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ABSTRACT
Theoretical results on robust passivity and feedback passification of a class of uncertain fractional-
order (FO) linear systems are presented in the paper. The system under consideration is subject to
time-varying norm-bounded parameter uncertainties in both the state and controlled output matri-
ces. Firstly, some suitable notions of passivity and dissipativity for FO systems are proposed, and
the relationship between passivity and stability is obtained. Then, a sufficient condition in the form
of linear matrix inequality (LMI) for such system to be robustly passive is given. Based on this con-
dition, the design method of state feedback controller is proposed when the states are available.
Moreover, by usingmatrix singular value decomposition and LMI techniques, the existing condition
and method of designing a robust observer-based passive controller for such systems are derived.
Numerical simulations demonstrate the effectiveness of the theoretical formulation.
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1. Introduction

More and more FO phenomena are found in the field
of natural and engineering, such as quantum mechanics,
stochastic diffusion, molecular spectroscopy, viscoelas-
tic dynamics, robotics, etc. (Hilfer, 2000; Laskin, 2018;
Podlubny, 1999; West, 2016), the modelling, dynamics
analysis and control of these phenomena, has become
a new research focus of control science and engineer-
ing (Ge, Chen, & Kou, 2018; Luo & Chen, 2012; Tepl-
jakov, 2017; Xue, 2017). After several decades of devel-
opments, control theory of FO system has made con-
siderable development, particularly stability and stabili-
sation analysis (Chen, Chai, Wu, & Yang, 2012; Dadras,
Dadras, Malek, & Chen, 2017; Dadras & Momeni, 2014;
Kaminski, Shorten, &Zeheb, 2015; Kuntanapreeda, 2016;
Lu & Chen, 2010), controllability and observability (Ge,
Chen, & Kou, 2016, 2017; Sabatier, Farges, Merveillaut,
& Feneteau, 2012; Surendra & Nagarajan, 2013), optimal
control (Ding, Wang, & Ye, 2012; Wang & Zhou, 2011),
system identification (Hartley & Lorenzo, 2003; Jacyn-
tho et al., 2015). However, due to fractional calculus
are non-local and have weakly singular kernels, it is far
less richness than that of integer order systems, there
are still many difficulties and challenges that need to be
explored both in the theory and applications, such as
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passivity, dissipativity theory and passivity-based control
(Rakhshan, Gupta, & Goodwine, 2017).

Passivity, and more generally dissipativity exist exten-
sively in physics, applied mathematics and mechanics,
etc., have originally arisen from the electrical circuit the-
ory and physical systems (Ortega, 1991). Roughly speak-
ing, a system is passive if the amount of the energy
stored by the system is less than which is supplied to
the system, that is to say, the system dissipates some
energy, but it does not generate energy internally its
own (Christopher, Byrnes, & Willems, 1991; Lozano,
Brogliato, & Landau, 1992). A beneficial property of pas-
sivity is that it is a compositional property for parallel
and feedback interconnections (Xia, Antsaklis, Gupta,
& Zhu, 2017). It has been shown that it provides a pow-
erful tool for analysis and synthesis of linear and non-
linear system in the form of input and output from the
energy point of view, and has been used in different
area, for example, chemical reactors systems (Garcia-
Sandoval, Gonzalez-Alvarez, & Calderon, 2015) multi-
agent systems (Chopra & Spong, 1999), cyber-physical
systems (Antsaklis et al., 2013), power electronics system
(Zeng, Zhang, & Qiao, 2014), neural networks (Li, Gao,
& Shi, 2010), networked control systems (Kottenstette,
Hall, Koutsoukos, Sztipanovits, &Antsaklis, 2013) and so

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207721.2019.1597940&domain=pdf&date_stamp=2019-03-27
http://orcid.org/0000-0002-7422-5988
mailto:lip_chenhut@126.com


2 L. CHEN ET AL.

on. One the other hand, the storage functions is an essen-
tial tool to study the issue of passivity and passification,
which it can be also considered as a natural candidate for
the Lyapunov function under certain condition. For FO
system, it is very difficult to construct a Lyapunov func-
tion and calculate its fractional derivative. Therefore, to
address the issue of passivity and passification of FO sys-
tems provides a new approach to consider stability and
stabilisation of FO system.

The aim of this paper is to generalise the concept of
passivity and dissipativity to FO systems. The main con-
tributions of this paper are summarised as follows: (1)
Some notions of passivity and dissipativity for FO sys-
tems are shown. (2) Relationship between passivity and
stability of FO systems is illustrated as well. (3) Taking a
class of FO uncertain linear system as an objective, robust
passivity of such system is analysed, state feedback pas-
sive controller and observer-based state feedback passive
controller are proposed to guarantee the corresponding
closed-loop system is robustly passive, respectively.

The rest of this paper is organised as follows. Section 2
describes some basic fractional calculus definitions, pro-
poses passivity and dissipativity notions for FO systems,
and the relationship between the stability and passive
for FO systems, introduces the problem to be addressed
and some necessary lemmas. Section 3 presents the main
results and discusses the most relevant details. Section 4
demonstrates the effectiveness of the results for three
numerical examples. Finally, some future research direc-
tions and conclusions are presented.

Notation: Standard symbols and notation are used
throughout the paper. The following symbols stand for:
AC[a, b] the space of function f which are absolutely con-
tinuous on [a, b]. I identity matrix of appropriate order,
and * the elements below the main diagonal of a sym-
metric block matrix. The superscript T the transpose,
respectively, diag{·} the diagonal matrix. L2[0,∞) the
space of square summable infinite vector sequences. X >

0(< 0) a symmetric positive definite (negative definite)
matrix. X matrices, if not explicitly stated, are assumed
to have compatible dimensions.

