Smart Sensing with Digital Twins: Methane Emission Source Determination with sUAS

To Elvira, my family & mentors, without your support this accomplishment would not have been possible.

To Dalia, through smart thinking, hard work and persistent effort, anything is possible.

To my readers,

I hope this book helps you implement smart sensing systems to make the world a better place.

-D.H.

To my mentors and family.

-Y.C.

Contents

Preface		xi
List of A	cronyms	XV
Section I Sens	From Detection to Quantification: sUAS-ba ing Techniques	sed Methane
Chapter	1 The Methane Sensing Problem	3
1.1	WHY METHANE?	3
1.2	KEY EMISSION SOURCES	4
1.3	TYPES OF EMISSIONS	7
1.4	MEASUREMENT MODES AND TECHNOLOGIES	9
1.5	ON SMART SENSING	13
1.6	CHAPTER SUMMARY	15
Bibliogra	iphy	17
Chapter	2 Emission Source Detection	19
		10
2.1		19
2.2		23
2.3 2.4	CHAPTER SUMMARY	25
Bibliogra	iphy	27
Chapter	3 - Emission Source Localization	29
3.1	THE SOURCE LOCALIZATION PROBLEM	29
3.2	LOCALIZATION METHODS	30
3.3	OPEN CHALLENGES IN PRACTICE	40
3.4	CHAPTER SUMMARY	41
		vii

	viii		Contents
--	------	--	----------

Bibliography		43
Chapter	4 - Emission Source Quantification	47
4 4		47
4.1		47
4.2		64 69
4.3	CHAPTER SUMMARY	00 74
Bibliogra	aphy	75
Chapter	5 - Case Studies: LDAQ with sUAS	87
5.1	LEAK DETECTION AND LOCALIZATION	87
5.2	CONTROLLED RELEASE EMISSION QUANTIFICATION	95
5.3	REAL WORLD EMISSION QUANTIFICATION	100
5.4	CHAPTER SUMMARY	103
Bibliogra	aphy	105
Section mina	II Embedding Smartness to the Emission Source Deter ation Problem Solutions	r-
Chapter	6 - Digital Twin Framework	109
0.4		400
6.1	AN INTRODUCTION TO DIGITAL TWINS	109
6.2	REPRESENTING THE DIGITAL TWIN AS AN EMISSION SOURCE	110
6.3		811
6.4 0.5		121
6.5	CHAPTER SUMMARY	128
Bibliogra	aphy	131
Chapter	7 - Case Studies: Digital Twins	135
7.1	BEHAVIOR MATCHING GROUND-TO-AIR EMISSIONS	135
7.2	EMISSION QUANTIFICATION WITH MULTI-SUAS DE-CVT	142
7.3	EMISSION QUANTIFICATION WITH MULTI-SUAS MOD-NGI	148
7.4	PERFORMANCE ASSESSMENT USING MOABS/DT	154
7.5	CHAPTER SUMMARY	159

Contents
ix

Bibliography 161 8 Smart Sensing, Sensor Placement, and the Observability CHAPTER Gramian 165 WHAT IS SMART ENVIRONMENTAL SENSING? 165 8.1 8.2 INVERSE AND ILLPOSED PROBLEMS 166 8.3 **REGRESSION TECHNIQUES** 166 8.4 **ITERATIVE METHODS** 168 8.5 SENSOR PLACEMENT AND STEERING PROBLEM 169 8.6 **EMPIRICAL GRAMIANS** 171 8.7 PERSISTENCE OF EXCITATION AND SUFFICIENT RICHNESS 172 CHAPTER SUMMARY 8.8 173 Bibliography 175 Chapter 9 - Case Studies: Smart Sensing 177 BEHAVIOR MATCHING AND LOCALIZATION USING FIXED SEN-9.1 SORS 177 DIGITAL TWIN ENABLED SMART SENSOR PLACEMENT AND 9.2 STEERING USING EMGR 180 9.3 DIGITAL TWIN BASED ITERATIVE REFINEMENT FOR LANDFILL AREA SOURCE DETERMINATION PROBLEM 189 9.4 CHAPTER SUMMARY 196 Bibliography 199 CHAPTER 10 - Conclusions and Best Practices 201 10.1 CONCLUSIONS 201 10.2 BEST PRACTICES 203 10.3 FUTURE EFFORTS 206 10.4 CODE 207 10.5 DATA 211 Bibliography 213 Index 217

