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Abstract— This paper presents a Fractional-Order Zero
Phase Error Tracking Controller (FOZPETC) for the non-
minimum phase processes. The conventional Zero Phase Error
Tracking Controller (ZPETC) results in high bandwidth of the
system and improves the tracking performance of the overall
system. Meanwhile, the overall system may be quite sensitive
to the high frequency disturbance and noise. We apply the
fractional-order pole-zero cancellation techniques to the non-
minimum phase zeros and use the FOZPETC instead of ZPETC
to improve the disturbance rejection capacity. A numerical
example is provided to illustrate the proposed fractional-order
tracking zero phase controller design method.

I. INTRODUCTION
In tracking control systems, i.e., servo systems, the objec-

tive is to make the actual output track the reference input
with minimal error. Researchers have investigated many
methods to improve the tracking performance. Tomizuka [1]
proposed the perfect tracking control (PTC) method in 1987.
In the perfect tracking control system, in order to track the
trajectory exactly, the transfer function between the desired
output and the actual output should equal unity, which may
be achieved by a feedforward controller which acts as the
inverse of the closed-loop system. The poles of the closed-
loop system can be modified by pole placement method, and
all the poles should lie in the left half plane (LHP) of the
complex plane such that the closed-loop system is stable,
these poles can be canceled easily by inversion. However,
the feedforward controller cannot be used to cancel the non-
minimum phase zeros, since such a cancellation leads to
system instability [2].

The existence of the noncancellable zeros will gener-
ate phase error and gain error. To remove the drawbacks,
Tomizuka [1] proposed an effective method that is capa-
ble to eliminate the phase error introduced by the non-
minimum phase zeros. This strategy is called Zero Phase
Error Tracking Control (ZPETC). This tracking controller
reshapes the reference signal by cancelling all the poles
and cancelable zeros of the closed-loop transfer function,
meanwhile, it provides a chance for the system actual output
to track the desired output with zero phase error for all
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frequency points. In similarity, Yeh and Hsu [3], Mustafa
[4] used ZPETC without factorization of zeros and injected
a gain compensation filter. Adnan et al. [5] designed the gain
compensation filter using comparing coefficients method and
studied the effect of zero locations to tracking performance.
Liu et al. [6] applied the ZPETC methodology to fractional-
order systems, and validate the effectiveness of the proposed
method in hardware-in-the-loop thermal peltier platform.

The ZPETC strategy has broad applications in motion
control. It also plays a significant role in process control,
for example, when the reference signal of the temperature
control system is pre-established by the operator, this preview
input information can be utilized by ZPETC to improve
the tracking performance. The ZPETC results in a high
bandwidth by removing the poles and cancelable zeros, hence
improves the tracking performance. However, at the same
time, the system robustness is undesirable and the system is
sensitive to the internal and external noises.

Fractional-order calculus has attracted increasing attention
in human operator behavior analysis [7], [8], energy infor-
matics [9], control domain [10], [11], [12], especially the
research of fractional order PID controllers [13], [14], [15].
In [16], Li et al. proposed a new systematic design method
for fractional-order proportional and derivative (FOPD) con-
troller, which ensures the phase Bode plot to be flat around
the given gain crossover frequency, which ensures the system
robustness. Merrikh-Bayat [17] proposed a new feedback
control strategy for non-minimum phase processes using the
fractional-order unstable pole-zero cancellation method. The
non-minimum phase zeros put limitations both in time do-
main performance and frequency domain performance, such
as the undershoot and restricted stability margins [18]. This
method partially cancelled the non-minimum phase zeros
without leading to internal instability. The author showed that
this fractional-order cancelation of the non-minimum zeros
considerably increases the phase margin and gain margin of
the system.

In order to improve the disturbance rejection capacity of
the ZPETC based control systems, the fractional-order pole-
zero cancellation technique is firstly implemented to partially
cancel the non-minimum phase zeros, and then the tracking
controller is modified to track the reference input without
phase error.

