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Abstract

The stability of the zero solution of a class of nonlinear Hadamard type fractional differen-

tial system is investigated by utilizing a new fractional comparison principle. The novelty of

this paper is based on some new fractional differential inequalities along the given nonlinear

Hadamard fractional differential system. A comparison principle employing the new fractional

differential inequality for scalar Hadamard fractional differential system is presented. Based on

the new comparison principle, some sufficient conditions for the (generalized) stability and the

(generalized) Mittag-Leffler stability are given.

Keywords: Stability; Hadamard fractional differential system; Fractional differential inequal-

ity; Fractional comparison principle.
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1 Introduction

In recent years, fractional calculus is a topic of growing interest based on the superiority of

integrals and derivatives of complex order and the ability to model certain physical systems in a
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more adequate and precise fashion than integer order alternative. There are many applications

in different fields such as electrical circuit, cosmology, control theory, biomedical engineering,

economics, etc. In terms of applied mathematics to study many problems from several diverse

disciplines of engineering and technical sciences, the fractional calculus is a powerful tool. For

details , we refer the reader to the works in [1]-[7]. While the most common ones are the Riemann-

Liouville and Caputo fractional operators, recently, there has been an increasing interest in

the development of Hadamard fractional operators. Details and properties of the Hadamard

fractional derivative and integral can be found in book [4] and papers [8]-[20].

Recently, fractional calculus in the control theory is widely seen. Fractional-order controller

is playing a very vital role in almost every field of control subject. Stability is one of the

important characteristics of the control problem. It is also an essential condition for any control

problem. The initial work about stability of fractional order systems can be dated back to

Matignon [21]. It has achieved great strides [22]-[29]. For its latest developments, readers of

interest could refer to [30]-[38]. So far, there are several approaches to the study of the stability

of fractional differential systems, one of which is the fractional comparison principle approach.

The main difficulty is to establish a fractional comparison principle. To overcome this difficulty,

we developed several fractional differential inequalities, which play a crucial role in this paper.

In this paper, the stability of the zero solution of nonlinear Caputo-type Hadamard fractional

system is investigated. We establish a Hadamard type fractional differential inequality. Com-

parison principle using this new fractional differential inequality and scalar Hadamard fractional

differential system is presented and sufficient conditions for the (generalized) stability and the

(generalized) Mittag-Leffler stability are obtained.

2 Preliminaries

First of all, we summarize some important definitions and related lemmas.

Definition 2.1 [4] The Hadamard fractional integral of order α for a function g is defined as

HIαg(t) =
1

Γ(α)

∫ t

1
(log

t

s
)α−1

g(s)

s
ds, α > 0,

provided the integral exists.

Definition 2.2 [4] The Hadamard fractional derivative of fractional order α for a function

g : [1,∞)→ R is defined as

HDαg(t) =
1

Γ(n− α)
(t
d

dt
)n
∫ t

1
(log

t

s
)n−α−1

g(s)

s
ds, n− 1 < α < n, n = [α] + 1,

where [α] denotes the integer part of the real number α and log(·) = loge(·).

Definition 2.3 [4] The Caputo-type Hadamard fractional derivative of fractional order α for a

function g : [1,∞)→ R is defined as

H
CD

αg(t) =
1

Γ(n− α)

∫ t

1
(log

t

s
)n−α−1(t

d

dt
)n
g(s)

s
ds, n− 1 < α < n, n = [α] + 1,

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where [α] denotes the integer part of the real number α and log(·) = loge(·).

Lemma 2.1 [4] If g is a function such that HCD
αg(t) and HDαg(t) exist, then

H
CD

α
t0g(t) =H Dα

t0g(t)−
n−1∑

k=0

(t ddt)
kg(t0)

Γ(k − α+ 1)
(log

t

to
)k−α,

and when 0 < [α] < 1, then

H
CD

α
t0g(t) =H Dα

t0g(t)− g(t0)

Γ(1− α)
(log

t

t0
)−α.

Definition 2.4 [4] The one and two parameter Mittag-Leffler functions are defined as

Eq1(t) =
∞∑

k=0

tk

Γ(q1k + 1)

Eq1,q2(t) =
∞∑

k=0

tk

Γ(q1k + q2)
.

