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Who cares? 

 Minimal dose biomedical imaging 
 More optimal 

 

Strategies for Reducing Radiation Dose in CT (McCollough 2009) 
Radiol Clin North Am. 2009 January ; 47(1): 27–40. doi:10.1016/j.rcl.2008.10.006 

http://www.eurekalert.org/pub_releases/2013-05/aaft-mdc050113.php 



FC for what? 

 Better than the best 
 New sciences 

 
 Need killing apps. 



MESA LAB UC Merced 
• The Research University of 

the Central Valley 
• Central Located 

– Sacramento – 2 hrs 
– San Fran. – 2 hrs 
– Yosemite – 1.5 hrs 
– LA – 4 hrs 

• Surrounded by farmlands 
and sparsely populated areas 
 



MESA LAB 
UC Merced 

• Established 2005 
• 1st research university in 

21st century in USA. 
• 6,000 Undergraduates 
• 300 Grads (200+ Ph.D) 

 
• Strong Undergraduate 

Research Presence (HSI, 
MSI) 
 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=BOaCbC0gjAsmoM&tbnid=HXOq_C3H06lI4M:&ved=0CAUQjRw&url=http://admissions.ucmerced.edu/future-students&ei=XvmKUZnvCoejiQLPoYEg&bvm=bv.46340616,d.cGE&psig=AFQjCNEau6tvGlOQinwzbfFlhLNKXWOs1A&ust=1368148686612219
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=fwW9A6p2nQz0fM&tbnid=Aj9qjVyGNcYA8M:&ved=0CAUQjRw&url=http://www.sfchronicle.com/education/article/UC-Merced-goes-from-shunned-to-popular-4450839.php&ei=tPmKUYbFI4jTigK-3oCwAQ&bvm=bv.46340616,d.cGE&psig=AFQjCNEau6tvGlOQinwzbfFlhLNKXWOs1A&ust=1368148686612219


MESA LAB 

MESA LAB 
http://mechatronics.ucmerced.edu 

 • Mechatronics, Embedded Systems and 
Automation  
– Backup name: Mechatronics, Energy Systems and 

Autonomy 
– ASME DED, MESA TC. http://iel.ucdavis.edu/mesa/ 

• 2013 MESA conference: Portland, OR 
http://www.asmeconferences.org/IDETC2013/   



MESA LAB 
MESA Labs 

• Director: Dr. YangQuan 
Chen 

• 4 Ph.D. Students 
• 1 MSc student 
• 20+ Undergraduates 
• 4 Visiting Ph.D. Students 
• 2 Visiting Professors 
• Short term visiting 

students 
• 3 3D printers 



MESA LAB 

MESA Labs 



MESA LAB 

MESA Research Areas/Strengths 
• Unmanned Aerial Systems and UAV-based 

Personal Remote Sensing (PRS) 
• Cyber-Physical Systems (CPS) 
• Modeling and Control of Renewable Energy 

Systems 
• Mechatronics 
• Applied Fractional Calculus (AFC) 



Roadmap: More Optimal Image Processing  



Introduction: Optimal Image Processing  



Outline 

 Fractional Order Image Enhancement 

 Fractional Order Image Edge Detection 
 Fractional Order Image Denoising 
 Fractional Order Image Segmentation 
 Fractional Order Optical Flow 



Fractional Order Image Enhancement 

 Aim of Image Enhancement[1]: 
– Enhance the contrast and detail information 
– Easy for observation 
– Easy for subsequent processing 



Problem Description 

? 

=0α =1α =0.5α



Digital Fractional Order  
Savitzky-Golay Differentiator[2] 

Good at dealing with noisy signal 

Y: input signal; 
I: filtering window size; 
n: degree of polynomial function; 
i = 1,2,…,I. 

(1) 



Extend to 2-Dimension[3] 

Assume I=2m+1 and 

Then, 2-D DFOSGD templates: 

(2) 



Extend to 2-Dimension 



G: input image; 

Calculate the αth order 
derivatives of G(x, y) in 
the different directions 
by Eq. (3). 

