 0.1574 -0.0658 0.7991 0.0763
g(1, 2) 0.5883 0.5414 0.9405 0.5744
g(1, 3) -0.0925 0.5049 -0.0661 -0.0203
g(1, 4) 0.3228 0.1119 0.0264 0.0726
g(2, 2) 0.9729 -1.0543 0.6691 1.4622
g(2, 3) -0.4436 0.4137 0.5556 0.0912
g(2, 4) 1.2680 0.3468 0.4035 -0.0375
g(3, 3) -0.5785 0.0981 0.1056 -0.1419
g(3, 4) 0.2559 0.9561 0.6068 0.4822
g(4, 4) -0.4156 0.3841 0.3029 0.5164

TABLE V
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR NOISY SQUARE INPUT SIGNAL FOR EXAMPLE

1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 0.5125 -0.1586 -0.0891 0.4181
h(1) 0.5834 -0.6495 0.4696 0.6257
h(2) -0.4553 1.8403 -0.5114 -0.1225
h(3) -0.9315 0.9366 -0.1402 -0.1988
h(4) -0.4992 -0.5597 0.2433 -0.9789
h(5) 0.6559 -0.5733 0.0443 -0.1059
g(0, 0) -0.4693 0.4794 0.1119 -0.6883
g(0, 1) -0.6476 -0.4107 -0.1892 0.3784
g(0, 2) -0.7153 -0.0229 0.0493 -0.2357
g(0, 3) 1.5708 1.0239 -0.4435 -0.0758
g(0, 4) -0.5353 0.7520 -0.5391 0.0521
g(1, 1) 1.0706 -0.5719 0.9744 −2.6585× 10−4

g(1, 2) 0.7109 -0.6802 -0.4078 0.6443
g(1, 3) -1.0828 -0.1425 -0.0566 -0.1139
g(1, 4) 0.1929 0.0527 0.2139 -0.2014
g(2, 2) 0.7066 -0.5288 0.4387 -0.2642
g(2, 3) 0.9443 -0.3442 0.0375 0.3473
g(2, 4) -0.6769 0.0722 -0.3825 0.0691
g(3, 3) -0.3896 0.5909 0.2997 0.9077
g(3, 4) 0.5375 0.6186 -0.3601 0.2017
g(4, 4) -0.5179 0.2909 0.4694 0.0131

Fig. 7 shows the comparison of the actual system out-
put with square input signal and the estimated signal using
gradient-search, RGA, PSO and CSA. Fig. 8 depicts the
MSE observed when the system is tested with square input
signal using gradient-search, RGA, PSO and CSA. The kernel
parameters of Volterra system with squared input are reported
in Table IV. The mean value of MSE noticed with gradient-
search, RGA, PSO and CSA is 0.0042, 0.0026, 8.7709×10−4

and 5.4547×10−4, respectively when squared signal is applied
at the input of the system. From the graphical results and
numerical values of MSE, one can conclude that CSA provides
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Fig. 8. Comparison of MSE for second order fractional delay Volterra system
model output using gradient search, RGA, PSO and CSA for square input
signal in example 1.
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Fig. 9. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for noisy square input signal in example 1.
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Fig. 10. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for noisy
square input signal in example 1.

a good approximation to the nonlinear fractional delay second
order Volterra system coefficients compared to other applied
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Fig. 11. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for the random input signal in example 1.

TABLE VI
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR RANDOM INPUT SIGNAL FOR EXAMPLE 1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 0.2872 0.3162 0.1696 0.2202
h(1) 0.0922 0.0613 0.3087 0.0095
h(2) 0.1827 0.5617 0.1116 0.5814
h(3) -0.2102 -0.4402 0.0351 -0.0396
h(4) 0.0715 0.1864 0.4296 0.3219
h(5) 0.2372 0.0375 0.1394 0.0298
g(0, 0) 0.0045 0.0853 -0.0468 0.0147
g(0, 1) 0.0971 -0.1805 −6.4717× 10−5 -0.0171
g(0, 2) 0.6207 0.0495 -0.3325 -0.0077
g(0, 3) 0.0275 -0.2599 -0.2727 -0.0041
g(0, 4) -0.8997 0.0516 0.1541 -0.0085
g(1, 1) 0.2362 -0.2754 -0.1177 -0.3871
g(1, 2) -0.4174 0.1923 0.2645 0.0192
g(1, 3) 0.2129 -0.1189 -0.0345 -0.0073
g(1, 4) -0.1775 -0.0659 0.1635 0.0210
g(2, 2) -0.1632 0.0866 -0.0579 0.0247
g(2, 3) -0.1397 0.0479 0.1556 -0.0484
g(2, 4) 0.7185 0.3258 -0.1632 0.0172
g(3, 3) -0.2123 0.2361 -0.0389 -0.1671
g(3, 4) 0.3809 -0.2795 -0.3564 -0.0522
g(4, 4) -0.2813 -0.0921 -0.0363 -0.0268

optimization algorithms. The performance of these algorithms
is arranged as, CSA > PSO > GS > RGA. Fig. 9 exhibits
the comparison of output response of the system analyzed
with noisy square input using gradient-search, RGA, PSO and
CSA. The MSE remarked for the system under consideration
when examined with noisy square input is shown in Fig. 10.
Table V summarizes the kernel parameters of Volterra system
with noisy square input signal. The MSE values for second
order fractional delay Volterra system with gradient-search,
RGA, PSO and CSA are 0.0033, 0.0057, 6.0527× 10−4 and
5.9464×10−4, respectively. Based on these MSE values, it can
be finally deduced that nonlinear system identification with
the second order Volterra system using CSA surpasses the
other employed optimization methods. The performance can
be ranked as CSA > PSO > RGA > GS. The comparison
of output response of the system with random signal using
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Fig. 12. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for the
random input signal in example 1.

gradient-search, RGA, PSO and CSA is demonstrated in Fig.
11. The observed values of MSE and kernel parameters of
Volterra system with random signal are exhibited in Fig. 12
and Table VI, respectively. The mean MSE values obtained
are 0.0027, 8.5199×10−4, 7.7135×10−4 and 1.9658×10−4,
respectively, with gradient-search, RGA, PSO and CSA when
the system is tested with random signal. It can be concluded
from the aforementioned results that the CSA based nonlinear
system identification outperforms all other reported algorithms
in terms of MSE. The order of the algorithm based on its
performance is given as CSA > PSO > RGA > GS.

Furthermore, the statistical analysis in terms of maximum,
minimum, mean, variance and standard deviation of the MSE
is performed to evaluate the performance of the proposed
method. Table VII shows the comparative numerical values
of different characteristics like maximum, minimum, mean,
variance and standard deviation of mean square error of the
proposed second order fractional delay Volterra system for
different input signals using gradient-search, RGA, PSO and
CSA algorithms. This analysis provides a detailed comparison
amongst the performance of estimated Volterra systems em-
ploying all four optimization techniques. It is observed that
the MSE value obtained with CSA is lower as compared to
other algorithms with all input signals. From Figs. 3-12 and
statistically analyzed results from Table VII, it is evident that
with all input signals, the proposed nonlinear system modeling
method based on fractional delay second order Volterra system
produced minimum MSE compared to that of the gradient-
search, RGA and PSO. Finally, it can be concluded that
CSA based second order fractional delay Volterra system
identification method gives superior results compared to other
reported algorithms with all the input signals.

2) Example 2: In this example, the mathematical model of
heat exchanger used in [14] is considered. The system can be
expressed as

w[n] =x[n]− 1.3228x2[n] + 0.7671x3[n]

− 2.1755x4[n] (57)
d[n] =1.608d[n− 1]− 0.6385d[n− 2]− 6.5306w[n− 1]
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Fig. 13. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for sinusoidal input signal x(n) = 0.8 sin(π

9
n) in example 2.

TABLE VIII
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR SINUSOIDAL INPUT SIGNAL

x(n) = 0.8 sin(π
9
n) FOR EXAMPLE 2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 9.4709 16.2089 16.6626 14.4537
h(1) -0.6698 25.5888 25.1569 19.6381
h(2) -19.3316 11.4107 13.3984 15.6001
h(3) 8.6093 -11.0001 -11.9957 -14.5285
h(4) -5.0777 43.6126 44.6720 42.9363
h(5) -4.6264 13.3334 14.0811 11.2961
g(0, 0) -9.7089 5.2952 4.6671 1.2645
g(0, 1) 15.3888 7.2002 7.6748 8.8481
g(0, 2) 4.2497 -0.2573 4.3471 0.6401
g(0, 3) 9.2702 -6.0859 -6.9853 -10.2706
g(0, 4) 4.8762 -6.8910 -10.3297 -10.0909
g(1, 1) -3.8765 -0.6058 -2.8362 4.3473
g(1, 2) -16.4299 0.7216 -0.0073 -2.2931
g(1, 3) -17.3760 -3.6154 -1.2420 -6.1239
g(1, 4) -0.6727 -46.8916 -47.5947 -47.6447
g(2, 2) -0.4807 16.0521 15.5387 15.1564
g(2, 3) 35.0206 28.9075 29.4013 31.9329
g(2, 4) -2.0420 -19.8110 -20.3997 -18.8809
g(3, 3) -10.0147 27.3951 28.3579 30.8179
g(3, 4) -15.3354 -17.4811 -17.5201 -22.3759
g(4, 4) 11.2373 19.7659 19.8043 19.8045

+ 5.5652w[n− 2] (58)

where x[n] be the input to the system, w[n] is the static
nonlinearity and d[n] be the output of the system.

In order to evaluate the performance of this system Volterra
kernel size is selected as p = 5 and the input to the system
is tested with five different input signals. Fig. 13 shows the
comparison of actual output and the estimated output using
gradient-search, RGA, PSO and CSA, when the sinusoidal
input signal is applied. The Volterra system coefficients ob-
tained with sinusoidal input using gradient-search, RGA, PSO
and CSA are listed in Table VIII. The MSE error noticed with
sinusoidal input is exhibited in Fig. 14. The mean MSE values
obtained are 0.0220, 0.0155, 0.0154 and 0.0151, respectively,
with gradient-search, RGA, PSO and CSA, when the system
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TABLE VII
STATISTICAL COMPARISON OF MEAN SQUARE ERROR FOR THE IDENTIFICATION OF NONLINEAR SYSTEM WITH DIFFERENT INPUT SIGNAL USING

GRADIENT SEARCH, RGA, PSO AND CSA BASED METHODS FOR EXAMPLE 1.

Input Signal Algorithm Mean Square Error (MSE)
Max Min Mean Variance Standard Deviation

x(n) = 0.8 sin(π
9
n) GS 0.0446 4.8916× 10−5 0.0028 2.8003× 10−5 0.0053

RGA 0.1788 8.6341× 10−6 0.0036 3.4486× 10−4 0.0186

PSO 0.0446 2.0815× 10−5 0.0016 2.1110× 10−5 0.0046

CSA 0.0446 1.3196× 10−9 8.6450× 10−4 2.0281× 10−5 0.0045

x(n) = 0.8 sin(π
9
n) + w(n) GS 0.0623 5.0772× 10−7 0.0013 6.4219× 10−5 0.0080

RGA 0.0787 2.4005× 10−6 0.0020 9.5760× 10−5 0.0098

PSO 0.0494 1.9535× 10−8 9.5133× 10−4 2.7945× 10−5 0.0053

CSA 0.0494 2.1471× 10−11 5.3905× 10−4 2.5107× 10−5 0.0050

x(n) = 0.4square(n) GS 0.0945 1.3653× 10−7 0.0042 1.9755× 10−4 0.0141

RGA 0.0409 1.2848× 10−9 0.0026 4.2058× 10−5 0.0065

PSO 0.0242 6.8875× 10−7 8.7709× 10−4 7.6877× 10−6 0.0028

CSA 0.0242 1.0647× 10−16 5.4547× 10−4 6.5939× 10−6 0.0026

x(n) = 0.4square(n) + w(n) GS 0.0836 9.3438× 10−7 0.0033 1.0524× 10−4 0.0103

RGA 0.0615 7.7230× 10−6 0.0057 1.7510× 10−4 0.0132

PSO 0.0504 2.4164× 10−8 6.0527× 10−4 2.6298× 10−5 0.0051

CSA 0.0504 5.7384× 10−13 5.9464× 10−4 2.6299× 10−5 0.0051

x(n) = rand(n) GS 0.0341 4.6628× 10−10 0.0027 2.3409× 10−5 0.0048

RGA 0.0110 1.1880× 10−7 8.5199× 10−4 2.2017× 10−6 0.0015

PSO 0.0110 2.9739× 10−9 7.7135× 10−4 2.0691× 10−6 0.0014

CSA 0.0110 3.9740× 10−8 1.9658× 10−4 1.2529× 10−6 0.0011
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Fig. 14. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for sinusoidal
input signal x(n) = 0.8 sin(π

9
n) in example 2.

is tested with sinusoidal input. Based on the observations of
MSE values and the graphical comparison in Figs. 13 and
14, it is inferred that CSA gives a better approximation to
the nonlinear system coefficients. The performance of the
employed methodologies is sequenced as, CSA > PSO >
RGA > GS.

The comparison of output response of the system when
tested with noisy sinusoidal signal is demonstrated in Fig.
15. The MSE obtained when the system is subjected to noisy
sinusoidal signal using gradient-search, RGA, PSO and CSA
is shown in Fig. 16. Table IX lists the kernel parameters of
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Fig. 15. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for noisy sinusoidal input signal x(n) = 0.8 sin(π

9
n)+w(n)

in example 2.

Volterra system with noisy sinusoidal input signal. The mean
value of MSE with noisy sinusoidal signal using gradient-
search, RGA, PSO and CSA is observed to be 0.0154, 0.0158,
0.0154, and 0.0137, respectively. Thus, a better approximation
to the nonlinear system coefficients is achieved with CSA
and optimization techniques can be arranged according to the
performance as, CSA > PSO = GS > RGA.

The kernel parameters of Volterra system with squared input
are reported in Table X. Fig. 17 shows the comparison of
the actual system output with square input signal and the
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Fig. 16. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for noisy
sinusoidal input signal x(n) = 0.8 sin(π

9
n) + w(n) in example 2.
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Fig. 17. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for square input signal in example 2.

10 20 30 40 50 60 70 80 90 100
0

0.01

0.015

0.02

Samples

M
ea

n 
Sq

ua
re

 E
rro

r

GS RGA PSO CSA

Fig. 18. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for square
input signal in example 2.

estimated signal using gradient-search, RGA, PSO and CSA.

TABLE IX
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR NOISY SINUSOIDAL INPUT SIGNAL

x(n) = 0.8 sin(π
9
n) + w(n) FOR EXAMPLE 2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 19.7175 19.9878 19.7175 19.6256
h(1) 2.5659 2.0529 2.5659 3.4482
h(2) -24.1582 -23.6178 -24.1582 -26.4619
h(3) -2.0403 -0.4954 -2.0403 -0.3887
h(4) 19.9393 20.0624 19.9393 23.4229
h(5) -7.6989 -7.4160 -7.6989 -10.5589
g(0, 0) -7.0703 -7.2762 -7.0703 -6.6456
g(0, 1) 11.4793 12.0153 11.4793 10.4377
g(0, 2) 1.4172 2.3618 1.4172 1.6714
g(0, 3) -1.8849 -0.4439 -1.8849 -0.8707
g(0, 4) 1.5957 0.1224 1.5957 0.9816
g(1, 1) -3.3497 -4.2333 -3.3497 -3.1366
g(1, 2) -5.7131 -6.3393 -5.7131 -5.6986
g(1, 3) 0.4449 -1.0819 0.4449 1.1859
g(1, 4) 4.8335 6.2813 4.8335 4.3979
g(2, 2) -2.1866 -1.1669 -2.1866 -1.8611
g(2, 3) 6.8904 7.1536 6.8904 4.9551
g(2, 4) -1.2842 -1.4654 -1.2842 -1.7116
g(3, 3) 2.6831 2.7344 2.6831 3.8625
g(3, 4) -10.9289 -11.3184 -10.9289 -9.3152
g(4, 4) 7.6593 7.9471 7.6593 6.4721

TABLE X
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR SQUARE INPUT SIGNAL FOR EXAMPLE 2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 5.3951 3.8427 5.2620 -1.4383
h(1) 6.6501 1.0145 1.2080 1.8399
h(2) 4.5466 -2.4147 -2.3915 -3.0599
h(3) 4.7278 0.5306 -1.4995 -0.6803
h(4) 5.1116 -0.8780 1.8397 5.3169
h(5) 7.1848 -1.2398 1.5111 6.1945
g(0, 0) 3.4676 1.8247 -0.8796 3.7098
g(0, 1) 8.5345 1.1147 2.1813 0.6935
g(0, 2) 4.6133 2.4419 0.5851 -0.5799
g(0, 3) 0.9336 -1.4757 0.4633 -0.0428
g(0, 4) 8.2602 0.3734 0.4705 -0.4795
g(1, 1) 6.7420 3.0117 0.9524 5.2397
g(1, 2) 3.4231 0.6770 1.5778 4.5719
g(1, 3) 5.9950 2.9727 0.6525 1.9149
g(1, 4) 4.2657 -0.8576 1.3171 -5.3846
g(2, 2) 6.8185 4.0588 1.4162 1.2048
g(2, 3) 2.3524 3.0529 3.6863 7.1106
g(2, 4) 6.0669 0.1657 -1.3885 -3.1878
g(3, 3) 10.1462 0.9998 4.1036 5.8609
g(3, 4) 3.8599 2.8173 2.1098 8.6596
g(4, 4) 3.4468 -1.8829 1.6816 15.5536

Fig. 18 depicts the MSE observed when the system is tested
with square input signal. The mean value of MSE noticed
with gradient-search, RGA, PSO and CSA is 0.0023, 0.0016,
0.0016 and 8.9512× 10−4, respectively when squared signal
is applied at the input of the system. From the graphical
results and numerical values of MSE, one can conclude that
CSA provides a good approximation to the nonlinear fractional
delay second order Volterra system coefficients compared to
other applied optimization algorithms. The performance of
these algorithms is arranged as, CSA > PSO = RGA > GS.

Table XI summarizes the kernel parameters of Volterra
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Fig. 19. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for noisy square input signal in example 2.

TABLE XI
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR NOISY SQUARE INPUT SIGNAL FOR EXAMPLE

2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 2.0734 2.0628 6.1067 3.5476
h(1) 1.2933 -0.4618 4.7040 -0.7788
h(2) 1.3408 1.0626 2.0808 -2.4513
h(3) 3.3256 -0.0636 2.7889 0.0166
h(4) 0.0297 0.2113 6.8997 0.8947
h(5) 1.8156 1.5619 4.4455 -1.2868
g(0, 0) 3.4476 2.6711 3.7141 1.8125
g(0, 1) 4.0397 -0.8521 3.0184 0.1079
g(0, 2) -1.3687 -1.2592 1.6243 -0.4851
g(0, 3) -1.3194 -0.4355 -2.9203 -1.7564
g(0, 4) 1.1708 -2.5746 0.7713 -3.0847
g(1, 1) 5.1978 8.6357 5.4871 3.6384
g(1, 2) 5.3892 1.6294 3.9281 2.8376
g(1, 3) 0.0668 -1.2428 3.6944 1.6550
g(1, 4) 1.6461 -0.8980 -3.9143 -3.6949
g(2, 2) 3.4492 3.1523 1.0847 1.3733
g(2, 3) 3.5700 4.9677 6.3690 3.5562
g(2, 4) 0.9387 -4.7134 -0.9484 -1.3355
g(3, 3) 2.6421 0.4263 3.3774 0.7597
g(3, 4) 2.3118 3.6257 6.6161 2.9279
g(4, 4) 4.4797 6.1514 5.4867 3.3231

system with noisy square input signal. The comparison of
output response of the system analyzed with noisy square input
using gradient-search, RGA, PSO and CSA is demonstrated
in Fig. 19. The MSE remarked for the system under consid-
eration when examined with noisy square input is shown in
Fig. 20. The MSE values for second order fractional delay
Volterra system with gradient-search, RGA, PSO and CSA
are 0.0068, 0.0040, 0.0039 and 0.0039, respectively. Based
on these MSE values, it can be finally deduced that nonlinear
system identification with the second order Volterra system
using CSA surpass the other employed optimization methods.
The performance can be ranked as CSA = PSO > RGA >
GS. The comparison of output response of the system with
random signal using gradient-search, RGA, PSO and CSA is
depicted in Fig. 21. The noted values of MSE with random
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Fig. 20. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for noisy
square input signal in example 2.

TABLE XII
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND
CSA BASED METHODS FOR RANDOM INPUT SIGNAL FOR EXAMPLE 2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 1.0418 1.1669 1.1405 1.1775
h(1) 0.2133 -0.5722 0.1031 -0.2277
h(2) -7.4315 -7.5149 -6.8923 -7.5111
h(3) -4.4032 -4.4664 -4.3393 -4.4983
h(4) -2.5474 -2.5632 -2.9064 -2.7099
h(5) -0.0057 -0.6688 -1.5127 -1.3608
g(0, 0) -0.0514 -1.1548 -0.3505 -0.6698
g(0, 1) -0.1563 0.5335 -0.2269 -0.3422
g(0, 2) 2.6338 2.7008 2.5176 2.5249
g(0, 3) 0.7263 1.2250 0.8140 0.8262
g(0, 4) 2.1507 1.7291 1.6591 1.5885
g(1, 1) -1.5875 -1.5097 -0.7013 -1.4393
g(1, 2) 0.6341 -0.3207 -0.3789 -0.3649
g(1, 3) 1.7894 1.6511 1.4016 1.3383
g(1, 4) 2.2614 1.6739 0.8213 1.2354
g(2, 2) 0.1802 0.2774 0.3187 0.1962
g(2, 3) -0.7735 -1.1470 -0.6745 -0.8926
g(2, 4) 1.4143 1.2553 1.4124 1.2015
g(3, 3) 0.9802 1.0123 0.5143 0.8377
g(3, 4) -0.7264 -0.3468 -0.1677 -0.7615
g(4, 4) 2.6381 1.9273 0.9942 1.2558

signal is exhibited in Fig. 22 and Table XII lists the kernel
parameters of Volterra system with random input. The mean
MSE values obtained are 0.0023, 0.0023, 0.0023 and 0.0022,
respectively. It can be concluded from the aforementioned
results that the CSA based nonlinear system identification
outperforms all other reported algorithm in terms of MSE. The
order of the algorithm based on its performance is given as
CSA > PSO = RGA = GS. Table XII shows the comparative
numerical values of different characteristics like maximum,
minimum, mean, variance and standard deviation of mean
square error of proposed second order Volterra system using
fractional delay for five different input signals using gradient-
search, RGA, PSO and CSA algorithms. It is observed that
the MSE value observed with CSA is lower as compared to
other algorithms with all input signals. From Figs. 13-22 and
statistically analyzed results from Table XIII, it is evident that
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Fig. 21. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for random input signal in example 2.
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Fig. 22. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for the
random input signal in example 2.

with all input signals, the proposed nonlinear system modeling
method based on fractional delay second order Volterra system
produced minimum MSE compared to that of the gradient-
search, RGA and PSO. Finally, it can be concluded that
CSA based second order fractional delay Volterra system
identification method gives superior results compared to other
reported algorithms with all the input signals. In order to
demonstrate the effectiveness of the proposed method in terms
of convergence rate, Fig. 23 shows the convergence of MSE
obtained, for example 1 tested with sinusoidal input. Similar
plots have also been obtained for the example 1 and 2 with
different input signals which are not shown here.

C. Comparative Analysis

1) Comparison with a Third Order Integer Delay Volterra
System: The superiority of the proposed Volterra system
identification method is demonstrated by comparing the results
with a nonlinear Volterra system using an integer delay. Fig.
24 shows the comparison of approximated output of proposed
second order fractional delay Volterra system in example 1,
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Fig. 23. Convergence profile for RGA, PSO and CSA for nonlinear system
identification using second order fractional delay Volterra system model in
example 1.
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Fig. 24. Comparison of third order integer delay Volterra system output
with second order fractional delay Volterra system model output using CSA
for sinusoidal input signal in example 1.

eq. (56) with the output of a third order integer delay Volterra
system when both the systems are subjected to the sinusoidal
input signal. From the visual analysis of Fig. 24, it can be
inferred that a better approximation of the nonlinear unknown
system is achieved using the proposed second order fractional
delay Volterra system to its integer counterpart of third order.
The mean values of MSE for integer and fractional delay
system are obtained to be 3.2914× 10−3 and 8.6450× 10−4.
Thus, the introduction of fractional delay in the Volterra
system identification technique leads to a better approximation
with the involvement of less number of multipliers (due to
order reduction) and low energy consumption in comparison
to the integer delay systems. Similar graphical results are
obtained for example 1 and example 2 with different input
signals, which are not reported here.

2) Comparison with the Existing Techniques: The compar-
ison of the proposed second order fractional delay Volterra
system with the other reported nonlinear system modeling
method has been presented in Table XIV. The observations
are made on the MSE values of the existing methodologies
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TABLE XIII
STATISTICAL COMPARISON OF MEAN SQUARE ERROR FOR THE IDENTIFICATION OF NONLINEAR SYSTEM WITH DIFFERENT INPUT SIGNAL USING

GRADIENT SEARCH, RGA, PSO AND CSA BASED METHODS FOR EXAMPLE 2.

Input Signal Algorithm Mean Square Error (MSE)
Max Min Mean Variance Standard Deviation

x(n) = 0.8 sin(π
9
n) GS 0.3326 2.9491× 10−6 0.0220 0.0020 0.0443

RGA 0.1787 6.3511× 10−5 0.0155 7.7422× 10−4 0.0278

PSO 0.1815 5.0935× 10−5 0.0154 7.7765× 10−4 0.0279

CSA 0.1605 2.0301× 10−8 0.0151 7.4953× 10−4 0.0274

x(n) = 0.8 sin(π
9
n) + w(n) GS 0.2117 1.3487× 10−5 0.0154 7.4549× 10−4 0.0273

RGA 0.2129 8.0414× 10−7 0.0158 7.4020× 10−4 0.0272

PSO 0.2117 1.3487× 10−5 0.0154 7.4549× 10−4 0.0273

CSA 0.1947 5.4686× 10−8 0.0137 6.0762× 10−4 0.0246

x(n) = 0.4square(n) GS 0.0282 6.2620× 10−7 0.0023 2.7538× 10−5 0.0052

RGA 0.0311 3.3186× 10−8 0.0016 1.6176× 10−5 0.0040

PSO 0.0177 2.5478× 10−7 0.0016 8.8820× 10−6 0.0030

CSA 0.0115 4.8790× 10−14 8.9512× 10−4 3.4831× 10−6 0.0019

x(n) = 0.4square(n) + w(n) GS 0.0975 5.2938× 10−6 0.0068 1.6614× 10−4 0.0129

RGA 0.0880 1.8202× 10−9 0.0040 1.3367× 10−4 0.0116

PSO 0.0865 1.0412× 10−14 0.0039 1.3078× 10−4 0.0114

CSA 0.0865 3.7582× 10−11 0.0039 1.3078× 10−4 0.0114

x(n) = rand(n) GS 0.0184 2.3431× 10−6 0.0023 1.0509× 10−5 0.0032

RGA 0.0166 6.7229× 10−7 0.0023 9.7658× 10−6 0.0031

PSO 0.0168 7.0138× 10−8 0.0023 1.0681× 10−5 0.0033

CSA 0.0161 1.5406× 10−9 0.0022 9.6443× 10−6 0.0031

TABLE XIV
COMPARISON OF THE PROPOSED FRACTIONAL DELAY BASED NONLINEAR SYSTEM IDENTIFICATION WITH OTHER REPORTED METHODS.

Method Example Algorithm Input signal Memory size (p) MSE

Rashedi et al. [22] Example 1 GSA White noise sequence x(k) + noise η(k) ∈ [−0.001, 0.001] - 3.91× 10−7

GSA White noise sequence x(k) + noise η(k) ∈ [−0.01, 0.01] - 4.23× 10−5

Chang [14] Example 1 IPSO x(n) = 0.8 cos(π
9
n) 5 0.00929002

IPSO x(n) = 0.8 cos(π
9
n) 8 0.00491307

IPSO x(n) = rand(n) 5 0.00556229
IPSO x(n) = rand(n) 8 0.00260959

Present Study Example 1 CSA x(n) = 0.8 sin(π
9
n) 5 8.6450× 10−4

CSA x(n) = 0.8 sin(π
9
n) + w(n) 5 5.3905× 10−4

CSA x(n) = 0.4square(n) 5 5.4547× 10−4

CSA x(n) = 0.4square(n) + w(n) 5 5.9464× 10−4

CSA x(n) = rand(n) 5 1.9658× 10−4

Example 2 CSA x(n) = 0.8 sin(π
9
n) 5 7.4953× 10−4

CSA x(n) = 0.8 sin(π
9
n) + w(n) 5 0.0137

CSA x(n) = 0.4square(n) 5 8.9512× 10−4

CSA x(n) = 0.4square(n) + w(n) 5 0.0039
CSA x(n) = rand(n) 5 0.0022

for nonlinear system identification problem.

VI. CONCLUSION

The objective of this work is to design an efficient method
for nonlinear system approximation with the use of fractional
delays. The novelty is that in implementing the fractional
order delays, the higher order nonlinearities are estimated
using a low order Volterra model with higher accuracy by
using adept optimization methodologies. A discrete model of
the estimation problem is formulated in order to simulate the
proposed method in MATLAB. The Gradient-search method
is developed for the system identification problem and opti-
mizing the Volterra system parameters. To further optimize

the system coefficients, different stochastic algorithms are
applied. Two design examples are presented using nonlinear
benchmark models with five different input signals and close
approximations of the unknown system are analyzed in figures
and tables, comparing the proposed gradient-search, RGA,
PSO and CSA techniques. The statistical analysis of the
estimated results is portrayed by computing the mean, variance
and standard deviation of the computed error while performing
multiple simulations. The accuracy in results is achieved
with the globally convergent and widely applied metaheuristic
optimization, CSA. A comparison between the various op-
timization technique is made. It can be concluded that the
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proposed method incorporating the fractional delay systems,
delivers an effective approximation to an unknown nonlinear
system modeled using a second order Volterra function.
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Fractional-Order Control for a Novel Chaotic
System without Equilibrium

Shu-Yi Shao and Mou Chen Member, IEEE,

Abstract—The control problem is discussed for a chaotic sys-
tem without equilibrium in this paper. On the basis of the linear
mathematical model of the two-wheeled self-balancing robot, a
novel chaotic system which has no equilibrium is proposed. The
basic dynamical properties of this new system are studied via
Lyapunov exponents and Poincaré map. To further demonstrate
the physical realizability of the presented novel chaotic system, a
chaotic circuit is designed. By using fractional-order operators,
a controller is designed based on the state-feedback method.
According to the Gronwall inequality, Laplace transform and
Mittag-Leffler function, a new control scheme is explored for the
whole closed-loop system. Under the developed control scheme,
the state variables of the closed-loop system are controlled to
stabilize them to zero. Finally, the numerical simulation results
of the chaotic system with equilibrium and without equilibrium
illustrate the effectiveness of the proposed control scheme.

Index Terms—Chaotic system, Circuit implementation,
Fractional-order, Stabilization.

I. INTRODUCTION

FROM From the simplified equation of convection roll-
s in the equations of the atmosphere, the first three-

dimensional chaotic system was derived by Lorenz in 1963[1].
With the development and applying of chaos theory, a number
of chaotic systems, hyperchaotic systems, fractional-order
chaotic systems and fractional-order hyperchaotic systems
have been proposed, such as Rössler chaotic system[2], Liu
chaotic system[3], hyperchaotic Chen system[4], hyperchaotic
Lü system[5], fractional-order financial system[6], fractional-
order Lotka-Volterra equation[7], fractional-order hyperchaos
Lorenz system[8], a modified four-dimensional fractional order
hyperchaotic system[9] and so on. The above mentioned chaot-
ic systems have equilibrium. In addition, there are a number of
chaotic systems without equilibrium which have been studied
by [10-13]. As a result, chaos control became one of the
important issues for chaotic systems. Due to great potential
application in electrical engineering, information processing
and secure communication, it is important to investigate new
control methods for chaotic systems.

Over the past few decades, chaos control and chaos syn-
chronization have received much attention and many im-
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portant results have been reported. In the early 1990s, the
synchronization of chaotic systems was achieved by Pecora
and Carroll[14,15], which was a trailblazing result, and the
result promoted the development of chaos control and chaos
synchronization[16,17]. In recent years, different chaos control
and chaos synchronization strategies have been developed
for chaotic systems. The sliding mode control method was
applied to chaos control[18,19] and chaos synchronization[20].
In [21], the feedback control method and the adaptive control
method were used to realize chaos control for the energy
resource chaotic system. The chaos control problems were
investigated for Lorenz system, Chen system and Lü system
based on backstepping design method in [22]. By using
adaptive control method, the problems of chaos control[23,24]

and chaotic synchronization[25] were studied for chaotic sys-
tems. The neural adaptive control method was developed for
a class of chaotic systems with uncertain dynamics, input
and output constraints in [26]. In [27], on the basis of
impulsive control method, the problems of the stabilization
and synchronization were explored for Lorenz systems. The
synchronization problem was resolved for a class of chaotic
systems by using a fractional-order observer-based method and
the synchronization was applied to secure communication in
[28]. In [29], the synchronization was studied for fractional-
order systems based on the output feedback sliding mode
control method. A new synchronization strategy was presented
for two fractional-order systems and the synchronization was
applied in image encryption in [30]. The above literature works
focused on chaos control and chaos synchronization in prac-
tical chaotic systems with equilibrium points. However, the
control of chaotic systems without equilibrium has rarely been
investigated[13]. Meanwhile, for most of the above mentioned
works, fractional-order controllers have rarely been used to
realize the chaos control of integer-order chaotic systems,
although some important results on the fractional-order con-
trollers have been proposed for various systems[31−33]. In [31],
a well-known fractional-order controller was presented. In
[32], the concept of a fractional-order PIλDµ controller was
proposed and the fractional-order controller included fractional
order integrator and fractional-order differentiator. In [33], on
the basis of the Lyapunov stability theory, a novel fractional-
order controller was given, and fractional-order chaotic and hy-
perchaotic systems were controlled by the proposed fractional-
order controller. The fractional-order controllers are effective
to control systems, which have been proved in the mentioned
works. Therefore, it is valuable to further explore the chaos
control of integer-order chaotic systems without equilibrium
by using fractional-order controllers.

Inspired by the above discussions, the objective of this paper
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is to design an efficient fractional-order controller and the
stability is realized for the closed-loop system. A novel chaotic
system without equilibrium is proposed based on the model of
two-wheeled self-balancing robot. Meanwhile, the presented
new system is used to verify the effectiveness of the proposed
control scheme.

The organization of the paper is as follows. Section II
details the problem formulation. A novel chaotic system is
proposed and the chaotic system circuit is designed in Section
III. Section IV presents the fractional-order controller based on
the state-feedback method. The numerical simulation studies
are presented to demonstrate the effectiveness of the developed
control method in Section V, followed by some concluding
remarks in Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, a novel chaotic system will be proposed by
only considering the straight line position xr and the pitch
angle θp of the two-wheeled self-balancing robot of Googol
Technology as shown in Fig. 1. A mathematical model related
to the two-wheeled self-balancing robot of Googol Technology
was established in [34]. The linear mathematical model for
xr and θp of the two-wheeled self-balancing robot of Googol
Technology is described in the form

ẋr

ẍr

θ̇p
θ̈p

 =


0 1 0 0
0 0 −23.6701 0
0 0 0 1
0 0 124.5128 0




xr

ẋr

θp
θ̇p



+


0

4.5974
0

−19.0414

Cθ (1)

where Cθ denotes the pitch torque.

Fig. 1. Two-wheeled self-balancing robot of Googol Technology.

In order to transform the linear mathematical model in-
to a chaotic system, we consider Cθ as a nonlinear term
Φ(xr, ẋr, θ̇p, θ̈p), which will be given in next section.

Considering the nonlinear function Φ(xr, ẋr, θ̇p, θ̈p) and the

control input u, (1) can be described as
ẋr

ẍr

θ̇p
θ̈p

 =


0 1 0 0
0 0 −23.6701 0
0 0 0 1
0 0 124.5128 0




xr

ẋr

θp
θ̇p



+


0

4.5974
0

−19.0414

Φ(xr, ẋr, θ̇p, θ̈p) + u (2)

where the control input u = [u1, u2, u3, u4]
T.

This paper aims at constructing a novel chaotic system
without equilibrium and developing a fractional-order control
scheme, so that the stabilization of the whole closed-loop sys-
tem is realized based on the designed control strategy. Under
designed fractional-order controller, the state variables of the
closed-loop system will be asymptotically stable. To develop
the fractional-order control scheme, we firstly introduce the
following definitions and lemmas:

Definition 1[35]. The Caputo fractional derivative operator,
which is one of the most widely used fractional derivative
operators, is defined for the function f(t) as follows :

Dαf(t) =
1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)
α−m+1 dτ, (3)

where α is the fractional order and m − 1 < α < m, m =
[α] + 1, [α] denotes the integer part of α, and Γ(·) is gamma
function, which is defined as Γ(m− α) =

∫∞
0

tm−α−1e−tdt.
The main advantage of (3) is that Caputo derivative of a
constant is equal to zero. Particularly, when 0 < α ≤ 1,
we have L{Dαf(t)} = sαF (s) − sα−1f(0). The Laplace
transform of fractional integral at t0 = 0 has the following
form:

L
{
D−αf(t)

}
= s−αL{f(t)} = s−αF (s), (α > 0), (4)

where t and s are the variables in the time domain and Laplace
domain, respectively. F (s) = L(f(t)) and L(·) stands for the
Laplace transform.

In this paper, the fractional-order controller will be de-
scribed by using Caputo definition with lower limit of integral
t0 = 0 and the order 1 < α < 2. Furthermore, there have
been some important control schemes proposed for fractional-
order systems by using different fractional calculus. In [36-
38], Mittag-Leffler stability theorems have been proposed for
fractional-order systems. The stability theorem was develope-
d for fractional differential system with Riemann-Liouville
derivative in [39-41].

Definition 2[42]. The Mittag-Leffler function with two
parameters is defined as

Eα1,β1(z) =

∞∑
k=0

zk

Γ(kα1 + β1)
, (5)

where α1 > 0, β1 > 0, z denotes the set of complex numbers.
When β1 = 1, the Mittag-Leffler function can be written as

Eα1,1(z) = Eα1(z) =
∞∑
k=0

zk

Γ(kα1 + 1)
, (6)
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The Laplace transform of Mittag-Leffler function is given by{
L
{
tβ1−1Eα1,β1(−λtα1)

}
= sα1−β1

sα1+λ ,ℜ(s) > |λ|
1

α1 ,

L{Eα1,1(−λtα1)}= sα1

s(sα1+λ) .
(7)

where ℜ(s) stands for the real part of s and λ ∈ R.
Lemma 1[43]. For the the Mittag-Leffler function

Eα3,β3(A0t
α3), if 1 < α3 < 2, then, for β3 = 1, 2 or α3,

one has

∥Eα3,β3(A0t
α3)∥ ≤

∥∥∥eA0t
α3
∥∥∥ , t ≥ 0. (8)

Moreover, if A0 is a stable matrix, we have∥∥∥eA0t
α3
∥∥∥ ≤ Me−ηt, t ≥ 0, (9)

where M ≥ 1, −η(η > 0) is the largest eigenvalue of the
matrix A0, ∥·∥ denotes any vector or induced matrix norm.

Lemma 2[44,45](Gronwall-Bellman lemma). Assume that
the function h(t) satisfies

h(t) ≤
∫ t

0

p(τ)h(τ)dτ + b(t), (10)

with p(τ) and b(t) being known real functions. Then, we
obtain

h(t) ≤
∫ t

0

p(τ)h(τ)e
∫ t
τ
p(υ)dυdτ + b(t). (11)

If b(t) is differentiable, we have

h(t) ≤ b(0)e
∫ t
0
p(τ)dτ +

∫ t

0

ḃ(τ)e
∫ t
τ
p(υ)dυdτ . (12)

In particular, if b(t) is a constant, one has

h(t) ≤ b(0)e
∫ t
0
p(τ)dτ . (13)

III. DESIGN OF CHAOTIC SYSTEM AND CIRCUIT
IMPLEMENTATION

In this section, a novel chaotic system without equilibrium
is constructed based on the linear mathematical model (1)
of the two-wheeled self-balancing robot. For this case, the
proposed novel chaotic system can be regarded as an open-
loop system of the system (2). Furthermore, the chaotic circuit
is designed to show the physical realizability of the proposed
chaotic system.

A. A Novel Chaotic System

From (2), the novel chaotic system is described as follows:

ẋ1 = x2

ẋ2 = −23.6701x3 + 4.5974Φ(x)

ẋ3 = x4

ẋ4 = 124.5128x3 − 19.0414Φ(x) (14)

where x = [x1, x2, x3, x4]
T is the state vector of the nonlinear

system with x1 = xr, x2 = ẋr, x3 = θp and x4 = θ̇p. The
nonlinear function Φ(x) is given by

Φ(x) = κ1(x2 + x4 + x1x3) + κ2 (15)

where κ1 and κ2 are constants. When κ1 = 10 and κ2 = 0.5,
we obtain the Lyapunov exponents λL1 = 0.0177, λL2 = 0,
λL3 = −0.0148 and λL4 = −143.8384 by using the initial
conditions x10 = x20 = x30 = x40 = 0.1 based on the
numerical method of [46]. Obviously, the system (14) is a
chaotic system because λL1 > 0, λL2 = 0, λL3 < 0 and
λL4

< 0. On the basis of the system (14) and the mentioned
parameter values, some simulation results are further presented
as shown in Fig. 2. In addition, to further reflect the properties
of chaos, a Poincaré map is shown in Fig. 3.

In order to solve the equilibrium of system (14), we have
ẋ1 = 0, ẋ2 = 0, ẋ3 = 0 and ẋ4 = 0, that is

x2 = 0

−23.6701x3 + 4.5974Φ(x) = 0

x4 = 0

124.5128x3 − 19.0414Φ(x) = 0 (16)
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Fig. 2. Chaotic behaviors of the novel chaotic system (a) x1 − x2

plane, (b) x1 − x3 plane, (c) x1 − x4 plane, (c) x3 − x1 − x4 space.
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Fig. 3. Poincaré map in the x2 − x3 plane.

According to (16), we obtain that there is no equilibrium in
system (14). Furthermore, we ensure that the system (14) is
dissipative with the following exponential contraction rate:

dV

dt
= e−144.44t (17)

with

∇V =
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
+

∂ẋ4

∂x4

= −144.44 < 0 (18)

B. Circuit Implementation

To further illustrate the physical realizability of the proposed
novel chaotic system (14), the system circuit is designed.
By using the resistors, the capacitors and the operational
amplifiers TL082, the designed circuit of the chaotic system
is shown in Fig. 4. According to Fig. 4, the circuit system of
the chaotic system is described as

ẋ1 =
R12

C1R11R13
x2

ẋ2 = − 1

C2R28
x3 +

R22

C2R23R21
x2 +

R26

C2R25R27
x1x3

+
R210

C2R29R211
x4 + V1

1

C2R24

ẋ3 =
R32

C3R31R33
x4

ẋ4 =
R42

C4R41R44
x3 −

1

C4R46
x2 −

1

C4R45
x1x3

− 1

C4R47
x4 − V2

1

C4R43
(19)

By comparing (14) with (19), all resistance values R11,
R12, R21, R22, R25, R26, R29, R210, R31, R32, R41 and
R42 are 10KΩ, R13 and R33 are 1MΩ, R23, R27 and R211

are 21.7514KΩ, R45, R46 and R47 are 5.251715KΩ, R28

is 42.2474KΩ, R44 is 8.031303KΩ, R24 is 435.02849KΩ
and R43 is 105.0343KΩ. The voltage values V1 = 1V and
V2 = −1V . In order to speed up the circuit response time, we
make a time scale transformation by multiplying a factor of
100 on the right hand side of (14), the capacitance values C1,
C2, C3 and C4 are 10nF . In Fig. 4, UAi(i = 1, 2, · · · , 10)
are operational amplifiers, A is a unity gain multiplier.

From the designed circuit of chaotic system (14), the
circuit experimental phase portraits are presented in Fig. 5.
Comparing Fig. 2 and Fig. 5, we observe that there exists
consistency between numerical simulations and circuit exper-
imental simulations, the circuit simulation results prove the
physical realizability of the proposed novel chaotic system
(14).
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Fig. 3. Circuit of the novel chaotic system (14).
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(b)

(c)

Fig. 5. Chaotic behaviors of the chaotic circuit (a) x1 − x2 plane,
(b) x1 − x3 plane, (c) x1 − x4 plane.

IV. DESIGN OF FRACTIONAL-ORDER CONTROLLER AND
STABILITY ANALYSIS

In this section, the control scheme will be proposed for the
whole closed-loop system including the constructed chaotic
system (14) and the designed fractional-order controller. The
goal is to guarantee the stabilization of the closed-loop system
under the proposed fractional-order controller.

From (14), the chaotic system can be rewritten as

ẋ = Ax+ q(x) + q̄ (20)

where x = [x1, x2, x3, x4]
T is the state vector,

A =


0 1 0 0
0 45.974 −23.6701 45.974
0 0 0 1
0 −190.414 124.5128 −190.414



q(x) =


0

45.974x1x3

0
−190.414x1x3



q̄ =


0

2.2987
0

−9.5207

 .

According to the chaotic system (14) and considering the
control input u, the corresponding system has the following
form:

ẋ = Ax+ q(x) + q̄ + u (21)

where u = [u1, u2, u3, u4]
T is the designed fractional-order

control input.

Based on the state-feedback control method, the controller
u is defined as

u = −Ax− q̄ +KD1−αx. (22)

where K = diag(k1, k2, · · · , kn) is a design control gain
matrix and the fractional order satisfies 1 < α < 2.

According to (21) and (22), one has

ẋ = q(x) +KD1−αx. (23)

To render the stabilization of the system (21) under the
proposed controller (22), the following assumption is required:

Assumption 1. Nonlinear function q(x) satisfies q(0) = 0
and lim∥x∥→0∥q(x)∥/∥x∥ = 0.

The fractional-order controller based control scheme for the
closed-loop system (23) can be summarized in the following
theorem.

Theorem 1. For the closed-loop system (23), the fractional-
order controller is designed based on (22). Then, the state
variables of the closed-loop system (23) are asymptotically
stabilized to zero when the zero is a stable equilibrium
point of the closed-loop system (23), under the conditions of
lim∥x∥→0∥q(x)∥/∥x∥ = 0, the fractional order α: 1 < α < 2,
and the design matrix K satisfies η = −max {Reλ(K)} > 1,
where λ(K) denotes the eigenvalues of K and M ≥ 1.

Proof. By taking the Laplace transform on system (23), we
have

sX(s)− x(0) = L(q(x(t))) +Ks1−αX(s), (24)

where X(s) is the Laplace transform of x(t), x(0) is the initial
condition of (17) and 1 < α < 2.

Let us multiply both sides of (24) by sα, it yields

sα+1X(s)− sαx(0) = sαL(q(x(t))) +KsX(s). (25)

From (25), one has

X(s) = sα−1(Isα −K)−1(x(0) + L(q(x(t)))), (26)

where I denotes the 4× 4 identity matrix.
Taking the Laplace inverse transform on (26), one obtains

x(t) = Eα,1(Ktα)x(0)

+

∫ t

0

Eα,1(K(t− φ)
α
)q(x(φ))dφ. (27)

On the basis of Lemma 1, since K is a stable matrix, −η =
max(Reλ(K))(η > 0), M ≥ 1 and 1 < α < 2, (27) can be
written as

∥x(t)∥ ≤ Me−ηt ∥x(0)∥+
∫ t

0

Me−η(t−φ) ∥q(x(φ))∥dφ. (28)

Multiplying by eηt on both sides of (28), it yields

eηt ∥x(t)∥ ≤ M ∥x(0)∥+
∫ t

0

Meηφ ∥q(x(φ))∥ dφ. (29)

According to Assumption 1 and the properties of
lim∥x∥→0∥q(x)∥/∥x∥ = 0[43,47], there exists a constant δ > 0,
such that

∥q(x)∥ ≤ 1

M
∥x∥ as ∥x∥ < δ. (30)
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Substituting (30) into (29), one has

eηt ∥x(t)∥ ≤ M ∥x(0)∥+
∫ t

0

eηφ ∥x(φ)∥ dφ. (31)

Based on Lemma 2, b(t) = M ∥x(0)∥, p(φ) = 1 and h(t) =
eηt ∥x(t)∥, we have

eηt ∥x(t)∥ ≤ M ∥x(0)∥ et. (32)

Inequality (32) is equivalent to

∥x(t)∥ ≤ M ∥x(0)∥
e(η−1)t

. (33)

When η = −max {Reλ(K)} > 1, t → ∞, ∥x(t)∥ asymp-
totically tends to zero, which implies the closed-loop system
(23) is asymptotically stable if zero is a stable equilibrium
point. This concludes the proof.

V. NUMERICAL SIMULATION

In this section, in order to illustrate and verify the effective-
ness of the proposed control scheme, the closed-loop system
(23) is analyzed. Furthermore, we use the proposed control
scheme to stabilize the chaotic systems with equilibrium such
as Chen system[48], Genesio’s system[49], and hyperchaotic
Lorenz system[50].

A. Novel chaotic system

Combining the novel chaotic system (14) and the designed
controller (22), we have

ẋ1 = k1D
1−αx1

ẋ2 = 45.974x1x3 + k2D
1−αx2

ẋ3 = k3D
1−αx3

ẋ4 = −190.414x1x3 + k4D
1−αx4 (34)

The equilibrium of system (34) is obtained by solving ẋ1 =
0, ẋ2 = 0, ẋ3 = 0 and ẋ4 = 0, that is

k1D
1−αx1 = 0

45.974x1x3 + k2D
1−αx2 = 0

k3D
1−αx3 = 0

−190.414x1x3 + k4D
1−αx4 = 0 (35)

According to (35), we obtain that O = (0, 0, 0, 0) is the
equilibrium of the system (34). Furthermore, when the design
parameters k1, k2, k3 and k4 satisfy k1 < 0, k2 < 0,
k3 < 0 and k4 < 0, we can guarantee that the equilibrium
O = (0, 0, 0, 0) is a stable equilibrium based on the stability
analysis method of the equilibrium[51].

From (34), we have

lim
∥x∥→0

∥q(x)∥
∥x∥

= lim
∥x∥→0

√
38371x2

1x
2
3√

x2
1 + x2

2 + x2
3 + x2

4

≤ lim
∥x∥→0

√
38371x2

1x
2
3√

x2
3

= lim
∥x∥→0

195.8854 |x1| = 0 (36)

which implies that q(x) satisfies Assumption 1. On the basis of
Theorem 1 and pole placement technique, the feedback control
gain matrix and the order α are chosen as

K = diag(−10,−10,−10,−10), α = 1.6 (37)

From the above discussion, we have
∥∥eKtα

∥∥ ≤ e−10t, M = 1
and η = −max {Reλ(K)} = 10 > 1, which satisfy Theorem
1. The simulation results are shown in Fig. 6 and Fig. 7.
According to the numerical simulation results, the closed-loop
system (34) is asymptotically stable, which implies that the
proposed control scheme works effectively.

Time(s)

0.0 2.0 4.0 6.0 8.0

-0.2

-0.1

0.0

0.1

0.2

x
1

x
2

x
3

x
4

Fig. 6. Numerical simulation results of the system (34).
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Fig. 7. Control inputs.

B. Chaotic systems with equilibrium

In order to further illustrate the effectiveness of the devel-
oped control scheme in this paper, we use the proposed control
scheme (22) to control Chen system[48], Genesio’s system[49],
and hyperchaotic Lorenz system[50]. We firstly analyze the
following dynamical model of Chen system[48]:

ẋ1 = 35(x2 − x1)

ẋ2 = −7x1 − x1x3 + 28x2

ẋ3 = x1x2 − 3x3 (38)

From (22), the control input u is designed for the Chen
system as follows:

u1 = −35(x2 − x1) + k1D
1−αx1

u2 = 7x1 − 28x2 + k2D
1−αx2

u3 = 3x3 + k3D
1−αx3 (39)
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Invoking (38), we have

lim
∥x∥→0

√
x2
1x

2
2 + x2

1x
2
3√

x2
1 + x2

2 + x2
3

≤ lim
∥x∥→0

|x1| = 0 (40)

where x = [x1, x2, x3]
T.

According to (40), the nonlinear function in (38) can satisfy
the Assumption 1. Therefore, the Chen system (38) can be
stabilized to zero by choosing appropriate parameters k1, k2
and k3.

The Genesio’s system is written by

ẋ1 = x2

ẋ2 = x3

ẋ3 = −6x1 − 2.92x2 − 1.2x3 + x2
1 (41)

To control the Genesio’s system (41), the control input u
can be designed based on (22) as

u1 = −x2 + k1D
1−αx1

u2 = −x3 + k2D
1−αx2

u3 = 6x1 + 2.92x2 + 1.2x3 + k3D
1−αx3 (42)

From (41), we obtain

lim
∥x∥→0

√
x4
1√

x2
1 + x2

2 + x2
3

≤ lim
∥x∥→0

|x1| = 0 (43)

where x = [x1, x2, x3]
T.

The nonlinear function in (41) can satisfy the Assumption
1 based on (43). Thus, the Genesio’s system (41) can be
stabilized to zero under the appropriate parameters k1, k2 and
k3.