2. Preliminaries andmodel description

In this section, the model is formulated, and some def-
initions, properties and lemmas to be used later are
presented.

Definition 2.1 (Podlubny, 1999): The fractional inte-
gral with non-integer order α > 0 of function x(t) is
defined as follows:

Iαt0,tx(t) = 1
�(α)

∫ t

t0
(t − τ)α−1x(τ )dτ ,

where �(·) is the Gamma function, �(s) = ∫ ∞
0 ts−1

e−tdt.

Definition 2.2 (Podlubny, 1999): TheCaputo derivative
of FO α of function x(t) is defined as follows:

CDα
t0,tx(t) = In−α

t0,t
dn

dtn
x(t)

= 1
�(n − α)

∫ t

t0
(t − τ)n−α−1x(n)(τ )dτ ,

where n − 1 < α < n ∈ Z+.

It follows from theDefinitions 2.1 and 2.2 that the frac-
tional derivative is related to all the history information
of a function, while the integer one is only related to its
nearby points. That is, the next state of a system not only
depends upon its current state but also upon its historical
states starting from the initial time. In the following, the
notation Dα is chosen as the Caputo derivative Dα

0,t .
Consider the following FO system

Dαx(t) = f (x(t), u(t), t),

y(t) = h(x(t), u(t), t), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, y(t) ∈
Rm is the output, α ∈ (0, 1), function f is continuous
and locally Lipschitz, and satisfies f (0, 0, t) = 0, h(0) =
0. Obviously, x=0 is an equilibrium point for u(t) = 0.

Definition 2.3: Function ω is referred to as supply rate
of system (1), if functionω fromRm × Rm toRm, which is
locally integrable along the solutions of (1), that is, for any
fixed initial condition x(0) = x0 ∈ Rn and any admissible
input u : R → Rn

∫ t

0
|ω(u(s), y(s))|ds < +∞. ∀ t ≥ 0.

Definition 2.4: If there exists a nonnegative real-valued
function V, called a storage function, such that for all
admissible input u, all initial conditions x0, and all t ≥ 0,
the solution x(t) exists for each t ≥ 0 and satisfies

V(x(t)) − V(x0) ≤ Iα0,tw(t)

= 1
�(α)

∫ t

0
(t − s)α−1w(u(s), y(s))ds, (2)

then system (1) is called as dissipative with respect to the
supply rate ω. Moreover, if there exist a positive definite
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function S such that

V(x(t)) − V(x0) ≤ Iα0,tω(t) − Iα0,tS(t)

= 1
�(α)

∫ t

0
(t − s)α−1ω(u(s), y(s))ds

− 1
�(α)

∫ t

0
(t − s)α−1S(s)ds, (3)

then the system is said to be strictly dissipative.

Definition 2.5: If there exist a storage function V satis-
fying V(0) = 0 and (2) or (3), and the supply rate

ω = yTu,

then system (1) is passive or strictly passive, respectively.

Definition 2.6: System (1) is input feed-forward output
feedback passive, if there exist μ, ν ∈ R such that sys-
tem is dissipative with respect to the following supply
rete

ω = uTy − μuTu − νyTy.

Property 2.1: If x(t) ∈ Cn[a, b], then

IαDαx(t) = x(t) −
n−1∑
k=0

x(k)(a)
k!

(x − a)k,

DαIαx(t) = x(t).

Remark 2.1: It follows from the Definitions 2.4, 2.5 and
Property 2.1 that if

DαV(t) ≤ w(t),

then (2) is satisfied. However, the converse is not neces-
sarily true.

Lemma 2.1 (Li, Chen, & Podlubny, 2009): Let x=0
be an equilibrium point for system (2) and D ∈ Rn be
a domain containing the origin. Let V(t, x(t)) : [0,∞) ×
D −→ R be a continuously differentiable function and
locally Lipschitz with respect to x such that

α1‖x‖a ≤ V(t, x(t)) ≤ α2‖x‖ab,
DαV(t, x(t)) ≤ −α3‖x‖ab, (4)

where t ≥ 0, x ∈ D, β ∈ (0, 1), α1,α2,α3, a and b are
arbitrary positive constants. Then x=0 is Mittag–Leffler
stable (asymptotically stable). If the assumptions hold glob-
ally on Rn, then x=0 is globally Mittag–Leffler stable
(asymptotically stable).

Property 2.2: Assume that condition (4) in Lemma 2.1 is
modified to be

DαV(t, x(t)) ≤ 0, (5)

and V(0) = 0, the argument still stands, i.e. x=0 is glob-
ally Mittag–Leffler stable (asymptotically stable).

Based on Property 2.2, one has the following relation-
ship between passivity and Lyapunov stability.

Property 2.3: If system (1) is passive with a positive semi-
definite storage function V = V(x), then the system is sta-
ble in the sense of Lyapunov with origin as the equilibrium
point.

Proof: By setting u=0 and using Definition 2.5,DαV ≤
ω(0, y) = 0. It follows from Property 2.2 and Lemma 2.1
that system (1) is Mittag–Leffler stable (asymptotically
stable).

