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a b s t r a c t 

Fractional calculus is at this stage an arena where many models are still to be introduced, 

discussed and applied to real world applications in many branches of science and engi- 

neering where nonlocality plays a crucial role. Although researchers have already reported 

many excellent results in several seminal monographs and review articles, there are still a 

large number of non-local phenomena unexplored and waiting to be discovered. Therefore, 

year by year, we can discover new aspects of the fractional model ing and applications. This 

review article aims to present some short summaries written by distinguished researchers 

in the field of fractional calculus. We believe this incomplete, but important, information 

will guide young researchers and help newcomers to see some of the main real-world ap- 

plications and gain an understanding of this powerful mathematical tool. We expect this 

collection will also benefit our community. 

© 2018 Published by Elsevier B.V. 

1. Introduction 1 

Fractional calculus (FC) is an emerging field in mathematics with deep applications in all related fields of science and 2 

engineering. Some of the results were reported in various books or related review articles [1,2,4–17] . However, we are still 3 

at the beginning of applying this very powerful tool in many fields of research. At this moment, the fractional calculus has 4 

opened its wings even larger to cover the dynamics of complex real world and new ideas are starting to be implemented 5 

and tested on real data. In some cases, some patents were granted which make the tool of FC very promising. Though 6 

fractional calculus was introduced more than 300 years ago and applied into many fields of science and engineering, the 7 

promotion of applications is still an important task of the FC community. When we talk about FC with scientists and 8 

engineers outside of our community, two of the most frequently asked questions are about how FC has been applied and 9 

how scientists can apply it to their respective fields. Meanwhile, many FC researchers in theoretical fields are also not 10 
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familiar with the application aspects. Therefore it is necessary to provide a brief introduction on successful applications of 11 

FC in science and engineering. Moreover, we should recognize that FC is not universal but has its own place in application; 12 

hence, providing some important existing successful applications of FC can offer a guide on application studies in the future. 13 

To make this collection more comprehensive, we have invited several distinguished researchers in the application field 14 

of FC to contribute one or more application cases, and make a summary on a specific scientific/engineering area. However, 15 

there are still many experts in this field who have not been invited or contacted, due to the difficulty of email communi- 16 

cation and the limitation of our knowledge. Furthermore, there are still many successful applications of FC which have not 17 

been included in this collection, due to the length limitation of this collection and the time limitation of submission. 18 

This review is organized into nine sections. We begin with some important results of FC in physics, after that we 19 

briefly present some applications from the control theory and signal and image processing. The next main topics are from 20 

mechanics and dynamical systems, biology, environmental sciences, and materials. We end our review article by presenting 21 

some main results from applications of FC to multidisciplinary and other engineering fields. 22 

Each section contains several contributions written by prestigious scientists. Each contribution contains some relevant 23 

references where the authors can find more information about the debated topics. In this review, we collected 46 con- 24 

tributions and we hope that the new information presented here will strongly contribute to the promotion and further 25 

development of fractional calculus and its applications. 26 

2. Physics 27 

2.1. Fractional Langevin equation description of viscoelastic anomalous diffusion in complex liquids 28 

Many complex systems such as the crowded liquid inside biological cells, solutions and melts of polymeric materials, or 29 

lipid bilayer membranes are viscoelastic. Depending on the frequency with which these systems are probed, their response 30 

is more elastic or more viscous. Diffusion of tracer particles in these complex liquids is anomalous, with the mean squared 31 

displacement scaling like 〈 r 2 (t) 〉 � t α, where we speak of subdiffusion for 0 < α < 1 and superdiffusion for α > 1 [18] . 32 

Concurrently the increment correlation of the observed motion is antipersistent in the regime of subdiffusion: subsequent 33 

increments of the motion are likely to be directed in opposite directions. A slow power-law recovery to zero of the negative 34 

correlation is then observed at longer times. Mathematically, this motion is described by the fractional Langevin equation , 35 

in which the friction term involves a power-law memory, and the noise becomes power-law correlated [18] . Tracers inside 36 

biological cells or in crowded liquids and the constituents of biological membranes have been shown to exhibit this type of 37 

viscoelastic motion [19–21] . For superdiffusion, the increment correlations are always positive, a phenomenon that can also 38 

be observed in active biological systems [22] . (Contributed by Ralf Metzler, Anomalous diffusion). 39 

2.2. Attenuation and dispersion in complex viscoelastic media 40 

Fractional derivative models in the biomedical and underwater sediment fields are useful because they describe the 41 

power law attenuation encountered in these media better than other models. 42 

In sediment acoustics, it has been shown that one of the most common models, the viscous grain shearing model [23] , 43 

is based on the constitutive laws of a fractional Kelvin –Voigt and a fractional damper for the compressional and shear 44 

waves, respectively [24,25] . 45 

These models as well as the fractional Zener model have been proposed for modeling wave propagation in medical 46 

ultrasound imaging and elastography [26,27] . 47 

The models are useful for interpreting and simulating propagating waves. They may also give insight into mechanisms for 48 

absorption of energy. One example is that fractional models may be justified by the existence of many relaxation processes, 49 

e.g. as found from the properties of polymers [28] . A non-Newtonian material with time-dependent viscosity, which for the 50 

last decades has been used to describe the grain shearing process [23] , will also give rise to the relaxation modulus which 51 

is similar to that of a fractional derivative element [29] . (Contributed by Sverre Holm, Fractional viscoelasticity). 52 

2.3. Anomalous diffusion with internal states: functional distributions, escape probability, and first passage time 53 

Normal diffusion describes the Brownian dynamics characterized by a large number of small events, e.g., the motion of 54 

pollen grains in water. However, in many cases, the (rare) large fluctuations result in the non-Brownian motion, anomalous 55 

diffusion, being carefully studied in physics, hydrology, finance and other fields ( Fig. 1 ). 56 

We derived the forward and backward fractional Feynman –Kac equations which describe the distribution of functionals of 57 

space and time-tempered anomalous diffusion, belonging to the continuous time random walk class. Several examples of the 58 

functionals are explicitly treated, including the first passage time, the occupation time in half-space, the maximal displace- 59 

ment, the fluctuations of the time-averaged position, and the fluctuations of the occupation fraction. For details, see [30] . 60 

We derived the nonlocal elliptic partial differential equations (PDEs) governing the mean first exit time and escape 61 

probability of the anomalous processes having the tempered Lévy stable waiting times with the tempering index μ > 0 and 62 

the stability index 0 < α ≤ 1. For details, see [31] . 63 
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Fig. 1. Sketch map of the escape probability. 

For the particles undergoing anomalous diffusion with different waiting time distributions for different internal states, we 64 

derive the Fokker –Planck and Feymann –Kac equations, respectively, describing positions of the particles and functional dis- 65 

tributions of the trajectories of particles; in particular, the equations governing the functional distribution of internal states 66 

are also obtained. The dynamics of the stochastic processes are analyzed and the applications, calculating the distribution 67 

of the first passage time and the distribution of the fraction of the occupation time, of the equations are given. For the fur- 68 

ther application of the newly built models, we make very detailed discussions on the none-immediately repeated stochastic 69 

process, e.g., the random walk of smart animals. For details, see [32] . (Contributed by Weihua Deng, Anomalous diffusion). 70 

2.4. Electrical spectroscopy impedance and fractional calculus 71 

The electrical spectroscopy impedance technique plays an important role from the experimental point of view to obtain 72 

information about the electrical properties of many different materials, in particular, of liquids [33] . It has been investigated, 73 

from the theoretical point of view, by using the Poisson –Nernst –Planck diffusion model [34] and/or equivalent circuits. 74 

In the low frequency limit, these approaches with simple considerations (boundary conditions and/or circuit elements) 75 

are not able to describe the experimental behavior. These disagreements are especially remarkable in the low frequency 76 

limit [34,35] . However, by using the well-established features of the fractional calculus and performing suitable changes 77 

in the boundary conditions, in order to account the surface effects, it is possible to overcome this issue and describe 78 

the experimental behavior in all frequency range [36,37] . Furthermore, this approach can also be used to investigate 79 

the ion diffusion in an electrolytic cell through the electrical conductivity, which is directly related to the mean square 80 

displacement. In particular, for some systems [38] , the diffusion manifested by the ions may not always depend on the 81 

frequency range considered and related to the surface effects. (Contributed by Ervin K. Lenzi, Rafael S. Zola, Haroldo V. 82 