The hyperchaotic Lorenz system is given as follows:

ẋ1 = 10(x2 − x1)

ẋ2 = 28x1 − x1x3 − x2

ẋ3 = x1x2 −
8

3
x3

ẋ4 = −x1x3 + 1.2x4 (44)

Combining the hyperchaotic Lorenz system (44) and the
control scheme (22), the control input u is written as

u1 = −10(x2 − x1) + k1D
1−αx1

u2 = −28x1 + x2 + k2D
1−αx2

u3 =
8

3
x3 + k3D

1−αx3

u4 = −1.2x4 + k4D
1−αx4 (45)

According to (44), we have

lim
∥x∥→0

√
2x2

1x
2
3 + x2

1x
2
2√

x2
1 + x2

2 + x2
3

≤ lim
∥x∥→0

√
2x2

2 + x2
3 = 0 (46)

where x = [x1, x2, x3, x4]
T.

On the basis of (46), the Assumption 1 is satisfied for the
nonlinear function in (44). By designing appropriate param-
eters k1, k2, k3 and k4, the stabilization of the hyperchaotic
Lorenz system (44) can be realized.

According to the above discussion and analysis, we obtain
that the Chen system (38), the Genesio’s system (41) and the

hyperchaotic Lorenz system (44) can be controlled by using
the designed control scheme in this paper. For the numerical
simulation of the Chen system (38), we choose the control
parameters k1 = −10, k2 = −10 and k3 = −10, the initial
conditions x0 = (3, 2, 3)T and the fractional order α = 1.6.
For the numerical simulation of the Genesio’s system (41),
we set the control parameters as k1 = −10, k2 = −10 and
k3 = −10, the initial conditions as x0 = (−1,−1, 0)T and the
fractional order α = 1.6. The control parameters are designed
as k1 = −10, k2 = −10, k3 = −10 and k4 = −10, the
initial conditions are assumed as x0 = (0.1, 0.1, 0.1, 0.1)T

and the fractional order is chosen as α = 1.6 in the numerical
simulation of the hyperchaotic Lorenz system (44).
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Fig. 8. Stabilization of Chen system (38).
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Fig. 9. Control inputs of Chen system (38).

On the basis of the above given simulation conditions, the
numerical results are presented in Fig. 8-Fig. 13 for the Chen
system (38), the Genesio’s system (41), and the hyperchaotic
Lorenz system (44). The control result of the Chen system
(38) is shown in Fig. 8. It is illustrated that good control
performance is obtained under the designed controller (39).
Fig. 9 presents the control input (39). The numerical results
of the Genesio’s system (41) are given in Fig. 10 and Fig. 11.
Fig. 10 and Fig. 11 show that the controller (42) can stabilize
the Genesio’s system (41) well. Finally, Fig. 12 and Fig. 13
show that the fractional-order controller (45) can control all
state variables of the hyperchaotic Lorenz system (44) to the
origin point. Therefore, all the simulation results show that
the fractional-order controller also can control the chaotic and
hyperchaotic systems with equilibrium.
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Fig. 10. Stabilization of Genesio’s system (41).
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Fig. 12. Stabilization of hyperchaotic Lorenz system (44).
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Fig. 13. Control inputs for hyperchaotic Lorenz system (44).

VI. CONCLUSION

In this paper, a novel chaotic system without equilibrium has
been proposed. The Lyapunov exponents and Poincaré map of
the proposed chaotic system have been given. Meanwhile, the
dissipativeness of the new chaotic system has been illustrated.
The chaotic circuit has been designed to demonstrate the
physical realizability of the novel chaotic system. In addition,
on the basis of the Gronwall inequality, the Laplace transform,
the Mittag-Leffler function and the state-feedback method, a
stability theorem for a class of closed-loop systems has been
given. The designed controller has been developed to realize
the stabilization of the closed-loop system. Furthermore, the
proposed control scheme has been developed to control the
chaotic and hyperchaotic systems with equilibrium, i.e. Chen
system, Genesio’s system and hyperchaotic Lorenz system.
Finally, the numerical simulation results further illustrate the
effectiveness of the developed control scheme.
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[5] Chen A M, Lu J N, Lü J H, Yu S M. Generating hyperchaotic lü
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Fuzzy Adaptive Control of a Fractional Order

Chaotic System with Unknown Control Gain Sign
Using a Fractional Order

Nussbaum Gain
Khatir Khettab, Samir Ladaci, Member, IEEE, and Yassine Bensafia

Abstract—In this paper we propose an improved fuzzy adaptive
control strategy, for a class of nonlinear chaotic fractional order
(SISO) systems with unknown control gain sign. The online
control algorithm uses fuzzy logic sets for the identification of
the fractional order chaotic system, whereas the lack of a priori
knowledge on the control directions is solved by introducing a
fractional order Nussbaum gain. Based on Lyapunov stability
theorem, stability analysis is performed for the proposed control
method for an acceptable synchronization error level. In this
work, the Grünwald-Letnikov method is used for numerical
approximation of the fractional order systems. A simulation
example is given to illustrate the effectiveness of the proposed
control scheme.

Index Terms—Adaptive fuzzy control, nonlinear fractional
order systems, fractional order Nussbaum function, chaos syn-
chronization, Lyapunov stability.

I. INTRODUCTION

FHERE order chaotic systems are gathering an important
research effort because of their powerful properties and

potential applications in secure communication and control
processing. Many mathematical models have been developed
in literature such as the fractional-order Chua system[1], the
fractional-order Duffing system[2], the fractional-order Lü sys-
tem and the fractional order Chen system[3]. Since the work of
Deng and Li[4] who investigated the synchronization problem
of fractional order chaotic Lü systems, many studies were
focused on the control and synchronization of fractional order
chaos[5−6].
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In this paper we are concerned by fractional adaptive
control of nonlinear fractional order systems using Fuzzy logic
identification technique. Fractional adaptive systems have been
largely investigated for a decade as they showed an improved
behavior comparatively to classical adaptive control for par-
tially unknown plants [7−10].

Based on the universal approximation theorem, adaptive
fuzzy control systems present an effective control solution for
a large class of nonlinear systems[11]. The adaptive controller
is synthesized from a collection of fuzzy IF-THEN rules and
the parameters of the membership functions characterizing the
linguistic terms in the IF-THEN rules change according to
some adaptive law for the purpose of controlling a plant to
track a reference trajectory[12−13].

A particular class of such nonlinear plants pose the challeng-
ing control problem with unknown control directions[15]. The
Nussbaum function approach was introduced in the 1980’s[16].
This technique was used for adaptive control of first-order
nonlinear systems in[17]. Later, many studies of adaptive
control schemes with Nussbaum function were successfully
carried out for different classes of nonlinear systems[18−20].

The main contribution of this study is the introduction of
a Nussbaum function in the fuzzy adaptive control scheme
for nonlinear fractional systems with unknown control gain
sign. Stability analysis of the proposed adaptive fuzzy control
system is performed using Lyapunov stability theory. More-
over, the influence of the approximation error and external
disturbance on the tracking error can be attenuated to an
arbitrarily prescribed level via the proposed design technique.
The fuzzy adaptive control design with Nussbaum function
is applied for nonlinear fractional order chaotic systems with
a large uncertainty or unknown variation in plant parameters
and structures. The Grünwald-Letnikov technique is used for
the numerical approximation of the fractional order chaotic
system[21].

This paper is organized as follows: in Section II, basic
definitions and preliminaries for fractional order systems are
presented with the numerical approximation technique. A
description of the Nussbaum-type function is given in Section
III. Section IV presents the fuzzy adaptive control scheme
with unknown control direction for uncertain fractional order
chaotic systems in the presence of uncertainty.
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The proposed control system stability proof is detailed in
Section V. In Section VI, application of the proposed method
on fractional order chaotic Duffing systems is investigated.
Finally, the simulation results and conclusion are presented in
Section VII.

II. BASICS OF FRACTIONAL ORDER SYSTEMS

A. Fractional Derivatives and Integrals

The mathematical definition of fractional derivatives and
integrals has been the subject of several descriptions. The
three most frequently used definitions for the general fractional
differ-integral are: the Grünwald-Letnikov (GL) definition,
the Riemann-Liouville (RL) and the Caputo definition[9],[21].
The Riemann-Liouville (RL) definition of the fractional order
integral is given by:

RL
a D−µ

t f(t) =
1

Γ(µ)

∫ t

a

(t− τ)µ−1f(τ)d(τ), (1)

while the definition of fractional order derivatives is

RL
a Dµ

t f(t) =
d

dt

[
RL
a D

−(1−µ)
t f(t)

]
, (2)

=
1

Γ(1− µ)
d

dt

∫ t

a

(t− τ)−µf(τ)d(τ),

where
Γ(x) =

∫ ∞

0

yx−1e−ydy, (3)

where Γ(.) is the Euler’s Gamma function, a and t are the
limits of the operation, and µ is the number identifying the
fractional order. In this paper, µ is assumed to be a real number
that satisfies the restriction 0 < µ < 1. Also, it is assumed
that a = 0. The following convention is used: aDµ

t ≡ Dµ.

B. Numerical Approximation Method

Many different approaches have been proposed to model
fractional order systems. The numerical simulation of such
systems depends on the way to approximate the fractional
derivative operator. The most common approach used in the
fractional order chaotic systems literature is an improved
version of the Adams-Bashforth-Moulton method based on
predictor-correctors[22−23]. However, we will use in this work
a simpler approach consisting of the fractional order derivative
operator discretization according to the Grünwald-Letnikov
method. This method is very simple to use and has approxi-
mately the same order of accuracy as the predictor-corrector
method, even if the simulation requires, for each step the
computation of sums of increasing dimension with time.

The Grünwald-Letnikov fractional order derivative defini-
tion is expressed as:

GL
a D−µ

t = lim
h→0

1
hµ

[ t−a
h ]∑

j=0

(−1)j

(
µ
j

)
f(t− jh), (4)

where
[

t−a
h

]
indicates the integer part and (−1)j

(
µ
j

)
are

binomial coefficients c
(µ)
j , (j = 0, 1, . . .).

The calculation of these coefficients is done by a formula
of following recurrence:

c
(µ)
0 = 1; c

(µ)
j =

(
1− 1 + µ

j

)
c
(µ)
j−1.

The general numerical solution of the fractional differential
equation,

GL
a D−µ

t = f (y(t)) , (5)

can be expressed as follows:

y(tk) = f (y(tk), tk) hµ −
k∑

j=0

c
(µ)
j y(tk−j). (6)

This approximation of the fractional derivative within the
meaning of Grünwald-Letnikov is on the one hand equivalent
to the definition of Riemman-Liouville for a broad class of
functions[24], and on the other hand, it is well adapted to the
definition of Caputo (Adams method) because it requires only
the initial conditions and has a clear physical direction.

III. NUSSBAUM-TYPE GAIN

Definition 1: A function N(ζ) is called a Nussbaum-type
function if it has the following properties[14],[25−27]:

lim
s→∞

sup
1
s

∫ s

0

N(ζ)dζ = +∞, (7)

lim
s→∞

inf
1
s

∫ s

0

N(ζ)dζ = −∞. (8)

The continuous functions N1(ζ) = ζ2 cos(ζ), N2(ζ) =
ζ cos(

√
|ζ|), N3(ζ) = cos(π

2 ζ)eζ2
and N4(ζ) = ln(ζ +

1) cos(
√

ln(ζ + 1)) are Nussbaum functions.
For example the continuous function N1(ζ) = ζ2 cos(ζ), is
positive at interval (2πn, 2πn+ π

2 ) and negative at the interval
(2πn + π

2 , 2πn + 3π
2 ), where n is an integer. And we have,

1
2πn + π

2

∫ 2πn+ π
2

0

N1(ζ)dζ = +∞,

1
2πn + 3π

2

∫ 2πn+ 3π
2

0

N1(ζ)dζ = −∞.

The following lemma[28] is used in the stability analysis.
Lemma 1: Consider the following fractional-order system,

Dαy(t) = −ay(t) + b. (9)

then there exists a constant t0 > 0 such that for all
t ∈ (t0,∞),

‖y(t)‖ ≤ 2b

a
, (10)

where y(t) is the state variable, and a, b are two positive
constants.

The proof of Lemma 1 can be found in[28].
A Nussbaum function will be used in future work, to estimate
the control direction.
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IV. PROBLEM STATEMENT

Consider a fractional order SISO nonlinear dynamic system
of the form:




x
(q1)
1 = x2,

...,
x

(qn−1)
n−1 = xn,

x
(qn)
n = f(x, t) + g(x, t)u + d(t),

y = x1,

(11)

where,
x = [x1, x2, ..., xn]T = [x, x(q), x(2q), ..., x((n−1)q)]T ∈ Rn

is the system’s state vector, u ∈ R is the control input and
y ∈ R is the output, with the initial conditions : u(0) = 0 and
y(0) = 0.
The initial conditions are set to zero to avoid the lack of
robustness for Nussbaum type adaptive controllers as proved
by Georgiou and Smith[29],
If q1 = q2 = ... = qn = q the above system is called a
commensurate order system. Then an equivalent form of the
above system is described as :

{
x(nq) = f(x, t) + g(x, t)u + d(t),
y = x1,

(12)

where f(x, t) and g(x, t) are unknown but bounded nonlinear
functions which express system dynamics and d(t) is the
external bounded disturbance. The control objective is to force
the system output y to follow a given bounded reference signal
y

d
, under the constraint that all signals involved must be

bounded.
The reference signal vector y

d
and the tracking error vector e

are defined as,

y
d

= [yd, y
(q)
d , y

(2q)
d , ..., y

((n−1)q)
d ]T ∈ Rn,

e = y
d
− y = [e, e(q), ..., e((n−1)q)]T ∈ Rn,

e(iq) = y
(iq)
d − y(iq).

Let k = [k1, k2, ..., kn]T ∈ Rn be chosen such that
the stability condition |arg(eig(A))| > qπ/2 is met, where
0 < q < 1 and eig(A) represents the eigenvalues of the system
state matrix.

i) Let us first suppose that the functions f(x, t) and g(x, t)
are known and the system is free of external disturbance (i.e.
d(t) = 0).
The following assumptions are considered[19−20],

Assumption 1: The control gain g(x, t) is not zero and of
known sign. It is also strictly positive or strictly negative.

Assumption 2: The external disturbance is bounded:
|d(t)| ≤ D with D an unknown positive constant.

Then the control law of the certainty equivalent controller
is obtained as[30],

u∗ =
1

g(x, t)

(
−f(x, t) + y

(nq)
d + kT e

)
, (13)

where

y
d

= [yd, y
(q)
d , y

(2q)
d , ..., y

((n−1)q)
d ]T ∈ Rn,

e = y
d
− y = [e, e(q), ..., e((n−1)q)]T ∈ Rn,

e(iq) = y
(iq)
d − y(iq),

is the tracking error vector.
Substituting (13) into (12), we have:

enq = kne(n−1)q + · · ·+ k1e = 0, (14)

which is the main objective of control, limt→∞ e(t) = 0.
ii) However, f(x, t) and g(x, t) are unknown and external

disturbance d(t) 6= 0, the ideal control effort (13) cannot
be implemented; this problem was solved by the control
strategy proposed previously by the use of fuzzy systems to
approximate unknown functions[13]. In this case, we consider
the following assumptions[19−20]:

Assumption 3: The state vector x is not measurable, except
the system output y.

Assumption 4: The reference trajectory yd(t) and its
derivatives up to order (nq) are known, continuous and
bounded.

Assumption 5: The control gain g(x, t) is not zero and of
unknown sign.

Remark 1: In Assumption 5, and contrary to the previous
case, the sign of g(x, t) need not to be known, as the Nussbaum
technique will estimate the control gain sign.

From Definition 1, one knows that Nussbaum functions
should have infinite gains and infinite switching frequencies.
Subsequently to this part, the Nussbaum function

N(ζ) = ζ2 cos(ζ),

will be used for the control of nonlinear chaotic systems.
By substituting (13) into (12) we obtain the closed loop control
system in the state space domain as follows:

x(nq) = Ax + B[f(x) + g(x)u],
y = cT x, (15)

where

A =




0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
−k1 −k2 −k3 −k4 · · · −k(n−1) −kn




,

B =




0
0
...
0
1




and, c =




1
0
...
0
0




.

By using the relation y
(q)
d = Ayd + By

(nq)
d the following

equation (16) is obtained:

e(q) = Ae + B[f(x) + g(x)u∗ − y
(nq)
d ],

e = cT e. (16)

In what follows, a fuzzy adaptive control will be designed
to stabilize the system (11) or the equivalent system (16).
Replacing f(x) by the fuzzy system f(x, θf ) which is speci-
fied as:

f(x, θf ) = θT
f ξ(x). (17)
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Here the fuzzy basis function ξ(x) depends on the fuzzy
membership functions and is supposed to be fixed, while θf

is the adjusted by adaptive laws based on a Lyapunov stability
criterion.
Using (17), (16) can be rewritten as following:

e(q) = Ae + B[ξT (x)θf + g(x)u∗ − y
(nq)
d ],

e = cT e. (18)

The optimal parameter estimation vector θ∗f is defined by:

θ∗f = arg min
θf∈Ωf

[
sup

x∈Ωx

|f(x | θf )− f(x, t)|
]

. (19)

with φf = θf − θ∗f and Ωf ,Ωx are constraints sets for θf and
x respectively, and are defined as:

Ωf = {θf | |θf | ≤ Mf } ,

Ωx = {x | |x| ≤ Mx } , (20)

where Mf and Mx are positive constants.
The following theorem is proposed to show the control per-
formance of the closed loop system.

Theorem 1: Considering system (12), and the fuzzy adap-
tive control law proposed with fractional Nussbaum function
is given as follows:

u∗ = N(ζ)
[
kT e + θT

f ξ(x)− ynq
d

]
, (21)

where N(ζ) = ζ2 cos(ζ) and,

ζ(q) = eT PB
[
kT e + r1θ

T ξ(x)− y
(nq)
d

]
, (22)

and the fractional adaptive law for the vector θ is chosen as
following:

θ(q) = −r1θ + r1e
T PBξ(x), (23)

where r1 is a positive constant, and P = PT > 0 is a positive
definite matrix, also there is a positive definite symmetric
matrix Q = QT satisfying the following Lyapunov equation:

AcP + PAT
c + PBBT P = −Q.

We choose Ac = A − BkT is Hurwitz. So all signals
in the closed loop system are bounded and the tracking
error converges to a bounded compact set defined by Ω =
{e1, |e1| ≤ a1}, where a1 is a positive constant.

V. STABILITY ANALYSIS

The Lyapunov function is chosen as

V =
1
2
eT Pe +

1
2r1

φT
f φf . (24)

The derivative of (24) with respect to time verifies[31−32]:

V (q)(t) ≤ 1
2
(e(q))T Pe +

1
2
eT (t)Pe(q)(t) +

1
r1

φT
f φ

(q)
f . (25)

By substituting (18) into (25), we obtain:

V (q)(t) ≤ 1
2
eT

(
PA + AT P

)
e +

1
r1

φT
f φ

(q)
f (26)

+eT PB
[
ξ(x)θT

f + gu∗ − y
(nq)
d

]
.

By using (21) and (22), (26) becomes:

V (q)(t) ≤ 1
2
eT

(
PA + AT P

)
e +

1
r1

φT
f φ

(q)
f (27)

+eT PB
[
ξ(x)θT

f + gu∗ − y
(nq)
d

]
− ePBθT

f ξ(x)

≤ 1
2
eT

(
PA + AT P

)
e + φT

f

[
1
r1

φ
(q)
f − eT PBξ(x)

]

+eT PB
[
ξ(x)θT

f − y
(nq)
d

]
+ eT PBgN(ζ)

(
kT e

+ξ(x)θT
f − y

(nq)
d

)

≤ 1
2
eT

(
PAc + AT

c P
)
e + φT

f

[
1
r1

φ
(q)
f − eT PBξ(x)

]

+ [gN(ζ) + 1] ζ(q).

Using (23), the following inequality is obtained

φT
f

[
1
r1

φ
(q)
f − eT PBξ(x)

]
= −φT

f θ = −φT
f φf − φT

f θ∗f (28)

≤ −1
2
φT

f φf +
1
2

∥∥θ∗f
∥∥2

.

And thus (Young inequality),

eT PB ≤ 1
2
eT PBBT Pe +

1
2
b2, (29)

where b is a positive constant.
By Substituting (28) and (29) into (27), the following

inequality is obtained:

V (q)(t) ≤ 1
2
eT

(
PAc + AT

c P
)
e +

1
2
eT PBBT Pe (30)

+
1
2
b2 − 1

2
φT

f φf +
1
2

∥∥θ∗f
∥∥2 + [gN(ζ) + 1] ζ(q)

≤ −1
2
eT Qe +

1
2
b2 − 1

2
φT

f φf +
1
2

∥∥θ∗f
∥∥2

+ [gN(ζ) + 1] ζ(q)

where µ = λmin(QP−1, r1) and β =
∥∥∥θ∗f

∥∥∥
2

+ 1
2b2.

The inequality (30) can be expressed as:

V (q) ≤ −µV + ω, (31)

where ω = β + [gN(ζ) + 1] ζ(q).
Then depending on the sign of ω two cases arise:
1) If ω ≤ 0 then we have V (q) ≤ 0 and the uniform

continuity of the fractional order derivative (3) allows
to apply Barbalats lemma[33]. Hence, V (t) is bounded
and e and θf are also bounded.

2) If ω > 0 then according to Lemma 1, we have

‖V (t)‖ ≤ 2ω

µ
. (32)
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which yields that

‖e(t)‖ ≤ 2
√

ω

µλmin(P )
.

This means that ‖e(t)‖ can be made arbitrarily small, and
θf is bounded. From (21), u is bounded. Then all the signals
in the closed loop system are bounded.

The diagram of the proposed control is given in Fig. 1.

Fig. 1. Global block diagram of the proposed fuzzy adaptive control
with unknown control sign gain.

VI. SIMULATION RESULTS

To illustrate the performance of the proposed control ap-
proach, we consider two fractional order chaotic systems of
Duffing as follows [34],

The first one is a reference system:

Dqyd1 = yd2, (33)
Dqyd2 = 1.2 yd1 − yd2 − y2

d1 + 0.5 cos(t).

The second is the response system (to be controlled):

Dqy1 = y2, (34)
Dqy2 = y1 − 1.8 y2 − y2

1 + 0.9 cos(t) + u(t) + d(t).

Initial conditions are selected as follows:
yd(0) = [0, 0]T and y(0) = [1,−1]T.
We consider in this case the fractional order value q = 0.98,
with the external disturbance d(t) = 0.1 sin(t).

The other design constants are set as:
k1 = k2 = 1, r1 = 200, ρ = 0.05, h = 0.01 and Tsim = 40 s.

The main objective is to control our response system to
track the reference system output with consideration that the
functions f(x, t) and g(x, t) are completely unknown.

Fig. 2 shows the phase plane without the studied control
systems.

Results & Discussion:

• According to the Fig. 4, the trajectories of the responses
converge accurately to the reference trajectories, even in
the presence of external disturbances.

• One can remark the vibrations in the beginning of
Fig. 4(b) and Fig. 4(c). This transitory phase is necessary

for converge of the system model estimated parameters.
They depend mainly on the arbitrary choice of initial
conditions.

Fig. 2. Phase portrait of Duffing chaotic systems (without control
action).

Fig. 3. Synchronization performance of Duffing chaotic drive and
response systems.

Fig. 4. (a) Trajectories of the states of systems y1 and yd1.
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Fig. 4. (b) Trajectories of the states of systems y2 and yd2.

Fig. 4. (c) Control signal u(t).

• Fig. 5 shows that the errors are bounded and converge
asymptotically to zero.

• From Fig. 6 and Fig. 7 one can remark that the adopted
settings and the function of Nussbaum which estimates
the sign of control gain are always bounded.

Fig. 5. (d) The error signal e1 = y1 − yd1.

Fig. 5. (e) The error signal e2 = y2 − yd2.

Fig. 6. Nussbaum function N(ζ) and its variation ζ(t).

Fig. 7. Optimal parameters vector θf (t).

VII. CONCLUSION

In this work, a fuzzy adaptive control scheme is proposed
for a class of nonlinear fractional order SISO systems with
unknown control gain sign. The fuzzy systems were used
to approximate online the unknown dynamics including all
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nonlinearities of the system. The numerical approximation
of the fractional order systems is realized by means of the
Grünwald-Letnikov method.

The main contribution of this paper is to introduce the tech-
nique of fractional order Nussbaum-type function to estimate
the control gain sign for the fractional chaotic system. The
developed controller guarantees the boundedness of all the
signals in the closed-loop and the tracking error convergence.
Simulation results show the good tracking performance of the
proposed fuzzy adaptive control method.
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DOA Estimation Based on Sparse Representation
of the Fractional Lower Order Statistics

in Impulsive Noise
Sen Li, Rongxi He, Member, IEEE, Bin Lin, Member, IEEE, Fei Sun

Abstract—This paper is mainly to deal with the problem of
direction of arrival (DOA) estimations of multiple narrow-band
sources impinging on a uniform linear array under impulsive
noise environments. By modeling the impulsive noise as -stable
distribution, new methods which combine the sparse signal
representation technique and fractional lower order statistics
theory are proposed. In the new algorithms, the fractional lower
order statistics vectors of the array output signal are sparsely
represented on an overcomplete basis and the DOAs can be
effectively estimated by searching the sparsest coefficients. To
enhance the robustness performance of the proposed algorithms,
the improved algorithms are advanced by eliminating the frac-
tional lower order statistics of the noise from the fractional
lower order statistics vector of the array output through a linear
transformation. Simulation results are shown to demonstrate the
effectiveness of the proposed methods for a wide range of highly
impulsive environments.

Index Terms—α-stable distribution, direction of arrival, impul-
sive noise, sparse representation, fractional lower-order statistics.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation of multiple
emitting sources is an important issue in array processing

and has various applications in military, radar, sonar, wireless
communications and source localization[1−2]. A large number
of solutions have been proposed to solve this problem during
the past years. Usually, these solutions can be categorized
into three groups: time-delay based methods, beamforming
methods and signal subspace methods. However, majority of
DOA estimation algorithms are developed under certain as-
sumptions: the source signal needs to be statistically stationary
and uncorrelated, the number of snapshots is sufficient, and the
signal-noise ratio (SNR) is moderately high. Practically, these
conditions are barely satisfied, thus these methods achieve the
limited estimation accuracy. In order to increase the DOA
estimation accuracy, the well-known subspace-based method
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of multiple signal classification (MUSIC) algorithm and esti-
mation method of signal parameters via rotational invariance
techniques (ESPRIT) have been widely used due to its high
estimation accuracy but at the price of the high complexity.

Recently, sparse representation technique of signal has been
applied in many areas, such as image processing, wireless
channel estimation and biomedical signal processing, which
also provides a new idea for DOA estimation based on the
fact that the number of sources is in general much smaller than
the number of potential source points when implementing the
array processing algorithms. Several DOA estimation methods
based on sparse representation have been proposed in the
literature[3−16]. In [3-4], a whiten sparse covariance-based
representation model is first presented for source parameter
estimation by applying the global matched filter (GMF). In
[5] the most representative sparse recovery algorithm for
DOA estimation (l1-SVD) was proposed, which can effectively
estimate DOA with single measurement. By using singular
value decomposition (SVD) of received data matrix, it not
only can work in multiple measurements case but also can
reduce the computational complexity. Although the l1-norm
minimization is a convex problem and the global minima can
be guaranteed easily, its weakness is their undemocratic penal-
ization for larger coefficients, which results in the degradation
of signal recovery performance. To conquer this problem, the
iterative reweighted l1 minimization was designed[6−7], where
the large weights could be used to discourage nonzero entries
in the recovered signals. To improve the convergence rate
and better estimation accuracy of the l2,1-norm minimization
approach, Wei et al. develop a novel greedy block coordinate
descent (GBCD) algorithm by using a greedy strategy for
choosing descent directions[8]. In [9], a mixed l2,0-norm based
joint sparse approximation technique is introduced into DOA
estimation where the l0 norm constraint is approached by a
set of convex functions, and a method called JLZA-DOA is
proposed. Algorithms in [5-9] address the DOA estimation
problem by directly representing the array output in time
domain with an overcomplete basis from the array response
vector.

To make use of the second order statistics of the array
output, a sparse iterative covariance-based estimation (SPICE)
approach for array signal processing by the minimization of
a covariance matrix fitting criterion and can be used in both
single and multiple measurements cases was proposed in [10].
Another method called l1-SRACV in [11] was also proposed
for DOA estimation by using the array covariance matrix
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sparse representation and exhibit some merits of increased res-
olution. Because of recovering a joint-sparse inverse problem
form multiple measurement vectors, the l1-SRACV algorithm
suffers from a high computational cost. Then a new DOA
estimation method was proposed in [12-13] which based
on the combination of the Khatri-Rao product and sparse
representation to estimate the DOAs of signals by recovering a
sparse covariance vector of only a single measurement vector,
thereby implying lower computational complexity than the
l1-SRACV algorithm. The authors of Literature [14] firstly
transform the multiple measurement vectors problem to the
virtual single measurement vector (VSMV) problem in sparse
signal representation framework, and then exploit a surrogate
truncated l1 function to approximate l0-norm, and successively
demonstrate how the nonconvex minimization problem can be
treated by the difference of convex functions decomposition
and the iterative approach. The study of [15] demonstrates how
the multiple parameters can be exactly obtained by solving
a weighted ‘group lasso’ problem in second-order statistics
using a cross-dipole array. In [16], the DOA estimation of the
wideband signal has been studied by the sparse representation
of the covariance matrix.

All the above mentioned sparse representation based DOA
estimation algorithms assume that the ambient noise is Gaus-
sian distributed. However, the noise in practice often exhibits
non-Gaussian properties, sometimes accompanied by strong
impulsiveness[17]. For example, atmospheric noise (thunder-
stroms), car ignitions, microwave ovens, office equipments,
and other types of naturally occurring or man-made signal
sources can result in aggregating noise components that may
exhibit high amplitudes for small time intervals. Under inves-
tigation, it is found that α-stable distribution (0 < α ≤ 2) is a
suitable noise model to describe this type of noise[18]. It can be
considered as the greatest potential distribution to characterize
various impulsive noises as different characteristic exponent
parameter is selected.

An important characteristic of the α-stable distribution is
that only moments of order less than α exist. Therefore
the performance of the DOA estimation algorithms based on
second order statistics of the array out will severely degrade in
the presence of the α-stable non-Gaussian noise. One way to
alleviate this problem is to introduce new covariance estimates.
Authors in [19] proposed new subspace DOA estimation
methods based on fractional lower order moments (FLOM)
matrices, namely FLOM MUSIC. However, it is limited in
range of 2 ≥ α ≥ 1. Authors in [20] introduce a new subspace
algorithm based on the phased fractional lower order moment
(PFLOM), namely PFLOM MUSIC, which it is applicable for
0 < α ≤ 2. In [21], a subspace-augmented MUSIC technique
for recovering the joint sparse support of a signal ensemble
corrupted by additive impulsive noise is introduced. In order to
mitigate the performance degradation of the DOA estimation
methods based on the sparse representation of the second order
statistics of the array output, the new algorithms are proposed
in this paper by using the sparse representation of the fractional
lower order statistics vector of the array output. To enhance
the robustness performance of the proposed algorithms, the
improved algorithms are advanced by eliminating the frac-

tional lower order statistics of the noise from the fractional
lower order statistics vector of the array output through a
linear transformation. Computer simulation experiments are
presented to illustrate the performance superiority of the
proposed methods over the DOA estimation method based on
the sparse representation of the second order statistics of the
array output under α-stable noise environments.

II. α-STABLE DISTRIBUTION

The α-stable distribution’s probability density function does
not have closed form. It can be conveniently described by its
characteristic function as

φ(t) = e{jat−γ|t|α[1+jβsgn(t)�(t,α)]} (1)

where �(t, α) = tan πα
2 , if α �= 1; �(t, α) = 2

π log |t|, if
α = 1, and sgn(t) is |t| if t �= 0 and 0 if t = 0. α is
the characteristic exponent, it controls the thickness of the
tail in the distribution and is restricted in 0 < α ≤ 2. γ is
the dispersion parameter and is similar to the variance of the
Gaussian distribution. β is the symmetry parameter. If β = 0,
the distribution is symmetric and the observation is referred to
as the SαS (symmetry α-stable) distribution. a is the location
parameter. When α = 2 and β = 0, the α-stable distribution
becomes a Gaussian distribution. The tails of stable distribu-
tion with characteristic exponent 0 < α < 2 are significantly
thicker than that of the Gaussian distribution and the smaller
α, the thicker the tails. An important difference between the
Gaussian and the α-stable distribution (0 < α < 2) is that only
moments of order less than α exist for the α-stable distribution.
As the non-existence of the second order statistics of α-stable
distribution when the characteristic exponent is restricted in
0 < α < 2, the second order statistics, such as correlation
and covariance, does not make sense. Therefore, the fractional
lower order statistics (FLOS) has been defined[18], such as the
fraction lower order moment (FLOM) in [19] and the phased
fractional lower order moment (PFLOM) in [20].

III. DOA ESTIMATION BASED ON SPARSE
REPRESENTATION OF SECOND ORDER STATISTICS VECTOR

Consider the case of K narrow far-field signals s1(t), s2(t),
. . ., sK(t) with different DOA θ1, θ2, . . ., θK arriving at a
uniform linear array (ULA) with M sensors in presence of
additive noise n1(t), n2(t), . . ., nM (t). Assume that the noise
is i.i.d random variable and is not correlated with signals. The
received signal vector is given by

X(t) = A(θ)S(t) +N(t) (2)

where

XM×1(t) = [x1(t), x2(t), . . . , xM (t)]T,

AM×K(θ) = [a(θ1), a(θ2), . . . , a(θK)]

SK×1(t) = [s1(t), s2(t), . . . , sK(t)]T,

NM×1(t) = [n1(t), n2(t), . . . , nM (t)]T,

where xm(t), m = 1, 2, . . . ,M is the output of the mth array
element, a(θn), n = 1, 2, . . . ,K are the steering vector can
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be expressed as

a(θn) =
[
1, e−j 2π

λ d sin θn , . . . , e−j 2π
λ (M−1)d sin θn

]T
(3)

where λ is the carrier wavelength of the signal, d is the
intersensor spacing.

Assume the noise in (2) is zero-mean Gaussian white noise
with the power of σ2

n, the second order statistics covariance
matrix of the array out can be expressed as

R = E(X(t)XH(t)) = A(θ)RsA
H(θ) + σ2

nIM (4)

where the source covariance matrix Rs = E(s(t)sH(t)) =
diag(σs) is diagonal with source signal power vector σs =
[σ2

1 , . . . , σ
2
K ]T and IM denotes the M × M identity matrix.

σ2
i , i = 1, . . . ,K is the source signal power.
Applying the vectorization operator on equation (4), we

have[22]

y = vect(R) = B(θ)σs + σ2
nvect(IM ), (5)

B(θ) = [a∗(θ1)⊗ a(θ1), . . . , a
∗(θK)⊗ a(θK)] (6)

where ⊗ denote Kronecker product . It is interesting to see
that in (5) ,similar to (2), can be taken as the array output
of single snapshot where B(θ), σs and vect(IM ) are the
virtual manifold matrix with its dimension M2 ×K, equiva-
lent source vector, and equivalent noise vector, respectively.
The new signal vector y can be sparsely represented in a
redundant basis. Define a set θ̂ = [θ̂1, θ̂1, . . . , θ̂Q], which
denotes potential source location of interest and assume that
the true DOAs are exactly on this set. The number of the
potential source locations Q should be much greater than
the number of actual sources K and the number of virtual
array sensors M2. Define the overcomplete basis B(θ̂) =
[a∗(θ̂1) ⊗ a(θ̂1), . . . , a

∗(θ̂Q) ⊗ a(θ̂Q)] and the signal power
vector ν = [ν1, ν2, . . . , νQ] where a∗(θ̂i) ⊗ a(θ̂i) denotes the
steering vector of the virtual array and the elements of vector
ν have K nonzeros, that is, νj = σ2

i if θ̂j = θi, i = 1, . . . ,K.
As a result, y can be rewritten as the following form

y = B(θ̂)ν + σ2
nvect(IM ) (7)

Hence the DOA estimation can be reduced to the detection
of the nonzero elements of ν. In practice, the unknown y is
estimated from the N snapshots, let ŷ be the estimation of y,
then ŷ = vect(R̂), where R̂ = 1

N

∑N
t=1 X(t)XH(t). Define

Δy as the estimation error, then Δy = ŷ − y. Let n̂u be the
estimate of ν, the DOA estimation problem can be further
converted into the following convex optimization problem[12]:

min ‖μ‖1, s.t. ‖ŷ −B(θ̂)ν̂ − σ2
nvect(IM )‖2 ≤ ε (8)

ε is a parameter which means how much of the error we
wish to allow and plays an important role in the algorithm
performance. It can be known that the error Δy satisfies
asymptotically normal (AsN) distribution[23],

Δy = ŷ−y = vect(R̂−R) ∼ AsN
(
0M2,1,

1

N
RT ⊗R

)
(9)

Define the weighted matrix W− 1
2 =

√
NR−T

2 ⊗R− 1
2 , then

W− 1
2Δy ∼ AsN

(
0M2,1, IM2

)
(10)

Then from (7), we can further get∥∥∥W− 1
2

[
ŷ −B(θ̂)ν̂ − σ2

nvect(IM )
]∥∥∥2

2
∼ Asχ2(M2) (11)

where Asχ2(M2) is the asymptotic chi-square distribution
with M2 degrees of freedom. Therefore, the parameter ε
should be introduced such that∥∥∥W− 1

2

[
ŷ −B(θ̂)ν̂ − σ2

nvect(IM )
]∥∥∥2

2
≤ ε2

with a high probability pc, that is ε =
√

χ2
pc(M

2). Let

Ŵ− 1
2 =

√
NR̂−T

2 ⊗ R̂− 1
2 be the estimate of the weighted

matrix W− 1
2 and σ̂2

n be the estimate of σ2
n by the average of

M −K smallest eigenvalue of the eigenvalue decomposition
(EVD) of the estimate covariance matrix R̂, then the statisti-
cally robust and tractable formula for DOA estimation can be
reduced as follows

min ‖ν̂‖1, s.t.
∥∥∥Ŵ− 1

2

[
ŷ −B(θ̂)ν̂ − σ̂2

nvect(IM )
]∥∥∥

2
≤ ε

(12)
This DOA estimation algorithm based on the sparse represen-
tation of the second order statistics covariance vector can be
namely as SS SOSCV algorithm.

IV. DOA ESTIMATION BASED ON SPARSE
REPRESENTATION OF FRACTIONAL LOWER ORDER

STATISTICS VECTOR

When the noise in (2) is α-stable impulsive noise with
a characteristic exponent 0 < α < 2, the performance of
the SS SOSCV algorithm will degrade since the covariance
matrix is not defined for 0 < α < 2. In this case, introducing
a modified covariance matrix instead of the covariance matrix
can alleviate the problem. In this paper, we introduce two
DOA estimation methods based on sparse representation of
fractional lower order statistics vector, and the improved
algorithms which can enhance the robustness of the proposed
algorithms are further studied.

A. SS FLOMV Algorithm

The fractional lower order moment (FLOM) matrix C which
is suitable for α-stable distribution noise environments can be
used to replace the covariance matrix R in (4). The (i, k)
element of matrix C can be defined as:

Ci,k = E{xi(t)|xk(t)|p−2x∗
k(t)} (13)

where p is the order of the moments. Setting p = 2 reduces
(13) to an appropriate covariance matrix under the condition
of Gaussianity. However, as we deviate from this condition p
should be set to a lower value and it must satisfy the inequality
1 < p < α ≤ 2 so that Ci,k is bounded. It can be proved that
the FLOM matrix C can be expressed as[19]

C = A(θ)ΛsA(θ)H + ξIM (14)

where the diagonal matrix Λs = diag(γs) can be interpreted
as the FLOM matrix of the source signals and ξ can be
interpreted as the FLOM of the α-stable additive noise level.
γs = [γ1, . . . , γK ]T, γi, i = 1, . . . ,K is the fractional lower
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order power of the signals. Applying the vectorization operator
on (14), we have

yFLOM = vect(C) = B(θ)γs + ξvect(IM ) (15)

The vector yFLOM can be sparsely represented in the over-
complete basis B(θ̂) as the following form

yFLOM = B(θ̂)νFLOM + ξvect(IM ) (16)

As with the SS SOSCV algorithm, the DOA estimation can
be resolved by the following convex optimization problem:

min ‖ν̂FLOM‖1
s.t.

∥∥∥Ŵ− 1
2

FLOM

[
ŷFLOM−B(θ̂)ν̂FLOM − ξ̂vect(IM )

]∥∥∥
2
≤ ε

(17)

where the weighted matrix Ŵ
− 1

2

FLOM can be defined as

Ŵ
− 1

2

FLOM =
√
NĈ−T

2 ⊗ Ĉ− 1
2 (18)

Ĉ is the estimate of the FLOM matrix C and the (i, k) element
of matrix Ĉ can be defined as

Ĉi,k =
1

N

N∑
t=1

{
xi(t)|xk(t)|p−2x∗

k(t)
}

(19)

ν̂FLOM and ŷFLOM are the estimation of νFLOM and
yFLOM , ξ̂ is the estimation of ξ by the average of M − K
smallest eigenvalue of the EVD of the matrix Ĉ. This DOA
estimation method based on the sparse representation of the
FLOM vector can be namely as SS FLOMV algorithm.

B. SS PFLOMV Algorithm

Form the FLOM definition, it can be seen that it is limited
in range of 2 ≥ α > 1 , so the SS FLOMV algorithm is
not applicable under the α-stable noise with characteristic
exponent 0 < α ≤ 1. In [20] a new class of robust bounded
covariance matrices based on phased fraction lower order
moment (PFLOM) which is applicable for 0 < α ≤ 2 was
used. The (i, k) element of PFLOM matrix Γ can be defined
as

Γi,k = E
{
x
〈b〉
i (t)x

〈−b〉
k (t)

}
, 0 < b < α/2 (20)

where the PFLOM operation on a complex number z is

z〈b〉 =

{ |z|b+1

z∗ , z �= 0

0, z = 0
(21)

and the conjugate of the bth PFLOM of z as z−〈b〉 = (z∗)〈b〉 =
(z〈b〉)∗. It can be proved that the matrix Γ can be expressed
as[20]

Γ = A(θ)ΦsA(θ)
H + κIM (22)

where the diagonal matrix Φs = diag(ϕs) can be interpreted
as the PFLOM matrix of the source signals and κ can be
interpreted as the PFLOM of the α-stable additive noise
level. ϕs = [ϕ1, . . . , ϕK ]T, ϕi, i = 1, . . . ,K is the phased
fractional lower order power of the signals. Applying the
vectorization operator on (22) and then sparse representation
in the overcomplete basis B(θ̂), we can have

yFLOM = vect(Γ) = B(θ)ϕs + κvect(IM ) (23)

yPFLOM = B(θ)νPFLOM + κvect(IM ) (24)

Likewise, the DOAs can be estimated by solving the following
optimization problem

min ‖ν̂PFLOM‖1
s.t.

∥∥∥Ŵ− 1
2

PFLOM

[
ŷPFLOM−B(θ̂)ν̂PFLOM − κ̂vect(IM )

]∥∥∥
2
≤ ε

(25)

where the weighted matrix Ŵ
− 1

2

PFLOM can be defined as

Ŵ
− 1

2

PFLOM =
√
N Γ̂−T

2 ⊗ Γ̂− 1
2 (26)

Γ̂ is the estimation of the PFLOM matrix Γ and the (i, k)
element of matrix Γ̂ can be defined as

Γ̂i,k =
1

N

N∑
t=1

{
x
〈b〉
i (t)x

〈−b〉
k (t)

}
(27)

ν̂PFLOM and ŷPFLOM are the estimation of νPFLOM and
yPFLOM , κ̂ is the estimation of κ by the average of M −K
smallest eigenvalue of the EVD of the matrix Γ̂. This DOA
estimation method based on the sparse representation of the
PFLOM vector can be namely as SS PFLOMV algorithm.

C. Improved Algorithms

The equation (16) and (24) can be unified expressed as

yFLOS = B(θ̂)νFLOS + (ξ|κ)vect(IM ) (28)

Notice that the vector (ξ|κ)vect(IM ) has only M nonzero
elements, then these elements of yFLOS corresponding to
these positions of nonzero elements in (ξ|κ)vect(IM ) can be
removed and the rest M(M−1) entries of yFLOS correspond-
ing to these positions of zeros elements in (ξ|κ)vect(IM ) can
be preserved. Mathematically, this operation can be formulated
as

yIFLOS =JyFLOS

=J
{
B(θ̂)νFLOS + (ξ|κ)vect(IM )

}
=D(θ̂)νFLOS (29)

where, J is a M(M − 1) ×M2 selecting matrix and can be
represented as

JT = [J1, J2, . . . , JM−1] (30)

where

Jm = [e(m−1)(M+1)+2,e(m−1)(M+1)+3, . . . , em(M+1)] ∈ RM2×M ,

m = 1, . . . ,M − 1 (31)

ei (i = (m − 1)(M + 1) + 2, . . . ,m(M + 1)) is an M2 × 1
column vector with 1 at the ith position and 0 elsewhere.
D(θ̂) = JB(θ̂) ∈ CM(M−1)×Q is the new steering matrix.
This elimination operation avoids the estimation of the frac-
tional lower order statistics of the impulsive noise and further
reduces the effect of the impulsive noise. Hence the DOAs
estimation can be obtained by the following minimization

min ‖νFLOS‖1, s.t.
∥∥∥yIFLOS − D(θ̂)νFLOS

∥∥∥
2
< εI (32)
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Let ŷIFLOS be the estimation of yIFLOS and ΔyIFLOS =
ŷIFLOS − yIFLOS is the estimation error, we can get
ΔyIFLOS = JΔyFLOS . From (9), we can further get that
ΔyIFLOS satisfies

ΔyIFLOS ∼ AsN
(
0M(M−1),1,

1

N
J
(
(C|Γ)T ⊗ (C|Γ))JT

)
(33)

Define the weighted matrix Ŵ
− 1

2

IFLOS as

Ŵ
− 1

2

IFLOS =
√
NJ− 1

2

(
(C|Γ)−T

2 ⊗ (C|Γ)− 1
2

)
J−T

2 (34)

and its estimation as Ŵ
− 1

2

IFLOS , then

W
− 1

2

IFLOSΔyIFLOS ∼ AsN
(
0M(M−1),1, IM(M−1),1

)
(35)

∥∥∥W− 1
2

IFLOS

[
ŷIFLOS − D(θ̂)ν̂FLOS

]∥∥∥2
2
∼ Asχ2[M(M − 1)]

(36)
Therefore, a parameter εI should be selected such that∥∥∥W− 1

2

IFLOS

[
ŷIFLOS − D(θ̂)ν̂FLOS

]∥∥∥2
2
≤ ε2I with a high prob-

ability pc, that is εI =
√
χ2
pc(M(M − 1)). Likewise, the

DOAs can be estimated by solving the following optimization
problem:

min ‖ν̂FLOS‖1
s.t.

∥∥∥Ŵ− 1
2

IFLOS

[
ŷIFLOS − D(θ̂)ν̂FLOS

]∥∥∥
2
≤ εI (37)

The DOA estimation methods based on (37) by using the
FLOM matrix C and the PFLOM matrix Γ can be namely
as SS IFLOMV and SS IPFLOMV, respectively.

D. Algorithm Computational Costs and Steps

The main computational costs of the SS FLOMV or
SS PFLOMV algorithms include the calculation of the FLOM
matrix C or the PFLOM matrix Γ, the EVD of the matrix
C or Γ to estimate the parameter ξ and κ, and solving the
optimization problem of (17) and (25), require O(NM2),
O(M3) and O(Q3), respectively. As the SS IFLOMV and
SS IPFLOMV algorithms don’t need to estimate the param-
eter ξ and κ, so their computational costs are slighter lower
than those of the SS FLOMV and SS PFLOMV algorithm.
But the computational costs of these four algorithms are
higher than those of subspace-based FLOM MUSIC and
PFLOM MUSIC algorithms, where the main complexity of
these two algorithms are in calculating the array covariance
matrix R and its EVD.

From the above analysis, the SS FLOMV and
SS PFLOMV algorithms’ steps can be summarized as
following:

Step 1: Obtain the FLOM estimate matrix Ĉ or the PFLOM
estimate matrix Γ̂ using the array received data by equation
(19) or (27). Then apply the vectorization operator on them to
get the vector ŷFLOM and ŷPFLOM .

Step 2: Get the estimation of the parameter ξ̂ or κ̂ by the
average of M − K smallest eigenvalue of the EVD of the
matrix Ĉ or Γ̂.

Step 3: Calculate the weighted matrix Ŵ
− 1

2

FLOM or
Ŵ

− 1
2

PFLOM by equation (18) and (26).

Step 4: Solve the convex optimization problem of (17) or
(25) to get the estimation of the vector ν̂FLOM or ν̂PFLOM .

Step 5: Estimate the DOAs according the location of
nonzero elements in the vector ν̂FLOM or ν̂PFLOM .

The SS IFLOMV and SS IPFLOMV algorithms’ steps are
similar to that of SS FLOMV and SS PFLOMV algorithms
except that step 2 is applying the elimination operation (29)
on the vector ŷFLOS to get the vector ŷIFLOS .

V. SIMULATION RESULTS

In this section, a series of numerical experiments under
different conditions are conducted to compare the performance
of the proposed SS FLOMV, SS PFLOMV, SS IFLOMV and
SS IPFLOMV algorithms with that of the FLOM MUSIC,
PFLOM MUSIC and SS SOSCV methods. Throughout this
section, the convex optimization problem of (12), (17), (25)
and (37) are resolved by using the software package CVX[24],
the probability pc in the proposed algorithms is set as 0.999.
A M = 8 element ULA with an intersensors pacing of half
a wavelength is used. The direction grid is set to have 181
points sampled form −90◦ to 90◦ with 1◦ intervals. Two
performance criteria are used to assess the performance of the
algorithms. The first one is the probability of resolution. The
DOAs are considered to be resolved within 1◦ estimate error.
2000 independent Monte Carlo experiments are performed,
the experiment number that DOAs can be resolved is denot-
ed as Nok, then the probability of resolution is defined as
Nok/2000. In the case of DOAs can be resolved, set θi(n),
i = 1, 2, . . . ,K as the estimation of θi for the nth Monte
Carlo experiment, the average mean square error (RMSE) of
the DOAs estimation is defined as:

RMSE =
1

Nok

Nok∑
n=1

√√√√ 1

K

K∑
i=1

(
θ̄i(n)− θi(n)

)2

(38)

As the characteristic of the α-stable distribution makes the
use of the standard SNR meaningless, a new SNR measure,
generalized signal-to-noise ratio (GSNR), is defined as[18]:

GSNR = 10 log10
σ2
s

γ
(39)

where σs is the variance of the signal, γ is the dispersion
parameter of the α-stable noise.

Example 1. Three sources impinging on array from −50◦,
0◦ and 50◦ under the condition of α stable distribution noise
with characteristic exponent α = 1.5 are considered. The
GSNR is 10dB and the number of snapshots is fixed at
100. Fig. 1 to Fig. 7 are the normalized spatial spectrum of
FLOM MUSIC, PFLOM MUSIC, SS SOSCV, SS FLOMV,
SS PFLOMV, SS IFLOMV and SS IPFLOMV algorithm,
respectively. It can be seen that sparse representation based
methods have the higher resolution than that of the subspace
based methods, that is the normalized spatial spectrum in
Fig. 3-Fig. 7 are sharper than that in Fig. 1-Fig. 2. In these
sparse representation based methods, the SS FLOMV and
SS PFLOMV methods proposed in this paper have a better
spatial spectrum performance than that of SS SOSCV algo-
rithm. And the improved SS IFLOMV and SS IPFLOMV
algorithms have the best spatial spectrum performance.
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Fig. 1. Normalized Spatial spectrum of FLOM MUSIC algorithm.
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Fig. 2. Normalized Spatial spectrum of PFLOM MUSIC algorithm.
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Fig. 3. Normalized Spatial spectrum of SS SOSCV algorithm.
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Fig. 4. Normalized Spatial spectrum of SS FLOMV algorithm.
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Fig. 5. Normalized Spatial spectrum of SS PFLOMV algorithm.

−100 −50 0 50 1000

0.2

0.4

0.6

0.8

1

Angle

Fig. 6. Normalized Spatial spectrum of SS IFLOMV algorithm.
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Fig. 7. Normalized Spatial spectrum of SS IPFLOMV algorithm.
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Fig. 8. Probability of resolution versus GSNR.
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Fig. 9. RMSE of DOA estimation versus GSNR.

Example 2. Three sources impinging on array from −50◦,
0◦ and 50◦ under the condition of α stable distribution noise
with characteristic exponent α = 1.5 are considered, the
number of snapshots is fixed at 100. Fig. 8 and Fig. 9 show
the comparison of the probability of resolution and the RMSE
with the increase of GSNR between the proposed methods
and the SS SOSCV method, respectively. It can be seen that
the probability of resolution and RMSE performance of all
methods improve with the increased GSNR. However, the
performance of the proposed methods which are based on the
sparse representation of the fractional lower order statistics
vector are much better than that of second order statistics
based methods. At the same time, the SS IFLOMV and
SS IPFLOMV methods have a better performance than the
SS FLOMV and SS PFLOMV methods, since the effects of
the noise on the algorithms are further reduced by the linear
transform on the fractional lower order statistics vector of the
array output. It also can be seen that the performance of the
methods which are based on the sparse representation of the
PFLOM vector are slightly better than that of the methods
which are based on the sparse representation of the FLOM
vector.