(3) 



Implementation 
Image enhancing algorithm flow 

 Step 1: Calculate: 
 
 

 Step2: Calculate: 
 

Enhanced image 



 
 
 
 
 
 
 
 
 
 

Lake Tahoe 

Experiments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Snow-covered volcanoes on 
Russia Kamchatka Peninsula http://earthobservatory.nasa.gov/ 



 
 
 
 
 
 
 
 
 
 

Moon 

Experiments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Orion Nebula http://bf-astro.com/ 



How to Choose Fractional Order? 

=0.1α =0.4α =0.8α



Unsupervised optimization algorithm 

  N(α) increases when α increases. 
  Image is under-enhanced when N(α) is small. 
  Image is over-enhanced when N(α) is large. 

is the size of 

Let: 

(4) 



Experiments 



Conclusion 

 The digital fractional order Savitzky-Golay 

differentiator is proposed, see [2]; 

 The fractional order image enhancing method is 

proposed, see [3]; 

 An unsupervised optimization algorithm is 

proposed for choosing the fractional order, see [3]; 



Fractional Order Image Edge Detection 

 First-Order Edge Detector: Roberts, Prewitt and Sobel[1] 

– high false reject rate (FRR) 
 Second-Order Edge Detector: Laplacian of Gaussian[1] 

– high false accept rate (FAR) 
 Fractional-Order Edge Detector[4] 

– high density noise 



 Implementation 
 Analysis 

– Frequency-domain analysis 
– Parameter analysis 

 Experiments 
– Evaluation method 
– Comparison analysis 
– Robustness analysis 

Outlines Motivation 

Fractional differential-
based approach 
Robust image edge 
detection 
Accurate 
Immunity to noise 
 



 Riemann-Liouville fractional integral[5]: 
 
 

 Rewrite (1) by convolution formula, 
 

Implementation 
Fractional differential mask for edge detection 

(5) 



 Riemann-Liouville fractional derivative: 
 
 

 
 Expand to 2-D: 

Implementation 
Fractional differential mask for edge detection 

(6) 

(9) 

(7) 

(8) 



 2-D formulas: 
 
 

 

Implementation 
Fractional differential mask for edge detection 

(10) 

(11) 

Fractional-order 
differential mask 
(FDM) 



 FDM equations: 
 
 

 

Implementation 
Fractional differential mask for edge detection 

(12) 

(13) 



Here                                       ,                                     ,  

 Discrete FDM equations: 
 
 

 

Implementation 
Fractional differential mask for edge detection 

(14) 

(15) 

,and 



 When                  ,              FDM: 
 
 

 

Implementation 
Fractional differential mask for edge detection 



Implementation 
Image edge detection algorithm flow 

 Step 1: Calculate: 
 
 

 Step2: Find an edge direction. 
 Step3: Non-maximum suppression. 
 Step4: Hysteresis Thresholding.  
 Step5: Link edge. 



Implementation 
Image edge detection algorithm flow 



Implementation 
Image edge detection algorithm flow 



Analysis 
Parameter analysis 

Original image 

  
  

 Smoothing 
 Enhancing 



Analysis 
Parameter analysis 

  
  

 Smoothing 
 Enhancing 



Analysis 
Parameter  and noise immunity 

  
  

 Noise immunity 
 Enhancing 

Noisy image: Gaussian noise with 
zero-mean and variance  



Analysis 
Parameter  and noise immunity 

   Noise immunity 
 Enhancing 



Analysis 
Conclusion 

Frequency-domain  
analysis 

Parameter analysis 

        
 Smoothing 
 Enhancing 

        
 Smoothing 
 Enhancing 



Experiments  
Evaluation method 

False Reject Rate (FRR): 
 
 
False Accept Rate (FAR): 

 
 
Single-Pixel-Detecting (SPD): 

            denotes the number 
of elements in 
                                 
accuracy 
        
           is the typical thinning 
operator [6] 
 Single edge: 



Experiments:  Comparison analysis 

(a)Multi-scale linear  
    edge image 

(b) Robert edge 
detector 

(c) Prewitt edge 
detector 

(d) Sobel edge 
detector 

(e) LoG edge 
detector 

(f) Canny edge 
detector 

(g) Oustaloup edge 
detector 

(h) Proposed edge 
detector 

Conclusion: 1.Better than the Roberts, Prewitt,Sobel, LoG and Canny edge detectors; 
                     2.Similar with the Oustaloup edge detector. 