Definition 2.5 Let x = 0 be the zero solution of H
CD

α
t0x(t) = f(t, s) with α ∈ (0, 1) and if

f ∈ C([1,+∞)× Rn,Rn). The zero solution x = 0 is said to be

B stable if for ∀ε > 0, there exists a δ(ε) > 0, such that ‖x(t0)‖ < δ(ε), implies ‖x(t)‖ ≤ ε for

t ≥ t0. The zero solution x = 0 is said to be unstable, if ∃ε0 > 0, ∀δ > 0, ∃x(t0), ‖x(t0)‖ < δ,

but ∃t1 ≥ t0 such that ‖x(t1)‖ ≥ ε.
B asymptotically stable if it is stable and lim

t→+∞
x(t) = 0.

Definition 2.6 (Mittag-Leffler Stability) The solution of HCD
α
t0x(t) = f(t, x) is said to be Mittag-

Leffler stable if

‖x(t)‖ ≤ {m[x(t0)]Eα(−λ(log
t

t0
)α)}j ,

where t0 is the initial time, α ∈ (0, 1), λ ≥ 0, j > 0, m(0) = 0, m(x) ≥ 0, and m(x) is locally

Lipschitz on x ∈ Rn
with Lipschitz constant m0.

Definition 2.7 (Generalized Mittag-Leffler Stability) The solution of HCD
α
t0x(t) = f(t, x) is said

to be Generalized Mittag-Leffler stable if

‖x(t)‖ ≤ {m[x(t0)](log
t

t0
)−ρEα,1−ρ(−λ(log

t

t0
)α)}j ,

where t0 is the initial time, α ∈ (0, 1),−α < ρ < 1−α, λ ≥ 0, j > 0, m(0) = 0, m(x) ≥ 0, and

m(x) is locally Lipschitz on x ∈ Rn
with Lipschitz constant m0.

Remark 2.1 Mittag-Leffler Stability and Generalized Mittag-Leffler Stability imply asymptotic

stability.

Definition 2.8 If a continuous function of ϕ : R+ → R+ is strictly increasing, and ϕ(1) = 0,

we call ϕ a K-class function, denoted by ϕ ∈ K. Here R+ = [0,∞).
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3 Stability of Caputo-type Hadamard fractional system

Consider the stability of the following Caputo-type Hadamard fractional differential system

H
CD

γ
t0
x(t) = f(t, x), (3.1)

with the initial condition x(t0) = x0, where t0 ≥ 1, 0 < γ < 1, f ∈ C([1,+∞)×D,Rn), f(t, 0) ≡
0, D ∈ Rn be a domain containing the origin.

First, the general Caputo-type Hadamard fractional comparison principle will be presented.

Here, we always assumes in the paper that there exists a unique continuously differentiable

solution x(t) to (3.1) with the initial condition x0.

Comparison results will be used for scalar fractional differential system of the type

H
CD

γ
t0
u(t) = y(t, u), (3.2)

with the initial condition

u(t0) = u0, (3.3)

where y ∈ C([t0,∞)× R,R) is Lipschitz in u, y(t, 0) ≡ 0.

Lemma 3.1 Let h : [t0, T ) → R be a locally Hölder continuous such that for any t1 ∈ [t0, T ),

we have h(t1) = 0 and h(t) ≤ 0 for t0 ≤ t ≤ t1. Then it follows that HDγ
t0
h(t1) ≥ 0, 0 < γ < 1.

Proof. We know that

HDγ
t0
h(t) =

1

Γ(1− γ)
(t
d

dt
)

∫ t

1
(log

t

s
)−γ

h(s)

s
ds, γ ∈ (0, 1),

Let H(t) =
∫ t
1 (log t

s)
−γ h(s)

s ds. Consider for a > 0,

H(t1)−H(t1 − a) =

∫ t1

1
(log

t1
s

)−γ
h(s)

s
ds−

∫ t1−a

1
(log

t1 − a
s

)−γ
h(s)

s
ds

=

∫ t1−a

1
[(log

t1
s

)−γ − (log
t1 − a
s

)−γ ]
h(s)

s
ds+

∫ t1

t1−a
(log

t1
s

)−γ
h(s)

s
ds

= I1 + I2.

Since (log t1
s )−γ − (log t1−a

s )−γ < 0 for 1 ≤ s ≤ t1 − a and h(s) ≤ 0, we have I1 ≥ 0. Hence,

H(t1)−H(t1 − a) ≥
∫ t1

t1−a
(log

t1
s

)−γ
h(s)

s
ds = I2.

Since h(t) is locally Hölder continuous and h(t1) = 0, there exists a constant K(t1) > 0, such

that, for t1 − a ≤ s ≤ t1 + a,

−K(t1)(t1 − s)λ ≤ h(s) ≤ K(t1)(t1 − s)λ

4
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where λ > 0 is such that λ− γ > 0 and 0 < λ < 1. Then we have

I2 ≥ −K(t1)

∫ t1

t1−a
(log

t1
s

)−γ(t1 − s)λ
ds

s
.

