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• An MRAC–PALC estimator for two dominant harmonic coefficients in the force ripple is proposed.
• The nature of the repetitive motion task is fully utilized.
• A priori knowledge is not required in the controller design.
• Improved force ripple compensation performance is demonstrated by simulations and experiments.
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a b s t r a c t

Force ripple deteriorates the performance of permanent magnet linear synchronous motor (PMLSM)
servo systems. Using a model reference adaptive control and periodic adaptive learning control (MRAC–
PALC) algorithm, this paper presents a novel compensation method to eliminate the influence of force
ripple on the system performance of a position servo system under repetitive motion tasks. The key
idea of the proposed method is to utilize the periodic characteristics of both force ripple and system
motion. The controller consists of four components: a PD component, a feedforward component,
a velocity feedback component and an MRAC–PALC compensator. The first three components are
designed in a conventional way. The compensator is divided into two parts: in the 0th-iteration,
an MRAC algorithm is employed to obtain the initial information, and in the ith-iteration (i ≥ 1),
a PALC algorithm is used to learn from the information obtained in the previous period and update
the controller parameters for estimating force ripple. Moreover, a theoretical stability analysis is given
via Lyapunov stability theorem, and some comparative results are provided through simulations and
experiments.

© 2019 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

PMLSM has received considerable attention because of many
significant advantages such as lower thermal losses, higher torque
to inertia ratio, superior power density, and most importantly, the
ability to directly connect load to motor without a reducer. Force
ripple is one of the most predominant nonlinear disturbances
that degrade force smoothness and may lead to speed oscillations
and stability problems [1], especially at a low velocity or with a
relatively light load [2,3]. This paper proposes a novel compensa-
tion algorithm to eliminate the effect of force ripple on tracking
performance of servo systems.

Force ripple sources can be divided into four main categories.
First, in almost all motors with ferromagnetic core windings,
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mechanical construction primarily gives rise to ripples including
reluctance force, cogging force and mutual force. Second, for a DC
motor, ripple is generated from DC current sensor offset and D/A
converter [4]. Third, in a servo system with a gear transmission
mechanism, ripple comes from high-frequency load variations
when the gears engage mutually. Finally, in some manufactur-
ing and machining applications, ripple can result from external
forces generated in a repetitive process at fundamental working
frequency and its various harmonics. It is very interesting to
note that force ripple can be regarded as a sinusoidal function,
whose periodicity is only related to position and is independent
of velocity, but its amplitude is determined by both position
and velocity. Practically, ripple forms ‘‘bumps’’ along the motion
direction, which are very difficult to eliminate completely [5].

There are two kinds of measures to suppress the impact of
force ripple. An effective measure is to optimize motor struc-
ture [6]. Conversely, this approach will increase manufacturing
complexity and lead to higher cost. On the other hand, motivated
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by the work in [7], considerable efforts have been focused on
parameter identification methods in the force ripple model and
corresponding compensation strategies. Based on the fact that
force ripple can be expressed as a sum of a series of harmonics
with respect to position, several identification techniques, in-
cluding iterative learning [8], hysteretic relay [3] and closed-loop
identification [9], have been developed to obtain the parameters
in the force ripple model. In terms of compensation strategies,
for the first category, the main idea is to design model-based
controllers such as PID feedback controller with additional chat-
ter [10] or dither [11], sliding mode controller [1], neural network
controller [12] and intelligent optimization controller [13]. For
the second category, ripple from DC offset is compensated by
an internal model control method [4] and a fuzzy-logic control
method [14]. For the last two categories, force ripple is considered
as a part of the uncertainties and external disturbances and is
addressed accordingly. However, the adaptive control method
and its improved forms seem to be more popular [15,16]. Un-
fortunately, the amplitudes of force ripple model may fluctu-
ate with velocity and load [8], making it difficult to completely
compensate force ripple.

Moreover, approaches based on iterative learning control (ILC)
have been receiving widespread acceptance. A PALC compensa-
tion scheme is given to minimize the state-dependent cogging
effect [17], and a periodic learning disturbance observer-based
method is proposed to eliminate force ripple and other distur-
bances [18]. Additionally, a repetitive learning variable structure
control method is proposed to minimize periodic speed ripple
in a PMSM and two ILC schemes and their modified forms are
presented to suppress the speed and torque ripples in a PMLSM,
respectively [8,19]. However, force ripple frequency, which is
fixed and can be obtained accurately, is not fully utilized.