Experiments:  Comparison analysis 

(a)Nonlinear  
    edge image 

(b) Robert edge 
detector 

(c) Prewitt edge 
detector 

(d) Sobel edge 
detector 

(e) LoG edge 
detector 

(f) Canny edge 
detector 

(g) Oustaloup edge 
detector 

(h) Proposed edge 
detector 

Conclusion: 1.Better than the Roberts, Prewitt,Sobel and LoG edge detectors; 
                     2.Similar with the Canny and Oustaloup edge detector. 



Experiments:  Comparison analysis 



Experiments  
Robustness analysis 

 X Axis 
 Noisy image 
Signal To Noise Rate (SNR) 

Y Axis 
 False rate (FR) 

 

Red curve 
Better than the other 
detectors 

Fig. FR comparison among the seven edge detectors for the 
multi-scale linear edge noisy images with different SNRs 



Experiments  
Robustness analysis 

Fig. FR comparison among the seven edge detectors for the 
nonlinear edge noisy images with different SNRs 

 X Axis 
 Noisy image 
Signal To Noise Rate 
(SNR) 

Y Axis 
 False rate (FR) 

 

 
Robustness is 
better. 



Conclusion 

 A new fractional differential-based method is 

proposed for robust image edge detection, see [6]; 

 Frequency domain analysis;  

 Good edge-detecting capability and robustness; 

 Fast, real-time systems. 



Fractional Order Image Denoising 
Problem Description 

1 2 
Blocky effect Uplifting effect 

? 

1990 
P-M[7] 

2000 
Fourth-order PDE[8] 

1992 
ROF[9] 

2007 
Fractional order diffusion[10] 

2008 
Second order[11] 

2013 
Fractional order[12] 



Outline 

 Majorization-Minimization (MM) Method 
 Fractional Order Total Variation(TV)-L2 Model 
 Majorization of 
 Numerical Scheme 
 Experiments 



 Continuous Domain[13-16]: 
– Newton’s Method 
– Duality Theory 
– Euler-Lagrange Equation 
– FTVd Method 

 Discrete Domain[17-18] 
– Majorization-Minimization (MM) Method 

Why MM Method ? 



Majorization-Minimization (MM) Method 

Satisfy: 



Fractional Order TV-L2 Model 

f: Noisy image; 
u: Clean image; 
 

Data term Regularization term 

:v-norm； 

: horizontal fractional order derivative ； 

: regularization parameter； 

: vertical fractional order derivative ； 

(16) 



Majorization of  
Assume 

is the majorization of  



Majorization of  
Assume 

is the majorization of  



Majorization of  

The majorization of              is  

So, the majorization of  the fractional order TV model is  

constant 

Thus, the u can be estimated by solving a sequence of optimization problems 

It leads to a linear system: 



Numerical Scheme 



Experiments:  Restraint of block effect 

Noisy signal TV-L2 model Fractional order TV-L2 model 

Conclusion: the proposed fractional order TV-L2 model can reduce blocky effect. 



Experiments:  Analysis of denoising performance 
PSNR: peak signal to noise ratio 

IP-M: Improved Perona and Malik model [7]; F-O-PDE: fourth order PDE model [8]; IF-O-PDE: 
improved fourth order PDE model[19]; ROF model [9]; proposed fractional order TV2-L2 model. 

Conclusion: the denoising performance proposed fractional order TV2-L2 model is better 
than the other four methods. 



Experiments:  Analysis of denoising performance 

Conclusion: the denoising performance proposed fractional order TV2-L2 model is better 
than fractional order TV1-L2 model. 



Experiments:  Analysis of denoising performance 

Conclusion: the method is stable after 15 iterations. 

Relation between the iteration number and PSNR value 



Experiments:   
Lung nodule segmentation experiment 

Noisy lung nodule CT image 

Partial enlarged view of the segmented result 

Conclusion: 1.fractional order TV-L2 denoising method is helpful for improving the 
accuracy of the post-processing technologies in the lung nodule CT image segmentation. 
2. the detected edge of             is more accurate than that of  



Experiments:   
Cardiac muscular segmentation experiment 

Conclusion: 1. fractional order TV-L2 denoising method is helpful for improving the 
accuracy of the post-processing technologies in the cardiac muscular PET image 
segmentation. 2. the detected edge of             is more accurate than that of  
 

Partial enlarged view of the segmented result 

Noisy cardiac muscular PET image 



 Two fractional order TV-L2 models are constructed, 

see [12]; 

Majorization-minimization algorithm was used to solve 

fractional TV optimization problem, see [12]; 

Majorizors of two fractional order TV regularizers are 

obtained in one uniform formula, see [12]; 

 Avoid the blocky effect. 

