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Fractional-order Generalized Principle of
Self-support (FOGPSS) in Control System Design

Hua Chen and YangQuan Chen

Abstract—This paper reviews research that studies the princi-
ple of self-support (PSS) in some control systems and proposes
a fractional-order generalized PSS framework for the first
time. The existing PSS approach focuses on practical tracking
problem of integer-order systems including robotic dynamics,
high precision linear motor system, multi-axis high precision
positioning system with unmeasurable variables, imprecise sensor
information, uncertain parameters and external disturbances.
More generally, by formulating the fractional PSS concept as a
new generalized framework, we will focus on the possible fields of
the fractional-order control problems such as practical tracking,
λ-tracking, etc. of robot systems, multiple mobile agents, discrete
dynamical systems, time delay systems and other uncertain
nonlinear systems. Finally, the practical tracking of a first-order
uncertain model of automobile is considered as a simple example
to demonstrate the efficiency of the fractional-order generalized
principle of self-support (FOGPSS) control strategy.

Index Terms—Fractional-order, principle of self-support (PSS),
practical tracking, first-order automobile model.

I. INTRODUCTION

THE conception of the principle of self-support (PSS)
can be described by the following crucial characteristics

for the existence of each phenomenon[1]: 1) Self-existence,
each phenomenon (such as thing, fact, single element, unit,
set, system, process, etc.) is an entity with its own being
and nature. It exists as something (of, by) itself, not as any
other thing. 2) Existence as a whole, each phenomenon exists
as a whole. It is, or has a wholeness which includes all
other phenomena. “Whatever comes into existence, always
comes as a whole” (Plato, The Sophist). 3) Existence in
a whole, no phenomenon exists entirely alone. Each is a
part of other phenomena. Indeed, observing Fig. 1, from a
recent report[2], as Alley pointed out that the ice movement
may affect the regional climate change and the changes in
temperature affects the rising of the sea levels, but instead,
changes of the sea surface will also affect the ice movement, so
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they are reciprocally cause and effect, as they are interrelated
and interact and constitute an integral whole (self-support as
a whole).

Fig. 1. Interaction between the ice movement and a rise in sea levels.

Fig. 2. One dragon/Uroboros.

Additionally, as seen in Fig. 2, the best representative exam-
ple for another self-referential (see [1] and references therein)
seems to be a medieval paradox, the Uroboros the archetype
of a vicious circle formed by a snake, or a dragon, looped
in a circle, biting its own tail. How to distinguish where is
the beginning and where is the end, why would such a thing
happen: how to make it clear which is the cause and which
is the effect (Fig. 3)? Based on the PSS idea, it shows just a
self-complete whole — a self support system.

Then, as for control systems, how to consider it with these
three existences above with PSS?
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Fig. 3. Two dragons tail to mouth to tail.

A control signal (which is physically an amount of energy
provided from the outside to a robotic system, in the form
of either an input voltage or current injected to the driving
actuators) might be regarded as a self-supported variable, i.e.,
it is a part of a greater system.

Here, a robotic dynamics is considered as an example by
Novaković[3] for introducing the PSS design,

M(q)q̈ + d(q, q̇) = u, (1)

where q, u, d(q, q̇) ∈ Rn denote the joint coordinates vector,
control vector, and the vector grouping the Coriolis centrifugal
and gravitational forces or external disturbance, respectively.
M(q) = M(q)T ∈ Rn×n is the positive definite non-singular
inertia matrix. By the computing torque technique, one can
design a state feedback law

u = M(q)b+ d(q, q̇), (2)

where b ∈ Rn is to be designed. Using the information about
the joint-coordinates error e = qd−q (qd is the desired motion
of the joints, assuming that the inverse kinematics problem has
been solved), let

b = q̈d +Kdė+Kpe,

which guarantees that system (1) behaves according to

ë+Kdė+Kpe = 0, (3)

where Kd, Kp are diagonal matrices whose elements are
selected so to guarantee e → 0 in advance. But practically, to
consider the issues of robustness to parameter uncertainties,
external disturbances, sensor noise and computational com-
plexity, etc., the controller (2) cannot be obtained directly. To
overcome this difficulty, the author considered

u = M̂(q̃)b+ d̂(q̃, ˙̃q), (4)

where q̃, ˙̃q are available measured values, M̂(q̃), d̂(q̃, ˙̃q) are
the estimated values of M(q) and d(q, q̇) in model (1). From
the basic idea of the PSS, essentially, the controller is seen
as a part of (1), which means u can also be substituted into

the error system by M(q)q̈+d(q, q̇) to cancel some uncertain
terms, thus its maximal limitation umax can be assumed to
be estimated by the bound of |M(qd)q̈d| + |d(q, q̇)|, then the
author proposed some practical tracking control algorithms
based on the principle of self-support.