Ribeiro and Luiz R. Evangelista, Complex fluids). 83 

2.5. Physical demonstration of iterated fractional order integrals 84 

Fractional calculus theory predicts that iterated integrals of any order will result in an integral of order equal to the sum 85 

of the orders of the integrals as long as the integration interval is the same for each integral. That is: 86 

a I t 
α

a I t 
β

a I t 
γ f (t ′ ) = a I t 

α+ β+ γ f (t ′ ) 

The validity of this rule was demonstrated in an analog circuit computing the solution to ρy (δ) = f (t) − κy (t) , where 87 

ρ and κ were determined by the scaling constants found from the impedance spectra of the factors used in the physical 88 

implementation. Fig. 2 shows the schematic map for the circuit implementing δ = 0 . 3 + 0 . 5 + 1 . 0 . Other cases with δ = 0 . 8 , 89 

1.3 and 1.5 were also tested. In each case, the measured response for step function input matched that predicted by the 90 

Mittag –Leffler function. The amplitude and phase of the response for sinusoidal input signals matched that predicted by 91 

the Fourier description. Note that for the Fourier response, we had to wait for the transient response to dissipate. 92 

For details, see Ref. [39] . (Contributed by Gary W. Bohannan and Brenda Knauber, Electromagnetism). 93 

2.6. Frequency-dependent acoustic wave propagation in porous media 94 

The frequency-dependent characteristic impedance and the propagation coefficient of acoustic wave were observed in 95 

the experimental study by Delany and Bazley. Various models were subsequently proposed to demonstrate the phenomenon 96 

without physical interpretation of the frequency-dependent indices. The fractional acoustic wave equation was proposed on 97 

the basis of characteristic impendence, continuity equation, and state equation. The two different indices were unified to 98 

be the fractional derivative order with clear physical meaning. The attenuation and dispersion functions of the presented 99 

acoustic wave model agreed well with the experimental results and obeyed the Kramers –Kronig relation. For details, see 100 

Ref. [40] . (Contributed by Wen Chen, Shuai Hu and Wei Cai, Acoustics). 101 
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Fig. 2. A circuit diagram with αF1 = 0 . 3 and βF2 = 0 . 5 and a low loss capacitor γ C 1 ≈ 1.0 to give a total fractional order of δ = 1 . 8 . 

2.7. Fractional calculus technique in random optimal search 102 

Random searches are ubiquitous because the locations of the specific targets are not known a priori in many situations. 103 

In this respect, the fundamental question is how to optimize the search for specific target scenarios. The key feature is that 104 

the scatterers have a power-law distribution of sizes, which motivates us to model the random optimal search problem 105 

using the fractional calculus technique. Precisely, the Continuous Time Random Walk (CTRW) optimal search framework was 106 

proposed to locate the optimum for both of search length’s and waiting time’s distributions by means of power-law func- 107 

tion. The master equation was derived to describe the mechanism of such complex fractional dynamics. Many simulations 108 

were carried out to support the theoretical results. For details, see Ref. [41] . (Contributed by Caibin Zeng, Statistical physics). 109 

2.8. Fractional diffusion equations for random walkers in an expanding medium 110 

A well-known model for diffusion processes is the (uncoupled) CTRW model, in which each particle (random walker) 111 

takes a jump of size �x after a waiting time �t . These random variables are respectively drawn from the pdfs λ( �x ) and 112 

ϕ( �t ). If both λ( �x ) and ϕ( �t ) are “normal” (e.g., Gaussian), the probability density P ( x , t ) of finding the walker at position 113 

x at time t obeys the standard diffusion equation. However, if ϕ( �t ) [ λ( �x )] is heavy-tailed, P ( x , t ) is governed by a gener- 114 

alized diffusion equation with a fractional temporal (spatial ) derivative. Recently, these equations have been generalized to 115 

the case where the medium in which the random walk evolves is no longer static [42] . Instances of diffusion in expanding 116 

medium can be found, e.g., in biology [43] and cosmology [44] . In this case the corresponding diffusion equation, in comov- 117 

ing coordinates, preserves its form, albeit with an effective time-dependent diffusion coefficient induced by the medium 118 

expansion. For the case of an equation containing a fractional spatial derivative only, exact solutions for Green’s function 119 

(propagator) have been obtained. In contrast, for the case of an equation containing a fractional time derivative alone, only 120 

the spatial moments are known. (Contributed by Felipe Le Vot, Enrique Abad and Santos B. Yuste, Statistical physics). 121 

2.9. Thermal stresses in a solid with a heat source varying harmonically in time in the framework of fractional thermoelasticity 122 

Classical thermoelasticity [45] starts from the standard parabolic heat conduction equation. Fractional thermoelasticity 123 

[13] is based on the heat conduction equation with differential operators of fractional order. Nowacki [45] considered an 124 

elastic space with a source of heat varying harmonically as a function of time and investigated associated thermal stresses. 125 

The analysis was based on the assumption that temperature can be represented as a product of a function of the spatial 126 

coordinates and the time-harmonic term. Such an assumption cannot be used in the case of fractional heat conduction 127 

equation, and the initial conditions should be used. The proposed approach allows studying harmonic impact also in the 128 

case of fractional thermoelasticity. For details, see Ref. [46] . (Contributed by Yuriy Povstenko, Thermoelasticity). 129 

2.10. Nanoprecipitate growth in solid solutions 130 

Clusterization of impurities and defects can substantially change mechanical, electrical and optical properties of ma- 131 

terials. Kinetics of such a process is usually described by a model of diffusion-limited first-order transition. Evidences of 132 
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anomalous transport of impurities and defects in disordered solids stimulate the development of generalized models. One of 133 

the ways is based on fractional calculus. Fractional approach avails to simplify essentially consideration of such phenomena 134 

as transport in inhomogeneous media, diffusion along grain boundaries, dislocations, etc. In [47] , authors proposed the 135 

fractional model of subdiffusion-limited growth and dissolution of nanoprecipitates in alloys within the Ham approach. 136 

The fractional Stephan problem for spherical nanoprecipitates in an infinite matrix is considered in [48] . The fractional 137 

generalization of Ostwald ripening of multiple clusters is proposed in [49] . Observable power law kinetics of precipitation in 138 

some real systems (e.g. Cu clusters in Fe –Cu alloys) contradicts the normal diffusion-limited model and could be interpreted 139 

within the fractional approach. (Contributed by Renat Sibatov, Anomalous diffusion). 140 

3. Control 141 

3.1. Ubiquitous fractional order memory system 142 

The future states of an integer order dynamic system depend on the current one (memoryless). Nevertheless, for a 143 

fractional order system, the current state depends on the whole history (long memory). This long memory is typically a 144 

nameplate of various fractional order systems [12,16] . Recall the first two successful applications of fractional calculus in 145 

the 1980s, i.e., fractional order viscoelasticity and fractional order quantum mechanics. Boltzmann superposition principle 146 

plays a crucial role and leads to an important byproduct “heavy tail”, which is a vivid expression of system memory. From 147 

superposition of exponential function, to stretched exponential function, and then to Mittag –Leffler function, the system 148 

structure becomes more concise and model accuracy improves to a great extent. However, time domain phenomena (model) 149 

may tell lies. Here we introduce two frequency domain tools, i.e. Prony technique and electrochemical workstation, that 150 

consider a system without knowledge of internal workings (black box). In other words, using these two tools, the structure 151 

of system (integer order or fractional order) is not required in advance. By doing so, the frequency responses of quite a 152 

few real systems, such as Bode plot, Nyquist plot, Cole –cole plot, etc, show non-ideal curves that point directly to fractional 153 

order phenomena and reveal the fractional order nature such as ubiquitous fractional order capacitors [50] . Lastly, one 154 

fractional order model-free discussion should be noted here, i.e. the scale-free patterns. Along with the improvement of 155 

nature’s complexity (long history), scale-free patterns have widely existed in both nature and human society, such as fractal 156 

patterns from atomic level to clouds, mountains and rivers as well as the internet world. The scale-free pattern permits 157 

infinite possibilities under finite conditions such as the huge inner surface area of small intestine in a very limited space. 158 