Under repetitive tasks, force ripple behaves periodically, and
two coefficients of the dominant harmonic are time-varying. It is
obvious that force ripple and system motion share some common
features, and accordingly, the periodic control approach has a
greater advantage than its conventional counterparts. In reality,
it is not difficult to find many such cases: for example, cutter’s
motion in manufacturing [1], maglev train operation, and gait and
joint flexion-extension of a rehabilitation robot. Thus, the goal of
this paper is to consider the inherent periodicity of both force
ripple and reference signal and design an MRAC–PALC strategy
to eliminate the influence of force ripple.

Motivated by several outstanding achievements in [17,20,21],
through analysis of force ripple properties using fast Fourier
transform (FFT), a new MRAC–PALC compensation method is
proposed to eliminate parasitic force ripple in a class of position
servo systems under repetitive motion tasks. The key point of
the algorithm is to estimate the amplitudes of force ripple with
a periodic adaptive estimator and add an extra control effort to
accurately compensate force ripple. The proposed MRAC–PALC
algorithm consists of a PD component for global stability and
robustness, a feedforward component for fast response, a velocity
feedback component for damping improvement and an MRAC–
PALC compensator component for accurate estimation of force
ripple amplitudes.

In summary, comparing with present force ripple compen-
sation methodologies, the main contributions of this paper are
listed as follows.

(1) Dynamic characteristics of force ripple are fully utilized
by using position-dependent harmonics model, enhancing the
compensation effect. In contrast, force ripple is only regarded as
a part of the lumped disturbance in present PALC suppression
methods [15,17].

(2) Two time-varying and periodic coefficients of the dominant
harmonic are estimated by the PALC algorithm under repetitive

tasks. The advantage of this estimation method is that force ripple
is accurately approximated at any time in each period. Existing
adaptive compensation algorithms do not consider the nature of
periodic tasks [2,20,21].

(3) A priori knowledge is not needed in the proposed MRAC–
PALC approach, and all parameters can be acquired through adap-
tive learning. Therefore, some problems resulting from initial
values are avoided.

(4) Using the fixed dominant harmonic frequency of force rip-
ple identified by FFT, implementation complexity of the control
algorithm is reduced.

This paper is organized as follows. In Section 2, a PMLSM
position servo system with a force ripple disturbance is briefly
introduced. In Section 3, using FFT, the spectrum of force ripple is
analyzed, and the dominant harmonic frequency is identified. In
Section 4, a control algorithm with a uniform format and two sets
of different adaptation laws is discussed. In Section 5, simulation
and experimental results are given to verify the effectiveness of
the proposed approach. Finally, the conclusions are presented in
Section 6.

2. Problem formulation

In this paper, a typical three-phase PMLSM position servo
system with force ripple is considered. For simplicity and without
loss of generality, the following assumptions are first made: (1)
the core is unsaturated, (2) the eddy current and hysteretic loss
are negligible, and (3) electromotive force (EMF) is sinusoidal.
Using a field-oriented control strategy, d-axis current is regulated
to be zero.

Taking force ripple into account, the servo system is modeled
by

ẋ =
Kf uq − (Lqs + R)Fripple

LqMs2 + MRs +
π
τp
Kf λf pn

, (1)

Kf =
3π
2τp

pnλf , (2)

where x is displacement of PMLSM motor, uq is q-axis stator volt-
age, Lq is q-axis inductance, R is stator resistance, pn is the number
of pole pairs, τp is pole pitch, λf is flux linkage, M is the mass
of mover, Kf is force coefficient, and Fripple is force ripple distur-
bance. At the same time, x is assumed to be bounded and second-
order differentiable. Ignoring the effect of q-axis inductance Lq, (1)
can be simplified as

Mẍ =
Kf

R
uq −

πpnλf Kf

τpR
ẋ − Fripple, (3)

Let us define

m =
MR
Kf

, a = −
πpnλf

τp
, Fr =

R
Kf

Fripple.

Thus, we have

mẍ = aẋ + uq − Fr . (4)

Let uq be denoted by u as controller effort; then, (4) can be
rewritten as

v(t) = ẋ(t), (5)

mv̇(t) = av(t) + u(t) − Fr , (6)

In our study, force ripple is modeled as

Fr =

nmax∑
n=1

Arn sin(nω0x + ϕn). (7)
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Fig. 1. Measured system velocity and output force when PMLSM moves at 1 mm/s.

where ω0 is the fundamental frequency and is regarded as a
constant, and Arn and ϕn are the magnitude and phase angle of
the nth-order force ripple harmonic, respectively.

Our goal is to design an MRAC–PALC estimator to approximate
force ripple under repetitive motion tasks and eliminate the
position and velocity tracking errors. Throughout the paper, the
following assumptions hold:

Assumption 2.1. For a given servo system, operating conditions
and system dynamics are significantly undiversified.

Assumption 2.2. The desired position trajectory is periodic.

Assumption 2.3. In each iteration, both time instant and present
position are acquired accurately in both iteration domain i and
time domain t .