Example 3. Three sources impinging on array from −50◦,
0◦ and 50◦ under the condition of α stable distribution noise
with characteristic exponent α = 1.5 are considered under
the condition of GSNR=4dB. Fig. 10 and Fig. 11 show the
simulated performance of five algorithms versus the number
of snapshots. It can be seen from Fig. 10 that the proposed
SS IFLOMV and SS IPFLOMV algorithms have the similar
probability of resolution performance, and are better than that
of the SS PFLOMV and SS FLOMV, the SS SOSCV method
has the worst probability of resolution performance compared
with the other algorithms. It can be seen from Fig. 11 that the
RMSEs of the proposed algorithms decrease monotonically
with the number of snapshots, the proposed SS IFLOMV and
SS IPFLOMV algorithms show a more satisfactory perfor-
mance than the SS FLOMV and SS PFLOMV algorithms,
especially when the snapshot is smaller than 400.

Example 4. In this example, the performance of the pro-
posed algorithms versus the characteristic exponent α of the
noise is assessed. The other simulation conditions are similar
to the example 1 except that the GSNR is set at 10dB.
Firstly, the situation that the characteristic exponent varying
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Fig. 10. Probability of resolution versus number of snapshots.
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Fig. 11. RMSE versus number of snapshots.

from α = 1 to α = 2 is considered. The probability of
resolution and RMSE performance of the five methods are
displayed in Fig. 12 and Fig. 13. It can be seen from these
figures that the results are similar to those of before mentioned
examples. As expected, the resolution capability improves and
the RMSE decreases with increased characteristic exponent
and the performance of the FLOS based methods outperform
the SOS based methods. The performance of the SS IFLOMV
and SS IPFLOMV algorithms outperforms the SS FLOMV
and SS PFLOMV algorithms, and at the same time the
performance of the PFLOM vector based methods outperforms
the FLOM vector based methods.

Although the FLOM and PFLOM have the good perfor-
mance in suppressing the α-stable impulsive noise, they are
applicable for different impulsive environment. The FLOM is
limited in range of 2 ≥ α > 1 and the PFLOM is applicable
for 0 < α ≤ 2. In other words, although FLOM can be
calculated by the average in practice, there is no definition
for FLOM in theory for 0 < α ≤ 1. So, it can be predicted
that the performance of the SS FLOMV algorithm is inferior
to that of the SS PFLOMV algorithm, even the SS FLOMV
algorithm will does not work, when the characteristic exponent
of the impulsive noise is in the range of 0 < α ≤ 1. To
verify this, Fig. 14 and Fig. 15 show the simulated performance
of the SS FLOMV and SS PFLOMV algorithm under the
condition of 0.1 ≤ α ≤ 1. It can be seen that the probability of
resolution of the SS FLOMV algorithm is zero, that is it does
not work, when 0.1 < α ≤ 0.6. So at this time the RMSE of
the SS FLOMV algorithm also does not exist. However, the
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SS PFLOMV algorithm maintains a stable lower probability
of resolution and has a fluctuating RMSE when 0.1 < α ≤ 0.6.
And the performance of SS FLOMV algorithm is much lower
than that of SS PFLOMV algorithm when 0.6 < α ≤ 1.
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Fig. 12. Probability of resolution versus characteristic exponent α.
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Fig. 13. RMSE versus characteristic exponent α.
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Fig. 14. Probability of resolution versus characteristic exponent α when
α ≤ 1.

VI. CONCLUSION

The new methods based on sparse representation of the
fractional lower order statistics vector are proposed for DOAs
estimation under α-stable distribution impulsive noise en-
vironments. To enhance the performance of the proposed
algorithms, the improved algorithms are advanced by a linear
transformation on the fractional lower order statistics vector of
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Fig. 15. RMSE versus characteristic exponent α when α ≤ 1.

the array output. Simulation results are shown to demonstrate
the effectiveness of the proposed methods for a wide range of
highly impulsive environments.
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Relationship Between Integer Order Systems and
Fractional Order Systems and Its Two Applications

Xuefeng Zhang

Abstract—Existence of periodic solutions and stability of frac-
tional order dynamic systems are two important and difficult
issues in fractional order systems (FOS) field. In this paper, the
relationship between integer order systems (IOS) and fractional
order systems is discussed. A new proof method based on the
above involved relationship for the non existence of periodic
solutions of rational fractional order linear time invariant sys-
tems is derived. Rational fractional order linear time invariant
autonomous system is proved to be equivalent to an integer
order linear time invariant non-autonomous system. It is further
proved that stability of a fractional order linear time invariant
autonomous system is equivalent to the stability of another
corresponding integer order linear time invariant autonomous
system. The examples and state figures are given to illustrate the
effects of conclusion derived.

Index Terms—Existence, equivalence, periodic solutions, ratio-
nal fractional order systems, stability.

I. INTRODUCTION

THE concept of fractional differentiation appeared first
in a famous correspondence between L’ Hopital and

Leibniz, in 1695. Fractional calculus has had a 300 years
old history, the development of fractional calculus theory is a
matter of almost exclusive interest for few mathematicians and
theoretical physicists. In recent years, researchers have noticed
that the description of some phenomena is more accurate
when the fractional derivative is introduced. Many practical
control system models can be described by fractional differ-
ential equations. It is worth mentioning that many physical
phenomena having memory and genetic characteristics can
be described by modeling as fractional order systems. Frac-
tional order systems have attracted much attention. In what
concerns automatic control, T. T. Hartley and C. F. Lorenzo
[1] studied the fractional order algorithms for the control of
dynamic systems. Podlubny [2] proposed a generalization of
the PID controller, namely the PIλDµ controller, involving
an integrator of order λ and a differentiator of order µ. L.
Yan and Y. Q. Chen [3] propose the definition of Mittag-
Leffler stability and introduce the fractional Lyapunov direct
method. Fractional comparison principle is introduced and the
application of Riemann-Liouville fractional order systems is
extended by using Caputo fractional order systems. C.P Li
and F.R. Zhang [4] give a survey on the stability of fractional
differential equations based on analytical methods.

This article has been accepted for publication in a future issue of this
journal, but has not been fully edited. Content may change prior to final
publication.
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X. F. Zhang is with the School of Sciences, Northeastern University,
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Fractional-order differential operators present unique and
intriguing peculiarities, not supported by their integer-order
counterpart, which raise exciting challenges and opportunities
related to the development of control and estimation method-
ologies involving fractional order dynamics. In recent years,
most of papers are devoted to the solvability of the linear frac-
tional equation in terms of a special function and to problems
of analyticity in the complex domain. Fractional system and its
control has become one of the most popular topics in control
theory [5]−[8]. The number of applications where fractional
calculus has been used rapidly grows. These mathematical
phenomena allow to describe a real object more accurately
than the classical integer-order methods [9]−[12]. Paper [10]
gives the non existence of periodic solutions in fractional order
systems with Mellin transform. But for singular fractional
order systems, the Mellin transform method is invalid because
of singularity of systems.

In this paper, we will show that rational fractional order
linear time invariant autonomous system is equivalent to an
integer order linear time invariant non-autonomous system but
cannot be equivalent to any integer order linear time invariant
autonomous system with any system parameters. The nonexis-
tence of periodic solutions of fractional order dynamic systems
are proved by means of contradiction method. Stability of a
fractional order linear time invariant autonomous system is
equivalent to the stability of another corresponding integer
order linear time invariant autonomous system. The examples
and state figures are given to illustrate the effects of the
conclusions derived. The conclusions provided in the paper
can be easily extended to singular fractional order linear time
invariant systems.

II. PRELIMINARIES

Let us denote by Z+ the set of positive integer numbers, C
the set of complex numbers, Rn×n the set of n×n dimension
real numbers. We denote the real part of complex number α
by Re(α).

Caputo derivative has been often used in fractional order
systems since it has the practical initial states like that of
integer order systems.

Definition 1: The Caputo fractional order derivative with
order α of function x(t) is defined as

C
0 Dα

t x(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1x(n)(τ)dτ

where n − 1 < α < n ∈ Z+,Γ is well-known Euler Gamma
function.
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Definition 2: The Riemann-Liouville derivative of fractional
order α of function x(t) is defined as

RL
0 Dα

t x(t) =
1

Γ(n− α)
(

d

dt
)n

∫ t

0

(t− τ)n−α−1x(τ)dτ

where n− 1 < α < n ∈ Z+.
Definition 3: The Grunwald-Letnikov derivative of frac-

tional order α of function x(t) is defined as

GL
0 Dα

t x(t) = lim
h→0

h−α

(t−α)/h∑
r=0

(−1)rCr
αx(t− rh)

where n− 1 < α < n ∈ Z+.
Definition 4: The Mittag-Leffler function is defined as

Eα(t) =
∞∑

k=0

tk

Γ(kα + 1)

where Re(α) > 0, t ∈ C. The two-parameter Mittag-Leffler
function is defined as

Eα,β(t) =
∞∑

k=0

tk

Γ(kα + β)

where Re(α) > 0, β, t ∈ C.
Property 1: The Laplace transform of Caputo derivative of

function x(t) is

L(C
0 Dα

t x(t)) = sαX(s)−
n−1∑

k=0

sα−k−1xk(0),

where X(s) = L[x](s), n− 1 < α < n ∈ Z+.
Property 2: If let α ∈ (0,∞) \ N. Then, we have

RL
0 Dα

t x(t) =GL
0 Dα

t x(t) =C
0 Dα

t x(t)+
n−1∑

i=0

x(i)(0)
Γ(i− α + 1)

ti−α

where n− 1 < α < n ∈ Z+.
Lemma 1: The Laplace transform of tα−1

+ /Γ(α) is:

L(
tα−1
+

Γ(α)
) = s−α

and
tα−1
+ =

{
tα−1, t > 0
0, t ≤ 0.

Lemma 2: The Laplace transform of e−at√
b−a

erf(
√

(b− a)t)
is:

L(
e−at

√
b− a

erf(
√

(b− a)t)) =
1√

s + b(s + a)

where erf(t) is the error function for each element of t,
erf(t) = 2√

π

∫ t

0
e−τ2

dτ.

Lemma 3: The Laplace transform of 1√
πt
− 2√

π
daw(

√
t) is:

L(
1√
πt
− 2√

π
daw(

√
t)) =

√
s

s + 1

where daw(t) is Dawson function for each element of t,
daw(t) = e−t2

∫ t

0
eτ2

dτ.

Lemma 4: The Laplace transform of A cos(ωt) is:

L(A cos(ωt)) =
As

s2 + ω2
.

Lemma 5: The Laplace transform of tβ−1Eα,β(−ωtα) is:

L(tβ−1Eα,β(−ωtα)) =
sα−β

sα + ω
.

Lemma 6: The Laplace transform of n order derivative
fn(t) is:

L(f (n)(t)) = snF (s)−
n−1∑

i=0

sn−1−if (i)(0).

III. MAIN RESULTS

A. Equivalence Between FOS and IOS

Integer order linear time invariant (LTI) systems have been
developed quite maturely. Fractional order LTI system is a
subsystem of dynamic control system and is less discussed due
to its difficulty. In order to obtain the better control cost index,
the control components and devices with fractional order prop-
erties are needed to be introduced. Algorithms in measurement
technology sometimes process the fractional order characteris-
tics. Some control plants are more difficult to be modeled than
integer order systems. By the above reason, fractional order
dynamic control systems are essential to be introduced. From
Fig. 1, we can see that state figures of ẋ(t) = tx(t), and those
of Dαx(t) = x(t), α = 0.2, 0.4, · · · , 1, are similar to each
other, but they are not identically coincided with each other.
An obvious question is whether there exists an integer order
LTI System (1) equivalent to a fractional order LTI System (2)
with any appropriate parameters or be equivalent to a fractional
order LTV System (3) with any appropriate parameters or not.
It is an important problem for the reason that if the answer is
’yes’ the fractional order systems can be regarded as a part of
integer order systems and if the answer is ’no’ the fractional
order systems cannot be ignored so that the research of FOS
is magnificently innovative. From the theorems in Section III,
it is found that the answer is negative. It can hold only if
the state is zero solution. Actually, System (1) is equivalent
to System (4) in some cases. In the following subsection, we
can have that if α = 1/2, System (4) reduces to System (5).

Dαx(t) = Ax(t) (1)

ẋ(t) = A1x(t) (2)

ẋ(t) = A2(t)x(t) (3)

ẋ(t) =
A

Γ(α)

∫ t

0

(t− τ)α−1x′(τ)dτ +
Ax(0)tα−1

+

Γ(α)
(4)

ẋ(t) = A2x(t) +
Ax(0)t−

1
2

+

Γ( 1
2 )

. (5)
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Fig. 1. Plot of states of ẋ(t) = tx(t) and Dαx(t) = x(t).

From the discussion on relationship between FOS and
IOS in the above subsection, it is easy to introduce its two
applications i.e., non existence of periodic solutions for FOS
and stability between FOS and IOS.

B. Non Existence of Periodic Solutions for FOS

Theorem 1: While α = 1/2, System (1) is equivalent to (5).
Proof : Using Laplace transform for System (1), taking

into account the Caputos definition for the fractional-order
derivatives in (2), and applying Property 1 in the case that
0 < α < 1, it yields that

sαX(s)− sα−1x(0) = AX(s).

Pre- and post-multiplying above equation by s1−α, it fol-
lows that

sX(s)− x(0) =As1−αX(s)

=A(s1−αX(s)− s−αx(0)) + As−αx(0).

By Lemma 1 and taking inverse Laplace transform in above
equation, we have (4).

When α = 1/2, we have System (5). If we denote B =
Ax(0), u(t) = t

− 1
2

+ /Γ( 1
2 ), then (5) changes as (6)

ẋ(t) = A2x(t) + Bu(t). (6)

When α = p/q, p, q ∈ Z+, System (1) can be proved to be
equivalent to (7).

x(p)(t) =Aqx(t) +
q−1∑

i=1

Aq−i t
− ip

q

+

Γ(1− ip
q )

x(0)

+
p−1∑

i=1

δ(p−1−i)(t)x(i)(0) (7)

where δ is the unit pulse function.
Theorem 2: While α = p/q, System (1) is equivalent to (7).
Proof : Using Laplace transform in (1), taking into account

the Caputos definition for the fractional-order derivatives in
(2), and applying Property 1 in the case that 0 < α < 1, we
have that

sαX(s)− sα−1x(0) = AX(s)

i.e.,
s

p
q X(s)− sp/q−1x(0) = AX(s).

Pre- and post-multiplying above equation by sp/q, it follows
that

s
2p
q X(s)− s

2p
q −1x(0)

= As
p
q X(s) = A(s

p
q X(s)− s

p
q−1x(0)) + As

p
q−1x(0)

= A2X(s) + As
p
q−1x(0).

Keeping on pre- and post-multiplying above equation by s
p
q

till q times, it follows that

spX(s)− sp−1x(0) = AqX(s) +
q−1∑

i=1

Aq−is
ip
q −1x(0)

i.e.,

spX(s)−∑p−1
i=0 sp−1−ix(i)(0)

= AqX(s) +
∑q−1

i=1 Aq−is
ip
q −1x(0)−∑p−1

i=1 sp−1−ix(i)(0).

By Lemma 1 and Property 1 and taking inverse Laplace
transform in above equation, we have (7).

Theorem 3: Linear time invariant fractional system (1) with
order 0 < α < 1, α = p/q, p, q ∈ Z+ has no periodic solution.

Proof : By contradiction, suppose linear time invariant frac-
tional system (1) has a periodic solution x(t). For T−periodic
function x(t + T ) = x(t), from

d

dt
x(t + T ) =

d

d(t + T )
x(t + T )

d

dt
(t + T ) = x′(t + T )

it is easy to see that x(k)(t + T ) = x(k)(t). From Theorem 2,
we know that (1) is equivalent to (7). If we denote

f(t) = x(p)(t)−Aqx(t)

g(t) =
∑q−1

i=1 Aq−i t
− i

q
+

Γ(1− i
q )

x(0) +
∑p−1

i=1 δ(p−1−i)x(i)(0)

then f(t) = g(t). However, f(t) is periodic function but g(t)
is a non-periodic function. So, there does not exist any periodic
solution for System (1). ¥

Remark 1: From Theorem 2, we know that there does
not exist any integer order LTI System (2) be equivalent
to a fractional order LTI System (7) with any appropriate
parameters. It means the properties of fractional order LTI
systems may be different from those of integer order LTI
systems. It can attract researchers to explore the distinct
properties of fractional order LTI systems.

Remark 2: Theorem 3 gives a concise and effective proof
that there does not exist periodic solutions for fractional order
LTI System (7).

Remark 3: With the equivalence between the integer order
LTI System (7) and the fractional order LTI System (1), we
succeed in finding a new research approach of discussing the
difficult fractional order LTI System (1). However, relative to
System (1), it is easy and there exists extensive results to
discuss the integer order LTI System (7). For example, we can
further discuss the stability and robust stability of fractional
order LTI System (1) in the future.

Remark 4: From Theorem 3, we can see that only if α is an
integer, it follows g(t) = 0. This means only if α is an integer,
it is possible for System (1) to satisfy periodic solutions.
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C. Stabilities Between FOS and IOS

Lemma 7: [12] System (1) is asymptotically stable if and
only if there exist two matrices X, Y ∈ Rn×n, such that

[
X Y
−Y X

]
> 0

aAX + bAY + aXAT − bY AT < 0

where a = sin(απ/2), b = cos(απ/2).
Lemma 8: [12] System (1) is asymptotically stable if and

only if there exist two matrices X, Y ∈ Rn×n, such that
[

X Y
−Y X

]
> 0,

[
Π1 Π2

−Π2 Π1

]
< 0

where
Π1 = aAX + bAY + aXAT − bY AT

Π2 = aAY − bAX + bXAT + aY AT

and a, b are the same as those in Lemma 7.
Lemma 9 : [12] A complex matrix X ∈ Cn×n satisfies X <

0 if and only if
[

Re(X) Im(Y )
−Im(Y ) Re(X)

]
< 0. (8)

Consider the following specific complex integer order linear
time invariant system

ẋ(t) = (a + jb)AT x(t) (9)

where system matrix A ∈ Rn×n,j is the imaginary unit.
Using Lyapunov theory of integer order systems and Lem-

mas 7 and 8, it is easy to obtain the following equivalence
stability criterion.

Theorem 4: Fractional order system (1) is asymptotically
stable if and only if integer order system (9) is asymptotically
stable.

Proof For the specific complex integer order LTI system (9),
we choose the quadratic Lyapunov candidate function as

V (x(t)) = xT (t)(X + jY )x(t)

where X+jY > 0. Then, differentiating V (x(t)) with respect
to time t along to the solution of (9), we obtain

V̇ = xT (t)[(a− jb)A(X + jY ) + (X + jY )(a + jb)AT ]x(t)

= xT (t)(Π1 + jΠ2)x(t) < 0.

Using Lyapunov theory of complex integer order systems
and considering (8) in Lemma 9, this completes the proof.

IV. NUMERICAL EXAMPLES

Example 1: Consider integer order System (2) with param-
eters as follows:

A1 =
[

0 1
−1 0

]
, x(0) =

[
1
1

]

from Fig. 2, we can see that the solutions are periodic. But if
we consider System (1) with the same above parameters and
α = 1/2, then by Laplace transform for System (1) we have

s
1
2 X1(s)−X2(s) = s−

1
2

s
1
2 X2(s) + X1(s) = s−

1
2 .

Fig. 2. State curves of IOS in Example 1.

It is easy to obtain the solutions of the above equations as
follows:

X1(s) =
s−

1
2+1

s + 1
, X2(s) =

s
1
2 + 1
s + 1

− s
1
2 .

Consider Lemma 1 and 3, and take the inverse Laplace
transform for X1(s) and X2(s), it follows that:

x1(t) = e−t + 2√
π

daw(
√

t)

x2(t) = e−t + 1√
πt
− 2√

π
daw(

√
t)− t−

1
2

Γ( 1
2 )

.

With Lemma 5, it also follows that:

x1(t) = e−t + t
1
2 E1, 3

2
(−t)

x2(t) = e−t − t
1
2 E1, 1

2
(−t)− t−

1
2

Γ( 1
2 )

.

It is easy to see from Fig. 3 that the state curves of fractional
order System (1) with parameter α = 1/2 do not possess
periodic dynamic orbits.

Fig. 3. State curves of FOS in Example 1.

Example 2: By Theorem 2, for α = 1/3, we have that
System (1) is equivalent to

ẋ(t) = x(t) +
t
− 1

3
+

Γ(1− 1
3 )

x(0) +
t
− 2

3
+

Γ(1− 2
3 )

x(0).
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From Fig. 4, we can see the state curves of fractional order
System (1) with parameter α = 1/3 are completely identical
to the corresponding state curves of integer order System (7).

Fig. 4. State curves of FOS in Example 2.

V. CONCLUSIONS

Many systems exhibit the fractional phenomena, such as
motions in complex media or environments, random walk of
bacteria in fractal substance, etc. These models can be obtained
by solving modified fractional order systems. In this paper,
we discuss the relationship between rational fractional order
systems and integer order systems and conclude that the two
kind of systems cannot be substituted for each other. The
criteria of nonexistence of periodic solution of fractional order
systems are addressed. The proof approach is based on the
properties of Laplace transform of fractional order systems.
Stability of a fractional order linear time invariant autonomous
system is equivalent to the stability of another corresponding
integer order linear time invariant autonomous system. Some
numerical examples are given to verify the feasibility of results
presented. The methods provided in the paper can be extended
to singular fractional order linear time invariant systems in the
future.
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Dynamics of the Fractional-order Lorenz System
Based on Adomian Decomposition Method and Its

DSP Implementation
Shaobo He, Kehui Sun, and Huihai Wang

Abstract—Dynamics and digital circuit implementation of
the fractional-order Lorenz system are investigated by em-
ploying Adomian decomposition method (ADM). Dynamics of
the fractional-order Lorenz system with derivative order and
parameter varying is analyzed by means of Lyapunov exponents
(LEs), bifurcation diagram, chaos diagram and phase diagram.
Results show that the fractional-order Lorenz system has rich
dynamical behavior and it is a potential model for application.
It is also found that the minimum order is affected by numerical
algorithm and time step size. Finally, the fractional-order system
is implemented on DSP digital circuit. Phase diagrams generated
by the DSP are consistent with that generated by simulation.

Index Terms—fractional calculus, Lorenz system, Adomian
decomposition method, dynamics, DSP implementation.

I. INTRODUCTION

IN recent years, the application of fractional calculus to
chaotic system has become a hot topic [1], and re-

searchers begin to investigate dynamics and applications of
the fractional-order chaotic systems [2,3].

The fractional-order Lorenz system with a new set of
parameters is firstly analyzed by Grigorenko I et.al [4], and
they reported that the system can generate chaos when the total
order is 2.91 by a numerical method they derived. Unfortu-
nately, an error was found in the derived numerical method,
thus the result in this paper was not reliable [5]. More recently,
Jia H Y et al. [6] analyzed dynamics of this system with order
q=0.7, 0.8 and 0.9 and implemented it in analog circuit by
employing frequency domain method (FDM) [7]. However,
whether this method accurately reflects chaotic characteristics
in fractional-order chaotic system was questioned in [8-10].
Another method for solving fractional-order chaotic systems
is the Adams-Bashforth-Moulton algorithm (ABM) [11]. It can
be used to analyze dynamics with continuous derivative order
[12], and some researches of the fractional-order chaos are
based on this algorithm [13, 14]. But the calculation speed
of this algorithm is very slow, and it consumes too many
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computer resources [15]. Meanwhile, Adomian decomposition
method (ADM)[16] is employed to obtain numerical solution
of the fractional-order chaotic system for its high precision and
fast speed of convergence [17-19]. For instance, the fractional-
order Chen system is investigated by Cafagna D et.al [19] by
applying ADM, and the results show that it is a good method
for solving the fractional-order chaotic systems. In addition,
based on ADM, Lyapunov exponents (LEs) of the fractional-
order system are calculated [20]. Furthermore, circuit design
is essential for application of fractional-order chaotic systems.
Although analog circuit implementation is widely reported by
researchers [6], digital circuit realization of the fractional-order
chaotic system has better flexibility and repeatability [21]. So,
we focus on dynamics of the fractional-order Lorenz system
and its DSP implementation by employing ADM in this paper.

The structure of the paper is as follows. In Sec.II, char-
acteristics of the ADM are presented and the numerical
solution of fractional-order Lorenz system is obtained. In
Sec.III, dynamics of the fractional-order Lorenz system is
investigated. In Sec.IV, the fractional-order Lorenz system is
realized by employing DSP technology. Finally, we summarize
the conclusions.

II. NUMERICAL SOLUTION FOR THE FRACTIONAL-ORDER
LORENZ SYSTEM

A. Advantages of Adomian decomposition method
We choose ADM to solve the fractional-order chaotic sys-

tem since it has some advantages over the following aspects
comparing with other standard numerical methods.

i) ADM can get more exact solution of the fractional-
order system as it preserves the system nonlinearities. The
precision of FDM is within 2dB or 3dB, and a satisfying
approximation of the actual system can be obtained within
the desired frequency band. But a large error is illustrated at
the high and low frequency band [10, 23]. The truncation error
of ABM is O(hp), p=min(2,1+q). It is acceptable, but it is not
as effective as ADM [15].

ii) ADM obtains chaos with much lower order. Taking
fractional-order Chen system as an example, the minimum
order by ADM is 0.24 [19], and this value represents the
lowest order reported in literatures. However, the minimum
order of this system by ABM is 2.64 [8], and it is difficult
for FDM to obtain the minimum order of a fractional-order
chaotic system.

iii) ADM provides a potential iterative approach for digital
circuit implementation of the fractional-order chaotic system.
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ABM is not suitable for practical application of fractional-
order chaotic system since it needs more and more time and
memory space for computation as time goes on [15]. FDM is
the theoretical basis for the fractional-order chaotic systems
implemented in analog circuit.

B. Description of Adomian decomposition method

For a given fractional-order chaotic system with form of
Dq

t0x(t)=f(x(t))+g(t), where x(t)=[x1(t), x2(t), ..., xn(t)] is
the state variable, g(t) = [g1(t), g2(t), ..., gn(t)] is the constant
in the system, and Dq

t0 is the Caputo fractional derivative
operator [17]. So it can be divided into three parts as the form

Dq
t0x(t) = Lx(t) + Nx(t) + g(t), (1)

where m ∈ N , m − 1 < q ≤ m. Lx(t) and Nx(t) are
the linear and nonlinear terms of the fractional differential
equations respectively. Here, let Jq

t0 is the inverse operator of
Dq

t0 , thus we have [17].

x = Jq
t0Lx + Jq

t0Nx + Jq
t0g + Φ, (2)

where Φ =
∑m−1

k=0 bk(t− t0)
k
/k!, x(k)(t+0 ) = bk, k =

0, · · · ,m−1, and it involves the initial condition. By applying
the recursive relation [17]





x0 = Jq
t0g + Φ

x1 = Jq
t0Lx0 + Jq

t0A
0(x0)

x2 = Jq
t0Lx1 + Jq

t0A
1(x0,x1)

· · ·
xi = Jq

t0Lxi−1 + Jq
t0A

i−1(x0,x1, · · · ,xi−1)
· · ·

, (3)

the analytical solution of the fractional-order system is pre-
sented as

x(t) =
∑∞

i=0
xi, (4)

where i = 1, 2, ...,∞, and the nonlinear terms of the fractional
differential equations Nx(t) are evaluated by [22]

Nx =
∞∑

i=0

Ai(x0,x1, · · · ,xi), (5)





Ai
j = 1

i! [
di

dλi N(vi
j(λ))]λ=0

vi
j(λ) =

i∑
k=0

(λ)k
xk

j

. (6)

Because ADM converges very fast [17-19], we choose i = 6
for the approximate solution in this paper. To discretize Eq.(4),
a time interval [t0, t] is divided into subintervals [tn, tn+1],
where h = tn+1 − tn. So, the solution of the fractional-order
Lorenz system is expressed as

x(tn) =
∑6

i=0
xi(tn−1) = F (x(tn−1)). (7)

Then we can obtain the discrete iterative form x(tn+1) =
F (x(tn)), which is denoted as x(n+1) = F (x(n)) for general
cases.

C. Solution of the fractional-order Lorenz system

The fractional-order chaotic Lorenz system is presented by
[4, 6] as 




Dq
t0x1 = a(x2 − x1)

Dq
t0x2 = cx1 − x1x3 + dx2

Dq
t0x3 = x1x2 − bx3

, (8)

where a, b, c, and d are system parameters, and q is the
derivative order. As the same with [4] and [6], we investigate
dynamics and digital circuit realization of this system by fixing
a = 40, b = 3, c = 10, and varying d and q. By applying
ADM, the numerical solution of the fractional-order Lorenz
system is denoted by





x1(n + 1) =
∑6

j=0 κj
1h

jq
/
Γ(jq + 1)

x2(n + 1) =
∑6

j=0 κj
2h

jq
/
Γ(jq + 1)

x3(n + 1) =
∑6

j=0 κj
3h

jq
/
Γ(jq + 1)

. (9)

where h is the integration step-size, Γ(·) is the Gamma
function, and κj

i (·) are defined as

κ0
1 = x1(n), κ0

2 = x2(n), κ0
3 = x3(n), (10)





κ1
1 = a(κ0

2 − κ0
1)

κ1
2 = cκ0

1 + dκ0
2 − κ0

1κ
0
3

κ1
3 = −bκ0

3 + κ0
1κ

0
2

, (11)





κ2
1 = a(κ1

2 − κ1
1)

κ2
2 = cκ1

1 + dκ1
2 − κ0

1κ
1
3 − κ1

1κ
0
3

κ2
3 = κ1

1κ
0
2 + κ0

1κ
1
2 − bκ1

3

, (12)





κ3
1 = a(κ0

2 − κ0
1)

κ3
2 = cκ2

1 + dκ2
2 − κ0

1κ
2
3−

κ1
1κ

1
3

Γ(2q+1)
Γ2(q+1) − κ2

1κ
0
3

κ3
3 = κ0

1κ
2
2 + κ1

1κ
1
2

Γ(2q+1)
Γ2(q+1)+

κ2
1κ

0
2 − bκ2

3

, (13)





κ4
1 = a(κ3

2 − κ3
1)

κ4
2 = cκ3

1 + dκ3
2 − κ0

1κ
3
3 − κ3

1κ
0
3−

(κ2
1κ

1
3 + κ1

1κ
2
3)

Γ(3q+1)
Γ(q+1)Γ(2q+1)

κ4
3 = κ0

1κ
3
2 + κ3

1κ
0
2 + bκ3

3+
(κ2

1κ
1
2 + κ1

1κ
2
2)

Γ(3q+1)
Γ(q+1)Γ(2q+1)

, (14)





κ5
1 = a(κ4

2 − κ4
1)

κ5
2 = cκ4

1 + dκ4
2 − κ0

1κ
4
3−

(κ3
1κ

1
3 + κ1

1κ
3
3)

Γ(4q+1)
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κ2
1κ

2
3

Γ(4q+1)
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0
3
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4
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1
2 + κ1

1κ
3
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+κ2
1κ

2
2

Γ(4q+1)
Γ2(2q+1) + κ4

1κ
0
2 − bκ4

3

, (15)
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1 = a(κ5

2 − κ5
1)

κ6
2 = cκ5

1 + dκ5
2 − κ0
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(κ1
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4
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5
2 + κ5

1κ
0
2 − bκ5

3+
(κ1

1κ
4
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According to Eq.(9), the chaotic sequences of the fractional-
order Lorenz system are obtained with appropriate initial val-
ues. Meanwhile, Eq.(9) provides a necessary iterative approach
for DSP implementation of the fractional-order Lorenz system.

III. CHAOTIC DYNAMICS OF THE FRACTIONAL-ORDER
LORENZ SYSTEM

A. Design of Lyapunov exponents calculation algorithm

The Lyapunov exponents are calculated based on Jacobian
matrix obtained from Eqs. (9)-(16) and QR decomposition
method [20]. The QR decomposition method is shown as

qr(JNJN−1 · · ·J1) = qr (JNJN−1 · · ·J2(J1Q0))
= qr (JNJN−1 · · ·J3(J2Q1))R1

= QNRN · · ·R2R1

,

(17)
where qr(·) is the QR decomposition function, J is the Jaco-
bian matrix of Eq.(9). The Lyapunov exponents are obtained
as

λk =
1

Nh

N∑

i=1

ln |Ri(k, k)|, (18)

where k=1, 2, 3, and N is the iteration times. The flow chart
for LEs calculation is shown in Fig.1. Before calculating LEs,
parameters, time step size h and number of iterations N should
be confirmed. The Jacobian matrix is obtained according
to Eq.(9) by applying mathematical software Matlab. LEs
are calculated based on the QR decomposition method as
illustrated in Eqs. (17) and (18).

Fig. 1. Flow diagram for LEs calculation algorithm.

B. Dynamics with varying parameters

In this section, dynamics in the fractional-order Lorenz
system with varying system parameter d and derivative order
q are investigated. Parameter fixed dynamical analysis method
and chaos diagram are used. Here, we set N=20000 and
h=0.01. Three cases are investigated.

i) Fix d = 25, and vary derivative order q from 0.75
to 1 with step size of 0.0005. The bifurcation diagram and
LEs are shown in Fig.2. It shows that the system generates
chaos for 0.813 ≤ q < 1 except some periodic windows.
Thus the minimum total order for fractional-order Lorenz
system to generate chaos is 2.439 and the corresponding
phase diagram is shown in Fig.3. In addition, the maximum

Lyapunov exponent illustrates a decreasing trend as order q
increasing.

(a) LEs

(b) Bifurcation diagram

Fig. 2. Dynamics of the fractional-order Lorenz system with d = 25 and q
varying

Fig. 3. Phase diagram of the fractional-order Lorenz system with d = 25
and q = 0.813.

ii) Fix q = 0.96 and vary d from 0 to 38 with step
size of 0.1. When d decreases from 38, the system presents
periodical states until it enters into chaos at d = 32.1 by
the period-doubling bifurcation as shown in Fig. 4(a). Chaos
covers most of the range d ∈ [9.8, 32.1] with several small
periodic widows, such as d ∈ [14.5, 16.3] ∪ [21.1, 21.5].
Finally, the system becomes convergent at d = 9.8 by a tangent
bifurcation. To observe dynamics better, phase diagrams are
presented in Fig.5. When d=15, 21.5 and 37, the system is
periodic, and the system is chaotic when d = 20. It shows
that the system presents different states with different values
of parameter d.

iii) Vary q from 0.75 to 1 with step size of 0.0025 and
vary d from 0 to 38 with step size of 0.38 simultaneously.
The maximum Lyapunov exponent based chaos diagram in
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(a) LEs

(b) Bifurcation diagram

Fig. 4. Dynamics of the fractional-order Lorenz system with q = 0.96 and
d varying

(a) d=15 (b) d=20

(c) d=21.5 (d) d=37

Fig. 5. Phase diagrams of the fractional-order Lorenz system with q = 0.96
and d varying

this q−d parameter plane is illustrated in Fig.6. In this figure,
we only plot the case when the maximum Lyapunov exponent
is larger than zero. According to Fig.6, chaos exists in the
range of d ∈ [10, 32]. A high complexity region is observed
within d ∈ [25, 30] and q ∈ [0.8, 0.97], which is favorable for
practical application. So, the fractional-order Lorenz system
is a good model for real application. It shows that the chaos
diagram provides a parameter selection basis for fractional-
order chaotic Lorenz system in practical application.

Compared with bifurcation analysis results based on FDM

Fig. 6. Maximum Lyapunov exponent based chaos diagram.

as shown in [6], results based on ADM are more detailed and
accurate. It also shows that we can analyze dynamics of the
system with q varying continuously, but it is difficult for FDM
to do so.

C. Discussion about the minimum order

Obviously, the minimum order for chaos is different for
different system parameter. But it is also different when the
numerical solution algorithm or time step size h is different.
Thus these two aspects are discussed as follows.

i) Compared with other approaches, chaotic system has a
much lower order if it is solved by ADM algorithm. The
equilibrium point of this system is (0, 0, 0) and (±

√
b(c + d),

±
√

b(c + d), c + d). When d = 25, the eigenvalues at
(0, 0, 0) are λ1=-45.6608, λ2=30.6608, λ3=-3.0000, and
the eigenvalues at (±√105,±√105, 35) are λ1=-25.2415,
λ2=3.6207+17.8795i and λ3=3.6207-17.8795i. According to
the stability theory as proposed in Refs. [8] and [9], the
lowest order q to generate chaos is q = 0.8726. It is not
difficult to find out that ABM satisfies this result. However,
FDM and ADM do not. According to [6], when q = 0.7, the
system has rich dynamics and chaos still exists by applying
FDM. According to Fig.2, the minimum order of the system
is q = 0.813 by applying ADM. Actually, the stability
theory from [25] is proposed to analyze fractional-order linear
systems. For fractional-order nonlinear systems, Li L X et al.
[26] proved that the stability theory does not always work
when the specified matrix J(X) is time-varying. We believe
that it is more complex to analyze stability of fractional-order
nonlinear system. Besides, although FDM and ADM do not
satisfy the stability theory as presented in [8] and [9], they
are widely used and accepted by researchers [7, 15-21]. In
addition, it shows in [27] that different results of a fractional-
order system may be achieved when simulations are performed
based on different numerical methods. Since FDM and ADM
can obtain chaos at a much lower order, they extend the
parameter space of fractional-order chaotic systems.

ii) The effect of time step h should be further investigated.
As for ADM, when h=0.01, the lowest order to generate chaos
is q=0.813. We also find that the lowest order decreases with
the decrease of the time step size h. As shown in Fig.7, when
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(a) h=0.001

(b) h = 0.0001

Fig. 7. Bifurcation diagrams of the fractional-order Lorenz system under
different h

h=0.001, the lowest order is q=0.505, and the lowest order
is q=0.402 for h=0.0001. The system generates chaos with
lower order when time step h is smaller, but more memory
and computing resources are needed. It is not good for real
application of the system. We think h = 0.01 is a suitable
choice for general cases. However, the reason why the lowest
order decreases with the decrease of time h needs further
study.

According to the discussion above, when a minimum order
for chaos generation of a fractional-order chaotic system is
presented, the certain set of parameters, numerical algorithm
and time step size should also be specified.

IV. DIGITAL CIRCUIT IMPLEMENTATION

In this section, the digital circuit of the fractional-order
Lorenz system is designed, and the numerical solution applied
in DSP board is presented as Eqs.(9)-(16). Hardware block
diagram of the digital circuit is shown in Fig.8. The floating-
point DSP TMS320F28335 produced by TI is chosen. A 16-bit
dual-channel D/A converter DAC8552 is used to convert time
series generated by DSP. An oscilloscope is used to capture
figures randomly. The flow diagram is presented in Fig.9.
Firstly, the DSP is initialized, then the initial values, including
h, q, x0, parameters and iteration number are confirmed. In
this step, all Γ(·) and hnq are computed and saved before
iterative computation to improve the iteration speed. When the
data is popped out, the data should be processed before D/A
conversion. There are two steps in data processing. At first,
a big enough data is added to make sure the data is larger
than zero. Then, the data is rescaled and truncated to adapt
data width of the DAC8552. It should be pointed out that the
iterative computation is not affected by data processing with
pushing and popping operation. If the iteration is not finished,
the initial value should be replaced before the next iteration.

Fig. 8. Hardware block diagram of DSP implementation

Here, the initial value is x0 = [1, 2, 3]. Setting q = 0.8130,
d = 25, the phase diagram is shown in Fig. 10(a). The
corresponding Matlab simulation result is illustrated in Fig.3.
Setting q = 0.96, d = 15, the phase diagram is shown in
Fig. 10(b), and its corresponding Matlab simulation result is
presented in Fig.5(a). Setting q = 0.96 and varying d (d=20
and d=37), the phase diagrams are shown in Figs. 10(c) and
(d). It can be seen that they consist of phase diagrams as shown
in Fig.5(b) and Fig.5(d). It shows that the fractional-order
Lorenz system is implemented in the DSP successfully. It lays
a hardware foundation for the applications of the fractional-
order Lorenz chaotic system.

Fig. 9. Flow diagram for DSP implementation of the fractional-order Lorenz
system.

(a) q=0.8130 and d=25 (b) q=0.96 and d=15

(c) q=0.96 and d=20 (d) q=0.96 and d=37

Fig. 10. Phase diagrams of the fractional-order Lorenz system recorded by
the oscilloscope
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V. CONCLUSIONS

In this paper, based on ADM algorithm, we investigated the
dynamics of fractional-order Lorenz system again. It shows
that the fractional-order Lorenz system has rich dynamical
characteristics. The system is more complex for smaller deriva-
tive order q, and the maximum Lyapunov exponent decreases
with the increase of q. The lowest order for chaos generation
is different according to different numerical algorithms. The
fractional-order Lorenz system has a much lower order for
chaos if it is solved by ADM algorithm. Meanwhile, the lowest
order for chaos is smaller when the time step size h is smaller.
Finally, the system is implemented in the digital circuit by
employing DSP technology, and phase diagrams generated by
the DSP device are consistent with the simulation results. Our
further work will focus on real applications of the fractional-
order Lorenz system.
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Discrete Fractional Order Chaotic Systems
Synchronization Based on the Variable Structure

Control with a New Discrete Reaching-law
Lilian Huang, Longlong Wang, and Donghai Shi

.

Abstract—In this paper, we directly derive a new discrete state
space expression of the fractional order chaotic system based
on the fractional order Grnwald-Letnikow(G-L) definition and
design a variable structure controller with a new faster reaching-
law. The new reaching-law has the advantages of weakening the
high frequency shake. Firstly, the condition of the discrete sliding
mode surface is demonstrated. Then a multi-parametric function
for sliding mode surface is constructed for weakening the high
frequency shake through improving the Gao discrete reaching-
law. Finally, the newly designed variable structure controller
is applied to realize the synchronization of two different order
discrete fractional chaotic systems. The simulation results show
that the designed controller in this paper is effective, as it
can achieve the synchronization of the discrete fractional order
chaotic systems with external disturbances. Theoretical analysis
and simulation results prove the effectiveness and robustness of
this control method.

Index Terms—Discrete fractional order chaotic system, Differ-
ent order system, Sliding mode control, Discrete reaching-law,
Chaos synchronization.

I. INTRODUCTION

RECENTLY the fractional calculus is applied widely
in image processing neural network, signal processing,

robust control and so on[1], because it can more accurately
describe the actual dynamic characteristics of the physical
system. Through researching on fractional calculus, many
researchers generally accepted that fractional order calculus
is a generalization of the integer calculus[2], and they also
believed that the fractional calculus had many new character-
istics of the systematic memory, the dynamic system and so
on. The fractional calculus’ relationship with the chaos and
the fractal theory deeply attracted researchers because new
chaotic phenomenon was found in fractional order nonlinear
systems[3].

The chaotic synchronization has a great potential of appli-
cation in the subject field[4−5] of communication, information
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science, medicine, biological engineering and so on. There
are many methods about chaotic synchronization, for example
linear feedback control[6], coupled synchronization[7], adap-
tive synchronization, sliding mode control[8]. The research
on chaotic synchronization is usually aiming for the same
structure systems[9] with different initial values or known
parameters[10] or fractional order hyper chaos system[11]. As
far as the synchronization of discrete fractional order chaotic
systems[12], many researchers had developed some methods.
Liao et al[13] realized the synchronization of Henon map by
using sliding-mode control. Hu[14] proposed tracking control
and predicted synchronization control on discrete chaotic
system. Majidabad et al[15] designed the algorithm of fast
synchronization and zero steady-steady error fast synchroniza-
tion and so on. On the other side, A.Dzielinski[16] proposed
the expression of the discrete fractional order state space
system. D. Sierociuk[17] obtained some results including the
controllability of discrete fractional order state space system
and adaptive feedback control. J. A. Tenreiro[18] designed a
discrete fractional order controller which could be applied to
the linear and nonlinear systems in the time domain. Yao[19]

put forward another form of discrete fractional order chaotic
system and realized synchronous control, and Gong[20] came
up with a different form of expression on discrete fractional
order chaotic systems. In all the above, the form of discrete
fractional order chaotic systems is obtained indirectly by dif-
ferent discrete methods. In this paper, we derive directly a new
discrete state space expression of the fractional order chaotic
system based on the fractional order Grünwald-Letnikow[21]

definition. We can obtain the scope of the order using bifur-
cation diagram when the system is chaotic. Then based on
the state space analysis method, the synchronization control
problem is researched for different structural discrete fractional
order chaotic systems by sliding mode control theory.

Based on the fractional order definition of Grünwald-
Letnikow, the paper directly derives a new discrete state space
expression of the fractional order chaotic system Then the
paper designed a new kind of discrete sliding mode controller
through improving the Gao’s discrete reaching-law. The struc-
ture of controller designed is simple and easy to select. For two
different structures of discrete fractional order chaotic systems
with different dimensions, we can achieve synchronization
using the new controller. Simulation results show that two
fractional order chaotic systems with different dimensions
can still realize synchronization when the driven system has
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disturbance, which proved the controller’s effectiveness and
feasibility.

II. DISCRETE FRACTIONAL GRÜNWALD-LETNIKOW (G-L)
DEFINITION

The discrete fractional order G-L expression is as following:

∇αx(k) =
k∑

j=0

(−1)j

(
α
j

)
x(k − j)

(
α
j

)
=





1, j = 0
α(α− 1) · · · (α− j + 1)

j!
j > 0

(1)

where
(

α
j

)
is binomial coefficient, α is the order of discrete

equations, α ∈ R.
Considering the general nonlinear discrete systems, the

expression for general nonlinear discrete systems is

x(k + 1) = f(x(k)) (2)

Consider the first order integer discrete difference equation as
below:

∇1 = x(k + 1)− x(k) = f(x(k))− x(k) (3)

We generalize the above align toαorder differential align as
follows:

∇α(x(k + 1)) = f(x(k))− x(k) (4)

From the expression (1), we can get

∇αx(k + 1) =

x(k + 1)− αx(k) +
k+1∑

j=2

(−1)j

(
α
β

)
x(k − j + 1) (5)

For formula (5), introducing a new parameter m and let m =
j − 1, so j = m + 1, and obtaining another formula:

∇αx(k + 1) = x(k + 1)− αx(k)

+
k∑

m=1

(−1)m+1

(
α

m + 1

)
x(k −m)

= x(k + 1)− αx(k) +
k∑

m=1

Mmx(k −m) (6)

where Mm = (−1)m+1

(
α

m + 1

)
m ∈ N .

The general form of discrete fractional order aligns could
be obtained from (4) and (6):

x(k + 1) = f(x(k)) + (α− 1)x(k) +
k∑

m=1

Mmx(k −m)

(7)

where
k∑

m=1
Mmx(k−m) is the memory term for align, and it

indicates that the value of a certain point is not only related to
the function of the point, but also with the previous function
value And the farther away from the point, the less influence

on that point value The memory term can be replaced by
truncation function that is, the above form (7) can be written
as follows.

x(k + 1) = f(x(k)) + (α− 1)x(k) +
L∑

m=1

Mmx(k −m)

(8)

where L is the length of the memory, usually L = 20
For general discrete proportional fractional order system,

the state space expression can be written:



∇αx1(k + 1)
∇αx2(k + 1)

...
∇αxn(k + 1)


 =




f1(x(k))− x1(k)
f2(x(k))− x2(k)

...
fn(x(k))− xn(k)


 (9)

where ∇α represents fractional differential factor of system,
α is the order of the fraction. The ∇α can be rewritten based
on the discrete fractional G-L definition:



x1(k + 1)
x2(k + 1)

...
xn(k + 1)


 =




f1(x(k)) + (α− 1)x1(k) +
L∑

m=1
Mmx1(k −m)

f2(x(k)) + (α− 1)x2(k) +
L∑

m=1
Mmx2(k −m)

...

fn(x(k)) + (α− 1)xn(k) +
L∑

m=1
Mmxn(k −m)




(10)

III. THE SYNCHRONIZATION OF DISCRETE FRACTIONAL
ORDER CHAOTIC SYSTEMS BASED ON SLIDING MODE

VARIABLE STRUCTURE CONTROL

A. The design of the new discrete sliding mode reaching law

Selecting the following and regarding as the sliding-mode
surface.

s(k) = Be(k) (11)

where B is an invertible matrix. When the system is in sliding
mode, it needs to satisfy the following conditions:

si(k) → 0 (12)

The basic principles of discrete and continuous sliding modes
are nearly same, and they have two stages from the initial state
to the stable state, also called two modes. The first stage is
a reaching process and the second stage is sliding state, but
they also have some differences. Based on the discrete sliding
mode variable structure, in order to get the better of discrete
sliding mode, firstly select a discrete sliding surface, so that
the system has good dynamic characteristics. Secondly, for
satisfying reaching condition, design a controller based on the
reaching law. So the controller can make the system converge
to the discrete sliding mode surface from any point in finite
time.
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The classic Gao’s discrete reaching law is as following:

s(k + 1)− s(k) = −εs(k)− βsgn(s(k)) (13)

where ε is the reaching speed, β indicates the reaching speed
index. The reaching condition of Gao′s reaching law is that the
dynamics of system once moves across the switching surface,
the subsequent movements are from the other side of the
switching surface and then the dynamics keeps on it. This
can ensure strong robustness of sliding mode control, but it
also leads to the phenomenon of high frequency chattering. In
order to weaken the high frequency chattering, we propose a
new reaching-law by considering the two aspects.

The improved discrete reaching-law is shown below.

s(k + 1)− s(k) = −β(s(k))sgn(s(k)) (14)

where β is a function that can be designed as following:
β(s(k)) = β + γ |s(k)| + γ |s(k)| sgn(|s(k)| − δ) where

0 < β < δ, 0 < γ < 1/2
According to the existing conditions for the discrete sliding

surface, we illustrate the rationality of the new reaching law
from two aspects as follows.

1) Since s(k + 1)− s(k) = −β(s(k))sgn(s(k))
Then (s(k + 1) − s(k))sgn(s(k)) = −β(s(k)) sgn2(s(k))

= −β(s(k))
And β(s(k)) = β + γ |s(k)|+ γ |s(k)| sgn(|s(k)| − δ), 0 <

β < δ, 0 < γ < 1/2
So β(s(k)) > 0, therefore (s(k + 1)− s(k))sgn(s(k)) < 0
2) Since s(k + 1)− s(k) + 2s(k) = −β(s(k))sgn(s(k)) +

2s(k)

(s(k + 1) + s(k))sgn(s(k))
= −β(s(k))sgn2(s(k)) + 2s(k)sgn(s(k))
= −β(s(k))sgn2(s(k)) + 2 |s(k)|
= −β(s(k)) + 2 |s(k)|

Now compare β(s(k))max and 2 |s(k)|. When |s(k)| > δ,
β(s(k))is the max value β(s(k))max = β + 2γ |s(k)|, so
β < δ < |s(k)| that is β + 2γ |s(k)| < |s(k)| + 2γ |s(k)|.
Because γ < 1/2 then β(s(k))max < 2 |s(k)| so (s(k + 1) +
s(k))sgn(s(k)) > 0.

From (1) and (2), we can get:

(s(k + 1)− s(k))sgn(s(k)) < 0
(s(k + 1) + s(k))sgn(s(k)) > 0

That is |s(k + 1)| < |s(k)|. So the discrete sliding mode
surface exists under the control of new reaching-law.

In the new reaching-law, β is the function of s(k). By
setting the expression of β, it contains the parameters of the
reaching-law speed and reaching speed index. In the process
of approaching the discrete sliding surface, the parameter
δ determines the reaching rate. After reaching the sliding
surface, the system will be stable in the neighborhood of
sliding surface, at this time β determines reaching speed index.

B. The synchronization of discrete fractional order chaotic
systems

Consider the following two discrete fractional order chaotic
systems, as the drive system and response system, respectively:

∇αX(k + 1) = f(X(k))−X(k) (15)
∇αY (k + 1) = g(Y (k))− Y (k) + U(k) (16)

where ∇α is fractional order differential factor, α ∈ R. Based
on the discrete fractional G-L definition, the differential factor
is expanded as follows.

X(k + 1) = f(X(k)) + (α− 1)X(k) +
L∑

m=1

MmX(k −m)

= Rf (X(k)) + (α− 1)X(k) (17)
Y (k + 1) = g(Y (k)) + (α− 1)Y (k)

+
L∑

m=1

MmY (k −m) + U(k)

= Rg(Y (k)) + (α− 1)Y (k) + U(k) (18)

where Rf (X(k)) is the function of f(X(k))

and
L∑

m=1
MmX(k − m), also the same as

Rg(Y (k))
L∑

m=1
MmX(k − m) and

L∑
m=1

MmY (k − m)

are the memory terms for drive system and response system.
X(k) ∈ Rm and Y (k) ∈ Rn are the state variables of drive
system and response system, respectively. α is the order
value of systems. U(k) is the controller for the response
system to be designed.