Particularly, the scale-free structure can be a source of fractional order dynamics such as the continuous time random 159 

walk in porous media. Besides, the scale-free network has also become very popular in bioinformatics mining. To show a 160 

big picture of the fractional order system is like “Six Blind Men and an Elephant”. Nevertheless, motivated by the above 161 

illustrations, telling the story of fractional order system is like telling the story of oneself, because fractional order system 162 

is ubiquitous. On the other side, fractional order systems are complicated, even if they are composed by several number 163 

of simple elements, and certain heritage mechanisms sustain such complexities [51,52] . Therefore, it is remarkable that 164 

fractional order systems are ubiquitous and have memory. (Contributed by Yan Li, YangQuan Chen, Control theory). 165 

3.2. Application of D-decomposition technique in solving some control problems 166 

The basic idea of D-decomposition technique, conceived by the Russian scientist Neimark during the 1950s, is now 167 

extended for the case of linear fractional order systems and gives powerful tool for the analysis of systems stability and 168 

performance. Its straightforward procedure makes this method easy to apply and applicable to a wide range of transfer 169 

functions: with or without time-delay, rational and non-rational ones, and those describing distributed parameter systems. 170 

One way to utilize this technique is by combining it with another useful procedure, named dominant pole placement, 171 

designed to deal with the problem of controlling a high order and complex systems. In order to control as many different 172 

processes as possible, a fractional order proportional-integral-derivative (PID) controller is introduced, as a generalization of 173 

classical PID controller. Another useful application of this technique is control of underactuated systems. Many systems in 174 

nature are inherently underactuated, with fewer actuators than degrees of freedom. However, even with a reduced number 175 

of actuators, these systems are able to produce complex movements. Classical benchmark examples for studying problems 176 

of this kind include inverted pendulum systems. Herein, the D-decomposition method can be successfully used to solve a 177 

problem of asymptotic stability of inverted pendulum systems controlled by a fractional order controller. For details, see 178 

Refs. [53,54] . (Contributed by Tomislav B. Š ekara, Petar D. Mandi ́c, Control theory). 179 

3.3. The application of fractional order control for an air-based precision positioning system 180 

Precision, bandwidth (speed) and stability of motion are the most important performance indexes of any motion system. 181 

Fractional order PID has proven to be very effective to improve the performance. A recent work at TU Delft [55] , utilizes the 182 

fractional order calculus to control a precision positioning stage. In this work, a contactless precision positioning system is 183 

designed by floating a silicon wafer on a thin film of air (see Fig. 3 (a)). The system has been controlled as shown in Fig. 3 (b) 184 

in which two cascade single-input/single-output (SISO) controllers are designed. It has been shown that, the bandwidth of 185 

a regular mass –spring system has been increased using fractional lead compensator. In addition, it has been demonstrated 186 
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Fig. 3. (a) Overview of the air based precision positioning stage (so called the Flowerbed) designed at TU Delft. (b) Proposed Control Strategy, with an 

Inner Loop Controller (ILC) and an Outer Loop Controller (OLC). 

that such a moving mass behaves fundamentally fractional. By using only the fractionality, the bandwidths are extended by 187 

14.6% and 62%, for the inner and outer loops, respectively. Furthermore, a closed-loop positioning bandwidth of the wafer 188 

of 60 Hz is achieved, resulting in a positioning error of 104 nm, which is limited by sensor noise and pressure disturbances. 189 

(Contributed by S. Hassan HosseinNia, Fractional order control). 190 

3.4. Application of fractional order calculus in active damping of flexible structures 191 

In the past decades, research on Active Vibration Control (AVC) has found increasing interest in control of flexible links 192 

robots and thin-walled structures, mainly made of new advanced materials such as carbon fibre composites. Direct velocity 193 

control (DVC), Integral force control (IRC), Positive position feedback (PPF) and integral resonance control (IRC) are the 194 

methods which have been developed and used to actively control such flexible structures. Recently, authors from Spain 195 

and Netherlands have shown that fractional order calculus are effective tools to improve the active damping controllers 196 

compared to the integer order one [56–58] . In [56,57] , a fractional order PPF compensator is proposed, implemented and 197 

compared to the standard integer-order PPF. The fractional-order controller is found to be more efficient in achieving the 198 

same performance as the integer order one with less actuation voltage (see Fig. 4 ). Moreover, it shows promising perfor- 199 

mance in reducing spillover effect due to uncontrolled modes. In [58] , a fractional-order integral controller is proposed. This 200 

new methodology is compared with the most relevant controllers for smart structures. It is demonstrated that the proposed 201 

controller improves the robustness of the closed-loop system to changes in the mass of the payload at the tip. The previous 202 

controllers are robust in the sense of being insensitive to spillover and maintaining the closed-loop stability when changes 203 

occur in the plant parameters. However, the phase margin of such closed-loop systems (and, therefore, their damping) may 204 

change significantly as a result of these parameter variations. It has been proven and validated experimentally that the 205 

fractional order integral control with a very simple structure is an effective way to increase the phase margin robustness of 206 

the controlled system. (Contributed by S. Hassan HosseinNia, Active vibration control). 207 
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Fig. 4. Time history and corresponding FFT of the controlled system in case of integer-order PPF and fractional-order PPF control both tuned at 38.5 Hz. 

3.5. New gr ay models by fractional calculus in system modeling and prediction 208 

Gr ay prediction is an important branch in the gr ay system theory using small amount of data, while gr ay models are 209 

successfully applied in system modeling and prediction by many previous investigations. As a new topic, the fractional gr ay 210 

system was proposed as a general system, and its fractional gr ay models received great attention, which could be considered 211 

with more freedom and flexibility. At present, fractional gr ay model research mainly focuses on the following two types: 212 

one is the fractional accumulation of discrete gr ay model and the other is the continuous fractional-order gr ay model. The 213 

fractional calculus can mine the system or information more precisely than the classical model. However, the parameters 214 

estimation and optimization processes are different from the classical model. In our papers, the modeling process and 215 

parameter estimation were discussed for the fractional accumulation gr ay model [59] , interval fractional accumulation gr ay 216 

model [60] and fractional derivative gr ay model [61] , while, the optimal and modified models were also given for the 217 

models [59,61] . The applicability and accuracy of fractional gr ay models were checked by number of internet users and 218 

electricity data, respectively. For details, see Refs. [59–61] . (Contributed by Dingyü Xue and Yang Yang, System modeling). 219 

3.6. Toolboxes for fractional-order control systems 220 

Dedicated MATLAB toolboxes in fractional calculus and control category are very important in the relevant research and 221 

engineering practice. A review on MATLAB functions and toolboxes is given in [63] , where the commonly used toolboxes 222 

are CRONE (French abbreviation for Non Integer Order Robust Control) [64] , N-integer [65] , FOTF (fractional order transfer 223 

function) [62,66] and FOMCON (fractional-order modeling and control) [67] . The newly updated version of FOTF Toolbox 224 

fully supports multivariable fractional-order control systems [68] , with the high-precision algorithms [62] for fractional 225 

order differential equations. (Contributed by Dingyü Xue, Numerical implementation). 226 