Assumption 2.4. The influences of force ripple on the servo
system in different iterations are nearly identical.

It can be seen that the above assumptions hold under repeti-
tive motion tasks. Further, the desired and actual position trajec-
tories, corresponding velocities and force ripple have the follow-
ing two properties:

Property 2.1. From Assumptions 2.1–2.3, assuming that a good
tracking performance is achieved, the desired position trajectory
xd and all measured system states share fixed periodic time Pt .
Furthermore, Pt can be acquired exactly. Thus, we can obtain

xd(t + iPt ) = xd(t), vd(t + iPt ) = vd(t),
x(t + iPt ) ≈ x(t), v(t + iPt ) ≈ v(t).

Property 2.2. From Assumption 2.4 and Property 2.1, since the
period of desired trajectory xd(t) is fixed as Pt and force ripple Fr (t)
consists of many harmonics with respect to x(t), we have

Fr (t + iPt ) ≈ Fr (t).

3. Dominant harmonic frequency identification in force ripple

Since force ripple is described as a position-dependent func-
tion that consists of many harmonics, it is natural to identify the
amplitudes and frequencies of these harmonics, especially dom-
inant harmonic frequency. Although the amplitude identification
has been proven to be cumbersome [1], harmonic frequencies can
be obtained through spectrum analysis [22], especially FFT.

As to the series on the right-hand side of (7), based on motor
structure and corresponding parameters, fundamental ripple fre-
quency ω0 with respect to displacement x can be determined as

ω0 = π/τp, (8)

Then, (7) can be rewritten as

Fr =

nmax∑
n=1

Arn sin(
nπ
τp

x + ϕn)

=

nmax∑
n=1

Ar1n cos(
nπ
τp

x) +

nmax∑
n=1

Ar2n sin(
nπ
τp

x).

(9)

When the servo system moves at a very low and constant
velocity, v̇d = 0 and v̇ ≈ 0; then, (6) can be changed as

av + u − Fr ≈ 0. (10)

Theoretically, the difference between the frequency spectra of
measured effort output u and force ripple Fr is only frequency
component FFT[av]. When the servo system moves at a very low
and constant velocity, av is very small, and Fr is very close to
u, making it possible to obtain the features of Fr by analyzing
u. Due to disturbances and other uncertainties, it is difficult to
keep v absolutely stable, resulting in spectrum errors. However,
a relatively accurate frequency spectrum of Fr can be obtained
through that of u.

To observe force ripple and acquire the dominant harmonic
frequency, an open-loop experiment at a very low and constant
velocity is performed, where velocity v = 1 mm/s, and running
time is 120 s. The measured system velocity and output force
are shown in Fig. 1, and the frequency spectrum of force ripple
is shown in Fig. 2. It is obvious that fluctuations exist in the
measured velocity due to inherent force ripple.

From (8), the fundamental ripple frequency ω0 = π/τp =

0.196 rad/mm. Considering x = vt , the fundamental ripple
frequency f0 with respect to time t is f0 = ω0v/(2π ) = 0.0313 Hz.
From Fig. 2, it is apparent that the fundamental frequency is
0.033 Hz, the second harmonic (f = 0.066 Hz) is the dominant
component, and other harmonics are less significant because their
amplitudes are less than 10% of the dominant one. Hence, for
the dominant harmonic, n = 2 and ωr

.
= nπv/τp = 0.3927

rad/s. Note that a slight difference exists between the computed
and measured fundamental frequencies. Here, only the dominant
frequency component is considered, and (9) is simplified as

Fr = Ar1 cos(ωrx) + Ar2 sin(ωrx). (11)

where two amplitudes, Ar1 and Ar2, can be different. Based on
this simplified model, an MRAC–PALC compensation algorithm
is presented to eliminate the influence of force ripple on servo
system performance.

From Property 2.2, we have

Ar1(t + iPt ) = Ar1(t), Ar2(t + iPt ) = Ar2(t). (12)

Apparently, it is crucial to find accurate estimations of Âr1 and
Âr2 for Ar1 and Ar2, respectively, such that an additional control
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Fig. 2. Frequency spectrum of the force ripple when PMLSM moves at 1 mm/s.

effort ur can be generated to eliminate the estimated force ripple
F̂r =: Âr1 cos(ωrx) + Âr2 sin(ωrx). Note that a more accurate
dominant harmonic frequency may be obtained by combining FFT
method with other identification approaches [23].

4. Design of MRAC–PALC controller

In this section, the proposed MRAC–PALC compensation al-
gorithm is illustrated in detail. First, a controller frame with a
uniform format is given. Then, two sets of different adaptation
laws for the 0th-iteration and ith-iteration (i ≥ 1) are presented.
At the same time, the asymptotic stability of the proposed scheme
is analyzed via Lyapunov stability theorem.