Applying the differential mean value theorem, we get

log t1 − log s =
1

ξ
(t1 − s), ξ ∈ (s, t1).

Then

I2 ≥ −K(t1)

∫ t1

t1−a
(log

t1
s

)−γ(t1 − s)λ
ds

s
≥ −ξγK(t1)

∫ t1

t1−a
(t1 − s)λ−γ

ds

s

≥ −ξ
γK(t1)

t1 − s

∫ t1

t1−a
(t1 − s)λ−γds =

−ξγK(t1)a
1+λ−γ

(t1 − a)(1 + λ− γ)
.

Hence

H(t1)−H(t1 − a) +
ξγK(t1)a

1+λ−γ

(t1 − a)(1 + λ− γ)
≥ 0,

for sufficiently small a > 0. Letting a→ 0, we obtain H
′
(t1) ≥ 0, which implies

HDγ
t0
h(t) =

1

Γ(1− γ)
H
′
(t1) ≥ 0.

The proof is completed. �

Lemma 3.2 Let h : [t0, T ) → R be a locally Hölder continuous such that for any t1 ∈ [t0, T ),

we have h(t1) = 0 and h(t) ≤ 0 for t0 ≤ t ≤ t1. Then it follows that HCD
γ
t0
h(t1) ≥ 0, 0 < γ < 1.

Proof. We know that

H
CD

γ
t0
h(t) = HDγ

t0
h(t)− h(a)

Γ(1− γ)
(log

t

t0
)−γ .

We shall employ the same method that used in the proof of Lemma 3.1. We have H
CD

γ
t0
h(t1) ≥ 0.

The proof is complete. �

Theorem 3.1 Assume the following conditions are satisfied:

(1) Let h : [t0, T ]× D→ R be a continuously differentiable function.

(2) The inequality
H
CD

γ
t0
h(t) ≤ y(t, h(t)), t ≥ t0, t0 ≥ 1, (3.4)

holds.

(3) Y (t) = Y (t, t0, u0) is the maximal solution of the initial value problem (3.2) and (3.3) existing

on [t0, T ].

Then we have

h(t) ≤ Y (t), t ∈ [t0, T ],

whenever u0 ≥ h(t0).

5
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Proof. Let ε > 0 be an arbitrary number and uε(t) be the solution of the following fractional

differential equation
H
CD

γ
t0
u(t) = y(t, u(t)) + ε, uε(t0) = u0 + ε,

Then h(t0) ≤ u0 < uε(t0) and H
CD

γ
t0
uε(t) > y(t, uε(t)).

Assume that inequality uε(t) ≥ h(t), t ∈ [t0, T ] is not true. Then there exist a point t∗ ∈ (t0, T )

such that

uε(t∗) = h(t∗), h(t) < uε(t), t ∈ [t0, t∗).

Let w(t) = h(t)− uε(t), t ∈ [t0, t∗], then we have

w(t∗) = 0, w(t) ≤ 0, t ∈ [t0, t∗].

Due to Lemma 3.2, we have H
CD

γ
t0
w(t∗) ≥ 0, which implies that

H
CD

γ
t0
h(t∗) ≥HC Dγ

t0
uε(t∗) = y(t∗, uε(t∗)) + ε.

So, we have H
CD

γ
t0
h(t∗) > y(t∗, uε(t∗)), which is a contradiction in view of (3.4). Therefore

uε(t) ≥ h(t), t ∈ [t0, T ]. On the other hand, it’s obvious lim
ε→0

nε(t) = Y (t), (t ∈ [t0, T ]). Then

we have

h(t) ≤ lim
ε→0

uε(t) = Y (t), t ∈ [t0, T ].

The proof is completed. �

Theorem 3.2 Assume:

(1) There exists a function V (t, x(t)) : [t0,∞)×D→ R+ be a continuously differentiable function

and locally Lipschitz respect to x such that V (t, 0) = 0.

(2) The inequality

H
CD

γ
t0
V (t, x(t)) ≤ y(t, V (t, x(t))), (t, x) ∈ [t0,∞)× D. (3.5)

holds.

(3) The maximal solution Y (t, t0, u0) of the IVP (3.2) and (3.3) exists on [t0,∞).