The purpose of designing controller U(k) is to guarantee
the synchronization of the drive-response system and to have
strong robustness, i.e. lim

k→∞
‖e(k)‖ = 0 wheree(k) is the

generalized synchronization state error, and e(k) = Y (k) −
CX(k), e(k) = (e1(k), e2(k), ...en(k))T, C ∈ Rn×m, so the
state error dynamic system can be written:

e(k + 1) = Y (k + 1)− CX(k + 1)
= Rg(Y (k))− CRf (X(k)) + U(k) (19)

C. Controller design

Theorem: To achieve the synchronization of system (17)
and (18), the following controller is designed.

U(k) = U0 + CRf (X(k))−Rg(Y (k)) + Y (k)− CX(k)

where U0 = [u1, u2, · · · , un], ui = −
n∑

j=0

aij(β(si(k))

sgn(si(k))), A = B−1β(si(k)) = β + γ |si(k)| +

γ |si(k)| sgn(|si(k)| − δ), si(k) =
n∑

j=1

bijej(k), |B| 6= 0.
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Proof: Choosing Lyapunov function as follows:

v(k) = (s(k))Ts(k)
∆v(k) = v(k + 1)− v(k)

= (s(k + 1))Ts(k + 1)− s(k)Ts(k)

= (−β(s(k))sgn(s(k)) + s(k))T(−β(s(k))sgn(s(k))

+ s(k))− (s(k))Ts(k)

= (−β(s(k))sgn(s(k)))T(−β(s(k))sgn(s(k)))

+ (−β(s(k))sgn(s(k)))Ts(k)

+ s(k)T(−β(s(k))sgn(s(k)))

+ (s(k))Ts(k)− (s(k))Ts(k)

Since −β(s(k))sgn(s(k)) and s(k) are all column vectors.
So (−β(s(k))sgn(s(k)))Ts(k) = s(k)T(−β(s(k))·

sgn(s(k))) is constant. Then

∆v(k) =(−β(s(k))sgn(s(k)))T(−β(s(k))sgn(s(k)))

+ 2(−β(s(k))sgn(s(k)))Ts(k)

=(−β(s(k))sgn(s(k)))T(−β(s(k))sgn(s(k))+2s(k))

Now assuming that β(s(k))sgn(s(k)) = (m1,m2, · · · ,mn)T ,
2s(k) = (n1, n2, · · · , nn)T

So

∆v(k)=(m1,m2, · · ·,mn)(m1−n1,m2−n2, · · ·,mn−nn)T

=(m2
1−m1n1)+(m2

2−m2n2) + · · ·+ (m2
n−mnnn)

Otherwise β(s(k))max < 2 |s(k)|,
So β(s(k))sgn(s(k)) < 2 |s(k)| sgn(s(k)) = 2s(k) that is

mi < ni, i = 1, 2, · · · , n
it is easy to obtain:

∆v(k) < 0

According to Lyapunov stability theory, the original Lyapunov
function is positive definite v(k) > 0 and its first derivative
is negative definite ∆v(k) < 0 then the error system e(k)
converges to zero. So the expression (17) and (18) achieve
synchronization finally.

IV. SIMULATION

A. Case 1: The dimension of drive system is bigger than that
of the response system

The generalized discrete Henon chaotic system as drive
system is,





x1(k + 1) = ax3(k)
x2(k + 1) = bx1(k) + ax3(k)
x3(k + 1) = 1 + x2(k)− cx2

3(k)
(20)

According to the above, the fractional order of this system is:



∇αx1(k + 1) = ax3(k)− x1(k)
∇αx2(k + 1) = bx1(k) + ax3(k)− x2(k)
∇αx3(k + 1) = 1 + x2(k)− cx2

3(k)− x3(k)
(21)

From the above the equation, every differential align contains
fractional differential factor ∇α and α is the order, which
would be set to make the system be chaotic. By using the

definition of G-L, the ∇α can be expanded to get the driving
system as follows:




x1(k + 1) = ax3(k) + (α− 1)x1(k) +
L∑

m=1
Mmx1(k −m)

= f1(x(k)) + ∆f(x(k))
x2(k + 1) = bx1(k) + ax3(k) + (α− 1)x2(k)

+
L∑

m=1
Mmx2(k −m)

= f2(x(k))
x3(k + 1) = 1 + x2(k)− cx2

3(k) + (α− 1)x3(k)

+
L∑

m=1
Mmx3(k −m)

= f3(x(k))
(22)

where a, b, c are the parameters of drive system, ∆f(x(k))
indicates external disturbance. The bifurcation diagram of
the system can be obtained when selecting the parameter
a = 0.358, b = 1.3, c = 1.07 and the initial value is
(0.45, 0.3, 0.4).

Fig. 1. Bifurcation diagram of generalized discrete fractional Henon
chaotic system

From the Fig.(1), the drive system is chaotic when 0.534 <
α < 1.55. In this simulation we choose α = 0.8.

Selecting the discrete map Ikeda [22] as the response system
is,{

y1(k + 1) = a′ + b′(y1(k) cos(θ)− y2(k) sin(θ))
y2(k + 1) = b′(y1(k) sin(θ)− y2(k) cos(θ)) (23)

where θ = y2
1(k) + y2

2(k), a′, b′ are the parameters of the
system. We can obtain its fractional order expression from
above.{∇αy1(k + 1)=a′ + b′(y1(k) cos(θ)−y2(k) sin(θ))−y1(k)
∇αy2(k + 1) = b′(y1(k) sin(θ)− y2(k) cos(θ))− y2(k)

(24)

By using the definition of G-L, the ∇α can be simplified. Then
the above expression can be rewritten as following:




y1(k + 1) = a′ + b′(y1(k) cos(θ)− y2(k) sin(θ))

+(α− 1)y1(k) +
L∑

m=1
Mmy1(k −m) + u1(k)

= g1(y(k)) + u1(k)
y2(k + 1) = b′(y1(k) sin(θ)− y2(k) cos(θ))

+(α− 1)y2(k) +
L∑

m=1
Mmy2(k −m) + u2(k)

= g2(y(k)) + u2(k)
(25)
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u1(k), u2(k) are the controllers for response system. Selecting

transfer matrix C =
[

1 0 0
0 1 1

]
the state error dynamic

system e(k) = y(k)− Cx(k) can be rewritten:{
e1(k) = y1(k)− x1(k)
e2(k) = y2(k)− (x2(k) + x3(k)) (26)

From the details in subsection (3.3) U(k) can be designed as
following:

U(k) =




u01(k) + f1(x(k))− g1(y(k)) + y1(k)− x1(k)
u02(k) + f2(x(k)) + f3(x(k))− g2(y(k))
+y2(k)− (x2(k) + x3(k))




(27)

where u0i(k), i = 1, 2 is{
u01(k)=−a11β(s1(k))sgn(s1(k))−a12β(s2(k))sgn(s2(k))
u02(k)=−a21β(s1(k))sgn(s1(k))−a22β(s2(k))sgn(s2(k))

(28)

where β(si(k)) = β + γ |si(k)| + γ |si(k)| sgn(|si(k)| − δ),
the sliding surface is chosen as below:{

s1(k) = b11e1(k) + b12(e1(k) + e2(k))
s2(k) = b21e1(k) + b22(e1(k) + e2(k)) (29)

The matrix A and B meet the conditions of A = B−1

based on the Theorem. The parameters of the drive system
are a = 0.358, b = 1.3, c = 1.07, α = 0.8 and its initial value
is (0.45, 0.3, 0.4). The parameters of the response system are
a′ = 1.5, b′ = 0.2, α = 0.8 and its initial value is (0.9, 0.2).
The parameters of the sliding surface are (0.7, 2.4)(0.2, 3.6)
Selecting the controller’s parameters β = 0.04, γ = 0.4,
δ = 0.8. Assuming that the external disturbance ∆f(x(k)) =
0.01 sin(0.04kπ). The result of simulation is shown in Fig.(2).

Fig. 2. Synchronization error curves

B. Case 2: The dimension of the drive system is smaller than
that of the response system

Selecting the discrete Henon map as drive system is,{
x1(k + 1) = 1− ax2

1(k) + x2(k) + ∆f(x(k))
x2(k + 1) = bx1(k) (30)

where ∆f(x(k)) is an external disturbing perturbations. The
fractional order of drive system is below:



x1(k + 1) = 1− ax2
1(k) + x2(k) + (α− 1)x1(k)

+
L∑

m=1
Mmx1(k −m)

= f1(x(k)) + ∆f(x(k))

x2(k + 1) = bx1(k) + (α− 1)x2(k) +
L∑

m=1
Mmx2(k −m)

= f2(x(k))
(31)

Selecting the parameters of system a = 1.4, b = 0.3 and its
initial value is (0.5, 0.2). The Bifurcation diagram of drive
system can be obtained without the external disturbance.

Fig. 3. Bifurcation diagram of discrete fractional Henon chaotic
system

The drive system is chaotic when 0.54 < α < 2.08 from
the Fig.(3). The generalized discrete Henon chaotic system as
response system is:





y1(k + 1) = a′y3(k) + (α− 1)y1(k)

+
L∑

m=1
Mmy1(k −m) + u1(k)

= g1(y(k)) + u1(k)
y2(k + 1) = b′y1(k) + a′y3(k) + (α− 1)y2(k)

+
L∑

m=1
Mmy2(k −m) + u2(k)

= g2(y(k)) + u2(k)
y3(k + 1) = 1 + y2(k)− c′y2

3(k) + (α− 1)y3(k)

+
L∑

m=1
Mmy3(k −m) + u3(k)

= g3(y(k)) + u3(k)

(32)

From the content of (4.1), the response system is chaotic when

0.534 < α < 1.55. Selecting transfer matrix C =




1 0
0 1
1 1


,

so the state error dynamic system e(k) = y(k) − Cx(k) can
be rewritten:





e1(k) = y1(k)− x1(k)
e2(k) = y2(k)− x2(k)
e3(k) = y3(k)− (x1(k) + x2(k))

(33)

The controller of U(k) is designed as following:

U(k) =




u01(k) + f1(x(k))− g1(y(k)) + y1(k)− x1(k)
u02(k) + f2(x(k))− g2(y(k)) + y2(k)− x2(k)
u03(k) + f2(x(k)) + f1(x(k))− g2(y(k))

+y2(k)− (x1(k) + x2(k))




(34)

The u0i(k), i = 1, 2, 3 is,




u01(k) = a11β(s1(k)) + a12β(s2(k)) + a13β(s3(k))
u02(k) = a21β(s2(k)) + a22β(s2(k)) + a23β(s3(k))
u03(k) = a31β(s1(k)) + a32β(s2(k)) + a33β(s3(k))

(35)
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where β(si(k)) = β +γ |si(k)|+γ |si(k)| sgn(|si(k)|−δ) the
sliding surface is chosen as below:





s1(k) = b11e1(k) + b12e2(k) + b13e3(k)
s2(k) = b21e1(k) + b22e2(k) + b23e3(k)
s3(k) = b31e1(k) + b32e2(k) + b33e3(k)

(36)

The matrix A and B meet the conditions of A = B−1 based on
the Theorem and selecting the parameters of the drive system
a = 1.5, b = 0.2, α = 0.8, and its initial value is (1.2, 0.8).
The parameters of response system are a′ = 0.358b′ = 1.3,
c′ = 1.07, α = 0.8, and its initial value is (0.1, 0.2, 0.1).
The parameters of the sliding surface will be (0.2, 1.1, 2.4),
(0.8, 0.3, 3.6), (0.1, 0.8, 3.9). The length of the memory L =
20. Setting the parameters of controllerβ = 0.02, δ = 0.8,γ =
0.3 Assuming that the drive system of external disturbance
is ∆f(x(k)) = 0.05 sin(0.4kπ). The result of simulation is
shown in Fig.(4).

Fig. 4. Synchronization error curves

The simulation results show that the synchronization state
error converges to the origin asymptotically in finite time and
stabilize the origin eventually with external disturbance. The
results demonstrate that the different dimensional structure
discrete fractional order chaotic systems achieved synchroniza-
tion under the action of designed controller.

V. CONCLUSIONS

In this paper, a new general state space expression of
discrete fractional order chaotic system is obtained based
on the fractional order definition of Grünwald-Letnikow. A
new discrete sliding mode reaching-law control strategy which
has the advantage of weakening the high frequency chatting
is proposed by improving the Gao’s discrete reaching-law.
Based on a novel strategy, a new controller is designed, which
would guarantee the different dimensional structure discrete
fractional order chaotic systems achieving synchronization.
When the systems are with external disturbances, they can
still achieve the synchronization of the discrete fractional order
chaotic systems. Simulation results verify the effectiveness of
the proposed methods and demonstrate the rationality of the
designed controller.
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The Multi-scale Method for Solving Nonlinear
Time Space Fractional Partial Differential Equations

Hossein Aminikhah, Mahdieh Tahmasebi, and Mahmoud Mohammadi Roozbahani

Abstract—In this paper, we present a new algorithm to solve a
kind of nonlinear time space-fractional partial differential equa-
tions on a finite domain. The method is based on B-spline wavelets
approximations, some of these functions are reshaped to satisfy
on boundary conditions exactly. The Adams fractional method is
used to reduce the problem to a system of equations. By multi-
scale method this system is divided into some smaller systems
which have less computations. We get an approximated solution
which is more accurate on some subdomains by combining the
solutions of these systems. Illustrative examples are included
to demonstrate the validity and applicability of our proposed
technique, also the stability of the method is discussed.

Index Terms—Adams fractional method, B-spline wavelets,
multi-scale method, nonlinear fractional partial differential equa-
tions.

I. INTRODUCTION

IN the last few decades fractional differential equations
have found applications in several different disciplines

of science and technology including physics, biology, engi-
neering [1]−[3], viscoelasticity [4], finance [5]−[7], hydrol-
ogy [8]−[13], and control systems [14]. Several numerical
methods are proposed to solve these equations such as the
finite difference methods [15]−[20], Laplace transformation
method [21], [22], Fourier transformation method [23], [24],
the Adomian decomposition method [25], variational itera-
tion method [26] and multi-scale methods [27]−[32]. Also
Aminikhah et al. handled multiscaling collocation method to
solve linear Fractional Partial Differential Equations (FPDE)
[33]. They combined Adams fractional method and the multi-
scale techniques to solve the linear fractional partial differ-
ential equations. This paper continues this line of approach.
We intend to consider a kind of the nonlinear time-space FDE
with Robin condition boundary,

Dβ
t u (x, t) =

S∑
k=1

fk (x)Dαk
x u (x, t)Dβk

x u (x, t)




u (x, 0) = g (x)
c1u (0, t) + c2ux (0, t) = c3

c4u (n, t) + c5ux (n, t) = c6 (1)
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where x ∈ Ω = [0,m] , 0 ≤ t ≤ T, and fk (x) are bounded
functions on Ω and the operator Dα

x , (Dβ
t ) is caputo space

time fractional derivative of order αk(β) defined by [2]

Dα
x u (x, t) =





∂α

∂τα u (x, t) , α = m ∈ N ∪ {0}
1

Γ(m−α)

x∫
0

(x− τ)m−α ∂m

∂τm u (τ, t) dτ

m− 1 < α < m (2)

Dβ
t u (x, t) =





∂β

∂τβ u (x, t) , β = p ∈ N ∪ {0}
1

Γ(p−β)

t∫
0

(t− τ)p−β ∂p

∂τp u (x, τ) dτ

p− 1 < β < p. (3)

First, we present the differential operator in matrix form by
using collocation method. Second, we need a time stepping
scheme to convert FPDE to an implicit linear system. Finally,
by dividing the domain Ω into several smaller subdomains,
the system can be divided into smaller systems, then each of
them will have different resolution and less computation than
the primary system. Then by combining the solutions of these
systems, we derive an approximation of the true solution with
less computation.

The paper is organized as follows: In section II the basic
definitions and required properties of the wavelet are briefly
mentioned. In the next two sections we provided essential
tools for constructing our method. In section III the fractional
derivative matrix was approximated by collocation method. In
section IV the wavelets and scaling functions were reshaped to
satisfy the boundary conditions, so the approximated solution
will be exact in the boundary points. In section V we employ
the fractional Adams method for time discretization FPDE
then describe how to construct a system by operational ma-
trices where introduced in previous sections, finally by multi-
resolution method in some subdomains this system divides
to some smaller systems which involve less computation. In
section VI, the stability of the method is investigated. In
section VII numerical examples are given to demonstrate the
validity of the proposed method.

II. PRELIMINARIES AND NOTATIONS

In this work we will use the wavelets whose scaling
functions are cubic B-splines

φ (x) = B3 (x) =
1
6

4∑

k=0

(
4
k

)
(−1)k (x− k)3+ (4)

where
xn

+ =
{

xn x > 0
0 x ≤ 0.
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The best way to understand wavelets is through a multi-
resolution analysis.

Definition 1: (Multi-resolution Analysis) A multi-resolution
analysis of L2(R) with inner product 〈., .〉, is defined as a
sequence of closed subspaces Vj ⊂ L2 (R), j ∈ Z with the
following properties

1) · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · .

2) ∪
j∈Z

Vj is dense in L2 (R) and ∩
j∈Z

Vj = ∅.

3) If f (x) ∈ V0 then f
(
2−jx

) ∈ Vj .

4) If f (x) ∈ V0 then f
(
2−jx− k

) ∈ Vj .

5) φ (x− k), k ∈ Z is a Riesz basis in V0. As a consequence of

Definition 1, Vj is spanned by φj,k(x) = 2
−j/2φ

(
2−jx− k

)
.

One may construct wavelets by first completing the spaces
Vj to the space Vj−1 by means of a space Wj , i.e.,
Vj−1 = Vj ⊕ Wj . From the inclusion V0 ⊂ V−1 we have
the important identity, called scaling equation of the form

φ (t) =
√

2
∑

k

hkφ (2x− k) (5)

where hk =
√

2
24

(
4
k

)
, 0 ≤ k ≤ 4.

Also from W0 ⊂ V−1 we have

ψ (t) =
√

2
∑

k

gkφ (2x− k). (6)

For more details refer to [34]−[37].
The dual cubic B-spline bases involve another multi-

resolution analysis of L2 (R), it is usually denoted by
{

Ṽj

}
.

The dual scaling function φ̃ is biorthogonal to φ in the
following sense

〈
φj,k, φ̃l,m

〉
= δj,lδk,m, for all j, k, l, m ∈ Z.

φ̃ (x− k) , k ∈ Z produces a Riesz basis for the space Ṽ0 . The
dual wavelet ψ̃ is constructed by taking linear combinations
of the dual scaling functions

ψ̃ (x) =
√

2
∑

k

g̃kφ̃ (2x− k). (7)

Also from Ṽ0 ⊂ Ṽ−1 we have

φ̃ (x) =
√

2
∑

k

h̃kφ̃ (2x− k) (8)

where g̃k = (−1)k
h1−k and h̃k = (−1)k

g1−k. The function
ψ̃ ∈ L2 (R) is biorthogonal to ψ.

〈
ψj,k, ψ̃l,m

〉
= δj,lδk,m, for all j, k, l,m ∈ Z.

Designing biorthogonal wavelets allows more freedom than
orthogonal wavelets. One of them is the possibility of con-
structing symmetric wavelet functions.

Any function of Vj can be represented by finite series of
cubic B-splines. Let f |Vj

denote the projection f ∈ L2 (R)

onto Vj . We can obtain the cubic B-spline expansion of f |Vj

as

f | Vj−1 (x) =
2N∑

i=0

aj−1, iφj−1, i (x) (9)

where aj−1, i =
〈
f, φ̃j−1, i

〉
N = m2−j . Note that the cubic

B-splines have compact support, so this property guarantees
that in the bounded domain Ω = [0,m] the sum only contains
finite nonzero terms. We have Vj−1 = Vj ⊕ Wj , this means
that f | Vj−1 can also be represented by the expansion

f | Vj⊕Wj
(x) =

N∑
i=0

aj iφj i (x) +
N−1∑
i=0

bj iψj i (x)

=
[

a
b

]
[Φ Ψ]

(10)

where aT = [aj0, aj1, . . . , aj N ], bT = [bj0, bj1, . . . , bj N−1],
bj i = 〈f, ψ̃j i〉, aji = 〈f, φ̃j i〉 , Φ = [φj0, φj1, . . . , φj N ] and
Ψ = [ψj0, ψj1, . . . , ψj N−1].

The vector F =
[

a
b

]
is called “the vector form of f in

Vj ⊕Wj”. Let, Λ be the subdomainn of Ω then some member
of the vector F is assigned to Λ. We represent restricted F to

subdomain Λ by FΛ =
[

aΛ

bΛ

]
.

Definition 2: (the Fast Wavelet Transform) FWT converts
the scaling function coefficients in space Vj to scaling function
and wavelet function coefficients in space Vj ⊕Wj . From (7)
and (8) and biorthogonal property of wavelets we have:

aj,k =
∑

i

h̃iaj−1,2k+iandbj,k =
∑

i

g̃iaj−1,2k+i. (11)

The fast wavelet transform embodied by these two equa-
tions, and indeed FWT maps −−→aj−1 onto −→aj and

−→
bj ,

FWT [−−→aj−1] =
[ −→aj−→

bj

]
.

The inverse fast wavelet transform recursively uses the
formula

aj−1,k =
∑

n

hk−2n aj,n +
∑

l

gk−2l bj,l . (12)

Equation (12) is constructed from (9) and (10) biorthogonal
property of wavelets. We obtain IFWT by using (12) as

IFWT

[ −→aj−→
bj

]
= [−−→aj−1] .

III. MATRIX APPROXIMATIONS

In the following we need operational matrix Mα to
approximate Dα

x on Vj where 0 ≤ α ≤ 2. Producing Mα

takes a number of steps, starting with the construction of the
matrix Pj which is a square matrix that converts the vector
form of f in Vj into the actual values of f at some points:

PjF = F (13)

where Pj = [φj k (xi)] k, i, F = [aj 0, aj 1, . . . , aj N ]T , F =

[φj 0 (x0) , φj 1 (x1) , . . . , φj N (xN )], f(x)=
N∑

k=0

ajkφjk (x) ,

xi = i 2j , for 0 ≤ i ≤ N = m2−j .
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Next, we construct the matrix Pα
j which converts the vector

form of Dα
x f in Vj into the actual values of Dα

x f at some
points:

Pα
j F = F

α
(14)

where P α
j

= [D α
x φj k(xi)] k, i, F

α
= [D α

x φj 0(x0), D α
x φj 1

(x1), . . . , D α
x φj N (xN )], xi = i 2j , for 0 ≤ i ≤ N = m2−j .

Mα = FWT × (Pj−1)
−1 × Pα

j × IFWT. (15)

In the below, we illustrate the function of the fractional
derivative matrix.

Vj ⊕Wj :
∑
k

ajkφjk+
∑
k

djkψjk,
∑
k

bj−1kφjk+
∑
k

cj−1kψjk

IFWT ↓ FWT ↑
Vj−1 :

∑
k

aj−1,kφj−1,k

∑
k

bj−1,kφj−1,k

P α
j ↘ ∑

k

aj−1,kDα
x φj−1,k (xi) ↗ (Pj)

−1

One further requirement is the multiplication by the space
independent function g(x). We create the linear operator G to
approximate the multiplication

FWT × (Pj)
−1 ×G× Pj × IFWT

G is a diagonal matrix with the values of function g in
xk = k2j , 0 ≤ k ≤ N .

IV. BOUNDARY CONDITIONS

The basic idea for constructing the boundary wavelets and
boundary scaling functions can be described as follows, for
the case where Ω = [0,m]. Firstly we take all wavelets and
scaling functions that are located near the boundary, we are
thus constructing the specific linear combinations of these
functions that satisfy the fixed non zero boundary conditions
(I). We separate the function u into two functions.

u (x, t) = v (x, t) + B (x) (16)

where the function v satisfies the zero boundary conditions




v (x, 0) = g (x)−B (x)
c1v (0, t) + c2vx (0, t) = 0
c4v (n, t) + c5vx (n, t) = 0

and {
c1B (0) + c2B

′ (0) = c3

c4B (n) + c5B
′ (n) = c6.

Now, we only reshape wavelets at x = 0, the construction of
other scaling functions and wavelets at the boundary is nearly
same as this. We let ψ denote the combination of the wavelets
in Vj which their support contains x = 0.

ψ (x) = aψj,−1 (x) + bψj,0 (x) + cψj,+1 (x) . (17)

Here ψ must satisfy the boundary conditions

c1ψ (0) + c2ψ
′ (0) = 0. (18)

On the other hand we need to represent
S∑

k=1

fk(x)Dαk
x ψ (x)

Dβk
x ψ (x) with the reshaped wavelet ψ (x) which satisfies the

boundary condition so we must have

c1

S∑
k=1

fk (0)Dαk
x ψ (0)Dβk

x ψ (0)

+ c2
∂
∂x |x=0

S∑
k=1

fk (x)Dαk
x ψ (x)Dβk

x ψ (x) = 0.

(19)

So a nonlinear system is obtained from (18) and (19), and
we get the coefficients a, b and d from solving this system.

V. THE PROPOSED METHOD

We consider the fractional Adams method for solving FPDE
(1). This method was first studied by Diethelm, Ford and Freed
[38]. Their method for solving (20) is as follows:

Dβy (t) = f (t, y (t)) , y (0) = y0; 0 < β < 1 (20)

yn+1 = y0

+
hβ

Γ (β + 2)

n∑

k=0

ck,n+1f (tk, yk)

+
hβ

Γ (β + 2)
cn+1,n+1f

(
tn+1, y

P
n+1

)
(21)

where

ck,n+1 =





nβ+1 − (n− β) (n + 1)β
, k = 0

(n− k + 2)β+1 + (n− k)β+1−2(n− k + 1)β+1

1 ≤ k ≤ n
1, k = n + 1

and h = T/N, {tk = kh , k = 0, 1, .., N} , yk ≈ y (tk) .
Also we can show 0< ck,n+1 ≤ 2 for all 0 ≤ k ≤ n + 1

and 0 < β < 1.
The predictor yP

n+1 is determined by

yP
n+1 = y0 +

hβ

Γ (β + 1)

n∑

k=0

bk, n+1f (tk , yk)

where bk, n+1 = (n + 1− k) β − (n− k) β .
So the approximate solution for the time space-fractional

(1) by using the fractional Adam’s method would be

u (x, tn+1) = u (x, t0)

+
hβ

Γ (β + 2)

n∑

k=0

ck,n+1 (Nu (x, tk))

+
hβ

Γ (β + 2)
NuP (x, tn+1) (22)

where N (u (x, t)) =
S∑

i=1

fi (x)Dαi
x u (x, t)Dβ i

x u (x, t) and

uP (x, tn+1) = u (x, t0) + hβ

Γ(β+1)

n∑
k=0

bk, n+1N (u (x, tk)).

Now we can take the space Vj−1 to approximate the solution

of (22). If we consider
[

ak

bk

]
as a vector form of u (x, tk)
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in Vj−1, then from (22) and the definition of Mα from (15)
we have[

an+1

bn+1

]
=

[
a0

b0

]

+
hβ

Γ (β + 2)

{
n∑

k=0

ck,n+1

S∑
r=1

Fr

× diag
(

Mα r

[
ak

bk

])
Mβ r

[
ak

bk

]

+
S∑

r=1

Frdiag
(

Mα r

[
aP

bP

])

×Mβ r

[
an+1

bn+1

]}
(23)

where
[

aP

bP

]
=

[
a0

b0

]
+

hβ

Γ (β + 1)

n∑

k=0

bk,n+1

S∑
r=1

Fr

× diag
(

Mα r

[
ak

bk

])
Mβ r

[
ak

bk

]
(24)

also we can write as a system:
(

I − hβ

Γ (β + 2)
M

)[
an+1

bn+1

]
=

[
an

bn

]
(25)

where

M =
S∑

r=1

Frdiag
(

Mα r

[
aP

bP

])
Mβ r ,

[
an

bn

]
=

[
a0

b0

]
+

hβ

Γ (β + 2)

n∑

k=0

ck,n+1

S∑
r=1

Fr

× diag
(

Mα r

[
ak

bk

])
Mβ r

[
ak

bk

]
. (26)

Solving system in the Finer space Vj−1 produces more
accurate solution, But if the system becomes larger then
calculations are also increased. To increase the accuracy of
solution in some places of domain Ω and to avoid increase of
our calculations we use the multiscaling method. This means
that once we solve the system in a space Vj and domain Ω that
we call large scale system. Once again we solve the system in
a Finer space Vj−1 and subdomain Λ that we call small scale
system. Combination of these two systems provides suitable
accuracy and less calculations than the solutions of the system
achieved in the space Vj−1 on domain Ω. If we want to get
a more accurate solution in a subdomain Λ, we need to do
the following process (we can do this process for several
subdomains). In the beginning we consider the matrix M in
the space Vj−1, since in the first step we will not be using all
of M so The elements of M will have to be broken up, into
a block decomposition of the form

M =
[

A B
C D

]
.

We only consider the block A which operates as operator N
in the space Vj over all domain Ω. Then using time stepping

scheme (22) we find an approximation for an+1 which we will
call aTm

Λ

(
I − hβ

Γ (β + 2)
A

)
aTm = an. (27)

The small-scale system is expressed in terms of a matrix
MΛ of the form

MΛ =
[

AΛ BΛ

CΛ DΛ

]

where AΛ, BΛ, CΛ and DΛ, are composed of the elements
from A, B, C and D that are related to Λ. We have the
time step solved at the large-scale resolution Vj on all Ω.
What we want now is to solve the system on Λ at the small
scale resolution Vj−1. However, an and the newly calculated
aTm
Λ have to be included. So, we take the components of an

and aTm
Λ that are in Λ, an

Λ and aTm
Λ . These are used in the

system. Next, we are looking for vector correction aCr where
an+1 = aTm+aCr. Now, what we want is to solve the system
on Λ at the small scale resolution Vj−1.

Consider the fractional Adam’s method for this case

(
I − hβ

Γ (β + 2)

[
A B
C D

])

Λ

[
an+1

bn+1

]

Λ

=
[

an

bn

]

Λ

.

(28)
Since an+1

Λ = aTm
Λ + aCr

Λ thus

(
I − hβ

Γ(β+2)

[
A B
C D

])

Λ

([
aCr

bn+1

]

Λ

+
[

aTm

0

]

Λ

)

=
[

an

bn

]

Λ
(29)

then

(
I − hβ

Γ (β + 2)

[
A B
C D

])

Λ

[
aCr

bn+1

]

Λ

=

[
0
b̃n + hβ

Γ(β+2)C aTm

]

Λ

. (30)

We get
[

an+1

bn+1

]

Λ

by solving the above system.

The last step is to construct the vector
[

an+1

bn+1

]

Ω

from

vectors
[

aTm

0

]

Ω

and
[

an+1

bn+1

]

Λ

. In the subdomain Λ the

vector
[

an+1

bn+1

]

Λ

is a better approximate solution than the

vector
[

aTm

0

]

Λ

for the system (25). So to increase the accu-

racy of the approximated vector
[

aTm

0

]

Ω

we must replace

elements of
[

aTm

0

]

Ω

by the elements of
[

an+1

bn+1

]

Λ

, the

only ones that are related to subdomain Λ.



AMINIKHAH et al.: THE MULTI-SCALE METHOD FOR SOLVING NONLINEAR TIME SPACE FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS 5




aTm

0




=




aTm
1
...

aTm
Λ
...

aTm
N

0
...
0Λ

...
0




←→

and

←→




an+1
Λ

bn+1
Λ







an+1
Λ

bn+1
Λ




REPLACE→




aTm
1
...

aTm
Λ
...

aTm
N

0
...
0Λ

...
0




≡




an+1

bn+1




.

Now, we present the algorithm of the proposed method. In
this algorithm j, h and g are resolution level, time step and ini-
tial function respectively. If the vector a = [a0, a2, . . . , aN ]T

be the vector form of a function in Vj then we suppose the
restricted vector aΛ is [ar, . . . , as+1]

T .

Algorithm 1 Proposed Method

Step 1: v ← [g0, g1, . . . , g2N ] where N = m2−j and
gk = g

(
k2j

)
, k = 0, . . . , 2N .

Step 2:
[

a
b

]
← FWT × P−1

j × v.

Step 3: Constructing matrix M by using (17).

Step 4: Blocking the matrix M =
[

A B
C D

]
where A ←

M (1 : N+1, 1 : N + 1), B←M (1 : N+1, N+1 : 2N + 1)
and so on for C, D.

Step 5: MΛ =
[

AΛ BΛ

CΛ DΛ

]
Limiting M to subdo-

main Λ, where AΛ ← A (r : s + 1, r : s + 1), BΛ ←
B (r : s + 1, r : s) and so on for CΛ and DΛ.

Step 6: for n = 0 to k.

Step 7:
[

an

bn

]
←

[
a
b

]
.

Step 8: aΛ ← a (r : s + 1) , bΛ ← b (r : s).

Step 9: Solve the system (25) to get vector aTm.

Step 10: aTm
Λ ← aTm(r : s + 1).

Step 11: Solve the system (28) to get vector
[

aCr
Λ

bΛ

]
.

Step 12: aΛ ← aCr
Λ + aTm

Λ .

Step 13: aTm (r : s + 1) ← aΛ, b (r : s) ← bΛ,

v ←
[

aTm

b

]
.

Step 14: end for.

VI. STABILITY

In order to show stability of the approximate solution, we
recall discrete Gronwall lemma.

Lemma 1: (Discrete Gronwall Lemma) If {yk}, {fk} and
{gk} are nonnegative sequences and

yn ≤ fn +
∑

0≤k≤n

gkyk , for n ≥ 0 (31)

then

yn ≤ fn+
∑

0≤k≤n

fkgk exp


 ∑

k≤i≤n

gi


 , for n ≥ 0. (32)

If, in addition, {fk} is nondecreasing then

yn ≤ fn exp


 ∑

0≤i≤n

gi


 , for n ≥ 0. (33)

Theorem 1: The approximation scheme (23) is stable.
Proof : Let un = [u (x0, tn) , u (x1, tn) , . . . , u (x2N , tn)]

denote the exact solution and Ũn denote approximate solution
of it. From approximation scheme (23) and Ũn = Pj ×
IFWT

[
an

bn

]
we have

Ũn+1 = Ũ0

+
hβ

Γ (β + 2)

{
n∑

k=0

ck,n+1

S∑
r=1

FrM
αr

+ diag
(
FWT × P−1

j × Ũk

)
Mβr

× FWT × P−1
j × Ũk +

S∑
r=1

FrM
αr

× diag
(
FWT × P−1

j × ŨP
n+1

)

× MβrFWT × P−1
j × Ũn+1

}
(34)

where
ŨP

n+1 = ŨP
0

+ hβ

Γ(β+1)

{
n∑

k=0

bk,n+1

S∑
r=1

FrM
αr

×diag
(
FWT × P−1

j × Ũk

)

×MβrFWT × P−1
j × Ũk

and bk, n+1 = (n + 1− k) β − (n− k) β
.
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There is no loss of generality in assuming that un and its
approximation are bounded in the domain

∥∥∥Ũn

∥∥∥ ≤ M∗. Also
we can choose h enough small that makes

hβ

Γ(β+2)

S∑
r=1

‖Fr‖ ‖Mαr‖ ‖FWT‖∥∥P−1
j

∥∥M∗ ∥∥Mβr
∥∥

‖FWT‖
∥∥P−1

j

∥∥ ≤ 1
2 < 1

(35)
this guarantees nonsingularity of the matrix

I− hβ

Γ (β + 2)

S∑
r=1

Fr ×Mαr

× diag
(
FWT × P−1

j × ŨP
n+1

)
×Mβr

× FWT × P−1
j . (36)

Then we have

Ũn+1 =
(

I − hβ

Γ (β + 2)

S∑
r=1

Fr ×Mαr

× diag
(
FWT × P−1

j × ŨP
n+1

)

×Mβr × FWT × P−1
j

)−1
Ũ0

+
hβ

Γ (β + 2)

(
I − hβ

Γ (β + 2)

S∑
r=1

Fr ×Mαr

× diag
(
FWT × P−1

j × ŨP
n+1

)
×Mβr

×FWT × P−1
j

)−1

×
{

n∑

k=0

ck,n+1

S∑
r=1

Fr ×Mαr

× diag
(
FWT × P−1

j × Ũk

)
×Mβr

× FWT × P−1
j Ũk

}
. (37)

Next using the fact that∥∥∥∥
(

I − hβ

Γ(β+2)

S∑
r=1

Fr ×Mαr

×diag
(
FWT × P−1

j × ŨP
n+1

)

×Mβr × FWT × P−1
j

)−1
∥∥∥

≤ 1

1−

∥∥∥∥∥∥∥∥∥∥∥∥∥

hβ

Γ(β+2)

S∑
r=1

Fr ×Mαr

× diag
(
FWT × P−1

j × ŨP
n+1

)

×Mβr × FWT × P−1
j

∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ 2.
(38)

Therefore, equation (37) yields

∥∥∥Ũn+1

∥∥∥ ≤ 2
∥∥∥Ũ0

∥∥∥ +

(
T
N

)β

Γ (β + 2)

n∑

k=0

ck,n+1

∥∥∥Ũk

∥∥∥. (39)

By applying Gronwall’s inequality, we obtain

∥∥∥Ũn+1

∥∥∥ ≤ 2
∥∥∥Ũ0

∥∥∥ exp

(
T β

Γ (β + 2)

n∑

k=0

ck,n+1

Nβ

)
(40)

since ck,n+1

Nβ = (n−k+2)β+1

Nβ + (n−k)β+1

Nβ − 2 (n−k+1)β+1

Nβ ≤ 2
N

is bounded and increasing function with respect to β so we
have ∥∥∥Ũn+1

∥∥∥ ≤ 2
∥∥∥Ũ0

∥∥∥ exp
(

2T β

Γ (β + 2)

)
(41)

this completes the proof of stability. ¥

VII. NUMERICAL EXAMPLE

In this section we implement the presented method to solve
two examples, and also we compare the exact solution with
the approximate solution.

Example 1: We consider the following nonlinear time space
fractional Burger equation:

Dα
t u = −uDβ

xu + νuxx

with the initial condition and boundary condition
{

u (x, 0) = coth (5x− 10) , 0 < x < 4
u (0, t) = u (4, t) = 0, 0 ≤ t ≤ 1.

For comparison, this example was solved numerically in
different levels of resolutions. The Table I, II show the con-
vergence when j decreases, also the Fig. 1 shows in different
times the approximated results satisfy the boundary conditions
exactly.

Example 2: We consider the following fractional nonlinear
Klein-Gordon differential equation:

Dβ
t u = uxx − u + u3

with initial condition and boundary condition are as follows:
{

u (x, 0) = cos (x) , 1 < x < 7
u (1, t) = u (7, t) = 0, 0 ≤ t ≤ 1.

The example was solved by the presented multi-scale
method with V−4 on Ω and V−5 on Λ. The Table III shows
that the accuracy can be improved by enlarging subdomain.

TABLE I THE ERRORS ARE THE DIFFERENCE BETWEEN THE Vj RESULTS AND THE Vj−1 RESULTS (Vj/Vj−1 ) WITH
h = 0.01 AT t = 0.5

(a) error α = 0.9, β = 0.8 (b) error α = 0.7, β = 0.8

x V−3/V−4 V−4/V−5 V−5/V−6 x V−3/V−4 V−4/V−5 V−5/V−6

1 4.86851E-5 1.20725E-5 3.01086E-6 1 3.87951E-5 9.5696E-6 2.38312E-6
1.5 -6.27884E-5 -1.78008E-5 -4.54069E-6 1.5 -3.15994E-5 -8.706E-6 -2.21822E-6
2 -0.00048152 -0.000117335 -2.86878E-5 2 -7.38939E-5 -2.2020E-5 -5.64321E-6

2.5 0.003519481 0.000616091 0.000135349 2.5 -0.000228084 -9.5180E-5 -2.53185E-5
3 0.000154392 4.97541E-5 1.25426E-5 3 0.004762792 -0.0008628 -0.00039248

3.5 7.77682E-6 1.98912E-6 4.99819E-7 3.5 -3.36494E-5 1.52567E-5 4.19946E-6
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TABLE II THE ERRORS ARE THE DIFFERENCE BETWEEN THE Vj RESULTS AND THE Vj−1 RESULTS (Vj/Vj−1 ) WITH
h = 0.01 AT t = 0.5

(a) error α = 0.9, β = 0.8 (b) error α = 0.7, β = 0.8

x V−6/V−7 V−7/V−8 solutiononV−8 x V−6/V−7 V−7/V−8 solutiononV−8

1 7.52109E-7 1.87972E-7 0.01563038 1 5.95109E-7 1.48723E-7 0.017861225
1.5 -1.13743E-6 -2.84176E-7 0.126210355 1.5 -5.56031E-7 -1.38975E-7 0.08964552
2 -7.09146E-6 -1.76352E-6 0.428300053 2 -1.41355E-6 -3.52853E-7 0.225663084

2.5 3.2228E-5 7.92191E-6 0.471766274 2.5 -6.38202E-6 -1.59423E-6 0.388315038
3 3.13962E-6 7.8496E-7 0.020295168 3 -0.00011126 -2.87553E-5 0.250095232

3.5 1.25102E-7 3.12235E-8 0.001442839 3.5 1.07135E-6 2.69138E-7 0.002252919

TABLE III THE ERRORS ARE THE DIFFERENCE BETWEEN
THE MULTI-SCALE RESULTS AND THE RESULTS OBTAINED

USING V−5 , WITH h = 0.01 AT t = 0.5

x errorΛ = [3 5] errorΛ = [4 6] solution onV−5

1.25 -0.000132 -7.99128E-5 -0.022484
2.25 -0.0003292 -2.97362E-6 -0.0542849
3.25 1.60129E-6 1.22943E-6 0.0224848
4.25 3.87375E-6 2.97362E-6 0.0542849
5.25 -0.0001361 -1.22943E-6 -0.0224848
6.25 -0.00032 -0.00019 -0.05428

The points in the subdomain Λ are dislayed by bold font

Fig. 1. This figure is the approximated solution of the presented
method in different times with α = 0.9, h = 0.01, β = 0.8.

Fig. 2. This figure is the approximated solution of the presented
method in different times with α = 0.9, h = 0.01.

VIII. RESULTS

In this work a practical approach for solving nonlinear time
space fractional partial differential equation is presented. Multi
scaling method via wavelets is used to increase resolution
in some locations, furthermore the computations are reduced
because of the compact support of wavelets, also wavelets are
employed in such a way that satisfy the boundary conditions
exactly.
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Decentralized Adaptive Strategies for
Synchronization of Fractional-Order Complex

Networks
Quan Xu, Shengxian Zhuang, Yingfeng Zeng, and Jian Xiao

Abstract—This paper focuses on synchronization of fractional-
order complex dynamical networks with decentralized adaptive
coupling. Based on local information among neighboring nodes,
two fractional-order decentralized adaptive strategies are de-
signed to tune all or only a small fraction of the coupling gains
respectively. By constructing quadratic Lyapunov functions and
utilizing fractional inequality techniques, Mittag-Leffler function,
and Laplace transform, two sufficient conditions are derived for
reaching network synchronization by using the proposed adaptive
laws. Finally, two numerical examples are given to verify the
theoretical results.

Index Terms—Decentralized adaptive control, synchronization,
fractional-order complex networks, quadratic Lyapunov func-
tions.

I. INTRODUCTION

IT is well known that numerous natural and man-made sys-
tems can be modeled as complex dynamical networks. Ex-

amples include social networks, food webs, epidemic spread-
ing networks, biological networks, scientific citation networks,
Internet networks, World Wide Web, electric power grids,
and so on[1−3]. In recent years, extensive efforts have been
made to understand and study the topology and dynamics
of complex networks. Specifically, as a typical collective
behavior of complex networks, synchronization has received
increasing attention due to its potential applications in many
real scenarios[4−5]. So far, many systematic results on different
synchronization patterns, such as complete synchronization,
lag synchronization, generalized synchronization, cluster syn-
chronization, etc., have been obtained for many kinds of
complex networks, see [6-16] and relevant references therein.

To our best knowledge, the results on synchronization
mainly concentrated on integer-order complex networks. N-
evertheless, it has been recognized that the real objects are
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generally fractional and fractional calculus allows us to de-
scribe and model a real object more accurately than the
classical integer-order methods. Not surprisingly, dynamics
and control of fractional-order systems has attracted increasing
attention from various fields[17−23]. Particularly, synchroniza-
tion in fractional-order complex networks[24−26] has currently
become an interesting and open problem. From a control
perspective, the aim here is to find some appropriate con-
trollers such that the controlled fractional-order network is
synchronized.

Among them, adaptive control technique has been widely
used to synchronize complex networks. In [27-29], many
kinds of adaptive strategies were designed to adjust the gains
of feedback controllers. Note that, in diffusively coupled
networks, nodes are coupled with states difference xi−xj . This
means that a state feedback controller is added to every node.
Thus, a network could be synchronized by designing suitable
coupling gains among the network nodes. Mathematically,
these coupling gains are described by the non-null elements of
the weighted time-varying adjacency matrix G(t). Recently,
some decentralized adaptive strategies have been used to
tune the coupling gains so as to achieve synchronization
in complex networks, see [30-34]. Moreover, decentralized
adaptive strategies are introduced only to a small fraction
of coupling gains[35]. Compared with the centralized adaptive
strategies developed in [36,37], the coupling gains are adapted
based on local information exchanged among neighboring
nodes. However, the synchronization of fractional-order com-
plex networks with decentralized adaptive coupling has never
been investigated elsewhere. Therefore, it is important and
interesting to study the synchronization of fractional-order
complex networks by using the fractional-order decentralized
adaptive strategies.

As is known to all, Lyapunov direct method is a standard
tool to derive the synchronization criteria for integer-order
complex networks. Despite much effort, the Lyapunov-based
results about synchronization of integer-order complex net-
works cannot be directly extended to the fractional-order cases.
The main difficulty lies in calculating the fractional derivative
of a composite Lyapunov function. For more details about
this, one can refer the existing literatures [38,39], in which
there were several issues regarding calculation of the fractional
derivative of a composite Lyapunov function.

Quite recently, Aguila-Camacho et al[40] and Duarte-
Mermoud et al[41] introduce two lemmas for estimating the
Caputo fractional derivative of a quadratic function. Thus,
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one can analyze the stability for fractional-order uncoupled
systems and coupled networks by using quadratic Lyapunov
functions like classic Lyapunov direct method. But the condi-
tions of fractional Lyapunov direct method[42,43] are relatively
conservative and rigorous. As the extensions of Lyapunov di-
rect method, LaSalle’s invariance principle, Barbalat’s Lemma
and other mathematical techniques can be used to solve the
adaptive stability problem of integer-order nonlinear systems.
However, these tools cannot be directly used in the fractional
order case. Thus, additional tools need to be developed, in
order to prove the errors convergence in the fractional order
case. In this paper, by utilizing Lyapunov functional method
combined with fractional inequality techniques, Mittag-Leffler
function, and Laplace transform, we study the decentralized
adaptive synchronization in fractional-order networks with
diffusive coupling.

The remaining of this paper is organized as follows. In
Section II, some necessary preliminaries and the model of
fractional-order complex networks are given. The main results
of this paper are given in Section III. In Section IV, two
numerical examples are provided to validate the theoretical
results. Finally, some conclusions are presented in Section V.

II. MODEL DESCRIPTION AND PRELIMINARIES

A. Fractional Calculus and Properties

Definition 1. The Riemann-Liouville fractional integral with
0 < α < 1 is given by

Iαt f(t) =
1

Γ(α)

∫ t

t0

(t− τ)
α−1

f(τ)dτ , (1)

where t ≥ t0, f(t) is an arbitrary integrable function Iαt is
the fractional integral operator, Γ(·) is the gamma function
Γ(α) =

∫∞
0

tα−1exp(−t)dt, and exp(·) is exponential func-
tion.

In this paper, we consider the Caputo definition for fraction-
al derivative, which is most popular in engineering applications
because of its advantages[17].

Definition 2. The Caputo fractional derivative with
fractional-order 0 < α < 1 can be expressed as

Dα
t f(t) =

1

Γ(1− α)

∫ t

t0

(t− τ)
−α

ḟ(τ)dτ , (2)

where t ≥ t0, Dα
t is the Caputo fractional derivative operator.

In the following, unless otherwise stated, we consider α ∈
(0, 1).

Moreover, the Laplace transform of Caputo fractional
derivative is

L{Dα
t f(t)} = sαF (s)− sα−1f(t0), (3)

where α ∈ (0, 1), s denotes the variable in Laplace domain,
L{·} is the Laplace transform operator, F (s) is the Laplace
transform of f(t) and f(t0) is the initial value.

Let us pay attention to the following properties of the
fractional derivatives[17], which are most commonly used in
applications.

Property 1.

Dα
t (ax(t) + by(t)) = aDα

t x(t) + bDα
t y(t). (4)

Property 2.

Iαt D
α
t f(t) = f(t)− f(t0), ∀ t ≥ t0, 0 < α < 1. (5)

Property 3. The Caputo fractional derivative of a constant
function is always zero.

Definition 3[42,43]. The Mittag-Leffler function with one
parameter and two parameters can be defined as

Eα(z) =

∞∑
n=0

zn

Γ(nα+ 1)
,

Eα,β(z) =
∞∑

n=0

zn

Γ(nα+ β)
,

(6)

where z ∈ C, α > 0, β > 0. Note that Eα,1(z) = Eα(z),
E1,1(z) = expz .

The Laplace transform of Mittag-Leffler function with two
parameters can be written as

L{
tβ−1Eα,β(−ktα)

}
=

sα−β

sα + k
, �(s) >| k | 1

α , (7)

where t ≥ 0, �(s) is the real part of s, k ∈ R.
A new property for Caputo derivative can be stated in Lem-

ma 1, which can facilitate estimating the fractional derivative
of a common quadratic Lyapunov function.

Lemma 1[41]. Let x(t) ∈ R
n be a vector of derivable

functions. Then, the following inequality holds

Dα
t (x

T(t)Px(t)) ≤ 2xT(t)PDα
t x(t), (8)

where α ∈ (0, 1], t ≥ t0 and P ∈ R
n×n is a constant,

symmetric and positive definite matrix.

B. Network model

Consider a fractional-order complex dynamical network
consisting of N identical nodes, which is described by

Dα
t xi(t) = f(t, xi(t))+c

N∑
j=1

Gij(t)Axj(t),

i = 1, 2, · · · , N, (9)

where 0 < α < 1, xi = (xi1, xi2, ..., xin) ∈ R
n is the

pseudo-state vector of node i, f : R
+ × R

n → R
n is

a nonlinear vector field, c > 0 is the coupling strength,
A = diag(ρ1, ρ2, · · · , ρn) ∈ R

n×n is a positive definite inner
coupling matrix, G(t) = (Gij(t))N×N is the time-varying
diffusive coupling matrix representing the topological structure
of an undirected network. If there is an edge between node
i and j at time t, then Gij(t) = Gji(t) > 0 ; otherwise
Gij(t) = Gji(t) = 0 (i �= j), and the diagonal elements of
G(t) are defined by

Gii = −
N∑

j=1,j �=i

Gij , i = 1, 2, · · · , N.

Throughout this paper, only connected networks are consid-
ered, and Gij(t), i, j ∈ {1, 2, · · · , N} has the same meaning.
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Definition 4. The complex network (9) is said to achieve
synchronization in the sense that

lim
t→∞

∥∥∥∥∥∥xi(t)− 1

N

N∑
j=1

xj(t)

∥∥∥∥∥∥
2

= 0, i = 1, 2, · · · , N, (10)

Let x̄ = 1
N

∑N
j=1 xj . Then, we get

Dα
t x̄(t) =

1

N

N∑
j=1

Dα
t xj(t)

=
1

N

N∑
j=1

[
f(t, xj(t)) + c

N∑
k=1

Gjk(t)Axk(t)

]

=
1

N

N∑
j=1

f(t, xj(t)) +
c

N

N∑
i=1

N∑
j=1

Gij(t)Axj(t)

=
1

N

N∑
j=1

f(t, xj(t)). (11)

Note that c
N

∑N
i=1

∑N
j=1 Gij(t)Axj(t) = 0 can be obtained

from Gij = Gji, Gii = −∑N
j=1,j �=i Gij .

Definingei(t) = xi(t) − x̄(t), then the error dynamical
network is described as follows:

Dα
t ei(t) =f(t, xi(t))− 1

N

N∑
j=1

f(t, xj(t))

+ c
N∑
j=1

Gij(t)Aej(t), i = 1, 2, · · · , N. (12)

Assumption 1. The nonlinear function f(t, x) is said to be
Lipschitz if there exists a nonnegative constant ε such that
(x− y)T(f(t, x)− f(t, y)) ≤ ε(x− y)T(x− y).

Lemma 2[31]. Let G = (Gij)N×N is a real symmetric and
irreducible matrix with

Gij = Gji ≥ 0(i �= j), Gii = −
N∑

j=1,j �=i

Gij

Then,
(1) The eigenvalues of G satisfy

0 = λ1(G) > λ2(G) ≥ · · · ≥ λN (G),

λ2(G) = max
xT1N=0,x �=0

xTGx

xTx
.

(2) For any η = (η1, η2, · · · , ηN )T ∈ R
N

ηTGη = −1

2

N∑
i=1

N∑
j=1

Gij(ηi − ηj)
2.

III. MAIN RESULTS

In this section, two fractional-order decentralized adaptive
laws to tune the coupling gains among network nodes are
proposed. By utilizing the proposed adaptive strategies, two
sufficient conditions are derived to synchronize the proposed
fractional-order complex networks.