Under the basic idea of PSS, it is not necessary to know
the accurate values of q, qd, and only the estimated error
information is enough to design u such that e can be driven
into a fixed neighborhood of zero Dε. For simplicity, let q
= [q1, . . . , qn]

T, u = [u1, . . . , un]
T, b = diag{bi} (i = 1,

2, . . . , n), qd = [q1d, . . . , qnd]
T, tracking error e = [e1, . . . ,

en]
T with ei = qid − qi, max{|ui|} = uimax.

When estimating q by q̃, we suppose ẽi = ei −
∫ t

0
ωi(t)dt

for all t, where ωi(t) is the measurement function, which is
supposed to be bounded (|ωi(t)| ≤ ci1) and belong to a class of
bounded integrable functions in the sense of Lebesgue integra-
tion, i.e., ωi(t) ∈ L1

[0,t](f(t)) , {f(t) :
∫
[0,t]

|f(s)|ds ≤ ci2},
where ci1, ci2 are two positive constants given in advance.
A PSS feedback law is proposed by ui = −bisi, where bi
> 0 is a design parameter to be given later, si = ˙̃ei + ρiẽi,
ρi > 0. And next, for a given small positive constant ε, we
will state that the tracking error ei(t) can be driven into the
neighborhood of zero Dε , {ei : |ei| ≤ ρici2+ci1

ρi
+ ε} by

selecting proper design parameters bi.
To show how to select the design parameter bi, take a

Lyapunov function V1 = 1
2

∑n
i=1 e

2
i , its time derivative can

be calculated

V̇1 =
n∑

i=1

ei( ˙̃ei + ωi(t)) =
n∑

i=1

ei(si − ρiẽi + ωi(t))

=

n∑
i=1

ei

(
−ui

bi
− ρi(ei −

∫ t

0

ωi(t)dt) + ωi(t)

)
= −

n∑
i=1

ρie
2
i −

n∑
i=1

ei

(
ui

bi
− ρi

∫ t

0

ωi(t)dt+ ωi(t)

)
,

under the boundedness conditions of ui, ωi(t) and
∫ t

0
ωi(t)dt,

one has

V̇1 ≤ −
n∑

i=1

ρie
2
i +

n∑
i=1

|ei|
(
uimax

bi
+ ρici2 + ci1

)
,

from which, if |ei| > ρici2+ci1
ρi

+ ε, we have

V̇1 ≤−
n∑

i=1

ρi

(
ρici2 + ci1

ρi
+ ε

)
|ei|

+
n∑

i=1

|ei|
(
uimax

bi
+ ρici2 + ci1

)
=−

n∑
i=1

|ei|
(
ρiε−

uimax

bi

)
.

We can select design parameters bi such that η = ρiε− uimax

bi
> 0, so choosing bi >

uimax

ρiε
such that

V̇1 ≤ −η
n∑

i=1

|ei| ≤ 0, (5)

which means ei(t) will enter into the region Dε in a finite
time.
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On the other hand, once ei(t) ∈ Dε, it has |ei(t)| ≤
ρici2+ci1

ρi
+ ε and |ėi(t)| is also shown to be upper bounded,

since
|ėi| = | ˙̃ei + ωi(t)| = |si − ρiẽi + ωi(t)|,

substituting control law and estimated error, we have

|ėi| = | − ui

bi
− ρiẽi + ωi(t)|

= | − ui

bi
− ρi

(
ei −

∫ t

0

ωi(t)dt

)
+ ωi(t)|

≤ uimax

bi
+ ρi

(
ρici2 + ci1

ρi
+ ε+ ci2

)
+ ci1

=
uimax

bi
+ 2ρici2 + 2ci1 + ρiε,

because bi >
uimax

ρiε
, therefore

|ėi| < 2ρi

(
ci2 +

ci1
ρi

+ ε

)
. (6)

This means that the control algorithm guarantees that ei will
lie in Dε if ci2 = ci1 = 0, ε → 0+.

Remark 1. In an ideal world, ci2 = ci1 = 0 means that the
sensors for measuring the tracking error of robotic systems are
accurate without any disturbance or noise, i.e., the properties
of the final neighborhood of zero Dε depend on the accuracy
of sensors. Therefore, a more generalized case (for any given
ci1, ci2) of the tracking problem is discussed here based on
the basic PSS idea. Moreover, our further consideration in the
next will be the case when the estimated error is assumed to
be measured by some cumulative error measurement function
with memorability decided by the previous control effect.

Remark 2. Usually, the desired objects to be tracked are
moving in a bounded feasible region (the size of which may
be very large), for all initial conditions, from (5) and (6), both
ẽi(t) and ei(t) will not escape to infinity before ei(t) enters
into Dε.

