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Preface

During our time as a graduate student, when it came to topics of research, we have
always been tasked with solving the problem of “so what, who cares, and why you”,
Therefore our research into the use of small unmanned aircraft systems (sUAS – also
referred to as drones) with the methane emission source determination problem has
been largely motivated by climate change and the warming of our planet. Methane
is a very potent greenhouse gas when compared to carbon dioxide, and methane
has more potential to bring change to global warming effects due to its decreased
atmospheric lifespan – i.e. our ‘control’ knob for near-term change. However, tn turns
out, methane is seemingly challenging to measure. It is a colorless and odorless gas
that is requires special sensors to detect. Therefore, we focused our efforts on solving
this problem because it had the potential of real-world impact and is difficult to
solve. However, before we can achieve this goal, we need to master our understanding
of the measurement problem. This will ultimately provide pathways for detecting
leaks, locating their sources, and quantifying the emissions but more importantly it
provides pathways in measurement, verification (i.e. confirming that they have been
fixed), and reporting programs. As Peter Drucker said, “what gets measured, gets
managed.”

In the literature, in the context of applications, there has been discrepancies be-
tween the top-down (or direct measurements) and the bottom-up (or inventory-based)
approaches. Often the bottom-up approach under-estimates the emission source,
which prompts investigation into improving the emission factors associated with these
kind of methods. There are also issues with minimum detection limit and how indus-
try is looking towards probability of detection to help understand how ‘well’ we can
measure in all environments and scenarios - not just ‘ideal’ cases. Understanding how
different sensing technologies and how the different modes of measuring methane (in
situ, path-integrate, imaging-based) are effective in localization and quantification
tasks are key to addressing this issue.

In the past decade, we have seen the integration of Digital Twins (DT) into key
research areas (such as manufacturing, smart cities, etc.), improving the way we
provide solutions. Currently, DTs have not been applied to environmental systems
research, especially in the source determination problem. Benefits of DT technology
success in other industries, give insights on how they may be useful in this problem.
Furthermore, advances in industry 4.0 thinking or advances in IoT and edge de-
vices with DTs, provide the potential for making methane sensing smarter within all
sorts of applications – Oil & Gas, Agriculture, Dairy, Landfill, and even permafrost.
Within the DT framework, a vision can be formed for how these measurements can
be automated for more robust sensing, early detection, and faster repairs.

xi
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Many of the techniques employed by practitioners, rely on satellite, manned air-
craft, foot-based measurements, or by installing many fixed sensors (also referred to
as continuous emission monitoring). However, it is wrong to say that one approach is
a ‘one size fits all’ and better than the others. A much better approach is to provide
a holistic view of the measurement problem by providing complementary sensing at
different measurement scales. And, there just so happens to be a gap between ground
measurements and manned aircraft that is suitable for drone-based sensing – from
400 feet above ground level (AGL) to the surface. Drones also offer a unique capa-
bility for being able to be rapidly deployed, they have the ability to be re-configured
with different sensors, they can access areas between the ground and manned aircraft
that traditional vehicles or personnel on foot cannot travel (e.g. over bodies of water
or tree-lines, next to flares or tanks, etc.), they can provide faster and more frequent
surveys with finer spatial resolutions, and they can be relatively more cost effective
than traditional surveys.

The atmospheric turbulence and weather pose challenges within the use of DTs
and drone systems, both for flight capabilities and for solving the emission source de-
termination in general. For example, strong winds and extreme cold / hot, can prevent
or reduce flight times. Or, specific weather conditions may prohibit a sensor from use
(e.g. in rain or high humidity conditions). Additionally, as the terrain becomes more
complex, the air flow around that terrain also becomes more complex, requiring more
sophisticated DT modelling to capture higher levels of detail (or fidelity). This higher
fidelity results in an increase in the dimensionality of the modeling problem. Since
environmental modeling can already be costly to undertake – high-dimensionality
– added complexities from terrain and weather further increases the computational
expense for the DT, limiting and or preventing the useful real-time capabilities. Of
which is a core goal of smart sensing and this book.

This book offers a new way to look at the environmental sensing problem with
sUAS by incorporating DTs and smart sensing frameworks. First, we integrate hybrid
style modeling, allowing for near real-time computation, with advanced leak detec-
tion and quantification methods. Second, we investigate ‘where to sense’ through
integrating multiple sUAS and quantified observability concepts. The combination of
the two, enables smarter measurements and even allows for more simulation based
testing to avoid unnecessary field work and controlled release testing (speeding up
the development iteration cycle).

This book is designed and written for graduate students, researchers, scientists,
field operators/drone specialists, industry experts, and policy makers in an introduc-
tory fashion. The book contains both high-level explanations and examples, as well
as mathematical details for a general understanding. For the interested reader, the
references included therein, are sufficient to fully understand and implement the tech-
niques. To help foster the use of the topics covered in this book, a Github repository
will be included, such that the reader can explore and play with the proposed DT
framework. Unfortunately, due to non-disclosure agreements, not all of the data used
to produce the results of this manuscript will be made publicly available. However,
some of the controlled release data will be made available for use and reference.

The book is divided into two major sections or parts. The first major section
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will cover an introduction to the methane sensing problem, and the detection, local-
ization, and quantification of methane emission sources with sUAS. The aim is to
provide a general overview of these topics and give the important aspects related to
each subproblem. Within each chapter, a ‘Pause and Reflect’ is included to help the
reader think about how these topics can be expanded and also prompts the readers
thinking for the next chapter section or chapter. A series of case studies are showcased
at the end of the first major section, highlighting the experiments done, but more
importantly, the observations made and lessons learned during the field experiments.
The second major section will introduce the concepts of DTs and their use cases
(include some case studies), as well as build up the concept of smart sensing, sensor
placement and steering problem. The goal of this major section is to highlight how
DTs can be leveraged to expand sUAS-based source determination problem method
developments, but also embed smartness into the ‘how to best sense’ questions, with
respect to observability or solving the inverse problem. At the end, we highlight some
case studies on the topic of smart sensing before concluding with a summary of the
book’s takeaways, lessons learned, and the MOABS/DT code breakdown.

We wish to thank the funding support by the Center for Methane Emission
Research and Innovation (CMERI) through the Climate Action Seed Funds grant
(2023-2026) at the University of California, Merced. We also wish to thank MESA
Lab members and many undergraduate researchers involved in various field cam-
paigns. We wish to thank Dr. Lance Christensen of JPL for jointly starting methane
drone detection project in 2014. This book grows out of the first author’s 2023 Ph.D.
dissertation with some new yet systematic developments included.

Last but not least, the authors would like to thank Ms Xiaoyin Feng, Books Edito-
rial Assistant, Routledge & CRC Press, Taylor & Francis Group, for her professional
coordination of the book project; Ms. Lian Sun, Publisher, Head of China Books
Publishing and International Cooperation Taylor & Francis Advanced Learning for
her professional vision and help in the peer review process.

CA USA, April 2025 Derek Hollenbeck
CA USA, April 2025 YangQuan Chen
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