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a b s t r a c t

A continuous time fractional-order feedforward control algorithm for tracking desired time varying input

signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and

poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Track-

ing Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-

cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds

of systems has a targeted FZPETC design control strategy. The improved tracking performance has been eval-

uated successfully by applying the proposed controller to three different kinds of fractional-order controlled

systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not

have available future tracking trajectory information or have problem in high frequency disturbance rejec-

tion if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop ther-

mal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, the fractional calculus has attracted lots of

attention in many research fields, such as physics [1], mechatronics

systems [2,3], signal processing [4], biological system [5], chemistry

[6], etc. Among them, fractional-order (FO) control system theory

and application developed even faster. A lot of significant work aim-

ing at FO controller design algorithm has been done in recent years

[7–11]. However, most of the related studies focused on the design of

FO feedback controllers. Normally, feedback controllers are aiming at

regulation against disturbance input. But when perfect tracking per-

formance is required in control loop, the FO feedforward controller

will also be necessary [12].

There are mainly two kinds of trajectory tracking control: one is

for tracking a given desired trajectory, and the other is for track-

ing an unknown trajectory [13]. In this paper, we focus on the for-

mer one with two FO controllers (i.e. a feedforward FO controller

and a predesigned feedback FO controller) in the system to be

controlled. The feedback FO controller is used for dynamic system
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performance regulation and the FO feedforward controller helps in

achieving better tracking performance. The feedforward controller

proposed in this paper is designed based on the system inversion

theory [14]. For minimum phase systems without non-cancellable

zeros and poles (zeros and poles which stand in unstable region or

on stability boundary) in their closed-loop transfer functions, the

inversed feedforward controller is easy to be designed. However, the

design process turns to be complicated when the controlled system

has non-cancellable zeros. The non-cancellable zeros will turn into

unstable poles after inversion and make the whole system unsta-

ble or oscillating. This complicated inversion problem can be solved

by an effective tracking control algorithm named Zero Phase Error

Tracking Control (ZPETC). The ZPETC tracking algorithm which elim-

inated the phase error caused by non-cancellable zeros and real-

ized a perfect tracking was put forward by Tomizuka [15]. Ever

since, several effective feedforward tracking control algorithms have

been proposed based on ZPETC. Torfs et al. gave more insight into

ZPETC and compensated the gain error by adding additional feed-

forward terms [16]; Haack and Tomizuka discussed about insert-

ing a filter before feedforward controller to improve tracking perfor-

mance in Ref. [17]; a similar work which assumed there were some

slowly varying parts in the closed-loop system transfer function

was studied by Tsao and Tomizuka in Ref. [18]; an improved ZPETC

designed without factorization of zero polynomial was proposed by

Adnan et al. [19].
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However, the existing ZPETC related tracking algorithms are

mainly used for integer-order (IO) systems and they are unavail-

able to the rapid developed FO systems. In this paper, we focus

on the design of continuous time Fractional-Order Zero Phase Error

Tracking Controller (FZPETC) which can be applied on both IO and

FO systems. Conventional ZPETC was generated in discrete-time

domain, and had to be converted into continuous domain when it

was applied on continuous systems. Nevertheless, thanks to the fast

computational tools today, a lot of discrete time systems can be

replaced by continuous time ones with high sampling frequencies

[13]. Especially for FO control systems, more continuous time sys-

tem transfer functions are used. This is because the conversion of

FO transfer functions from continuous time domain to discrete time

domain is more complicated and may not be so accurate compared

with IO systems.

The FZPETC proposed in this paper is essentially a differentia-

tor or high pass filter whose numerator order is larger than its

denominator order. Therefore, future desired trajectory informa-

tion is needed in the controller design process. The length of the

required future desired trajectory decides by the zero locations

and design specifications of the controlled system. The controlled

system with the proposed feedforward FZPETC and a predesigned

feedback controller is depicted in Fig. 1. The method of distin-

guishing cancellable zeros and non-cancellable ones and the tun-

ing methods of FZPETC aiming at different circumstances are pre-

sented respectively. Moreover, for systems with unavailable future

tracking trajectory information or having high frequency disturbance

rejection problem when the perfect tracking algorithm is applied,

an alternative quasi-perfect tracking control algorithm is also

presented.

The following of this paper is organized as: in section 2, the sta-

bility analysis method of FO control systems is given; the detailed

tuning rules of the proposed controller aiming at FO systems with

cancellable zeros, with zeros on stability boundaries and with non-

cancellable zeros are presented respectively in section 3; a quasi-

perfect tracking algorithm is presented in section 5 for the sys-

tems which cannot satisfy the perfect tracking requirements or have

problem in high frequency gain error; simulation and hardware-in-

loop experiment of tracking performance of FO systems are pre-

sented in section 4 and 6 to illustrate the effectiveness of the

proposed control strategy; finally, the conclusions are made in

section 7.

2. Stability of fractional order system

Before discussing about the tuning rules of FZPETC, one important

step is making clear of how to distinguish cancellable zeros and non-

cancellable zeros in the original closed-loop system. Compared with

IO control systems, the stability analysis of FO systems is quite dif-

ferent [20]. Several pioneer works have discussed about the stability

conditions of FO control systems [20–24]. A stability analysis method

of distributed parameter FO system with distributed delay has been

given in Ref. [21]; stability analysis of fractional differential system

using co-prime factorization algorithm was shown in Ref. [22]; in Ref.