Additionally, there are some research results about PSS in
control systems, let us do a brief review on it. In [4], Tan et al.
discussed the precision motion control of a permanent magnet
linear motor (PMLM) for applications which are inherently
repetitive in terms of the motion trajectories, and a feedback-
feedforward control structure is proposed with a modest
amount of modeling effort. An iterative learning controller
(ILC) based on zero-phase filtering is applied as feedforward
controller to the existing relay-tuned PID feedback controller
to enhance the trajectory tracking performance by utilizing
the experience gained from the repeated execution of the
same operations. Considering inputs subjected to bounded con-
straints, Novaković[5] proposed a practical tracking algorithm,
the control law is accelerometer-free (or even tacho-free, also),
robust to sensor noise, allows the prespecification of the error
decay rate, and is realistic from the engineering standpoint
that can be implemented using current microprocessor tech-
nology. The PSS methodology is introduced for kinematic
control of manipulators, in a way that is both mathematically
clear and simple to implement[6]. Ulu et al.[7] proposed a
new method which is computationally more efficient, more
suitable for coupling gain calculations of arbitrary nonlinear

contour and easier to implement on multiaxis systems. The
tracking and contouring performance of the method on a
nonlinear contour is verified through simulations and exper-
iments achieving nanometer level accuracy for the two-axes
system.

However, for complicated systems in engineering, design-
ing an integer-order state feedback control law is imperfect
especially when dealing with some real-world plants which
need the so-called “long term memory property”[8−9]. Com-
pared with integer-order system, fractional calculus has been
proven to describe real systems in interdisciplinary fields more
effectively, since it can offer a deeper insight into the physical
processes underlying a long-range memory behavior[10−14].
To sum up, fractional control related issues can include the
fractional order dynamic system or plant to be controlled and
the fractional-order controller. However, in control practice it
is more common to consider the fractional-order controller[15].
This is due to the fact that the plant model may have already
been obtained as an integer order model in the classical
sense. In most cases, the task is to apply fractional-order
control (FOC) to enhance the system control performance.
For example, in [16], the robust control of perturbed integer-
order LTI systems is considered by using a fractional order
sliding surface design method. A novel control strategy has
been proposed, ensuring that the fractional-order (FO) sliding
manifold will be hit at an infinite sequence of time instants
and becoming denser as time grows. The closed-loop system
is proved to be asymptotically robust with respect to a wide
class of disturbances with the chattering free FO sliding
mode control. To improve control performance or for dealing
explicitly with the fractional order behavior of the plants, in
[17−18], the authors adopted a fractional order PID controller
or the generalized PIλDµ controller. So, naturally, in this
paper, we consider to present a fractional-order generalized
principle self-support (FOGPSS) control for real application,
we also address the questions. What would happen if the
PSS controller (4) is replaced by FOGPSS controller? What
condition should be satisfied compared with (3), and how to
establish a FOGPSS feedback law?

The structure of the article is as follows: Section II presents
the FOGPSS statement and a prospect of some possible
research interests. Section III provides a simple application
example and its simulations. And finally, a conclusion is
summarized in Section IV.

II. PROBLEM FORMULATION OF FOGPSS

There are many different definitions of fractional
operators[19−30], such as Grunwald-Letnikov fractional
derivatives, Hadamard type fractional integrals and fractional
derivatives, Liouville fractional integrals and fractional
derivatives, Marchaud derivatives, Caputo fractional
derivatives, Riemann-Liouville (RL) fractional integrals
and fractional derivatives, etc., among which, commonly used
are Riemann-Liouville and Caputo fractional order operators.
The following subsection will give some basic definitions and
properties about these two.



CHEN AND CHEN: FRACTIONAL-ORDER GENERALIZED PRINCIPLE OF SELF-SUPPORT (FOGPSS) IN CONTROL SYSTEM DESIGN 433

A. Preliminaries of Fractional Calculus

Definition 1[20−30]. Given function f(t) ∈ L1[a, b] at time
instant t ≥ 0, Riemann-Louville fractional integral with order
α > 0 is defined as

RLD−αf(t) = Iαf(t) , D−αf(t)

=
1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ,

where Γ(·) is the Euler gamma function,

Γ(s) =

∫ ∞

0

e−tts−1dt, s ∈ C.

The reduction formula for this function holds

Γ(s+ 1) = sΓ(s) ⇒ Γ(m+ 1) = m(m− 1)! = m!,

where m ∈ Z+ = {1, 2, 3, . . .}, and Lp[a, b] is (for 1 ≤ p ≤
∞) the usual Lebesgue space.

Definition 2[20−30]. The Riemann-Louville fractional
derivative of function f(t) with order α > 0 is defined as
follows:

RLDαf(t) =
1

Γ(m− α)

dm

dtm

∫ t

0

f(τ)

(t− τ)α−m+1
dτ,

where m−1 < α ≤ m and m ∈ Z+, dm

dtm f(t) denotes m-order
derivative of f(t).

