
Chapter 1

Computer Mathematics Languages — An

Overview

Mathematical problems are essential in almost all aspects of scientific and engineering

research. The mathematical models should normally be established first, then, the solutions

of the models under investigation can be obtained. Specific knowledge is required for the

establishment of mathematical models, which needs the expertise of the researchers, and

with the established models, the numerical and analytical approaches presented in this

book can be used to solve the problems. In this chapter, a brief introduction to computer

mathematical problems is given, and it will be illustrated through simple examples why

computer mathematical languages should be learned. A concise history of the development

of computer mathematical languages and mathematical tools will be introduced. Finally

the framework of the book is presented. Also, an overview of the mathematics branches

involved is given in this chapter.

1.1 Computer Solutions to Mathematics Problems

1.1.1 Why should we study computer mathematics language?

We all know that manual derivation of solutions to mathematical problems is a useful

skill when the problems are not so complicated. However, for a great variety of mathematical

problems, manual solutions are laborious or even not possible. Therefore, computers must be

employed for solving these problems. There are basically two ways of solving these problems

by computers. One is to verbally implement the existing numerical algorithms using general

purpose computer languages such as Fortran or C. The other way is to use specific computer

languages with a good reputation. These languages include MATLAB, Mathematica and

Maple. In this book, they are referred to as the computer mathematics languages. The

numerical algorithms can only be used to handle computation problems by numbers, while

for problems like to find the solutions to the symbolic equation x3+ax+c=d, where a, c, d

are not given numerical values but symbolic variables, the numerical algorithms cannot be

used. The computer mathematics languages with symbolic computation capabilities should

be used instead.

We shall use the term “mathematical computation” throughout the book, whereas the

term really means both numerical and analytical computation of mathematical problems.

Normally, analytical solutions are explored first, and if there are no analytical solutions,

numerical solutions are obtained.

Before systematically introducing the contents of the book, the following examples are

given such that the readers may understand and appreciate the necessity of using the

computer mathematics languages.
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2 Scientific Computing with MATLABr

Example 1.1 In calculus courses, the concepts and derivation methods are introduced

with an emphasis on manual deduction and computation. If a function f(x) is given by

f(x) =
sinx

x2 + 4x + 3
, how could one derive

d4f(x)

dx4
manually?

Solution One can derive it using the methods taught in calculus courses. For instance,

the first-order derivative df(x)/ dx can be derived first, the second-order derivative, third-

order derivative and finally fourth-order derivative of the function f(x) can be evaluated in

turn. In this way, even higher-order derivatives of the function can be derived manually,

in theory. However, the procedure is more suitable to be carried out with computers. With

suitable computer mathematics languages, the fourth-order derivative of the function f(x)

can be calculated using a single statement

>> syms x; f=sin(x)/(x^2+4*x+3); y=diff(f,x,4)

and the result obtained is

y =
sinx

x2 + 4x + 3
+4

(2x + 4) cosx

(x2 + 4x + 3)
2−12

(2x + 4)
2

sinx

(x2 + 4x + 3)3
+

12 sinx

(x2 + 4x + 3)2
+

24 sinx

(x2 + 4x + 3)3

+ 48
(2x + 4) cosx

(x2 + 4x + 3)3
+ 24

(2x + 4)
4

sinx

(x2 + 4x + 3)5
− 72

(2x + 4)
2

sinx

(x2 + 4x + 3)4
− 24

(2x + 4)
3

cosx

(x2 + 4x + 3)4
.

It is obvious that manual derivation could be a tedious and laborious work, and it could be

quite complicated. Wrong results may be obtained even with a slightly careless manipulation

of formulae. Therefore, even though the results can be obtained manually, after hours of

hard work, the results may be suspicious and untrustworthy. If the computer mathematics

languages are used, the tedious and unreliable work can be avoided. For example, by using

MATLAB language, the accurate d100f(x)/ dx100 can be obtained within a second!