4.1. MRAC–PALC-Based controller design

To begin with, we assume that desired position xd, desired
velocity vd and its derivative v̇d are all bounded. Here, control
errors are given as

ex = xd − x, (13)

e = ėx + λex, (14)

where λ is a positive constant to be designed.
Then, the following estimation errors are defined

Ãr1 = Ar1 − Âr1, Ãr2 = Ar2 − Âr2.

To eliminate the influence of force ripple on system perfor-
mance, the proposed MRAC–PALC control law is constructed as

u = cme + λmev − aẋ + mv̇d + Âr1 cos(ωrx) + Âr2 sin(ωrx). (15)

where c is a positive coefficient to be regulated, vd is desired
velocity, vd = ẋd, and ev = ẋd − ẋ.

From (15), it can be seen that, according to mechanism, the
control law is divided into four parts: part one (cme+λmev) acts
as a conventional linear PD controller, part two (−aẋ) is a velocity
feedback controller that can increase the damping characteristics
and enhance the tracking performance, the third part (mv̇d) is a
feedforward controller that can improve transient performance
and avoid using high-gain feedback, and the last adaptive com-
pensator (ur

.
= Âr1 cos(ωrx)+ Âr2 sin(ωrx)) is updated by different

adaptation laws and used to eliminate the estimated force ripple
F̂r in real time.

From (14), when λ > 0, the error transfer function Ge(s) =
ex(s)
e(s) =

1
s+λ

is always stable. Furthermore, if e exponentially

converges to a very small value or zero, ex also converges. Thus,
another goal of this paper is to minimize e to achieve high-
performance position and velocity tracking.

The schematic diagram of the MRAC–PALC scheme is shown
in Fig. 3.

4.2. Design of MRAC-based adaptation laws (0th-iteration)

In the 0th-iteration (i.e., the first time period), to guarantee
system stability, the adaptation laws for MRAC component are
designed as
˙̂Ar1 = k10e cos(ωrx), (16)
˙̂Ar2 = k20e sin(ωrx). (17)

where k10 and k20 are positive adaptation gains to be designed.

Theorem 4.1. Suppose that |ẋd(t)| is bounded; let ex(0) = e(0) = 0.
Considering the position servo system (5), (6) with force ripple (11)
and the control goal of tracking desired position trajectory xd and its
derivative vd, the employment of the control law given by (15) with
MRAC adaptation laws presented by (16) and (17) ensures that ex
and e are bounded in l2-norm when t < P1.

Proof. Please refer to Appendix A for the proof of the theorem.
□

Remark 4.1. In practice, the main task of MRAC is to ensure system
stability in the 0th-iteration. Thus, small values of k10 and k20 are
feasible to achieve this goal.

4.3. Design of PALC-based adaptation laws (ith-iteration)

From the 1st-iteration (the second time period) and onwards
(i.e., t ≥ P1 and i ≥ 1), the coefficients of first three linear parts
in the control law (15) are the same as those in the 0th-iteration.
To learn from the information in the previous period, update
the parameters in force ripple model and ensure asymptotical
stability of the servo system. The designed periodic adaptation
laws for the PALC compensator are given as

Âr1(t) − Âr1(t − Pt ) =
k1i
m

[ev(t) + λex(t)] cos(ωrx), (18)

Âr2(t) − Âr2(t − Pt ) =
k2i
m

[ev(t) + λex(t)] sin(ωrx). (19)

where both k1i and k2i are positive periodic adaptive learning
gains to be regulated.

Theorem 4.2. Suppose that |ẋd(t)| is bounded. From the 1st-
iteration period and onwards, considering the position servo system
(5), (6) with force ripple (11) and the control goal of tracking the
desired position trajectory xd and its derivative vd, the employment
of the nonlinear control law given by (15) with PALC adaptation
laws presented by (18), (19) ensures that the system (5), (6) is
asymptotically stable, and the position tracking error (13) converges
to zero as t, i → ∞.

Proof. Please see Appendix B for the proof of the theorem. □

From (18), (19), we can see that Âr1 and Âr2 can be acquired at
any time in each period, and together with ωr identified through
FFT, force ripple can be estimated in real time.

In the 1st-iteration, the stored information in the 0th-iteration
period acts as an initial condition. Therefore, no a priori knowl-
edge is needed to activate the PALC algorithm. From the 2nd-
iteration on (i ≥ 2), estimated amplitudes Âr1 and Âr2 of force
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Fig. 3. Block diagram of the MRAC–PALC controller.