Conclusion 



Fractional Order Level Set Model 
Introduction 

What is the Level Set Method? 

What is Level Set Good for? [20-27] 

 Image Segmentation 
 Tracking 
 Computer Graphics 
 Computational Geometry 
 Computational fluid dynamics 

LSM is a numerical technique for tracking interfaces and shapes. 



Fractional Order Level Set Model 
Problem Description 

C-V Model [20] 2001 
RSF Model [21] 2008 



Outline 
 C-V Model 
 Fractional Order C-V Model 
 RSF (Region-Scalable Fitting) Model 
 Fractional Order RSF Model 
 Numerical Algorithm 
 Experiments 



C-V Model [20] 

Model description: 

(17) 

(18) 



C-V Model 



Fractional Order C-V Model 

Model description: 

Euler–Lagrange Equation： 

(19) 



RSF Model [21] 

Model description: 



Fractional Order RSF Model 

Model description: 

(20) 



Principal step of algorithm 



Intensity Homogeneity PET Cardiac Muscular 
Segmentation Experiment 

Conclusion: For intensity homogeneity PET cardiac muscular image, the detected edge 
of  fractional order CV model  is more accurate than that of typical CV model. 

Segmented Result       Cardiac Muscular PET Image 

C-V Model Pseudo-Color Image Original PET Image Fractional Order C-V Model 



Conclusion: For intensity homogeneity PET cardiac muscular image, the detected edge 
of  fractional order RSF model  is more accurate than that of both fractional order and 
typical CV models. 

RSF Model Fractional Order RSF Model Original PET Image Fractional Order C-V Model 

Intensity Homogeneity PET Cardiac Muscular 
Segmentation Experiment 



Intensity Homogeneity PET Cardiac 
Muscular Segmentation Demo 



Conclusion: For intensity inhomogeneity PET cardiac muscular image, 
both fractional order and typical CV models are not able to get 
satisfactory result. 

      Cardiac Muscular PET Image Segmented Result 

C-V Model Pseudo-Color Image Original PET Image Fractional Order C-V Model 

Intensity Inhomogeneity PET Cardiac Muscular 
Segmentation Experiment 



Conclusion: For intensity inhomogeneity PET cardiac muscular image, the detected edge 
of  fractional order RSF model  is more accurate than that of both fractional order and 
typical CV models. 
 

RSF Model Fractional Order RSF Model Original PET Image Fractional Order C-V Model 

Intensity Inhomogeneity PET Cardiac Muscular 
Segmentation Experiment 



Intensity Inhomogeneity PET Cardiac Muscular 
Segmentation Demo 



 Two fractional-order image segmentation model 

are proposed; 

 The effective numerical algorithms are proposed; 

 Improved accuracy; 

 Provide a new tool for image segmentation. 

Conclusion 



Fractional Order Optical Flow 
Introduction 

What is the Optical Flow Problem? 

Input: two or more frames of an image sequence; 
Output: displacement field between two consecutive frames, optical flow. 

What is Optical Flow Good for? [28-35] 

 Robot navigation 
 Tracking 
 Action recognition 
 Video compression 
 Stereo reconstruction 
 Medical image registration 



Fractional Order Optical Flow 
Problem Description 

1 2 
H-S Model [36] Second-Order Model [11] 

1981 2008 

Horn-Schunck 



Outline 
 Fractional-Order Optical Flow Model 
 Numerical Algorithm 

– Euler–Lagrange Equation 
– Fractional-Order Differential Operator 
– Discrete Euler-Lagrange Equations 
– Structure of the Linear System 
– Multi-scale Approach 

 Experiments 



Outline 
 Improved Fractional-Order Optical Flow 

Model 
– Discrete Formulation 
– Saddle-Point Formulation 

 Numerical Scheme 
 Experiments 



Fractional-Order Variational Optical 
Flow Model [37] 

Model description: 
data term regularization term 



Euler–Lagrange Equation 
Consider an energy function J(u, v) defined by 

Assume that               and                are the desired functions. Take any 
test functions                             and                             and           .  
We have 