Example 1.2 In many fields, the roots of polynomial equations are often needed. The

well-known Abel–Ruffini Theorem states that there is no general solution in radicals to

polynomial equations of degree five or higher. The problems can be solved numerically

using the Lin–Bairstrow algorithm. Solve a polynomial equation

s6 + 9s5 +
135

4
s4 +

135

2
s3 +

1215

16
s2 +

729

16
s +

729

64
= 0.

Solution Applying the Lin–Bairstrow method, under double-precision scheme, the roots of

the equation obtained are

s1,2 = −1.5056± j0.0032, s3,4 = −1.5000± j0.0065, s5,6 = −1.4944± j0.0032.

Substituting s1 back to the original equation, the error can be found to be −8.7041 ×
10−14 − j1.8353× 10−15. In fact, all the roots to the above equation are exactly −1.5, if the

symbolic facilities of the computer mathematics languages are used. Below are the statements

used in the example

>> p=[1 9 135/4 135/2 1215/16 729/16 729/64]; roots(p) % numeric

p1=poly2sym(p); solve(p1) % analytic solution of polynomial equations

Example 1.3 Do you remember how to find the determinant of an n× n matrix?

Solution In linear algebra courses, the determinant of a matrix is suggested to be evaluated

by algebraic complements. For instance, for an n×n matrix, its determinant can be evaluated

from determinants of n matrices of size (n − 1) × (n − 1). Similarly, the determinant of
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each (n − 1)× (n− 1) matrix can be obtained from determinants of n− 1 matrices of size

(n − 2) × (n − 2). In other words, the determinant of an n × n matrix can eventually be

obtained from the algebraic sum of many determinants of 1 × 1 matrices, i.e., the scalar

itself. Therefore, it can be concluded that the analytical solution to the determinant of any

given matrix exists.

In fact, the above mathematical conclusion neglected the computability and feasibility

issue. The computation load for such an evaluation task could be extremely tremendous,

which requires (n − 1)(n + 1)! + n operations. For instance, when n = 25, the number

of floating-point operations (flops) for the computation is 9.679 × 1027, which amounts

to 5580 years of computation on mainframe of 55 million billion (5.5 × 1016) flops per

second (the fastest mainframe in the world in 2014). Therefore, the algebraic complement

method, although elegant and instructive, is not practically feasible. In real applications, the

determinants of even larger sized matrices are usually needed (n≫ 25), which is clearly not

possible to directly apply the algebraic complement method mentioned above.

In numerical analysis courses, various algorithms have been devised. However, due to

finite-precision numerical computation, these algorithms may have numerical problems when

the matrix is close to being singular. For example, consider the Hilbert matrix given by

H =








1 1/2 1/3 · · · 1/n
1/2 1/3 1/4 · · · 1/(n + 1)
...

...
...

. . .
...

1/n 1/(n + 1) 1/(n + 2) · · · 1/(2n− 1)







.

For n = 25, an erroneous determinant det(H) = 0 could actually be obtained even if

double-precision is used. On the other hand, if computer mathematics language is used, the

analytical solution of the determinant of an 80 × 80 Hilbert matrix can be obtained within

2.5 seconds:

det(H)=
1

99030101466993477878867678 · · ·000000000000
︸ ︷︷ ︸

3790 decimal digits, with some digits omitted

≈1.009794× 10−3790.

Below are the actual commands used in MATLAB for this problem

>> n=80; H=sym(hilb(n)); d=det(H) % build Hilbert matrix, find determinant

Example 1.4 Consider the well-known nonlinear Van der Pol equation

y′′ + µ(y2 − 1)y′ + y = 0,

and when µ is large, i.e., µ = 1000, how to numerically solve the equation.

Solution The conventional numerical algorithms for solving differential equations such

as the standard Runge–Kutta method may cause numerical problems. Specialized numerical

algorithms for stiff ordinary differential equations (ODEs) should be used instead, rather

than the standard Runge–Kutta methods in numerical analysis courses. Two lines of

statements in MATLAB are adequate in solving numerically such an equation

>> mu=1000; f=@(t,x)[x(2); -mu*(x(1)^2-1)*x(2)-x(1)]; % describe ODE

[t,x]=ode15s(f,[0,3000],[-1;1]); plot(t,x) % solve with graphics

As another example, the first-order delay differential equation (DDE)

dy(t)

dt
= −0.1y(t) + 0.2

y(t− 30)

1 + y10(t− 30)
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cannot be solved using the commonly taught algorithms in numerical analysis courses.