[23], the stability conditions for interval FOLTI (Fractional-Order Lin-

ear Time Invariant) system have been discussed; a numerical investi-

gation of robust stability of FO uncertain system was discussed in Ref.

[25]; the general robust stability conditions for commensurate order

FO linear and nonlinear systems were proposed in Ref. [20]. Some of

these stability analysis methods were put forward for specific kinds

of FO systems, so an appropriate method should be chosen accord-

ing to the controlled FO system. In this paper, we use the general FO

linear system stability condition proposed in Ref. [20] without loss of

generality.

An FO control system can be generally described by the following

transfer function:

G(s) = b0s𝛽0 + b1s𝛽1 + · · · + bms𝛽m

a0s𝛼0 + a1s𝛼1 + · · · + ans𝛼n
= N(s)

D(s)
, (1)

where, a0, a1,…, an and b0, b1,…bm are constants which repre-

sent the coefficients of denominator and numerator; 𝛼0, 𝛼1,…, 𝛼n

(𝛼0 < 𝛼1 < · · · < 𝛼n) and 𝛽0, 𝛽1,…, 𝛽m (𝛽0 < 𝛽1 < · · · < 𝛽m) are

arbitrary real number orders of denominator and numerator respec-

tively.

The incommensurate order system in Equation (1) can be trans-

formed into a commensurate one as [26]:

G′(s) = b0 + b1s1∕𝜇 + · · · + bmsm∕𝜇

a0 + a1s1∕𝜇 + · · · + ansn∕𝜇 , (𝜇 > 1). (2)

It should be remarked here that most FO systems can be

expressed as Equation (2) [20]. The definition of G′(s) has one Rie-

mann surface with 𝜇 Riemann sheets [27].

Generally, set 𝜔 = s1/𝜇 , then the transfer function with operator

s in s-domain can be transformed into a complex 𝜔-domain with 𝜇

sheets in Riemann surface [20]. The original principal sheet of Rie-

mann surface is defined as −𝜋 < arg(s) < 𝜋. However, after the

mapping of 𝜔 = s1/𝜇 , the corresponding principal sheet transforms

into −𝜋/𝜇 < arg(𝜔) < 𝜋/𝜇. Namely, the right half unstable boundary

in s-domain becomes −𝜋/2𝜇 < arg(𝜔) < 𝜋/2𝜇 in 𝜔-domain. That is

to say, in s-domain, a stable system will not have right half poles. But

in 𝜔-domain, right half poles may exist in stable system as shown in

Fig. 2.

Consider an FO pseudo-polynomial as:

D(s) = c1sq1 + c2sq2 + · · · + cksqk

= c1su1∕𝜇 + c2su2∕𝜇 + · · · + cksuk∕𝜇

= c1(s1∕𝜇)u1 + c2(s1∕𝜇)u2 + · · · + ck(s1∕𝜇)uk

, (3)

where, qi (i = 1, 2,…, k) = 𝜇i/𝜇 (i = 1, 2,…, k) and 1/𝜇 is the great-

est common divisor of qi [28]. Hence, the fractional degree (FDEG) of

polynomial D(s) is got as [28]:

FDEG{D(s)} = max{𝜇1, 𝜇2,… , 𝜇k}.

Then, the number of roots of D(s) in Equation (3) can be got from

the following proposition:

Proposition 1. [29]: Let D(s) be an FO polynomial with

FDEG{D(s)} = n, then the equation D(s) = 0 has exactly n roots on

the Riemann surface.

Fig. 1. Fractional order control system with feedforward and feedback controllers.
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Fig. 2. Stability regions of FO system.

For FOLTI commensurate order system whose poles are in general

complex conjugate, the stability condition can be stated as:

Theorem 1. [20]: A commensurate order system described by a

rational transfer function:

G(𝜔) = N(𝜔)
D(𝜔)

,

where, 𝜔 = s1/𝜇 , 𝜇 ∈ R+, (0 < 1/𝜇 < 2), is stable if only if

||arg(𝜔i)|| > 𝜋

2𝜇
,

with ∀𝜔i ∈ C (i ≤ n, n = FDEG{D(s)}) the i-th root of D(𝜔) = 0.

3. Continuous fractional order Zero Phase Error Tracking

Controller

For system with a zero/pole cancellation feedforward controller,

the zeros of the controlled system will become the poles of the

designed controller. In this paper, zeros of the closed-loop system

which exist out of the stable area or stand on the stability bound-

ary in theorem 1 are called non-cancellable zeros, and the oth-

ers are called cancellable zeros correspondingly. Since these non-

cancellable zeros will bring unstable or oscillating performance into

the system and they cannot be cancelled by feedforward controller

directly, the controller design methods of the systems with and with-

out non-cancellable zeros are different.

3.1. FZPETC for FO system without non-cancellable closed-loop zeros

Consider an FO system whose closed-loop transfer function is

expressed as Equation (1). It should be noted that the transfer func-

tion already includes the controlled plant and feedback controller.

The relationship between the reference input signal R(s) and actual

output signal Y(s) can be yielded as:

Y(s) = G(s)R(s). (4)

Suppose there is a feedforward tracking controller with the fol-

lowing form:

R(s) = F(s)Yd(s) =
D(s)
N(s)

Yd(s), (5)

where, Yd(s) is the desired output. Thus, when the initial conditions

are zero, the overall transfer functional of the system is Y(s) = Yd(s).