Table 1
PMLSM parameters.
PMLSM parameters X-axis Y-axis

Mass of the motor M (kg) 0.58 0.76
Stator resistance R (�) 10.7 18.2
Force coefficient Kf (N/A) 54.5 97.5
Pole pitch τp (mm) 16 16
Number of pole pairs pn 6 6
q-axis inductance Lq (mH) 3.8 6.3
Flux linkage λf (Wb) 0.031 0.055
Continuous thrust Fc (N) 109 145
Peak thrust (1 s) Fp (N) 327 435

ripple in the previous (i−1)th-iteration are utilized as the infor-
mation to be learned in the present ith-iteration. In contrast with
conventional PID and adaptive controllers, a larger memory is
indispensable in the implementation of the proposed MRAC–PALC
algorithm. However, more information that is stored for updat-
ing the adaptation laws, more potential the proposed method
possesses to enhance tracking performance. Therefore, a tradeoff
between memory size and expected tracking performance has to
be made in the controller implementation.

5. Comparative simulation and experimental results

In this section, the proposed MRAC–PALC compensation al-
gorithm for force ripple is investigated through simulations and
experiments. The compensation effects of the proposed MRAC–
PALC controller (C1), an MRAC controller (C2) and a PD controller
(C3) are compared from some different aspects. In addition, some
related frequency spectra and ITAE results are presented to high-
light the superiority of the proposed approach.

5.1. Experimental setup

As shown in Fig. 4, the gantry system LMG2A-CB6-CC8 with
two PMLSM-driven axes (X and Y), manufactured by HiwinTM, is
used in our experiments. A programmable multi-axis controller
(PMAC), produced by Delta Tau Data Systems Inc., is employed to
control two PMLSMs. A MATLABTM-based software development
kit and a Links-Box real-time simulator developed by Beijing
LINKSTM Co. are used to simulate and generate controller code
for PMAC. Other main components include two motor D1 drivers
made by Mega-Fabs Motion Systems Ltd., a DTC-8B interface
board produced by Delta Tau Data Systems Inc., and a power
supply. PMLSM parameters are listed in Table 1.

Table 2
PD gains.
Definitions Symbols Values

PD gains of C3 for X-axis kP , kD 215508, 0.0003
PD gains of C3 for Y-axis kP , kD 229406, 0.0012
PD gains of C1 and C2 for X-axis c, λ 7516,211
PD gains of C1 and C2 for Y-axis c, λ 8226,211

Table 3
Adaptation gains.
Definitions Symbols Values

Adaptation gains of C1 for X-axis k10, k20, k1i, k2i 0.3, 0.1, 178, 185
Adaptation gains of C1 for Y-axis k10, k20, k1i, k2i 0.2, 0.1, 197, 186
Adaptation gains of C2 for X-axis k1, k2 121,109
Adaptation gains of C2 for Y-axis k1, k2 101,115

5.2. Tuning of controller parameters

To make a fair comparison and illustrate the performance
improvement of the servo system with the proposed MRAC–PALC
algorithm, all gains of three controllers are chosen to achieve best
tracking performance, the tuning procedure is separated into two
steps below.

Step 1: Design of PD gains
The gain tuning of C3 and PD components of C1 and C2 can

be achieved easily. Here, using MATLABTM Toolbox and making a
tradeoff between overshoot and settling time, PD gains are given
in Table 2.

Step 2: Selection of adaptation gains
For adaptation gains of MRAC and PALC, in theory, we can

choose all real numbers that are greater than zero. The adaptation
gains are increased gradually from very small values, improv-
ing convergence rate and minimizing position tracking errors.
However, high adaptation gains may lead to oscillation and even
instability. Considering the stability, convergence rate and motion
smoothness, through repeated experiments (trial and error), the
adaptation gains of C1 and C2 are shown in Table 3.

5.3. Simulation studies

To show the superiority and effectiveness of the proposed
MRAC–PALC compensation algorithm, some comparative tracking
simulations for X-axis and Y -axis are conducted with Links-Box
simulator. Pt is fixed as 2 s, and sample time T = 10−5 s.
The desired sinusoidal position trajectory is selected as xd(t) =

0.15 sin(π t) m. For the proposed MRAC–PALC scheme, the MRAC
algorithm is employed to guarantee stability in the 0th-iteration,
and the PALC algorithm is not yet added. From the 1st-iteration
on, MRAC is replaced by PALC to update amplitude parameters
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Fig. 4. Block diagram and data flows of the testbed.

of force ripple from information in the previous period. Note
that, in all figures below, (a) and (b) represent X-axis and Y -axis,
respectively.

To simulate the influence of force ripple on system perfor-
mance, based on (9) and the identification results of force ripple
in Section 3, two force ripple disturbance signals are modeled as
position-dependent multiple harmonics, as shown in Table 4.