4. Signal and image processing 227 

4.1. A study on fractional calculus applications in image processing 228 

Fractional calculus is a fast developing mathematical discipline (that is, calculus of derivatives and integrals of any 229 

arbitrary real or complex order) has increased extensive notoriety and significance amid for more than four decades, mostly 230 

because of its applications in various apparently different and broad fields of science and engineering. It does surely give 231 

a few potentially valuable tools for solving integral, differential and integro-differential equations. Employing fractional 232 

differential to image processing is a prospering subject branch under discourse [69–81] . Recently, fractional calculus has 233 

been significantly examined in computer vision [76,77] . The principle purpose behind this advancement is the desire that 234 

the utilization of this theory will prompt a considerably more exquisite and viable method to treat problems of blocky 235 

effect and detail information protection. Particularly, the fractional order total variation (FOTV) models assume a vital 236 

role for image restoration, super-resolution, in-painting, image segmentation and motion estimation, etc. They can ease 237 
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the contention between staircase elimination and edge preservation by selecting the order of derivative appropriately. 238 

Additionally, the fractional- order derivative operator has a non-local behavior because the fractional-order derivative at 239 

a point relies upon the characteristics of the entire function and not just the values in the vicinity of the point, which is 240 

helpful to enhance the performance of texture preservation. The numerical outcomes in published works show that the 241 

fractional-order derivative performs well in eliminating the staircase effect and preserving textures [77] . 242 

It has been demonstrated in [78] that the fractional-order derivative fulfills the lateral inhibition principle of the 243 

biological visual system better than the integer-order derivative. Pu et al. [74] considered the kinetic physical meaning of 244 

the fractional-order derivative and demonstrated that fractional differential-based methods can protect the low-frequency 245 

contour features in those smooth areas, and non-linearly keep high-frequency marginal feature in those regions where gray- 246 

level changes significantly, and furthermore preserve texture details in those areas that gray-level does not change obviously. 247 

It is noted in [82] that for low-frequency signal, fractional differential lessens the signal not as much as the integer 248 

one and for high-frequency one, fractional differential improves signal not as much as the integer one. Hence, we get the 249 

conclusion that fractional differential can upgrade the high-frequency signals, and reinforce the medium frequency one, 250 

while non-linear retain the low-frequency one. In the digital image, weak edges and texture details relate to low frequency 251 

parts, and noise and boundaries correspond to high-frequency ones. If the sign is handled by integer derivative, weak 252 

edge and texture tend to be enormously debilitated, and then noise will be reinforced immensely. Favorably, the fractional 253 

differential is appropriate to overcome this disadvantage that is, the noise will not be strengthened enormously and weak 254 

edge and texture will be retained nonlinearly. These advantages are being employed to preserve weak edges and texture, 255 

and oppose noise to some degree. (Contributed by Asmat Ullah, Image processing). 256 

4.2. Application of the GPCF and DGIs for improving the resolution and quality of nanoimages 257 

We apply the generalized Pearson correlation function (GPCF) [83] POLS [84] and discrete geometrical invariants (DGI) 258 

for improving the quality and sharpness of nanoimages in the range of resolution (10 –10 0 0) nm. The GPCF helps to compare 259 

one piece of image with another one and the procedure of reduction to three incident points [85] allows finding “hidden”260 

self-similar objects. The DGI based on the generalization of the Pythagoras theorem obtained by Babenko [86] allows 261 

comparing two randomly taken parts of images with each other and finding distinct differences expressed in terms of the 262 

integer moments. The quantitative parameters determined by the DGIs of the second and fourth orders, correspondingly 263 

allow monitoring the dynamics/changings of the chosen image in time. It can be applied for a wide set of random curves 264 

(experimental measurements) that are needed to be compared in terms of a limited number of the integer moments. The 265 

treatment of available images confirms the generality of this combined approach for a wide set of digital images obtained 266 

by different scanning microscopes. (Contributed by Raoul R. Nigmatullin, A. S. Vorobye, Image processing). 267 

4.3. NAFASS in action: intermediate fractal model for the fitting of complex systems data 268 

We essentially modernize the NAFASS (Non-orthogonal Amplitude Frequency Analysis of the Smoothed Signals) approach 269 

suggested earlier [87,88] . The NAFASS opens an alternative way for creation of new fluctuation spectroscopy when the 270 

segment of the Fourier series can fit any random signal with trend. However, the dispersion spectrum of the Fourier 271 

series ω 0 · k (ω 0 = 2 π/T ) ⇒ 
k (k = 0 , 1 , 2 , . . . , K − 1) is replaced by the specific dispersion law 
k calculated by the original 272 

algorithm. It implies that any finite signal will have a compact amplitude-frequency response (AFR), where the number of 273 

the modes is much less in comparison with the number of data points ( K 
 N ). The NAFASS approach can be applicable for 274 

quantitative description of a wide set of random signals/fluctuations and allows one to compare them with each other based 275 

on one general platform. We combine also the NAFASS with generalized Pearson correlation function [83,89] that allows 276 

to apply this combination for analysis of signals having self-similar origin with their subsequent fitting. New possibilities 277 

of the extended NAFASS approach are tested by available data. We suppose that the NAFASS approach can be applicable 278 

for description of different nonlinear random signals containing the hidden beatings in radioelectronics and acoustics. 279 

(Contributed by Raoul R. Nigmatullin, A. Morozov, Signal processing). 280 

5. Mechanics and dynamic systems 281 

5.1. Long-term control for discrete fractional systems 282 

Many engineering problems hold the feature of discrete time or space structures, for example, images, economy series, 283 

signals and so on. Some effort s have been dedicated to the applications of the continuous fractional calculus to these 284 

topics, and researchers mainly adopted the numerical discretization of the fractional calculus. But it can readily result in 285 

tedious information or numerical errors due to the memory effect. Discrete fractional calculus can avoid this and it is a 286 

straightforward tool for discrete time systems. Stability theory of fractional difference equations is given. Long-term control 287 

for fractional systems becomes possible. For details, see Refs. [90–93] . (Contributed by Dumitru Baleanu and Guo-Cheng 288 

Wu, Dynamic system). 289 
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5.2. Nonlocal elasticity and fractional viscoelasticity models of nanostructures 290 

Many modified continuum theories, such as Eringen ’s nonlocal elasticity, have been widely employed to examine the 291 

dynamic behavior of nanostructures in order to consider size effects. However, these models lack to account for damping 292 

effects that are also present at small scales. For this purpose, we introduced a modified nonlocal fractional viscoelastic 293 

constitutive equation considering the nonlocality in the space domain and fractional viscoelastic behavior in the time 294 

domain. Derived governing equations enable one to examine dynamic behaviors of a wide range of nanostructure-based 295 

systems solely by solving fractional order partial differential equations. In spite of the fact that numerical analysis of time 296 

responses of nanostructure systems can bring to some important conclusions about damping and size effects, it can neglect 297 

some crucial features of fractional derivative models that are visible only in the complex domain. Therefore, application 298 

of well-known methods from complex analysis together with integral transforms is an important step in the analysis of 299 

linear fractional order models of nanostructures. Obtained responses in the time domain and investigation of poles in 300 

the complex domain are necessary to gain some qualitative conclusions about the application of nonlocal elasticity and 301 

fractional viscoelasticity models in dynamics of nanostructures. For details, see [94,95] . (Contributed by Mihailo Lazarevi ́c 302 

and Milan Caji ́c, Structural mechanics). 303 

5.3. Microflows of viscoelastic fluids with fractional constitutive relationships 304 

Recently the microflows of viscoelastic fluids have been studied extensively due to their importance in microfluidic 305 

systems. However, the application of fractional constitutive models in microchannel flow is still in early stages. Considering 306 

the successful applications of fractional constitutive models in the description of viscoelastic materials, we develop the 307 

mechanics models to study the electroosmotic slip flows of viscoelastic fluids under the mixed influence of electroosmosis 308 

and pressure gradient forcings. Then, the analytical/semi-analytical solutions of the corresponding fractional differential 309 

equations are derived and the corresponding numerical methods, such as the finite difference algorithm, are also presented. 310 

Finally, the combined effects of the slip boundary conditions, fluid rheology, electroosmotic and pressure gradient forcings 311 

on the fluid velocity distribution and the flow rate are discussed with graphics. Our results may be useful for viscoelastic 312 

fluids in the prediction of the flow behavior in microchannels and benefit the design of microfluidic devices. For details, 313 

see Refs. [96,97] . (Contributed by Haitao Qi, Non-Newtonian fluid mechanics and microflow). 314 