This means the controlled system can provide perfect tracking per-

formance without any error. So Equation (5) gives the formulation of

FZPETC for system without non-cancellable zeros. Note that if there

is a delay term in G(s), Yd(s) should have the same length ahead sig-

nal in order to compensate the delay. However, it has already been

pointed out in Ref. [15] that if there is any non-cancellable zero in

G(s), the output of the system with the reference signal in Equation

(5) will explode or oscillate. Even if all the zeros are in the stable

area, the zeros located on the stability boundary may make the out-

put highly oscillate.

3.2. FZPETC for FO system with non-cancellable closed-loop zeros

The non-cancellable closed-loop zeros cannot be inversed directly

in neither continuous time domain nor discrete time domain. There-

fore, the remained non-cancellable zeros will bring undesirable

tracking error including phase error and gain error into the system.

The feedforward controller tuning method for this kind of system

will be more complex than that of system without non-cancellable

zeros.

Also consider the closed-loop system in Equation (1), and here we

factorize the numerator N(s) into two parts as below:

N(s) = Na(s)Nu(s), (6)

where,

Na(s) = ba
0

s
𝛽a

0 + ba
1
s
𝛽a

1 + · · · + ba
m−k

s
𝛽a

m−k (cancellable zeros),

Nu(s) = bu
0
s
𝛽u

0 + bu
1
s
𝛽u

1 + · · · + bu
k

s
𝛽u

k (non − cancellable zeros),

k, m ∈ R+, k ≤ m. Therefore, all the cancellable closed-loop zeros

which will become the poles of the feedforward controller are

included in Na(s), and Nu(s) contains the other non-cancellable ones.

Thus, the tracking controller which can cancel all the cancellable

zeros can be achieved as:

R(s) = F(s)Yd(s) =
D(s)

Na(s)Nu(1)
Yd(s), (7)

where, Nu(1) is a scaler which is equal to the steady state gain of the

closed-loop system. So that the gain error will be eliminated. Then,

for zero initial state, substitute Equation (7) into Equation (4), and

the overall system transfer function is obtained as:

Y(s) = Nu(s)
Nu(1)

Yd(s). (8)

If Equation (7) is used as the feedforward controller, phase error

will still exist in Equation (8). The tracking performance is not per-

fect. So a controller which can eliminate phase error in Equation (8)

will be needed. When talking about phase error problem, the system

should be transferred into frequency domain first. Transfer Equation

(8) into frequency domain by substituting j𝜔 for s as:

Y( j𝜔) = Nu( j𝜔)
Nu(1)

Yd( j𝜔). (9)
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Fig. 3. FZPETC algorithm for FO system with non-cancellable zeros.

From Equation (9), it is clear that the phase error is generated by

H( j𝜔) = Nu( j𝜔)/Nu(1).

Then H( j𝜔) can be written as:

H( j𝜔) = Re[H( j𝜔)] + jIm[H( j𝜔)], (10)

where, Re[H( j𝜔)] and Im[H( j𝜔)] are the real and imaginary parts of

H( j𝜔) respectively. Then, by using Euler’s function, it has:

( j𝜔)𝛼 =
[
𝜔
(

cos
𝜋

2
+ jsin

𝜋

2

)]𝛼
=
(
𝜔e

𝜋
2

j
)𝛼

= 𝜔𝛼e
𝛼𝜋
2

j = 𝜔𝛼
(

cos
𝛼𝜋

2
+ jsin

𝛼𝜋

2

)
,

(−j𝜔)𝛼 =
[
𝜔
(

cos
(
−𝜋

2

)
+ jsin

(
−𝜋

2

))]𝛼
=
(
𝜔e

− 𝜋
2

j
)𝛼

= 𝜔𝛼e
− 𝛼𝜋

2
j = 𝜔𝛼

(
cos(−𝛼𝜋

2
) + jsin

(
−𝛼𝜋

2

))

= 𝜔𝛼
(

cos
𝛼𝜋

2
− jsin

𝛼𝜋

2

)
,

where, Re[H(j𝜔)] and Im[H(j𝜔)] can be obtained as:

Re[H(j𝜔)] =
(bu

0
𝜔
𝛽u

0 cos
𝛽u

0
𝜋

2
+ bu

1
𝜔
𝛽u

1 cos
𝛽u

1
𝜋

2
+ · · · + bu

k
𝜔
𝛽u

k cos
𝛽u

k
𝜋

2
)

(bu
0
+ bu

1
+ · · · + bu

k
)

,

Im[H(j𝜔)] =
(bu

0
𝜔
𝛽u

0 sin
𝛽u

0
𝜋

2
+ bu

1
𝜔
𝛽u

1 sin
𝛽u

1
𝜋

2
+ · · · + bu

k
𝜔
𝛽u

k sin
𝛽u

k
𝜋

2
)

(bu
0
+ bu

1
+ · · · + bu

k
)

.