Definition 3[20−30]. The Caputo derivative of fractional
order α of a function f(t) is described by

CDαf(t) = D−(m−α) d
m

dtm
f(t)

=
1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)1+α−m
dτ,

where m − 1 ≤ α < m ∈ Z+, f (m)(τ) is the m-order
derivative of f(τ) with respect to τ .

For the fractional-order operators, we select some important
properties[20−30] which may be used later:

Property 1. IαIβf(t) = Iα+βf(t), α, β ≥ 0.
Property 2. RLDα

(RL
D−α(f(t))

)
= f(t).

Property 3. CD−αD−βf(t) = D−(α+β)f(t), α, β ≥ 0.
Property 4. CD−αDαf(t) = f(t)− Σm−1

j=0
m−1
i! f (j)(0).

Property 5. CDαIαf(t) = f(t).
Next, we will propose the fractional-order generalized prin-

ciple of self-support (FOGPSS).

B. Conception of FOGPSS

The FOGPSS is proposed by us to define fractional tracking
error signals based on “self-support” to replace the general
control law. For instance, in order to improve the control
performance of robot dynamics (1), we consider to present
a fractional-order error state feedback in the PSS control
law (4). This is not a simple replica of general PSS, but
a challenging task both in control theory and in practical
engineering application.

Since under the fractional PSS framework, the correspond-
ing stability issue becomes the most urgent problem to solve,
it is not clear that the fractional-order asymptotic stability
and Mittag-Leffler stability[31−36] can directly be applied to

solve FOGPSS feedback design. In the same example, if we
propose a fractional state feedback with PSS in (4) , i.e.,
the undetermined term b must satisfy some fractional-order
ordinary differential equation (ODE) corresponding to (3) such
that the closed-loop error system will converge to a bounded
neighborhood of zero given in advance. In theory, this process
will force the original system into a pre-specified fractional-
order error dynamics, it is a big challenge for practical plant
with parametric or non-parametric uncertainty and nonlinearity
due to the imperfect stability criterion of nonlinear fractional-
order systems.

Some useful stability theorems or conclusions of fractional-
order systems are listed as follows:

Lemma 1[37]. For a differentiable vector x(t) ∈ Rn, and
for any time instant t ≥ 0,

1

2
CDα

[
xT(t)x(t)

]
≤ xT(t)CDαx(t).

Lemma 2[31]. Let CDαx(t) ≥ CDαy(t), ∀α ∈ (0, 1) and
x(0) = y(0), then x(t) ≥ y(t).

Lemma 3[38]. The linear fractional-order system with com-
mensurate order 0 < α ≤ 1

CDαx(t) = Ax(t)

is stable at x = 0 if the following conditions are satisfied

|arg(λi)| > α
π

2
,

where λi are eigenvalues of matrix A.
Lemma 4[31]. Consider the non-autonomous nonlinear

fractional-order system

CDαx(t) = f(x, t), α ∈ (0, 1), (7)

where f : [0,∞] × Ω → Rn is piecewise continuous in t
and locally Lipschitz in x on [0,∞] × Ω, and Ω ∈ Rn is
a domain that contains an equilibrium point x = 0. If there
exists a Lyapunov function V (x(t), t) and class-K functions
κi(·) : [0, a) → [0,∞] strictly increasing and κi(0) = 0 (i =
1, 2, 3) satisfying

κ1(∥x∥) ≤ V (x(t), t) ≤ κ2(∥x∥),

CDβV (x(t), t) ≤ −κ3(∥x∥),

where β ∈ (0, 1). Then the origin of system (7) is asymptoti-
cally stable.

On the other hand, to solve the FOGPSS, the available
algorithms of fractional-order controller to be implemented
in real time should be adopted. Two approximation methods
are most frequently used to calculate a linear or nonlinear
fractional differential equation (FDE). One is the Adams-
Bashford-Moulton (ABM) algorithm, the other is the time-
domain method which is a generalization of the ABM ap-
proximation algorithm. This method is based on a predictor-
corrector scheme using the Caputo definition[39]. We give a
brief introduction of this algorithm as follows.

Consider the following fractional-order differential equa-
tion:

Dαx(t) = f(t, x(t)), 0 ≤ t ≤ T, (8)
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with x(k)(0) = x
(k)
0 (k = 0, 1, 2, . . . , ⌈α⌉ − 1). Equation (8)

is equivalent to the following Volterra integral equation

x(t) =

⌈α⌉−1∑
k=0

tk

k!
x
(k)
0 +

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ))dτ. (9)

Set h = T/N (N ∈ Z+), and tn = nh (n = 0, 1, 2, . . . ,
N). Then (9) can be discretized as follows:

xh(tn+1) =

⌈α⌉−1∑
k=0

tkn+1

k!
x
(k)
0 +

hα

Γ(α+ 2)
f(tn+1, x

p
h(tn+1))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1f(tj , xh(tj)),

where

xp
h(tn+1) =

⌈α⌉−1∑
k=0

tkn+1

k!
x
(k)
0 +

1

Γ(α)

n∑
j=0

bj,n+1f(tj , xh(tj)),

aj,n+1 =


nα+1 − (n− α)(n− j)α+1, j = 0,

(n− j + 2)α+1 + (n− j)α+1, j = 0,

−2(n− j + 1)α+1, 1 ≤ j ≤ n,

1, j = n+ 1,

and
bj,n+1 =

hα

α
((n− j + 1)α − (n− j)α).