In the paper, consider the following FO uncertain
systems

Dαx(t) = (A0 + �A)x(t) + (B0 + �B)u(t)

+ (Bσ0 + �Bσ )σ (t),

y(t) = (C0 + �C)x(t) + (D0 + �D)u(t)

+ (Dσ0 + �Dσ )σ (t),

z(t) = C1x(t), (6)

where x(t) = (x1(t), . . . , xn(t))T ∈ Rn represents the
state vector of the system, σ(t) ∈ Rq is the external dis-
turbance which is assumed to belong to L2[0,∞] (Sun,
Mou,Qiu,Wang, &Gao, 2018;Wang, Qiu, & Feng, 2018),
y(t) denote the controlled output, u(t) ∈ Rp is the control
input, z(t) ∈ Rl is themeasured output, the FO α belongs
to the interval (0, 1). A0,B0,C0,D0,C1 are some nomi-
nal constant matrices with appropriate dimensions. The
uncertain matrices �A,�B,�C,�D are time-varying
uncertain matrices with appropriate dimensions subject
to the following form:[

�A �B �Bσ

�C �D �Dσ

]
=

[
E1
E2

]
H(t)

[
F1 F2 F3

]
,

where E1,E2, and F1, F2, F3 are known constant real
matrices with appropriate dimensions, and H(t) are
unknown time-varying matrices satisfying

HT(t)H(t) ≤ I.

This paper is concerned with the problems of passivity
and passification for system (6), passivity conditions are
obtained in the form of LMIs. Based on these conditions,
two procedures for designing passification controllers
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are proposed. For this end, some standard lemmas are
presented, which are involved in the following. �

Lemma 2.2 (Liang,Wu, & Chen, 2015): Let x(t) ∈ Rn be
a differentiable vector-value function. Then, for any time
instant t ≥ t0

Dα(xT(t)Px(t)) ≤ (xT(t)P)Dαx(t) + (Dαx(t))TPx(t),

where P ∈ Rn×n is a symmetric positive definite matrix,
α ∈ (0, 1).

Lemma 2.3 (Xie, 1996): Given matrices Q = QT, H,E
and R = RT > 0 of appropriate dimension,

Q + HFE + ETFTHT < 0,

for all F satisfying FTF ≤ R, if and only if there exist some
λ > 0 such that

Q + λHHT + λ−1ETRE < 0.

Lemma 2.4 (Boyd, Ghaoui, Feron, & Balakrishnan,
1994): (Schur complement): For a real matrix � = �T,
the following assertions are equivalent

� : =
[
�11 �12
∗ �22

]
< 0,

�11 < 0,�22 − �T
12�

−1
11 �12 < 0,

�22 < 0,�11 − �12�
−1
22 �T

12 < 0.

Lemma 2.5 (MacDuffee, 2004): For any matrix � ∈
Rq×n with q<n and full row rank (rank(� = q)), there
exists an SVD of � as follows

� = U
[
S 0

]
VT ,

where S ∈ Rq×q is a diagonal matrix with non-negative
diagonal elements in decreasing order, U ∈ Rq×q,V ∈ Rnn
are the unitary matrices.

Lemma 2.6 (MacDuffee, 2004): Given matrix � ∈ Rq×n

with q<n and rank(�)=q, assume that X ∈ Rn×n is a
symmetric matrix, then there exists a matrix X ∈ Rq×q

satisfying �X = X� if and only if X can be described as

X = V
[
X11 0
0 X22

]
VT ,

where X11 ∈ Rq×q,X22 ∈ R(n−q)×(n−q) and V ∈ Rn×n is
the unitary matrix of SVD of �.

3. Main results

As stated in the previous section, our aims are to address
passivity analysis and passification for system (6), which
will be accomplished in three subsection in what follows.

3.1. Robust passivity analysis

In this subsection, robust passivity for uncertain sys-
tems (6) with u(t) = 0 will be considered, a suffi-
cient condition for the system to be robustly passive is
presented.

Theorem 3.1: If there exist symmetric positive-definite
matrices P̃, constant positive scalar λ such that the follow-
ing LMI holds⎡
⎢⎢⎢⎢⎢⎣
A0P̃ + P̃AT

0 Bσ0 − 1
2
P̃CT

0 P̃FT1 λE1

∗ −Dσ0 FT3 −1
2
λE2

∗ ∗ −λI 0
∗ ∗ ∗ −λI

⎤
⎥⎥⎥⎥⎥⎦ < 0,

(7)

then system (6) with u(t) = 0 is robustly passive.

Proof: When u(t) = 0, system (6) can be rewritten as

Dαx(t) = (A0 + �A)x(t) + (Bσ0 + �Bσ )σ (t),

y(t) = (C0 + �C)x(t) + (Dσ0 + �Dσ )σ (t).
(8)

Let us select a storage function for system (8) as

V(x(t)) = xT(t)Px(t).

Then, based on Lemma 2.2, take the FO derivative along
system (8) giving

DαV(x(t)) ≤ (xT(t)P)Dαx(t) + (Dαx(t))TPx(t).