A. Fractional-order decentralized adaptive strategy for the
synchronization

Theorem 1. Suppose that Assumption 1 holds. Then, the
network (9) is synchronized under the following fractional-
order decentralized adaptive strategy:

Dα
t Gij(t) = γij(xi(t)− xj(t))

TA(xi(t)− xj(t)),

Gij(0) = Gji(0) > 0, (13)

(i, j) ∈ E, where E is the set of undirected edges, γij = γji
are positive constants.

Proof. Construct the Lyapunov functional candidate for
system (12) as

V1(t) =
1

2

N∑
i=1

eTi (t)ei(t) +
N∑
i=1

N∑
j∈Ni

c

4γij
(Gij(t)− hij)

2,

(14)
where hij = hji(i �= j) are nonnegative constants, and hij =
0 if and only if Gij(t) = 0.

Applying Lemma 1, the fractional derivative of V1 along
the trajectories of system (12) gives

Dα
t V1 ≤

N∑
i=1

eTi (t)D
αei(t)

+
N∑
i=1

N∑
j∈Ni

c

2γij
(Gij(t)− hij)D

α(Gij(t)− hij)

=
N∑
i=1

eTi (t)

⎡
⎣f(t, xi(t))− 1

N

N∑
j=1

f(t, xj(t))

⎤
⎦

+ c
N∑
i=1

N∑
j=1

eTi (t)Gij(t)Aej(t)

+
N∑
i=1

N∑
j∈Ni

c

2γij
(Gij(t)− hij)D

αGij(t)

=
N∑
i=1

eTi (t)

⎡
⎣f(t, xi(t))− 1

N

N∑
j=1

f(t, xj(t))

⎤
⎦

+ c

N∑
i=1

N∑
j=1

eTi (t)Gij(t)Aej(t)

+
N∑
i=1

N∑
j∈Ni

c

2
(Gij(t)− hij)(xi − xj)

TA(xi − xj)

=
N∑
i=1

eTi (t) [f(t, xi(t))− f(t, x̄)]

+
N∑
i=1

eTi (t)

⎡
⎣f(t, x̄)− 1

N

N∑
j=1

f(t, xj(t))

⎤
⎦

+ c
N∑
i=1

N∑
j=1

eTi (t)Gij(t)Aej(t)

+
N∑
i=1

N∑
j∈Ni

c

2
(Gij(t)− hij)(ei − ej)

TA(ei − ej), (15)
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Since
∑N

i=1 e
T
i (t) = 0, we have

N∑
i=1

eTi (t)

⎡
⎣f(t, x̄)− 1

N

N∑
j=1

f(t, xj(t))

⎤
⎦ = 0. (16)

According to Assumption 1, we can obtain
N∑
i=1

eTi (t) [f(t, xi(t))− f(t, x̄)] ≤ ε
N∑
i=1

eTi (t)ei(t). (17)

Let H = (hij)N×N , where hii = −∑N
j=1,j �=i hij . From

Lemma 2, we can easily obtain
N∑
i=1

N∑
j∈Ni

(Gij(t)− hij)(ei(t)− ej(t))
TA(ei(t)− ej(t))

= −2

N∑
i=1

N∑
j=1

(Gij(t)− hij)e
T
i (t)Aej(t). (18)

Combining (15), (16), (17) and (18), we have

Dα
t V1 ≤ε

N∑
i=1

eTi (t)ei(t) + c
N∑
i=1

N∑
j=1

eTi (t)Gij(t)Aej(t)

− c
N∑
i=1

N∑
j=1

(Gij(t)− hij)e
T
i (t)Aej(t)

≤ε
N∑
i=1

eTi (t)ei(t) + c
N∑
i=1

N∑
j=1

hije
T
i (t)Aej(t)

=eT(t) [ε(IN ⊗ In) + c(H ⊗A)] e(t), (19)

where e(t) = (eT1 (t), e
T
2 (t), · · · , eTN (t))T ∈ RnN .

Let Λ = diag(λ1(H), λ2(H), · · · , λN (H)) be the diagonal
matrix associated with H , that is, there exists a unitary
matrix Φ = (φ1, φ2, · · · , φN ) such that ΦTHΦ = Λ. Let
y(t) = (yT1 , y

T
2 , · · · , yTN )T = (ΦT ⊗ In)e(t). Since φ1 =

1√
N
(1, 1, · · · , 1)T, one has y1(t) = (φT

1 ⊗ In)e(t) = 0. Then,
it follows from (19) that

Dα
t V1 ≤ εeT(t)(IN ⊗ In)e(t)

+ ceT(t)(Φ⊗ In)(Λ⊗A)(ΦT ⊗ In)e(t)

= eT(t) [ε(IN ⊗ In)] e(t) + cyT(t)(Λ⊗A)y(t). (20)

According to the definition of matrix H , one can easily verify
that matrix H satisfies the conditions of Lemma 2. Then, by
Lemma 2 and since A is positive, we get

yT(t)(Λ⊗A)y(t) ≤ λ2(H)yT(t)(IN ⊗A)y(t). (21)

From (20) and (21), it follows that

Dα
t V1 ≤εeT(t)(IN ⊗ In)e(t)

+ cλ2(H)yT(t)(IN ⊗A)y(t)

=εeT(t)(IN ⊗ In)e(t)

+ cλ2(H)eT(t)(Φ⊗ In)(IN ⊗A)(ΦT ⊗ In)e(t)

=eT(t) [ε(IN ⊗ In) + cλ2(H)(IN ⊗A)] e(t). (22)

Thus, for a given overall coupling strength c, one can choose
hij sufficiently large such that

ε(IN ⊗ In) + cλ2(H)(IN ⊗A) + 1 < 0. (23)

Then, it follows from (22) and (23) that

Dα
t V1(t) ≤ −eT(t)e(t). (24)

There exists a function m(t) ≥ 0 such that

Dα
t V1(t) +m(t) = −eT(t)e(t). (25)

Applying Laplace transform operator L{·} to (25), we have

sαV1(s)− sα−1V1(0) +M(s) = −E(s), (26)

where the nonnegative constant V1(0) is the initial value of
V1(t), V1(s), M(s), and E(s) are the Laplace transforms of
V1(t), m(t), and eT(t)e(t) respectively.

Since V1(t) ≥ 1
2

∑N
i=1 e

T
i (t)ei(t) = 1

2e
T(t)e(t), there

exists a function n(t) ≥ 0 such that

V1(t) =
1

2
eT(t)e(t) + n(t). (27)

Applying Laplace transform operator L{·} to (27), we have

V1(s) =
1

2
E(s) +N(s), (28)

where N(s) is the Laplace transform of n(t).
Combining (26) and (28), we can easily obtain

E(s) =
2sα−1

sα + 2
V1(0)− 2sα

sα + 2
N(s)

− 2

sα + 2
M(s), (29)

Taking the Laplace inverse transform of (29), it gives

eT(t)e(t) =2V1(0)Eα(−2tα)− 2n(t) ∗ t−1Eα,0(−2tα)

− 2m(t) ∗ tα−1Eα,α(−2tα). (30)

where ∗ stands the convolution operator.
Since t−1, tα−1, Eα,0(−2tα), and Eα,α(−2tα) are nonneg-

ative functions, it follows from (30) that

eT(t)e(t) ≤ 2V1(0)Eα(−2tα). (31)

Moreover, we should also note the fact that, for 0 < α < 1
and k > 0, Eα(−ktα) is completely monotonic and de-
creases much faster than the exponential function exp−kt(see
[42]). Therefore, we can conclude from inequality (31) that
limt→+∞ eT(t)e(t) = 0, that is, limt→+∞ ‖e(t)‖2 = 0.
It means that the network (9) is synchronized under the
adaptive law (13). The convergence of error vector implies,
from (13) and from the fact that A is positive definite,
lim

t→+∞Dα
t Gij(t) = 0. According to Property 3, one can

conclude that Gij(t)((i, j) ∈ E) converges to a finite constant.
The proof is completed. �

Remark 1. In recent years, many kinds of adaptive strate-
gies were designed to adjust the gains of feedback controllers,
see [27-29] and relevant references therein. Actually, a dif-
fusively coupled network could be synchronized by designing
suitable coupling gains among the network nodes. As a natural
extension of the existing network models and control methods,
a new fractional-order complex dynamical network with time-
varying diffusive coupling is proposed, and then the fractional-
order decentralized adaptive strategy to tune the coupling gains
between the network nodes is designed based on the local
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mismatch between neighboring nodes. To our knowledge, this
is the first paper to consider the synchronization of fractional-
order complex dynamical networks with adaptive coupling.
Fortunately, this challenging problem has been solved by
fractional Lyapunov functional method combined with Mittag-
Leffler function, Laplace transform, and fractional inequality
techniques.

Remark 2. From (13), we have Dα
t Gij(t) ≥ 0. Howev-

er, one cannot conclude that Gij(t) is monotonously non-
decreasing for 0 < α < 1. To state the reason, we assume
x(t) ∈ C1[t0,+∞) and satisfies

Dα
t x(t) = f(t, x) ≥ 0, 0 < α < 1. (32)

∀t0 ≤ t2 < t1 < +∞, integrating both sides of (32) from t0
to t1 and t0 to t2 respectively, it follows from Definition 1
and Property 2 that

x(t1)− x(t0) =
1

Γ(α)

∫ t1

t0

f(τ, x(τ))

(t1 − τ)
1−α dτ. (33)

x(t2)− x(t0) =
1

Γ(α)

∫ t2

t0

f(τ, x(τ))

(t2 − τ)
1−α dτ. (34)

Subtracting (34) from (33), we have

x(t1)− x(t2) =
1

Γ(α)

∫ t1

t0

f(τ, x(τ))

(t1 − τ)
1−α dτ

− 1

Γ(α)

∫ t2

t0

f(τ, x(τ))

(t2 − τ)
1−α dτ

=
1

Γ(α)

∫ t2

t0

f(τ, x(τ))

(t1 − τ)
1−α dτ +

1

Γ(α)

∫ t1

t2

f(τ, x(τ))

(t1 − τ)
1−α dτ

− 1

Γ(α)

∫ t2

t0

f(τ, x(τ))

(t2 − τ)
1−α dτ

=
1

Γ(α)

∫ t2

t0

[
f(τ, x(τ))

(t1 − τ)
1−α − f(τ, x(τ))

(t2 − τ)
1−α

]
dτ

+
1

Γ(α)

∫ t1

t2

f(τ, x(τ))

(t1 − τ)
1−α dτ, (35)

where 1
(t1−τ)1−α − 1

(t2−τ)1−α < 0 for 0 < α < 1. Thus,
as can be seen from (35), one cannot establish the sign of
x(t1) − x(t2), which is closely related to α. Obviously, this
analysis result is not consistent with that of integer-order case.
It should be noted that our numerical results for coupling gains
can be theoretically interpreted by the analysis result in this
remark.

B. Fractional-order decentralized adaptive pinning strategy
for the synchronization

In Theorem 1, all the coupling gains are adjusted according
to the adaptive law (13). Here, only a small fraction of the
coupling gains is updated to reach synchronization.

Let Ẽ be a subset of E. Assume that network (9) is
connected through the pinning edges Ẽ.

Here, we define

Lij =

⎧⎪⎨
⎪⎩
Gij(0), if (i, j) ∈ E − Ẽ

−∑N
j=1,j �=i Gij(0), if i = j

0, otherwise
(36)

Theorem 2. Suppose that Assumption 1 holds. Then, the
network (9) is synchronized under the following fractional-
order decentralized adaptive pinning strategy:

Dα
t Gij(t) = γij(xi(t)− xj(t))

TA(xi(t)− xj(t)),

Gij(0) = Gji(0) > 0, (i, j) ∈ Ẽ, (37)

where γij = γji are positive constants.
Proof. Consider the following Lyapunov functional candi-

date for system (12)

V2(t) =
1

2

N∑
i=1

eTi (t)ei(t) +

N∑
i=1

∑
(i,j)∈Ẽ

c

4γij
(Gij(t)− h̃ij)

2,

(38)
where h̃ij is defined as

h̃ij = h̃ji > 0, if (i, j) ∈ Ẽ,

h̃ij = 0(i �= j), otherwise.
(39)

Let H̃ = (h̃ij)N×N , h̃ii = −∑N
j=1,j �=i h̃ij . Now, we

calculate the fractional derivative of V2 along the trajectories
of system (12)

Dα
t V2 ≤

N∑
i=1

∑
(i,j)∈Ẽ

c

2γij

(
Gij(t)− h̃ij

)
Dα

(
Gij(t)− h̃ij

)

+
N∑
i=1

eTi (t)D
αei(t)

=
N∑
i=1

eTi (t)

[
f(t, xi(t))− f(t, x̄) + f(t, x̄)

− 1

N

N∑
j=1

f(t, xj(t)) +c
N∑
j=1

Gij(t)Aej(t)

⎤
⎦

+
N∑
i=1

∑
(i,j)∈Ẽ

c

2
(Gij(t)− h̃ij)(ei(t)− ej(t))

T

×A(ei(t)− ej(t))

≤ ε
N∑
i=1

eTi (t)ei(t) + c
N∑
i=1

N∑
j=1

Lije
T
i (t)Aej(t)

+ c
N∑
i=1

N∑
j=1

h̃ije
T
i (t)Aej(t)

=eT(t)
[
ε(IN ⊗ In) + c(L⊗A) + c(H̃ ⊗A)

]
e(t), (40)

where e(t) = (eT1 (t), e
T
2 (t), · · · , eTN (t))T, L = (Lij)N×N ,

H̃ = (H̃ij)N×N . Then, following similar steps as in the proof
of Theorem 1, we can complete the proof. �

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are given to validate
the above obtained theoretical results. Here, the predictor-
corrector method studied in [44] is utilized to solve the
differential equations of the fractional-order systems. In the
following examples, the simulation step-size is chosen as
h=0.01.
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Example 1. Consider a diffusively coupled scale-free[1]

network with 50 nodes, where each node is a fractional-order
non-autonomous parametrically excited Duffing oscillator de-
scribed by

Dα
t x1 = x2,

Dα
t x2 = (1 + μ sin(ωt))x1 − γx2 − x3

1.
(41)

When μ = 0.5, ω = 1, γ = 0.2, α = 0.975, system (41)
has a chaotic attractor as shown in Fig.1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Fig. 1. (color online) Chaotic attractor of system (41) with μ = 0.5, ω = 1,
γ = 0.2, α = 0.975 and (x1(0), x2(0)) = (1.0, 2.1)
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Fig. 2. (color online) Time evolutions of xi = (xi1, xi2)
T, i = 1, 2, · · · , 50

For simplicity and without losing generality, we take c = 1,
A = diag(1, 1, 1). For connected nodes i and j, Gij(0) =
Gji(0) are chosen randomly in (0, 1) and γij = γji = 1,
∀(i, j) ∈ E. The initial states xi are chosen randomly in
(0, 3). Therefore, all the conditions of Theorem 1 are satisfied,
and the network synchronization is asymptotically achieved.
As shown in Figs.2 and 3, the simulation results agree well
with the theoretical analysis.

Example 2. Consider a diffusively coupled complex net-
work with 10 nodes, where each node is a fractional-order
Arneodo’s system described by

Dα
t x1 = x2,

Dα
t x2 = x3

Dα
t x3 = β1x1 − β2x2 − β3x3 + β4x

3
1.

(42)

When β1 = 5.5, β2 = 3.5, β3 = 0.4, β4 = −1,
and α = 0.9, system (42) is chaotic[45]. We take c = 1,
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Fig. 3. (color online) Adaptive coupling gains Gij(t), (i, j) ∈ E

A = diag(1, 1, 1). The initial coupling matrix is chosen as

G(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.8 0.8 0.6 0.3 0
0.8 −2.5 0.2 0 0.4
0.6 0.2 −1.8 0.4 0
0.3 0 0.4 −0.8 0.1
0 0.4 0 0.1 −0.6

0.3 0 0.5 0 0
0.6 0 0.1 0 0
0.7 0.2 0 0 0
0.5 0.2 0 0 0
0 0.7 0 0 0.1

0.3 0.6 0.7 0.5 0
0 0 0.2 0.2 0.7

0.5 0.1 0 0 0
0 0 0 0 0
0 0 0 0 0.1

−1.1 0.3 0 0 0
0.3 −1.2 0 0.2 0
0 0 −0.9 0 0
0 0.2 0 −0.9 0
0 0 0 0 −0.8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, we select a fraction of coupling gains in the network.
Choose γ12 = γ21 = 0.5, γ13 = γ31 = 0.6, γ17 = γ71 =
0.7, γ18 = γ81 = 0.8, γ19 = γ91 = 0.9, γ25 = γ52 = 0.5,
γ2,10 = γ10,2 = 0.6, γ36 = γ63 = 0.7, γ34 = γ43 = 0.8. The
initial states xi are chosen randomly in (0, 2). According
to Theorem 2, the network synchronization is asymptotically
achieved. The simulation results depicted in Figs.4 and 5 agree
well with the theoretical analysis. As can be seen from Figs.3
and 5, the adaptive coupling gains are not monotonously non-
decreasing, which further validates our theoretical analysis in
Remark 2.

V. CONCLUSIONS

In this paper, two fractional-order decentralized adaptive
strategies have been proposed to tune the coupling gains
between network nodes. Based on the proposed adaptive
coupling strategies, two sufficient conditions have been derived
for synchronization of fractional-order complex networks. In
the proofs of the theorems, an inequality has been used to es-
timate the fractional-order derivative of a quadratic Lyapunov
function. Thus, we can investigate the synchronization for
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Fig. 4. (color online) Time evolutions of xi = (xi1, xi2, xi3)
T, i =

1, 2, · · · , 10.
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Fig. 5. (color online) Adaptive coupling gains Gij(t), (i, j) ∈ Ẽ.

fractional-order complex networks like integer-order complex
networks. Numerical examples have been given to validate
the theoretical results. The obtained results show that the
adaptive coupling gains are not monotonously non-decreasing
even though Dα

t Gij(t) ≥ 0. This counter-intuitive conclusion
also implies that the fractional-order system has additional
attractive feature over the integer-order system.
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Robust Finite-time Synchronization of Non-Identical
Fractional-order Hyperchaotic Systems and its

Application in Secure Communication
Hadi Delavari and Milad Mohadeszadeh

Abstract—This paper proposes a novel adaptive sliding mod-
e control (SMC) method for synchronization of non-identical
fractional-order (FO) chaotic and hyper-chaotic systems. Under
the existence of system uncertainties and external disturbances,
finite-time synchronization between two FO chaotic and hyper-
chaotic systems is achieved by introducing a novel adaptive
sliding mode controller (ASMC). Here in this paper, a fractional
sliding surface is proposed. A stability criterion for FO nonlinear
dynamic systems is introduced. Sufficient conditions to guarantee
stable synchronization are given in the sense of the Lyapunov
stability theorem. To tackle the uncertainties and external dis-
turbances, appropriate adaptation laws are introduced. Particle
Swarm Optimization (PSO) is used for estimating the controller
parameters. Finally, finite-time synchronization of the FO chaotic
and hyper-chaotic systems is applied to secure communication.

Index Terms—Adaptive sliding mode control, chaos synchro-
nization, fractional order, hyper-chaotic system, Lyapunov theo-
rem, secure communication

I. INTRODUCTION

CHAOTIC behavior is a prevalent phenomenon appearing
in nonlinear systems. Chaotic systems have received

more attention in the literature during the last three decades.
A chaotic system is a nonlinear deterministic system that has
complex and unpredictable behavior.

Fractional calculus is a mathematical topic more than three
centuries old, but its application to physics and engineering
fields have attracted more attention only in recent years[1−3].
This happens because it has been recently found that sev-
eral physical phenomena can be more adequately described
by fractional differential equations rather than integer-order
models[4], and it has been found that many FO systems can
show complex dynamical behavior such as chaos. The advan-
tages of the FO systems are that there are more degrees of
freedom in the model. Also memory is included in FO systems.
Many systems in interdisciplinary fields, such as viscoelastic
materials[5] and micro-electromechanical systems[6] can be
described using fractional calculus methods.

Recently many researchers have recognized that many com-
plex systems, such as FO Lorenz system[7], FO Chen system[8]
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and FO Arnodo-Coullet system[9], can be described using
fractional integrals and derivatives.

Since Pecora and Carroll[10] established a chaos synchro-
nization scheme for two identical chaotic systems with dif-
ferent initial conditions, chaos synchronization has attracted
a great attention. The chaotic synchronization occurs when-
ever the state trajectories of the slave system track the state
trajectories of the master system in a given finite-time[11,12].
Chaos synchronization is a contemporary topic in nonlinear
science because of its broad and considerable applications in
secure communication, automatic control, neural networks and
etc.[13−15].

Due to the existence of chaos in real practical systems and
many applications in physics and engineering fields, control
and synchronization of FO chaotic systems have attracted
many researchers attention in the past few years[16−23]. In
[24], an active sliding mode approach for synchronization of
FO chaotic system is proposed. The FO Novel and Chen
hyper-chaotic systems are proposed for synchronization in
[25], where the states of the FO hyper-chaotic Novel system
are used to control the states of the FO hyper-chaotic Chen
system. Several methods have been proposed to achieve chaos
synchronization such as adaptive feedback control, adaptive
impulsive control, sliding mode control, active control, back-
stepping design and optimal control[26−36].

Most of the published papers focus on asymptotic stability
which leads to infinite-time synchronization, but in practical
applications, finite-time synchronization is more valuable than
infinite-time synchronization. Also, most of the researches
are related to synchronization between two chaotic systems
without uncertainty or two identical chaotic systems, but in a
real control system, due to the limitations of physical devices
and the effect of interference (such as noise, temperature, etc.),
uncertainties are unavoidable.

Motivated by the above discussion, a novel adaptive sliding
mode control approach for synchronization of a class of
new FO chaotic system and a FO hyper-chaotic system is
proposed. In our contribution we pursue five main research
aims. First, the proposed approach is very simple and easily
realized experimentally for secure communication. Second,
the proposed controller can be applied for a width range of
systems and is more suitable for engineering applications.
Third, finite-time convergence to zero and stability of the
proposed method are analytically proved, which contains new
ideas. Fourth, a fractional sliding surface is presented and
stability of the proposed surface is proved. Fifth, the upper
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bound of the system uncertainties and external disturbances
are estimated using Lyapunov stability theorem.

The rest of this paper is organized as follows. First, the
fractional calculus and the fractional systems stability theo-
ry are briefly introduced. Then, the system description and
problem statement are given. After that, the design strategy
of the proposed ASMC is presented. Then, the simulations
for synchronization of non-identical FO chaotic and hyper-
chaotic systems are done and the application of the proposed
synchronization scheme is studied in secure communication.
Finally, concluding remarks are addressed.

II. DERIVATIVE AND STABILITY THEOREM ON FO
SYSTEM

The Caputo fractional derivative of order α of m order
continuous function f(t) with respect to t is defined by

C
t0D

α
t f(t) = Im−αf (m)(t), α > 0 (1)

where m is the smallest integer number, larger than , and Iβ

is the Riemann-Liouville integral operator of order β which
is described as follows

t0I
β
t f(t) =

1

Γ(β)

∫ t

t0

f(τ)

(t− τ)1−β
dτ, β > 0 (2)

In (2), Γ(·) is the Gamma function which is given by

Γ(β) =

∫ ∞

0

tβ−1e−tdt (3)

The numerical simulation of a fractional differential equa-
tion is not as simple as that of an ordinary differential equation.
Recently, many approaches have been investigated for solving
nonlinear FO differential equations. Throughout this paper, we
choose the fractional Adams-Bashforth-Moulton method as a
representative numerical scheme[37,38]. In order to explain this
method, the following differential equation is considered{

Dα
t y(t) = r(t, y(t)), 0 ≤ t ≤ T,

y(k)(0) = y
(k)
0 , k = 0, 1, · · · ,m− 1.

(4)

The differential equation (4) is equivalent to Volterra inte-
gral equation which is as follows

y(t) =

�α�−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0

(t− s)α−1r(s, y(s))ds. (5)

Now, set h = T/N , tn = nh, n = 0, 1, · · · , N . The integral
equation can be discretized as

yh(tn+1) =

�α�−1∑
k=0

y
(k)
0

tk

k!
+

hα

Γ(α+ 2)
r (tn+1, y

p
h(tn+1))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1r(tj , yh(tj)) (6)

where

yph(tn+1) =

�α�−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ(α)

n∑
j=0

bj,n+1r(tj , yh(tj)) (7)

and

aj,n+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
nα+1 − (n− α)(n+ 1)α, j = 0

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1,

1 ≤ j ≤ n

1, j = n+ 1

(8)

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α) (9)

The error of this approximation is described as follows

max
j=0,1,··· ,N

|y(tj)− yh(tj)| = O(hp)

where p = min(2, 1 + α).
In this paper, the operator Dα is generally called the

“Caputo differential operator of order α”.
Remark 1. In this paper, let us define ‖f(t)‖ =√
f1(t)2 + f2(t)2 + · · ·+ fn(t)2, and ‖f(t)‖1 = |f1(t)| +

|f2(t)|+· · ·+|fn(t)|, where f(t) = (f1(t), f2(t), · · · , fn(t))T
is a vector of continuous functions.

Property 1. For the Caputo derivative, we have[1,39]

C
t0D

1−α
t (Ct0D

α
t f(t)) =

C
t0 D1

t = ḟ(t) (10)

Property 2. For the Caputo derivative, the following equal-
ity holds[1,39]

C
t0D

α1
t (Ct0D

−α2
t f(t)) =C

t0 Dα1−α2
t f(t) (11)

where α1 ≥ α2 ≥ 0.
Property 3. For the Caputo derivative, if f(t) ∈ C1[0, T ]

for some T > 0, then we have[39]

C
t0D

α1
t

C
t0D

α2
t f(t) =C

t0 Dα2
t

C
t0D

α1
t f(t) =C

t0 Dα1+α2
t f(t),

t ∈ [0, T ] (12)

where α1, α2 ∈ R+ and α1 + α2 ≤ 1.

III. FO CHAOTIC SYSTEM DESCRIPTION

Consider a general form of nonlinear master and slave
systems as follows. The master system is

DαX = f(X) + Δf(X) + d(X) (13)

where α ∈ (0, 1] is the FO operator, X ∈ Rn is the state
vector of the master system, f(X) ∈ Rn is the continuous
nonlinear vector functions of the master system, Δf(X) ∈ Rn

and d(X) ∈ Rn are the system uncertainties and external
disturbances of the master system, respectively. And the slave
system is

DαY = g(Y ) + Δg(Y ) + d(Y ) + u(t) (14)

where Y ∈ Rn is the state vector of the slave system,
g(Y ) ∈ Rn is the continuous nonlinear vector functions of the
slave system, Δg(Y ) ∈ Rn and d(Y ) ∈ Rn are the system
uncertainties and external disturbances of the slave system,
respectively. Also, u(t) ∈ Rn is the vector of control inputs.

The tracking error can be defined as

e(t) = Y (t)−X(t) (15)
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By subtracting (13) from (14), the error dynamics are
obtained as

Dαe(t) =(g(Y ) + Δg(Y ) + d(Y ))− (f(X) + Δf(X)

+ d(X)) + u(t)

Then one can conclude that

Dαei(t) =(gi(Y ) + Δgi(Y ) + di(Y ))− (fi(X) + Δfi(X)

+ di(X)) + ui(t), i = 1, 2, · · · , n (16)

Chaos synchronization problem can be defined as follows;
Design an appropriate robust sliding mode controller for the
slave system (14) whose its state trajectories track the state
trajectories of the master system (13) in finite-time.

In this paper it will be proved that for any defined master
system (13) and slave system (14) with system uncertainties
and external disturbances, a suitable control input u(t) is
derived such that the finite-time stability of the resulting error
dynamics by (16) can be obtained in the sense of

lim
t→T

‖e(t)‖ = 0, ‖e(t)‖ = 0 for t > T (17)

Assumption 1. It is assumed that the system uncertainties
Δf(X), Δg(Y ) and external disturbances d(X), d(Y ) are
bounded by

‖Δf(X)‖1 ≤ τ1, ‖Δg(Y )‖1 ≤ τ2,
‖d(X)‖1 ≤ ϕ1, ‖d(Y )‖1 ≤ ϕ2,

(18)

Then one can conclude that

‖Δg(Y )−Δf(X)‖1 < γ, ‖d(Y )− d(X)‖1 < δ

Therefore we have

|(Δgi(Y )−Δfi(X))| < γi, i = 1, 2, · · · , n
|(di(Y )− di(X))| < δi, i = 1, 2, · · · , n (19)

where τ1, τ2, ϕ1, ϕ2, γ and δ are positive constants; then, γi,
i = 1, 2, · · · , n and δi, i = 1, 2, · · · , n are positive constants.
Also | · | is absolute value.

IV. ROBUST ADAPTIVE SLIDING MODE CONTROL

A. Design of FO Sliding Surface

Design of a sliding mode control law may be divided into
two phases: First, choosing an adequate FO sliding surface to
achieve the control objective. Second, designing a discontinu-
ous control law which forces the system trajectories to reach
the sliding surface in a finite-time. We used the following FO
sliding surface

σi(t) = aiD
α−1(ei(t)), i = 1, 2, · · · , n (20)

where ai is a positive constant. Then we have

Dασi(t) = aiD
2α−1(ei(t)) (21)

When the FO system (16) operates in the sliding mode, the
derivative of the sliding surface must satisfy σ̇i(t) = 0[40].

This step concerns the design of control scheme for steering
the system (16) in finite-time onto the sliding surface (20). The
task is not trivial due to, both, the presence of the unknown

disturbance and the FO nature of the system dynamics[41].
Taking the integer-order derivative of (20) yields

σ̇i(t) = aiD
α(ei(t)), i = 1, 2, · · · , n (22)

By substituting (16) into (22), we have

σ̇i(t) =ai

(
(gi(Y ) + Δgi(Y ) + di(Y ))− (fi(X) + Δfi(X)

+ di(X)) + ui(t)
)
, i = 1, 2, · · · , n (23)

The finite-time stability of system (23) with the control law
(25) is proven by Lyapunov analysis in Theorem 1.

B. Design of Robust Control Scheme

After establishing a suitable fractional sliding surface (20),
the sliding mode controller is designed in a way so that the
system trajectories drive onto the sliding mode σi(t) = 0, in
finite-time.

Using (23) and σ̇i(t) = 0, the equivalent control law can
be derived as follows

ueqi(t) = (fi(X)− gi(Y ))

In order to improve the robustness against uncertainties,
we design the reaching control law, which drives the system
trajectories onto the sliding surface σi(t) = 0.

uri(t) = −
(
kiσi(t) + (ωi + γi + δi)sgn(σi(t))

)
(24)

where

sgn(σi(t)) =

⎧⎪⎨
⎪⎩
+1, σi(t) > 0

0, σi(t) = 0

−1, σi(t) < 0

ki, ωi are positive switching gains.
Finally, the control input law can be obtained as follows

ui(t) =(fi(X)− gi(Y ))

−
(
kiσi(t) + (ωi + γi + δi)sgn(σi(t))

)
(25)

C. Stability Analysis

In this section, Lyapunov theorem is used to analyze the
stability of the system. The basic philosophy of Lyapunovs
direct method is the mathematical extension of a principal
physical observation: If all of the energy of a mechanical (or
electrical) system is continuously reduced, then the system,
that may be linear or nonlinear, must move to an equilibrium
point at last. Thus, the stability of a system by examining the
variation of a single Lyapunov function can be analyzed[42].

Theorem 1. If the uncertain FO system (16) is controlled
by the control input (25), then the system trajectories will
converge to the sliding surface σi(t) = 0 in a finite-time ti.

Proof. Selecting a positive Lyapunov function candidate
vi(t) =

1
2σ

2
i (t) and taking its time derivative, results

v̇i(t) = σi(t)
(
aiD

α(ei(t))
)

(26)

Inserting (16) in (26), results

v̇i(t) =aiσi(t)
(
(gi(Y ) + Δgi(Y ) + di(Y ))
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− (fi(X) + Δfi(X) + di(X)) + ui(t)
)

(27)

By substituting (25) into (27) and using Assumption 1, then

v̇i(t) ≤aiσi(t)(|Δgi(Y )−Δfi(X)|+ |di(Y )− di(X)|)
− aiσi(t)

(
kiσi(t) + (ωi + γi + δi)sgn(σi(t))

)
(28)

Hence the above inequality can be written as

v̇i(t) ≤ −(2aikivi(t) +
√
2aiωivi(t)

0.5) (29)

Multiplying both sides of (29) by vi(t)
−0.5, results

vi(t)
−0.5v̇i(t) + 2aikivi(t)

0.5 ≤ −
√
2aiωi (30)

Multiplying (30) by (1/2)eaikit and then integrating at both
sides from zero to t, one obtains

vi(t)
0.5 ≤

(
(
√
2/2)(ωi/ki) + vi(0)

0.5
)
e−aikit

− (
√
2/2)(wi/ki) (31)

then one can get

t ≤ (1/aiki) ln
(
1 +

√
2(ki/ωi)vi(0)

0.5
)

(32)

Hence, the proof is achieved. i.e., according to the inequal-
ity (31), the state trajectories of the error system (16) will
converge to σi(t) = 0 in a finite-time

ti = (1/aiki) ln
(
1 + (ki/ωi)|σi(0)|

)
D. Adaptation Law Synthesis

In the previous sections, it has been shown knowing the
bounds of system uncertainties and external disturbances is
vital to guarantee the system stability. However, in practice
it is not convenient to determine these bounds precisely. In
what follows, we develop an adaptation laws to overcome
this problem. In order to estimate the unknown controller
parameters, appropriate update laws are derived as follow:

˙̂
ki = μiσi(t)

2, ˙̂ωi = ρi|σi(t)|, ˙̂γi = κi|σi(t)|, ˙̂δi = ξi|σi(t)|
(33)

Theorem 2. If the chaotic system of this paper is controlled
by the discontinuous control law (25) with the adaptation laws
(33), then the system trajectories will converge to the sliding
surface σi(t) = 0.

Proof. Consider the Lyapunov function candidate as

vi(t) =
1

2
σi(t)

2 +
1

2

(
μ−1
i k̃2i + ρ−1

i ω̃2
i

+ κ−1
i γ̃2

i + ξ−1
i δ̃2i

)
, i = 1, 2, · · · , n (34)

where k̃i = ki−k̂i, ω̃i = ωi−ω̂i, γ̃i = γi−γ̂i, and δ̃i = δi−δ̂i.
In this case, ki, ωi, γi, and δi are the actual values of k̂i, ω̂i,
γ̂i, and δ̂i, respectively. Also μi, ρi, κi and ξi are rates of
adaptation. Taking derivative of both sides of (34) with respect
to time, yields

v̇i(t) =σi(t)σ̇i(t)− μ−1
i k̃i(

˙̂
ki)− ρ−1

i ω̃i( ˙̂ωi)

− κ−1
i γ̃i( ˙̂γi)− ξ−1

i δ̃i(
˙̂
δi) (35)

Using Property 1 and then inserting (21) in (35), one obtains

v̇i(t) =σi(t)D
1−α

(
aiD

2α−1(ei(t))
)
− μ−1

i k̃i(
˙̂
ki)

− ρ−1
i ω̃i( ˙̂ωi)− κ−1

i γ̃i( ˙̂γi)− ξ−1
i δ̃i(

˙̂
δi) (36)

Using Properties 2 and 3, one gets

v̇i(t) =aiσi(t)D
α(ei(t))− μ−1

i k̃i(
˙̂
ki)

− ρ−1
i ω̃i( ˙̂ωi)− κ−1

i γ̃i( ˙̂γi)− ξ−1
i δ̃i(

˙̂
δi) (37)

Substituting (16) into (37) and using Assumption 1, we have

v̇i(t) ≤ (γi + δi)|σi(t)|+ σi(t)(gi(Y )− fi(X) + ui(t))

− μ−1
i k̃i(

˙̂
ki)− ρ−1

i ω̃i( ˙̂ωi)− κ−1
i γ̃i( ˙̂γi)− ξ−1

i δ̃i(
˙̂
δi) (38)

By assuming that the parameters of the controller (25) are
unknown, then

v̇i(t) ≤ −k̂i|σi(t)|2 − ω̂i|σi(t)|+ (γ̃i + δ̃i)|σi(t)|
− μ−1

i k̃i(
˙̂
ki)− ρ−1

i ω̃i( ˙̂ωi)− κ−1
i γ̃i( ˙̂γi)− ξ−1

i δ̃i(
˙̂
δi) (39)

Introducing the adaptation laws (33) in (39), will lead to

v̇i(t) ≤ −ki|σi(t)|2 − ωi|σi(t)| (40)

Hence, the motion on the sliding surface is asymptotically
stable. Therefore, the output can track the desired reference.

E. Particle Swarm Optimization (PSO)

In this section, the parameters of the ASMC are estimated
using PSO algorithm. There are a lot of optimal techniques for
optimization. One of the simple approaches for optimization
is PSO. PSO was introduced by Kennedy and Eberhart[43],
and is useful for continuous space. PSO algorithm imitates
the behavior of birds and others like fishes for searching the
best solution in the space. PSO has been found to be robust
in solving problems featuring nonlinearity, multiple optima,
and high dimensionality through adaptation, which is derived
from the social-psychological theory. In this technique, every
particle can be illustrated by two vectors[44]. These vectors
are position vector and velocity vector that can be updated
with this algorithm to get the best parameters of the controller.
The PSO algorithm, at each time step, changes the speed of
each particle moving towards its pBest and gBest locations.
Speed is weighted by random terms, with separate random
numbers being generated for acceleration toward pBest and
gBest locations, respectively.

Our aim is to have low tracking error; hence the following
cost function (Mean Squared Error) is used

MSE =
1

N

N∑
i=0

(
ek(i)

)2

(41)

where, ek(i) is the kth error state variable. N is the length of
every error state variable.

The procedure for implementing PSO algorithm for estimat-
ing the controller parameters is given by the following steps:

i Initialize a (population) of particles with random posi-
tions and velocities in the n-dimensional problem space
using a uniform probability distribution function;
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ii For each particle in swarm, evaluate its fitness value;
iii Compare each particles fitness evaluation with the current

particles pBest. If current value is better than pBest, set
its pBest value to the current value and the pBest location
to the current location in n-dimensional space;

iv Compare the fitness evaluation with the populations over-
all previous best. If current value is better than gBest, then
reset gBest to the current particles array index and value;

v During this process, the position vector and velocity
vector of each particle are updated to tend the best
position as follows:

Vi(t+ 1) =wVi(t) + c1rand(0, 1)(pBesti(t)−Xi(t))

+ c2rand(0, 1)(gBesti(t)−Xi(t))

Xi(t+ 1) =Xi(t) + Vi(t+ 1) (42)

where i = 1, 2, · · · , n is the particles index, t is the time
(iteration or generation).

In this case, the position and speed vectors are with di-
mensions d. c1 and c2 are acceleration coefficients, w is the
inertia weight. In (42), pBesti is the position with the best
fitness found by the ith particle, and gBesti is the best fitness
position in neighborhood.

V. APPLICATIONS AND NUMERICAL EXPERIMENTS

In this section, an illustrative example is presented to show
the feasibility and applicability of the proposed nonsingular
sliding mode approach and to confirm the theoretical results.
In this example, numerical simulation for two non-identical
FO chaotic and FO hyper-chaotic systems is presented. Fourth-
order Runge-Kutta method is used with a step time of 0.001
in order to solve the FO differentials.

A. Synchronization of Non-Identical FO Chaotic and FO
Hyper-chaotic Systems

In this section, numerical simulations are presented to
validate the robustness and effectiveness of the proposed
ASMC, when the controller parameters are estimated by PSO
algorithm. These values are obtained in order to minimize the
synchronization errors. The FO chaotic system[45] as master
system drives the FO hyper-chaotic system[46] as slave system.

The master system is⎡
⎢⎢⎣

Dαx1

Dαx2

Dαx3

Dαx4

⎤
⎥⎥⎦

︸ ︷︷ ︸
DαX

=

⎡
⎢⎢⎣

5(x2 − x1) + x4

−x1x3

−90 + x1x2

−10x1

⎤
⎥⎥⎦

︸ ︷︷ ︸
f(X)

+

⎡
⎢⎢⎣

0.2 cos(x2)
0.3 cos(x1)
0.25 sin(x4)
0.35 sin(x3)

⎤
⎥⎥⎦

︸ ︷︷ ︸
Δf(X)

+

⎡
⎢⎢⎣

0.3 cos(t)
0.25 sin(t)
0.3 cos(t)
0.2 cos(t)

⎤
⎥⎥⎦

︸ ︷︷ ︸
d(X)

(43)

and the slave system is⎡
⎢⎢⎣

Dαy1
Dαy2
Dαy3
Dαy4

⎤
⎥⎥⎦

︸ ︷︷ ︸
DαY

=

⎡
⎢⎢⎣

10(y2 − y1)
40y1 + y1y3 + 2y4
−2y21 − 2y22 − 2.5y3

−5y2

⎤
⎥⎥⎦

︸ ︷︷ ︸
g(Y )

+

⎡
⎢⎢⎣

0.3 sin(y2)
0.25 cos(y3)
0.25 cos(y1)
0.2 sin(y2)

⎤
⎥⎥⎦

︸ ︷︷ ︸
Δg(X)

+

⎡
⎢⎢⎣

0.25 cos(t)
0.3 sin(t)
0.3 sin(t)
0.3 cos(t)

⎤
⎥⎥⎦

︸ ︷︷ ︸
d(Y )

+

⎡
⎢⎢⎣

u1(t)
u2(t)
u3(t)
u4(t)

⎤
⎥⎥⎦

︸ ︷︷ ︸
u(t)

(44)

The FO operator (α) is set to 0.95 to ensure the
existence of chaos for the system. Assume, the ini-
tial states of the master and slave systems are selected
as (x1(0), x2(0), x3(0), x4(0))

T = (2.5, 0.5, 1, 0.5)T and
(y1(0), y2(0), y3(0), y4(0))

T = (4, 2.5, 3.5, 3)T, respectively.
μi, ρi, κi and ξi are rates of adaptation which are supposed to
be 5, 3, 5 and 2 for (i = 1, · · · , 4), respectively. The control
input suffers high chattering. In order to reduce this drawback
of the controller we have used the saturation function instead
of the sign function. The time responses of the synchronized
states are depicted in Fig. 1. Fig. 2 shows the synchronization
errors between two FO chaotic and hyper-chaotic systems.
The time response of k̂i and ω̂i for (i = 1, · · · , 4) are
depicted in Fig. 3. Besides, the time response of γ̂i and δ̂i for
(i = 1, · · · , 4) are depicted in Fig. 4. In Table. 1, the controller
parameters are depicted before optimization and after that.

PSO parameters are set as follow:
Population size= 20, Iterations= 40, c1 = 2.0, c2 = 2.0,

weighting factor= 1, Inertia weight= 0.999.
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Fig. 1. Time response of signals for master system and slave system.

VI. A SECURE COMMUNICATION SCHEME

A secure communication system involves the development
of a signal that contains the information which is to remain
undetectable by others within a carrier signal. In this section,
a popular application of chaotic synchronization in the area
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Fig. 2. Time response of the synchronization errors between two non-
identical FO chaotic and hyper-chaotic systems.
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Fig. 3. Time response of the controller parameters.
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Fig. 4. Time response of the controller parameters.

Fig. 5. The secure communication scheme based on the synchronization of
FO chaotic and hyper-chaotic systems.

TABLE I
CONTROLLER PARAMETERS BEFORE AND AFTER OPTIMIZATION AND

THE COST FUNCTION VALUES

a1 a2 a3 a4 Cost
Before optimization 5.0000 6.0000 3.5000 7.5000 8.8959
After optimization 3.5728 4.0087 9.7267 8.1469 7.7656

of secure communications is presented. The useful signal has
been modulated two times to improve the security of the
system, encrypted by secret key firstly and masked secondly
by the FO derivative of chaos variable. Fig. 5 depicts a sketch
designed for our communication scheme.

In the transmitter, two chaotic variables of the chaos os-
cillator are employed to construct a function F (X) which is
used to generate secret key k(t). The secret key k(t) is added
to the proposed useful signal m(t) in order to encrypt the
useful signal. The encrypted useful signal is masked by the
FO derivative of chaos variable xi. Then, the encrypted and
masked useful signal is transmitted to the receiver through
public channel. In the receiver, first the received signal is
unmasked by the FO derivative of hyperchaos variable yi.
Then, the unmasked signal is decrypted by the secret key
k∗(t). It is impossible to extract the useful signal m(t)
from the transmitted signal S(t) without the dynamics of X .
Therefore, when the control signal (25) is designed in the
receiver, then the synchronization between chaos oscillator and
hyper-chaos oscillator will be obtained and X will converge
to Y in finite-time.

The simulation results above are based on discrete useful
signal. In the transmitter, the nonlinear function F (X) =
(x2x4)

2 is transmitted through the saturation function to
generate the secret key. The FO of the chaos state variable x3 is
used to mask the encrypted message. Demodulation process is
inverse operation to modulation. So G(Y ) = (y2y4)

2 and the
FO of hyper-chaos variable y3 is used to unmask the received
signal. The notation Dq(·) denotes the FO derivative, where
the FO is selected as q = 0.5. Also, h is a small constant
which is supposed to be 3. By using a small constant h, the
security of the transmitted signal in a public channel can be
increased.

The useful signal m(t) is shown in Fig. 6-a; chaotic signal
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S(t) which is transmitted to the receiver is illustrated in Fig.
6-b; the comparison between demodulated useful signal m∗(t)
and sent useful signal m(t) is shown in Fig. 6-c. As a result
of the simulation, demodulated signal and useful signal can
quickly implement synchronization as a short transient. The
error between the demodulated signal and the useful signal is
depicted in Fig. 6-d.
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Fig. 6. Simulation results of the proposed secure communication scheme
using finite-time synchronization of FO chaotic and hyper-chaotic systems.

VII. CONCLUSION

In this paper, the proposed novel sliding mode controller is
shown to be robust against high uncertainties and variation of
the parameters. Suitable adaptive laws are proposed to tackle
the unknown parameters and PSO algorithm is used in this
paper for optimization of the controller parameters. Finally,
the proposed scheme is applied in secure communication. The
simulation results show that the synchronization time is very
short and the recovered signal is close to the useful signal
and it can realize secret communication successfully, having
strong security and practicability.
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An Implementation of Haar Wavelet Based Method
for Numerical Treatment of Time-fractional

Schrödinger and Coupled Schrödinger Systems
Najeeb Alam Khan, Tooba Hameed

Abstract—The objective of this paper is to solve the time-
fractional Schrödinger and coupled Schrödinger differential
equations (TFSE) with appropriate initial conditions by using the
Haar wavelet approximation. For the most part, this endeavor
is made to enlarge the pertinence of the Haar wavelet method
to solve a coupled system of time-fractional partial differential
equations. As a general rule, piecewise constant approximation of
a function at different resolutions is presentational characteristic
of Haar wavelet method through which it converts the differential
equation into the Sylvester equation that can be further simplified
easily. Study of the (TFSE) is theoretical and experimental
research and it also helps in the development of automation
science, physics, and engineering as well. Illustratively, several
test problems are discussed to draw an effective conclusion,
supported by the graphical and tabulated results of included
examples, to reveal the proficiency and adaptability of the
method.

Index Terms—Fractional calculus, haar wavelets, operational
matrix, wavelets.

I. INTRODUCTION

IN recent decades, fractional calculus (calculus of integrals
and derivatives of any arbitrary real order) has attained

appreciable fame and importance due to its manifest uses in
apparently diverse and outspread fields of science. Certainly,
it provides potentially helpful tools for solving integral and
differential equations and many other problems of mathemati-
cal physics. The fractional differential equations have become
crucial research field essentially due to their immense range of
utilization in engineering, fluid mechanics, physics, chemistry,
biology, viscoelasticity etc. Numerous mathematicians and
physicists have been studying the properties of fractional cal-
culus [1], [2] and have established several methods for accurate
analytical and numerical solutions of fractional differential
equations, such as the variational iteration method [3], differ-
ential transform method [4], homotopy analysis method [5],
Jacobi spectral tau and collocation method [6]−[8], Laplace
transform method [9], homotopy perturbation method [10],
Adomian decomposition method [8], [9], high-order finite el-
ement methods [13] and many others [14], [19]. The scope
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and distinct aspects of fractional calculus have been written
by many authors in Refs [20]−[22].

In the past few years, there has been an extensive attraction
in employing the spectral method (see [23]−[25]) for numer-
ically solving the copious type of differential and integral
equations. The spectral methods have an exponential quota
of convergence and high level of efficiency. Spectral methods
are to express the approximate solution of the problem in term
of a finite sum of certain basis functions and then selection of
coefficients in order to reduce the difference between the exact
and approximate solutions as much as possible. The spectral
collocation method is a distinct type of spectral methods,
that is more relevant and extensively used to solve most of
differential equations [26].

For the reason of the distinctive attributes of wavelet theory
in representing continuous functions in the form of discontin-
uous functions [27], its applications as a mathematical tool is
widely expanding nowadays. Besides image processing and
signal decomposition it is also used to assess many other
mathematical problems, such as differential and integral equa-
tions. Wavelets comprise the incremental conception between
two consecutive levels of resolution, called multi-resolution.
The first component of multi-resolution analysis is vector
spaces. For each vector space, another vector space of higher
resolution is found and this continues until the final image or
signal is executed. The basis of each of these vector spaces
acts as the scaling function for the wavelets. Each vector space
having an orthogonal component and a basis function is said
to be the wavelet [28].

Up till now, a number of wavelet families have been
presented by different authors, but among all Haar wavelet
are considered to be the easiest wavelets family. Haar wavelet
was introduced in 1910 by Hungarian mathematician Alfred
Haar. These wavelets are obtained from Daubechies wavelets
of order 1, which consist of piecewise constant functions on
the real axis that can take only three values, −1, 0 and 1. Here
we are using collocation method, by increasing the level of
resolution, collocation points are also increasing and level of
accuracy too. Haar wavelet collocation method is extensively
used due to its constructive ability of being smooth, fast,
convenient and being computationally attractive [29]. In
addition, it has the competency to reduce the computations
for solving differential equations by converting them into
some system of algebraic equations. The main advantages of
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the proposed algorithm are, its simple application and no
residual or product operational matrix is required. The method
is well addressed in [22], [29]−[32].

The time-fractional Schrödinger equation (T-FSE) differs
from the standard Schrödinger equation. The first-order time
derivative is replaced by a fractional derivative, it makes
the problem overall in time. It describes, how the quantum
state (physical situation) of a quantum system changes with
time, soliton dispersion, deep water waves, molecular orbital
theory and the potential energy of a hydrogen-like atom
(fractional ‘Bohr atom’). The aim of this work is to explore
the numerical solutions of the time-fractional Schrödinger
equations by using Haar wavelet method. Due to the large
number of applications of the Schrödinger equation in different
aspects of quantum mechanics and engineering, many attempts
have been exercised on analytical and numerical methods to
calculate the approximate solution of (T-FSE). Some of them
are studied [6], [10], [18], [33]−[36], and enumerated here for
better perception of the presented analysis. Also, the existence
and uniqueness of solutions of fractional Schrödinger equation
have been proved by multiple authors [35], [37], [38].

II. PRELIMINARIES

In this section, some notations and properties of fractional
calculus, the basis of Haar function approximation for partial
differential equation and solution of Haar by multi-resolution
analysis are given that will help us in exploring the main theme
of the paper.

A. Riemann-Liouville Differential and Integral Operator

Assume ν > 0, m = dνe and f(x, t) ∈ Cm([0, 1] × [0, 1])
then the partial Caputo fractional derivative of f(x, t) with
respect to t is defined as

∂ν

∂tν
f(x, t) =

{
Im−ν
t

∂m

∂tm f(x, t)
∂m

∂tm f(x, t)
(1)

where Iν
t is the Riemann-Liouville fractional integral, given

as

Iν
t f(t) =

1
Γ(ν)

∫ t

0

(t− ϕ)ν−1f(ϕ)dϕ

I0
t f(t) = f(t) (2)

we use the notation Dν
t in replacement of ∂ν

∂tν for the Caputo
fractional derivative. The Caputo fractional derivative of order
ν > 0 for f(t) = tα is given as

Dν
t f(t) =

{
Γ(α+1)

Γ(α−ν+1) t
α−ν ,m > α ≥ m− 1,

0 if α ∈ {0, 1, 2, ..., m− 1} (3)

In the following, some main computational properties and
relations of fractional integral and differential operators are
defined as

i)Iα
t Iβ

t f(t) = Iα+β
t f(t) = Iβ

t Iα
t f(t)

ii)
∂β

∂tβ
Iα
t f(x, t) = Iα−β

t f(x, t)

iii)
∂α

∂tα
f(x, t) = f(x, t)−

n−1∑

k=0

tk

k!
∂kf(x, t) |t=0

∂tk

= f(x, t) +
n−1∑

k=0

ζk(x)tk (4)

where,ζk(x) = − 1
k!

∂kf(x,t)|t=0
∂tk . For more details see [1].