(11)

Then, we get H(−j𝜔) = Re[H(j𝜔)] − jIm[H(j𝜔)], where Re[H(j𝜔)],

Im[H(j𝜔)] are also given by Equation (11). Therefore,

H(j𝜔)H(−j𝜔) = Re[H(j𝜔)]2 + Im[H(j𝜔)]2. (12)

Notice that Equation (12) does not have an imaginary part. It

means that there is no phase shift introduced by Equation (12). So

if Equation (12) is the overall transfer function from Yd(s) to Y(s), the

phase error will be zero. On the whole, the FZPETC feedforward con-

troller can be expressed as depicted in Fig. 3 as:

R(s) = F(s)Yd(s) =
D(s)Nu(s)Nu(−s)

Na(s)[Nu(1)]2
Yd(s). (13)

Three remarks should be put here in respect of the FZPETC pro-

posed in Equation (5) and Equation (13):

1. If there is a delay term in G(s), Yd(s) should have the same length

ahead signal to compensate the delay.

2. The order of the numerator of FZPETC may be greater than that

of the denominator. This implies that FZPETC may act as a kind

of differentiator and may utilize the further desired trajectory

information. Thus the desired tracking signal should be known.

Moreover, as the same to other differentiators, system controlled

by FZPETC may be sensitive to noise [13]. However, it will not

be a problem if the reference signal is known as a smooth func-

tion. We will also propose a quasi-perfect tracking scheme in the

later section to help solve the high frequency disturbance rejec-

tion problem.

3. It has already been discussed in Ref. [15] that if the desired track-

ing input is a sinusoidal signal with high frequency, the gain error

may also be taken into consideration. It may be eliminated by

a scaler 1/[Re[H(j𝜔)]2 + Im[H(j𝜔)]2] with Re[H(j𝜔)], Im[H(j𝜔)]

given in Equation (11). Furthermore, it was pointed out in Ref.

[13] that the gain error would become larger in high frequency

if the input signal includes different frequency components. This

may cause velocity error in point-to-point motion control process

when fast tracking applies. The authors of Ref. [13] have put for-

ward a compensated way aiming at this problem, and it may be a

further research orientation of FZPETC.

4. Simulation

In this section, three different kinds of FO closed-loop systems (i.e.

FO system with cancellable zeros, FO system with zeros on stability

boundary, FO system with non-cancellable zeros) are used to verify

the effectiveness of the proposed FZPETC algorithm. The simulation

can be accomplished with the help of the tools introduced in Ref.

[30].

4.1. FO system with cancellable zeros

Consider an FO system with closed-loop transfer function as:

G1(s) =
s2.4 + 1.8s1.6 + 1.2006s0.8 + 0.57675

s3.2 + 1.2s2.4 + 3.02s1.6 + 4.396s0.8 + 2.1389
, (14)

where, D(s) = s3.2 + 1.2s2.4 + 3.02s1.6 + 4.396s0.8 + 2.1389. Since the

denominator does not need to be factorized in the presented control

scheme, all the denominators of the closed-loop systems discussed

in this section will be the same. This will make readers understand

the proposed control algorithm for different types of systems easily.

According to section 2, the incommensurate order system in

Equation (14) can be transformed into a commensurate one as:

G1(s) =
(s0.8)3 + 1.8(s0.8)2 + 1.2006s0.8 + 0.57675

(s0.8)4 + 1.2(s0.8)3 + 3.02(s0.8)2 + 4.396s0.8 + 2.1389
, (15)

so that we can set 𝜔 = s0.8 with 𝜇 = 1.25 to transform the transfer

function from s-domain into 𝜔-domain:

G1(𝜔) =
𝜔3 + 1.8𝜔2 + 1.2006𝜔 + 0.57675

𝜔4 + 1.2𝜔3 + 3.02𝜔2 + 4.396𝜔 + 2.1389
. (16)

According to Proposition 1 and Theorem 1, the system has four

poles i.e. P1,2 = 0.2 ± 1.7 j, P3,4 = −0.8 ± 0.3 j and three zeros i.e.

Z1 = −1.2, Z2 = −0.3 ± 1.7 j, and the stability boundary is ||arg𝜔i
|| >

𝜋

2×1.25
= 2

5
𝜋. The stability boundary and poles, zeros positions are

shown in Fig. 4. Clearly from Fig. 4, the system does not have any

non-cancellable pole or zero.

After making clear of the controlled closed-loop system type, we

can design the FZPETC referring to Equation (5) in section 3-A as:

R(s) = s3.2 + 1.2s2.4 + 3.02s1.6 + 4.396s0.8 + 2.1389

s2.4 + 1.8s1.6 + 1.2006s0.8 + 0.57675
Yd(s), (17)

where, Yd(s) is the Laplace transform of the desired tracking signal

yd(t) = 1.3 sin(t + 𝜋

6
).
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Fig. 4. Pole-zero locations of G1(𝜔) (‘×’ stands for pole and ‘◦’ stands for zero).

The phase and tracking performance comparisons of G1(s) with

and without the proposed FZPETC are depicted in Fig. 5 and Fig. 6

respectively. Similar to Fig. 4 in Ref. [15], the phase shift turns into

zero for all frequencies. It also means that there will not have any

phase error between the desired tracking signal and actual output

signal. From Fig. 6, it is shown that the tracking performance of the

controlled system with FZPETC has almost no error in both phase

and amplitude. However, the tracking performance of the original

closed-loop system seems a little off in both aspects.