Fig. 5 shows a comparison of position tracking errors when
three controllers are used. It can be observed clearly that, with-
out compensation under C3, maximum position tracking errors
are about 83 µm (X-axis) and 140 µm (Y-axis). After adaptive
compensation under C2, maximum position tracking errors of
about 0.52 µm (X-axis) and 0.58 µm (Y-axis) are achieved. In

contrast, with C1, maximum position tracking errors are only
about 0.06 µm (X-axis) and 0.02 µm (Y-axis) after 6 iterations.
To be noted, the peak of tracking errors decreases very fast as the
iteration increases. Due to utilizing periodic information hidden
in repetitive tasks, the proposed MRAC–PALC algorithm exhibits
a much better tracking performance than MRAC algorithm.

Figs. 6 and 7 show velocity tracking and tracking errors with
three controllers, and the corresponding maximum velocity track-
ing errors are shown in Table 5. It can be seen that the proposed
MRAC–PALC algorithm can achieve smoother velocity tracking
than C2 and C3.
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Table 4
Magnitudes of the harmonics for simulating force ripple disturbance.
Definitions Harmonic frequencies Harmonic magnitudes

Harmonics for X-axis π
τ
, 2π

τ
, 3π

τ
, 4π

τ
, 5π

τ
, 6π

τ
0.05,0.45,0.04,0.031,0.022,0.035

Harmonics for Y-axis π
τ
, 2π

τ
, 3π

τ
, 4π

τ
, 5π

τ
, 6π

τ
0.1,0.8,0.08,0.061,0.042,0.055

Fig. 5. Position tracking errors from MRAC–PALC (C1), MRAC (C2) and PD controller (C3).

Table 5
Maximum velocity tracking errors with three controllers in the simulation.
Definitions X-axis (m/s) Y-axis (m/s)

The maximum velocity tracking error with C1 1.3×10−5 3.7×10−5

The maximum velocity tracking error with C2 7.5×10−5 1×10−4

The maximum velocity tracking error with C3 1.96×10−4 5.25×10−4

Fig. 8 shows a comparison of control efforts used in C1 and C3.
From the plots, we can easily see that control effort of the pro-
posed MRAC–PALC controller is very close to that of C3. Therefore,
we can conclude that the proposed MRAC–PALC controller only
requires a very small additional control effort over conventional
PD controller to compensate force ripple disturbance.

The desired and estimated force ripple trajectories are shown
in Fig. 9, and the updating processes of estimated coefficients of
Âr1 and Âr2 are shown in Fig. 10. We can see clearly that both Âr1
and Âr2 behave periodically under repetitive motion tasks, and
the given force ripple is approximated successfully by the pro-
posed MRAC–PALC algorithm after only about 6 iterations. At the
same time, the proposed MRAC–PALC algorithm performs better
than MRAC algorithm in both convergence rate and estimation
accuracy.

5.4. Experimental investigations

To further demonstrate the effectiveness of the proposed
MRAC–PALC approach, a line-shaped contour following task is
carried out, and desired position trajectory for both X and Y axes
is chosen as xd(t) = 0.15 sin(π t) m.

The position tracking trajectories with three different con-
trollers are shown in Fig. 11, the position and velocity tracking
errors are given in Fig. 12 and Fig. 13, respectively, and the
corresponding tracking errors are shown in Table 6. It can be seen
that, similar to simulation results, tracking performance of the
proposed MRAC–PALC method is better than those of MRAC and
PD methods. Moreover, due to relatively slight load, the motion
of one axis has little influence on the motion of the other.

To investigate the performance of servo system and its fre-
quency content, FFT is applied to position errors and control
efforts under three controllers, and the corresponding results are

Table 6
Maximum tracking errors with three controllers.
Controllers Position errors (µm) Velocity errors (m/s)

X-axis Y-axis X-axis Y-axis

C1 1.2 1.0 8.1×10−4 8.6×10−4

C2 3.1 2.7 1.9×10−3 1.5×10−3

C3 82 142 1.6×10−2 1.3×10−2

shown in Figs. 14 and 15, respectively. We can see that, with
the proposed MRAC–PALC algorithm, the position error spectrum
in low frequency range is appreciably attenuated, verifying the
effectiveness and superiority of the proposed compensation algo-
rithm. Meanwhile, the FFT results of control efforts under three
controllers are very similar, indicating again that only a slight
extra control effort is required to achieve force ripple elimination.

To further evaluate the superiority of the proposed MRAC–
PALC method over conventional MRAC and PD algorithms, the
tracking performances with three controllers are compared in
terms of ITAE, as reported in Fig. 16. It is obvious that the
proposed MRAC–PALC method performs better than other two
methods.