B. Haar wavelets and function approximation

Basis of Haar wavelets is obtained with a multi-resolution
of piecewise constant functions. Let the interval x ∈ [0, 1) be
divided into 2m subintervals of equal length, where m = 2j

and J is maximal level of resolution. Next, two parameters are
introduced, j = 0, 1, 2, . . . , J and k = 0, 1, 2, ldots,m − 1,
such that the wavelet number i satisfies the relation i =
k + m + 1. The ith Haar wavelet can be determined as

hi(x) =





1, x ∈ [ϑ1, ϑ2)
−1, x ∈ [ϑ2, ϑ3)
0, elsewhere

(5)

where ϑ1 = k
m , ϑ2 = k+0.5

m , ϑ3 = k+1
m

For the case i = 1, corresponding scaling function can be
defined as:

h1 =

{
1, x ∈ [ϑ1, ϑ3)
0, elsewhere

(6)

Here, we consider the wavelet-collocation method, therefore
collocation points are generated by using,

xl =
l − 0.5

2m
, l = 1, 2, 3, ldots, 2m (7)

The Haar system forms an orthonormal basis for the Hilbert
space f(t) ∈ L2(0, 1). We may consider the inner product
expansion of f(t) ∈ L2([0, 1)) in Haar series [31] as:

f(t) ≈ 〈f, ϕ〉ϕ(t) +
J−1∑

j=0

2j−1∑

i=0

〈f, hj,k〉hj,k(t) = CT H(t) (8)

where, C is 1 × 2J coefficient vector and H(t) =
[h0(t), h1(t), ldots, hm−1(t)]T . Also, a function of two vari-
ables can be expanded by Haar wavelets [32] as:

u(x, t) ≈
m−1∑

i=0

m−1∑

j=0

ui,jhi(x)hj(t) = HT (x).U.H(t) (9)

where, U is 2J × 2J coefficient matrix calculated by the
inner product ui,j = 〈hi(x), 〈u(x, t), hj〉〉 The operational
matrix of fractional integration of Haar function is needed to
solve PDE of fractional order. A more rigorous derivation for



N. A. KHAN et al.: AN IMPLEMENTATION OF HAAR WAVELET BASED METHOD FOR NUMERICAL TREATMENT OF · · · 3

the generalized block pulse operational matrices is proposed
in [39]. The block pulse function forms a complete set of
orthogonal functions which is defined in interval [a, b) as

ψi(t) =

{
1, i−1

m b ≤ t < i
mb

0 elsewhere
(10)

for i = 1, 2, ldots, m It is known that any absolutely integrable
function f(t) on [a, b), can be expanded in block pulse
functions as

f(t) ∼= FT ψ(m)(t) (11)

so that the mean square error of approximation is mini-
mized. Here, FT = [f1, f2, f3, ldots, fm] and ψT

(m)(t) =
[ψ1(t), ψ2(t), ψ3(t), ldots, ψm(t)]. where,

fi =
m

b

∫ b

a

f(t)ψi(t)dt =
m

b

∫ (i/m)b

(i−1)b/m

f(t)ψi(t)dt (12)

The Riemann-Liouville fractional integral is simplified and
expanded in block pulse functions to yield the generalized
block pulse operational matrix F ν as

(Iνψm)(t) = F νψm(t) (13)

where

F ν = (
b

m
)ν 1

Γ(ν + 2)




1 ξ2 ξ3 . . . ξm

0 1 ξ2 . . . ξm−1

0 0 1 . . . ξm−2

...
...

...
. . .

...
0 0 0 0 1




with ξ1 = 1, ξp = pν+1 − 2(p − 1)ν+1 + (p − 2)ν+1

(p = 2, 3, 4, ldots,m − i + 1) For further details see refs.
[39]. The Haar functions are piecewise constant, so it may be
expanded into an m−term block pulse functions (BPF) as

Hm(t) = Hm×mψm(t) (14)

In [31] Haar wavelets operational matrix of fractional order
integration is derived by

(IνHm)(t) ≈ P νHm(t) (15)

where P ν is m ×m order Haar wavelets operational matrix
of fractional order integration. Substituting Eq.(2) in Eq.(14)
we get

(IνHm)(t) ≈ (IνHm×mψm)(t) = Hm×m(Iνψm)(t)
≈ Hm×mF νψm(t) (16)

From Eq.(15) and Eq.(16), it can be written as:

P νHm(t) = Hm×mF ν (17)

Therefore, P ν can be obtained as

P ν = H.F ν .H−1 (18)

C. Multi Resolution Analysis (MRA)

Any space V can be constructed using a basis function
h(2mt) as:

Vm = span{h(2mt− n)}n,m∈Z

h(t) is called scaling function, also known as ‘Father func-
tion’. The chain of subspaces ldotsV−2, V−1, V0, V1, V2ldots
with the following axioms is called multi-resolution analysis
(MRA) [28].

i){
⋃

Vm}m∈Z = L2(R)

ii){
⋂

Vm}m∈Z = {0}

iii)There exists h(t)such that,V0 = span{h(t− n)}n∈Z

iv){h(t− n)}n∈Z is an orthogonal set.

v)Iff(t) ∈ Vm then f(2−mt) ∈ V0, ∀ m ∈ Z)

vi)Iff(t) ∈ V0 then f(t− n) ∈ V0, ∀ n ∈ Z) (19)

Under the given axioms, there exists a ψ(.) ∈ L2(R), such
that {ψ(2mt− n)}m,n∈Z spans L2(R). The wavelet function
ψ(.) is also called ‘Mother wavelet’.

Convergence of the method

Let ∂3u(x,t)
∂t∂x2 and ∂3v(x,t)

∂t∂x2 are continuous and bounded functions
on (0, 1)× (0, 1), then ∃M1,M2 > 0,∀x, t ∈ (0, 1)× (0, 1)

|∂
3u(x, t)
∂t∂x2

| ≤ M1and |∂
3v(x, t)
∂t∂x2

| ≤ M2 (20)

Let um(x, t) and vm(x, t) are the following approximations
of u(x, t) and v(x, t),

um(x, t) ≈
m−1∑

i=0

m−1∑

j=0

uijhi(x)hj(t) and

vm(x, t) ≈
m−1∑

i=0

m−1∑

j=0

vijhi(x)hj(t) (21)

then we have

u(x, t)− um(x, t) =
∞∑

i=m

∞∑

j=m

uijhi(x)hj(t)

=
∞∑

i=2p+1

∞∑

j=2p+1

uijhi(x)hj(t) and

v(x, t)− vm(x, t) =
∞∑

i=m

∞∑

j=m

vijhi(x)hj(t)

=
∞∑

i=2p+1

∞∑

j=2p+1

vijhi(x)hj(t) (22)



4 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

Theorem 1: Let the functions um(x, t) and vm(x, t) ob-
tained by using Haar wavelets are the approximation of u(x, t)
and v(x, t) then we have the errors bounded as following

‖u(x, t)− um(x, t)‖E ≤ M1√
3m3

and

‖v(x, t)− vm(x, t)‖E ≤ M2√
3m3

(23)

where

‖u(x, t)‖E = (
∫ 1

0

∫ 1

0

u2(x, t)dxdt)1/2 and

‖v(x, t)‖E = (
∫ 1

0

∫ 1

0

v2(x, t)dxdt)1/2 (24)

See proof in [32].

III. THE SCHRÖDINGER EQUATIONS

A. The time-fractional Schrödinger equation

The time-fractional Schrödinger equation (T-FSE) has the
following form

i
∂νφ(x, t)

∂tν
+ λ

∂2φ(x, t)
∂x2

+ η | φ |2 φ + µ(x)φ = q(x, t),

0 < x, t ≤ 1 (25)

with initial conditions φ(x, 0) = f(x), φ(0, t) = g(t),
φ
′
(0, t) = h(t)

where 0 < ν ≤ 1, λ and η are real constants, µ(x) is
the trapping potential and φ(x, t), f(x), g(t), h(t) and q(x, t)
are complex functions. We can express complex functions
φ(x, t), f(x), g(t), h(t) and q(x, t) into their respective real
and imaginary parts as

φ(x, t) = u(x, t) + iv(x, t)
µ(x) = µ1(x) + iµ2

f(x) = f1(x) + if2(x) (26)
g(t) = g1(t) + ig2(t)
h(t) = h1(t) + ih2(t)

q(x, t) = q1(x, t) + iq2(x, t)

Substituting Eq. (26) into Eq. (25) and collecting real and
imaginary parts, then Eq. (25) can be written as coupled time-
fractional nonlinear partial differential equations as:

−∂νv(x, t)
∂tν

+ λ
∂2u(x, t)

∂x2
+ η(u2 + v2)u + µ1(x)

u(x, t)− q1(x, t) = 0
∂νu(x, t)

∂tν
+ λ

∂2v(x, t)
∂x2

+ η(u2 + v2)v + µ2(x)

v(x, t)− q2(x, t) = 0 (27)

with initial conditions

u(x, 0) = f1(x), v(x, 0) = f2(x), u(0, t) = g1(t),

v(0, t) = g2(t), u
′
(0, t) = h1(t), v

′
(0, t) = h2(t) (28)

B. The time-fractional coupled Schrödinger system

The time-fractional coupled Schrödinger system (T-FCSS)
has the following form

i
∂νφ(x, t)

∂tν
+ i

∂2φ(x, t)
∂x2

+
∂2φ(x, t)

∂x2
+ λ1(| φ |2 + | ψ |2)

φ(x, t) + α1(x)φ(x, t) + β1ψ(x, t)− f1(x, t) = 0

i
∂νψ(x, t)

∂tν
+ i

∂2ψ(x, t)
∂x2

+
∂2ψ(x, t)

∂x2
+ λ2(| φ |2 + | ψ |2)

ψ(x, t) + α2(x)φ(x, t) + β2ψ(x, t)− f2(x, t) = 0
(29)

with initial conditions

φ(x, 0) = f3(x), φ(0, t) = g3(t), φ
′
(0, t) = h3(t),

ψ(x, 0) = f4(x), ψ(0, t) = g4(t), ψ
′
(0, t) = h4(t) (30)

where 0 < ν ≤ 1, λ1, λ2, α1, α2, β1 andβ2 are real constants
and φ(x, t), ψ(x, t), f3(x), f4(t), g3(t), g4(t), h3(t), h4(t),
q1(x, t) and q2(x, t) are complex functions. We can express
complex functions into their respective real and imaginary
parts as

φ(x, t) = u(x, t) + iv(x, t), ψ(x, t) = r(x, t) + is(x, t)
f3(x) = f5(x) + if6(x), f4(x) = f7(x) + if8(x)

g3(t) = g5(t) + ig6(t), g4(t) = g7(t) + ig8(t)
h3(t) = h5(t) + ih6(t), h4(t) = h7(t) + ih8(t)

q3(x, t) = q5(x, t)+iq6(x, t), q4(x, t) = q7(x, t)+iq8(x, t)
(31)

Substituting Eq. (31) into Eq. (29) and equating real and
imaginary parts we get the system of two coupled time-
fractional nonlinear partial differential equations.

− ∂νv(x, t)
∂tν

− ∂v(x, t)
∂x

+
∂2u(x, t)

∂x2
+λ1(u2 +v2 +r2 +s2)

u(x, t) + α1u(x, t) + β1r(x, t)− q3(x, t) = 0
∂νu(x, t)

∂tν
+

∂u(x, t)
∂x

+
∂2v(x, t)

∂x2
+ λ1(u2 + v2 + r2 + s2)

v(x, t) + α1v(x, t) + β1s(x, t)− q4(x, t) = 0

− ∂νs(x, t)
∂tν

+
∂s(x, t)

∂x
+

∂2r(x, t)
∂x2

+ λ2(u2 + v2 + r2 + s2)

r(x, t) + α2u(x, t) + β2r(x, t)− q5(x, t) = 0
∂νr(x, t)

∂tν
− ∂r(x, t)

∂x
+

∂2s(x, t)
∂x2

+ λ2(u2 + v2 + r2 + s2)

s(x, t) + α2v(x, t) + β2s(x, t)− q6(x, t) = 0 (32)

IV. THE PROPOSED METHOD

A. For time-fractional Schrödinger equation

Any arbitrary function u(x, t) ∈ L2([0, 1) × [0, 1)) and
v(x, t) ∈ L2([0, 1)× [0, 1)), can be expanded into Haar series
[32] as:

u̇
′′
(x, t) =

2m∑

i=1

2m∑

j=1

uijhi(x)hj(t)

v̇
′′
(x, t) =

2m∑

i=1

2m∑

j=1

vijhi(x)hj(t) (33)
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where 2M×2M Haar coefficient matrix of uij and vij in Eq.
(33) can be written as:

U̇
′′

= HT (x).U.H(t)

V̇
′′

= HT (x).V.H(t) (34)

Let dots and primes in Eq. (33) represent differentiation with
respect to t and x, respectively. By integrating Eq. (34) with
respect to t from 0 to t, we get

U
′′

= HT (x).U.P 1.H(t) + u
′′
(x, 0)

V
′′

= HT (x).V.P 1.H(t) + v
′′
(x, 0) (35)

on integrating Eq. (35) twice with respect to x from 0 to x,
then we get

U
′
= HT (x).[P 1]T .U.P 1.H(t) + u

′
(x, 0)− u

′
(0, 0) +

u
′
(0, t)

V
′
= HT (x).[P 1]T .V.P 1.H(t) + v

′
(x, 0)− v

′
(0, 0) +

v
′
(0, t) (36)

and then

U = HT (x).[P 2]T .U.P 1.H(t) + u(x, 0)− u(0, 0)−
xu

′
(0, 0) + xu

′
(0, t) + u(0, t)

V = HT (x).[P 2]T .V.P 1.H(t) + v(x, 0)− v(0, 0)−
xv

′
(0, 0) + xv

′
(0, t) + v(0, t) (37)

Applying differential operator Dν
t on both sides of Eq. (37)

and using property (ii) of Eq. (4)

Dν
t U = HT (x).[P 2]T .U.P 1−ν .H(t) + xDν

t u
′
(0, t) +

Dν
t u(0, t)

Dν
t V = HT (x).[P 2]T .V.P 1−ν .H(t) + xDν

t v
′
(0, t) +

Dν
t v(0, t) (38)

Substitution of Eqs. (35), (37) and (38) into Eq. (27)
may lead to coupled system of time-fractional differential
equations. This system will have some unknown functions
u
′′
(x, 0), u

′
(x, 0), u

′
(0, 0), u(0, 0), Dν

t u
′
(0, t), Dν

t u(0, t),
v
′′
(x, 0), v

′
(x, 0), v

′
(0, 0), v(0, 0), Dν

t v
′
(0, t), and Dν

t v(0, t)
. With the help of initial conditions all these functions are
calculated. We solve Eq. (27) for unknown Haar coefficients
by using collocation method. Finally, for Haar solution of
T-FSE, we substitute values of Haar coefficients in Eq. (37).

B. For time-fractional coupled Schrödinger system
Now, we approximate u(x, t), v(x, t), r(x, t) and s(x, t), by

the Haar series [32] as:

u̇
′′
(x, t) =

2m∑

i=1

2m∑

j=1

uijhi(x)hj(t)

v̇
′′
(x, t) =

2m∑

i=1

2m∑

j=1

vijhi(x)hj(t)

ṙ
′′
(x, t) =

2m∑

i=1

2m∑

j=1

rijhi(x)hj(t)

ṡ
′′
(x, t) =

2m∑

i=1

2m∑

j=1

sijhi(x)hj(t) (39)

Matrix form of Eq. (39) can be written as:

U̇
′′

= HT (x).U.H(t)

V̇
′′

= HT (x).V.H(t)

Ṙ
′′

= HT (x).R.H(t)

Ṡ
′′

= HT (x).S.H(t) (40)

Let dots and primes in Eq. (40) represent differentiation with
respect to t and x, respectively. By integrating Eq. (40) with
respect to t from 0 to t, we get

U
′′

= HT (x).U.P 1.H(t) + u
′′
(x, 0)

V
′′

= HT (x).V.P 1.H(t) + v
′′
(x, 0)

R
′′

= HT (x).R.P 1.H(t) + r
′′
(x, 0)

S
′′

= HT (x).S.P 1.H(t) + s
′′
(x, 0) (41)

on integrating Eq. (41) twice with respect to x from 0 to x,
once we get

U
′
= HT (x).[P 1]T .U.P 1.H(t) + u

′
(x, 0)− u

′
(0, 0) +

u
′
(0, t)

V
′
= HT (x).[P 1]T .V.P 1.H(t) + v

′
(x, 0)− v

′
(0, 0) +

v
′
(0, t)

R
′
= HT (x).[P 1]T .R.P 1.H(t) + r

′
(x, 0)− r

′
(0, 0) +

r
′
(0, t)

S
′
= HT (x).[P 1]T .S.P 1.H(t) + s

′
(x, 0)− s

′
(0, 0) +

s
′
(0, t) (42)

and

U = HT (x).[P 2]T .U.P 1.H(t) + u(x, 0)− u(0, 0)−
xu

′
(0, 0) + xu

′
(0, t) + u(0, t)

V = HT (x).[P 2]T .V.P 1.H(t) + v(x, 0)− v(0, 0)−
xv

′
(0, 0) + xv

′
(0, t) + v(0, t)

R = HT (x).[P 2]T .R.P 1.H(t) + r(x, 0)− r(0, 0)−
xr

′
(0, 0) + xr

′
(0, t) + r(0, t)

S = HT (x).[P 2]T .S.P 1.H(t) + s(x, 0)− s(0, 0)−
xs

′
(0, 0) + xs

′
(0, t) + s(0, t) (43)

Applying differential operator Dν
t on both sides of Eq. (43)

and using property (ii) of Eq. (4)

Dν
t U = HT (x).[P 2]T .U.P 1−ν .H(t) + xDν

t u
′
(0, t) +

Dν
t u(0, t)

Dν
t V = HT (x).[P 2]T .V.P 1−ν .H(t) + xDν

t v
′
(0, t) +

Dν
t v(0, t)

Dν
t R = HT (x).[P 2]T .R.P 1−ν .H(t) + xDν

t r
′
(0, t) +

Dν
t r(0, t)

Dν
t S = HT (x).[P 2]T .S.P 1−ν .H(t) + xDν

t s
′
(0, t) +

Dν
t s(0, t) (44)

Substitution of Eqs. (41), (42), (43) and (44) into Eq. (32) may
lead to the two coupled systems of time-fractional differential
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equations. This system has some unknown functions. With
the help of initial conditions all these functions are calculated.
We solve system of Eq. (32) for unknown Haar coefficients by
using collocation method. Finally, for Haar solution of time-
fractional coupled Schrödinger system (T-FCSS), we substitute
values of Haar coefficients in Eq. (43).

V. NUMERICAL PROBLEMS

In this section, four test problems are taken to test the
efficiency and accuracy of the proposed scheme. The com-
putations associated with the problems were executed using
Mathematica 10.

Problem 1: Consider the linear T-FSE which is also found
in [6] with

λ = 1, η = 0, µ(x) = 0 and q(x, t) = (
2it2−ν

Γ(3− ν)
− t2)eix (45)

Subjected to initial conditions

φ(x, 0) = 0, φ(0, t) = t2, φ
′
(0, t) = it2 (46)

the exact solution for ν = 1 is

φ(x, t) = t2eix (47)

Substitute Eq. (45) in Eq. (25) the determined coupled system
of equations is

−∂νv(x, t)
∂tν

+
∂2u(x, t)

∂x2
− (t2 cos x +

2t2−ν sinx

Γ(3− ν)
) = 0

∂νu(x, t)
∂tν

+
∂2v(x, t)

∂x2
− (t2 sinx− 2t2−ν cos x

Γ(3− ν)
) = 0 (48)

By using the method given in Section IV A, Eq. (48) can be
written as

−HT (x).[P 2]T .V.P 1−ν .H(t) + HT (x).U.P 1.H(t) +
Γ(ν + 1)xt2−ν

Γ(2− ν + 1)
− (t2 cos x +

2t2−ν sinx

Γ(3− ν)
) = 0

HT (x).[P 2]T .U.P 1−ν .H(t) + HT (x).V.P 1.H(t) +
Γ(ν + 1)t2−ν

Γ(2− ν + 1)
− t2 sinx +

2t2−ν cos x

Γ(3− ν)
) = 0 (49)

Towards the approximate solution, we first collocate Eq. (49)
at points

xi =
i− 0.5

2m
, tj =

j − 0.5
2m

(50)

Eq. (49) ⇒
−HT (xi).[P 2]T .V.P 1−ν .H(tj) + HT (xi).U.P 1.H(tj) +

Γ(ν + 1)xit
2−ν
j

Γ(2− ν + 1)
− (t2j cos xi +

2t2−ν
j sinxi

Γ(3− ν)
) = 0

HT (xi).[P 2]T .U.P 1−ν .H(tj) + HT (xi).V.P 1.H(tj) +
Γ(ν + 1)t2−ν

j

Γ(2− ν + 1)
− t2j sinxi +

2t2−ν
j cos xi

Γ(3− ν)
) = 0 (51)

Eq. (51) generates two systems of 2M algebraic equations of
Haar coefficients. The values of Haar coefficients are obtained
from system of Eq. (51) by using Newton’s iterative method.
With the help of these coefficients, Haar solutions are attained

from Eq. (37). Comparison of the Haar solutions by Homotopy
analysis method in [5] is shown in Table I with different values
of ν.

TABLE I
COMPARISON BETWEEN HAAR SOLUTIONS (J = 1, m = 4) AND

HAM [5] OF PROBLEM 1

t x
ν = 0.1 ν = 0.3 ν = 0.5

HWCM HAM[5] HWCM HAM[5] HWCM HAM[5]

0.125

0.125 0.015584 0.015729 0.015588 0.018166 0.015602 0.032192
0.375 0.140258 0.140320 0.140277 0.126725 0.140322 0.18097
0.625 0.389603 0.391911 0.389639 0.331403 0.389698 0.417840
0.875 0.763621 0.773331 0.763678 0.642092 0.763759 0.735157

0.375

0.125 0.015639 0.014928 0.015909 0.015876 0.016599 0.029901
0.375 0.140697 0.137242 0.142257 0.117591 0.144873 0.171424
0.625 0.390743 0.387923 0.394153 0.321101 0.398660 0.407056
0.875 0.765763 0.770778 0.771532 0.639027 0.778130 0.736778

0.625

0.125 0.015881 0.014367 0.017251 0.013413 0.020637 0.026391
0.375 0.142657 0.135328 0.150692 0.110280 0.164111 0.159805
0.625 0.395831 0.385461 0.413348 0.315020 0.436643 0.396412
0.875 0.775363 0.768819 0.805018 0.639973 0.839202 0.740576

0.875

0.125 0.016431 0.014212 0.020145 0.011454 0.028487 0.022180
0.375 0.147236 0.135101 0.169643 0.107096 0.205320 0.148820
0.625 0.407697 0.385159 0.456638 0.314912 0.519962 0.388621
0.875 0.797810 0.767939 0.880970 0.644682 0.974802 0.745598

Fig. 1. Haar solutions of Problem 1 at ν = 0.1, 0.3, 0.5

Problem 2: Consider a nonlinear cubic form of T-FSE [6]
with

λ = 1, η = 1, µ(x) = 0 and

q(x, t) = (− 2t2−ν

Γ(3− ν)
+ (−4π2t2 + t6)i)e−2πix (52)

and initial conditions

φ(x, 0) = 0, φ(0, t) = it2, φ
′
(0, t) = 2πt2 (53)

with exact solution for ν = 1 is

φ(x, t) = t2ie−2πix (54)
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Substitute Eq. (52) in Eq. (25) the determine coupled system
of equations is

−∂νv(x, t)
∂tν

+
∂2u(x, t)

∂x2
+ (u2 + v2)u− ((t6 − 4π2t2) sin 2π

x− 2t3−ν

Γ(3− ν)
cos 2πx) = 0 (55)

∂νu(x, t)
∂tν

+
∂2v(x, t)

∂x2
+ (u2 + v2)v − ((t6 − 4π2t2) cos 2π

x +
2t3−ν

Γ(3− ν)
sin 2πx) = 0 (56)

On following the method described in Section IV A, we have

−HT (x).[P 2]T .V.P 1−ν .H(t) + HT (x).U.P 1.H(t)+

((HT (x).[P 2]T .U.P 1.H(t) + 2πt2x)2+

(HT (x).[P 2]T .V.P 1.H(t)+t2)2).(HT (x).[P 2]T .U.P 1.H(t)+

2πt2x) +
Γ(3)

Γ(3− ν)
t2−ν − ((t6 − 4π2t2) sin 2πx−

2t3−ν

Γ(3− ν)
cos 2πx) = 0,

HT (x).[P 2]T .U.P 1−ν .H(t) + HT (x).V.P 1.H(t)+

((HT (x).[P 2]T .U.P 1.H(t) + 2πt2x)2+

(HT (x).[P 2]T .V.P 1.H(t)+t2)2).(HT (x).[P 2]T .V.P 1.H(t)+

t2) +
2πΓ(3)

Γ(3− ν)
xt2−ν − ((t6 − 4π2t2) cos 2πx+

2t3−ν

Γ(3− ν)
sin 2πx) = 0 (57)

For approximate solution of Eq. (56), putting collocation
points of Eq. (50) in above equations generates two systems of
2M non linear algebraic equations of Haar coefficients. The
values of Haar coefficients are obtained by using Newton’s
iterative method and then with the help of these coefficients
Haar solutions are attained from Eq. (37). The Haar solutions
comparisone with the method in [5] for the different values of
ν is shown in Table II.

Problem 3: Consider T-FSE with trapping potential [6] for

λ = 1, η = 1, µ(x) = cos2 x and

q(x, t) = (i
6t3−ν

Γ(4− ν)
− 1

4
t3 + t9 + t3 cos2 x)e

ix
2 (58)

Subjected to initial conditions

φ(x, 0) = 0, φ(0, t) = t, φ
′
(0, t) = i

t3

2
(59)

with exact solution for ν = 1 is

φ(x, t) = t3e
ix
2 (60)

TABLE II
COMPARISON BETWEEN HAAR SOLUTIONS (J = 1, m = 4) AND

HAM [5] OF PROBLEM 2

t x
ν = 0.1 ν = 0.5 ν = 0.9

HWCM HAM[5] HWCM HAM[5] HWCM HAM[5]

0.125

0.125 0.013539 0.013276 0.013578 0.006316 0.013768 0.002593
0.375 0.121912 0.132538 0.121985 0.097840 0.122023 0.062856
0.625 0.339272 0.385008 0.339565 0.347687 0.340151 0.276693
0.875 0.668433 0.770812 0.668861 0.793325 0.669170 0.730876

0.375

0.125 0.010136 0.013277 0.012634 0.006316 0.020531 0.002593
0.375 0.087449 0.132538 0.091611 0.097839 0.097166 0.062855
0.625 0.235941 0.385008 0.240394 0.347687 0.248868 0.276693
0.875 0.450485 0.770812 0.449529 0.793327 0.445334 0.730872

0.625

0.125 0.016209 0.013277 0.018019 0.006316 0.037906 0.002600
0.375 0.144228 0.132538 0.142259 0.097840 0.133228 0.062856
0.625 0.391331 0.385008 0.383766 0.347687 0.379218 0.276693
0.875 0.723229 0.770812 0.709533 0.793325 0.681230 0.730876

0.875

0.125 0.016724 0.013276 0.011634 0.006316 0.064282 0.002600
0.375 0.161766 0.132538 0.166036 0.097840 0.180905 0.062856
0.625 0.448134 0.385008 0.430220 0.347687 0.413375 0.276693
0.875 0.856867 0.770812 0.860240 0.793327 0.847833 0.730872

Determine the coupled system of equations by substituting
Eq. (57) in Eq. (25). Next, following the method illustrated
in Section IV A, by following same steps of problem 1
Haar solutions are attained. The obtained Haar solutions are
compared with the Homotopy analysis method [5] and at
different values of ν are shown in Table III.

TABLE III
COMPARISON BETWEEN HAAR SOLUTIONS (J = 1, m = 4) AND

HAM [5] OF PROBLEM 3

t x
ν = 0.1 ν = 0.3 ν = 0.5

HWCM HAM[5] HWCM HAM[5] HWCM HAM [5]

0.125

0.125 0.002666 0.001164 0.005127 0.001923 0.009737 0.003186
0.375 0.064478 0.032624 0.099565 0.043939 0.151781 0.100635
0.625 0.283647 0.155864 0.395466 0.219652 0.544319 0.438394
0.875 0.752604 0.482083 0.981003 0.706422 1.262370 1.267630

0.375

0.125 0.002335 0.001064 0.004453 0.001859 0.008360 0.002993
0.375 0.056487 0.029282 0.086504 0.040986 0.130392 0.082892
0.625 0.248554 0.138363 0.343701 0.159805 0.467832 0.388469
0.875 0.660306 0.425678 0.853338 0.297603 1.085680 1.080400

0.625

0.125 0.001737 0.000940 0.003234 0.001782 0.005880 0.002751
0.375 0.042093 0.025192 0.062894 0.046640 0.091797 0.073477
0.625 0.185563 0.117006 0.250376 0.240900 0.330180 0.329875
0.875 0.498019 0.355007 0.625716 0.854561 0.769576 0.869481

0.875

0.125 0.000973 0.000833 0.001714 0.001823 0.002981 0.002530
0.375 0.023635 0.021729 0.033100 0.051878 0.045350 0.065040
0.625 0.105052 0.098823 0.131553 0.315074 0.158672 0.279519
0.875 0.299206 0.291128 0.337855 0.257690 0.368943 0.300179

Problem 4: Take into consideration non-linear T-FCSS [35]
for
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λ1 = 2, λ2 = 4, α1 = α2 = 1, β1 = 1 and β2 = −1

q1(x, t) = − 2t2−ν

Γ(3− ν)
sinx + 4t6 cos x + i(

2t2−ν

Γ(3− ν)
cos x+

4t6 sinx) andq2(x, t) = − 2t2−ν

Γ(3− ν)
sinx + 8t6 cos x+

i(
2t2−ν

Γ(3− ν)
cos x + 8t6 sinx) (61)

with initial conditions

φ(x, 0) = ψ(x, 0) = 0,

φ(0, t) = ψ(0, t) = t,

φ
′
(0, t) = ψ

′
(0, t) = it2 (62)

and with exact solution for these values of λ, α, β and ν = 1
is

φ(x, t) = ψ(x, t) = t2eix, (63)

Fig. 2. Haar solutions of Problem 3 at ν = 0.1, 0.3, 0.5

Determine the coupled system of two equations by substituting
Eq. (60) in Eq. (29) as

− ∂νv(x, t)
∂tν

− ∂v(x, t)
∂x

+
∂2u(x, t)

∂x2
+2(u2 + v2 + r2 + s2)

u(x, t) + u(x, t) + r(x, t) +
2t2−ν

Γ(3− ν)
sinx + 4t6 cos x = 0,

∂νu(x, t)
∂tν

+
∂u(x, t)

∂x
+

∂2v(x, t)
∂x2

+ 2(u2 + v2 + r2 + s2)

v(x, t) + v(x, t) + s(x, t)− (
2t2−ν

Γ(3− ν)
cos x + 4t6 sinx) = 0,

− ∂νs(x, t)
∂tν

+
∂s(x, t)

∂x
+

∂2r(x, t)
∂x2

+ 2(u2 + v2 + r2 + s2)

r(x, t) + u(x, t)− r(x, t) +
2t2−ν

Γ(3− ν)
sinx + 8t6 cos x = 0,

∂νr(x, t)
∂tν

− ∂r(x, t)
∂x

+
∂2s(x, t)

∂x2
+ 2(u2 + v2 + r2 + s2)

s(x, t)+v(x, t)−s(x, t)− (
2t2−ν

Γ(3− ν)
cos x+8t6 sinx) = 0

(64)

Next, following the method illustrated in Section IV B, we
have

− (HT (x).[P 2]T .V.P 1−ν .H(t) +
Γ(ν + 1)

Γ(2− ν + 1)
xt2−ν)−

HT (x).[P 1]T .V.P 1.H(t) + HT (x).U.P 1.H(t) + U+

2(U2 + V2 + R2 + S2)U + R +
2t2−ν

Γ(3− ν)
sinx+

4t6 cos x = 0, (65)

HT (x).[P 2]T .U.P 1−ν .H(t) +
Γ(ν + 1)

Γ(2− ν + 1)
xt2−ν+

HT (x).[P 1]T .U.P 1.H(t) + HT (x).V.P 1.H(t) + V+

2(U2 + V2 + R2 + S2)V + S− (
2t2−ν

Γ(3− ν)
cos x+

4t6 sinx) = 0,

− (HT (x).[P 2]T .S.P 1−ν .H(t) +
Γ(ν + 1)

Γ(2− ν + 1)
xt2−ν)+

HT (x).[P 1]T .S.P 1.H(t) + HT (x).R.P 1.H(t) + U+

4(U2 + V2 + R2 + S2)R− R +
2t2−ν

Γ(3− ν)
sinx+

8t6 cos x = 0,

(HT (x).[P 2]T .R.P 1−ν .H(t) +
Γ(ν + 1)

Γ(2− ν + 1)
xt2−ν)−

HT (x).[P 1]T .R.P 1.H(t) + HT (x).S.P 1.H(t) + V+

4(U2+V2+R2+S2)S−S−(
2t2−ν

Γ(3− ν)
cos x+8t6 sinx) = 0

(66)

where U = HT (x).[P 2]T .U.P 1.H(t) + t2,
V = HT (x).[P 2]T .V.P 1.H(t) + xt2,
R = HT (x).[P 2]T .R.P 1.H(t) + t2 and
S = HT (x).[P 2]T .S.P 1.H(t) + xt2

TABLE IV
COMPARISON BETWEEN HAAR SOLUTIONS

(J = 1, m = 4, ν = 0.1) AND HAM [5] OF PROBLEM 4

t x
| φ(x, t) | | ψ(x, t) |

HWCM HAM [5] HWCM HAM [5]

0.125

0.125 0.015383 0.014440 0.0153167 0.004286
0.375 0.138501 0.128015 0.137928 0.038537
0.625 0.385851 0.365216 0.384604 0.143183
0.875 0.763499 0.949120 0.763355 0.811326

0.375

0.125 0.013949 0.014439 0.013495 0.004286
0.375 0.125927 0.128015 0.121958 0.038536
0.625 0.357238 0.365216 0.348492 0.143183
0.875 0.747914 0.949120 0.746334 0.811326

0.625

0.125 0.011086 0.014440 0.009704 0.004285
0.375 0.100695 0.128015 0.088716 0.038536
0.625 0.297240 0.365216 0.272767 0.143183
0.875 0.697857 0.949120 0.706649 0.811326

0.875

0.125 0.008487 0.014440 0.004160 0.004286
0.375 0.077508 0.128015 0.040194 0.038537
0.625 0.236292 0.365216 0.163674 0.143183
0.875 0.634398 0.949120 0.664360 0.811326

Using Eq. (50), the values of Haar coefficients are obtained
and finally with the help of these coefficients Haar solutions
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are attained from Eq. (43). The Haar solutions are compared
with the method in [5] with ν = 0.1 and results are shown in
Table IV, and for ν = 0.5 and ν = 0.9 in Table V and Table
VI, respectively.

TABLE V
COMPARISON BETWEEN HAAR SOLUTIONS

(J = 1, m = 4, ν = 0.5) AND HAM [5] OF PROBLEM 4

t x
| φ(x, t) | | ψ(x, t) |

HWCM HAM [5] HWCM HAM [5]

0.125

0.125 0.015386 0.015609 0.015323 0.008203
0.375 0.138522 0.139708 0.137974 0.074131
0.625 0.385897 0.376762 0.384668 0.225031
0.875 0.763618 0.919085 0.763415 0.811099

0.375

0.125 0.013951 0.015608 0.013522 0.008203
0.375 0.125873 0.139708 0.122165 0.074132
0.625 0.357309 0.376762 0.348789 0.225031
0.875 0.748433 0.919085 0.746600 0.811099

0.625

0.125 0.011025 0.015609 0.009723 0.008203
0.375 0.100259 0.139708 0.088875 0.074132
0.625 0.296585 0.376762 0.272878 0.225031
0.875 0.696443 0.919085 0.705993 0.811099

0.875

0.125 0.008579 0.015609 0.004118 0.008202
0.375 0.079810 0.139708 0.040065 0.074131
0.625 0.235819 0.376762 0.162549 0.225031
0.875 0.623663 0.919085 0.660364 0.811099

TABLE VI
COMPARISON BETWEEN HAAR SOLUTIONS

(J = 1, m = 4, ν = 0.9) AND HAM [5] OF PROBLEM 4

t x
| φ(x, t) | | ψ(x, t) |

HWCM HAM [5] HWCM HAM [5]

0.125

0.125 0.015395 0.013101 0.015357 0.013101
0.375 0.138552 0.117724 0.138256 0.118102
0.625 0.385995 0.322206 0.384873 0.336649
0.875 0.763808 0.631637 0.763550 0.834047

0.375

0.125 0.013964 0.013101 0.013688 0.013101
0.375 0.125649 0.117724 0.123396 0.118102
0.625 0.357809 0.322206 0.349879 0.336649
0.875 0.749377 0.631637 0.747267 0.834047

0.625

0.125 0.010878 0.013101 0.009803 0.013101
0.375 0.099177 0.117725 0.089536 0.118102
0.625 0.296418 0.322206 0.273663 0.336649
0.875 0.694211 0.631637 0.701977 0.834047

0.875

0.125 0.008446 0.013101 0.003678 0.013101
0.375 0.085571 0.117725 0.040710 0.118102
0.625 0.231591 0.322206 0.157683 0.336649
0.875 0.604013 0.631637 0.640823 0.834047

VI. CONCLUSION

In this paper, we extended the capability of the Haar
wavelet collocation method (HWCM) for the solution of time-
fractional coupled system of partial differential equations.
The main advantage of HWCM is the ability to achieve

a good solution and rapid convergence with small number
of collocation points. The presence of maximum zeros in
the Haar matrices reduces the number of unknown wavelet
coefficients that is to be determined, which as a result dimin-
ishes the computation time as well. The scheme is tested on
some examples of time fractional Schrödinger equations. The
presented procedure may very well be extended to solve two
dimensional Schrödinger equation and other similar nonlinear
problems of partial differential equations of fractional order.
The problem discussed here is just for showing the appli-
cability of the proposed computational technique to handle
the complex system of differential equation in fractional-
order problems in a straight forward way. Also, the Haar
wavelet method proves to be capable to efficiently handle
the nonlinearity of partial differential equations of fractional
order. The main advantages of the proposed algorithm are, its
simple application and no requirement of residual or product
operational matrix. Numerical solutions for different order
of fractional time derivative by Haar wavelet are shown in
Tables and Figures. The increasing values of ν show that the
solutions are valuable in understanding their respective exact
solutions for ν = 1. Comparisons between our approximate
solutions of the problems with their actual solutions and with
the approximate solutions achieved by a homotopy analysis
method [5] confirm the validity and accuracy of our scheme.
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Asymptotic Magnitude Bode Plots of
Fractional-Order Transfer Functions

Ameya Anil Kesarkar, Member, IEEE, and N. Selvaganesan, Senior Member, IEEE

Abstract—Development of asymptotic magnitude Bode plots
for integer-order transfer functions is a well-established topic
in the control theory. However, construction of such plots for
the fractional-order transfer functions has not received much
attention in the existing literature. In the present paper, we
investigate in this direction and derive the procedures for
sketching asymptotic magnitude Bode plots for some of the
popular fractional-order controllers such as PIα, [PI]α, PDβ ,
[PD]β , and PIαDβ . In addition, we deduce these plots for
general fractional commensurate-order transfer functions as well.
As applications of this work, we illustrate (i) the analysis of
the designed fractional-control loop and (ii) the identification of
fractional-order transfer function from a given plot.

Index Terms—Asymptotic magnitude bode, commensurate-
Order, fractional-Order.

I. INTRODUCTION

BOde plot [1], [2] plays an important role in the control
theory for graphically visualizing the frequency behavior

of a transfer function. Generally, software tools such as MAT-
LAB, SCILAB, etc. are used for obtaining an accurate Bode
plot as it involves significant amount of computational efforts.
However, one can sketch a good straight-line approximation
of the exact Bode plot known as asymptotic Bode plot [3], [4]
by doing a few simple calculations.

Asymptotic Bode plots are useful for quick manual analysis
of a designed control system with a reasonable degree of
accuracy [5]. They are also important for understanding the
role of each parameter of the given transfer function in
deciding the shape of its Bode response [6]. This knowledge,
in particular about the controller structures is very important to
a design engineer for manually tuning the control system. The
procedures to sketch asymptotic Bode plots of integer-order
transfer functions are well-established in the existing theory
[3] [4].

Fractional calculus [7] generalizes the notion of integer-
order transfer functions to arbitrary orders, which leads to the
existence of fractional-order transfer functions [8]−[10]. The
control theory finds application of fractional calculus in the
form of fractional-order controllers such as PIα, [PI]α, PDβ ,
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Ameya Anil Kesarkar (Corresponding Author) is with Space Applications

Centre (SAC), Indian Space Research Organization (ISRO), Ahmedabad,
Gujarat, India. (email: ameyakesarkar27@gmail.com)

N. Selvaganesan is with the Department of Avionics, Indian Institute of
Space Science and Technology (IIST), Thiruvananthapuram, Kerala, India.
(email: n selvag@iist.ac.in)

Digital Object Identifier 10.1109/JAS.2016.7510196

[PD]β , PIαDβ , etc. which have fractional-order transfer
functions [9]−[11].

For a given fractional-order transfer function, one may
consider its integer-order approximation to sketch its asymp-
totic Bode plot using existing procedures for integer-order
transfer functions. However, the development of asymptotic
Bode plots of fractional-order transfer functions in their orig-
inal irrational-form has not received much attention in the
literature. In [11], [12], only a brief mention is found about
such plots in the context of fractional-order lead compensator.
Therefore, it is important to formulate and analytically justify
development of asymptotic plots for general fractional-order
transfer functions, which is undoubtedly lacking in the ex-
isting literature. In the current paper, we obtain asymptotic
magnitude Bode plots of: a) PIα, [PI]α, PDβ , [PD]β ,
PIαDβ controllers and b) general fractional commensurate-
order transfer functions. The contributions of our paper are
summarized as follows:

1) To define basic fractional-order terms and develop their
individual asymptotic magnitude Bode plots.

2) To utilize above plots for developing asymptotic magni-
tude Bode plots of:
a) Fractional-order controllers such as PIα, [PI]α, PDβ ,
[PD]β , PIαDβ .
b) General fractional commensurate-order transfer func-
tions.

3) To illustrate the applications of these plots for:
a) Performance analysis of designed fractional-order con-
trol loop.
b) Identifying fractional-order transfer function from
given asymptotic magnitude plot.

II. ASYMPTOTIC MAGNITUDE BODE PLOTS OF BASIC
TERMS

We introduce a few basic fractional-order terms given in
Table I, where K, a, a1, a2 ∈ R and α, β ∈ R>0.

First, we explain the development of asymptotic magnitude
Bode plots for terms namely, constant gain, fractional zero, and
fractional double-term pole. Later, such plots are obtained for
the remaining terms.

A. Constant Gain

It is easy to see that for the constant gain transfer function
T (s) = K, the magnitude |T (jω)|dB = 20log10|K|, ∀ω.
Therefore, to draw magnitude Bode plot of constant gain, one
just has to sketch a horizontal line at 20log10|K|. In Bode
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plot, x-axis represents frequency (ω) in rad/s on a logarithmic
scale and y-axis represents magnitude in dB on a linear scale.

TABLE I
BASIC FRACTIONAL-ORDER TERMS

TERM DESCRIPTION TRANSFER FUNCTION ( T (s))
CONSTANT GAIN K

FRACTIONAL ZERO sα + a

FRACTIONAL POLE 1
sα+a

FRACTIONAL ZERO AT ORIGIN sα

FRACTIONAL POLE AT ORIGIN 1
sα

FRACTIONAL [ZERO] (s + a)α

FRACTIONAL [POLE] 1
(s+a)α

FRACTIONAL DOUBLE-TERM ZERO sα+β + a1sα + a2

FRACTIONAL DOUBLE-TERM POLE 1
sα+β+a1sα+a2

B. Fractional Zero

The transfer function of fractional zero is given by:

T (s) = (s)α + a

Substituting s = jω (where, ω ∈ R≥0) results into:

T (jω) = (jω)α + a

Therefore, the magnitude in dB is given by,

|T (jω)|dB = 20log10

(
a2 + ω2α + 2aωαcos

(πα

2

)) 1
2

In the sum
(
a2 + ω2α + 2aωαcos

(
πα
2

))
, the term a2 dom-

inates at lower frequencies whereas the term ω2α dominates at
higher frequencies. For the intended approximation, we choose
the corner frequency (or break frequency) ωcr such that these
terms are equal, that is, a2 = ω2α|ω=ωcr

. From which, one
obtains the corner frequency, ωcr = |a| 1α . Thus, the following
approximation of the magnitude is obtained:

1) For ω ≤ ωcr, |T (jω)|dB = 20log10

(
a2

) 1
2 = 20log10|a|.

2) For ω > ωcr, |T (jω)|dB = 20log10

(
ω2α

) 1
2 = 20αlog10ω.

Based on the above discussion, we lay down the following
procedure to construct the asymptotic magnitude plot for (sα+
a) shown in Fig. 1:

Fig. 1. Asymptotic Magnitude Bode Plot for Fractional Zero.

Procedure:
1) Compute the corner frequency ωcr = |a| 1α and locate

point 1© at magnitude 20log10|a|.
2) Draw a line with slope 0 dB/decade for ω ≤ ωcr, and a

line with slope 20α dB/decade for ω > ωcr as shown in
Fig. 1.

Comparison with Real Magnitude Bode Plot:
1) At this point, let us compare the asymptotic magnitude

Bode plot with the real magnitude Bode plot for the
Fractional Zero term (sα + a). For this purpose, let the
numerical values be: α = 0.9, a = 2.1

2) Fig. 2 shows the real as well as asymptotic magnitude
Bode plots for the fractional zero term, (s0.9 + 2).

3) As seen from Fig. 2, the asymptotic plot follows the real
plot quite closely, thereby confirming the correctness of
our asymptotic formulation.

Fig. 2. Real and Asymptotic Magnitude Bode Plot for (s0.9 + 2)

C. Fractional Double-Term Pole

The transfer function of fractional double-term pole is given
by T (s) = 1

(sα+β+a1sα+a2)
. Substituting s = jω (where, ω ∈

R≥0) leads to:

T (jω) =
1

(jω)α+β + a1(jω)α + a2

The decibel magnitude of T (jω) is given by,

|T (jω)|dB = −20log10

(
ω2(α+β) + a2

1ω
α + a2

2+

2a1ω
2α+βcos

(
πβ

2

)
+ 2a2ω

α+βcos

(
π(α + β)

2

)
+

2a1a2ω
αcos

(πα

2

)) 1
2

In the sum
(
ω2(α+β) + a2

1ω
α + a2

2 + 2a1ω
2α+βcos

(
πβ
2

)
+

2a2ω
α+βcos

(
π(α+β)

2

)
+ 2a1a2ω

αcos
(

πα
2

))
, the term a2

2

dominates at lower frequencies whereas the term ω2(α+β)

dominates at higher frequencies. For the approximation
purpose, the corner frequency ωcr is chosen such that the
dominant terms are equal,

a2
2 = [ω2(α+β)]ω=ωcr

Therefore, one gets the corner frequency,

ωcr = |a2|
1

(α+β)

Hence, the following magnitude approximation is obtained:
1) For ω ≤ ωcr:

|T (jω)|dB = −20log10|a2|
1Although only one numerical example has been illustrated here, one may

consider different sets of parameter values for the numerical confirmation.
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2) For ω > ωcr:

|T (jω)|dB = −20log10|ω(α+β)| = −20(α + β)log10ω

From the discussion above, following procedure is stated to
sketch asymptotic magnitude Bode plot for fractional double-
term pole 1

(sα+β+a1sα+a2)
shown in Fig. 3:

Procedure:
1) Compute the corner frequency ωcr = |a2|

1
(α+β) and

locate point 1© at magnitude −20log10|a2|.
2) Draw a line with slope 0 dB/decade for ω ≤ ωcr, and a

line with slope −20(α + β) dB/decade for ω > ωcr as shown
in Fig. 3.

Fig. 3. Asymptotic Magnitude Bode Plot for Fractional double-term
Pole.

Comparison with Real Magnitude Bode Plot:
1) Let us consider a numerical example of finding the

magnitude Bode plot of the Fractional Double-Term Pole term,
with the parameters: α = 0.5, β = 0.9, a1 = 2, a2 = 3.

2) Fig. 4 shows the real as well as asymptotic magnitude
Bode plots for fractional double-term pole, 1

(s(0.5+0.9)+2s0.5+3)
.

As seen from Fig. 4, the asymptotic plot follows the real
plot quite closely, thereby confirming the correctness of our
formulation.

Fig. 4. Real and Asymptotic Magnitude Bode Plot for
1

(s(0.5+0.9)+2s0.5+3)

Similarly, one can obtain such plots for terms: 1
sα+a , sα,

1
sα , (s + a)α, 1

(s+a)α , and sα+β + a1s
α + a2. The results

are summarized in Tables II and III. Also, in each case, the
comparison is made between the real and asymptotic plots
using suitable examples. It can be seen from the Tables II
and III that for the numerical cases under consideration, the
asymptotic and real Bode plots are quite close to each other.2

2As seen from Table II, in case of fractional zero at origin (sα) the
asymptotic and real plots ‘coincide’ (as the magnitude with both, the real
and asymptotic formulation, turns out to be: 20αlog10w). Therefore, for the
numerical example, the plots overlap each other. The same is also true in case
of fractional pole at origin ( 1

sα ).

Remark 1: It can be observed in Tables II and III that since
the transfer functions of fractional zero and fractional pole
are reciprocal to each other, their magnitude plots are mirror
images of each other with respect to ω-axis. This is also true
for pairs such as fractional pole and zero at origin, fractional
[pole] and [zero], fractional double-term pole and zero.

D. Asymptotic Magnitude Bode Plots for Fractional-Order
Controllers

In the present subsection, the asymptotic magnitude Bode
plots of basic fractional-order terms are used to obtain such
plots for fractional-order controllers, PIα, [PI]α, PDβ ,
[PD]β , and PIαDβ .

Let us consider PIα controller which has the transfer
function:

C(s) = Kp

(
1 +

Ki

sα

)
= (Kp) (sα + Ki)

(
1
sα

)
(1)

As observed in (1), PIα is expressed as a product of transfer
functions of constant gain, fractional zero and fractional pole
at origin. Therefore, the asymptotic magnitude Bode plot of
PIα can be obtained by adding such plots of its constituent
elements as shown in Table IV. Similarly, one can develop the
asymptotic magnitude Bode plots for [PI]α, PDβ , [PD]β ,
and PIαDβ controllers as summarized in Table V.

Remark 2: The asymptotic magnitude Bode plots of
fractional-order controllers are obtained from those of basic
fractional-order terms. Therefore, we do not pursue the com-
parison between asymptotic and real magnitude Bode plots
for the fractional-order controllers exclusively. Nevertheless, in
Section IV, a numerical example is considered to demonstrate
the analysis of fractional control loop using the asymptotic
formulation, wherein the real and asymptotic plots have been
compared.

III. ASYMPTOTIC MAGNITUDE BODE PLOTS FOR
GENERAL FRACTIONAL COMMENSURATE-ORDER

TRANSFER FUNCTIONS

Let us consider a general fractional-order transfer function,

Y (s)
U(s)

=
bmsβm + bm−1s

βm−1 + ... + b0s
β0

ansαn + an−1sαn−1 + ... + a0sα0
(2)

The transfer function (2) represents a commensurate-order
system, if there exists a greatest common divisor q ∈ R
such that αi = qei(i = 0, 1, 2, . . . , n), βk = qfk(k =
0, 1, 2, . . . , m); ei, fk ∈ Z. Here, q is called the commensurate
order, which can be rational or irrational. Therefore,

T (s) :=
Y (s)
U(s)

=
P (sq)
Q(sq)

where, P (.), Q(.) are polynomial functions. If p = sq, then,

T (p) =
P (p)
Q(p)

(3)

On factorization, (3) can be expressed as follows3:

3This is because any polynomial with real coefficients has either real roots
or complex roots in pairs. The real roots lead to terms of the form (p +
ci), (p+gk) and complex roots in pairs lead to terms such as (djp2 +ejp+
fj), (hlp

2 + olp + ql).
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TABLE II
ASYMPTOTIC MAGNITUDE BODE PLOTS FOR REMAINING BASIC FRACTIONAL-ORDER TERMS

T (p) =

m1∏
i=0

(p + ci)
m2∏
j=0

(djp
2 + ejp + fj)

m3∏
k=0

(p + gk)
m4∏
l=0

(hlp2 + olp + zl)

where ci (i = 0, 1, . . . m1), dj , ej , fj (j = 0, 1, . . .m2),
gk (k = 0, 1, . . .m3), hl, ol, zl (l = 0, 1, . . . m4) are real
constants. m1,m2,m3,m4 are positive integers.

Now, by re-substituting p = sq, one gets,

T (s) =

l1∏
i=0

(sq + ci)
l2∏

j=0

(djs
2q + ejs

q + fj)

l3∏
k=0

(sq + gi)
l4∏

l=0

(hls2q + olsq + zl)
(4)

It is seen that (4) is composed of fractional zeros, fractional
poles, fractional double-term zeros and fractional double-term
poles. Hence, one can construct asymptotic Bode plots of T (s)

by adding such plots of their constituent terms similar to the
PIα case explained in Table IV.

IV. APPLICATIONS OF ASYMPTOTIC MAGNITUDE BODE
PLOTS

In this section, we demonstrate two applications of asymp-
totic magnitude Bode formulations, 1) Analysis of fractional
control loop and 2) Identification of fractional-order transfer
function from asymptotic magnitude plot.