4.2. FO system with zeros on stability boundary

The closed-loop system to be controlled in this subsection is:

G2(s) =
s2.4 + 0.4s1.6 + 0.71536s0.8 + 2.0104

D(s)
. (18)

Obviously, the poles of G2(s) in Equation (18) are the same with

that of G1(s) in Equation (14) as well as the commensurate transform

operator 𝜔 = s0.8 with 𝜇 = 1.25. So G2(s) can be transformed into

𝜔-domain as:

Fig. 5. Phase comparison of G1(s) (solid line stands for original G1(s), and dash line

stands for G1(s) + FZEPTC).

Fig. 6. Tracking performance comparison of G1(s) (solid line stands for reference, green

dash line stands for G1(s), and red dash line stands for G1(s) + FZPETC).

G2(𝜔) =
𝜔3 + 0.4𝜔2 + 0.71536𝜔 + 2.0104

𝜔4 + 1.2𝜔3 + 3.02𝜔2 + 4.396𝜔 + 2.1389
. (19)

Moreover, because of the same transform operator, the stability

boundary of G2(s) will also be the same with G1(s). From Equation

(19), the zeros of G2(s) can be got as Z1 = −1.2, Z2,3 = −0.4 ± 1.231 j,

and the pole-zero map plot is given in Fig. 7. Unfortunately, different

from G1(s), G2(s) has two zeros i.e. Z2, 3 = −0.4 ± 1.231 j standing

on the stability boundary. It means the system cannot be inverted

directly. Therefore, we first change Equation (18) into zero-pole form

as:

G2(s) =
(s0.8 + 1.2)(s0.8 − 0.4 + 1.231 j)(s0.8 − 0.4 − 1.231 j)

D(s)
, (20)

then, the feedforward controller proposed in this paper can be

achieved based on Equation (13) as:

R(s) = D(s)(s0.8 − 0.5)(−s0.8 − 0.5)…
(s0.8 + 0.4 + 0.7 j)(s0.8 + 0.4 − 0.7 j)…

(−s0.8 − 0.4 + 1.231 j)(−s0.8 − 0.4 − 1.231 j)
[(10.8 − 0.4 + 1.231 j)(10.8 − 0.4 − 1.231 j)]2

Yd(s)
, (21)

Fig. 7. Pole-zero locations of G2(𝜔) (‘×’ stands for pole and ‘◦’ stands for zero).
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Fig. 8. Phase comparison of G2(s) (solid line stands for original G2(s), and dash line

stands for G2(s) + FZEPTC).

where, Yd(s) is the same with that of Equation (17).

Fig. 8 and Fig. 9 show the comparisons of phase and tracking per-

formance with and without FZPETC of G2(s). The closed-loop system

with the proposed FZPETC still gives almost perfect tracking per-

formance in Fig. 9. The amplitude of the system without FZPETC is

right, but the phase error is relatively large. Moreover, the beginning

of the tracking trajectory of the system without FZPETC oscillates

severely.

4.3. FO system with non-cancellable zeros

The closed-loop system discussed in this subsection also has the

same denominator in its transfer function as the systems considered

above:

G3(s) =
s2.4 + 0.3s1.6 + 0.25s0.8 − 0.325

D(s)
. (22)

Therefore, it also has the same poles, transform operator and sta-

bility boundary as G1(s) and G2(s), and the 𝜔-domain G3(𝜔) can be

Fig. 9. Tracking performance comparison of G2(s) (solid line stands for reference, green

dash line stands for G2(s), and red dash line stands for G2(s) + FZPETC).

Fig. 10. Pole-zero locations of G3(𝜔) (‘×’ stands for pole and ‘◦’ stands for zero).

obtained as:

G3(𝜔) =
𝜔3 + 0.3𝜔2 + 0.25𝜔 − 0.325

𝜔4 + 1.2𝜔3 + 3.02𝜔2 + 4.396𝜔 + 2.1389
. (23)

Fig. 10 illustrates the zero-pole locations of G3(s) and shows that

there is one non-cancellable zero in the three zeros of the system

i.e Z1 = −0.5, Z2 = −0.4 ± 0.7 j. Obviously, the former one is a non-

cancellable zero. Then, factorize the numerator of G3(s) as:

G3(s) =
(s0.8 − 0.5)(s0.8 + 0.4 + 0.7 j)(s0.8 + 0.4 − 0.7 j)

D(s)
. (24)

Therefore, the proposed FZPETC can be achieved as:

R(s) = D(s)(s0.8 − 0.5)(−s0.8 − 0.5)
(s0.8 + 0.4 + 0.7 j)(s0.8 + 0.4 − 0.7 j)(10.8 − 0.5)2

Yd(s), (25)

where, the expression of Yd(s) is the same to that in Equations (17)

and (21).

The phase comparison of G3(s) in Fig. 11 shows zero shift of sys-

tem with FZPETC as expected. The sinusoidal tracking performance

with FZPETC in Fig. 12 also performs much better compared with

Fig. 11. Phase comparison of G3(s) (solid line stands for original G3(s), and dash line

stands for G3(s) + FZEPTC).
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Fig. 12. Tracking performance comparison of G3(s) (solid line stands for reference,

green dash line stands for G3(s), and red dash line stands for G3(s) + FZPETC).

that without FZEPTC. A problem which occurs in last subsection

also appears here that the beginning part of the system without

FZPETC oscillates a lot. But this does not happen in that of the system

with FZPETC. On a whole, it is verified from the simulation results

that the proposed FZPETC can help systems with and without non-

cancellable zeros achieve satisfactory tracking performances.