Specific MATLAB functions or block diagram modeling tool Simulink can be used instead.

Details of the methods will be given later in the book.

Example 1.5 Solve the linear programming problem given below

min

x s.t.















2x2+x3+4x4+2x5654

3x1+4x2+5x3−x4−x5662

x1,x2>0, x3>3.32, x4>0.678, x5>2.57

−2x1 − x2 − 4x3 − 3x4 − x5.

Solution Since the original problem is a linear constrained optimization problem, the

analytical unconstrained method, i.e., setting the derivatives of the objective function with

respect to each decision variable xi to zeros, cannot be used. With linear programming tools

in MATLAB, the following statements can be used

>> P.f=[-2 -1 -4 -3 -1]; P.Aineq=[0 2 1 4 2; 3 4 5 -1 -1];

P.Bineq=[54 62]; P.lb=[0;0;3.32;0.678;2.57]; P.solver=’linprog’;

P.options=optimset; x=linprog(P) % solve linear programming problem

and the numerical solutions can be found easily as x1 = 19.7850, x2 = 0, x3 = 3.3200, x4 =

11.3850, x5 = 2.5700.

Applying algorithms in numerical analysis or optimization courses, conventional

constrained optimization problems can be solved. However, if other special constraints are

introduced, for instance, the decision variables are constrained to be integers, the integer

programming must be used. There are not so many books introducing softwares that can

tackle the integer and mixed-integer programming problems. If we use MATLAB, the

solutions to this example problem are easily found as x1 =19, x2=0, x3=4, x4=10, x5=5.

>> P.solver=’intlinprog’; P.intcon=1:5; x=intlinprog(P)

Example 1.6 In many other courses of applied mathematics branches, such as integral

transform, complex-valued functions, partial differential equations, data interpolation and

fitting, probability and statistics, can you still remember how to solve the problems after

the final exams?

Example 1.7 With the rapid development of modern science and technology, many new

mathematics branches, such as fuzzy set, rough set, artificial neural network, evolutionary

computing algorithms have emerged. It would be a hard and time consuming task to use

the branches to solve particular problems, without using specific computer tools. If low-level

programming is expected, the researcher needs to fully understand the technical contents

of the branches, as well as how to implement the algorithms with computer languages.

However, if the existing tools and frameworks are used instead, the problems can be solved

in a much simpler manner.

In many subjects, such as electric circuits, electronics, motor drive, power electronics,

automatic control theory, more sophisticated examples and problems are usually skipped due

to the lack of introduction of high-level computer software tools. If computer mathematics

languages are introduced routinely in the above courses, complicated practical problems

can be solved and innovative solutions to the problems can be explored.
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1.1.2 Analytical solutions versus numerical solutions

The development of modern sciences and engineering depends heavily on mathematics.

However, the research interests of pure mathematicians are different from other scientists

and engineers. Mathematicians are often more interested in finding the analytical or closed-

form solutions to mathematical problems. They are in particular interested in proving

the existence and uniqueness of the solutions, and do not usually care much about what

the solutions are. Engineers and scientists are more interested in finding the exact or

approximate solutions to the problems at hand and usually do not care too much about the

details on how the results are obtained, as long as the results are reliable and meaningful.

The most widely used approaches for finding the approximate solutions are the numerical

techniques.

It is quite common to find that analytical solutions do not exist in reality in many

different mathematics branches. For instance, it is well-known that the definite integral
2√
π

∫ a

0

e−x2

dx has no analytical solution. To solve the problem, mathematicians introduce

a special function erf(a) to denote it and do not care what in particular the numerical value

is. In order to find an approximate value, scientists and engineers have to use numerical

approaches.