5.4. Unsteady flow towards subsurface drains 315 

Glover –Dumm equation (GDE), which is the most practical mathematical model to simulate water table profile between 316 

two parallel drainpipes under unsteady flow conditions, was obtained by analytically solving Boussinesq equation (BE). 317 

However, many previous investigations demonstrated that the GDE was not able to describe accurately the water table 318 

profile due to the heterogeneity of porous medium and scale effect on hydraulic conductivity. Fractional derivatives, because 319 

of having non-locality property, can reduce the scale effects on the parameters and, consequently, better simulate the hydro- 320 

geological processes. Hereby a fractional BE (FBE) was proposed and analytically solved for one-dimensional unsteady flow 321 

towards parallel subsurface drains. The applicability and accuracy of the resultant solution, called fractional Glover –Dumm 322 

equation (FGDE), were examined using both laboratory and field data measured at an experimental farm in Abadan, Iran. 323 

For detailed, see [98,99] . (Contributed by Behrouz Mehdinejadiani, Hossein Jafari and Dumitru Baleanu, Fluid dynamics). 324 

5.5. Constitutive relation of non-Newtonian fluids in shear flow 325 

Many contributions have been devoted to exploring the transport properties of non-Newtonian fluids in shear flow based 326 

on the traditional non-Newtonian constitutive equation, owing to successful use of the Herschel –Bulkley model in engineer- 327 

ing. Based on the definition of viscosity, non-Newtonian fluids can be divided into two groups, namely, time-dependent and 328 

time-independent non-Newtonian fluids. However, some problems remain controversial. One of the issues on constitutive 329 

relation lies in the inaccurate description of time-dependent continuous variation of viscosity under shear (thixotropy 330 

and anti-thixotropy). The reversible effect implies that the variation of inner structure possesses the history-dependent 331 

feature, which can be well characterized by a time-variant fractional non-Newtonian model [100] . The other problem 332 

concerning time-independent non-Newtonian fluids is that empirical models lack a unified constitutive description for most 333 

non-Newtonian fluids. To tackle this deficiency, a fractional constitutive equation was proposed to capture the observed 334 

growth of shear stress for various velocity gradients [101] . These works provide the initial theoretical framework partially. 335 

(Contributed by Xu Yang and Wen Chen, Fluid mechanics). 336 

5.6. Gas transport in heterogeneous media 337 

Gas transport in heterogeneous media has an important influence on oil-gas exploitation and development [102] . 338 

Therefore, injecting gas into oil or gas reservoirs can significantly reduce oil viscosity, mitigate atmospheric emissions and 339 

control climate change to enhance oil or gas recovery efficiency and protect the environment. However, it is well-known 340 

that the random motion in gas transport in natural reservoirs deviates from the normal Brownian motion whose scaling 341 
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limit cannot be properly described by classical models (such as Darcy ’s law and the advection-dispersion equation) due 342 

to heterogeneity and complexity of the medium structure. Anomalous transport of gas exhibits obvious path- and history- 343 

dependent behaviors. Subsequently, the fractional derivative models have been applied to explain the time memory and 344 

space non-locality in gas transport [103] . Applicability of the fractional derivative models have been efficiently verified by 345 

employing a set of experimental data in the literature which are compared well with the results of numerical simulation 346 

and analytical solution [104] . (Contributed by HongGuang Sun and Ailian Chang, Fluid mechanics). 347 

5.7. A fractional order network model for ZIKA 348 

Zika is a fast spreading epidemic. Here, we introduce a fractional order network model for Zika. Literature has shown 349 

that in most cases it is asymptomatic, and hence it is difficult to control. This paper studies direct (sexual) contact. 350 

Equilibrium states have been derived. Their stability has been studied. Numerical simulations for the model are given [105] . 351 

(Contributed by H. Elsaka and E. Ahmed, Dynamics). 352 

5.8. Vibration analysis of the beam/plate resting on viscoelastic soil foundation 353 

The interactions between the beam/plate and soil foundation were investigated under the hypothesis that the foundation 354 

was elastic. However, recent researchers have witnessed that soil behaves as viscoelastic materials. There is still a long way 355 

to investigate the vibration behavior of the beam/plate resting on the viscoelastic foundation, especially considering the exis- 356 

tence of the shear layer. Hence, the three-parameter Pasternak model was proposed to characterize the reaction of the foun- 357 

dation. The softer foundation was found to be more time-dependent. Due to the existence of a constrained boundary, obvi- 358 

ous wall effect was observed. For details, see [106] . (Contributed by Wei Cai, Wen Chen and Wenxiang Xu, Geomechanics). 359 

5.9. Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior 360 

Based on the idea of using the variable fractional order to characterize the mechanical property evolution, a fractional 361 

model with variable-order is presented to describe the time-dependent deformation process. The developed model is 362 

applied to analyze the constant strain rate tension and compression results including the strain softening of ductile metals 363 

and soils [107] , the viscoelastic behavior of rubber, and the large deformation response of glassy polymer. It is shown that 364 

the model can accurately characterize the stress-strain relationship of the above phenomenon during the constant strain 365 

rate test using only three material parameters. Assuming that the variable fractional order obeys a linear function, our 366 

model provides a way to obtain the entire curve even if we only have a narrow range of experimental data. This finding 367 

could effectively help in understanding and predicting the time-dependent deformation of these materials. Furthermore, 368 

the dependence of the order function on strain can reasonably exhibit the mechanical property change over different 369 

regions during deformation processes. For rubber and glassy polymer, a physical explanation is introduced based on the 370 

microstructure evolution of molecular chains to realize the essential physical meaning of the fractional order. It is then 371 

concluded that the change of the mechanical properties due to the evolution of microstructure is vividly captured by 372 

the variation of fractional order in our model during the time-dependent deformation processes. For details, see [107] . 373 

(Contributed by Deshun Yin and Ruifan Meng, Material mechanics). 374 

5.10. Fractional calculus in linear viscoelastic modeling 375 

The classical viscoelastic models are consisted of parallel or series with elastic and viscous elements. The exponential 376 

material functions of these models encounter difficulties in characterizing the power-law phenomena, which are widely 377 

observed for various viscoelastic materials. Gemant justified the necessity of fractional differential operators to describe 378 

these phenomena for some viscoelastic fluids. Scott –Blair regarded the viscoelastic material as the intermediate state 379 

between elastic solid and viscous fluid and introduced the fractional derivative of strain to the constitutive equation, called 380 

the Scott –Blair model. The fractional viscoelastic model is validated to well predict the power- law phenomena. Thereafter, 381 

the fractional theory for linear viscoelasticity has been gradually improved by Rabotnov, Bagley, Caputo and Mainardi, et al. 382 

Fractional viscoelastic models have been widely used to describe the complex dynamics such as relaxation, oscillation, and 383 

wave for a variety of real materials. For details, see [108–110] . (Contributed by Xianglong Su, Engineering mechanics). 384 

6. Biology 385 

6.1. Fractional derivative models of diffusion in magnetic resonance imaging (MRI) 386 

A common feature observed in diffusion-weighted MRI of the brain is anomalous diffusion. Hence, in white and gray 387 

matter, S ( b ), the signal intensity decay is often characterized by a stretched exponential S(b) = S 0 exp[ −(bD 0 ) 
α] , where b is 388 

the degree of diffusion-weighting, D 0 is the tissue water diffusion coefficient, and 0 < α < 1 [111] . Since normal, or Gaussian 389 

diffusion decays as a single exponential (α = 1) , solutions to the anomalous diffusion problem proceed by neglecting 390 

important tissue compartments and components [112] . Fractional order models of diffusion capture this tissue complexity 391 
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by incorporating fractional order time and space derivatives in the governing Bloch-Torrey equation [113] . The Caputo 392 

derivative solution can then be expressed in the form, S(b) = S 0 E α[ −(bD f ) 
α] , where D f is the fractional diffusion coefficient 393 

