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HHH∞ Output Feedback Control of
Linear Time-invariant Fractional-order
Systems over Finite Frequency Range

Cuihong Wang, Huanhuan Li, and YangQuan Chen, Senior Member, IEEE

Abstract—This paper focuses on the HHH∞∞∞ output feedback
control problem of linear time-invariant fractional-order systems
over finite frequency range. Based on the generalized Kalman-
Yakubovic-Popov (KYP) Lemma and a key projection lemma, a
necessary and sufficient condition is established to ensure the exis-
tence of the HHH∞∞∞ output feedback controller over finite frequency
range, a desirable property in control engineering practice. By
using the matrix congruence transformation, the feedback control
gain matrix is decoupled and further parameterized by a scalar
matrix. Two iterative linear matrix inequality algorithms are
developed to solve this problem. Finally, numerical examples are
provided to illustrate the effectiveness of the proposed method.

Index Terms—Fractional-order system, Kalman-Yakubovic-
Popov (KYP) Lemma, finite frequency range, HHH∞∞∞ control.

I. INTRODUCTION

FRACTIONAL-ORDER dynamic system has received a
growing interest due to the fact that many real-world

physical systems can be well characterized by fractional-
order state equations and modeling various physical phe-
nomena involves less parameters than traditional integer-order
system[1]. Many useful analysis and synthesis results about
fractional-order systems have emerged, such as stability[2−4]

and Mittag-Leffler stability analysis[5], robust stability[6−7],
H∞ performance analysis[8], H∞ feedback control[9−11], and
so on.

On the other hand, the Kalman-Yakubovich-Popov (KYP)
Lemma has been proved to be a very strong tool to convert
frequency domain inequalities (FDIs) to linear matrix inequal-
ities (LMIs)[12]. Many control methods have been developed
with the help of KYP Lemma[13−15]. However, KYP Lemma
just only characterizes FDIs in entire frequency range and
does not deal with the multiple FDIs in finite range. The
generalized Kalman-Yakubovich-Popov (GKYP) Lemma pro-
vided in [16] extends the standard KYP Lemma to present the
LMI characterization of FDIs in finite frequency range. It has
been shown that the GKYP Lemma is profitable for system
dissipative analysis and control synthesis problems which can
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be exactly converted to semidefinite programming or convex
optimization problems. Based on GKYP Lemma, H∞ model
reduction[17] and static output feedback control[18] problem
for integer-order systems have been investigated over finite
frequency. Furthermore, the H∞ performance analysis and
H∞ control synthesis for fractional-order systems have been
also considered in [8−10]. But these results are presented over
the entire frequency range. It is worth noting that the H∞
synthesis problems over a finite frequency range is essentially
different from the entire frequency range case this is because
even the state feedback control problem cannot be completely
solved via convex optimization[17].

In this paper, we will investigate the problem of H∞ static
output feedback (SOF) controller synthesis for linear time-
invariant fractional-order systems subject to finite frequency
range. Based on the GKYP Lemma and a key projection
lemma, necessary and sufficient condition is firstly established
for the existence of a SOF controller that ensures the frac-
tional order system is asymptotically stable and satisfies the
prescribed H∞ performance index over a finite frequency
range. Then, by using matrix congruence transformation, the
feedback gain matrix is decoupled from matrix variables and
parameterized by a scalar matrix. Moreover, two iterative algo-
rithms are developed to solve this problem. Finally, numerical
examples are given to demonstrate the effectiveness of our
proposed method.

Notations. For a matrix M , its transpose and complex
conjugate transpose are denoted by MT, M∗, respectively. The
symbol Hn stands for the set of n × n Hermitian matrices.
For a matrix M ∈ Hn, inequalities M > 0 (≥ 0) and M
< 0 (≤ 0) denote positive (semi) definiteness and negative
(semi) definiteness, respectively. For matrices Φ and P , Φ⊗P
means the Kronecker product. All the matrices are assumed
to be of compatible dimensions and ∗ is used to denote the
Hermitian part. For any matrix M ∈ Cn×n, Her(X) = X +
X∗. Re(M) represents the real parts of the complex matrix
M . For G ∈ Cn×m and Π ∈ Hn+m, a function σ : Cn×m ×
Hn+m → Hm is defined by

σ(G, Π) :=
[

G
Im

]∗
Π

[
G
Im

]
.

j denotes the imaginary unit.