Another example is that the irrational number π has no closed-form solution. The ancient

Chinese astronomer and scientist Zu Chongzhi (429–500), also known as Tsu Ch’ung-chih,

found that the value is between 3.1415926 and 3.1415927, in about A.D. 480. This value is

accurate enough in most science and engineering practices. Even with the imprecise value

3.14 found by Archimedes (B.C. 287–B.C. 212) in about B.C. 250 (?), the solutions to most

engineering problems are often acceptable.

The above discussions hint that an approximate numerical solution is ubiquitous. In

many cases, only showing existence and uniqueness of solutions is not enough. We need to

compute the solution using computers.

The breadth and depth of one’s mathematical knowledge might not match one’s ability

of getting mathematical problems solved. In today’s applied science and engineering, one

usually needs to get the mathematical problems at hand solved efficiently in a timely manner

without complete understanding of the numerical techniques involved even in the solution

process. Therefore, today, arguably, it is a trend to focus more on how to formulate the

problem in a form suitable for computer solution and on the interpretation of the results

generated from the computer.

Numerical techniques have already been used in many scientific and engineering areas.

For instance, in mechanics, finite element methods (FEM) have been used in solving partial

differential equations. In aerospace and control, numerical linear algebra and numerical

solutions to ordinary differential equations have successfully been used for decades. For

simulation experiments in engineering and non-engineering areas, numerical solutions to

difference and differential equations are the core problems. In hi-tech developments, digital

signal processing based on fast Fourier transform (FFT) has been regarded as a routine task.

There is no doubt that if one masters one or more practical computation tools, significant

enhancement of mathematical problem solving capability can be expected.

1.1.3 Mathematics software packages: an overview

The emerging digital computers fueled the developments of numerical as well as

symbolic computation techniques. In the early stages of the development of numerical
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computation techniques, some well established packages, such as the eigenvalue-based

package EISPACK [1, 2], linear algebra package LINPACK [3] in the USA, the NAG package

by the Numerical Algorithm Group in the UK, and the package in the well accepted book

Numerical Recipes [4], appeared and were widely used with good user feedback.

The famous EISPACK and LINPACK packages are both specific packages for numerical

linear algebra applications. Originally developed in the USA, EISPACK and LINPACK

packages were written in Fortran. To have a flavor of how to use the packages, let us

consider eigenvalues (WR, WI for their real and imaginary parts) and eigenvectors Z of

an N ×N real matrix A. As suggested by EISPACK, the standard solution method is by

sequentially calling relevant subroutines provided in EISPACK as follows:

CALL BALANC(NM,N,A,IS1,IS2,FV1)

CALL ELMHES(NM,N,IS1,IS2,A,IV1)

CALL ELTRAN(NM,N,IS1,IS2,A,IV1,Z)

CALL HQR2(NM,N,IS1,IS2,A,WR,WI,Z,IERR)

IF (IERR.EQ.0) GOTO 99999

CALL BALBAK(NM,N,IS1,IS2,FV1,N,Z)

Apart from the main body of the program, the user should also write a few lines to

input or initialize the matrix A to the above program and return or display the results

obtained by adding some display or printing statements. Then, the whole program should

be compiled and linked with the EISPACK library to generate an executable program. It

can be seen that the procedure is quite complicated. Moreover, if another matrix is to be

solved, the whole procedure might be repeated, which makes the solution process even more

complicated.

It is good news that the mathematical software packages are continuously developing,

implementing the leading-edge numerical algorithms, providing more efficient, more reliable,

faster and more stable packages. For instance, in the area of numerical algebra, a new

LaPACK is becoming the leading package. Unlike the original purposes of EISPACK or

LINPACK, the objectives of LaPACK have been changed. LaPACK is no longer aiming

at providing libraries or facilities for direct user applications. Instead, LaPACK provides

support to mathematical software and languages. For example, MATLAB and a freeware

Scilab have abandoned the packages of LINPACK and EISPACK, and adopted LaPACK as

their low-level library support.