Euler–Lagrange Equation 

Differentiating (21) with respect to   , we obtain 

(21)  



Fractional-Order Differential Operator 

Let:  

We have:  

(22) 



Fractional-Order Differential Operator 

For application, we approximate (22) using the following formula: 

Similarly, we can obtain 

(23)  

(24)  



Fractional-Order Differential Operator 

From (23) and (24), the concise discrete formula of the fractional-order 
differential operator can be described by 



Discrete Euler-Lagrange Equations 
Let:  

The discrete Euler-Lagrange equations can finally be written as 

(25)  



Structure of the Linear System 

The linear system can be written as: 

It can be solved by many typical methods such as the Jacobi method, the 
Gauß–Seidel method, the successive overrelaxation method and the 
preconditioned conjugate gradient (PCG) method. 



Multi-scale Approach 

Good for finding the global minimum. 

Solve linear 
system 

Solve linear 
system 

Solve linear 
system 

Solve linear 
system 

… 

I0 I1 I2 

In I2 I1 

w0
n 

wn w0
2 w2 w0

1 w1 w0
0 

… 

… 

In-1 

w 



The accuracy of optical flow estimation algorithms can be improved by using the 
fractional-order derivative instead of the first-order derivative. 



 From the table, it can be seen that 
our model obtains better results than 
the H–S model for all the image 
sequences.  
 It demonstrates the validity of the 
generalization of differential order. 

Comparison of AVAE, SDAE and AVEE  
between our proposed FOVOF model 
and  H-S model for the different  image 
sequences. 



Improved Fractional-Order Variational 
Optical Flow Model 

Model description: 

(26) 



Discrete Formulation 

Discrete model: 

(27) 



Saddle-Point Formulation 

Saddle-Point Formulation: (28) 



Saddle-Point Formulation 



Numerical Scheme 





Numerical Scheme 

Multi-scale approach also is used.  



Experiments: Venus   

The test images come from [38] 



Experiments: Venus   



Experiments: RubberWhale  



Experiments: RubberWhale  



Experiments: Hydrangea 



Experiments: Hydrangea 



Experiments: Grove  



Experiments: Grove  



Experiments: Dimetrodon  

The proposed model is able to properly estimate the optical flow. 



Experiments: Dimetrodon  

The proposed model is able to properly estimate the optical flow. 



Experiments:   

 This model obtains better results than the FOVOF model.  
 The generalization of differential order is helpful for 
improving the accuracy. 



 Two fractional-order variational optical flow model 

are proposed, see in [37]; 

 Two effective numerical algorithms are proposed;  

 They can be combined with the multi-scale approach; 

 Improve the accuracy; 

 Provide a new tool for motion estimation. 

Conclusion 
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Q & A 

Take home message: 
 

More optimal image processing can be made 
possible by using fractional order differentiation and 
fractional order partial differential equations. 
 
Want to be more optimal? Go fractional calculus! 

More info: 
http://mechatronics.ucmerced.edu/research/applied-fractional-calculus  

http://mechatronics.ucmerced.edu/research/applied-fractional-calculus
http://mechatronics.ucmerced.edu/research/applied-fractional-calculus
http://mechatronics.ucmerced.edu/research/applied-fractional-calculus
http://mechatronics.ucmerced.edu/research/applied-fractional-calculus
http://mechatronics.ucmerced.edu/research/applied-fractional-calculus
http://mechatronics.ucmerced.edu/research/applied-fractional-calculus

	More Optimal Image Processing by Fractional Order Differentiation and Fractional Order Partial Differential Equations
	Who cares?
	FC for what?
	UC Merced
	UC Merced
	MESA Lab�http://mechatronics.ucmerced.edu�
	MESA Labs
	MESA Labs
	MESA Research Areas/Strengths
	Roadmap: More Optimal Image Processing 
	Introduction: Optimal Image Processing 
	Outline
	Fractional Order Image Enhancement
	Problem Description
	Digital Fractional Order �Savitzky-Golay Differentiator[2]
	Extend to 2-Dimension[3]
	Extend to 2-Dimension
	Slide Number 18
	Slide Number 19
	Experiments
	Experiments
	How to Choose Fractional Order?
	Unsupervised optimization algorithm
	Experiments
	Conclusion
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Outline
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Outline
	Outline
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121