Preface

During our time as a graduate student, when it came to topics of research, we have always been tasked with solving the problem of "so what, who cares, and why you". Therefore our research into the use of small unmanned aircraft systems (sUAS – also referred to as drones) with the methane emission source determination problem has been largely motivated by climate change and the warming of our planet. Methane is a very potent greenhouse gas when compared to carbon dioxide, and methane has more potential to bring change to global warming effects due to its decreased atmospheric lifespan – i.e. our 'control' knob for near-term change. However, th turns out, methane is seemingly challenging to measure. It is a colorless and odorless gas that is requires special sensors to detect. Therefore, we focused our efforts on solving this problem because it had the potential of real-world impact and is difficult to solve. However, before we can achieve this goal, we need to master our understanding of the measurement problem. This will ultimately provide pathways for detecting leaks, locating their sources, and quantifying the emissions but more importantly it provides pathways in measurement, verification (i.e. confirming that they have been fixed), and reporting programs. As Peter Drucker said, "what gets measured, gets managed."

In the literature, in the context of applications, there has been discrepancies between the top-down (or direct measurements) and the bottom-up (or inventory-based) approaches. Often the bottom-up approach under-estimates the emission source, which prompts investigation into improving the emission factors associated with these kind of methods. There are also issues with minimum detection limit and how industry is looking towards probability of detection to help understand how 'well' we can measure in all environments and scenarios - not just 'ideal' cases. Understanding how different sensing technologies and how the different modes of measuring methane (in situ, path-integrate, imaging-based) are effective in localization and quantification tasks are key to addressing this issue.

In the past decade, we have seen the integration of Digital Twins (DT) into key research areas (such as manufacturing, smart cities, etc.), improving the way we provide solutions. Currently, DTs have not been applied to environmental systems research, especially in the source determination problem. Benefits of DT technology success in other industries, give insights on how they may be useful in this problem. Furthermore, advances in industry 4.0 thinking or advances in IoT and edge devices with DTs, provide the potential for making methane sensing smarter within all sorts of applications – Oil & Gas, Agriculture, Dairy, Landfill, and even permafrost. Within the DT framework, a vision can be formed for how these measurements can be automated for more robust sensing, early detection, and faster repairs.

xii Preface

Many of the techniques employed by practitioners, rely on satellite, manned aircraft, foot-based measurements, or by installing many fixed sensors (also referred to as continuous emission monitoring). However, it is wrong to say that one approach is a 'one size fits all' and better than the others. A much better approach is to provide a holistic view of the measurement problem by providing complementary sensing at different measurement scales. And, there just so happens to be a gap between ground measurements and manned aircraft that is suitable for drone-based sensing – from 400 feet above ground level (AGL) to the surface. Drones also offer a unique capability for being able to be rapidly deployed, they have the ability to be re-configured with different sensors, they can access areas between the ground and manned aircraft that traditional vehicles or personnel on foot cannot travel (e.g. over bodies of water or tree-lines, next to flares or tanks, etc.), they can provide faster and more frequent surveys with finer spatial resolutions, and they can be relatively more cost effective than traditional surveys.

The atmospheric turbulence and weather pose challenges within the use of DTs and drone systems, both for flight capabilities and for solving the emission source determination in general. For example, strong winds and extreme cold / hot, can prevent or reduce flight times. Or, specific weather conditions may prohibit a sensor from use (e.g. in rain or high humidity conditions). Additionally, as the terrain becomes more complex, the air flow around that terrain also becomes more complex, requiring more sophisticated DT modelling to capture higher levels of detail (or fidelity). This higher fidelity results in an increase in the dimensionality of the modeling problem. Since environmental modeling can already be costly to undertake – high-dimensionality – added complexities from terrain and weather further increases the computational expense for the DT, limiting and or preventing the useful real-time capabilities. Of which is a core goal of smart sensing and this book.

This book offers a new way to look at the environmental sensing problem with sUAS by incorporating DTs and smart sensing frameworks. First, we integrate hybrid style modeling, allowing for near real-time computation, with advanced leak detection and quantification methods. Second, we investigate 'where to sense' through integrating multiple sUAS and quantified observability concepts. The combination of the two, enables smarter measurements and even allows for more simulation based testing to avoid unnecessary field work and controlled release testing (speeding up the development iteration cycle).