1.1.4 Limitations of conventional computer languages

Many people are using conventional computer languages, such as C and Fortran, in their

research. Needless to say that these languages were very useful, and they were the low-level

supporting languages of the computer mathematics languages such as MATLAB. However,

for the modern scientific and engineering researchers, these languages are not adequate for

solving their complicated computational problems. For instance, even for very experienced

C programmers, they may not be able to write C code to find the indefinite integral of a

given function, these involve knowledge of mathematical mechanization. Even for numerical

computations, there are limitations. Here two examples are given to illustrate the problems.

Example 1.8 It is known that Fibonacci sequence can be generated with the following

recursive formula, a1 =a2 =1, and ak = ak−1 + ak−2, k = 3, 4, · · · . Please compute its first

100 terms.

Solution Data type for each variable is assigned in C programming language first. Since
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the terms in the sequence are integers, it is natural to select the data types int or long. If

int is selected, the following C program can be written.

main()

{ int a1, a2, a3, i;

a1=1; a2=1; printf("%d %d ",a1,a2);

for (i=3; i<=100; i++){a3=a1+a2; printf("%d ",a3); a1=a2; a2=a3;

}}

It seems that the sequence can be obtained simply by using the program. But wait. Are

the results obtained correct? If the program is executed, from the 24th term, the value of the

sequence is negative, and from that term on, the terms are sometimes positive, sometimes

negative. It is obvious that some peculiar things must have happened in the program. The

problem is caused by the int data type, since the range of it is (−32767, 32767). If a term

is beyond this range, wrong results are generated. Even if long data type is adopted instead,

the correct answers may only last till about 10 more terms. To solve the problem of finding

the first 100 terms, or even more, of Fibonacci sequence is certainly beyond the capabilities

of average C users, or even experienced C programmers. Extremely slight carelessness may

lead to misleading results.

With the use of MATLAB, this kind of trivial thing should not be considered. The

following code can be written directly

>> a=[1 1]; for i=3:100, a(i)=a(i-1)+a(i-2); end; a

Besides, for more accurate representation of the terms, symbolic data type can be used

instead, by substituting the first statement with a= sym([1,1]). In this case, the 100th

term is a100 = 354224848179261915075, and even more, the 10000th term may be obtained,

with about 32 seconds of computation, and all the 2089 decimal digits can be found, whose

display may occupy more than half a page of the book.

Example 1.9 Write a universal C program to compute the product of two matrices.

Solution It is known from linear algebra courses that if matrix A is an n × p one, while

B is a p×m one, the product of the two matrices can be obtained with

cij =

p
∑

k=1

aikbkj, i = 1, · · · , n, j = 1, · · · ,m

From the formula, the kernel part of the program is the triple loop structure

for (i=0; i<n; i++){for (j=0; j<m; j++){

c[i][j]=0; for (k=0; k<p; k++) c[i][j]+=a[i][k]*b[k][j]; }}

It seems again that the problem can be solved with these simple statements. Unfortunately

there is still a serious problem in the short code, the multiplicability of the two matrices is

not considered. Imprecisely speaking, when the number of columns of A equals the number

of rows of B, the product can be found, otherwise, they are not multiplicable. To solve the

problem, an extra if statement should be added

if cols of A != rows of B, display an error message

Unfortunately by introducing such a statement, a new problem emerges. In mathematics,

when A or B is a scalar, the product of A and B can be found, however, this case is expelled

by introducing the above if statement. To solve the problem, more if statements are expected

to check the scalar cases.
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Although the above modifications are made, this program is not a universal one, since

complex matrices were not considered ar all. More statements are needed to make the

program universal.

It can be seen from the example that, if C or similar computer languages are used, the

programmers must be very careful to consider all the possible cases. If one or more cases

were not considered, wrong or misleading results may be obtained. In MATLAB, this kind of

trivial thing need not to be considered at all. The command C =A*B can be used directly. If

the two matrices are multiplicable, the product can be obtained, otherwise, an error message

will be displayed to indicate why the product cannot be found.

Of course, in real-time control and similar areas, C or similar languages have their own

advantages. Although some of the MATLAB code can be translated into C automatically,

this is beyond the scope of this book.