Recalling the passivity Definition 2.5, one has

DαV(x(t)) − yT(t)σ (t)

≤ (xT(t)P)Dαx(t) + (Dαx(t))TPx(t) − yT(t)σ (t)

= xT(t)(PA0 + AT
0 P + P�A + �ATP)x(t)

+ xT(t)PBσ0σ(t) + σT(t)BTσ0Px(t)

+ xT(t)P�Bσ σ (t) + σT(t)�BTσPx(t)

− xT(t)CT
0 σ(t) − xT(t)�CTσ(t)

− σT(t)DT
σ0σ(t) − σT(t)�DT

σ σ (t)

= ηT(t)�η(t),

where η(t) = [xT(t), σT(t)]T ,

� =

⎡
⎢⎢⎢⎣

PA0 + AT
0 P

+P�A + �ATP PBσ0 + P�Bσ − 1
2
CT
0 − 1

2
�CT

∗ −Dσ0 − 1
2
�Dσ − 1

2
�DT

σ

⎤
⎥⎥⎥⎦

=

⎡
⎢⎣�11 PBσ0 + PE1H(t)F3 − 1

2
CT
0 − 1

2
(E2H(t)F1)T

∗ −Dσ0 − 1
2
E2H(t)F3 − 1

2
(E2H(t)F3)Tσ

⎤
⎥⎦ ,

where�11 = PA0 + AT
0 P + PE1H(t)F1 + (E1H(t)F1)TP.
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Thus, if � < 0, the system is passive according to
Definition 2.5. In fact, one can observer that � < 0 is
equivalent to the following condition:

� =
[
PA0 + AT

0 P PBσ0 − 1
2
CT
0

∗ −Dσ0

]

+
[

PE1
−1
2
E2

]
H(t)

[
F1 F3

]

+
[
FT1
FT3

]
H(t)

[
ET1 P −1

2
ET2

]
< 0. (9)

LetH = [
PE1

−1
2
E2
],E = [F1 F3] andF = H(t) in Lemma

2.3 and applying Lemma 2.3 to (9), there exist a positive
number λ > 0 such that[

PA0 + AT
0 P PBσ0 − 1

2
CT
0

∗ −Dσ0

]

+ λ

[
PE1

−1
2
E2

] [
ET1 P −1

2
ET2

]

+ λ−1
[
FT1
FT3

] [
F1 F3

]
< 0,

which can be rearranged as⎡
⎢⎣�1 PBσ0 − 1

2
CT
0 − 1

2
λPE1ET2 + λ−1FT1 F3

∗ −Dσ0 + 1
4
λE2ET2 + λ−1FT3 F3

⎤
⎥⎦ < 0,

(10)

where �1 = PA0 + AT
0 P + λPE1ET1 P + λ−1FT1 F1.

Using the well-known Schur complements
(Lemma 2.4), (10) can be written as⎡

⎢⎢⎢⎢⎢⎣
PA0 + AT

0 P PBσ0 − 1
2
CT
0 FT1 λPE1

∗ −Dσ0 FT3 −1
2
λE2

∗ ∗ −λI 0
∗ ∗ ∗ −λI

⎤
⎥⎥⎥⎥⎥⎦ < 0.

(11)

Multiply by diag(P−1, 0, 0, 0) on both sides of (11), it
yields⎡
⎢⎢⎢⎢⎣
A0P−1 + P−1AT

0 Bσ0 − 1
2
P−1CT

0 P−1FT1 λE1

∗ −Dσ0 FT3 −1
2
λE2

∗ ∗ −λI 0
∗ ∗ ∗ −λI

⎤
⎥⎥⎥⎥⎦ < 0.

(12)

Denote P−1 = P̃ in (12), (7) can be obtained directly
from (12). This completes the proof. �

Remark 3.1: Based on Property 2.3, Theorem 3.1 can be
serve as a sufficient condition to guarantee that system (6)
is Mittag–Leffer stable.

3.2. State feedback passive control

This subsection is devoted to address the passification
problem of system (6). If the states are measurable, the
following linear feedback controller will be designed

u(t) = Kx(t), (13)

whereK ∈ Rp×n, such that system (6)with controller (13)
is passive.

Theorem 3.2: If there exist a matrix X with appropri-
ate dimensions, a symmetric positive-definite matrix P̃ and
constant positive scalar λ such that the following LMI holds

� =

⎡
⎢⎢⎢⎣

�11 �12 XTFT2 + P̃FT1 λE1
∗ −Dσ0 FT3 −1

2
λE2

∗ ∗ −λI 0
∗ ∗ ∗ −λI

⎤
⎥⎥⎥⎦ < 0,

(14)

where

�11 = A0P̃ + B0X + P̃AT
0 + XTBT0 ,

�12 = Bσ0 − 1
2
P̃CT

0 + XTD0,

then system (6) with the controller (13) is robustly passive.
Moreover, a stabilising state-feedback gain matrix is given
by

K = XP̃−1. (15)

Proof: Substituting the controller (13) into (6) leads to
the closed-loop system as follow

Dαx(t) = (A0 + B0K + �A + �BK)x(t)

+ (Bσ0 + �Bσ )σ (t),

y(t) = (C0 + D0K + �C + �DK)x(t) + (Dσ0

+ �Dσ )σ (t). (16)

Since �A + �BK = E1H(F1 + F2K), �C + �DK =
E2H(F1 + F2K). By replacingA0 withA0 + B0K,C0 with
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C0 + D0K and F1 with F1 + F2K in (7), one has

� =

⎡
⎢⎢⎢⎣

�11 �12 P̃(KTFT2 + FT1 ) λE1
∗ −Dσ0 FT3 −1

2
λE1

∗ ∗ −λI 0
∗ ∗ ∗ −λI

⎤
⎥⎥⎥⎦ < 0,

(17)

where

�11 = (A0 + B0K)P̃ + P̃(AT
0 + KTBT0 ),

�12 = Bσ0 − 1
2
P̃(CT

0 + KTD0).

Defining KP̃ = X in (17), Theorem 3.2 is straightfor-
ward. �

3.3. Observer-based output passive control

The aim of this subsection is to design an observer-
based output feedback controller such that systems (6) is
robustly passive.