A. Analysis of Fractional Control Loop

Let us suppose that we have tuned a [PD]β controller for
a type-1 motion plant of the form K

s(Ts+1) to meet required
gain crossover frequency (ωgc), phase margin (φm), and
isodamping property [13] by following the methodology given
in [14]. The numerical values are: K = 1, T = 0.4, ωgc = 10
rad/s, φm = 70◦. The plant (G(s)) and designed controller
(C(s)) are as follows:
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TABLE III
ASYMPTOTIC MAGNITUDE BODE PLOTS FOR REMAINING BASIC FRACTIONAL-ORDER TERMS

G(s) = 1
s(0.4s+1) , C(s) = 16.7780(1 + 0.2992s)0.7826

∴ L(s)
= C(s)G(s) = 16.7780(1 + 0.2992s)0.7826 1

s(0.4s+1)

= (16.3143)
(
s + 1

0.2992

)0.7826 (
1
s1

)
1

(s1+2.5) (5)

Fig. 5. Application of Asymptotic Magnitude Plot for Loop
Analysis.

Our focus is to illustrate the usefulness of earlier formu-

lations for analyzing magnitude Bode characteristics of the
designed loop transfer function L(s). More precisely, we
intend to verify the gain crossover frequency met by L(s).
From (5), it can be seen that L(s) is composed of basic terms
defined in Section II. One can draw their individual asymptotic
plots and add them to get the plot for L(s). Fig. 5 presents
exact and asymptotic magnitude bode plots for L(s).

Fig. 6. Identification of Fractional-Order transfer function from
Asymptotic Magnitude Bode Plot
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TABLE IV
ASYMPTOTIC MAGNITUDE BODE PLOT FOR PIα CONTROLLER

The zoomed view of a selected portion of Fig. 5 is shown in
Fig. 6. From Fig. 6, it is seen that the ωgc values with asymp-
totic and exact magnitude Bode plots (9.648 and 10 rad/s,
respectively) are quite close to each other. This confirms the
correctness of our formulations.

B. Identification of Fractional-Order Transfer Function

Let us consider a general asymptotic magnitude
Bode plot as shown in Fig. 7 (Where, a1, a2, . . . an ∈
R>0, b1, b2, . . . bn+1 ∈ R). It is desired to identify the
fractional-order transfer function corresponding to the asymp-
totic magnitude Bode plot in Fig. 7. It must be noted that in
Fig. 7, the straight-line approximations assume any arbitrary
slope. (In integer-order transfer function case, such slopes are
always integer multiples of 20.)

Prior to identification, it is essential to consider the asymp-
totic magnitude Bode plots of following composite terms:

1) ksα (where, k, α ∈ R)
ksα is composed of constant gain k and the term sα. Based

on the value of α, there are following possible cases:
a) α > 0: In such case, sα is fractional zero at origin.

Asymptotic magnitude Bode plot of ksα obtained from its
constituent terms is shown in Fig. 8. Figure is sketched for
|k| > 1. One can also sketch the corresponding one for
|k| < 1.

TABLE V
ASYMPTOTIC MAGNITUDE BODE PLOTS FOR OTHER

FRACTIONAL-ORDER CONTROLLERS

Fig. 7. Identification of Fractional-Order transfer function from
Asymptotic Magnitude Bode Plot

b) α < 0: In this case, sα represents fractional pole at origin.
Fig. 9 shows the asymptotic magnitude Bode plot for ksα.

c) α = 0: For this case, ksα reduces to k. The discussion
for asymptotic magnitude plot for such a term was made in
Section II-A.
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Fig. 8. Asymptotic Magnitude Bode Plot for ksα when α < 0.

Fig. 9. Asymptotic Magnitude Bode Plot for (s+a)α

aα when α > 0.

Remark: It can be inferred from the above asymptotic plots
that the term ksα is identified when a line of given slope offset
by a known magnitude is observed.

2) (s+a)α

aα (where, a ∈ R, α ∈ R 6=0)
(s+a)α

aα is composed of constant gain 1
aα and the term

(s+a)α. When α > 0, (s+a)α represents fractional [zero]. For
such case, the asymptotic magnitude plot of (s+a)α

aα obtained
from its constituent elements is as shown in Fig. 10.

On the other hand, for α < 0, (s+a)α represents fractional
[pole]. Therefore, the asymptotic magnitude plot of (s+a)α

aα in
this case takes the shape as shown in Fig. 11.

Fig. 10. Asymptotic Magnitude Bode Plot for (s+a)α

aα when α > 0.

Fig. 10. Asymptotic Magnitude Bode Plot for (s+a)α

aα when α < 0.

Remark: It can be observed from Figs. 10 and 11 that,
1) (s+a)α

aα with α > 0 is identified when there is an
‘increase’ in slope at given corner frequency.

2) (s+a)α

aα with α < 0 is identified when there is a ‘decrease’
in slope at given corner frequency.

Based on above discussion, we identify the fractional-order
transfer function from the asymptotic magnitude Bode plot
given in Fig. 7 as follows:

1) From Fig. 7, it is seen that for the frequency range from
0 to a1, the plot is a line with slope b1 dB/decade. Recalling
Remark 3, we identify the corresponding term as ksα with
α = b1

20 (Since, 20α = b1). The constant k is obtained as
follows:

From Fig. 7, 20log10|ksα|s=ja1 = K.

Therefore, |k| = 10
K
20

aα
1

=⇒ k = ± 10
K
20

a
b1
20
1

.

2) At corner frequency a1, there is an observed increase
of slope from b1 to b2. From Remark 4, this corresponds to
the term (s+a)α

aα with α = b2−b1
20 , a = a1 (since, b2 > b1,

α > 0). Similarly, at corner frequency a2, there is an observed
decrease of slope from b2 to b3. From Remark 4, we get the
corresponding term as (s+a)α

aα with α = b3−b2
20 , a = a2 (since,

b3 < b2, α < 0). One can similarly obtain the terms for
observed change in slopes at a3, a4, . . . , an.

3) The individual identified terms are multiplied to get the
complete transfer function T (s) for the asymptotic magnitude
plot given in Fig. 7 as follows:

T (s) =

±

10

K
20 s

b1
20

a
b1
20
1





 (s + a1)

b2−b1
20

a
b2−b1

20
1





 (s + a2)

b3−b2
20

a
b3−b2

20
2


 . . .

(
(s + an)

bn+1−bn
20

a
bn+1−bn

20
n

)

It is important to note that the above general case consid-
ers asymptotic magnitude Bode plots containing lines with
arbitrary slopes. Therefore, it also includes the integer-order
transfer function cases when slopes are integer multiples of
20.

V. CONCLUSION

In this paper, we presented the construction of asymptotic
magnitude Bode plots for popular fractional-order controllers
such as PIα, [PI]α, PDβ , [PD]β , and PIαDβ . The plots
were also developed for general fractional commensurate-
order transfer functions. The applicability of this work to
quickly analyze the performance of designed control system
containing fractional-order elements was demonstrated with
the help of a numerical example. We also showed the useful-
ness of our formulation in identifying fractional-order transfer
function from the given asymptotic magnitude Bode plot.
Development of asymptotic phase Bode plots for fractional-
order transfer functions can be an another interesting direction
to this work.
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Stability analysis of a class of nonlinear fractional
differential systems with Riemann-Liouville

derivative
Ruoxun Zhang, Shiping Yang, Shiwen Feng

Abstract—This paper investigates the stability of n-dimensional
nonlinear fractional differential systems with Riemann-Liouville
derivative. By using the Mittag-Leffler function, Laplace trans-
form and the Gronwall-Bellman lemma, one sufficient condition
is attained for the asymptotical stability of a class of nonlinear
fractional differential systems whose order lies in (0, 2). Accord-
ing to this theory, if the nonlinear term satisfies some conditions,
then the stability condition for nonlinear fractional differential
systems is the same as the ones for corresponding linear systems.
Several examples are provided to illustrate the applications of our
result.

Index Terms—Stability, Nonlinear fractional differential sys-
tem, Riemann-Liouville derivative

I. INTRODUCTION

IN this paper, we consider the stability of n-dimensional
nonlinear fractional differential systems with Riemann-

Liouville derivative:
RL
0 Dα

t x(t) = Ax(t) + f(x(t)) (1)

where 0 < α < 2, x(t) ∈ Rn×1is the state vector,
RL
0 Dα

t x(t)denotes Riemann-Liouville’s fractional derivative
with the lower limit 0 for the function x(t), A ∈ Rn×nis the
constant parameter matrix andf(x(t)) ∈ Rn×1is a nonlinear
function vector.

In the last 30 years, fractional calculus has attracted at-
tention of many mathematicians, physicists and engineers.
Significant contributions have been made to both the theory
and applications of fractional differential equations (see [1]
and references there in). Also, fractional differential equations
have recently been proved to be valuable tools in modeling
of many physical phenomena in various ?elds of science and
engineering.

Recently, the stability of fractional differential systems has
attracted increasing interest due to its importance in control
theory. In 1996, Matignon [2] firstly studied the stability
of linear fractional differential systems. Since then, many
researchers have studied further on the stability of linear
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publication.
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fractional differential systems [3− 5]. The stability analysis of
nonlinear fractional differential systems is much more difficult
and only a few available. For example, Li et al. investigated the
Mittag-Leffler stability of fractional order nonlinear dynamic
systems [6] and proposed Lyapunov direct method to check
stability of fractional order nonlinear dynamic systems [7].
Wen et al. [8] and Zhou et al [9] considered the stability
of nonlinear fractional differential systems. In [10], Zhang
et al proposed a single state adaptive-feedback controller for
stabilization of three-dimensional fractional-order chaotic sys-
tems. Based on the theory of Linear Matrix Inequality (LMI),
Faieghi et al [11] proposed a simple controller for stabilization
of a class of fractional-order chaotic systems. Wang et al.
present the Ulam -Hyers stability for fractional Langevin
equations [12], and Ulam- Hyers-Mittag-Lef?er stability for
fractional delay differential equations [13]. The methods which
they proposed for stability of a class of fractional differential
equations provide us with a very useful method for studying
Hyers–Ulam stable system. That is, one does not have to reach
the exact solution. What is required is to get a function which
satis?es a suitable approximation inequality.

Note that these papers on the stability of the frac-
tional differential systems mainly concentrated on fractional
orderαlying in (0, 1). Recently, in Ref [14], Zhang et al
considered the stability of nonlinear fractional differential
systems with Caputo derivative whose order lies in (0, 2).
In this paper, we study the stability of the nonlinear fractional
differential systems with Riemann-Liouville derivative whose
order lies in (0, 2). By using the Mittag-Leffler function,
Laplace transform and the Gronwall-Bellman lemma, a sta-
bility theorem is proven theoretically. The stability conditions
have no restriction on the norm of the linear parameter matrix
A. The paper is outlined as follows. In section II, some
definitions and lemmas are introduced. In section III, the
stability of a class of nonlinear fractional differential systems
with commensurate order 0 < α < 2 is investigated. The
simulation and conclusions are included in section IV and V,
respectively.

II. PRELIMINARIES

Definition 2.1 [15]. The Riemann-Liouville derivative with
αof function x(t) is defined as follows

RL
t0 Dα

t x(t) = 1
Γ(n−α)

dn

dtn

∫ t

t0

x(τ)
(t−τ)α−n+1 dτ,

(n− 1 ≤ α < n)
(2)
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The Laplace transform of the Riemann-Liouville fractional
derivative RL

t0 Dα
t x(t) is

∫ ∞

0

e−stRL
t0 Dα

t x(t)dt =

sαX(t)−
n−1∑

k=0

sk[Dα−k−1x(t)]t=t0 (3)

Definition 2.2 [15]. The two-parameter Mittag- Leffler
function is defined as

Eα, β(z) =
∞∑

k=0

zk

Γ(αk + β)
, (Reα > 0, β ∈ C, z ∈ C). (4)

The Laplace transform of Mittag-Leffler function can be found
to be ∫ ∞

0

e−sttαk−β−1E
(k)
α,β(±atα)dt =

k!sα−β

(sα ∓ a)k+1
, (R(s) > |a| 1n ). (5)

Definition 2.3 [16]. By analogy with Definition 2.2, for
A ∈ Cn×n, a matrix Mittag-Leffler function is defined as:

Eα,β(A) =
∞∑

k=0

Ak

Γ(αk+β) , (β ∈ C, R(α) > 0)

Lemma 2.1 [8]. If A ∈ Cn×n, 0 < α < 2, β is an arbitrary
real number, µ is such that πα

2 < µ < min{π, πα} and C1is
a real constant, then

||Eα,β(A)|| ≤ C1

1 + ||A|| , (6)

where µ ≤ arg(λ(A)) ≤ π, λ(A) denotes the eigenvalues of
matrix A and || · ||denotes the l2-norm.

Lemma 2.2 [17]. (Gronwall-Bellman lemma) If

ϕ(t) ≤ h(t) +
∫ t

t0

g(τ)ϕ(τ)dτ, t0 ≤ t ≤ t1. (7)

where g(t), h(t) and ϕ(t) are continuous on [t0, t1], t1 →∞,
t0 ≤ t ≤ t1 and g(t) ≥ 0. Then ϕ(t) satisfies

φ(t) ≤ h(t) +
∫ t

t0

h(τ)g(τ) exp[
∫ t

τ

g(s)ds]dτ. (8)

In addition, if h(t) is nondecreasing, then

φ(t) ≤ h(t) exp[
∫ t

t0

g(s)ds]dτ. (9)

III. STABILITY THEORY OF N-DIMENSIONAL NONLINEAR
FRACTIONAL DIFFERENTIAL SYSTEMS

In this section, based on the definition and lemma in section
2, we present the stability theorem for a class of nonlinear
fractional differential systems such as system (1).

Theorem 1. Consider the system (1). Let λi(A) (i =
1, 2, · · · , n)be the eigenvalues of matrix A. If

1) | arg(λi(A))| > απ/2;
2) The nonlinear function f(x(t))satisfies

lim
||x(t)||→0

||f(x(t))||
||x(t)|| = 0. (10)

Then the zero solution of (1) is locally asymptotically stable.
Proof. a) The case 0 < α < 1
In this case, the initial condition is

RL
0 Dα−1

t x(t)|t=0 = x0 (11)

Taking Laplace transform of (1), we have

X(s) = (Isα −A)−1(x0 + L[f(x(t))]) (12)

where I is an n× n identity matrix.
Then taking inverse Laplace transform for (12), it yields

x(t) = x0t
α−1Eα,α(Atα)+∫ t

0

(t− τ)α−1Eα,α(A(t− τ)α)f(x(τ))dτ (13)

By the condition (10), there exist C0 > 0 and δ > 0, such
that

||f(x(t))|| < α||A||
2C0

||x(t)||as||x(t)|| < δ (14)

From (14) and Lemma 2.1 , (13) gives

||x(t)|| ≤ C0||x0||tα−1

1 + ||Atα|| +
∫ t

0

||(t− τ)α−1||C0

1 + ||A(t− τ)α||
α||A||
2C0

||x(τ)||dτ =

C0||x0||tα−1

1 + ||A||tα +
∫ t

0

α||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)
||x(τ)||dτ

According to Lemma 2.2, we obtain

||x(t)|| ≤ C0||x0||tα−1

1 + ||A||tα +
∫ t

0

C0||x0||τα−1

1 + ||A||τα

× α||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)

exp
( ∫ t

τ

α||A||(t− s)α−1

2(1 + ||A||(t− s)α)
ds

)
dτ

=
C0||x0||

t1−α + ||A||t
+

∫ t

0

αC0||x0||τα−1||A||(t− τ)α−1

2(1 + ||A||τα)(1 + ||A||(t− τ)α)0.5
dτ

≤ C0||x0||
t1−α + ||A||t

+
∫ t

0

αC0||x0||τα−1||A||(t− τ)α−1

2(1 + ||A||τα)0.5(1 + ||A||(t− τ)α)0.5
dτ

≤ C0||x0||
t1−α + ||A||t

+ 0.5αC0||x0||
∫ t

0

τ0.5α−1(t− τ)0.5α−1dτ

≤ C1||x0||
t1−α + ||A||t

+ 0.5αC0||x0||Γ(0.5α)Γ(0.5α)
Γ(α)

tα−1 → 0

as t →∞.

So, the zero solution of (1) is locally asymptotically stable.
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2) The case 1 < α < 2
In this case, the initial condition is

RL
0 Dα−k

t x(t)|t=0 = xk−1, (k = 1, 2) (15)

We can get the solution of (1) with the initial condition (15)
by using the Laplace transform and Laplace inverse transform:

x(t) = x0t
α−1Eα ,α(Atα) + tα−2 x1Eα,α−1(Atα)

+
∫ t

0

(t− τ)α−1Eα,α(A(t− τ)α)f(x(τ))dτ (16)

By the condition (10), there exist C0 > 0 and δ > 0, such
that

||f(x(t))|| < (α− 1)||A||
2C0

||x(t)||as||x(t)|| < δ. (17)

From (17) and Lemma 2.1 , (16) gives

||x(t)|| ≤ C0||x0||tα−1

1 + ||Atα|| +
C1||x1||tα−2

1 + ||Atα||
+

∫ t

0

||(t− τ)α−1||C0

1 + ||A(t− τ)α||
(α− 1)||A||

2C0
||x(τ)||dτ

=
C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα

+
∫ t

0

||(t− τ)α−1||
1 + ||A||(t− τ)α

(α− 1)||A||
2

||x(τ)||dτ (18)

where C1 > 0. According to Lemma 2.2, we obtain

||x(t)| ≤ C0||x0||τα−1

1 + ||A||τα
+

C1||x1||τα−2

1 + ||A||τα
+

∫ t

0

(C0||x0||τα−1

1 + ||A||τα

+
C1||x1||τα−2

1 + ||A||τα

) (α− 1)||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)

× exp
( ∫ t

τ

(α− 1)||A||(t− s)α−1

2(1 + ||A||(t− s)α)
ds

)
dτ

=
C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα

+
∫ t

0

(C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα
)

× (α− 1)||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)1−
α−1
2α

dτ

≤ C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα

+
∫ t

0

C0||x0||τα−1

(1 + ||A||τα)0.75

× (α− 1)||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)1−
α−1
2α

dτ

+
∫ t

0

C1||x1||τα−2

(1 + ||A||τα)
α−1
2α

× (α− 1)||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)1−
α−1
2α

dτ

≤ C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα

+
(α− 1)C0||x0||
2||A||0.25+1/(2α)

∫ t

0

τ0.25α−1(t− τ)0.5α−1.5dτ

+
(α− 1)C1||x1||

2

∫ t

0

τ0.5α−1.5(t− τ)0.5α−1.5dτ

≤ C0||x0||
||A||t +

C1||x1||
||A||t2

+
(α− 1)C0||x0||
2||A||0.25+1/(2α)

Γ(0.25α)Γ(0.5α− 0.5)
Γ(0.75α− 0.5)t0.75(2−α)

+
(α− 1)C1||x1||

2
Γ(0.5α)Γ(0.5α− 0.5)

Γ(α− 0.5)t2−α

→ 0 as t →∞. (19)

So, the zero solution of (1) is locally asymptotically stable.
Remark 1. The nonlinear term of many fractional or-

der chaotic systems satisfy (12). For example, fractional-
order Lorenz system [17], fractional-order Chen system [18],
fractional-order Lü system [19], fractional-order Liu system
[20], fractional-order Arneodo system [21], fractional-order
Chua system [22] and fractional-order hyperchaotic Chen
system [23] etc. So, Theorem 1 can be applicable to control
chaos in a large class of generalized fractional-order chaotic
or hyperchaotic systems via a linear feedback controller. See
Example 3 in Section 4.

Remark 2. Theorem 1 provides us with a simple procedure
for determining the stability of the fractional order nonlinear
systems with Caputo derivative with order 0 < α < 2. If the
nonlinear term f(x(t))satisfies Eq.(10), then one does not have
to reach the exact solution. What is required is to calculate
the eigenvalues of the matrix A, and test their arguments. If
| arg(λi(A))| > απ/2for all i, we conclude that the origin is
asymptotically stable.

IV. THREE ILLUSTRATIVE EXAMPLES

The following illustrative examples are provided to show
the effectiveness of the stability theorem. When numerically
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solving fractional differential equations, we adopt the method
introduced in [24].

Example 1. Consider the nonlinear fractional differential
systems

RL
0 Dα

t x1 = x1 + x2 + x3 + x2x3

RL
0 Dα

t x2 = −x1 + x2 − x3 + x2
2

RL
0 Dα

t x3 = x1x2 − x3

(20)

System (20) can be rewritten as (1), in which

A =




1 1 1
−1 1 −1
0 0 −1


 , f(x(t)) =




x2x3

x2
2

x1x2


 (21)

Obviously, it is easy to verify that

lim
||x(t)||→0

||f(x(t)||
||x(t)|| = lim

||x(t)||→0

√
(x2x3)2 + x4

2 + (x1x2)2√
x2

1 + x2
2 + x2

3

≤ lim
||x(t)||→0

√
(x2x3)2 + x4

2 + (x1x2)2√
x2

2

≤ lim
||x(t)||→0

√
x2

3 + x2
2 + x2

1 = 0,

which implies thatf(x(t) satisfies Condition (2) in Theorem
1. By using simple calculation, the eigenvalues

of A are λ 1,2 = 1±i and λ 3 = −1. According to Theorem
1, if α < 0.5, the zero solution of (20) is asymptotically stable.
Simulation results are displayed in Figs. 1–3. Fig. 1 and Fig. 2
show the zero solution of system (20) is asymptotically stable
with α = 0.4 and α = 0.49 , respectively. Fig. 3 shows the
zero solution of the system (20) is unstable with α = 0.5.

Fig. 1. System (20) is asymptotically stable with α = 0.4

Example 2. Consider the nonlinear fractional differential
systems

RL
0 Dα

t x1 = −x1 + x2x3

RL
0 Dα

t x2 = x3

RL
0 Dα

t x3 = x1 − x2 − x3 − x1x2

(22)

System (22) can be rewritten as (1), in which

A =



−1 0 0
0 0 1
1 −1 −1


 , f(x(t)) =




x2x3

0
−x1x2




(23)

Obviously, it is easy to verify that lim
||x(t)||→0

||f(x(t)||
||x(t)|| = 0,

which implies thatf(x(t) satisfies Condition (2) in Theorem 1.
By using simple calculation, the eigenvalues of A are λ 1,2 =
−1/2 ± √

3i/2 and λ 3 = −1. According to Theorem 1, if
α < 4/3, the zero solution of (22) is asymptotically stable.
Simulation results are displayed in Figs. 4–7. Figs.4–6 show
the zero solution of the system (22) is asymptotically stable
with α = 1.1α = 1.3 and α = 1.33 , respectively. Fig. 7
shows the zero solution of the system (22) is not stable with
α = 1.34.

Fig. 2. System (20) is asymptotically stable with α = 0.49

Fig. 3. System (20) is unstable with α = 0.50
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Fig. 4. System (22) is asymptotically stable with α = 1.1

Fig. 5. System (22) is asymptotically stable with α = 1.30

Example 3. The fractional-order hyperchaotic Chen system
can be written as

RL
0 Dα

t x1 = a(x2 − x1) + x4

RL
0 Dα

t x2 = dx1 + cx2 − x1x3

RL
0 Dα

t x3 = x1x2 − bx3

RL
0 Dα

t x4 = x2x3 + rx4

(24)

where a, b, c,d and r are five parameters. When a = 35, b =
3, c = 12, d = 7, r = 0.3 and α = 1.1 system (24) displays
a chaotic attractor, as shown in Fig. 8.

Fig. 6. System (22) is asymptotically stable with α = 1.33

Fig. 7. System (22) is not stable with α = 1.34

System (24) can be rewritten as a controlled system:

RL
0 Dα

t x1 = a(x2 − x1) + x4

RL
0 Dα

t x2 = dx1 + cx2 − x1x3 + u1

RL
0 Dα

t x3 = x1x2 − bx3

RL
0 Dα

t x4 = x2x3 + rx4 + u2

When α = 1.1, a = 35, b = 3, c = 12, d = 7, r = 0.3, we
select the linear state feedback controller u1 = −22x2, u2 =
−x4. Then, the two conditions of Theorem 1 are satisfied well.
It concludes that the zero solution of the controlled system is
asymptotically stable. The results of simulation are shown in
Fig. 9, while the feedback is activated at timet =10 s.
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Fig. 8. Attractor of fractional order hyperchaotic Chen system with
order α = 1.1 (a = 35, b = 3, c = 12, d = 7, r = 0.3)

Fig. 9. Asymptotical stabilization of fractional order hyperchaotic
Chen system with order α = 1.1

V. CONCLUSIONS

In this paper, we have studied the local asymptotic stability
of the zero solution of n-dimensional nonlinear fractional
differential systems with with Riemann-Liouville derivative.
The results are obtained in terms of the Mittag-Leffler func-
tion, Laplace transform and the Gronwall-Bellman lemma.
Compare of the current results with the results in Ref.[14]
shows that the stability condition of Riemann-Liouville frac-
tional differential system is same as that for Caputo fractional
differential systems. Three numerical examples are given to
demonstrate the effectiveness of the proposed approach.

VI. ACKNOWLEDGEMENT

This work was supported by the Natural Science Foun-
dation of Hebei Province, China (No. A2015108010 and
No.A2015205161), the science research project of Hebei
higher education institutions, China (No.z2012021).

REFERENCES

[1] Machado J T, Kiryakova V, Mainardi F. Recent history of fractional
calculus. Commun Nonlinear Sci Numer Simul, 2011,16:1140–1153.

[2] Matignon D. Stability results for fractional di?erential equations with
applications to control processing, in Proceedings of the IMACS-SMC,
1996, 2: 963–968.

[3] Deng W, Li C, Guo Q. Analysis of fractional differential equations with
multi-orders, Fractals, 2007,15:173–182.
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Abstract—Fractance element reflects the fractional order be-
havior of circuits, which can show the characteristics of the
actual circuits. Higher-order logic theorem proving is based
on the rigorous and correct mathematical theories. It becomes
more and more important in the verifications of high-reliability
systems. Fractance element is formalized using the proof of
higher-order logic theorem in this paper. Firstly, the formalized
model of fractional calculus which is based on Caputo definition
is established in higher-order logic theorem proof tool. Then
some properties of fractional calculus are proved, including the
zero order property, the fractional differential of a constant
and the consistency of fractional calculus and integer order
calculus. Finally, fractance element and fractional differential
circuit constituted by fractance element are formally analyzed.
These formalizations demonstrate the effectiveness of the formal
method in the analysis of fractance element.

Index Terms—Fractional Calculus, Caputo Definition, Theo-
rem Proving, Fractance Element, Fractional Differential Circuit.

I. INTRODUCTION

FRACTANCE element is a component with fractional
order impedance. It can accomplish the function of frac-

tional calculus for signal. Fractance element is different from
the impedance, capacitive reactance or inductive reactance.
It can show the characteristics between capacitance and in-
ductance [1]. Fractance circuit refers to the circuit which
includes fractance elements. Components in the circuits are
often considered to be a resistance, capacitance, or inductance
which is with integer order. However, due to the materials
or other reasons, the components in actual circuits do not
show these desirable characteristics. Actually, they present
the characteristics between these ideal characteristics. Ignoring
these facts will lead to inaccurate modeling. In addition,
accuracy problems will emerge if we adjust the circuits
according to the misconception that the components present
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ideal characteristics. Fractional calculus is the theoretical basis
of fractance element and fractance circuit. It can be used
to effectively describe the dynamic process of some systems
which cannot be accurately described by integer order calculus
[2]. Now, fractional calculus is widely used in hyperchaotic
system [3], viscoelastic system [4], anomalous diffusion, fluid
dynamics [5], image processing [6], signal processing, seismic
analysis, control of robot [7], electric power transmission line
[8], fuzzy control [9] and other fields. Studies have shown
that the models using fractional calculus can better and more
accurately describe the characteristics of actual systems [10].

The current phase of research on fractance element and
fractance circuit is concerned with their realization. For in-
stance, the realizations of fractance element and fractance
circuit are discussed in references [11− 13]. In reference [11],
the fractional order operator is realized by using the finite
inertia and the cascade of proportional differential circuit.
Reference[12] presents an implementation of variable order
analog circuit by using operational transconductance amplifier.
Besides, the realization of fractional analog circuit by using
the method of binomial expansion is given in reference[13]. A
wide variety of implementation schemes have been proposed
and these schemes have also been obtained in some applica-
tions. However, few studies have focused on the analysis of
the fractance element and fractance circuit. For the analysis of
fractance element and fractance circuit, the traditional methods
include paper-and-pencil based proofs, analog simulation and
computer algebra system. The results of these methods cannot
achieve 100% rate of precision because of the cumbersome
process, approximation errors, difficulty in building environ-
ment for application of these methods and that the algorithms
for symbolic computation have not been verified. Formal
methods can avoid these precision problems. Model checking
and theorem proving are two commonly used formal methods.
Considering the characteristics of fractional calculus, we use
theorem proving to formally analyze the fractance element and
fractance circuit. Theorem proving formalizes the systems and
their properties into mathematical models, and then converts
the mathematical models into logical models. It logically
estimates the correctness of systems. Theorem proving is
the strictest and most standardized method so far and the
credibility of conclusion is also the highest. The theorem proof
tool we use is HOL4. HOL system is one of the theorem prover
and it is developed by Cambridge University. HOL4 is the
fourth edition of HOL system and it is the newest edition. It
is implemented basing on the meta-language. Meta-language
is an interactive programming language and it is efficient and
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strict. Now, HOL4 is widely used in the validation of software
and hardware, and has obtained welcome results. Besides,
HOL4 has a rich theorem library, including Boolean algebra,
collection, Gauge integral, complex number and so on. The
more theorems HOL4 has, the stronger the deduction ability
is. Because a proof in the HOL4 system is constructed by
repeatedly applying inference rules to axioms or to previously
proved theorems.

As mentioned above, fractional calculus is the theoretical
basis of fractance element, so we should formalize fractional
calculus before the formal analysis of fractance element.
On FMCAD2011, Umair and Osman [14] have formalized
the Gamma function and the Riemann-Liouville definition of
fractional calculus and formally verified some properties of
them. And then they analyzed the fractional order behaviors of
capacitance and differentiator. Their work pioneered the use of
formal method for the analysis of fractional order systems. Shi
Likun [15] has formalized the Grunwald-Letnikov definition of
fractional calculus and formally analyzed the fractional order
FC component and fractional position servo system in HOL4.
In this paper, for the purpose of perfecting the definitions and
properties of fractional calculus in HOL4, and improving the
modelling and deduction ability of HOL4, we firstly establish
the higher-order logic model of fractional calculus which is
based on Caputo definition, and then formally verify some
related basic properties of it. The formalization of theorem
is known as the goal in HOL4 and we will use the existed
definitions and theorems in HOL4 to prove the goal. It will
illustrate the correctness of the theorem if the goal has been
verified. We form these verified properties into separate theo-
rems, so these definitions and theorems can be used directly
by other users. At last, in order to illustrate the consistency of
fractional calculus and integer order calculus and the validity
of theorem proving method for the analysis of fractional order
systems, we use the formalizations to formally analyze the
fractance element and fractional differential circuit.

The rest of the paper is organized as follows: we present
the formalizations of basic theories in Section 2, including
the formalization of fractional calculus which is based on
Caputo definition, and the verifications of some related basic
properties. These basic properties include zero order property,
the fractional differential of a constant and the consistency
of fractional calculus and integer order calculus. In Section
3, the formalizations of these basic theories are applied to
analyze fractance element and fractional differential circuit.
The relationship of fractance element and ideal components,
as well as the unification of fractional differential circuit and
integer differential circuit are proved here. Section 4 concludes
the paper.

II. FORMALIZATIONS OF BASIC THEORIES

A. Caputo Definition of Fractional Calculus
The origin of fractional calculus can be traced back to more

than 300 years. Fractional calculus is based on the definition
of integer order calculus. It extends the order of integer order
calculus from integer to non-integer. It can be used to describe
actual systems more accurately. Grunwald-Letnikov, Riemann-
Liouville and Caputo definition are the three commonly used

definitions of fractional calculus. These three definitions have
different characteristics. Grunwald-Letnikov definition is suit-
able for numerical computation while Riemann-Liouville def-
inition which is defined in the form of differential-integral can
make the mathematical analysis of fractional calculus become
easier. Caputo definition can facilitate the modeling of actual
problems and compact the Laplace transform of fractional
calculus. The solution of fractional calculus equation is also
given in the form of Caputo definition. In addition, Caputo
definition is more able to reflect the feature that fractional
calculus is the expansion of integer order calculus. Therefore,
Caputo definition is more widely used in the modeling of
actual problems [16].

These three definitions are defined from different perspec-
tives. Riemann-Liouville definition and Caputo definition are
the improvement of Grunwald-Letnikov definition. These three
definitions can achieve unification under certain conditions.
When the initial value is 0, the Grunwald-Letnikov defini-
tion and Caputo definition are equivalent. And the Riemann-
Liouville definition and Caputo definition are equivalent when
the original function f(t) is (bvc+1)th order derivable and all
of the derivatives are 0, where v is the fractional order and the
operator bvc returns the biggest integer which is not greater
than v.

In this paper, we research on the Caputo definition. The
mathematical expression of fractional calculus based on Ca-
puto definition is shown in Formula(1) [17].

C
a Dv

t f(t) =
1

Γ(m− v)

∫ t

a

f (m)(x)
(t− x)v−m+1

dx. m = bvc+ 1

(1)

where C
a Dv

t is the operator of fractional calculus with order v,
lower limit a and upper limit t. Formula(1) is the unified ex-
pression of fractional differential and integral. When the order
v is a positive value, Formula(1) means fractional differential
and it means fractional integral when v is a negative value.
The letter C on the top left corner of the operator is the
abbreviation of Caputo. It indicates that Formula(1) is defined
by Caputo definition, so that we can distinguish it from other
definitions. Γ represents Gamma function[17] and its definition
is as below.

Γ(z) =
∫ ∞

0

e−ttz−1 dt (2)

where the real part of z is greater than 0. Gamma function is
the most commonly used basic function of fractional calculus.
It extends the factorial from a natural number to a real number.
Gamma function is also known as generalized factorial.

When modeling and verifying fractance element in HOL4,
the formal model of fractional calculus based on Caputo
definition is needed. We firstly establish the formal model of
fractional calculus based on Caputo definition in HOL4.

Definition 1. Fractional Calculus based on Caputo Defi-
nition
∀f v a t.frac c f v a t = if (v = 0) then f t

else
lim(λn.1/Gamma (&(flr v) + 1 − v) ∗ (integral(a, t −

1/2 pow n)(λx.(((t − x) rpow (&(flr v) + 1 − v − 1)) ∗
(n order deriv(flr v + 1)f x)))))
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Definition 1 is formalized basing on the real library[18],
transcendental function library and integer order integral li-
brary[19] which have been already formalized in HOL4. The
operator frac c represents the Caputo definition of fractional
calculus. f is the initial function of type (real− > real).
v is a real number which indicates the order of fractional
calculus. t and a are the upper and lower limit, respectively.
Gamma represents Gamma function which has been formal-
ized in reference[14]. (flr v) is the formalization of bvc.
integral(a, t−1/2 pow n) represents integral with lower limit
a and upper limit (t − 1/2 pow n) where pow is a power
function with natural exponent.

Formula(1) is a definite integral with variable upper limit.
The formalization of variable upper limit is a difficulty for our
work. The function integral(a, b)f in HOL4 only represents
integral with lower limit a and upper limit b, where a and b
are both constant. The variable upper limit should be recon-
structed according to the existing definitions and theorems in
HOL4. We solve this problem by nesting the integral into the
limitation. Taking the existing definitions and theorems into
account, we construct formula (t− 1

2n ) and take the limit of
it as limn→+∞(t − 1

2n ). The variable upper limit t will be
expressed when 1

2n becomes very close to 0 as n becomes
very large. Here we use lim(λn.t− 1/2 pow n) to formalize
the variable upper limit t in HOL4. lim(λn.f) computes the
limit of f when n tends to infinity and it is a function in
sequence library [20].

Caputo definition has certain requirements for the original
function. As can be seen from Formula(1), it firstly requires
the original function f(x) is mth order derivable. Moreover,
the product of f (m)(x) and 1

(t−v)v−m+1 should be integrable.
Besides, in practical applications of fractional calculus such
as fractance element, their parameters are always based on
time so that we can analyze the systems from one moment to
the next moment. So, the upper limit and lower limit which
is based on time here should satisfy the condition that the
upper limit should be greater than lower limit. Furthermore, we
stipulate Formula(1) is limited because a limitation is used to
denote the variable upper limit in the formalization of Caputo
definition. These existent conditions of Caputo definition are
formalized as follows:

Definition 2. Existent Conditions
∀f v a t n l.frac c exists f v a t n l = (∀m.m <=
(flr v+1) ==> (λt.n order deriv m f t) differentiable t)
∧ (∀v.integrable(a, t− 1/2 pow n)(λx.(((t− x) rpow
(&(flr v)+1−v−1))∗(n order deriv(flr v+1) f x))))∧
a <= t− 1/2 pow n ∧ (λn.1/Gamma (&(flr v) + 1− v) ∗
(integral(a, t− 1/2 pow n)(λx.(((t− x) rpow (&(flr v) +
1− v − 1)) ∗ (n order deriv(flr v + 1) f x)))))−− > l)

Only the above conditions are met, the Caputo definition and
its formalization are existent. When using operator C

a Dv
t , we

always assume that these existent conditions are established.
The formalization of these conditions can be utilized to be
the antecedent when proving the subsequent properties of
fractional calculus.

B. Zero Order Property

If function f(t) satisfies the existent conditions of Caputo
definition and the order of fractional calculus is 0, the frac-
tional calculus of f(t) will return the original function. The
property is shown in Formula(3).

C
a D0

t f(t) = f(t) (3)

The formal verification of this property in HOL4 is given
in the following theorem.

Theorem 1. Zero Order Property
∀f v a t n.
frac c exists f v a t n l ==> (frac c f 0 a t = f t)
where frac c and frac c exists have been formalized in
Definition 1 and Definition

2. A special case that the order is 0 has been considered in
Definition 1, so the proof of Theorem 1 is relatively simple.
There are two proving methods in HOL4 system, including
forward proof and goal oriented proof. The second method is
more commonly used. In this paper, we use the method of
goal oriented proof. This method uses the tactic of HOL4,
and the existing conditions, definitions and theorems to divide
the original goal into one or more relatively simple sub-goals.
Then we only have to prove these sub-goals. And the original
goal will be proved when all the sub-goals are proved. In
the proof of Theorem 1, the combination of tactic REPEAT
and tactic GEN TAC is used to remove all of the universal
quantifiers firstly. And then the proof is completed by using
Definition 1 to rewrite the current goal.

C. Fractional Differential of a Constant

C
a Dv

t C =
{

C, v = 0
0, v > 0 (4)

Caputo definition is commonly used in engineering appli-
cations. This is partly because the fractional differential of
a constant under Caputo definition is bounded, as shown in
Formula(4), while it is unbounded under other definitions. For
example, under Riemann-Liouville definition, the fractional
differential of a constant C is expressed as RL

a Dv
t C = Ct−v

Γ(1−v) ,
which will be bounded unless the starting point t tends to
∞. However, it is impossible to set the starting point to
−∞ when analyzing the transient process. Hence, Caputo
definition is more appropriate in engineering applications[21].
The formal verification of this special property in HOL4 is
given in Theorem 2.

Theorem 2. Fractional Differential of a Constant
∀f : real− > real c : real v : real a t.
(∀a t n l.frac c exists f v a t n l) ∧ (0 <= v) ==>
(frac c (λt.c) v a t = if (v = 0) then c else 0)

The integer order derivative of a constant is included in the
verification of Theorem 2. In order to simplify the verification
process and facilitate the formal verification of other verifi-
cation, here we firstly verify the integer order derivative of a
constant and form it as a separate lemma.

Lemma 1. Integer Order Derivative of Constant c
∀m c.(0 < m) ==> (n order deriv m (λx.c) t = 0)



4 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

Lemma 1 verifies that the mth order derivative of constant c
is 0. This result is consistent with the mathematical result. The
variable m in Lemma 1 is a positive integer and it has infinite
possibilities. For such goal, we generally use mathematical
induction method to prove it. The proof of Lemma 1 is finished
by using mathematical induction method twice. We firstly
make an induction on m and then divide the goal into two
cases whose precondition is (0 < 0) and (0 < m + 1),
respectively. As we all know, the premise condition (0 < 0)
is not established. The inference rule of HOL4 is that any
conclusion can be deduced by the impossible precondition.
Here we use the tactic FULL SIMP TAC to complete the
proof of the first case. In the proof of the second case, we
firstly verify that the (m+1)th order derivative of c is equal to
the mth order derivative of the derivative of c, and then prove
that the derivative of c is equal to 0. Finally, the proof of the
second case can be done by doing a mathematical induction
on m again. Hence Lemma 1 is proved.

Theorem 2 is implemented with statement if · · ·
then · · · else· · · because it has two cases. One case is that the
differential order is 0 and the other one is that the differential
order is greater than 0. We firstly proceed with Theorem
2 by separating the goal into two sub-goals using tactic
COND CASES TAC.

The first sub-goal describes that the fractional differential
of a constant returns the constant itself when the differential
order is 0. We finish the proof of the first sub-goal by using
an assumption and Theorem 1 to rewrite the goal.

For the case that the differential order is greater than 0, we
firstly use tactic COND CASES TAC to divide the present
goal into two sub-goals:

C = 0
and
lim(λn.1/Gamma (&flr v + 1 − v) ∗ integral(a, t −

1/2 pow n)(λx.(t − x) rpow (flr v + 1 − v − 1) ∗
n order deriv (flr v + 1) (λt.C) x)) = 0.

For the sub-goal C = 0, C is an arbitrary constant so
we cannot say that C must equal to 0. But there is a
contradiction between (v 6= 0) and (v = 0) in the assumption.
According to the inference rule of HOL4, we apply tactic
FULL SIMP TAC to deduce sub-goal C = 0. In the proof
of the second sub-goal, we firstly establish a new sub-goal:
∀n c x.n order deriv (flr v + 1) (λt.c) x = 0
It can be seen that the new sub-goal is the conclusion in

Lemma 1. We can directly apply Lemma 1 to prove the above
sub-goal as long as we can prove that the order (flr v + 1)
is greater than 0. It is difficult to prove (0 < flr v + 1).
Here, the assumption is used to deduce that v is greater than
0 firstly. Secondly, we prove that (flr v) is equal to or greater
than zero by using theorems NUM FLOOR LE2 and
REAL LT IMP LE. Thirdly, it can be naturally proved
that (flrv + 1) is greater than 0 by using the combination
of theorem GSY M ADD1 and tactic REWRITE TAC as
well as theorem LESS EQ IMP LESS SUC and tactic
FULL SIMP TAC. Now that Lemma 1 can be used to
deduce the above sub-goal. Then the proved sub-goal can be
applied to simplify the original goal. Now, the second sub-goal
of Theorem 2 is simplified to:

lim(λn.1/Gamma (&flr v + 1 − v) ∗ integral(a, t −
1/2 pow n)(λx.(t− x) rpow (&flr v + 1− v− 1) ∗ 0)) = 0

Then the item integral(a, t − 1/2 pow n)(λx.(t −
x) rpow (&flr v + 1 − v − 1) ∗ 0)) is simpli-
fied to (integral(a, t − 1/2 pow n)(λx.0)) by using
theorem REAL MUL RZERO. Next, we prove that
(lim(λn.1/Gamma (&flr v + 1 − v) ∗ 0)) is equal to
(lim(λn.0)). With this, the second sub-goal of Theorem 2
is simplified to:

lim(λn.0) = 0

Finally, the formal verification of Theorem 2 is done by
using the definition lim, theorem INTEGRAL CONST
and theorem SEQ CONST .

D. Integer Order Differential is the Special Case of Fractional
Differential

Fractional differential is the generalized form of integer
order differential and integer order differential is the special
case of fractional differential. When the order m is a positive
integer and the initial condition is 0, fractional differential is
consistent with integer order differential. Theorem 3 is the
formal verification of this property. Lemma 2 and Lemma 3
are the required lemmas in the verification of Theorem 3. We
also prove these two lemmas separately.

Theorem 3. Integer Order Differential is the Special Case
of Fractional Differential
∀f m n t.(0 <= m∧(∀t n.frac c exists f (&m) a t n l)∧
((n order deriv m f a) = 0)) ==> (frac c f (&m) a t =
n order deriv m f t)

Lemma 2. The Derivative of nth Order Derivative is
(n+1)th Order Derivative
∀m f t.(∀m.m <= n + 1 ==> (λt.n order deriv m f t)
differentiable t) ==> ((λt.n order deriv n f t) diffl
(n order deriv (n + 1) f t)) (t)

Lemma 3. Newton Leibniz Formula
∀(f : real− > real) (f ′ : real− > real) a : real b : real.
a <= b∧ (∀t.a <= t∧ t <= b ==> (f diffl f ′ t) t) ==>
(integral(a, b) f ′ = f b− f a)

Lemma 2 shows that equation dfn(t)
dt = fn+1(t) will be

tenable if function f(t) is (n+1)th order derivable. Lemma 3
verifies that the integral of function f ′ in interval [a,b] equals
to the difference value between the value of function f at upper
limit and the value of function f at lower limit, where f is the
original function of f ′. Proofs of these two lemmas are chal-
lenging for us. The key is to transform the goal flexibly. When
proving Lemma 2, we are unable to do a further conversion of
the goal until we change our way of thinking. The precondition
of Lemma 2 is that function f is mth order derivable for every
m which meets condition (m ≤ n+2). Taking the definition of
mth order derivative into account, we convert the precondition
to that f ′ is mth order derivative for every m which meets
condition (m ≤ n + 1), where f ′ is the derived function of
f . This conversion enables the proof to be applied with the
definition of mth order derivative, and then we can overcome
the difficulty. Analogously, in the proof of Lemma 3, we need
to prove a sub-goal (n order deriv 1 f x = deriv f x)
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which is also unable to do further transformation under the
existing theorems. Here, if the number 1 is replaced with
(SUC 0) which means (0 + 1), it will be possible for us
to use the definition of mth order derivative to rewrite the
sub-goal and then finish the proof.

In Theorem 3, the antecedent (0≤m) limits that Formula(1)
just indicates fractional differential. (n order deriv m f a =
0) denotes that the initial condition of fractional calculus is
0. HOL4 is a rigorous tool for logical verification and error
will occur if the type is not consistent. Here, the order m
is a natural number of type num while the order defined in
frac c needs to be the type of real. So we should introduce
operator & to map the natural number m to its corresponding
real number of type real here. Only in this way, we can avoid
the error of type inconsistency.

The formal verification of Theorem 3 is relatively complex.
We firstly simplify Theorem 3 to two sub-goals by using
Definition 1 and tactic RW TAC:

f t = n order deriv m f t
−−−−−−−−− 0.∃t n.frac c exists f (&m) a t n l
1.n order deriv m f a = 0
2.&m = 0

and
lim(λn.

1/Gamma (&flr(&m) + 1−&m) ∗
integral(a, t− 1/2 pow n)
(λx.
(t− x) rpow (&flr (&m) + 1−&m− 1) ∗
n order deriv (flr (&m) + 1) f x)) =
n order deriv m f t
−−−−−−−−− 0.∃t n.frac c exists f (&m) a t n l
1.n order deriv m f a = 0
2.&m <> 0

What should be mentioned here is that the statements under
imaginary line are the assumptions which are the known
conditions of the goal. For the first sub-goal, we firstly prove
(m = 0) by using theorem GSY M REAL INJ and the
known conditions. Then the proof of the first sub-goal can
be done by utilizing the definition n order deriv def . In
the proof of the second sub-goal, we firstly deduce another
condition (0≤&m) from the known condition (&m<>0)
by applying the statement (ASSUM LIST (fn thl =>
ASSUME TAC(REWRITE RULE[REAL LT NZ]
(el 3 (rev thl))))) to the current goal. Here,
ASSUM LIST (fn thl) represents the operation on the
assumption list, ASSUME TAC and REWRITE RULE
are the tactics of HOL4, REAL LT NZ is a theorem and
(el 3 (rev thl)) is a positioning statement. Next, we establish
a new sub-goal:
∀n x.(&(flr((&(m : num)) : real) : num) : real) = &m

And the above new sub-goal can be verified by using theorem
REAL IN and NUM FLOOR EQNS. Then we utilize
the proved sub-goal to simplify the initial goal to:

lim(λn.1/Gamma (&m + 1 − &m) ∗ integral(a, t −
1/2 pow n)(λx.(t − x) rpow (&m + 1 − &m −
1) ∗ n order deriv (flr (&m) + 1) f x)) =
n order deriv m f t

The next step is to simplify (flr (&m)) to m
by using theorem REAL INJ . Then we use theorem
REAL ADD SUB and REAL SUB REFL to prove that
(&m + 1 − &m − 1) is equal to 0. Next, the sub-goal
(∀n x.(t − x) rpow 0 ∗ n order deriv (m + 1) f x =
n order deriv (m + 1) f x) is verified and used to simplify
the second sub-goal of Theorem 3 to: lim(λn.1/Gamma(1)∗
integral(a, t − 1/2 pow n)(λx.n order deriv (m +
1) f x)) = n order deriv m f t

The property of Gamma function GAMMA 1 EQUAL 1
which has been verified in reference [14] is used here to verify
that (Gamma 1) is equal to 1. Finally, we accomplish the
proof of Theorem 3 by using Lemma 2, Lemma 3, the known
conditions and the definition and properties of limit function.

Establishing sub-goal is needed in the proving pro-
cess many times. But when we use the proved sub-
goal to rewrite the goal, it fails. For instance, when
proving goal (lim(λn.1/Gamma(1) ∗ integral (a, t −
1/2 pow n) (λx.(t − x) rpow 0 ∗ n order deriv (m +
1) f x)) = n order deriv m f t), we establish a sub-
goal ((t − x) rpow 0 ∗ n order deriv (m + 1) f x =
n order deriv (m + 1) f x) and then prove it. The types
of variables in the sub-goal are completely consistent with the
types in initial goal, but it fails when we use the sub-goal to
simplify the initial goal. This is because (λn) in the initial goal
has the implication of arbitrary n. We overcome this problem
by adding (λn) to the sub-goal when we established it.

E. Integer Order Integral is the Special Case of Fractional
Integral

Similarly, when the order of fractional calculus is a negative
integer m, the fractional integral C

a Dm
t is the same as the mth

order integral of integer order calculus. When the order of
fractional calculus is -1, there is Formula(5).

C
a D−1

t f(x) =
∫ t

a

f(x)dx (5)

We formally verify Formula(5) in HOL4 as follows:
Theorem 4. First Order Integral is the Special Case of

Fractional Integral
∀f a t.FLR NEG 1 ∧ FLR NEG 0 ==> (frac c f
(−&(1 : num)) a t = lim(λn.integral(a, t−1/2 pow n) f))

Definition of FLR NEG 1 and FLR NEG 0 are re-
spectively shown as follows:
FLR NEG 1 = (&flr (−&(1 : num)) = −1)
FLR NEG 0 = (flr (−&(1 : num)) + 1 : num = 0 :
num)

The first definition indicates that −1 is round off to −1. The
second definition demonstrates that the result of the rounding
off of −1 plus 1 is 0. When proving Theorem 4, we firstly
use Definition 1 to rewrite the goal and then utilize tactic
COND CASES TAC to divide the goal into two sub-goals:

ft = lim(λn.integral (a, t− 1/2 pow n) f)
and
lim(λn.1/Gamma (&flr (−1)+1−−1)∗integral(a, t−

1/2 pow n)(λx.(t − x) rpow (&flr (−1) + 1 −
−1 − 1) ∗ n order deriv (flr (−1) + 1) f x)) =
lim(λn.integral (a, t− 1/2 pow n) f)
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According to the inference rules of HOL4, the first sub-goal
can be deduced by the contradictory assumptions. For the sec-
ond sub-goal, we firstly use theorem REAL SUB RNEG
to simplify (1 − −1) to (1 + 1). Then we utilize the above
two definitions and some laws of computing to simplify the
current goal. Finally, the definition of mth order derivative and
theorem ETA THM are used to realize the proof.

Proofs of properties not only ensure the correctness of the
formalization of fractional calculus based on Caputo definition,
but also reduce the interventions of user when formally analyze
the fractional order systems. The formalizations of fractional
calculus and its properties are the keys to formally analyze
fractional order systems. The work in this section provides the
bases to the formal analysis of fractance element and fractional
differential circuit.

III. FORMALIZATION OF FRACTANCE ELEMENT

The actual circuits tend to show the fractional order be-
havior. For example, the modeling and analysis of traditional
capacitance is always based on the integer order differential
theory. However, with the development of nonlinear theory
and fractal differential geometry theory, the researchers found
that the traditional capacitance which is based on integer
order calculus is just the idealization of the actual model.
Actually, the ideal capacitance does not exist in practice. This
is mainly because that the electrolyte materials which make
up the capacitance show the fractal dimension characteristic.
In fact, the capacitance presents the fractional characteristics
on the physical property. The integer order differential and
integral circuit which respectively show the behaviors of high
and low pass, are also the results of the idealized processing
of real circuit. Fractance element and fractional differential
circuit can describe the fractional order behaviors of circuits.
We will use fractional calculus to model them. Then the
relationship of fractance element and ideal elements as well
as the unification of fractional differential circuit and integer
differential circuit are verified. The purpose is to illustrate that
fractional calculus is the extension of integer order calculus
and the real systems can be described more comprehensively
by using fractional calculus. Meanwhile, the correctness of the
above formalizations and the effectiveness of theorem proving
method in the analysis of fractional order systems are also
demonstrated here.