II. PRELIMINARIES

In this paper, taking the physical meaning into considera-
tion, the Caputo fractional-order derivative is used and defined
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as follows:

Dαf(t) =
dαf(t)

dtα
=

1
Γ(m− α)

∫ t

0

f (m)(τ)
(t− τ)α+1−m

dτ,

where f(t) is a time-dependent function, α represents the order
of the derivative (m− 1 ≤ α < m, m is an integer).

Consider the following linear time-invariant fractional-order
system admitting a pseudo state space representation of the
form 




Dαx(t) = Ax(t) + B1u(t) + Bw(t),

z(t) = Cx(t) + Dw(t),

y(t) = Cyx(t),

(1)

where α is the fractional order and α ∈ (0, 2). x(t) ∈ Rn

is system state, u(t) ∈ Rm is control input, w(t) ∈ Rq is
disturbance input, z(t) ∈ Rs is control output, y(t) ∈ Rl is
measured output. A ∈ Rn×n, B1 ∈ Rn×m, B ∈ Rn×q, C ∈
Rs×n, Cy ∈ Rl×n, and D ∈ Rs×q are known matrices.

In general, the frequency ranges can be visualized as the
following set of complex numbers that represents certain
curves on the complex plane:

Λ(Φ,Ψ) := {λ ∈ C|σ(λ, Φ) = 0, σ(λ, Ψ) ≥ 0}, (2)

where Φ, Ψ ∈ H2.
Define Λ̄(Φ,Ψ) = Λ(Φ,Ψ) ∪ {∞} if Λ is bounded,

otherwise Λ̄(Φ,Ψ) = Λ(Φ,Ψ).
By choosing appropriate Φ and Ψ in (2), the set Λ(Φ,Ψ)

can be specified to define a certain range of the frequency
curve. For fractional-order system, we can choose

Φ =
[

0 r
∗ 0

]

to represent the curve Λ = {(jω)α|ω ∈ Ω}, where r = ejθ,
θ = (α − 1)π/2, Ω is a subset of real numbers specified by
appropriate choice of Ψ, Table I shows an example.

TABLE I
CHOICE OF Ψ FOR DIFFERENT FREQUENCY RANGES

HF MF LF

Ω ω ≥ ωh ωl ≤ ω ≤ ωh ω ≤ ωl

Ψ

[
1 0

∗ −ω2α
h

] [
−1 jrωc

∗ −ωα
l ωα

h

] [
−1 0

∗ ω2α
l

]

In Table I, ωc := (ωα
l + ωα

h )/2, ωh ≥ 0, ωl ≥ 0, and HF,
MF and LF denote high, middle and low frequency ranges,
respectively.

In this paper, we focus on the static output feedback
controller in the following form:

u(t) = Ky(t), (3)

then, we have the following closed-loop system
{

Dαx(t) = Âx(t) + Bω(t),

z(t) = Cx(t) + Dω(t),
(4)

where Â = A + B1KCy .

Therefore, the finite frequency H∞ static output feedback
control problem can be formulated as follows.

Problem FF-HHH∞∞∞-SOFC (Finite frequency HHH∞∞∞ static
output feedback control). For a pre-specified frequency range
Λ(Φ,Ψ) and a given performance index γ > 0, The problem
of the H∞ static output feedback control over frequency range
Λ(Φ,Ψ) is to find a static output feedback controller (2) such
that:

1) The closed-loop system (3) is asymptotically stable.
2) The transfer function G(s) of closed-loop sys-

tem (3) satisfies the finite frequency H∞ performance
supω∈Λ(Φ,Ψ)σ̄(G(jω)) < γ, where G(s) = C(sαI−Â)−1B+
D, σ̄ denotes the maximum singular value of a matrix.

The following lemma is very useful in the proofs of the
main results of this paper.