In this paper, we are trying to mitigate the ZPETC system
sensitivity to noise and increase the system disturbance
rejection capacity. We apply the fractional pole-zero can-
cellation methodology to the non-minimum phase system
and design a Fractional-order Zero Phase Error Tracking

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5428-6/$31.00 ©2018 AACC 1256



Controller (FOZPETC) to track the reference without phase
error. The rest of this paper is organized as follows: section II
introduces the concept of the ZPETC. The fractional-order
pole-zero cancellation methodology is presented in section
III. Section IV presents the idea of continuous fractional-
order Zero phase error tracking control. A numerical example
is illustrated in section V. Conclusions are given in section
VI.

II. CONCEPT OF CONTINUOUS TIME ZERO PHASE
ERROR TRACKING CONTROLLER

The feedback control method is widely used for its sim-
plicity and disturbance rejection capability, however, one ob-
vious drawback of the negative feedback control is the phase
lag. To achieve superior tracking performance, the feedfor-
ward control methodology is always operated combined with
feedback techniques. Assuming that the feedback controller
has already been designed for the plant, the transfer function
of the closed-loop system is expressed as

G(s) =
B(s)

A(s)
. (1)

The relationship between the reference input signal R(s) and
system output signal Y (s) is yield as:

Y (s) = G(s)R(s). (2)

Consider a feedforward controller which reshapes the refer-
ence input in the following form:

R(s) = F (s)Yd(s), (3)

where Yd(s) is the desired output, F (s) is the feedforward
controller. The objective is to ensure that the system output
Y (s) equals the desired output Yd(s), which means that
the tracking controller provides perfect tracking without any
error and distortion as long as all the initial conditions are
zero. It can be easily seen that, the tracking controller should
be the inverse of the closed-loop transfer function:

F (s) =
A(s)

B(s)
. (4)

This is called Perfect Tracking Control (PTC) [1]. It should
be noted that this controller can only be implemented when
B(s) does not contain any non-minimum phase zero. The-
oretically, these non-minimum phase zeros can be canceled
by the poles of the controller. However in real processes, the
external environment disturbance and the internal parameters
perturbation can lead to the zero drift, subsequently the RHP
(Right Half Plane) poles of the tracking controller will lead
to the internal instability [2]. If any zero lies in RHP or
on the imaginary axis, even lies in the LHP but close to
the imaginary axis, the output of the system will explode
or oscillate [1]. Let us consider the closed-loop system in
equation (4), and factorize the numerator B(s) into two parts:

B(s) = Ba(s)Bu(s), (5)

where Ba(s) includes all the zeros of system which are ac-
ceptable poles of the tracking controller, and Bu(s) contains

all the unacceptable zeros, as well as the time delay, as the
poles of the tracking controller F (s). It should be noted that
Bu(s) may include zeros lying in the stability region but
very close to stability boundary.

The tracking controller which can cancel all the cancelable
zeros and poles can be achieved as:

F (s) =
A(s)

Ba(s)Bu(0)
, (6)

where Bu(0) is used to scale the steady state gain of the
overall system transfer function to unity. Thus for zero initial
state, the overall system output is obtained as

Y (s) =
Bu(s)

Bu(0)
Yd(s). (7)

It is noted that the existence of the non-cancelable zeros
in equation (7) create amplitude distortion and phase shift
between actual output and desired output, the tracking per-
formance is not perfect. It is necessary to find a way to
compensate the drawbacks, such as the phase error.

Suppose Bu(s) has n non-minimum phase zeros at s =
bk(k = 1, 2, · · · , n), and consider the tracking controller
behaviour in frequency domain by s = jw:

Bu(jw) = (jw − b1)(jw − b2) · · · (jw − bn). (8)

In order to make the tracking controller generate zero phase
shift, which means that the frequency domain performance
of the F (s) should be a real number without imaginary part,
we consider:

Bu(−jw) = (−jw − b1)(−jw − b2) · · · (−jw − bn). (9)

The following property is obtained as:

Bu(jw)Bu(−jw)
= (jw − b1)(−jw − b1) · · · (jw − bn)(−jw − bn)
= (w2 − b21) · · · (w2 − b2n).