5. Quasi-perfect tracking

The perfect tracking algorithm for FO system has been discussed

in the above sections. However, perfect tracking is an ideal perfor-

mance which may be quite hard to be achieved in practice. This is

because the improper expressions in Equation (5) and Equation (13)

are hard to obtain in some practical situations. Moreover, the per-

fect tracking controller may bring some aggressive behaviours to the

system. The controlled system may also be quite sensitive to high

frequency disturbance. In this section, a quasi-perfect tracking algo-

rithm which gives an alternative option in achieving better tracking

performance in high frequency is proposed. This algorithm is also

effective in dealing with the improper problem.

In section 3, the overall transfer function Ti(s) in Fig. 1 was made

equal to 1, so that the output signal would track the reference signal

perfectly. But this may need an improper feedforward controller and

may bring in some problems to the system in high frequency as men-

tioned above. Here, we make a trade off between the perfect tracking

performance and the problems by setting Ti(s) as:

Ti(s) = F(s)G(s) = ( 1

𝜏s + 1
)𝛼, (26)

where 𝛼 can be an arbitrary order, 𝜏 is defined by users, and F(s) is

achieved according to Equation (5) or Equation (13). In this way, the

improper problem is solved and the a quasi-perfect tracking can be

achieved by tuning 𝛼 and 𝜏 in Equation (26). We suggest to set the

order 𝛼 between 0.8 and 1.5, so that a better performance with lower

overshoot and smaller rise time can be achieved. Taking 𝛼 = 1 in

Equation (26) for example, Fig. 13 shows the closed-loop bandwidth

difference between systems with 𝜏 = 1 to 𝜏 = 10. It is illustrated

that the bandwidth of the overall system can be adjusted by 𝜏 , which

also means the rise time and tracking performance can be improved

by changing the values of 𝛼 and 𝜏 . Moreover, in normal condition,

the amplitude of the system at high frequency will drop rapidly to

avoid high frequency disturbance. But if the overall transfer function

in Fig. 1 is set to 1, the amplitude of the system in high frequency may

increase rapidly. This will bring troubles into the system. However,

Fig. 13. Different closed-loop bandwidths with different 𝜏.

this problem can be solved by setting 𝛼 in Equation (26) into differ-

ent values, so that the slope of the amplitude curve of the system in

frequency domain can be set into −20𝛼 dB to avoid high frequency

disturbance.

In order to verify the effectiveness of the quasi-perfect FZPETC

tracking algorithm proposed in this section, a simulation comparison

is accomplished. The controlled system is a tractor with the transfer

function P(s) shown in Ref. [31].

P(s) = 4.9

s2(s2 + 3.57s + 11.36)
. (27)

The unit step input tracking performance comparison of the sys-

tem shown in Equation (27) controlled by three different controllers,

namely the PD controller (P = 0.01, D = 3), PD𝜇 controller (P = 0.011,

D = 3.3, 𝜇 = 1.0865) designed in Ref. [31] and the quasi-perfect

FZPETC proposed in this section, is shown in Fig. 14. The parameters

of Ti(s) in Equation (26) are chosen as 𝜏 = 0.1 and 𝛼 = 3. Fig. 15 gives

the corresponding closed-loop bandwidth comparison. From Fig. 14,

it can be seen that the control performance of the system controlled

by FZPETC outperforms the other two in terms of smaller rise time

and overshoot. The wider closed-loop bandwidth in Fig. 15 also val-

Fig. 14. Tracking performance comparison (unit step input).
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Fig. 15. Comparison of closed-loop Bode diagrams.

idates the superiority of the system controlled by FZPETC. Fig. 16

shows the tracking performance comparison of a sinusoidal input

(1.3 sin(t + 𝜋

6
)). The amplitude of the tracking trajectory controlled

by the quasi-perfect FZPTEC is accurate, but the phase is a little off.

However, the tracking performances of the system with the other

two controllers fail a lot in both amplitude and phase. Though the

tracking performance of the system controlled by the proposed con-

trol algorithm is not completely perfect, but it has been improved

a lot compared with those controlled by the other two controllers.

Meanwhile, the improper expression problem is solved and the sys-

tem controlled by the quasi-perfect FZPETC will not be sensitive to

high frequency disturbance.

6. Experiment

In this section, the practicality of the proposed quasi-perfect

FZPETC control scheme is validated on a thermal peltier hardware-

in-the-loop experimental platform. The configuration of the peltier

platform is shown in Fig. 17 [32]. There are two peltier modules in the

system. Each of them is attached with a fan. The fans will be main-

Fig. 16. Tracking performance comparison (sinusoidal input).

Fig. 17. Configuration of peltier plate platform.

tained at a certain blowing speed when the peltiers are working. An

H-bridge circuit is set between each set of peltier and fan to actu-

ate the peltier. Four non-contact thermal sensors namely ‘5B, 5C, 5D,

5E’ are installed oppositely to the mental plate to monitor the tem-

perature change on the plate as shown in Fig. 18. The lower layer

control unit is an Arduino Uno board based on the Atmega328p-pu

microchip. The upper layer control action is done in Matlab/Simulink.

So that it is a typical hardware-in-the-loop platform.