Without loss of generality, assume that the FO sys-
tem (6) is controllable and observable. Consider a state
observer and feedback controller described by

Dα x̂(t) = Âx̂(t) + B0u(t) + L(z(t) − ẑ(t)),

ẑ(t) = C1x̂(t), (18)

u(t) = K1x̂(t),

where x̂(t) = (x̂1(t), . . . , x̂n(t))T ∈ Rn represents the
estimated state, ẑ(t) is the estimate output vector. Â, K1
and L are stabilising matrix, state feedback gain matrix
and observer gain matrix to be determined with appro-
priate dimensions, respectively.

Let us denote the estimation error as e(t) = x(t) −
x̂(t). In view of (6) and (18), the closed-loop system can
be given in the form as follows:

Dα x̂(t) = (Â + B0K1)x̂(t) + LC1e(t),

Dαe(t) = (A0 + �A − Â + �BK1)x̂(t)

+ (A0 + �A − LC1)e(t) + (Bσ0 + �Bσ )σ (t),

y(t) = (C0 + �C)x(t) + (Dσ0 + �Dσ )σ (t),

which can be rewritten as

Dα x̄(t) = Aclx̄(t) + (B̄σ0 + �B̄σ )σ̄ (t), (1)

y(t) = (C̄0 + �̄C)x̄(t) + (D̄σ0 + �D̄σ )σ̄ (t), (19)

where

Acl =
[

Â + B0K1 LC1
A0 + �A − Â + �BK1 A0 + �A − LC1

]
,

�B̄σ =
[

0
�Bσ

]
,

x̄(t) =
[
x̂(t)
e(t)

]
, B̄σ0 =

[
0

Bσ0

]
, C̄0 = [

C0 C0
]
,

�C̄0 = [
�C0 �C0

]
,

σ̄ (t) =
[

0
σ(t)

]
,�D̄σ0 = [

0 �Dσ0
]
,

D̄σ0 = [
0 Dσ0

]
.

Now, the design problem can be transformed to look for
suitable stabilisingmatrices Â, state feedback gainK1 and
observer gain matrix L, such that uncertain FO linear
system (19) is robustly passive.

Remark 3.2: FO linear observer (18) contains a un-
known system matrix, Â, gives an opportunity to better
adjust the dynamical properties of the observer-base FO
control system, which is difference with the existing FO
Luenberger-type observer (24) (Ibrir & Bettayeb, 2015;
Lan & Zhou, 2011; Liu, Nie, Wu, & She, 2018).

Theorem 3.3: If there exist symmetrical matrices P̃
together with matrices Â,K1, L of appropriate dimensions
and real scalars λ1 such that

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 Bσ0 − 1
2
P̃CT

0 P̃FT1 λ1E1

∗ �22 − 1
2
P̃CT

0 − 1
2
P̃KT

1 D
T
0 P̃FT1 + P̃KT

1 F2 0

∗ ∗ −Dσ0 FT3 − 1
2
λ1E2

∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ −λ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (20)

where

�11 = (A0P̃ − LC1P̃) + (P̃AT
0 − P̃CT

1 L
T),

�12 = (A0 − Â + LC1)P̃,

�22 = (ÂP̃ + B0K1P̃) + (P̃ÂT + P̃KT
1 B

T
0 )

then the controlled closed-loop system (19) is robustly
passive.

Proof: Choosing storage function for system (19) as

V(x̄(t)) = x̄T(t)P̄x̄(t),

where P̄ = diag(P,P).
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Taking the FO time derivative of V(x̄(t)) along the
trajectory of system (19) and employing the passivity
definition yields

DαV(x̄(t)) − ȳT(t)σ̄ (t)

≤ x̂T(t)
(
P(Â + B0K1) + (ÂT + KT

1 B
T
0 )P

)
x̂(t)

+ 2eT(t)P
(
A0 + �A − Â + �BK1

)
x̂(t)

+ 2eT(t)PLC1x̂(t) + eT(t)
(
P(A0 + �A − LC1)

+ (AT
0 + �AT − CT

1 L
T)P

)
e(t)

+ 2eT(t)P(Bσ0 + �Bσ )σT(t)

− x̂T(t)(CT
0 + �CT)σ (t)

− eT(t)(CT
0 + �CT)σ (t)

− σT(t)(Dσ0 + �Dσ )σ (t)

− x̂T(t)(KT
1 D

T
0 + KT

1 �DT)σ (t)

= ηT(t)�η(t),

where η(t) = [eT(t), x̂T(t), σT(t)]T ,

� =

⎡
⎢⎣�11 �12 P(Bσ0 + �Bσ ) − 1

2
CT
0 − 1

2
�CT

∗ �22 �23
∗ ∗ −Dσ0 − �Dσ

⎤
⎥⎦ ,

where

�11 = P(A0 + �A − LC1) + (AT
0 + �AT − CT

1 L
T)P,

�22 = P(Â + B0K1) + (ÂT + KT
1 B

T
0 )P,

�12 = P(A0 + �A − Â + �BK1 + LC1),

�23 = −1
2
CT
0 − 1

2
�CT − 1

2
KT
1 D

T
0 − 1

2
KT
1 �DT .

Matrix � can be written as

� = � =

⎡
⎢⎢⎢⎣

�11 P(A0 − Â + LC1) PBσ0 − 1
2
CT
0

∗ P(Â + B0K1) + (ÂT + KT
1 B0)P − 1

2
CT
0 − 1

2
KT
1 D

T
0

∗ ∗ −Dσ0

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎣

PE1
0

− 1
2
E2

⎤
⎥⎥⎦H(t)