6. Conclusions

In this paper, a novel MRAC–PALC compensation algorithm is
proposed to eliminate force ripple in position tracking systems
under repetitive motion tasks. In this method, a uniform con-
troller with two sets of different adaptation laws is given. The
MRAC algorithm is used to ensure system stability in the 0th-
iteration and obtain initial information, and the PALC algorithm is
employed to guarantee the asymptotic stability of servo system
and tracking performance from the 1st-iteration and onwards.
Compared with conventional compensation methods, the pro-
posed scheme combines the periodic characteristics of system
motion and inherent force ripple and makes use of the merits
of MRAC and PALC. From simulation and experimental results,
we can see clearly that the proposed MRAC–PALC scheme works
effectively, performs better than conventional PD and MRAC al-
gorithms, and significantly eliminates force ripple. Furthermore,
the proposed MRAC–PALC control strategy in this paper can be
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Fig. 6. Velocity tracking trajectories from MRAC–PALC (C1), MRAC (C2) and PD controller (C3).

Fig. 7. Velocity tracking errors from MRAC–PALC (C1), MRAC (C2) and PD controller (C3).

Fig. 8. Control efforts from MRAC–PALC (C1) and PD controller (C3) and additional control effort for force ripple compensation.

employed to compensate other periodic disturbances in servo
systems under repetitive motion tasks.

Future investigations can introduce optimal parameter se-
lection strategies into the proposed MRAC–PALC algorithm to
improve convergence rate. Although implementation complexity
increases, tracking performance may be further improved.

Acknowledgments

This work is supported in part by National Key R&D Program
of China under Grants 2016YFB1200601 and 2016YFB1200602

and in part by National Aerospace Science Foundation of China
under Grant 201501M5001. Authors would also like to appreciate
the anonymous reviewers and in particular, Deputy Editor-in-
Chief, Prof. WANG QG, for their valuable review comments and
suggestions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.



Please cite this article as: W. Zhang, N. Nan, Y. Yang et al., Force ripple compensation in a PMLSM position servo system using periodic adaptive learning control. ISA
Transactions (2019), https://doi.org/10.1016/j.isatra.2019.04.032.

W. Zhang, N. Nan, Y. Yang et al. / ISA Transactions xxx (xxxx) xxx 9

Fig. 9. Actual and estimated force ripple with MRAC–PALC and MRAC methods.

Fig. 10. Adaptation process of the force ripple parameters with MRAC–PALC controller.

Fig. 11. Experimental position tracking trajectories of the double axes from MRAC–PALC (C1), MRAC (C2) and PD controller (C3).

Fig. 12. Experimental position tracking errors from MRAC–PALC (C1), MRAC (C2) and PD controller (C3).
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Fig. 13. Experimental velocity tracking errors from MRAC–PALC (C1), MRAC (C2) and PD controller (C3).

Fig. 14. FFT of the position tracking errors from MRAC–PALC (C1), MRAC (C2) and PD controller (C3).

Fig. 15. FFT of the control efforts from MRAC–PALC (C1), MRAC (C2) and PD controller (C3).

Fig. 16. ITAE of MRAC–PALC (C1), MRAC (C2) and PD controller (C3).
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Appendix A. Proof of Theorem 4.1

In the 0th-iteration, choose a Lyapunov function candidate
V (t) as

V (t) =
1
2
me2 +

1
2k10

Ã2
r1 +

1
2k20

Ã2
r2, (20)

Taking the derivative of V with respect to time t yields

V̇ = meė +
1
k10

Ãr1
˙̃Ar1 +

1
k20

Ãr2
˙̃Ar2, (21)

Substituting (6), (11), (14), (15) and ev into (21), we have

V̇ = −cme2 + Ãr1[e cos(ωrx)+
1
k10

˙̃Ar1] + Ãr2[e sin(ωrx)+
1
k20

˙̃Ar2],

(22)

Inserting the adaptation laws (16) and (17) into (22), V̇ be-
comes

V̇ = −cme2 ≤ 0. (23)

Since c > 0 and m > 0, V̇ is negative-definite, and only
e =: ėx + λex = 0 makes V̇ = 0; the equilibrium at e = 0
is asymptotically stable. Then, both e → 0 and ex → 0 can be
achieved as t → ∞.

Further, it is reasonable to say that V is bounded. In the first
period (t ≤ Pt ), when e(0) = 0, ex(0) = 0 and |ẋ(t)| is bounded,
both e and ex are bounded in l2-norm.