Lemma 1[11]. Let A ∈ Rn×n, the linear time-invariant
system Dαx(t) = Ax(t) with α ∈ (0, 1) is asymptotically
stable if and only if there exists Hermitian matrix H > 0 such
that (Re(rH))TAT + A(Re(rH)) < 0.

Lemma 2[11]. Let A ∈ Rn×n, the linear time-invariant
system Dαx(t) = Ax(t) with α ∈ (1, 2) is asymptotically
stable if and only if there exists Hermitian matrix H > 0 such
that rHAT + r̄AH < 0.

Lemma 3 (GKYP Lemma)[16, 19]. Given real matrices A,
B, C, D, a real symmetric matrix Π, and Φ, Ψ, ∈ H2,
let G(λ) = C(λI − A)−1B + D. Then the frequency range
inequality

[
G(λ)

I

]∗
Π

[
G(λ)

I

]
< 0

holds for all λ ∈ Λ̄(Φ,Ψ) if and only if there exist Hermitian
matrices P and Q > 0 such that

[
A I
C 0

]
(Φ⊗ P + Ψ⊗Q)

[
A I
C 0

]T

+
[

B 0
D I

]
Π

[
B 0
D I

]T

< 0.

Remark 1. Let

Π =
[

I 0
0 γ2I

]

or
Π =

[
0 −I
−I 0

]
,

the characterization of Lemma 3 turns into the bounded real
lemma and positive real lemma.

Lemma 4 (Projection Lemma)[20]. Given a symmetric
matrix Ξ ∈ Rm×m and two matrices P , Q of column
dimension m, consider the problem of finding some matrix
Θ of compatible dimensions such that

Ξ + PTΘTQ + QTΘP < 0. (5)

Denote by ℵP , ℵQ any matrices whose columns form basis of
the null space of P and Q, respectively. Then (5) is solvable
for Θ if and only if

{
ℵT

P ΞℵP < 0,

ℵT
QΞℵQ < 0.
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III. MAIN RESULTS

In this section, we will firstly investigate the H∞ static
output feedback control for fractional-order systems over
middle frequency ranges. Based on the GKYP Lemma and
the projection lemma, we will give the necessary and sufficient
condition that the problem of FF-H∞-SOFC is solvable.

Theorem 1. Given performance index γ > 0, fractional
order α ∈ (0, 1), system matrices A,B1, B, C, D, Cy , a
feedback gain K and finite frequency range ΛMF = {ω ∈ R :
ωl ≤ ω ≤ ωh, ωl, ωh ≥ 0}. Problem FF-H∞-SOFC is solvable
if and only if there exist Hermitian matrices H > 0, Q > 0, P ,
and real matrix E = [E1, E2] such that the following matrix
inequalities hold:

Ξ = Her(Â(Re(rH))) < 0, (6)

and

Σ =




−Q Σ12 −E2 0
∗ Σ22 Σ23 B
∗ ∗ Σ33 D
∗ ∗ ∗ −I


 < 0, (7)

where r = ejθ, θ = (α− 1)π/2, Â = A + B1KCy, and

Σ12 =rP + jrωcQ− E1,

Σ22 =− ωα
l ωα

hQ + Her(ÂE1),

Σ23 =ÂE2 + ET
1 CT,

Σ33 =− γ2I + Her(CE2).

Proof. (Necessity). It follows from Lemma 1 and Lemma
3 that the problem of FF-H∞-SOFC is solvable if and only
if there exist Hermitian matrices H > 0, Q > 0 and P such
that the following matrix inequalities hold. That is,

Ξ = Her(Â(Re(rH))) < 0,

and
[

Â I
C 0

] [ −Q rP + jrωcQ
r̄P − jωcQ −ωα

l ωα
hQ

] [
Â I
C 0

]T

+
[

B 0
D I

] [
I 0
0 −γ2I

] [
B 0
D I

]T

=
[

Â I 0
C 0 I

]
Θ

[
Â I 0
C 0 I

]T

< 0,

where

Θ =



−Q rP + jrωcQ 0
∗ −ωα

l ωα
hQ + BBT BDT

∗ ∗ DDT − γ2I


 .