The estimation error of this technique is

e = max
j=0,1,2,...,N

|x(tj)− xh(tj)| = O(hp),

where p = min(2, 1 + α).

C. Possible Research Framework of FOGPSS

We will discuss possible research framework of FOGPSS in
this subsection, which mainly includes four aspects: λ-tracking
control, tracking of time-delay system, saturated practical
tracking and robotic system control.

1) λ-tracking control
λ-stabilization or λ-tracking means that the output cannot

be controlled to a set-point but into a λ-neighbourhood of the
set-point (or the reference trajectory to be tracked), where λ
> 0 is an arbitrarily small constant given in advance[40−41].
For a large class of multivariable nonlinear minimum-phase
systems of relative degree one, Allgöwer et al.[42] modified a
known adaptive high-gain control strategy u(t) = −k(t)y(t),
k̇(t) = ∥y(t)∥2 to obtain a λ-tracking in the presence of output
corrupted noise. In [43], for a class of high-gain stabilizable
multivariable linear infinite-dimensional systems, an adaptive
control law is proposed to achieve the approximate asymptotic
tracking in the sense that the tracking error converges to a
neighborhood of zero with the arbitrary prescribed radius λ
> 0. And a sampled version of the high-gain adaptive λ-
tracking controller is considered in [44], because the sampling
process from the output of a system may not be available
continuously, but only at discrete time instants. Recently,
Ilchmann et al.[45−48] considered the temperature control for

exothermic chemical reactors by λ-tracking approach with a
feedback law subjected to saturation constraints.

By the research motivation above, it is possible to consider
the adaptive λ-tracking control under FOGPSS framework,
more specifically, we design an error feedback controller

u(t) = −k(t)e(t), e(t) = y(t)− yr(t),

where y(t), yr(t) are output and desired tracking reference sig-
nals, respectively. The control gain k(t) satisfies a fractional-
order λ-adaptive ODE

CDα(k(t)) =

{
f(e(t), λ), ∥e(t)∥ ≥ λ,

0, ∥e(t)∥ < λ,

where the function f(e(t), λ) in the equation above is to
be designed such that e(t) can be driven into a small λ-
neighborhood of zero with pre-given λ. The core task of
FOGPSS control is to find an eligible function f so that the
FO tracking error closed-loop system is asymptotically stable
at zero.

2) Tracking of systems with time-delay
Time delay is the property of a physical system by which

the response to an applied force (action) is delayed in its
effect[49−50]. Time delays are often encountered in many
dynamic systems such as rolling mill systems, biological
systems, metallurgical processing systems, network systems,
and so on[51−52]. It has been shown that the existence of
time delays usually becomes the source of instability and
degraded performance of systems[51]. Many researches have
been devoted to the study of tracking control of systems with
time-delay, for example, Fridman[53] considers the sampled-
data control of linear systems under uncertain sampling with
the known upper bound on the sampling intervals, a time-
dependent Lyapunov functional method in the developed
framework of input delay approach has been introduced for
analysis of this linear system. For a class of perturbed strict-
feedback nonlinear time-delay systems, an adaptive fuzzy
tracking control scheme has been presented by appropriate-
ly choosing Lyapunov-Krasovskii functionals and hyperbolic
tangent functions[54]. In [55], the robust tracking and model
following for a class of linear systems with known multiple
delayed state perturbations, time-varying uncertain parameters,
and disturbance have been considered. A class of continuous
memoryless state feedback controllers for robust tracking of
dynamical signals are proposed, by which, the tracking error
can be guaranteed to decrease asymptotically to zero. By
using separation technique and the norm of neural weight
vector, Wang et al.[56] presented a simple and effective control
approach to address the tracking problem for non-affine pure-
feedback system with multiple time-varying delay states. For
nonlinear discrete-time systems with time delays, the model
reference output feedback fuzzy tracking control design and
optimal tracking control based on heuristic dynamic program-
ming have been discussed in [57] and [58], respectively. The
tracking control for switched linear systems with time-delay
is solved by using single Lyapunov function technique and
a typical hysteresis switching law so that the H∞ model
reference tracking performance can be satisfied[59]. And Cho



CHEN AND CHEN: FRACTIONAL-ORDER GENERALIZED PRINCIPLE OF SELF-SUPPORT (FOGPSS) IN CONTROL SYSTEM DESIGN 435

et al.[60] considered the robustness in time-delay control in
the presence of the nonlinear friction dynamics of robot
manipulators that is enhanced with a compensator based on
internal model control.