(10)

By multiplying Bu(jw), the polynomial becomes a real
number, which means no phase shift will be introduced as
in (10), and in low frequency region, the frequency response
gain is close to 1. Thus, after applying another scaling factor
Bu(0), we can obtain the transfer function of the tracking
controller as follows:

F (s) =
A(s)Bu(−s)
Ba(s)B2

u(0)
, (11)

and the transfer function from Yd(s) to Y (s) is

Goverall(s) =
Bu(s)Bu(−s)

B2
u(0)

. (12)

By using the feedforward controller (11), the overall transfer
function becomes a real number, and the phase shift between
Y (s) and Yd(s) becomes zero for all frequencies, ((11)) is
called the Zero Phase Error tracking Controller (ZPETC).
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III. CONCEPT OF FRACTIONAL ORDER POLE-ZERO
CANCELATION

Let us first study the frequency domain behavior of the
fractional-order transfer function [17]

P (s) = 1− (
s

z
)α, (13)

where 0 < α < 1, z is a positive real constant. Replace s
with jw. The frequency response of (13) is:

P (jw)

= 1− (
w

z
)α cos(

πα

2
)− j(w

z
)α sin(

πα

2
).

(14)

Figure 1 is the Bode plot of P (s) for z = 1, α =
0.1, 0.2, · · · , 1. It is observed that the magnitude of P (jw)
increases and the phase gets deceased as α increases. When
0 < α < 1, the magnitude of P (jw) becomes smaller than
the value when α = 1.
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Fig. 1: Bode plot of 1− ( sz )
α

It is known that the non-minimum phase zeros put limita-
tions on the robust stability of the feedback system for two
main reasons: First, the non-minimum phase zero increases
the Bode magnitude plot of the open loop transfer function,
which leads to a higher crossover frequency. Secondly, the
injection of negative phase of the non-minimum phase zero
pushes the Bode phase plot downward. These two reasons
together decrease the phase margin and gain margin of the
open-loop transfer function.

For fractional order zero in form of equation (13), it gener-
ates magnitude smaller than the open-loop transfer function,
which pushes the crossover frequency lower than the integer
order zeros. Meanwhile, the lower phase of the fractional
order zero pushes the Bode phase plot downward, which
may decrease the phase margin. Thus, fractional order zeros
bring both positive effect (lower crossover frequency) and
bad effect (lower phase) to the system, offering potentially
helpful tradeoff.

Now we introduce the fractional-order pole-zero cancela-
tion, which transforms the integer order zeros to fractional-
order zeros. Consider a linear time-invariant (LTI) system
with transfer function G(s) with a non-minimum phase zero

at s = z, where z is a positive real number. Such a transfer
function can be decomposed as

G(s) = (1− s

z
)G0(s), (15)

where G0(s) includes all the minimum phase zeros and poles
of the system transfer function. The term 1 − s

z can be
expanded using fractional power of s as follows:

1− s

z
= [1− (

s

z
)1/n]

n∑
k=1

(
s

z
)(k−1)/n, (16)

where n can be considered as any positive integer. Defining

Qz,n(s) ,
n∑
k=1

(
s

z
)(k−1)/n, (17)

and multiplying 1/Qz,n(s) to both sides of (15) yield

Gf (s) = [1− (
s

z
)1/n]G0(s). (18)

Gf (s) and G(s) have the same poles and zeros and steady-
state gains, except that Gf (s) has a lower order non-
minimum phase zero at s = z.

The above operation can be described with the control
diagram in Fig. 2, where C(s) is the controller, G(s)
is the process, 1/Qz,n(s) is the fractional-order pole-zero
canceller.