1.2 Summary of Computer Mathematics Languages

1.2.1 A brief historic review of MATLAB

In the late 1970’s, Professor Cleve Moler, the Chairman of the Department of Computer

Science at the University of New Mexico found that the solutions to linear algebraic problems

using the then most advanced EISPACK and LINPACK packages were too complicated.

MATLAB (MATrix LABoratory) was then conceived and developed. The first release of

MATLAB was freely distributed in late 1970’s. Cleve Moler and Jack Little co-founded

The MathWorks Inc. in 1984 to develop the MATLAB language [5]. At that time, state

space-based control theory was rapidly developing, and a significant amount of numerical

algebra problems needed to be solved. The appearance of MATLAB and its Control Systems

Toolbox soon attracted the attention of the control community. More and more control

oriented toolboxes were written by distinguished experts in different control disciplines,

which added higher reputations to MATLAB. It is true that MATLAB was initiated by a

numerical mathematician, but its impacts and innovations were first built by the control

community. Soon it became the general purpose language of control scientists and engineers.

With more and more new toolboxes in many other engineering disciplines, MATLAB is

becoming the de facto standard language of science and engineering.

1.2.2 Three widely used computer mathematics languages

There are three leading computer mathematics languages in the world with high

reputations. They are MATLAB of MathWorks Inc., Mathematica of Wolfram Research

and Maple of Waterloo Maple. They each have their own distinguishing merits, for instance,

MATLAB is good at numerical computation and easy in programming, while Mathematica

and Maple are powerful in pure mathematics problems involving symbolics and derivations.

The numerical computation capability of MATLAB is much stronger than the other two

languages. Besides, various nice toolboxes by experts can be used to tackle the problems

with high efficiency. In addition, the symbolic computation engine in Maple was used to

solve symbolic computation problems, and now with the MuPAD engine. Therefore, the

symbolic computation capability of MATLAB is essentially as good as Mathematica and
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Maple for most engineering mathematical problems. When the readers have mastered such

a computer mathematics language like MATLAB, the ability of handling mathematical

problems could be enhanced significantly.

1.2.3 Introduction to free scientific open-source softwares

Although many extremely powerful scientific computation facilities have been provided

in the computer mathematics languages such as MATLAB, Maple and Mathematica, there

are certain limitations in their applications in research and education, for example, they are

expensive commercial softwares. Moreover, some of the core source codes are not accessible

to the users. Therefore, the open-source softwares are welcome in scientific computation as

well. Some influential softwares include:

(i) Scilab Scilab is developed and maintained by INRIA, France. The syntaxes are very

similar to MATLAB. It is a free open-source software which concentrates in particular on

control and signal processing. The Scicos in Scilab is a block diagram simulation environment

similar to Simulink. The web-page of Scilab is http://www.scilab.org/.

(ii) Octave Octave was first released in 1993. It is a promising open-source

software for numerical computation, initiated from numerical linear algebra. The earlier

objective of the software was to provide support in education. The web-page of Octave is

http://www.gnu.org/software/octave/.

(iii) Others Some other small-scale numerical matrix computation softwares such as

Freemat and SpeQ are all attractive free softwares.

1.3 Outline of the Book

The book can be used as a reference text or even a textbook of a new course on scientific

computation. The applications of all branches of college mathematics can be taught in such

a course with broad coverage, which enables the students to view mathematics from a

different angle. This will significantly increase the ability of the students for mathematical

problem solutions. The book can also be used as a reference book for actual mathematical

problem solutions.

1.3.1 The organization of the book

The contents of the book are summarized below:

Chapter 1, the current chapter, answers the question “Why MATLAB” in scientific

computation and gives an overview of the development of MATLAB and other computer

mathematics languages.

Chapter 2, “Fundamentals of MATLAB Programming,” introduces briefly the pro-

gramming essentials of MATLAB, including data structure, flow control structures and

M-function programming. Two-dimensional, three-dimensional graphics, or even four-

dimensional graphics, through volume visualization techniques, are also presented. This

chapter is the basis for the materials in the book.