Any lumped parameter element can be described by math-
ematical model and physical model. Fractance element is no
exception. In this section, we will give the circuit symbol graph
and mathematical expression of fractance element, and then
formally analyze it and fractional differential circuit which is
the simplest circuit composed by fractance element.

Fractance element is a two-port element and it can be
represented by symbol F. The circuit symbol graph of it is
given in Fig.1.

Fig. 1. Fractance Element

In the complex frequency domain, the impedance of frac-
tance element is shown as Z(S) = kSv , where k is a constant
coefficient and v is the order of fractance element. In reference
[1], when the order v is greater than 0, fractance element which
has the form of Z(S) = kS−v is called fractional capacitance
and it is called fractional inductance when it is in the form
of Z(S) = kSv . The voltage and current of fractance element
satisfy Ohm’s law and the relationship of them is given in
Formula (6).

i(t) = kDv[v(t)] (6)

As can be seen from Formula (6), the current of fractance
element is the vth order calculus of voltage and v is a real
number. Due to the arbitrariness of order v, the definition of
fractance element is broader than common components and the
function of fractance element is also more powerful. Definition
3 is the formalization of fractance element in HOL4.

Definition 3. Fractance Element
∀k v t v t.i t k v t v t = k ∗ frac c v t v 0 t
where i t and v t are the current and voltage of fractance
element at moment t, respectively. k is the constant coefficient
and frac c is the formalization of fractional calculus based
on Caputo definition which is given in Definition 1.

According to the circuit analysis theory, the current flowing
through the resistance R is i(t) = v(t)

R , while the current
flowing through the capacitance C is i(t) = C dv(t)

dt and the

current flowing through the inductance L is i(t) =
∫ t
0 v(τ)dτ

L .
Introducing the concept of fractance element, the resistance
can be understood as the case where the order of fractance
element is 0, and the capacitance can be understood as the case
where the order is 1 and the inductance can be understood as
the case where the order is -1. Therefore, there are connections
between the fractance element and the traditional resistance,
inductance and capacitance. The traditional components are
three ideal models of actual components. Fractance element
can better describe the performance of practical elements in the
circuit. Based on Definition 3, we will use the formalizations
in Section 2 to formally verify the relationship between
fractance element and the three ideal components. The formal
verifications of these three relationships using higher-order
logic are shown below.

Theorem 5. Relationship between Fractance Element and
Resistance
∀k v t t.(v = 0 : real) ==> (i t k v t v t = k ∗ v t t)

Theorem 6. Relationship between Fractance Element and
Capacitance
∀k v t t.(v = &(1 : num)) ∧ (∀v t n l a.
frac c exists v t v a t n l) ∧ (n order deriv 1 v t 0 =
0) ==> (i t k v t v t = k ∗ deriv v t t)

Theorem 7. Relationship between Fractance Element and
Inductance
∀k v t t.(v = −&(1 : num)) ∧ FLR NEG 1 ∧
FLR NEG 0 ==> (i t k v t v t = k ∗
lim(λn.integral(0, t− 1/2 pow n) v t))

Theorem 5 verifies that the fractance element exhibits the
behavior of a resistance for v = 0. Here, the relationship
between the flowing current and voltage is expressed as
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i(t) = kv(t) in time domain, where k equals to 1
R and R is

the value of resistance. The proof of Theorem 5 is completed
by using Definition 3 and Theorem 1 to rewrite the goal and
make a further calculation. Theorem 6 proves that fractance
element displays the characteristic of ideal capacitance for
v = 1. At this time, the relationship between the flowing
current and voltage is expressed as i(t) = k dv(t)

dt , where
k means the value of capacitance. The formal verification
of Theorem 6 is based on Theorem 3. Theorem 7 deduces
that fractance element will behave as an ideal inductance if
v = −1. The connection between the flowing current and
voltage is expressed as i(t) = k

∫ t

0
v(τ)dτ , where k equals to

1
L and L is the value of inductance. Theorem 4 is utilized in
this proof.

The fractional differential circuit is a kind of fractance
circuit and it is composed of fractance element. It outputs
the fractional differential of input signal and its amplitude
frequency characteristic is a high pass filter. In terms of
fractional order controller, initial implementation of fractional
differential circuit[22] makes a foundation for the universal
application of fractional order controllers in the field of
information science[23]. Fig.2 is a fractional differential circuit
with power source Vi, resistance R and fractance element
F which is realized by fractional capacitance. Based on the
formalization of fractance element, the formal modeling and
verification of fractional differential circuit will be performed
next.

Fig. 2. Fractional Differential Circuit

The output voltage of fractional differential circuit in Fig.2
is the voltage across the resistance R and the input voltage
is the voltage of power source. The relationship between the
output voltage and the input voltage is inferred as:

vo(t) = RCDvvi(t) (v > 0) (7)

where vo(t) is the output voltage and Dvvi(t) returns the
vth order calculus of input voltage vi(t). The condition of
Formula(7) limits the operator Dvvi(t) as the expression of
fractional differential. The order v is the same as the order of
fractance element. The formalization of fractional differential
circuit in HOL4 is given in Definition 4.

Definition 4. Fractional Differential Circuit
∀R C vi t v t.vo D t R C vi t v t = R ∗ C ∗
frac c vi t v 0 t R C vi t v t.vo D t R C vi t v t =
R ∗ C ∗ frac c vi t v 0 t
where vo D t and vi t indicate the output voltage and the
input voltage of the circuit at moment t. vo D t and vi t are
both type of (real− > real) here. R, C, v and t represent
resistance, capacitance, differential order and the upper limit.

If the order v equals to 1, Definition 4 will represent a first
order differential circuit. For the first order differential circuit,
the output response just reflects the rate of input change. So
the output response of first order differential circuit is 0 if
a constant signal is applied at the input. This is because the
rate of change for constant signal is 0. The following is the
verification of this property in HOL4 using the already verified
definition and properties in Section 2.

(v = 1)∧(∃a t n l.frac c exists (λt.v 0 : real) v a t n l)
==> (vo D t R C (λt.v 0 : real) v t = 0)

The precondition (v = 1) guarantees that the order of
fractional differential circuit is 1. Under this condition, frac-
tional differential circuit will behave as first order differential
circuit of integer order calculus. The second precondition
(frac c exists (λx.v 0 : real) v a x n l) ensures the
existence of fractional calculus which is based on Caputo
definition for function v 0 . Under these two preconditions,
it can be gradually verified that the output response of this
fractional differential circuit is 0 when the constant signal v 0
is the input. The availability of already verified property of
fractional calculus in Section 2 let us to achieve the simple
sub-goal.

The fractional order differentiator has been formalized in
reference[12]. It formally verified the output response of
fractional order differentiator when unit step signal is applied
at the input and the order is between 0 and 1. A lot of work has
been done in [12], which is very significant and gives us much
inspiration. However, the formal verification of fractional order
differentiator did not take the order of integer 1 into account.
In other words, they have not considered the unification of
fractional differential and integer order differential. In this
paper, we take the differential order of integer 1 into account,
and use the Caputo definition to verify the output response
of the fractional differential circuit with constant signal v 0
as input. The fractional differential circuit will behave as first
order differential circuit if the order is integer 1. According
to the property of Riemann-Liouville definition of fractional
calculus, the output response of first order differential circuit
is RCv 0t−1 when constant signal v 0 is applied at the input.
This result is in contradiction with the result that the output
response of first order differential circuit only reflects the rate
of input change. As analyzed above, the result using Caputo
definition in this paper is consistent with the fact. The formal
result not only verifies the consistency of fractional first order
differential circuit and integer first order differential circuit,
which besides achieving uniformity in fractional differential
and integer order differential, but also correctly deduces the
output response of first order differential circuit with constant
signal as the input.

Due to the completeness of theorem proving, the results
are accurate and complete. Besides, the results in this paper
are consistent with the theoretical results, which illustrate the
correctness of the formalizations of fractional calculus, as
well as the validity of the analysis of fractance element using
theorem proving.
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IV. CONCLUSION

Theorem proving, as a formal method, formalizes the
specifications and designs of systems to the logic models.
The validation process is intuitional and rigorous. Besides,
its self-prove function can ensure the correctness of formal-
ization. Based on theorem proof tool HOL4, we completed
the formalized analysis of fractance element and fractional
differential circuit which is made up of fractance element.
Caputo definition of fractional calculus and some properties
of it are the theoretical bases of the formal analysis of
fractance element and fractional differential circuit. Therefore,
their formalization is a significant work presented in this
paper. These works factually lay good foundations for the
formal analysis of circuits fractional order behaviors. Mean-
while, the formal analysis of fractance elements and fractional
differential circuit also shows the effectiveness, practicality
and correctness of the formalizations of fractional calculus
theorems. The formalization of fractional calculus based on
Caputo definition in this paper, completes the definition of
fractional calculus in HOL4 and provides more choices for
the formal analysis of fractional order systems. In addition,
the formal analysis of fractance element not only enriches
the studies of fractance element, but also provides a way to
the analysis of fractance element. The next step will be taken
to verify the other properties of fractional calculus based on
Caputo definition, to lay a solid foundation for the complete
analysis of fractance element and fractional differential circuit.

REFERENCES

[1] hou Ji-Liu, Pu Yi-Fei, Liao Ke. Fractional Calculus’s Principle and its
Application in Signal Analysis and Processing. Beijing:Science Press,
2006. 151–154

[2] Zhang YZ. Study on Fractional-order Calculus and its Applications
[Ph.D.dissertation], Northeastern University, China, 2008

[3] Deng Li-Wei, Song Shen-Min. Synchronization of fractional order
hyperchaotic systems based on output feedback sliding mode control.
Acta Automatica Sinica, 2014, 40(11):2420–2427

[4] Liao Guangkai, Long Zhilin, Xu Fu, et al. Investigation on the vis-
coelastic behavior of an fe-base bulk amorphous alloys based on the
fractional order rheological model. Acta Physica Sinica, 2015, 64(13):
136101–136101

[5] Mehdi Dalir. Applications of fractional calculus. Applied Mathematical
Sciences, 2010, 4(21): 1021–1032

[6] Huang Guo, Xu Li, Pu Yi-Fei. Summary of research on image processing
using fractional calculus. Application Research of Computers, 2012,
29(2):414–426

[7] Zafer BINGUL, Oguzhan KARAHAN. Fractional PID controllers tuned
by evolutionary algorithms for robot trajectory control. Turkish Journal
of Electrical Engineering & Computer Sciences, 2012, 20(Sup.1), 1123–
1136

[8] Yan Li-Mei, Zhu Yu-Song, Xu Jian-Jun, et al. Transmission lines
modeling method based on fractional order calculus theory. Transactions
of China Electrotechnical Society, 2014, 29(9):260–268

[9] Cao Jun-Yi, Liang Jin, Cao Bing-Gang. Fuzzy fractional order controller
based on fractional calculus. Journal of Xi’an Jiao Tong University,
2005, 39(11):1246–1253

[10] Krishnan Balachandran, Venkatesan Govindaraj, Luis Rodrłguez-Germ,
et al. Stabilizability of fractional dynamical systems. Fractional Calculus
& Applied Analysis, 2014, 17(2):511–531

[11] Zhang Song. Implementation of electric circuit for changeable
order-changeable fractional resistance. Communication Technology,
2010,43(10):164–166

[12] Zhou Ji-Liu, Yuan Xiao, Liao Ke, et al. One Method to realize alterable
order analog fractance circuits . Journal of Sichuan University (Engi-
neering Science Edition), 2007, 39(3):141–144

[13] Ren Yi, Yuan Xiao. Implementation of fractional-order analog fractance
circuit using binomial expansion. Journal of Sichuan University (Natural
Science Edition), 2008,45(5):1100–1104

[14] Umair Siddique, Osman Hasan. Formal analysis of fractional order
systems in HOL. Formal Methods in Computer-Aided Design, 2011.163–
170

[15] Shi LK. The Formal Analysis of Fractional Systems based on Grunwald-
Letnikov Definition using Higher-order Logic[Master dissertation], Cap-
ital Normal University, China, 2014

[16] Zivorad Tomovski, Roberto Garra. Analytic solutions of fractional
integro-differential equations of volterra type with variable coefficients.
Fractional Calculus & Applied Analysis, 2014, 17(1):38–60

[17] Zhao Chun-Na, Li Ying-Shun, Lu Tao. The Analysis and Design of
Fractional Systems. Beijing: National Defence Industry Press, 2010.13–
20

[18] Harrison J. Theorem Proving with the Real Numbers. Berlin:Springer-
Verlag, 1998

[19] Gu Wei-Qing, Shi Zhi-Ping, Guan Yong, et al. Formalization of gauge
integration theory in HOL4, Computer Science,2013, 40(2):191–194

[20] Zhao Gang, Zhao Chun-Na, Guan Yong, et al. Formalization of laplace
transform calculus in HOL4. Micro Computer System, 2014, 35(9):2178–
2181

[21] Mohammad Saleh Tavazoei. Time response analysis of fractional-order
control systems:a survey on recent results. Fractional Calculus &
Applied Analysis, 2014, 17(2):440–461

[22] M.Nakagava, K.Sorimachi. Basic characteristics of a fractance device.
IEICE TRANSACTIONS on Fundamentals of Electronics, Communica-
tions and Computer Sciences, 1992, E75-A(12):1814–1819

[23] Wang Ji-Feng. The Analysis of Control Performance for Fractional-order
Systems. Beijing: Electronic Industry Press, 2010.13–14

LI Shanshan is currently a graduate student in Cap-
ital Normal University. She received her bachelor
degree from Minzu University of China in 2013.
Her research interests cover formal verification and
fractional calculus.
e-mail:shanshan xiong@126.com



LI et al.: RESEARCH ON THE HIGHER-ORDER LOGIC FORMALIZATION BASELINESKIP OF FRACTANCE ELEMENT 9

ZHAO Chunna graduated from Northeastern Uni-
versity in 2006 and received the Ph.D degree. She
is currently an associate professor in Capital Normal
University. Her research interests include formal ver-
ification and the modeling and control of fractional
order system.
e-mail:chunnazhao@163.com
corresponding author

GUAN Yong graduated from China University of
Mining and Technology in 2004 and received the
Ph.D degree. He is currently a professor in Capi-
tal Normal University. His research interests cover
formal verification, robot and the embedded system
with high reliability.
e-mail:guanyong@cnu.edu.cn

SHI Zhiping graduated from Institute of Computing
Technology, Chinese Academy of Sciences in 2005
and received the Ph.D degree. He is currently an
associate researcher in Capital Normal University.
His research interests include formal verification and
artificial intelligence.
e-mail:shizp@cnu.edu.cn

LI Xiaojuan graduated from China Agricultural
University in 1999 and received the Ph.D degree.
She is currently a professor in Capital Normal Uni-
versity. Her research interests cover formal verifica-
tion and the computer network.
e-mail:lixj@cnu.edu.cn

WANG Rui graduated from Tsinghua University in
2012 and received the Ph.D degree. She is currently
a teacher in Capital Normal University. Her research
interests include formal verification and the verifica-
tion of robot safety.
e-mail:rwang04@cnu.edu.cn

ZHANG Qianying graduated from University of
Chinese Academy of Sciences in 2015 and received
the Ph.D degree. She is currently a teacher in Capital
Normal University. Her research interests include
real-time operating system and formal verification.
e-mail:zsjzqy@gmail.com



IEEE/CAA JOURNAL OF AUTOMATICA SINICA 1

Containment Control of Fractional Order
Multi-Agent Systems with Time Delays

Hongyong Yang, Fuyong Wang and Fujun Han

Abstract—In complex environments, many distributed multi-
agent systems are described with the fractional-order dynamics.
In this paper, containment control of fractional-order multi-
agent systems with multiple leader agents are studied. Firstly,
the collaborative control of fractional-order multi-agent systems
(FOMAS) with multiple leaders is analyzed in a directed network
without delays. Then, by using Laplace transform and frequency
domain theorem, containment consensus of networked FOMAS
with time delays is investigated in an undirected network, and
a critical value of delays is obtained to ensure the containment
consensus of FOMAS. Finally, numerical simulations are shown
to verify the results.

Index Terms—containment control, multi-agent systems,
fractional-order, time delays.

I. INTRODUCTION

RESENTLY, with the rapid development of network and
communication technology, the distributed coordination

for networked systems has been studied deeply ([1−5]). Coop-
erative control of multi-agent systems has become a hot topic
in the fields of automation, mathematics, computer science,
etc ([6−10]). It has been applied in both military and civilian
sectors, such as the formation control of mobile robots, the
cooperative control of unmanned spacecraft, the attitude ad-
justment and position of satellite, and the scheduling of smart
power grid systems, etc. As a kind of distributed cooperative
control problems of multi-agent systems with multiple leaders,
containment control regulates followers eventually converge to
a target area (convex hull formed by the leaders) by designing
a control protocol, which has been paid much more attention
in recent years ([11−13]).

In the complex practical environments, many distributed
systems cannot be illustrated with the integer-order dynamics
and can only be characterized with the fractional-order dy-
namics ([14−16]). For example, flocking movement and food
searching by means of the individual secretions, exploring of
submarines and underwater robots in the seabed with a massive
number of microorganisms and viscous substances, working
of unmanned aerial vehicles in the complex space environ-
ment ([17−18]). Cao and Ren have studied the coordination
of multi-agent systems with fractional order ([19−20]), and
obtained the relationship between the number of individuals
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and the order in the stable fractional system. Yang et.al.
have studied the distributed coordination of fractional order
multi-agent systems with communication delays ([21−22]).
Motivated by the broad application of coordination algorithms
in FOMAS, the containment control of distributed fractional-
order systems will be studied in this paper.

For containment control problems, the current re-
search works are mainly focused on integer-order systems
([11−13,23−26]). In [11], containment control problem for
first-order multi-agent systems with the undirected connected
topology is investigated, and the effectiveness of control strat-
egy is proven by using partial differential equation method.
In [12], second-order multi-agent systems with multiple lead-
ers are investigated, the containment control of multi-agent
systems with multiple stationary leaders can be achieved in
arbitrary dimensions. In [13], two asymptotic containment
controls of continuous-time systems and discrete-time sys-
tems are proposed for the multi-agent systems with dynamic
leaders, and the constraint condition for control gain and
sampling period are given. Considering factors such as external
disturbance and parameter uncertainty in [23], the attitude
containment control problem of nonlinear systems are studied
in a directed network. The impulsive containment control
for second-order multi-agent systems with multiple leaders is
studied in [25−26], where all followers are regulated to access
the dynamic convex hull formed by the dynamic leaders.

When agents transfer information by means of sensors or
other communication devices in coordinated network, com-
munication delays have a great impact on the behaviors of the
agents. Now, the influences of communication delays on multi-
agent systems have also been paid more attentions ([2,7−10])
where these research activities on the coordination problem
are mainly concentrated on integer-order multi-agent systems.
In [24], containment control problem of multi-agent systems
with time delays is studied in fixed topology, and two cases
of multiple dynamic leaders and multiple stationary leaders
are discussed, respectively. As far as we know, few researches
have been done on the containment consensus of fractional
order multi-agent systems with time delays.

In this paper, the containment control algorithms for multi-
agent systems with fractional dynamics are presented, and the
containment consensus of distributed FOMAS with communi-
cation delays is studied under directed connected topologies.
The main innovation of this paper is that the distributed
containment control of fractional order multi-agent systems
with multiple leaders and communication delays is studied for
the first time. The research presented in this paper is different
from Reference[21], where consensus of FOMAS without lea-
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der[21] is much easier than containment control of FOMAS
with multiple leaders in this paper. The rest of the paper
is organized as follows. In Section 2, we recall some ba-
sic definitions about fractional calculus. In Section 3, some
preliminaries about graph theory are shown, and fractional
order coordination model of multi-agent systems is presented.
Containment control of fractional coordination algorithm for
multi-agent systems with communication delay is studied in
Section 4. In Section 5, numerical simulations are used to
verify the theoretical analysis. Conclusions are finally drawn
in Section 6.

II. FRACTIONAL CALCULUS

Fractional calculus has played an important role in mod-
ern science. There are two fractional operators used widely:
Caputo and Riemann-Liouville (R-L) fractional operators. In
physical systems, Caputo fractional order operator is more
practical than R-L fractional order operator because R-L
operator has initial value problems. Therefore, in this paper
we will apply Caputo fractional order operator to describe the
system dynamics and analyze the stability of proposed FO-
MAS algorithms. Generally, Caputo operator includes Caputo
fractional integral and Caputo fractional derivative. Caputo
fractional integral is defined as

C
t0D

−p
t f(t) =

1
Γ(p)

∫ t

t0

f(θ)
(t− θ)1−p

dθ,

where the integral order p ∈ (0, 1], Γ(.) is the Gamma
function, and t0 is a real number. Based on the Caputo
fractional integral, for a nonnegative real number α, Caputo
fractional derivative is defined as

C
t0D

α
t f(t) =C

t0 D−p
t

[
d[α]+1

dt[α]+1
f(t)

]
, (1)

where p = [α] + 1 − α ∈ (0, 1] and [α] is the integral part
of α. If α is an integer, then p = 1 and the Caputo fractional
derivative is equivalent to the integer-order derivative. In this
paper, we will use a simple notation f (α) to replace C

t0D
α
t f(t).

Let L() denote the Laplace transform of a function, the
Laplace transform of Caputo derivative is shown as

L(f (α)) = sαF (s)−
[α]+1∑

k=1

sα−1f (k−1)(0), (2)

where F (s) = L(f (α)) =
∫∞
0− e−stf(t)dt is the Laplace

transform of function f(t), f (k)(0) = limξ→0− f (k)(ξ) and
f (0) = f(0) = limξ→0− f(ξ).

III. PROBLEM STATEMENT

Assume that n autonomous agents constitute a network
topology graph G = {V, E, A}, in which V = {v1, v2, ..., vn}
represents a set of n nodes, and its edges set is E ⊆ V × V .
I = {1, 2, ..., n} is the node indexes set, A = [aij ] ∈ Rn×n

is an adjacency matrix with elements aij ≥ 0. An edge of the
diagraph G is denoted by eij = (vi, vj) ∈ E. Let the adjacency
element aij > 0 when eij ∈ E, otherwise, aij = 0. The
neighbors’ set of node i is denoted by Ni = {j ∈ I : aij > 0}.

Let G be a weighted graph without self-loops, i.e., aii = 0,
and matrix D = diag{d1, d2, ..., dn} be the diagonal matrix
with the diagonal elements di =

∑n
j=1 aij representing the

out-degree of the i-th agent. L = D − A is the Laplacian
matrix of the weighted digraph G. For two nodes i and k,
there is index set {k1, k2, ...kl} satisfying aik1 > 0, ak1k2 > 0,
..., aklk > 0, then there is an information transmission linked
path between node i and k, also we say node i can transfer
the information to node k. If node i can find a path to reach
any node of the graph, then node i is globally reachable from
every other node in the digraph.

Lemma 1[3]. 0 is a simple eigenvalue of Laplacian matrix
L, and X0 = C[1, 1, ..., 1]T is corresponding right eigenvector,
i.e., LX0 = 0, if and only if the digraph G = (V, E, A) has a
globally reachable node.

Lemma 2[9]. Matrix L + B is a positive definite matrix,
where L is a Laplacian matrix of the digraph G = (V, E, A)
with a globally reachable node, and B = diag{b1, ..., bn} with
bi ≥ 0 and at least there is one element bi > 0.

Definition 1. The convex hull of a finite set of points
x1, ..., xm denoted by Co{x1, ..., xm}, is the minimal convex
set containing all points xi, i = 1, ..., m. More specifically,
Co{x1, ..., xm} = {∑m

i=1 νixi|νi > 0,
∑m

i=1 νi = 1}.
Recently, Fractional order systems have been widely applied

in various science fields, such as physics, hydrodynamics, bio-
physics, aerodynamics, signal processing and modern control.
The theories of fractional order equations are studied deeply,
and the relationship between the fractional order and the
number of agents to ensure coordination has been presented
in [19]. Assume that Caputo fractional derivative is used to
indicate the dynamics of multi-agent systems in the complex
environments, the fractional order dynamical equations are
defined as:

x
(α)
i (t) = ui(t), i = 1, ..., n, (3)

where xi(t) ∈ R and ui(t) ∈ R represent the i-th agent’s
state and control input respectively, x

(α)
i represents the α(α ∈

(0, 1]) order Caputo derivative. Assume the following control
protocols are used in FOMAS:

ui(t) = −γ
∑

k∈Ni

aik[xi(t)− xk(t)], i ∈ I. (4)

where aik represents the (i, k) elements of adjacency matrix A,
γ > 0 is control gain, Ni represents the neighbors collection
of the i-th agent.

Suppose the multi-agent systems consisting of n1 following
agents and n2 leader agents in this paper, where n1 +n2 = n.
Then, the control protocols of the multi-agent systems can be
rewritten as

ui(t) =
{ −γ

∑
k∈Ni

aik[xi(t)− xk(t)], i = 1, 2, ..., n1;
0, i = n1 + 1, ..., n.

(5)

The systems(3-5) can be rewritten as

X(α)(t) = −γ

(
L1 L2

0 0

)
X(t), (6)
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where X(t) = [X1(t), X2(t)]T, X1(t) = [x1(t), x2(t), ...,
xn1(t)]

T, X2(t) = [xn1+1(t), ..., xn(t)]T, L1 ∈ Rn1×n1 ,
L2 ∈ Rn1×n2 . X1(t) is the set of the followers, and X2(t) is
the set of the leaders.

Remark 1. Matrix L1 = (lik) ∈ Rn1×n1 satisfying

lik =
{

di − aii, i = k,
−aik, i 6= k.

Matrix L2 = (lik) ∈ Rn1×n2 satisfying

lik = −aik, i = 1, 2, ..., n1; k = n1 + 1, ..., n.

Assume the collection formed by leaders is regarded as a
virtual node, if one follower agent can connect to some leader,
then the follower is connected to the virtual node.

Definition 2. The containment control is realized for the
system (3) under certain control input (5), if the position states
of the followers are asymptotically converged to the convex
hull formed by the leaders.

Assumption 1. For any one follower, there is a directed
connected path to the virtual node formed by leaders.

Lemma 3. With Assumption 1, matrix L1 is positive
definite, and −L−1

1 L2 is a non-negative matrix whose entries
sum in every row equals to 1.

Proof. From Lemma 2, matrix L1 is positive definite matrix.
Let L1 = dIn1 − Q where d is a positive number which is
large enough and matrix Q is a non-negative matrix. it has

L−1
1 = (dIn1 −Q)−1

= d−1(In1 + d−1Q + (d−1Q)2 + ...).

Then, we obtain −L−1
1 L2 is a non-negative matrix.

From Lemma 1, Laplacian matrix L will be satisfied with
LX0 = 0, where X0 = [1, 1, ..., 1]T ∈ Rn×1. Then we have

L1X01 + L2X02 = 0,

where X01 = [1, 1, ..., 1]T ∈ Rn1×1 and X02 = [1,
1, ..., 1]T ∈ Rn2×1. Since L1 is a positive definite matrix from
Assumption 1 and Lemma 2, it has

X01 = −L−1
1 L2X02.

Therefore, −L−1
1 L2 is a stochastic matrix with entries sum in

every row equaling to 1.
Theorem 1. Consider a directed dynamic system of n1

followers and n2 leaders with dynamics (3), whose dynamic
topologies are satisfied with Assumption 1. Then the contain-
ment control is realized for the FOMAS under certain control
protocol (5).

Proof. Based on the system (6), we have

X
(α)
1 (t) = −γ(L1X1(t) + L2X2(t)),

X
(α)
2 (t) = 0.

(7)

Let X̄1(t) = X1(t) + L−1
1 L2X2(t), system (7) can be

rewritten as
X̄

(α)
1 (t) = −γL1X̄1(t),

X
(α)
2 (t) = 0.

(8)

It is known that the fractional differential system (8) is
asymptotically stable iff ‖arg(spec(L1))‖ > απ/2. Since

L1 is positive definite matrix, α ∈ (0, 1], we obtain
limt→∞ X̄1(t) = 0, i.e.

lim
t→∞

X1(t) = −L−1
1 L2X2(t).

Since matrix −L−1
1 L2 is stochastic matrix, the states of the

followers are asymptotically converged to the convex hull
formed by the leaders with Definition 1. Then, based on
Definition 2, the containment control is realized for the system
(3) with the control protocol (5).

Remark 2. If FOMAS of n agents and n2 = 1 leaders
with dynamics (3), the containment control result in Theorem
1 will become the consensus of multi-agent systems with one
leader.

Remark 3. If the fractional order α = 1 in FOMAS, the
containment control result in Theorem 1 will become that of
multi-agent systems with integer-order dynamics[1].

IV. CONTAINMENT CONTROL OF FOMAS WITH TIME
DELAYS

In this section, we assume that there are communication
delays in the dynamical systems, and containment control of
the fractional-order agent systems with communication delays
will be studied. Under the influence of communication delays,
we can get the following algorithm:

x
(α)
i (t) = ui(t− τ), i = 1, ..., n, (9)

where τ is the communication delay of agent i. Through a
simple change we can obtain

X
(α)
1 (t) = −γ(L1X1(t− τ) + L2X2(t− τ)),

X
(α)
2 (t) = 0.

(10)

Let X̄1(t) = X1(t) + L−1
1 L2X2(t), system (10) can be

rewritten as

X̄
(α)
1 (t) = −γL1X̄1(t− τ),

X
(α)
2 (t) = 0.

(11)

Theorem 2. Suppose that multi-agent systems are com-
posed of n independent agents with n1 followers and n2

leaders, whose connection network topology is undirected with
Assumption 1. Then fractional-order multi-agent system (10)
with time delays can asymptotically reach containment control,
if

τ <
(2− α)π
2(λ̄γ)1/α

, (12)

where λ̄ = max{λi, i ∈ I}, λi is the eigenvalues of matrix
L1.

Proof. By applying Laplace transformation to system(11),
we can obtain the characteristic equation of the system

det(sαIn + γe−τsL1) = 0.

Since the Laplacian matrix L1 is symmetrical positive definite,
there is an orthogonal matrix P satisfying L1 = PΛP−1,
where Λ = diag{λ1, ..., λn} with λi > 0. Therefore, the root
of the characteristic equation is satisfied with s 6= 0.

When s 6= 0, let F (s) = det(In + γs−αe−τsL1), we
will prove that all solutions of F (s) = 0 have negative real
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parts. Let G(s) = γs−αe−τsL1, according to the generalized
Nyquist criterion, if for s = jω, where j is complex number
unit, point −1 + j0 is not surrounded by the Nyquist curve
of G(jω)’s eigenvalues, then all zero points of F (s) have
negative real parts. Let s = jω, we can get

G(jω) = ω−αe−j(ωτ+απ/2)γL1, (13)

We have the eigenvalues of G(jω)

|λIn1 −G(jω)| = |λIn1 − (ω−αe−j(ωτ+απ/2)γL1)|
= Πn1

i=1(λ− γλiω
−αe−j(ωτ+απ/2)),

where λi is the eigenvalues of L1. When ω = (2− α)π/(2τ)
the Nyquist curve of G(jω)’s eigenvalues will cross the left
of the real axis. If

τ < min{ (2− α)π
2(λiγ)1/α

, i = 1, 2, ...n1},

the point −1 + j0 is not surrounded by the Nyquist curve
of G(jω)’s eigenvalues. Since fractional order α ∈ (0, 1], we
obtain

τ < (2− α)π/(2(λ̄γ)1/α),

where λ̄ = max{λi, i ∈ I}, the fractional-order multi-
agent system (11) with time delays can asymptotically reach
containment control.

Corollary 1. Suppose multi-agent systems are composed of
n independent agents with n2 = 1 leader, whose connection
network topology is directed and symmetrical with Assump-
tion 1. Then FOMAS (10) with time delays can asymptotically
follow the tracks of the leader, if

τ <
(2− α)π

2(λmaxγ)1/α
, (14)

where λmax is the max eigenvalue of matrix L1.
Corollary 2. Suppose multi-agent systems are composed of

n independent agents with n1 followers and n2 leaders, whose
connection network topology is directed and symmetrical with
Assumption 1. Then fractional order multi-agent system (10)
with time delays can asymptotically reach consensus with
α = 1, if

2γτ < π/λmax, (15)

where λmax is the max eigenvalue of matrix L1.
Remark 4. If the fractional order α = 1 in FOMAS, the

containment control result in Theorem 2 will become that of
delayed multi-agent systems with integer-order dynamics.

Remark 5. The consensus result in Corollary 2 for γ = 1
is in accord with that of delayed multi-agent systems with
integer-order dynamics in [2].

V. SIMULATIONS

Consider the dynamic topology with 5 followers and 3
leaders (illustrated as A1, A2, A3) shown in Fig. 1, where the
connection weights of each edge is 1. Suppose the fractional
order of the multi-agent system α = 0.9.

From the communication topology of FOMAS, the system
matrix can be obtained,

L1 =




3 −1 0 0 −1
−1 2 0 0 0

0 0 2 −1 0
0 0 −1 3 −1

−1 0 0 −1 3




(16)

Fig. 1. Network topology of multi-agent systems.

Assume that the control parameter of system is taken
γ = 1.0. The initial positions of followers are taken as
x1(0) = (1, 1), x2(0) = (1, 2), x3(0) = (2, 1), x4(0) = (2, 3),
x5(0) = (3, 2), respectively. The initial positions of leaders
are taken as A1(0) = (4, 4), A2(0) = (4, 6), A3(0) = (6, 4).
Fig. 2 shows the state trajectories of FOMAS without time
delays, where the followers have converged into the convex
hull formed by the leaders.

Fig. 2. Moving track of FOMAS without communication delays.
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Next, we will verify the results of FOMAS with time delays.
The maximum eigenvalue of L1 is 4.618. According to the
constraints of Theorem 2 in this paper, the allowed upper
bound of the delays is 0.3157. Let τ(t) = 0.20 is the time
delay of multi-agent systems. The initial parameters in the
experiments are same as the simulation without time delays.
Fig. 3 shows the state trajectories of FOMAS with time delays,
where the followers have converged into the convex hull
formed by the leaders.

Fig. 3. Moving track of FOMAS with communication delay τ = 0.20.

Then, we will enlarge the time delays in FOMAS. Let
τ(t) = 0.30 is the time delay of multi-agent systems in the
experiments. Fig. 4 shows the running trajectories of FOMAS.
The followers can asymptotically converge to the dynamic
region formed by three leaders, i.e., the containment control
of fractional-order multi-agent systems with time delays can
be achieved.

Fig. 4. Moving track of FOMAS with communication delay τ = 0.30.

VI. CONCLUSION

This paper studies containment control of fractional multi-
agent systems with communication time delays. Containment
consensus of multi-agent systems with directed network topol-
ogy is studied. By applying the stability theory of frequency
domain, FOMAS with delay is analyzed, and the relationship

between the control gain of multi-agent systems and the
upper bound of time delays is derived. Suppose the orders
of the fractional dynamical systems are all 1, the extended
conclusion in this paper is the same with ordinary integer order
systems. The containment control of fractional order multi-
agent systems with dynamical topologies and linear time-
varying (LTV) systems will be investigated in the future works.
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Using Fractional Order Method to Generalize
Strengthening Buffer Operator and Weakening

Buffer Operator
Lifeng Wu, Sifeng Liu, Senior Member, IEEE, and Yingjie Yang, Senior Member, IEEE

Abstract—To reveal the relationship between the weakening
buffer operator and strengthening buffer operator, the traditional
integer order buffer operator is extended to fractional order
one. Fractional order buffer operator not only can generalize the
weakening buffer operator and the strengthening buffer operator,
but also realize tiny adjustment of buffer effect. The effectiveness
of grey model (GM(1,1)) with the fractional order buffer operator
is validated by six cases.

Index Terms—Fractional order, grey system theory, strength-
ening buffer operator, weakening buffer operator.

I. INTRODUCTION

DUE to the growing demand for reliable small sample
statistics, small sample prediction is of great importance

topic. Over the years, many scholars have carried out vigorous
programs[1−4]. Among these programs, it is reported that
the forecasting performance of grey model is better than
many conventional methods with incomplete or insufficient
data[4−6]. Grey system theory is developed by Deng[7]. As the
primary forecasting method of grey system theory, GM(1,1)
has been applied in many fields[4−7]. However, GM(1,1) is
suitable for the stable time series, how to predict the non-
stationary series is a difficult problem which deserves to be
researched.

For non-stationary time series prediction problem, the the-
ory on how to select model would lose its validity. That is
not the problem of selecting better model; instead, when a
system is severely affected by shock, the available data of the
past cannot truthfully reflect the law of the system. Under the
circumstances, buffer operator of grey system theory[7] has
been successfully used in many fields to overcome the above
difficulties[8−13], it combines quantitative and judgmental fore-
cast (qualitative analysis). Many kinds of buffer operators
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have been proposed simultaneously[14−18], how to choose a
suitable kind of buffer operator is very important in practice.
In this paper, many kinds of buffer operators are unified and
generalized based on fractional order method.

The rest of this paper is organized as follows. Section II
is a compendium of grey buffer operator. In Section III, the
inherent relationship between weakening buffer operator and
strengthening buffer operator based on fractional order method
is revealed. In Section IV, real examples for fractional order
buffer operator are discussed. Some conclusions of this study
are provided in the final section.

II. WEAKENING BUFFER OPERATOR AND
STRENGTHENING BUFFER OPERATOR

Assume that X = {x(1), x(2), . . . , x(n)} is the true behav-
ior sequence of a system, the observed behavior sequence of
the system is Y = {x(1)+ϵ1, x(2)+ϵ2, . . . , x(n)+ϵn}, where
(ϵ1, ϵ2, . . . , ϵn) is a term for the shocking disturbance. To
correctly discover and recognize the true behavior sequence X
of the system from the shock-disturbed sequence Y , one first
has to go over the hurdle (ϵ1, ϵ2, . . . , ϵn) (That is to say that
cleaning up the disturbance). If we directly use the severely
impacted data Y to construct model and to make predictions,
then our prediction is likely to fail, because what the model
described was not the true situation X of the underlying
system.

The wide existence of severely shocked systems often
causes quantitative predictions disagree with the outcomes of
intuitive qualitative analysis. Hence, seeking an equilibrium
between qualitative analysis and quantitative predictions by
eliminating these disturbances is an important task in order to
discover the true situation of the system. Grey buffer operator
proposed by Liu can address the problem, its definition is as
follows.

Definition 1[7]. Assume that raw data sequence is X =
{x(1), x(2), . . . , x(n)}. If ∀k = 2, 3, . . . , n, x(k)−x(k−1) >
0, then X is called as a monotonic increasing sequence.
If ∀k = 2, 3, . . . , n, x(k) − x(k − 1) < 0, then X is
called as a monotonic decreasing sequence. If there are
k, k′ ∈ {k = 2, 3, . . . , n} such that x(k) − x(k − 1) > 0,
x(k′)−x(k′−1) < 0, then X is defined as a random vibrating
or fluctuating sequence. If M = max{x(k)|k = 1, 2, . . . , n}
and m = min{x(k)|k = 1, 2, . . . , n}, then M − m is called
as the amplitude of the sequence X .

Lemma 1[7]. X = {x(1), x(2), . . ., x(n)} is a monotonic
increasing sequence. Then, XD = {x(1)d, x(2)d, . . ., x(n)d}



2 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

is a weakening buffer operator(WBO), iff x(k)d ≥ x(k),
k = 1, 2, . . . , n; XD = {x(1)d, x(2)d, . . ., x(n)d} is
a strengthening buffer operator(SBO), iff x(k)d ≤ x(k),
k = 1, 2, . . . , n.

Lemma 2[7]. Assume that X = {x(1), x(2), . . ., x(n)} is a
monotonic decreasing sequence. Then, XD = {x(1)d, x(2)d,
. . ., x(n)d} is a WBO, iff x(k)d ≤ x(k), k = 1, 2, . . . , n;
XD = {x(1)d, x(2)d, . . ., x(n)d} is a SBO, iff x(k)d ≥ x(k),
k = 1, 2, . . . , n.

Lemma 3[7]. Assume that X = {x(1), x(2), . . . , x(n)} is
a fluctuating sequence, XD = {x(1)d, x(2)d, . . . , x(n)d} is
a WBO, iff max{x(k)|k = 1, 2, . . . , n} ≥ max{x(k)d|k =
1, 2, . . . , n} and min{x(k)|k = 1, 2, . . . , n} ≤ min{x(k)d|
k = 1, 2, . . . , n}; XD = {x(1)d, x(2)d, . . ., x(n)d} is a
SBO, iff max{x(k)|k = 1, 2, . . . , n} ≤ max{x(k)d|k =
1, 2, . . . , n} and min{x(k)|k = 1, 2, . . . , n} ≥
min{x(k)d|k = 1, 2, . . . , n}.

Definition 2[7]. Assume that raw data sequence is X =
{x(1), x(2), . . . , x(n)}, XD = {x(1)d, x(2)d, . . . , x(n)d},
where

x(k)d =
x(k) + x(k + 1) + . . .+ x(n)

n− k + 1
, (1)

D is a first order WBO no matter whether X is monotonic
decreasing, increasing, or vibrating. If XD2 = XDD =
{x(1)dd, x(2)dd, . . . , x(n)dd}, D2 is a second order WBO.
Similarity, D3 is a third order WBO.

If

x(k)d =
x(1) + x(2) + . . .+ x(k − 1) + kx(k)

2k − 1
, (2)

then D is a first order SBO when sequence X is either
monotonic decreasing or increasing. If XD2 = XDD =
{x(1)dd, x(2)dd, . . . , x(n)dd}, D2 is a second order SBO.
Similarity, D3 is a third order SBO.
x(0)(k)d = x(0)(k) of WBO is consistent with the results

of above studies, that is they all suggested that more empha-
sis should be placed on the most recent and most relevant
information.

III. THE RELATIONSHIP BETWEEN WBO AND SBO
Due to traditional weakening buffer operators cannot tune

the effect intensity to a small extent, which leads to problems
that the buffer effect may be too strong or too weak. Consider-
ing this situation, and like the fractional-order systems[19−21],
fractional weakening buffer operator is constructed. Then (1)
can be expressed by

XD ={x(1)d, x(2)d, . . . , x(n)d}

= [x(1), x(2), . . . , x(n)]


1
n 0 . . . 0
1
n

1
n−1 . . . 0

...
...

. . .
...

1
n

1
n−1 . . . 1


then second order WBO can be expressed by

XD2 = [x(1), x(2), . . . , x(n)]


1
n 0 . . . 0
1
n

1
n−1 . . . 0

...
...

. . .
...

1
n

1
n−1 . . . 1


2

Similarly, p
q (

p
q ∈ R+) order WBO is

XD
p
q = [x(1), x(2), . . . , x(n)]


1
n 0 . . . 0
1
n

1
n−1 . . . 0

...
...

. . .
...

1
n

1
n−1 . . . 1


p
q

Theorem 1. For original data X = [x(1), x(2), . . . , x(n)],
−p

q (
p
q ∈ R+) order WBO from (1) is the p

q order SBO.
Proof. Set 

1
n 0 . . . 0
1
n

1
n−1 . . . 0

...
...

. . .
...

1
n

1
n−1 . . . 1

 = A,

since −p
q (

p
q ∈ R+) order WBO is

XD− p
q =X


1
n 0 . . . 0
1
n

1
n−1 . . . 0

...
...

. . .
...

1
n

1
n−1 . . . 1


− p

q

=XA− p
q

=X


n 0 0 . . . 0

−(n− 1) n− 1 0 . . . 0
0 −(n− 2) n− 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



p
q

The result of XA
p
q is a vector. When each component of

XA
p
q is not less than the corresponding component of X , we

can write as XA
p
q ≥ X . If sequence X is either monotonically

decreasing or increasing, because XA
p
q ≥ X and A is an

invertible matrix, we have XA
p
q A− p

q ≥ XA− p
q , that is X ≥

XA− p
q . So −p

q order WBO is the p
q order SBO when sequence

X is either monotonically decreasing or increasing.
If sequence X = [x(1), x(2), . . . , x(n)] is a fluctuating

sequence, x(l) = max{x(k)|k = 1, 2, . . . , n}, x(h) = min{
x(k)|k = 1, 2, . . . , n}, because [x(l), x(l), . . . , x(l)]A

p
q ≥

[x(l), x(l), . . . , x(l)] and A is an invertible matrix, we have
[x(l), x(l), . . . , x(l)]A

p
q A− p

q ≥ [x(l), x(l), . . . , x(l)]A− p
q ,

that is [x(l), x(l), . . . , x(l)] ≥ [x(l), x(l), . . . , x(l)]A− p
q ; Sim-

ilarly, we have [x(h), x(h), . . . , x(h)] ≤ [x(h), x(h), . . . ,
x(h)]A− p

q . So −p
q order WBO is the p

q order SBO when
sequence X is a fluctuating sequence.

So −p
q (pq ∈ R+) order WBO from (1) is the p

q order
SBO. �

Corollary 1. For original data X = [x(1), x(2), . . . , x(n)],
−p

q (
p
q ∈ R+) order SBO from (2) is the p

q order WBO.
Corollary 2. For original data X = [x(1), x(2), . . . , x(n)],

if nonnegative matrix B satisfies XB− p
q (pq ∈ R+) > 0 and

XD− p
q = XB− p

q is SBO (WBO), then XD
p
q = XB

p
q is

WBO (SBO).
The procedures of GM(1,1) model with p

q order WBO
(pq WGM(1,1)) are more complex than the traditional GM(1,1),
because more work must be done before forecasting. The
procedures can be summarized as follows:
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Step 1: Given a raw data sequence X(0) = {x(0)(1),
x(0)(2), . . ., x(0)(n)}, p

q order WBO sequence is X(0)D
p
q =

{x(0)(1)d
p
q , x(0)(2)d

p
q , . . ., x(0)(n)d

p
q }.

Step 2: Sequence {x(0)(1)d
p
q , x(0)(2)d

p
q , . . ., x(0)(n)d

p
q }

is used to establish GM(1,1), accumulated generating operator
x(1)(k)d

p
q =

∑k
i=1 x

(0)(i)d
p
q , k = 1, 2, . . . , n.

Step 3: The parameter a and b can be obtained by[
â

b̂

]
= (ATA)−1ATY

where

Y =


x(0)(2)d

p
q

x(0)(3)d
p
q

...
x(0)(n)d

p
q

 , A =


−x(1)(1)d

p
q +x(1)(2)d

p
q

2 1

−x(1)(2)d
p
q +x(1)(3)d

p
q

2 1
...

...

−x(1)(n−1)d
p
q +x(1)(n)d

p
q

2 1


Step 4: After substituting â and b̂ into x̂(0)(k + 1) =

x̂(1)(k + 1) − x̂(1)(k) = [x(0)(1) − b̂
â ](1 − eâ)e−âk (k =

1, 2, . . . , n−1), we can make prediction x(0)(n+1), x(0)(n+
2), . . ..

Step 5: If the predicted value x(0)(n+1), x(0)(n+2), . . .
is not consistent with the result of qualitative analysis, then
change the order number p

q . (If we want to pay more attention
to the recent data, the order number p

q must be the larger one.
If we want to pay more attention to the old data, the order
number p

q must be the smaller one. Because the strengthening
buffer operator reflects the priority of old data[22]).

Step 6: Repeat Step 1-5 until the predicted values x(0)(n+
1), x(0)(n+2), . . . are consistent with the result of qualitative
analysis.

IV. EXPERIMENTATION RESULTS

To test the proposed model, mean absolute percentage
error (MAPE = 100% × 1

n

∑n
k=1

∣∣∣x(0)(k)−x̂(0)(k)
x(0)(k)

∣∣∣) is used
to evaluate the precision.

Case 1. Energy consumption forecasting in China[23]
The data from 1998 to 2005 (X(0) = {13.22, 13.38, 13.86,

14.32, 15.18, 17.50, 20.32, 22.47}) are used to establish
different GM(1,1) models with different WBO, and the data
from 2006 to 2007 are used to determine the optimal order of
WBO. The results are shown in Table I.

As can be seen from Table I, 0.1WGM(1,1) is the best
model among the above models in out-of sample data. So
0.1WGM(1,1) is used to predict the data from 2008 to 2009.
The results are listed in Table II. As can be seen from Table II,
0.1WGM(1,1) yielded the lowest MAPE in out-of-sample data.
This implies that 0.1WGM(1,1) can improve the prediction
precision.

TABLE II
THE RESULTS OF TWO GREY MODELS

Year Actual value 0.1WGM(1,1) The result of Reference[23]

2008 29.10 28.86 28.59

2009 31.00 31.41 31.23

MAPE 0.98 1.26

Case 2. Electricity consumption per capita forecasting
in China[24]

The data from 2000 to 2005 (X(0) = {132.4, 144.6, 156.3,
173.7, 190.2, 216.7}) are used to obtain different GM(1,1)
models with different WBO, and the data of 2006 is predicted
by these models. The results are shown in Table III.

As can be seen from Table III, both WGM(1,1) models are
better than the best result of Reference[23], as a conclusion,
fractional order WBO has a perfect forecasting capability.

Case 3. The qualified discharge rate of industrial
wastewater forecasting in Jiangxi in China[17]

The data from 2000 to 2005 (X(0) = {68.63, 75.9, 77.59,
83.06, 88.66, 92.13}) are used to construct two GM(1,1)
models with WBO, and the data from 2006 to 2007 are
predicted by these models. The results are shown in Table
IV.

As can be seen from Table IV, the WGM(1,1) model is
better than the best result of Reference[17], so fractional order
WBO can improve the prediction accuracy of conventional
GM(1,1) model.

TABLE IV
THE FITTED VALUES AND MAPE OF TWO GREY MODELS

Year Actual value GM(1,1) WGM(1,1)

2006 93.23 93.4 93.95

2007 93.89 94.5 95.77

MAPE 0.42 1.75

Case 4. The electricity consumption forecasting in
Vietnam[25]

The data from 2000 to 2003 (X(0) = {1927, 2214, 2586,
2996}, unit: KTOE) are used to construct four models with
WBO, and the data from 2004 to 2007 are predicted by these
models. The results are shown in Table V.

As can be seen from Table V, the WGM(1,1) model is better
than the best result of Reference[17], so fractional order WBO
can improve the prediction accuracy of conventional GM(1,1)
model.

Case 5. The logistics demand forecasting in Jiangsu[26]

The data from 2005 to 2008 are used to construct three grey
models with WBO, and the data from 2009 are predicted by
these models. The results are shown in Table VI.

As can be seen from Table VI, the WGM(1,1) model is
better than the traditional grey model, so fractional order WBO
can improve the prediction accuracy of conventional GM(1,1).

TABLE VI
THE FITTED VALUES AND MAPE OF THREE GREY MODELS

Year Actual value GM(1,1)[26] 1WGM(1,1) 0.5WGM(1,1)

2009 5154.46 5330 5008 5138

MAPE 3.41 2.84 0.32

Case 6: The energy production forecasting in China[27]
The 1985-1989 data are used for model building, while the

1990-1995 data are used as an ex-post testing data set. The
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TABLE I
THE RESULTS OF DIFFERENT GREY MODELS

Year Actual value 0.3WGM(1,1) 0.1WGM(1,1) The best result of Reference[23]

2006 24.63 23.95 24.05 27.95

2007 26.56 25.97 26.34 26.16

MAPE 2.43 1.55 2.12

TABLE III
THE FITTED VALUES AND MAPE OF DIFFERENT GREY MODELS

Year Actual value -0.6WGM(1,1) -0.7WGM(1,1) The best result of Reference[24]

2006 249.4 248.3 250.8 241.21

MAPE 0.44 0.56 3.28

TABLE V
THE FITTED VALUES AND MAPE OF FOUR GREY MODELS

Year Actual value GM(1,1) AGM(1,1)[25] 1WGM(1,1) 0.1WGM(1,1)

2004 3437 3477 3334 3215 3439

2005 3967 4042 3807 3452 3953

2006 4630 4699 4347 3706 4544

2007 5256 5462 4963 3979 5224

MAPE 2.12 4.68 15.92 0.72

results given by the GM(1,1) model and 1.5WGM(1,1) as well
as the observed values are shown in Table VII.

TABLE VII
THE FITTED VALUES AND MAPE OF TWO GREY MODELS

Year Actual value GM(1,1)[27] 1.5WGM(1,1)

1990 103922 106069 103407

1991 104844 111296 105320

1992 107265 116781 107270

1993 111059 122536 109255

1994 118729 128574 111277

1995 129034 134910 113337

MAPE 6.71 3.50

Table VII shows that the 1.5WGM(1,1) model is better for
forecasting the energy production in China. The forecasted
values are more precise than the GM(1,1) model, for data
sequence with large random fluctuation.

V. CONCLUSION

Let us now return to the name of the fractional calculus. The
fractional calculus is a name for the theory of integrals and
derivatives of arbitrary order. which unifies and generalizes
the notions of integer-order differential and integral. Similarly,
fractional order WBO unifies and generalizes the notions of
WBO and SBO. As can be seen from Table II-VII, GM(1,1)
with the fractional order buffer operator can predict the devel-
opment trend of the system accurately.

Six real cases were seen to obtain good results, however, the
order p

q may be not optimal. In this paper, the order p
q is chosen

from more computational experiments. In future studies, it is

suggested that the particle swarm algorithm should be used to
determine the optimal order.
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