—

Fig. 2: Control structure of fractional-order cancellation for
non-minimum phase processes

When the above control structure is used, it is necessary
to discuss the stability of the overall system. Suppose G(s)
is stable. The internal stability of the fractional-order zero
canceller 1/Qz,n(s) dominates the overall system stability.
It is clearly known that the integer order zero canceller will
lead to instability due to the unstable pole at s = z. Applying
the fractional pole-zero cancelation by injecting 1/Qz,n(s),
will not lead to internal instability, which will be explained
in the following [17]. Instead of the pole at s = z, the
canceller 1/Qz,n(s) has poles at the roots of Qz,n(s) = 0.
It is important to point out that the stability of a fractional
system cannot be examined simply by investigating the poles
in the RHP of the complex s plane. It is noted in [19], [20]
that such a fractional transfer function is stable if all roots
of Q̃z,n(w), defined as

Q̃z,n(w) = Qz,n(s)|s1/n=w, (19)

lie in the angular sector defined by | arg(jw)| > π/2n in w-
plane, or equivalently, Qz,n(s) = 0 does not have any root
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in the closed RHP of the first Riemann sheet [21]. Actually,
1/Qz,n(s) has n− 1 poles distributed on a Riemann surface
with n Riemann sheets, where the origin is a branch point of
order n − 1 [22]. More precisely, the kth pole is expressed
as sk = zej2kπ for k = 1, 2, · · · , n − 1, it does not have
any pole in the right half plane of the first Riemann sheet.
Thus, the zero canceller suggested here does not change the
internal stability of the feedback system.

IV. CONCEPT OF CONTINUOUS FRACTIONAL-ORDER
ZERO PHASE ERROR TRACKING CONTROLLER

In section II, we have introduced the concept of continuous
Zero Phase Error Tracking Controller in form (11). It is
mentioned in the previous section that the non-minimum
phase zero will increase the gain crossover frequency and
push the Bode phase plot downward, which leads to a lower
phase margin. By applying the additional part Bu(−s), the
magnitude of the transfer function will get increased by the
corresponding minimum phase zeros at sj = −zj , (j =
1, 2, · · · , q). For the above reasons, the crossover frequency
of the overall system is pretty high after ZPETC compen-
sated, as well as the system magnitude. The compensated
system may have bad robust stability to high frequency
disturbance and noise.

In order to improve the disturbance rejection capacity
of the ZPETC compensated system, first, we apply the
fractional-order pole-zero cancelation technique to the non-
minimum phase zeros of the already designed closed loop
system.

Considering the closed-loop system (1) which was first
compensated with the poles and minimum phase zeros can-
celation:

H(s) =
Bu(s)

Bu(0)
. (20)

Assuming H(s) has q non-minimum phase zeros at si =
zi, (i = 1, 2, ..., q), we apply the fractional order pole-zero
canceler to each non-minimum phase zero zi by multiplying
1/Qzi,ni(s), where

Qzi,ni =

ni∑
k=1

(
s

zi
)(k−1)/ni , (21)

the overall transfer function is yielded as

H̃(s) =
B̃u(s)

Bu(0)

=
(1− ( sz1 )

1
n1 (1− ( sz2 )

1/n2) · · · (1− ( szq )
1/nq )

Bu(0)
.

Similar to the conventional ZPETC, this feedforward con-
troller generates tracking error between the desired input
and system output. In the following, we will try to remove
the phase shift of this feedforward controller. Let us still
consider this problem in frequency domain, according to

Euler’s function, it is obtained:

1− ( jwzi )
1
ni = 1− (wzi )

1
ni e

j(π2
1
ni

)

= 1− (wzi )
1
ni (cos( π

2ni
) + j sin( π

2ni
))

= M(w)− jN(w),
(22)

1− (−jwzi )
1
ni = 1− (wzi )

1
ni e

j(−π
2

1
ni

)

= 1− (wzi )
1
ni (cos( π

2ni
)− j sin( π

2ni
))

= M(w) + jN(w).
(23)

Based on the above equations, it is obtained:

(1− (
jw

zi
)

1
ni )(1− (

−jw
zi

)
1
ni )

= [M(w)− jN(w)][M(w) + jN(w)]

=M(w)2 +N(w)2.