Note that
[

I 0 0
]
Θ

[
I 0 0

]T = −Q < 0,

and denote that

Γ =
[
−I ÂT CT

]
, Λ =

[
0 I 0
0 0 I

]
,

then, we can obtain

ℵΓ =




ÂT C
I 0
0 I


 , ℵΛ =

[
I 0 0

]T
,

and

ℵT
ΓΘℵΓ < 0, ℵT

ΛΘℵΛ < 0.

It follows from the projection lemma that there exists a real
matrix E = [E1 E2] such that

Θ + ΓTEΛ + ΛTETΓ < 0,

which implies Σ < 0 holds by Schur complement lemma.
(Sufficiency). It follows from Schur complement lemma

that Ξ2 < 0 is equivalent to Θ + ΓTEΛ + ΛTETΓ < 0.
Using the projection lemma, ℵT

ΓΘℵΓ < 0 holds. Therefore,
the sufficiency is trivially true. ¤

Remark 2. In the above theorem, the feedback gain K is
coupled with matrix variables and is intrinsically non convex.
In the following theorem, the feedback gain matrix K will be
decoupled from matrices H , E1, and E2, simultaneously, and
will be parameterized by a positive scalar matrix.

Theorem 2. Given performance index γ > 0, fractional
order α ∈ (0, 1), system matrices A, B1, B, C, D and Cy,
and the finite frequency range ΛMF = {ω ∈ R : ωl ≤ ω ≤
ωh, ωl, ωh ≥ 0}. Problem FF-H∞-SOFC is solvable if and
only if there exist Hermitian matrices H > 0, Q > 0, P , real
matrices E = [E1, E2], U , and a scalar ε > 0, such that the
following matrix inequalities hold

Ξ̄ =
[

Ξ̄11 −(Re(rH))T −B1LCy

∗ −εI

]
< 0, (8)

and

Σ̄ =




−Q Σ̄12 −E2 0 0
∗ Σ̄22 Σ̄23 B Σ̄25

∗ ∗ Σ̄33 D −ET
2

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εI




< 0, (9)

where r = ejθ, θ = (α− 1)π/2, and

Ξ̄11 = Her
(
A(Re(rH))−B1LCyUTBT

1

)

+ εB1UUTBT
1 ,

Σ̄12 = rP + jrωcQ− E1,

Σ̄22 = − ωα
l ωα

hQ + Her(AE1 −B1LCyUTBT
1 )

+ εB1UUTBT
1 ,

Σ̄23 = AE2 + ET
1 CT,

Σ̄33 = − γ2I + Her(CE2),

Σ̄25 = − ET
1 −B1LCy.

Moreover, the static output feedback control gain is designed
as K = ε−1L.

Proof. (Necessity). It follows from Theorem 1 that problem
FF-H∞-SOFC is solvable if and only if there exist Hermitian
matrices H > 0, Q > 0, P and real matrix E = [E1, E2] such
that (6) and (7) hold. It is always possible to find a sufficiently
large scalar ε such that[

Her(Â(Re(rH))) −Re(rH)T

∗ −εI

]
< 0,
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and [
Ξ2 ΥT

∗ −εI

]
< 0,

where Υ = [0 − E1 − E2 0].
Taking congruence transformation yields

ΓT
1

[
Her(Â(Re(rH))) −(Re(rH))T

∗ −εI

]
Γ1

=
[

Φ11 Φ12

∗ −εI

]
< 0. (10)

with

Γ1 =
[

I 0
(B1KCy)T I

]
,

Φ11 = Her(A(Re(rH))− ε(B1KCy)(B1KCy)T,

Φ12 = −(Re(rH))T − εB1KCy.

Let εK = L and note that

B1(LCy − εU)ε−1(LCy − εU)TBT
1 ≥ 0

holds for any real matrix U . Expanding this inequality, one
has

− (B1LCy)ε−1(B1LCy)T

≤ −B1LCyUTBT
1 −B1U(LCy)TBT

1 + εB1UUTBT
1 .