( mm 

2 / sec ), and E α[ −x α] , is the Mittag –Leffler function, which naturally exhibits multi-exponential S ( b ) decay rates. As 394 

the fractional order α approaches 1 from below, the distribution of rates narrows and ultimately coalesces into a single 395 

exponential. This fractional order model captures the appearance of many exponential rates in both normal and diseased 396 

brain tissue [114,115] . (Contributed by Richard L. Magin, Bioengineering). 397 

6.2. Abundant bursting patterns of a simple fractional Morris–Lecar neuron model 398 

Neurons are believed to be key elements for signal processing in nervous systems, where the information is encoded, 399 

transmitted and decoded via firing activity of neurons. Bursting is the main mode of neuron activity alternating between 400 

quiescent state and repetitive spiking state. Neuron models, such as Hodgkin –Huxley model, Fitzhugh –Nagumo model, Hind- 401 

marsh –Rose model, Chay model and Morris –Lecar model, have been proposed for understanding the bursting patterns and 402 

complicated dynamics of nervous systems. Different models have different bursting patterns with special features. In order 403 

to characterize the memory effect and power law property of neuron membranes [116] , a fractional-order Morris –Lecar neu- 404 

ron model is proposed. Using the bifurcation theory, numerical simulation shows that the new model exhibits not only the 405 

bursting patterns shown in the corresponding integer-order Morris –Lecar model, but also some bursting patterns that do not 406 

exist in the integer-order one but can be found in other common neuron models, such as the Chay neuron model and the 407 

Fitzhugh –Nagumo neuron model. Thus, the fractional Morris –Lecar model may help in understanding neuron activities, in ef- 408 

ficient information processing, stimulus anticipation, as well as in frequency-independent phase shifts of oscillatory neuronal 409 

firing theoretically and experimentally. For details, see [117] . (Contributed by Zaihua Wang, Nonlinear Dynamics, Biology). 410 

6.3. The HIV/TB coinfection severity in the presence of TB multi-drug resistant strains 411 

Fractional order (FO) models have triggered a considerable amount of research in engineering, physics and biology. With 412 

respect to epidemiology, FO models fill the gap in the understanding of certain patterns, where the integer order models 413 

fail a full explanation. In this sense, a FO model is introduced for the coinfection of HIV and TB, in the presence of MDR-TB 414 

strains and treatment. The coinfection increases the severity of the disease and poses a significant threat to the public 415 

health care system. Coinfection is responsible for more infectious individuals, who are more prone to spread the epidemics. 416 

Moreover, the MDR-TB strains transmission, together with HIV infection, constitutes a major challenge for treatment, which 417 

requires anti- tuberculosis and ART to be administered unitedly. Altogether, the coinfection burden increases concerns of 418 

an extreme difficulty in TB control and elimination worldwide, and jeopardizes the ending of AIDS epidemic. The fractional 419 

derivative order, is a significant player in the epidemics theater. It may distinguish between individuals’ immune system, 420 

age, treatment compliance, and other co-morbidities. The FO model may provide more “freedom” to adjust the model to 421 

real data from specific patients. For details, see [118,119] . (Contributed by Carlo Pinto, Epidemiology). 422 

6.4. Fractional thermal wave model in spherical composite medium 423 

Recently, many studies have shown that fractional calculus is very useful in the area of biorheology. In the work of 424 

Yu et al. [120] , a fractional thermal wave model for the bi-layered spherical biological tissue during the hyperthermia 425 

treatments was set up. Implicit numerical method was constructed to solve the proposed fractional model. In the inverse 426 

analysis process, an efficient numerical method was proposed for simultaneously estimating multiple unknown fractional 427 

parameters. Based on the hyperthermia experimental data, the estimations of the order of the Caputo fractional deriva- 428 

tive and the relaxation time parameters were obtained. By comparisons, one can obviously observe that the estimated 429 

temperature increase values agreed well with the measured temperature increase values in the experiment. The results 430 

demonstrated that the proposed fractional thermal wave model was efficient and accurate in modeling the heat transfer 431 

of the biological tissue during the hyperthermia treatments, and the proposed numerical method for simultaneously 432 

estimating multiple fractional parameters is effective. (Contributed by Bo Yu, Xiaoyan Jiang and Chu Wang, Biocenology). 433 

6.5. Models of bone remodel ing and bone tumors using variable order derivatives 434 

Bone tissue is not static. Like every other part of our body, its cells are always dying and being replaced. The main actors 435 

of this process are the cells destroying bone tissue, called osteoclasts, and the cells that build bone back, called osteoblasts. 436 

The presence of osteoblasts influences the rate of increase of osteoclasts and the number of osteoclasts also influences their 437 

own evolution. The changes in dynamic behavior when there is a tumor can be mode led by tuning the parameters of au- 438 

tocrine and paracrine effects. Models found in the literature include intricate mathematical expressions for such variations. 439 

Our research has shown that the same effect can be obtained merely changing the order of the time derivative in the partial 440 

differential equations that model the involved diffusion phenomena. We studied the dynamic behavior of the resulting vari- 441 

able order partial differential equations and found in accord with the known qualitative behavior of healthy and tumorous 442 

bone remode ling. For details, see [121,122] . (Contributed by Duarte Valério, Susana Vinga, and Joana Neto, Bioengineering). 443 
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7. Environmental science 4 4 4 

7.1. Chloride ion anomalous diffusion in concrete structures 445 

Chloride ion erosion is one of the main reasons to affect the durability of concrete structures, and the core issue in 446 

research is the chloride ion transport mechanism analysis and modeling. As a typical porous material, concrete is uneven 447 

and anisotropic, and hence the ideal Fick’s law of diffusion is not applicable to describe the chloride ion diffusion behavior 448 

in concrete any more. In addition, due to the continuous hydration of cement binder, the geometrical, physical and chemical 449 

properties of concrete change over time, thus the chloride ion diffusion in concrete should also be time-dependent. The 450 

chloride binding effect of concrete makes the diffusion process exhibit some concentration dependence. Therefore, the 451 

traditional Fick’s law cannot reflect these anomalous diffusion characteristics in such complex media. Fractional derivative 452 

is well known for featuring the non-local characteristics of complex systems, e.g., the temporal dependence and the spatial 453 

correlation. This type of derivative is often introduced to the differential equation models to describe the particle anomalous 454 

diffusion in complex media. Based on the transport characteristics and considering the advantage of the fractional derivative, 455 

several fractional derivative models for describing chloride ion anomalous diffusion were established, and checked against 456 

the field data. For details, see [123,124] . (Contributed by Wen Chen, Jianjun Zhang and Song Wei, Concrete corrosion). 457 

7.2. Simulation of solute transport through porous media 458 

The traditional advection-dispersion equation (ADE), which is built for the process of Brownian motion, has been widely 459 

used to simulate solute transport in porous media. The numerous laboratory and field studies demonstrated that the 460 

ADE cannot well describe the solute transport process in porous media, especially in the heterogeneous ones, due to the 461 

scale-dependency of dispersion coefficient. According to laboratory and field studies, the solute transport process in the 462 

porous media was found to be a spatial nonlocal process. Hereby a spatial fractional ADE (FADE) was proposed to describe 463 

the non-local transport process of solute in the porous media and overcome the drawbacks of ADE. The applicability and 464 

accuracy of FADE were studied under both laboratory and field conditions. For details Refs [125–127] . (Contributed by 465 