Considering the following nonlinear dynamical system of
the form[61−62] with input time delay

ẋ = Ax+B[f(x) + g(x)u(t− τ)],

y = Cx,
(10)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 0 0

 , B =


0
0
...
0
1

 , CT =


1
0
...
0
0

 ,

x ∈ Rn is the state vector, y, u ∈ R are the output and control
input, respectively. τ denotes the constant of time-delay. Let
yr be the reference signal, e(t) = y− yr is the tracking error.

Then how to propose a fractional time-delay feedback
controller for system (10) or other nonlinear systems with
input time delay or state time-delay is an important pioneering
research to the best of the authors’ knowledge. This study will
touch on the field of stability issue about fractional-order time-
delay systems combining with the PSS control strategy.

3) Practical tracking with input saturation
From a practical point of view, it is important to design

saturated controllers for any mechanical systems. That is
because any actuator always has a limitation of the physical
control inputs (input saturation)[63−76], while the control input
signals are a function of the system states, large initial con-
ditions or unmodeled disturbances may cause the controller
to exceed physical limitations[77], therefore, lots of saturated
controllers design methods have been proposed. Chen et al.
considered the saturated stabilization or tracking of dynamic
nonholonomic mobile robots[63−65] and robust control for
these robotic systems under a fixed camera feedback with input
saturation[68−73], respectively. For the systems with time delay,
continuous or discrete, linear or nonlinear systems have also
been studied under the feedback law subject to input saturation
constraints in [75−77]. And Lin et al.[66, 78] have given a semi-
global exponential stabilization control strategy including state
feedback law or of output feedback type for both discrete-
time systems and continuous linear time-invariant systems
subject to input saturation. In [67], the robust stabilization
of spacecraft in the presence of input saturation constraints,
parametric uncertainty, and external disturbances has been
addressed by two globally stable control algorithms. In [75],
based on linear matrix inequalities (LMIs) technique, the
theory of the composite nonlinear feedback control method
has been considered for robust tracking and model following
of linear systems with time varying delays and input saturation.
Recently, the saturated control for multi-agent systems has
become a hot research topic, for example, Su et al.[74] studied
the observer-based leader-following consensus of a linear
multi-agent system on switching networks, in which the input
of each agent is subject to saturation. A low-gain output

feedback strategy is considered to design the new observer-
based consensus algorithms, without requiring any knowledge
of the interactive network topology. Also, the global consensus
problem of discrete-time multi-agent systems with input satu-
ration constraints under fixed undirected topologies has been
discussed in [79], in which, two special cases are considered,
where the agent model is either neutrally stable or a double
integrator.

Commonly, the saturation function Satε(·) is a monotoni-
cally increasing function whose saturation level is less than ε,
i.e., |Satε(·)| ≤ ε. Examples of such saturation functions, for
instance[64], are

Satε(z̃) = ε tanh(z̃),

Satε(z̃) =
2ε

π
arctan(z̃),

Satε(z̃) =

{
ε, if |z̃| ≥ ε,

z̃, otherwise.

The difficulty of saturating practical tracking feedback based
on FOGPSS lies in the fact that we are short of theoretical
support because there are only a few results about the control
of fractional-order systems with input saturation[80]. It is
necessary to find a new control technique for fractional-order
system to support this framework in the near future.

4) Robotic dynamics control
There are many types of robot systems such as rigid

robot manipulators[81−90], humanoid robots[91−95], under-
water robots[96−103], space robots[104−106], wheeled mobile
robots[107−113], pipe robots[114−116], and so on. Among which,
studying of a class of robot systems subject to nonholo-
nomic motion constraints becomes a hot point of research,
and control of such mobile robots has attracted consider-
able attention from the research community because of their
practical applications and the theoretical challenges created
by the nonholonomic nature of the constraints on it[117−120].
It is because controlling such systems is full of practical
engineering interest and theoretically challenging, just as re-
ported by Brockett[121], any nonholonomic system cannot be
stabilized to a point with pure smooth (or even continuous)
state feedback control law. In order to overcome this de-
sign difficulty, many ingenious feedback stabilization methods
have been proposed such as discontinuous feedback control
law[68−73], time-varying feedback law[63−65], hybrid feedback
law[122−123], and optimal feedback law[124−126], etc.

As shown in Fig. 4, the posture kinematic model of a class
of nonholonomic wheeled mobile robots can be described by
the following differential equations[107]:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(11)

where (x, y) is the position of the mass center of the robot
moving in the plane. v is the forward velocity, ω is the steering
velocity and θ denotes its heading angle from the horizontal
axis.