[
F1 F1 + F2K1 F3

]

+

⎡
⎢⎣

FT1
FT1 + KT

1 F
T
2

FT3

⎤
⎥⎦HT(t)

[
ET1 P 0 − 1

2
ET2

]
,

where �11 = P(A0 − LC1) + (AT
0 − CT

1 L
T)P.

Taking into account Definition 2.5, the closed-loop
controlled system (19) is robustly passive if� < 0, which

is equivalent to that there exist a constant λ1 such the
following inequality holds by Lemma 2.3,

⎡
⎢⎢⎢⎣

�11 P(A0 − Â + LC1) PBσ0 − 1
2
CT
0

∗ P(Â + B0K1) + (ÂT + KT
1 B0)P − 1

2
CT
0 − 1

2
KT
1 D

T
0

∗ ∗ −Dσ0

⎤
⎥⎥⎥⎦

+ λ1

⎡
⎢⎢⎣

PE1
0

− 1
2
E2

⎤
⎥⎥⎦

[
ET1 P 0 − 1

2
ET2

]

+ λ−1
1

⎡
⎢⎣

FT1
FT1 + KT

1 F
T
2

FT3

⎤
⎥⎦[

F1 F1 + F2K1 F3
]

< 0,

which can be rearranged as

� =

⎡
⎢⎢⎢⎢⎣

�11 �12 PBσ0 − 1
2
CT
0 − 1

2
λ1PE1ET2 + λ−1

1 FT1 F3

∗ �22 − 1
2
CT
0 − 1

2
KT
1 D

T
0 + λ−1

1 (FT1 + KT
1 F

T
2 )F3

∗ ∗ −Dσ0 + λ1
1
4
E2ET2 + λ−1

1 FT3 F3

⎤
⎥⎥⎥⎥⎦ < 0,

(21)

where

�11 = P(A0 − LC1) + (AT
0 − CT

1 L
T)P

+ λ1PE1ET1 P + λ−1
1 FT1 F1.

�22 = P(Â + B0K1) + (ÂT + KT
1 B

T
0 )P

+ λ−1
1 (FT1 + KT

1 F
T
2 )(F1 + F2K1),

�12 = P(A0 − Â + LC1) + λ−1
1 FT1 (F1 + F2K1).

By virtue of Lemma 2.4, the fact that (21) is equivalent to

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 PBσ0 − 1
2
CT
0 FT1 λ1PE1

∗ �22 − 1
2
CT
0 − 1

2
KT
1 D

T
0 FT1 + KT

1 F
T
2 0

∗ ∗ −Dσ0 FT3 − 1
2
λ1E2

∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ −λ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(22)

where

�11 = P(A0 − LC1) + (AT
0 − CT

1 L
T)P,

�12 = P(A0 − Â + LC1),

�22 = P(Â + B̂0K1) + (ÂT + KT
1 B̂0)P.

Multiplying both side of the above inequality (22) by the
matrix diag(P−1,P−1, I, I), one has

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 Bσ0 − 1
2
P−1CT

0 P−1FT1 λ1E1

∗ �22 − 1
2
P−1CT

0 − 1
2
P−1KT

1 DT
0 P−1FT1 + P−1KT

1 F2 0

∗ ∗ −Dσ0 FT3 − 1
2
λ1E2

∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ −λ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
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where

�11 = (A0P−1 − LC1P−1) + (P−1AT
0 − P−1CT

1 L
T),

�12 = (A0 − Â + LC1)P−1,

�22 = (ÂP−1 + B0K1P−1) + (P−1ÂT + P−1KT
1 B

T
0 ).

Now, defining P̃ = P−1, one obtains inequality (20). This
completes the proof.

It is obvious that the matrix inequality (20) in
Theorem 3.3 is not an LMI because some crosses of these
determined parameters are appearing in (20) in non-
linear fashion, such as LC1P̃, P̃KT

1 B
T
0 , However, it can

be transformed into an LMI by employing Lemmas 2.5
and 2.6, which will be shown below. �

Theorem 3.4: Assume that the SV D of the output matrix
C1 with full row rank is C1 = U [ S 0 ]VT. Then, the
closed-loop controlled system (19) is robustly passive if
there exist symmetrical matrices P̃ > 0, P̃1 > 0, P̃2 > 0,
matrices X1,X2 and X3 together with a real scalar λ1 > 0
such that

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 Bσ0 − 1
2
P̃CT

0 P̃FT1 λ1E1

∗ �22 − 1
2
P̃CT

0 − 1
2
XT
2 D

T
0 P̃FT1 + XT

2 F2 0

∗ ∗ −Dσ0 FT3 − 1
2
λ1E2

∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ −λ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (23)

where

�11 = (A0P̃ − X3C1) + (P̃AT
0 − CT

1 X
T
3 ),

�12 = (A0P̃ − X1 + X3C1),

�22 = (X1 + B0X2) + (XT
1 + XT

2 B
T
0 ).,

P̃ = V
[
P̃1 0
0 P̃2

]
VT .

Moreover, the robust stabilising matrix, the feedback con-
troller gain and the observer gain are given by

Â = X1P̃−1,K1 = X2P̃−1, L = X3USP̃−1
1 S−1U−1.

Proof: Since

P̃ = V
[
P̃1 0
0 P̃2

]
VT .