Then we have:

(i) If there exists ϕ ∈ K such that

V (t, x(t)) ≥ ϕ(‖x‖), (3.6)

then the stability of the zero solution of (3.2) implies the stability of the zero solution of (3.1);

the asymptotic stability of the zero solution of (3.2) implies the asymptotic stability of the zero

solution of (3.1);

(ii) If

V (t, x(t)) ≥ b‖x‖β, (3.7)

where b > 0, β > 0, then the generalized Mittag-Leffler stability of the zero solution of (3.2)

implies the generalized Mittag-Leffler stability of the zero solution of (3.1); the Mittag-Leffler

stability of the zero solution of (3.2) implies the Mittag-Leffler stability of the zero solution of

(3.1).

6
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Proof. (i) Since the zero solution of (3.2) is stable ,∀ε > 0 ∃δ1(ε), when 0 < u0 < δ1, we

obtain Y (t, t0, u0) < ϕ(ε). By the continuity of V (t, x) and V (t, 0) ≡ 0, for the above δ1(ε) > 0,

∃δ(ε) > 0 such that when ‖x(t0)‖ < δ(ε), it holds

0 < V (t0, x(t0)) < δ1(ε).

Let v(t) := V (t, x), v0 := v(t0) = V (t0, x(t0)). Consider the following comparison equation:

H
CD

γ
t0
u(t) = y(t, u(t)), u(t0) = u0 = v0.

By (3.6) and Theorem 3.1, we get

ϕ(‖x(t)‖) ≤ V (t, x(t)) ≤ Y (t, t0, u0) < ϕ(ε),

that is ‖x(t)‖ < ε. Thus, the zero solution of (3.1) is stable.

Then, choose σ > 0. when ‖u0‖ < σ. Similar to the above proof and Theorem 3.1, we have

ϕ(‖x(t)‖) ≤ V (t, x(t)) ≤ Y (t, t0, u0)→ 0, (3.8)

when t→∞, so the zero solution of (3.1) is asymptotically stable.

(ii) Taking u0 = v0 = V (t0, x(t0)) and applying Theorem 3.1 to (3.5), we have V (t, x(t)) ≤
Y (t, t0, u0) when t ≥ t0. Since the zero solution of (3.2) is generalized Mittag-Leffler stable and

by (3.7), we can get

‖x(t)‖ ≤
[Y (t, t0, u0)

b

] 1
β ≤ [

m(u0)

b
1
q

(log
t

t0
)−αEγ,1−α(−λ(log

t

t0
)γ)]

q
β

≤[
h0u0

b
1
q

(log
t

t0
)−αEγ,1−α(−λ(log

t

t0
)γ)]

q
β

≤[h1(x(t0))(log
t

t0
)−αEγ,1−α(−λ(log

t

t0
)γ)]

q
β

(3.9)

where h1(x(t0)) := h0u0

b
1
q

= h0

b
1
q
V (t0, x(t0)) ≥ 0, h(0) = 0, h(x) ≥ 0, and h(x) is locally Lipschitz

on x ∈ D with Lipschitz constant h0. Since V (t, x) is locally Lipschitz with respect to x and

V (t0, x(t0)) = 0 iff x(t0) = 0, it follows that h1(x(t0)) is Lipschitz with respect to x(t0) and

h1(0) = 0, which imply the generalized Mittag-Leffler stability of (3.1).

Since Mittag-Leffler stability of the zero solution of (3.2), then we guarantee that

‖x(t)‖ ≤
[Y (t, t0, u0)

b

] 1
β ≤ [

m(u0)

b
1
q

Eγ(−λ(log
t

t0
)γ)]

q
β

≤[
h0u0

b
1
q

Eγ(−λ(log
t

t0
)γ)]

q
β .

(3.10)

The following proof is similar to the above, so we omit it.

The proof is completed. �
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4 Example

Example 4.1 For the Caputo-type Hadamard fractional order system

H
CD

γ
t0
|x(t)| = −|x(t)|+ f(t, x), (4.1)

where γ ∈ (0, 1) and f(t, x) satisfies Lipschitz condition, f(t, 0) = 0 and f(t, x) ≤ 0. Let the

Lyapunov candidate be V (t, x) = |x|. Then

H
CD

γ
t0
V (t, x(t)) = −V (t, x(t)) + f(t, x) ≤ −V (t, x(t)).

The solution of the Caputo-type Hadamard fractional differential equation

H
CD

γ
t0
u(t) = −u, u(t0) = V (t0, x(t0)) = |x(t0)| (4.2)

is given by u(t) = u(t0)Eγ(−(log t
t0

)γ). Thus, the zero solution u = 0 of (4.2) is Mittag-Leffler

stable. By Theorem 3.2, the zero solution x = 0 of (4.1)is Mittag-Leffler stable.
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