(11)

Using above inequality and combining (10), we get (8). In the
same way, taking congruence transformation, we have

ΓT
2

[
Ξ2 ΥT

∗ −εI

]
Γ2 < 0,

with

Γ2 =




I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 (B1KCy)T 0 0 I




.

Let εK = L and use inequality (11), we get (9).
(Sufficiency). Suppose that there exist Hermitian matrices

H > 0, Q > 0, P , real matrices E = [E1, E2], U and a
scalar ε > 0 such that (8) and (9) hold. From (11), (8) implies
that [

Φ̃11 −(Re(rH))T −B1LCy

∗ −εI

]
< 0,

where

Φ̃11 = Her(A(Re(rH))− (B1LCy)ε−1(LCy)TBT
1 ,

choosing U = ε−1LCy yields
[

Φ̄11 −(Re(rH))T − εB1U
∗ −εI

]
< 0,

where, Φ̄11 = Her(A(Re(rH))− εB1UUTBT
1 .

Therefore, using congruence transformation and letting
ε−1L = K, we can conclude that

[
Her(Â(Re(rH))) −(Re(rH))T

∗ −εI

]
< 0,

and Her(Â(Re(rH))) < 0. Similarly, one can deduce that (9)
implies (7). ¤

Remark 3. Based on congruence transformation, the feed-
back gain K can be decoupled from H , E1 and E2 simultane-
ously, and parameterized by a positive scalar ε. Note that the
matrix inequalities in (8) and (9) are still bilinear, however,
we can fix U to make them linear. Using the method provided
in [21−22], we defined η ∈ R satisfying that

{
Ξ̄− diag{ηI, 0} < 0,

Σ̄− diag{0, ηI, 0, 0, 0} < 0.

It is easily known from the proof of Theorem 1 that η
achieves its minimum when U = ε−1LCy , which naturally
leads to an iterative LMI (ILMI) algorithm.

Algorithm 1 (ILMI algorithm).
Step 1. Set j = 1. For a given H∞ performance level γ > 0,

and the finite frequency range ΛFF = {ω ∈ R : ωl ≤ ω ≤
ωh, ωl, ωh ≥ 0}. Solve the following relaxed LMIs

Her(A(Re(rH)) + B1W1) < 0, (12)

and 


−Q Φ̂12 −E2 0
∗ Φ̂22 Φ̂23 B

∗ ∗ Φ̂33 D
∗ ∗ ∗ −I


 < 0. (13)

where

Φ̂12 = rP + jrωcQ− E1,

Φ̂22 = −ωα
l ωα

hQ + Her(AE1 + B1W2),

Φ̂23 = AE2 + B1W3 + ET
1 CT,

Φ̂33 = −γ2I + Her(CE2),

with variables in S , {Hermitian matrices H > 0, Q > 0, P ,
and real matrices, E1, E2, W1, W2 and W3}.

The initial value U1 is obtained as

U1 = W1(Re(rH))−1.

Step 2. For fixed Uj , solve the following minimization
problem for matrix variables in the set S , {Hermitian
matrices H > 0, Q > 0, P, real matrices E = [E1, E2],
U and a scalar ε > 0}

min η,

s.t.

{
Ξ̄− diag{ηI, 0} < 0,

Σ̄− diag{0, ηI, 0, 0, 0} < 0,
(14)

where Ξ̄ and Σ̄ are defined in (8) and (9) respectively. Denote
the obtained η as ηj .

Step 3. If ηj < 0, then a desired feedback gain is obtained
as K = ε−1L.

Step 4. Fix η = ηj , minimize ε such that LMIs (14) hold,
denote the obtained ε and L as εj and Lj .

Step 5. If |ηj − ηj−1|/ηj−1 < τ , where τ is a prescribed
tolerance, then this algorithm fails to find the desired feedback
gain K, stop; If not, update ηj+1 as Uj+1 = ε−1

j LjCy . Set j
:= j + 1 and go to Step 2.
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Before employing the ILMI algorithm, it is suggested to
find some initial value which is “close” to the desired so-
lution. We adopt the following initial optimization algorithm
provided in [11]. Denote W̄ = [W1, W2, W3] and Ē =
[Re(rH), E1, E2].