It follow from Lemma 2.5 that there exists ¯̃P =
USP̃1S−1U−1 such that C1P̃ = ¯̃PC1, where ¯̃P−1 =
USP̃−1

1 S−1U−1. Denote X1 = ÂP̃,X2 = K1P̃,X3 =

LP̃−1
1 , inequality (23) is equivalent to (20). The proof is

completed.
Particularly, if let Â = A0 in observer (18), ones can

obtain the following classical observer-based robust con-
troller for system (6)

Dα x̂(t) = A0x̂(t) + B0u(t) + L(z(t) − ẑ(t)),

ẑ(t) = C1x̂(t),

u(t) = K1x̂(t).

(24)

In this case, the stabilising the feedback controller gain
K and the observer gain L can be solved by the following
corollary. �

Corollary 3.1: Assume that the SVD of the outputmatrix
C1 with full row rank is C1 = U [ S 0 ]VT. Then, the sys-
tem (19) with FO linear observer (24) is robust passive if
there exist symmetrical matrices P̃ > 0, P̃1 > 0, P̃2 > 0,
matrices X1 and X2 together with a real scalar λ1 > 0 such
that

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 Bσ0 − 1
2
P̃CT

0 P̃FT1 λ1E1

∗ �22 − 1
2
P̃CT

0 − 1
2
XT
1 D

T
0 P̃FT1 + XT

1 F2 0

∗ ∗ −Dσ0 FT3 − 1
2
λ1E2

∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ −λ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (25)

where

�11 = (A0P̃ − X2C1) + (P̃AT
0 − CT

1 X
T
2 ),

�12 = X2C1,

�22 = (A0P̃ + B0X1) + (P̃AT
0 + XT

1 B
T
0 ),

P̃ = V
[
P̃1 0
0 P̃2

]
VT .

Moreover, the feedback controller gain and the observer
gain are given by

K1 = X1P̃−1, L = X2USP̃−1
1 S−1U−1.

Remark 3.3: Note that if the closed-loop controlled sys-
tem in (16) and (19) are passive according to Theo-
rems 3.2, 3.3, 3.4, respectively, the asymptotic stability
of (16) and (19) with σ(t) = 0 is also guaranteed. That
is to say, Theorems 3.2 – 3.4 provide conditions for
the existence of state-feedback stabilisation controller for
system (6).

Remark 3.4: Sara and Reza (2013) discussed the prob-
lem of designing a passivity-based FO integral sliding
mode controller for uncertain FO nonlinear systems by
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using passivity definition of integer-order systems. How-
ever, this definition may be not applied directly to FO
systems. On the one hand, the dissipative inequality in
the definition of dissipativity of integer order systems
can not characterise the memory property of fractional
energy dissipation of FO systems. On the other hand,
fractional systems usually have polynomial convergence
speed, rather than the exponential convergence speed
that integer order systems generally have, so output of FO
systems may diverge. Here, a new passivity definition of
FO systems is proposed.

Remark 3.5: A new definition of passivity for FO sys-
tems is introduced, relationship between passivity and
asymptotic stability is revealed. Obviously, this definition
can also be applied to FO nonlinear systems (Chen, He,
Chai, &Wu, 2014), FO delayed systems (Chen, Wu, Cao,
&Liu, 2015) andFOT-S fuzzy systems (Wag,Qiu, Chadli,
& Wang, 2016; Wang et al., 2018), and some passivity
conditions of these systems can be derived like this paper.

Remark 3.6: Lu and Chen (2010) andMa, Lu, and Chen
(2014) addressed stability and state feedback control
design for the following FO uncertain systems

Dαx(t) = (A + �A(t))x(t) + (B + �B(t))u(t),

y(t) = Cx(t).
(26)

It is obvious that system (26) is a special case of sys-
tem (6). Theorems 3.1–3.4 can be also applied to sys-
tem (26). However, these results in Lu and Chen (2010)
and Ma et al. (2014) cannot be used to determine the
passivity and feedback passification of the system (6).

4. Numerical examples

In this section, the following examples are provided to
verify the effectiveness of the proposed theoretical results
with computer simulations.

Example 4.1: The boost converter, sometimes called a
step-up/down power stage, is an inverting power stage
topology. Schematic diagram of a DC–DC boost con-
verter is shown in Figure 1. When ST OFF and SD ON,
the expression of the FO mathematical model proposed
in Chen, Chen, Zhang, and Qiu (2017)) is described by

DαiL = 1
L
Uin − 1

L
vC,

DαvC = 1
C
iL − vC

RC
.

(27)

Taking iL and vC as state variable and selecting
the input voltage Uin = 12V , the load resistance R =

Figure 1. Fractional-order DC–DC boost converter.

40�, the L = 477μH, C = 10μF/(s)1−α . Note that
Theorem 3.1 is also still valid for nominal model (27).
By using LMI Matlab toolbox, one could see that the
LMI (7) in Theorem 3.1 with Dσ = 1 is feasible. The
feasible solution is given by

P̄ =
[
172.4275 140.6495
140.6495 623.7084

]
, λ = 2.

Therefore, it follow from Theorem 3.1 that FO DC–DC
converter (27) is passive.

Example 4.2: Consider the uncertain FO linear sys-
tem (6) with parameters given by

A0 =
[
2 −1

−4 0

]
,B0 =

[
1.5

−2.5

]
,Bσ0 =

[
0.8
−2

]
,

C0 = [
1 −1.2

]
,D0 = 2,

E1 =
[
0.1
0.1

]
,E2 = 0.1,Dσ0 = 1.2, F1 = [

0.2 −0.3
]
,

F2 = 0.2, F3 = −0.1,α = 0.9.

UsingMATLAB LMI toolbox, one obtains the feasible
solution as follows:

P̃ =
[
0.1237 0.0107
0.0107 2.0025

]
, X = [−0.4323 0.3365

]
,

λ = 1.4144.