Chapter 3, “Calculus Problems,” covers the problems in college calculus, from a different

viewpoint. The subjects introduced in the chapter include limits, derivatives and integrals
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of univariate and multivariate functions. Series expansion problems such as Taylor series

and Fourier series expansions as well as series sums and products are covered. Convergency

tests of infinite series are explored. MATLAB solutions to path, line and surface integrals

are illustrated. Finally, numerical differentiation and integral (or quadrature) are also

introduced.

Chapter 4, “Linear Algebra Problems,” studies linear algebra problems using both

analytical and numerical methods. Special matrices in MATLAB are first discussed followed

by basic matrix analysis, matrix transformation and matrix decomposition problems. Matrix

equation solutions, including linear equations, Lyapunov equation and Riccati equations,

are introduced. How to evaluate matrix functions is introduced for both the exponential

function and the functions of arbitrary forms. Also, the integer power of matrices are also

explored.

Chapter 5, “Integral Transforms and Complex-valued Functions,” includes the solutions

to Laplace transform problems and their inverse, Fourier transforms and their variations,

z, Mellin and Hankel transforms. Numerical solutions of integral transform are illustrated,

where numerical inverse Laplace transform and fast Fourier transform are in particular

discussed. The analysis of complex-valued functions are also introduced, including poles,

residues, partial fraction expansion, Laurent series, and closed-path integral problems, all

with many illustrative solution examples. Difference equation solutions are explored also in

the chapter.

Chapter 6, “Nonlinear Equations and Optimization Problems,” explores the search

methods for linear equations, nonlinear equations and nonlinear matrix equations. The

unconstrained optimization, constrained optimization and mixed integer programming

problems are demonstrated. Linear matrix inequality (LMIs) problems are also covered in

the chapter. Multi-objective optimization problems and dynamical programming problems

are also introduced. Dynamic programming problems, with particular applications in

shortest path planning problems, are demonstrated.

Chapter 7, “Differential Equations Problems,” mainly covers analytical as well as

numerical solutions to ordinary differential equations. Different types of ordinary differential

equations, including stiff equations, implicit equations, differential algebraic equations, delay

differential equations and the boundary valued equations are illustrated. An introduction

to partial differential equations is also given briefly through examples. In particular, block

diagram-based modeling and numerical solutions of differential equations are explored with

the sophisticated Simulink environment.

Chapter 8, “Data Interpolation and Functional Approximation Problems,” studies the

interpolation problems such as simple interpolation, cubic spline and B-spline problems. We

show that numerical differentiation and integration problems can be solved with splines.

Polynomial fitting, continued fraction expansion and Padé approximation as well as least

squares curve fitting methods are all covered and illustrated. An introduction to signal

filtering and de-noising problems is also presented briefly in this chapter.

Chapter 9, “Probability and Mathematical Statistics Problems,” studies the probability

distributions and pseudorandom number generators first. Statistical analysis to the

measured random data is then illustrated. Hypothesis tests for a few common applications

are presented, and the analysis of variance method is demonstrated briefly through

examples. An introduction to principal component analysis problems is also given.

Chapter 10, “Nontraditional Solution Methods,” covers a wide variety of interesting

topics, such as traditional set theory, rough set theory, fuzzy set theory and fuzzy inference
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system, neural networks, wavelet transform, evolutionary optimization methods including

genetic algorithms and particle swarm optimization methods. Most interestingly, fractional-

order calculus (derivatives or integrals of non-integer order) problems are introduced with

basic numerical computational techniques and examples.

1.3.2 How to learn and use MATLAB?

The best way to learn a computer language like MATLAB is learning through extensive

practice. MATLAB should be installed on your computer, and when invoked, the main

interface is shown in Figure 1.1. The Command Window is the place where MATLAB

commands are issued, and >> is the MATLAB prompt. For new users of MATLAB, it

is advised to type demo after the MATLAB prompt, and experience the facilities provided

in an easy-to-understand manner.

FIGURE 1.1: Main interface of MATLAB.