This book is designed and written for graduate students, researchers, scientists, field operators/drone specialists, industry experts, and policy makers in an introductory fashion. The book contains both high-level explanations and examples, as well as mathematical details for a general understanding. For the interested reader, the references included therein, are sufficient to fully understand and implement the techniques. To help foster the use of the topics covered in this book, a Github repository will be included, such that the reader can explore and play with the proposed DT framework. Unfortunately, due to non-disclosure agreements, not all of the data used to produce the results of this manuscript will be made publicly available. However, some of the controlled release data will be made available for use and reference.

The book is divided into two major sections or parts. The first major section

will cover an introduction to the methane sensing problem, and the detection, localization, and quantification of methane emission sources with sUAS. The aim is to provide a general overview of these topics and give the important aspects related to each subproblem. Within each chapter, a 'Pause and Reflect' is included to help the reader think about how these topics can be expanded and also prompts the readers thinking for the next chapter section or chapter. A series of case studies are showcased at the end of the first major section, highlighting the experiments done, but more importantly, the observations made and lessons learned during the field experiments. The second major section will introduce the concepts of DTs and their use cases (include some case studies), as well as build up the concept of smart sensing, sensor placement and steering problem. The goal of this major section is to highlight how DTs can be leveraged to expand sUAS-based source determination problem method developments, but also embed smartness into the 'how to best sense' questions, with respect to observability or solving the inverse problem. At the end, we highlight some case studies on the topic of smart sensing before concluding with a summary of the book's takeaways, lessons learned, and the MOABS/DT code breakdown.

We wish to thank the funding support by the Center for Methane Emission Research and Innovation (CMERI) through the Climate Action Seed Funds grant (2023-2026) at the University of California, Merced. We also wish to thank MESA Lab members and many undergraduate researchers involved in various field campaigns. We wish to thank Dr. Lance Christensen of JPL for jointly starting methane drone detection project in 2014. This book grows out of the first author's 2023 Ph.D. dissertation with some new yet systematic developments included.

Last but not least, the authors would like to thank Ms Xiaoyin Feng, Books Editorial Assistant, Routledge & CRC Press, Taylor & Francis Group, for her professional coordination of the book project; Ms. Lian Sun, Publisher, Head of China Books Publishing and International Cooperation Taylor & Francis Advanced Learning for her professional vision and help in the peer review process.

CA USA, April 2025 CA USA, April 2025 Derek Hollenbeck YangQuan Chen

List of Acronyms

ADE	Advection diffusion equation
ADMM	Alternating direction method of multipliers
AGL	Above ground level
AMFC	Alberta Methane Field Challenge
APEX	Alaskan Peatland Experiment
APRA-E	Advanced Research Projects Agency-Energy
AVIRIS	Airborne Visible/Infrared Imaging Spectrometer
AVIRIS-NG	Next Generation AVIRIS
BFGS	Broyden-Fletcher-Goldfarb-Shanno
\mathbf{bLS}	Backwards Lagrangian stochastic
Bm	Brownian motion
CARB	California Air Resources Board
\mathbf{CFD}	Computational fluid dynamics
\mathbf{CFL}	Courant-Friedrichs-Lewy
CFP	Cylindrical flux plane
\mathbf{CFR}	Code of Federal Regulations
CMERI	Center for Methane Emission Research and Innovation
CMI	Concentration measurement instrument
CRDS	Cavity ring-down spectrometer
\mathbf{CRF}	Controlled release facility
CRLB	Cramer Rao lower bound
\mathbf{CVT}	Centroidal Voronoi tessellations
D-CVT	Density CVT

xvi ■ List of Acronyms

DE-CVT	Density and entropy CVT
DMD	Dynamic mode decomposition
DM+V	Distribution modeling with variance
$\rm DM+V/W$	Distribution modeling with variance and wind
DT	Digital twin
EC	Eddy covariance
ECMWF	European Centre for Medium-Range Weather Forecasts
EDF	Environmental Defense Fund
EMI	Electromagnetic interference
EPA	Environmental Protection Agency
ESC	Extremum seeking control
fBm	Fractional Brownian motion
FFT	Fast Fourier transform
fGn	Fractional Gaussian noise
FID	Flame ionization detector
FIM	Fisher information matrix
FISTA	Fast iterative shrinking-threshold algorithm
FNO	Fourier neural operators
FOM	Figures of merit
FTIR	Fourier transformed infrared
GCS	Ground control station
GCV	Generalized cross-validation
GDT	Gauss divergence theorem
GHG	Greenhouse gas
GLM-VFP	general linear model VFP
Gn	Gaussian noise
GPM	Gaussian plume model
GPS	Global positioning system