Different from current approaches, FOGPSS tracking of the
wheeled mobile robots (11) is independent of its desired traje-
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Fig. 4. Nonholonomic wheeled mobile robot.

ctory (xr, yr, θr) with FO error state feedback (xe, ye, θe) =
(x− xr, y − yr, θ − θr),

ẋr = vr cos θr,

ẏr = vr sin θr,

θ̇r = ωr.

For the strong nonlinear robot system model (9), how to design
some FO velocity controllers (v, ω) such that the error state
(xe, ye, θe) converges to a small neighborhood of zero given
in advance is an important future research objective.

Remark 3. Here, we describe some aspects of control
design problems by using FOGPSS, more detailed technical
progress will proceed in the next coming months, this paper
gives a summarized outline, whereas the most important and
the biggest contribution is to bring up the new design idea
about fractional order research framework for the first time.
And to show the feasibilities of fractional PSS controller, a
simple application example is given in the next section.

III. A SIMPLE APPLICATION EXAMPLE OF FOGPSS

A. A Simple Tracking Example

A number of simple engineering systems of interest may be
represented by a first-order model, for example, the braking
of an automobile, the discharge of an electronic flash, or the
flow of fluid from a tank may be approximately represented
by a first-order differential equation[85]:

ẋ = −apx+ bpu+ d(x, t), (12)

where x, u ∈ R are the state and control input, respectively. ap,
bp > 0 are bounded uncertain parameters (constants), d(x, t)
is the external disturbance signal. Let xd(t) be the desired
reference trajectory, xe = xd − x is the tracking error.

Here, the control objective is to present a FOGPSS feedback
law u such that error state xe can be driven into a specified
ε0-neighbourhood of zero Dε0 with small positive constant ε0
> 0 given in advance.

For practice, we make the following assumptions:
Assumption 1. The position of xd to be tracked is not

directly available, but it moves within a known bounded region
with a constrained velocity, i.e., |xd| ≤ b1, |ẋd| ≤ b2, where
b1, b2 > 0 are known constants.

Assumption 2. There exist positive constants a, ā, b, b̄, d̄
for the follower system (12), such that for all x and t,

a ≤ |ap| ≤ ā, b ≤ |bp| ≤ b̄, |d(x, t)| ≤ d̄.

Assumption 3. The estimate of error measurement xe can
be denoted by

x̃e = xe − Iαω(t), α ∈ (0, 1),

where the estimated error function ω(t) ∈ L1[a, b] satisfies
that

|ω(t)| ≤ c1, |Iαω(t)| ≤ c2.

By Assumption 2, note that the controller u to be designed
in (12) can be seen as an inherent part itself according to
PSS[1, 3, 5−6], that means

|u| =
∣∣∣∣ ẋ+ apx− d(x, t)

bp

∣∣∣∣ ≤ |ẋ|+ ā|x|+ d̄

b
. (13)

Tracking the desired trajectory xd(t), and according to As-
sumption 1, it is entirely normal to suppose the boundedness
of x, ẋ in some estimated, feasible motion region by |xd| and
|ẋd|, hence, from (13), we assume that |u| ≤ umax.

Remark 4. Compared with the existing tracking problem,
we suppose xd cannot be obtained by designer directly in
Assumption 1, which is more general. And therefore, in
Assumption 3, it is reasonable to assume there is an integrable
error function ω(t) between x̃e and xe under the sense of
fractional calculus (Definition 1) due to the possible long term
memory property in estimation of tracking error, because it is
to consider that the current feedback relies on the previous
tracking effects.

For being convenient, we denote the α-order Caputo deriva-
tive CDα by Dα, and the design results will be stated as
follows:

Theorem 1. Under Assumptions 1-3, for system (12),
taking the FOGPSS feedback law

u = β̄s̃, (14)

where β̄ is a design parameter satisfying

β̄ >
umax

δε0
> 0,

where δ > 0 is also a design parameter, s̃ is the fractional-
order estimated error feedback signal

s̃ = Dαx̃e + δx̃e. (15)

Then the real tracking error xe will be driven into Dε0 , {xe :
|xe| ≤ δc2+c1

δ + ε0}.
Proof. Take a Lyapunov function V = 1

2x
2
e, by applying

Lemma 1, we have

DαV = Dα

(
1

2
x2
e

)
≤ xeD

αxe,

by Assumption 3 and Property 5 in Definition 3, we have

DαV ≤ xeD
α(x̃e + Iαω(t)) = xe(D

α(x̃e) + ω(t)).

Substituting (15) into the formula above, it has

DαV ≤ xe(s̃− δx̃e + ω(t))
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= xe

(
u

β̄
− δx̃e + ω(t)

)
= xe

(
u

β̄
− δ(xe − Iαω(t)) + ω(t)

)
.