Behrouz Mehdinejadiani, Environmental science). 466 

7.3. Water flow across the earth surface: apply the fractional calculus to interpret the hydrology cycle 467 

Hydrologic cycle in the Earth system involves a wide range of flow processes within and across natural geologic 468 

media (i.e., overland, open channel, soil, and aquifers) with multi-scale heterogeneity, challenging the standard modeling 469 

approaches and providing an ideal testbed for the application of fractional partial differential equations (PDE) in stochastic 470 

hydrology. One example is the hillslope subsurface stormflow which exhibits complex flow patterns when natural soils 471 

with multiscale heterogeneity impart a spatiotemporally nonlocal memory on flow dynamics. To reliably capture real-world 472 

stormflow through various slopes using the well-known Dupuit –Forchheimer (D –F) equation, local variations in soil prop- 473 

erty, slope geometry, and hydraulic conditions must be mapped for details, resulting in a strongly nonlinear PDE with 474 

prohibitive computational burden. A fully subordinated linear flow model was then proposed, using fractional calculus and 475 

generalizing the D-F equation, to efficiently capture the impact of both preferential flow paths and low-conductivity zones 476 

on flow response due to system heterogeneity, without the burden to map detailed medium properties. The fractional PDEs 477 

can also be applied to quantify other flow processes in the hydrologic cycle, including overland surface runoff. For details, 478 

see Refs. [128,129] . (Contributed by Yong Zhang and HongGuang Sun, Hydrology). 479 

7.4. Application of fractional derivative model to sediment bed-load transport 480 

In recent years, it has been found that anomalous diffusion exists in the process of bed-load transport. Bed sediment 481 

transport in rivers is scale dependent, with anomalous and Fickian scaling dominate at different scales. However, it is 482 

difficult to capture such phenomena using traditional empirical models. On this basis, various models based on fractional 483 

derivatives are proposed. The definition of fractional derivative includes memory property that can well capture the time 484 

non-locality and the spatial non-locality of bed-load transport. Such models explain the inherent mechanism of anomalous 485 

diffusion of bed-load transport by assuming the heavy tailed distribution of the waiting time and jump step. A series of 486 

experiments verify the accuracy of the fractional derivative model for capturing anomalous diffusion at the laboratory scale. 487 

For details, see [130,131] . (Contributed by ZhiPeng Li and HongGuang Sun, Sediment transport). 488 

7.5. Variable-order fractional-derivative model to describe transient dispersion in heterogeneous media 489 

Many numerical experiments and field observations of solute transport indicate that the growth of contaminant plumes 490 

may not exhibit a constant scaling through heterogeneous porous and fractured media, but can rather transition between 491 

diffusive states at various transport scales, and the diffusion process changes with time and space [132] . The transition 492 

is usually attributed to physical properties of the medium, e.g. spatial variations in medium heterogeneity. The solute 493 

transport equation model based on Fick’s law is difficult to characterize the dynamic process accurately. Hereby a variable 494 
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order fractional derivative model was proposed to describe transient dispersion from sub-diffusion to super-diffusion 495 

[133,134] . The variable order fractional model can well characterize above transition, with the scale parameter being a 496 

linear function of time or space. The applicability and accuracy of VFDM were checked against both numerical theory and 497 

a set of published experimental data. (Contributed by Shiqian Nie and HongGuang Sun, Solute transport). 498 

7.6. Chemical reactions in underground water 499 

The chemical reactions in aquifers are not isolated from the surrounding systems but related to the water dynamics in 500 

subsurface. Many previous investigations show the dispersion of contaminants does not display Fickian scaling. It is worth 501 

a try to apply anomalous transport. Fractional dispersion equations are proposed to solve the problem while the traditional 502 

advection –diffusion equation could not describe the transport process accurately. Thus, the fractional reaction –diffusion 503 

equation was presented based on the anomalous transport process of the reactive contaminants. Meanwhile, laboratory 504 

experiments show that the tracer breakthrough curves exhibit subdiffusive behavior with a heavy tail, supporting the use 505 

of power-law memory function in time. One could notice that on one hand, the memory has a great effect on the evolution 506 

of reactants; on the other hand, the history of the reaction also affects the memory. Thus, it is necessary to propose and 507 

develop fractional reaction-diffusion equations that are consistent with the system. For details, see [135,136] . (Contributed 508 

by HongGuang Sun and XiaoTing Liu, Environmental chemistry). 509 

8. Materials 510 

8.1. Fractional derivative model for shape memory polymers 511 

A shape-memory polymer (SMP) is a polymeric material that is capable of memorizing its original shape, and can acquire 512 

a temporary shape upon deformation and returns to its permanent shape in response to an external stimulus such as a 513 

temperature change. SMPs have been widely used from industrial to medical applications and even everyday life [137,138] . 514 

Since the properties of SMPs are temperature dependent and often very sensitive to an external temperature change, 515 

their accurate modeling has been a very challenging issue. The previously developed integer-order differential equation 516 

models often have a very complicated form and typically contain a large number of parameters to be determined. In recent 517 

years, fractional differential equation (FDE) models have been used to model these problems, and have shown to be capable 518 

of describing complex viscoelastic behaviors using only a few parameters. 519 

However, SMPs can have significant changes of their shapes depending on whether an external stimulus temperature 520 

change exceeds their prescribed temperature, which in turn have significant impact on their microscopic network structure. 521 

In the process the temperature can change significantly which in turn has significant impact on the physical properties of 522 

the SMP materials. Consequently, the constant-order fractional differential equation model cannot fully model the entire 523 

process well. Li et al. [139] accordingly proposed a data-driven variable-order FDE model, which was shown to better 524 

describe the shape-memory behaviors of amorphous polymers than its constant-order analogue. (Contributed by Hong 525 

Wang, Shape-memory polymer). 526 

8.2. Fractional viscoelastic-plastic constitutive model 527 

In the recent works, we have developed several fractional viscoelastic-plastic models to describe the thermomechanical 528 

behaviors of amorphous polymers. Specifically, a fractional viscoelastic model is developed for amorphous thermoplastics 529 

with two parallel fractional Maxwell elements, which aims to describe the glass transition and viscous flow, respectively. 530 

The model is able to describe the stress relaxation, dynamic properties and stress response at various temperatures and 531 

strain rates. We also develop a 3D finite deformation fractional viscoplastic model, which is an extension of the fractional 532 

Zener model. The Eyring model is adopted for stress activated viscous flow. The model is able to describe the stress response 533 

of amorphous thermosets across the glass transition. For details, see [140–142] . (Contributed by Rui Xiao, Viscoelastic-plastic 534 

materials). 535 

9. Economic 536 

9.1. Basic concepts of economic processes with memory 537 

All previous investigations on the economic processes with memory were considered within the discrete-time approach. 538 

In economics the fractional differencing and integrating have been suggested in the works of Granger and Joyeux, and 539 

Hosking, using the discrete time approach only. These fractional differencing and integrating are used in economics without 540 

direct connection with the fractional calculus and the well-known finite differences of non-integer orders. We demonstrate 541 

that the fractional differencing and integrating, which are used in economic papers, are the well-known Grunwald –Letnikov 542 

fractional differences, which have been suggested one hundred and fifty years ago. Recently the fractional calculus has been 543 

applied to the continuous-time finance. These papers consider only the financial processes. The basic economic concepts for 544 

economic processes with memory are not considered. We consider economic processes with power-law fading memory in 545 
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the framework of the continuous time approach. To describe the economic processes with power-law memory, we gener- 546 

alize the basic concepts of economic theory. Using the fractional calculus to describe the power-law memory, we proposed 547 

generalizations of some basic economic notions, such as the elasticity of fractional order, the accelerator with memory, the 548 

marginal value of non-integer by employing the fractional calculus as a powerful tool to describe the power-law memory. 549 

We have suggested the marginal value of non-integer order, the elasticity and measures of risk aversion, the concepts of 550 

accelerator and multiplier with memory for power-law memory processes and deterministic factor analysis. For details, see 551 

[143–145] and related references. (Contributed by Valentina V. Tarasova and Vasily E. Tarasov, Mathematical economics). 552 