The platform is originally a two-input-four-output system, but we

only focus on single-input-single-output FO controlled plant, so we

only use the left peltier and sensor ‘3C’ in our experiment. As men-

tioned in Ref. [32], the platform is essentially a nonlinear system,

but it can be approximated as a fractional-order transfer function

when the temperature changes in a small scale. Since we only use

one peltier and one sensor, there is no coupling problem in the sys-

tem. So the fitting model is a little different in gain and time constant

compared with that in Ref. [32]. Then, we first make system identi-

fication of the unit step response of the system. The fitting model is

achieved as Equation (28), and the model fitted curve and raw data

are shown in Fig. 19. It can be seen that the fitting model is quite

accurate.

Fig. 18. Thermal sensors of the peltier plate platform.
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Fig. 19. Fitting model and raw data.

Fig. 20. Comparison of profile tracking performance (upper) and control signals

(lower).

Gf (s) =
0.1385

23.59s0.9 + 1
. (28)

In this case, we first use a controller Cp(s) as below to regulate the

system:

Cp(s) = 13.3 + 0.56

s
. (29)

If we design the feedforward controller Fp(s) according to Equa-

tion (5), the transfer function of the controller will be improper.

Hence, according to the quasi-perfect method addressed in section

5, the overall transfer function Tpi
(s) is set as Equation (30) to avoid

this problem.

Tpi
(s) = 1

2.7s + 1
. (30)

The ambient temperature where the platform is working is about

25 ◦C, and our target tracking temperature is 27 ◦C. The system is

quite sensitive to tracking target change, so we just make compari-

son of the tracking performances of a simple step change. The com-

parisons of the platform control performances and control signals

with and without FZPETC are demonstrated in Fig. 20. It can be seen

from Fig. 20 that the tracking performance of system with FZPETC

Fig. 21. Comparison of closed-loop bandwidth.

outperforms that of system without FZPETC a lot, though it is still not

perfect. This kind of quasi-perfect performance exists most of time in

practical situations. It is hard to get perfect tracking performance in

practical experiments because there are always some physical lim-

itations in controlled systems. The closed-loop bandwidth compari-

son is presented in Fig. 21. It shows that the closed-loop bandwidth

of the system with FZPETC is much wider than that without FZPETC,

and this is also the reason of the faster tracking speed in Fig. 20.

The result verifies that the quasi-perfect FZPETC control algorithm

is effective when used in practical experiment.

7. Conclusion

This paper proposes a kind of fractional-order trajectory tracking

control strategy named FZPETC. This controller design algorithm can

achieve zero phase shift between the desire input signal and actual

output signal based on zero-pole cancellation. More accurate track-

ing performance will be achieved after applying the proposed con-

troller. The controlled systems with cancellable and non-cancellable

zeros have different design algorithms since the non-cancellable

zeros cannot be inverted directly. Future desired trajectory infor-

mation is needed because the presented feedforward controller is

improper. Moreover, if the perfect tracking cannot be achieve due to

some limitations and high frequency disturbance problems, a quasi-

perfect tracking scheme is presented as an alternative option. Some

simulation examples and a hardware-in-the-loop experiment result

are given to demonstrate the effectiveness of the proposed control

scheme. In the future work, we will devote our efforts to adap-

tive FZPETC tracking algorithm and FZPETC design for MIMO (Multi-

Input-Multi-Output) fractional-order systems. Besides, the compen-

sation method of the gain and phase error caused by different fre-

quency components in the input signal will also need to be further

considered.

References

[1] Hilfer R. Applications of fractional calculus in physics. World Scientific; 2000.
[2] Xiong JJ, Zheng EH. Position and attitude tracking control for a quadrotor uav. ISA

(Instrum Soc Am) Trans 2014;53(3):725–31.
[3] Li H, Luo Y, Chen Y. A fractional order proportional and derivative (FOPD)

motion controller: tuning rule and experiments. IEEE Trans Contr Syst Technol
2010;18(2):516–20.

[4] Tseng CC. Design of FIR and IIR fractional order simpson digital integrators. Signal
Process 2007;87(5):1045–57.

Please cite this article in press as: Liu L, et al. Continuous fractional-order Zero Phase Error Tracking Control, ISA Transactions (2018),

https://doi.org/10.1016/j.isatra.2018.01.025

http://refhub.elsevier.com/S0019-0578(16)30804-7/sref1
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref2
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref3
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref4


L. Liu et al. / ISA Transactions xxx (2018) 1–1010

[5] Chen Y. Ubiquitous fractional order controls. Proceedings of the 2nd IFAC
Workshop on fractional differentiation and its applications, vol. 2. 2006.

[6] Oldham KB, Spanier J, Ross B. Fractional Calculus. Academic Press, Collier
Macmillan Ltd; 1974.

[7] Monje CA, Chen Y, Vinagre BM, Xue D, Feliu-Batlle V. Fractional-order systems

and controls: fundamentals and applications. Springer Science & Business Media;
2010.

[8] Podlubny I. Fractional-order systems and PI𝜆D𝜇-controllers. IEEE Trans Automat
Contr 1999;44(1):208–14.

[9] Liu L, Pan F, Xue D. Variable order fuzzy fractional PID controller. ISA Trans
2015;55:227–33.

[10] Zhang S, Yu Y, Wang H. Mittag-leffler stability of fractional-order hopfield neural

networks. Nonlinear Anal Hybrid Syst 2015;16:104–21.
[11] Wei Y, Tse PW, Yao Z, Wang Y. Adaptive backstepping output feedback control

for a class of nonlinear fractional order systems. Nonlinear Dynam 2016;86(2):
1–10.