The controller gain matrix

K = XP̃−1 = [−3.5110 0.1868
]
.

Hence, the above results show that all the conditions
stated in Theorem 3.2 have been satisfied and the con-
trolled system is passive.

In the simulation, an improved predictor-corrector
algorithm (Deng, 2007) for FO differential equations is
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Figure 2. Time response of the selected systems without the
control input.

Figure 3. Time response of the selected systemswith the control
input.

used. Chose h(t) = 0.2 sin t, the initial state x0 = [0.2 −
0.2]T. When the external disturbance σ(t) = 0, time
response of the selected systems without and with the
control input are shown in Figures 2 and 3, respectively.
Figure 4 shows control input. One can see that the open-
loop system is divergent fast and closed-loop controlled
system is asymptotically stable under control input.

Example 4.3: Consider a 3-dimensional uncertain FO
linear system (6) with the following parameters:

A0 =
⎡
⎣−2 −1 0.5

2 −0.5 1
1 0 −1.2

⎤
⎦ ,Bσ0 =

⎡
⎣−1 3

−2 4
1 0

⎤
⎦ ,

Figure 4. Control input of system in Example 4.2.

B0 =
⎡
⎣ 1

−2
0

⎤
⎦ ,

C0 =
[
4 −2 0
2 3 −1

]
,C1 = [

1 1 0
]
,

Dσ0 =
[
3 2
0 1

]
,

D0 =
[−2
−3

]
,E1 =

⎡
⎣ 0.1

−0.1
0.2

⎤
⎦ ,E2 =

[
0.3

−0.2

]
,

F1 = [
0.2 −0.3 0.1

]
, F2 = 0.2,

F3 = [−0.1 0.2
]
,α = 0.9.

Applying matrixs SVD for C1, one can obtain

U = 1, S = 1.4142,V =
⎡
⎣0.7071 0.7071 0
0.7071 −0.7071 0

0 0 1

⎤
⎦ .

Assume that the state variables are not measurable, one
can design observer expressed as (24), by utilising pack-
ages Yalmip in Matlab, one finds the LMI (24) in the
Corollary 1 is feasible, and feasible solution with the
parameters:

P̃2 =
[
0.5830 −0.1291

−0.1291 0.5078

]
,

X1 = [
0.6639 0.6340 −0.1025

]
,

X2 = [
0.4455 3.0709 0.5151

]T ,
P̃1 = 1.1765, λ1 = 2.4216.
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Figure 5. The convergence dynamics of state x1(t) of the chosen
system in Example 2 (solid line: real value, dotted line: estimated
value).

Figure 6. The convergence dynamics of state x2(t) of the chosen
system in Example 2 (solid line: real value, dotted line: estimated
value).

Furthermore, the feedback controller gain and the
observer gain are given by

K1 = [
0.5453 0.5579 −0.2041

]
,

L = [
0.3087 2.6102 0.4378

]T .
Therefore, it follows from Corollary 3.1 that system with
observer (24) in Example 4.3 is robustly passive.

If one would like to design FO observer (18) to ensure
that the controlled system (19) is passive, by employ-
ing Theorem (3.4), stabilising matrix, state feedback gain
matrix and observer gain matrix can be obtained as

Figure 7. The convergence dynamics of state x3(t) of the chosen
system in Example 2 (solid line: real value, dotted line: estimated
value).

Figure 8. The convergence dynamics of error states using FO
observer (24).

Figure 9. The convergence dynamics of error states using FO
observer (18).
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follows

Â =
⎡
⎣−7.2341 3.5473 −2.9874

−0.5792 1.9331 −1.3529
−0.0009 −0.0881 −1.3071

⎤
⎦ ,

K1 = [−1.2216 2.0881 −1.1576
]
,

L = [
1.9392 1.6009 −0.7635

]T .
For simulation, select h(t) = 0.1 cos(0.2t), the real

and estimated value initial states are chosen as x0 =
[0.5 0.6 − 0.3]T and x̂0 = [0.2 0.2 − 0.1]T. The trajec-
tories of the real and estimated value states are shown
in Figures 5–7. Figure 8 describes dynamic curves of
the estimation errors using FO observer (24). Figure 9
shows dynamic curves of the estimation errors using
FO observer (18). With the simulation results, it can
be seen that the state estimation errors rapidly tend to
zero asymptotically as expected and FO observers (18)
and (24) are all effective.

5. Conclusion

Robust passivity analysis and passive control for uncer-
tain FO linear systems with time-varying norm-bounded
parameter uncertainties has been studied. Some defini-
tion of passivity and dissipativity for fractional-order sys-
tems were presented. Relationship between passivity and
stability of fractional order systems has been built, it
is shown that passive fractional-order systems is Mit-
tag–Leffer stable. Furthermore, an LMI sufficient con-
dition for such a system to be robustly passive is given.
Sufficient criteria for passive control of the closed loop
system are also analysed based on whether the states are
available or not. Two illustrative examples are provided
to show the usefulness and effectiveness of the presented
results. Main features of the paper are summarised as
follows, (i) more appropriate passivity and dissipativity
definition for FO systems are given, (ii) stability and sta-
bilisation problem of many FO systems can be converted
into considering passivity and passivation of FO systems,
(iii) passivity of uncertain FO systems can be guaranteed.
It is well known that the time-delay phenomenon often
appears in many dynamic systems, to discuss passivity
anddissipativity issue of fractional-order delayed systems
is future work.
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