The proof is completed. □

Appendix B. Proof of Theorem 4.2

From the 1st-iteration and onwards, choose a Lyapunov-like
function candidate as

V (t) =
1
2
[e(t)]2 +

1
2k1i

∫ t

t−Pt
Ã2
r1(τ )dτ +

1
2k2i

∫ t

t−Pt
Ã2
r2(τ )dτ , (24)

In order to satisfy Lyapunov stability theorem, the difference
of V between two discrete time points t (in the present ith-
iteration) and t−Pt (in the previous (i−1)th-iteration) is defined as

∆V (t) =V (t) − V (t − Pt )

=
1
2
[ev(t) + λex(t)]2 −

1
2
[ev(t − Pt ) + λex(t − Pt )]2+

1
2k1i

∫ t

t−Pt
[Ã2

r1(τ ) − Ã2
r1(τ − Pt )]dτ+

1
2k2i

∫ t

t−Pt
[Ã2

r2(τ ) − Ã2
r2(τ − Pt )]dτ

=

∫ t

t−Pt
e[ėv(τ ) + λėx(τ )]dτ+

1
2k1i

∫ t

t−Pt
[Ã2

r1(τ ) − Ã2
r1(τ − Pt )]dτ+

1
2k2i

∫ t

t−Pt
[Ã2

r2(τ ) − Ã2
r2(τ − Pt )]dτ .

(25)

To write the above equation more concisely, the terms on the
right-hand side in (25) are separated into following three parts

A(t) =

∫ t

t−Pt
e[ėv(τ ) + λėx]dτ , (26)

B(t) =
1

2k1i

∫ t

t−Pt
[Ã2

r1(τ ) − Ã2
r1(τ − Pt )]dτ , (27)

C(t) =
1

2k2i

∫ t

t−Pt
[Ã2

r2(τ ) − Ã2
r2(τ − Pt )]dτ , (28)

Then, (25) is rewritten as

∆V (t) = A(t) + B(t) + C(t). (29)

From (6) and (13), we have

ėv = v̇d −
1
m

[aẋ − Ar1cos(ωrx) − Ar2sin(ωrx) + u], (30)

Inserting (15) and (30) into (26) yields

A(t) =

∫ t

t−Pt
{−ce2 +

1
m

e[Ãr1cos(ωrx) + Ãr2sin(ωrx)]}dτ , (31)

B(t) is deduced as

B(t) =
1

2k1i

∫ t

t−Pt
[Ã2

r1(τ ) − Ã2
r1(τ − Pt )]dτ

=
1

2k1i

∫ t

t−Pt
{[Ar1(τ ) − Âr1(τ )]2−

[Ar1(τ − Pt ) − Âr1(τ − Pt )]2}dτ

=
1

2k1i

∫ t

t−Pt
[Âr1(τ − Pt ) − Âr1(τ )]

{2[Ar1(τ ) − Âr1(τ )] + [Âr1(τ ) − Âr1(τ − Pt )]}dτ ,

(32)

Letting β(t) = Âr1(t) − Âr1(t − Pt ), the above equation is
rewritten as

B(t) = −
1

2k1i

∫ t

t−Pt
β(τ ){2[Ar1(τ ) − Âr1(τ )] + β(τ )}dτ , (33)

Similarly, letting γ (t) = Âr2(t)− Âr2(t − Pt ), C(t) is deduced as

C(t) = −
1

2k2i

∫ t

t−Pt
γ (τ ){2[Ar2(τ ) − Âr2(τ )] + γ (τ )}dτ , (34)

With a substitution from (31), (33) and (34) and rearranging
the terms of ∆V (t), we obtain

∆V (t) =

∫ t

t−Pt
{−ce2 −

1
2k1i

β2(τ ) −
1

2k2i
γ 2(τ )}dτ

+

∫ t

t−Pt
{
e
m

[Ãr1cos(ωrx) + Ãr2sin(ωrx)]

−
Ãr1

k1i
β(τ ) −

Ãr2

k2i
γ (τ )}dτ ,

(35)

Inserting the PALC adaptation laws (18) and (19) into the
above equation, it follows that

∆V (t) =

∫ t

t−Pt
{−ce2 −

1
2k1i

β2(τ ) −
1

2k2i
γ 2(τ )}dτ

=

∫ t

t−Pt
{−[c +

k1icos2(ωrx) + k2isin2(ωrx)
2m2 ]e2}dτ

≤ − c
∫ t

t−Pt
e2dτ ,

(36)

Note that c is a positive design coefficient, and we have

∆V (t) ≤ 0. (37)

Since ∆V (t) = 0 if and only if e ≡ 0. According to Lyapunov
stability theorem, we can conclude that both Âr1 and Âr2 are
bounded with respect to time t . Thus, e is asymptotically stable
and converges to zero. Furthermore, position tracking error ex →

0 is achieved as i → ∞. This means that with the proposed
control law (15) and the PALC adaptation laws (18), (19), both
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the stability and tracking convergence of the servo system can be
guaranteed.

The proof is completed. □
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