GWP	Global warming potential
НОТ	High operating temperature
IDW	Inverse distance weighting
IMAP-DOAS	Iterative maximum a posterior differential optical absorption spectroscopy method
IME	Integrated mass enhancement
IoT	Internet of things
IR	Infrared
ISTA	Iterative shrinking-threshold algorithm
$_{\rm JPL}$	Jet Propulsion Lab
LASSO	Least absolute shrinkage and selection operator
LDAQ	Leak detection and quantification
LDAR	Leak detection and repair
LGD	Laser gas detection
LGR	Los Gatos Research
LiDAR	Light detection and ranging
LTA	Lighter than air
LWIR	Long-wave infrared
MB	Mass balance
MCMC	Markov chain monte carlo
MCRWM	Merced County Regional Waste Management
METEC	Methane emission technology evaluation center
MGGA	micro-portable greenhouse gas analyzer
MLE	Maximum likelihood estimator
MMC	Mobile Monitoring Challenge
MMD	Micrometeorological mass difference
MMF	Modeled mass flux
MOABS/DT	Methane Odor Abatement Simulator Digital Twin

xviii ■ List of Acronyms

MONITOR	Methane Observation Networks with Innovative Technology to Obtain Reductions
MOS	Metal oxide sensors
MOST	Monin-Obukhov similarity theory
MSWL	Municipal solid waste landfill
MUST	Mock Urban Setting Test
MVPGR	Merced Vernal Pools and Grassland Reserve
MWIR	Mid-wave infrared
NASA	National Aeronautics and Space Administration
NGI	Near-field Gaussian plume inversion
NIR	Near infrared
NSF	National Science Foundation
ODE	Ordinary differential equation
OGI	Optical gas imaging
OGMP	Oil and Gas Methane Partnership
OPLS	Open path laser spectrometer
ОТМ	Other test method
PD	proportional derivative
PDE	Partial differential equation
PE	Persistence of excitation
PFP	Perimeter flight plan
PG	Pasquill-Gifford
PG&E	Pacific Gas & Electric
PIML	Physics-informed machine learning
PINN	Physics-informed neural network
PI-RNN	Physics-informed recurrent neural network
PI-VFP	Path integrated VFP
pMGGA	prototype micro-portable greenhouse gas analyzer

POD	Probability of detection
PSG	Point source Gaussian
PSG-CS	Conditionally sampled PSG
PSG-RB	Recursive Bayesian PSG
PSG-SBM	Sequential Bayesian MCMC PSG
PSI	pounds per square inch
QCLS	Quantum cascade laser spectrometer
QOGI	Quantitative OGI
QUIC	Quick Urban and Industrial Complex
RBF	Radial basis function
\mathbf{RF}	Radio frequency
RMLD	Remote methane leak detector
RNN	Recurrent neural networks
SCFH	Standard cubic feet per hour
\mathbf{SciML}	Scientific machine learning
SDE	Stochastic differential equation
SDK	Software development kit
SEM	Surface emission monitoring
SOTA	State-of-the-art
SPSA	Simultaneous perturbation and stochastic approximation
\mathbf{SR}	Sufficient richness
STILT	Stochastic time inverted Lagrangian transport
\mathbf{sUAS}	small unmanned aircraft system
SVD	Singular value decomposition
TCM	Tracer correlation method
TDLAS	Tunable diode laser absorption spectrometer
TI	Turbulence intensity
TVA	Toxic vapor analyzers

xx ■ List of Acronyms

UGGA	Ultra-portable greenhouse gas analyzer
UNEP	United Nations Environment Programme
USR	Upwind survey region
VFP	Vertical flux plane
VOC	Volatile organic compounds
VRPM	Vertical radial plume mapping
VTOL	Vertical takeoff and landing
WRF	Weather research and forecasting

From Detection to Quantification: sUAS-based Methane Sensing Techniques