9.2. Macroeconomic models with dynamic memory 553 

A generalization of the basic macroeconomic concepts has been proposed within the continuous time approach for 554 

economic processes with memory. A discrete-time accelerator for economic processes with the power-law memory also 555 

has been suggested for the case of periodic sharp splashes (kicks). Using the concepts of accelerator and multiplier with 556 

memory, we generalize the macroeconomic models by taking account the dynamic memory with power-law fading. The 557 

need to take into account memory effects in macroeconomics is based on the fact that economic agents remember the 558 

history of changes of economic processes. These changes can then be taken into account when making economic decisions, 559 

which changes the behavior of the agent. We proposed the generalization of the following macroeconomic models: the 560 

natural growth model, the Harrod –Domar model, the Keynes model, growth model with constant pace, logistic growth 561 

model, the dynamic intersectoral models, the Leontief (input Coutput) model and time-dependent dynamic economic 562 

models. The proposed economic growth models with power-law memory have shown that the memory effects can play an 563 

important role in economic phenomena and processes. For details, see [146–148] and related references. (Contributed by 564 

Valentina V. Tarasova and Vasily E. Tarasov, Mathematical economics). 565 

10. Multidisciplinary in engineering fields 566 

10.1. Anomalous dielectric properties 567 

In Maxwell’s equations, which govern the propagation of electromagnetic waves, the interaction between polarization 568 

and electric fields is described by the complex susceptibility. This is an empirical law derived by matching experimental 569 

data in some mathematical model. After the simpler Debye model, more involved models have been proposed [149] . In 570 

the Havriliak –Negami (HN) model, two real powers are introduced to fit the anomalous dielectric properties observed in 571 

disordered materials and heterogeneous systems; the normalized HN frequency-domain susceptibility is 572 

ˆ χHN 

(i ω) = 

1 (
1 + 

(
i τ� ω 

)α
)γ , 0 < α ≤ 1 , 0 < γ ≤ 1 , 

with τ � the relaxation time. In the time-domain, the HN susceptibility can be described by pseudo-fractional differential 573 

operators obtained by inversion of the so-called Prabhakar integral [150] 574 (
0 J 

α
t + τ−α

� 

)γ
f (t) = 

∫ t 

0 

(t − u ) αγ −1 E 
γ
α,αγ (−(t − u ) ατ−α

� ) f (u ) d u, (1) 

where E 
γ
α,β

(z) is the three parameter Mittag –Leffler function, usually known as the Prabhakar function [151] . 575 

The use of fractional-order operators like (1) allows a more accurate investigation and simulation of electromagnetic 576 

fields in materials with anomalous dielectric properties; in the particular case γ = 1 (Cole-Cole model) standard fractional 577 

differential equations are involved. (Contributed by Roberto Garrappa, Anomalous dielectric materials). 578 

10.2. Computation of supercapacitors parameters using fractional-order electrical mode ling 579 

Supercapacitors are electrochemical energy storage devices known for their high power performance, excellent reversibil- 580 

ity, long-term cyclability, low maintenance, and ease of integration into electronic systems. Because of their nano-architected 581 

electrodes material and structure, and their electrochemical design, the spectral impedance of supercapacitors shows a clear 582 

deviation from the −90 o phase angle of an ideal capacitor [152–154] . Nonetheless, the evaluation of their electric behavior 583 

is usually described using classical conventional capacitors formulae. Supercapacitors have been mode led as the collection 584 

of many discrete resistive and capacitive elements representing the distribution of time constants in the device similar to a 585 

transmission-line. This is, however, rather an artificial view of the way these devices operate and is not entirely satisfactory 586 

when fitting experimental data. The constant phase element (CPE) model of impedance ( Z = 1 / jQω 

α) and its fractional- 587 

order time-domain counterpart ( i Q (t) = Qd αv Q / dt α) where Q is the CPE parameter and α (0 < α ≤ 1) is the CPE fractional 588 

exponent, is another approach that reduces the number of variables while at the same time exhibit excellent goodness-of-fit 589 

[155] . With CPE mode ling, we derived in [153,154] equations that estimate the effective capacitance and energy stored in 590 

super- capacitors which are very important for the successful deployment of these devices in their ever growing applications. 591 

(Contributed by Ahmed S. Elwakil (Electrical Engineering) and Anis Allagui (Materials Electrochemistry) and Todd Freeborn 592 

(Electrical engineering)). 593 
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10.3. Anomalous diffusive transport in heterogeneously distributed nano-scale digital rock 594 

Shale gas has become an important energy resource in the world. However, the mechanism in its recovery is far from 595 

being understood, because shale formation often has insufficient permeability due to the existence of nano-pores. Conse- 596 

quently, fluid flows in confined nano-scale heterogeneous structures exhibit physical behaviors that are not observed in 597 

large-scale structures. Molecular dynamics (MD) has proven to be a rigorous approach for modeling fluid flow in nano-scale 598 

materials, but is computationally very expensive and often intractable in applications. An example run of an MD simulation 599 

of a diffusive transport in a digital rock of a size of 25 nm 

3 over a time period of 3 ns on a cluster with 32 processors takes 600 

about 2 weeks of CPU times. Zhao et al. [159] developed an integrated fractional partial differential equation (FPDE)-MD 601 

upscale modeling of anomalous diffusive transport in heterogeneously distributed nano-scale digital rock. The reason is that 602 

for a heterogeneous porous medium with confined pore spaces, large quantity of gas molecules may get absorbed to the 603 

micropores in rock [157,158] . Thus, the travel time of the adsorbed gas molecules may deviate from that of the gas molecules 604 

in the bulk phase [160] , leading to a subdiffusive transport [156] . The MD simulation is used to generate the diffusivity of 605 

the pores. Representative numerical experiments show that a simulation of diffusive transport in a digital rock of a size of 606 

9 × 10 4 nm 

3 over a time period of 1 . 8 μs on a laptop takes about several hours of CPU time, leading to an improvement of 607 

computational efficiency of millions of times than the MD simulations. (Contributed by Hong Wang, Energy). 608 

10.4. Evolution equation with fractional Laplacian: modeling, analyzing, and computing 609 

In general, if the diffusion in R 

n obeys Fick’s law, then the classical Laplace operator (or Laplacian for simplicity) 610 

� = 

n ∑ 

i =1 

∂ 2 

∂x 2 
i 

can accurately characterize such diffusion. But if the diffusion in R 

n obeys a power-law distribution rather than Fick’s law, 611 

such anomalous diffusion can be genuinely reflected by the fractional Laplacian, which is defined below, 612 

(−�) s v (x ′ ) = C n,s P . V . 

∫ 
R n 

v (x ′ ) − v (ξ ) 

| x ′ − ξ | n +2 s 
d ξ , 

where the parameter s ∈ (0, 1), C n , s is a normalizing constant and P.V. stands for the Cauchy principle value. 613 

According to Caffarelli –Silves tre extension technique [161] , the following elliptic equation with fractional Laplacian 614 {
(−�) s v = g, in 
, 

v = 0 , on R 

n \ 
, 
(2) 

can be lifted to a mixed boundary value equation as follows, 615 { ∇ · (z β∇w ) = 0 , in 
 × { z| z ∈ R 

+ } , 
∂w 

∂z β
= d s g, on 
 × { z = 0 } , 

w = 0 , on ∂
 × [0 , ∞ ) . 

(3) 

So v ( x ) = lim z→ 0 + w ( x , z) . The main advantage of the extension described above is that it enables us to solve the 616 

local equation (3) instead of dealing with the nonlocal operator (−�) s in Eq. (2) . In other words, it restricts the volume 617 

constrained data to boundary data directly. 618 

How to model anomalous diffusion and/or spatial heterogeneity in R 

n using fractional Laplacian, and how to charac- 619 

terize history dependance in time using Caputo derivative are likely the key problems in fractional modeling. Once the 620 

mathematical models are available, the next step is to determine the existence, uniqueness, and regularity of the solution 621 

to the established mathematical equation. Solving these equations is by no means a facile problem due to the fractional 622 

operators. Similar to the integer-order partial differential equations, we can choose typical numerical methods such as 623 

finite difference methods and finite element methods [162] to solve them. Although there have existed a few works, for 624 

example [163,164] and limited references cited therein, there are still lots of unsolved problems [165] . In the end, we need 625 

to check whether or not the established mathematical models really and truly reflect the dynamical behaviors of real world. 626 

(Contributed by Changpin Li, Interdisciplinary). 627 
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