Algorithm 2 (Initial optimisation).
Step 1. Set j = 1. For a given H∞ performance level γ > 0,

and the finite frequency range ΛFF = {ω ∈ R : ωl ≤ ω ≤ ωh,
ωl, ωh ≥ 0}, find Hermitian matrices H > 0, Q > 0, P , and
real matrices W1, W2, W3 such that LMIs (12) and (13) hold.
Denote the feasible solution Ē and W̄ as Ēj and W̄j .

Step 2. Fix Ē = Ēj , minimize δ = ‖W̄−N⊗Ē‖2, such that
LMIs (12) and (13) hold, where N is a real matrix variable.
Denote the obtained N as Nj .

Step 3. Fix N = Nj , minimize δ = ‖W̄ −N ⊗ H̄‖2, such
that LMIs (12) and (13) hold. Denote the minimized δ as δj .

Step 4. Set j := j + 1, and repeat Step 2 and Step 3. If
|δj − δj−1|/δj−1 ≤ µ, where µ is a prescribed tolerance, then
stop. The initial value U1 is given by U1 = W1(Re(rH))−1.

Follow the similar line, we can give the condition that
the problem of FF-H∞-SOFC is solvable over low frequency
range as follows.

Theorem 3. Given performance index γ > 0, fractional
order α ∈ (0, 1), system matrices A, B1, B, C, D, Cy , a
feedback gain K and finite frequency range ΛLF = {ω ∈ R :
ω ≤ ωl, ωl ≥ 0}. Problem FF-H∞-SOFC is solvable if and
only if there exist Hermitian matrices H > 0, P and Q > 0,
real matrix U , E = [E1, E2] and real scalar ε such that the
following matrix inequalities hold

Ξ̃ =
[

Ξ̃11 −(Re(rH))T −B1LCy

∗ −εI

]
< 0,

and

Σ̃ =




−Q rP − E1 −E2 0 0
∗ Σ̃22 Σ̃23 B Σ̃25

∗ ∗ Σ̃33 D −ET
2

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ εI




< 0,

where r = ejθ, θ = (α− 1)π/2, and

Ξ̃11 = Her
(
A(Re(rH))−B1LCyUTBT

1

)

+ εB1UUTBT
1 ,

Σ̃23 = AE2 + ET
1 CT,

Σ̃22 = ω2α
l Q + Her(AE1 −B1LCyUTBT

1 )

+ εB1UUTBT
1 ,

Σ̃25 = − ET
1 −B1LCy,

Σ̃33 = − γ2I + Her(CE2).

Moreover, the static output feedback control gain is designed
as K = ε−1L.

For highest frequency case, we can refer to the designed
method in [17] and use the following condition.

Theorem 4. Given performance index γ > 0, fractional
order α ∈ (0, 1), system matrices A, B1, B, C, D and Cy , and
the finite frequency range ΛHF = {ω ∈ R : ω ≥ ωh, ωh ≥ 0}.

Problem FF-H∞-SOFC is solvable if and only if there exist
Hermitian matrices H > 0, P , and Q > 0, real matrix U , and
a scalar ε > 0, such that the following matrix inequalities hold

Ξ̂ =
[

Ξ̂11 −(Re(rH))T −B1LCy

∗ −εI

]
< 0,

and

Σ̂ =




Σ̂11 r̄PCT AQ B P + rB1LCy

∗ −γ2I CQ D 0
∗ ∗ −Q 0 rQ
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εI




< 0,

where r = ejθ, θ = (α− 1)π/2, and

Ξ̂11 = Her
(
A(Re(rH))−B1LCyUTBT

1

)

+ εB1UUTBT
1 ,

Σ̂11 = Her(rAP −B1LCyUTBT
1 )− ω2α

h Q

+ εB1UUTBT
1 .

Moreover, the static output feedback control gain is designed
as K = ε−1L.

Remark 4. The designed algorithms of H∞ static output
feedback controller for fractional order system over high
frequency and low frequency ranges can refer to the middle
frequency case and hence is omitted for brevity.