(24)

By utilizing the above property, we apply B̃u(−s) in H(s),
as well as the DC gain scaler, the transfer function of the
overall system is obtained as:

H̃(s) =
B̃u(s)B̃u(−s)

B2
u(0)

, (25)

where

Bu(−s) = (1− (− s

z1
)1/n1)

q∏
i=2

(1− (− s
zi
)
1/ni

). (26)

It is easily concluded that equation (25) gives a real number,
which means the fractional-order tracking controller does
not generate phase error between the desired output and the
system output. The relationship between the desired output
and the system output can be expressed as

Y (s) =
B̃u(s)B̃u(−s)

B2
u(0)

Yd(s), (27)

and the fractional order tracking controller is

F̃ (s) =
A(s)B̃u(−s)

Qz,n(s)Ba(s)B2
u(0)

, (28)

where

Qz,n(s) = Qz1,n1
(s)Qz2,n2

(s) · · ·Qzq,nq (s), (29)

the control structure of FOZPETC is depicted in Fig. 3.

FOZPETC Closed loop system

Fig. 3: Control structure of fractional-order cancellation for
non-minimum phase processes

It is shown in Fig. 3 that, the non-minimum phase zero
is partially cancelled by the Qz,n(s), and the remaining
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fractional-order zero B̃u(s) has lower magnitude. By multi-
plying the factor B̃u(−s), the phase shift equals zero, and
from equations (22) and (23) it can be easily verified that∣∣∣∣(1− (

jw

zi
)1/ni)(1− (−jw

zi
)1/ni)

∣∣∣∣
= 1 + (

w

zi
)

2
ni − 2(

w

zi
)

1
ni cos(

π

2ni
).

(30)

Comparing to the magnitude of (1 − ( jwzi ))(1 − (−jwzi )),
which equals 1 + (wzi )

2, we can see that the magnitude
of the fractional-order ZPETC compensated system transfer
function is smaller than the integer-order case.

V. ILLUSTRATIVE EXAMPLES

In this section, we present a numerical example to show
that the FOZPETC method can improve the system distur-
bance rejection capacity effectively comparing with ZPETC
strategy. Suppose that the closed-loop system transfer func-
tion is:

G(s) =
(1− s/10)

(1 + s/8)(1 + s/4)
. (31)

Notice that the closed-loop transfer function (31) has one
non-minimum phase zero at s = 10, according to equation
(11), the conventional ZPETC should be:

F (s) = (1 + s/8)(1 + s/4)(1 + s/10), (32)

the overall system transfer function between the desired
output and real output is

H(s) = (1 + s/10)(1− s/10), (33)

and the Bode plot of the transfer function (33) is depicted
in Fig. 4.

By applying the fractional-order pole-zero cancellation
strategy, as it is pointed out in [17], in many cases using
small values such as n = 2 or n = 3 leads to satisfactory
results, the order we choose here is n = 2:

1

Q1,2(s)
=

1

(s/10)1/2 + 1
, (34)

according to equation (28), the fractional-order tracking
controller is:

F̃ (s) =
(1 + s/10)(1 + s/4)(1− (−s/10)1/2)

(1 + (s/10)1/2)
, (35)

the transfer function between the desired output and the real
output is:

H̃(s) = (1− (s/10)1/2)(1− (−s/10)1/2), (36)

the Bode plot of equation (36) is depicted in Fig. 4.
We can see that all the Bode phase plots of the ZPETC

and FOZPETC are zero, and the Bode magnitude plots of
the FOZPETC are much lower than the conventional ZPETC.
As we mentioned above, the Bode magnitude plot of ZPETC
equals 1+(w/10)2, which is a monotonic-increasing function
with respect to w. In Fig. 4, the Bode magnitude plot of
ZPETC system equals 3dB when frequency is 6.4229rad/s,
which means that the ZPETC system double amplifies
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Fig. 4: Bode plot of the ZPETC and FOZPETC based
systems

the power of input signals at the certain frequency. Thus
when the environmental noise with a frequency higher than
6.4229rad/s, the system will amplify this signal obviously,
which may bring suicidally damage to the system. From
Eq. (30), the magnitude of FOZPETC is not a monotonic-
increasing function with respect to w, it reaches the minimum
value at

wmin = z(cos
π

2n
)n, (37)

and the minimum value is∣∣∣H̃(jw)
∣∣∣
w=wmin

= sin
π

2n
, (38)

which means the minimum magnitude of the FOZPETC
system decreases as n increases. From Fig. 4, we can see
that the Bode magnitude plot of FOZPETC decreases below
0 dB, and gets increased afterwards, and the magnitude of
the system with n = 3 is lower than the magnitude of the
system with n = 2. We can get a intuitively conclusion
that the FOZPETC strategy will attenuate the system noise
with frequency around wmin. It is easily obtained that the
magnitude of FOZPETC system (n = 2) equals 3dB at
27.6349rad/s, while which is 73.4931rad/s for FOZPETC
system (n = 3). when n = 4, the magnitude reaches 3dB at
176.2952rad/s. Thus, the FOZPETC technique will improve
the system’s ability of noise rejection super significantly.

Figure 5 is the time response for the above four systems,
the desired output is yd(t) = sin(0.5t), which can be seen
as the noise input. From Fig. 5, the phase shift between the
desired output and the system output for these four systems
are zero, and the magnitude of ZPETC system output is
bigger than 1, which means that the ZPETC system will
amplify the noise and then the system may be possibly
damaged or even broken down. While the magnitude of
the FOZPETC system output is smaller than 1, especially
for n = 3 and n = 4, which means that the FOZPETC
system will attenuate the noise. From above analysis, we can
get a conclusion that the FOZPETC technique will improve
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Fig. 5: Time response of the overall system

the system’s capacity of disturbance and noise rejection,
especially when n increases. As is known that the tradeoff
between noise rejection and time response performance is an
important issue in the controller design. It is noticed from
Fig. 5, the tracking performance for FOZPETC gets inferior
when the n increases, which is the reasonable consequence
for the lower bandwidth. In practice systems, the order of
the proposed FOZPETC controller should be determined
according to the design requirements. If the noise rejection is
a quite significant consideration, high order of the FOZPETC
controller can be chosen, while lower order should be im-
plemented when both of the tracking performance and noise
rejection capacity are taken into consideration.

VI. CONCLUSIONS

This paper provides a tradeoff possibility to improve the
disturbance rejection capability for the ZPETC compensated
system by the Fractional Order Zero Phase Error Track-
ing Controller. The conventional ZPETC structure exactly
improves the tracking performance of the original closed-
loop system, but the unsatisfactory disturbance rejection will
lead to aggressive system behaviours, and make the system
quite sensitive to the environmental disturbance and noise.
The fractional-order pole-zero cancellation technique can de-
crease both magnitude and phase of the system prominently
and we apply this technique to the ZPETC structure for
non-minimum phase processes, and the additional fractional
compensator makes the phase shift of the overall transfer
function remain zero. This proposed FOZPETC improves
the system disturbance rejection capacity significantly. But
one of the drawbacks of this method is that the order of
fractional-order pole-zero canceller cannot vary continuous-
ly, and the FOZPETC will result in the deterioration to the
system tracking performance. This will be our future work
to investigate the continuous varying order of fractional-
order pole-zero canceller so as to improve the disturbance
rejection capacity without any undesirable loss of tracking
performance.
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