In this book, almost all the engineering mathematics branches are involved. On-line

help facilities provided in MATLAB are useful for getting extra information of a particular

function or a class of problems. The readers are recommended to get acquainted with such

facilities. Help information can be obtained with the Help menu in the MATLAB command

window, as shown in Figure 1.2(a). If the Using the Desktop menu item is selected, an on-line

help window is opened, as shown in Figure 1.2(b).

Alternatively, the commands help or doc can be issued in the MATLAB command

window, and the command lookfor can be used to search keywords.

1.3.3 The three-phase solution methodology

A three-phase methodology proposed by the authors is used throughout the book in

presenting mathematical problem solutions [6]. The three phases are respectively “What,”

“How” and “Solve.” In the “What” phase, the physical explanation of the mathematical

problem to be solved is presented. Even though the students have not yet learned the
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(a) the Help menu (b) on-line help window

FIGURE 1.2: On-line help information.

corresponding mathematics course, he can understand roughly what the problem is really

about. In the “How” phase, the mathematical problem should be described in a manner

understandable by MATLAB. In the final “Solve” phase, appropriate MATLAB functions

should be called to solve the problem directly. If there is an existing MATLAB function, the

syntax of the function is presented, and if there is not one, a universal function is written

to solve the problem.

Example 1.10 Let us revisit the materials in Example 1.5, where the linear programming

problem is involved, the philosophy used in the book is illustrated

min

x s.t.















2x2+x3+4x4+2x5654

3x1+4x2+5x3−x4−x5662

x1,x2>0, x3>3.32, x4>0.678, x5>2.57

−2x1 − x2 − 4x3 − 3x4 − x5.

Solution To solve such a problem, even though the reader may have not learned

optimization courses, the solution can be obtained following the three-phases.

(i) “What” phase In this book, we shall explain first the physical meaning of the

mathematical problem. In this particular example, the mathematical formula means that

under the simultaneous inequality constraints






2x2 + x3 + 4x4 + 2x5 6 54
3x1 + 4x2 + 5x3 − x4 − x5 6 62
x1, x2 > 0, x3 > 3.32, x4 > 0.678, x5 > 2.57,

how can we find a set of decision variables xi, to minimize the objective function

f(x) = −2x1 − x2 − 4x3 − 3x4 − x5.

(ii) “How” phase Illustrate the readers how to represent the problem in MATLAB.

The code in Example 1.5 can be used to establish variable P. The mathematical problem

should be expressed in a format understandable by MATLAB.

>> P.f=[-2 -1 -4 -3 -1]; P.Aineq=[0 2 1 4 2; 3 4 5 -1 -1];
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P.Bineq=[54 62]; P.lb=[0;0;3.32;0.678;2.57]; P.solver=’linprog’;

P.options=optimset; % express the linear programming problem in structure P

(iii) “Solve” phase Call the linprog() function and get the result.

>> x=linprog(P) % solve the problem with appropriate function linprog

It appears that the book is presenting in certain depth some mathematical problems.

However, the ultimate objective of this book is to help the readers, after understanding

roughly the mathematical background, to bypass the tedious and complex technical details

of mathematics and find the reliable and accurate solutions to the interested mathematical

problems with the use of MATLAB computer mathematics language. There is no doubt that

the readers’ capability in tackling mathematical problems can be significantly enhanced after

reading this book.

Exercises

Exercise 1.1 Install MATLAB on your machine, and issue the command demo. From

the dialog boxes and menu items of the demonstration program, experience the powerful

functions provided in MATLAB.

Exercise 1.2 In order to understand the three-phase learning stage, please revisit Example

1.5, and see which statements belong to the second and third phases. Also, please think about

what should be done for the first phase.

Exercise 1.3 Solve the following Lyapunov equation by starting the command

>> lookfor lyapunov

and see whether there is any function related to the keyword lyapunov. If there is one, say,

the lyap function is found, type doc lyap and see whether there is a way to solve this

Lyapunov equation. Check the accuracy of the solution by back substitution.




8 1 6
3 5 7
4 9 2



X + X





16 4 1
9 3 1
4 2 1



 =





1 2 3
4 5 6
7 8 0



 .
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