Remark 5. When the problem of FF-H∞-SOFC for system
with the fractional order α ∈ [1, 2) case is considered, we just
need to replace the stability condition based on Lemma 2. For
example, we just replace LMI (8) by

[
Ψ11 −H − r̄B1LCy

∗ −εI

]
< 0,

where Ψ11 = Her
(
r̄AH −B1LCyUTBT

1

)
+ εB1UUTBT

1 .

IV. NUMERICAL EXAMPLE

Example 1. Consider the system (1) with the following
parameters:

A =
[ −8 −0.8
−2 0.5

]
, B1 =

[ −0.6
2

]
, B =

[
1

0.1

]
,

C =
[

1.2 2
]
, Cy =

[
1 −130

]
, D = 0.1,

α = 0.8, ωl = 0.2, ωh = 4.

The eigenvalues of A are λ1 = −8.1842, λ2 = 0.6842,
which implies the open-loop system is unstable. Using Algo-
rithm 2, the initial value U1 is obtained as

U1 =
[ −5.0654 −1.4742

]
,

and using Algorithm 1, the desired static output feedback gain
matrix is obtained as K = 0.1370. We can easily compute
and find that closed-loop system has the stable eigenvalues λ1

= −8.7288, λ2 = −34.4677. In addition, with the designed
controller, Fig. 1 shows the H∞ norm of the closed-loop
system is smaller than thant of open-loop system.



WANG et al.: H∞ OUTPUT FEEDBACK CONTROL OF LINEAR TIME-INVARIANT FRACTIONAL-ORDER SYSTEMS · · · 309

Fig. 1. Maximum singular value comparison, open-loop vs. closed-
loop systems.

Example 2. Consider the system (1) with the following
parameters:

A =
[ −2.01 0

0 −5.3

]
, B1 =

[ −5
0.5

]
,

B =
[

0.2
0.5

]
, C =

[
0.99 1.01

]
,

Cy =
[

1.01 1.89
]
, D = 0.58, α = 1.2.

When w(t) = 0, it is easy to see such system is asymptotically
stable. Thus, in the following setting, we mainly make the
comparison of H∞ norm of closed loop system over different
frequency ranges. Firstly, for different frequency ranges, we
adopt same initial matrix U = [−0.2923 0.1175] which
can be obtained by solving LMI (12). Then we can design
the different desired static output feedback controller using
ILMI algorithm over three kinds of frequency ranges. After
that, the norm values of the transfer function of the open-
loop system and the closed-loop systems over three kinds of
frequency ranges, are compared in Fig. 2, and the H∞ norm
comparison are presented in Table II. From Fig. 2, we can
see that controllers over three kinds of frequency ranges yield
the smaller H∞ norm compared with the open loop system.
From Table II, we can see the least H∞ norm are generated by
controller over the frequency range [0.2 0.5], which exactly is
the range that the supremum point of maximum singular value
of open loop system belongs to. Therefore, if the disturbance
has a finite frequency, the minimization on the entire frequency
range may not give the optimal solution. In order to achieve a
better result in the optimization, it is meaningful to investigate
the finite frequency H∞ control.

V. CONCLUSIONS

In this paper, the H∞ output feedback control problem of
fractional-order systems over finite frequency range has been
investigated. Based on the GKYP Lemma and the Projection
Lemma, we have established the existence conditions of the
desired static output feedback controller. By matrix congru-
ence transformation, the feedback gain matrix is decoupled
with three matrix variables simultaneously, and further param-
eterized by a scalar matrix. Two iterative LMI algorithms have

been presented to obtain the desired results. Furthermore, the
existence conditions of desired controller have been extended
to the high frequency and low frequency cases. Moreover, the
design method is feasible for the fractional order α ∈ (1, 2)
case. Finally, numerical examples are given to show the
effectiveness of our design method.

Fig. 2. Comparison of different frequency ranges.

TABLE II
H∞ NORM COMPARISON OVER DIFFERENT FREQUENCY

RANGES

Open-loop ω > 0 0.2 ≤ ω ≤ 0.5 ω ≤ 0.7

0.7784 0.7255 0.7171 0.7220
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