[12] Jayasuriya S, Tomizuka M. Generalized feedforward controllers, perfect tracking

and zero phase error. In: Proceedings of the 4th USA-Japan symposium on
flexible automation. 1992.

[13] Park HS, Chang PH, Lee DY. Continuous zero phase error tracking controller
with gain error compensation. In: Proceedings of the 1999 American Control

Conference, vol. 5. IEEE; 1999. p. 3554–8.
[14] Piazzi A, Visioli A. Optimal inversion-based control for the set-point regulation

of nonminimum-phase uncertain scalar systems. IEEE Trans Automat Contr

2001;46(10):1654–9.
[15] Tomizuka M. Zero phase error tracking algorithm for digital control. J Dyn Syst

Meas Contr 1987;109(1):65–8.
[16] Torfs D, De Schutter J, Swevers J. Extended bandwidth zero phase error

tracking control of nonminimal phase systems. J Dyn Syst Meas Contr

1992;114(3):347–51.
[17] Haack B, Tomizuka M. The effect of adding zeroes to feedforward controllers. J

Dyn Syst Meas Contr 1991;113(1):6–10.
[18] Tsao TC, Tomizuka M. Adaptive zero phase error tracking algorithm for digital

control. J Dyn Syst Meas Contr 1987;109(4):349–54.
[19] Adnan R, Samad AM, Tahir NM, Rahiman MHF, Mustafa MM. Trajectory

zero phase error tracking control using comparing coefficients method. In:

Proceedings of the 5th international colloquium on signal processing & its
applications. IEEE; 2009. p. 385–90.

[20] Petras I. Stability of fractional-order systems with rational orders, fractional
calculus & applied analysis. Int J Theor Appl 2009;12:269–98.

[21] Bonnet C, Partington JR. Coprime factorizations and stability of fractional
differential systems. Syst Contr Lett 2000;41(3):167–74.

[22] Matignon D. Stability results for fractional differential equations with applica-

tions to control processing. In: Proceedings of computational engineering in sys-
tems applications, vol. 2. citeseer; 1996. p. 963–8.

[23] Petrás I, Chen Y, Vinagre BM. In: Robust stability test for interval fractional order
linear systems, vol. 6. Princeton University Press; 2004.

[24] Zhang S, Yu Y, Wang Q. Stability analysis of fractional-order Hopfield neu-
ral networks with discontinuous activation functions. Neurocomputing
2016;171(C):1075–84.

[25] Senol B, Ates A, Alagoz BB, Yeroglu C. A numerical investigation for robust
stability of fractional-order uncertain systems. ISA (Instrum Soc Am) Trans

2014;53(2):189–98.
[26] Fortuna L, Arena P, Caponetto R, Porto D. Nonlinear noninteger order circuits and

systems. an introduction. World Sci. 2001.

[27] LePage WR. Complex Variables and the Laplace Transform for Engineers.
McGraw-Hill, Inc., 1961 (Dover Publications, Inc., 1980).

[28] Karimi-Ghartemani M, Merrikh-Bayat F. Necessary and sufficient conditions
for perfect command following and disturbance rejection in fractional order

systems. In: Proceedings of the 17th IFAC world congress (IFAC’08), seoul, Korea.
2008. p. 364–9.

[29] Merrikh-Bayat F, Afshar M, Karimi-Ghartemani M. Extension of the root-locus

method to a certain class of fractional-order systems. ISA (Instrum Soc Am) Trans
2009;48(1):48–53.

[30] Li Z, Liu L, Dehghan S, Chen Y, Xue D. A review and evaluation of numerical tools
for fractional calculus and fractional order controls. Int J Contr 2016:1–17.

[31] Zhang M, Lin X, Yin W. An improved tuning method of fractional order

proportional differentiation (FOPD) controller for the path tracking control of
tractors. Biosyst Eng 2013;116(4):478–86.

[32] Li Z, Zhao T, Chen Y. A low cost research platform for modeling and control
of multi-input multi-output fractional order dynamic systems. In: Proceedings

of the 2014 international conference on fractional differentiation and its
applications (ICFDA). IEEE; 2014. p. 1–6.

Please cite this article in press as: Liu L, et al. Continuous fractional-order Zero Phase Error Tracking Control, ISA Transactions (2018),

https://doi.org/10.1016/j.isatra.2018.01.025

http://refhub.elsevier.com/S0019-0578(16)30804-7/sref5
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref6
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref7
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref8
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref9
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref10
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref11
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref12
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref13
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref14
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref15
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref16
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref17
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref18
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref19
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref20
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref21
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref22
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref23
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref24
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref25
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref26
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref27
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref28
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref29
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref30
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref31
http://refhub.elsevier.com/S0019-0578(16)30804-7/sref32

	Continuous fractional-order Zero Phase Error Tracking Control
	1. Introduction
	2. Stability of fractional order system
	3. Continuous fractional order Zero Phase Error Tracking Controller
	3.1. FZPETC for FO system without non-cancellable closed-loop zeros
	3.2. FZPETC for FO system with non-cancellable closed-loop zeros

	4. Simulation
	4.1. FO system with cancellable zeros
	4.2. FO system with zeros on stability boundary
	4.3. FO system with non-cancellable zeros

	5. Quasi-perfect tracking
	6. Experiment
	7. Conclusion
	References