According to Assumption 3 again, we have

DαV ≤ −δx2
e + |xe|

(
umax

β̄
+ δc2 + c1

)
. (16)

If |xe| > δc2+c1
δ + ε0, from (16), we can obtain

DαV ≤− δ

(
δc2 + c1

δ
+ ε0

)
|xe|

+ |xe|
(
umax

β̄
+ δc2 + c1

)
=− |xe|

(
δ(
δc2 + c1

δ
+ ε0)−

umax

β̄
− δc2 − c1

)
=− |xe|

β̄
(β̄δε0 − umax).

Let β̂ =
(
β̄δε0−umax

)
/β̄, from (14), since β̄ > umax/δε0 >

0, so β̂ > 0, which means

DαV ≤ −β̂|xe| = −β̂
√
2V

1
2 ≤ 0,

by Lemma 4, xe → 0 as t → ∞, hence xe will be driven into
Dε0.

By the similar derivation process as (6) in the introduction
section, once |xe| ≤ (δc2 + c1)/δ + ε0, from (14)-(16), we
have

|Dαxe| = |Dαx̃e + ω(t)|

= |u
β̄
− δ(xe − Iαω(t)) + ω(t)|

≤ 2δ
(
c2 +

c1
δ

+ ε0

)
.

Then |Dαxe| < ε0 → 0+ as c1 = c2 = 0, and according to
Lemma 4. �

Remark 5. System (12) is a very simple example for
describing the FOGPSS idea for the first time in this paper, and
the more technical complex systems will be discussed in the
further research, such as n-order nonlinear dynamic system
with time delay (10), λ-tracking, control of nonholonomic
wheeled mobile robots (11), etc.

Remark 6. Since we suppose the feasible tracking moving
area can be estimated in advance (Assumption 1), which means
the bound of controller umax is not representative of the
mechanical limit of actuator itself but also the constraints of
the bounded moving region. Selecting the high gain feedback
parameter β̄ satisfies the condition below (14), one can always
tune it at real time according to the data from velocity sensor
of controller u(t).

Remark 7. The control process shows that our FOGPSS
controller design exhibits good robustness. More generally,
the conclusion is also valid even if the uncertain terms ap,
bp in Assumption 2 are time varying parameters, because the
method is directly based on the estimated tracking error but
not the model itself.

B. Simulations

In this subsection, when using FOGPSS tracking controller
consisting of (14) and (15), we adopt the approximate numer-
ical ABM algorithms (8) and (9) for solving the fractional
differential equations for corresponding error system of (12).

In the following simulations, according to Theorem 1, for
system (12), given ε0 = 0.3, ap = 1.0 + 0.5 sin t, bp = 1.5 +
0.5 cos t, a = 0.5, ā = 1.5, b = 1.0, b̄ = 2.0, d = 0.5 sin(xt)
and d̄ = 0.5, by Assumptions 1 and 3, suppose b1 = 3.0,
b2 = 0.5, ω(t) = −0.045 cos(t), c1 = 0.1, c2 = 1.5. From
(13), we can estimate that umax = 5.5, then select the design
parameters as follows: δ = 10, β̄ = 12 > umax

δε0
= 1.1, α =

0.3, β̂ =
(
β̄δε0 − umax

)
/β̄ = 0.04. The initial conditions are

x(0) = −1.5, xd(0) = 0.5, xe(0) = x̃e(0) = 2.0.

Some simulation results are shown in Figs. 5-7 performed
with MATLAB. From Fig. 5, we can observe that the tracking
error state xe is driven into the small neighborhood of zero

Fig. 5. The response of tracking error state variable xe with respect
to time.

Fig. 6. The response of estimated error state variable x̃e with respect
to time.
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Fig. 7. The response of FOGPSS state feedback input u with respect
to time.

for given ε0 = 0.3, surely, |xe| ≤ 0.3 at about t ≥ 30 s. The
response of estimated error state x̃e is demonstrated in Fig. 6,
from which, it can be seen that the convergence behavior of
x̃e is not like the xe, since it is assumed that there exist an
error function ω(t) between xe and x̃e, and x̃e goes into the
ε0-neighborhood of zero when t ≥ 20 s. In Fig. 7, the response
of control input u looks more like that of x̃e in Fig. 3 due to
FOGPSS feedback consists of D0.3x̃e and x̃e by (14) and (15).

If all the information of tracking error x1e = x − xd is
precisely known, we assume the desired tracking trajectory
xd satisfies ẋd = −apxd + bpud with ud = − sin te−3t as the
desired input. The error dynamics can be obtained easily ẋ1e =
−apx1e+bp(u1−ud)+d(x, t), here, to distinguish the control
input from it in (12), we denote it as u1. Then according to
the conventional sliding mode design[11, 16], a discontinuous
integer order controller is designed as u1 = ud − kssgn(x1e),
where the design parameter ks ≥ d̄/b.

Under the same initial conditions, and selecting ks = 0.8,
Figs. 8 and 9 show the traditional integer order sliding mode
tracking simulations, compared to the fractional order simula-

Fig. 8. The response of tracking error x1e by sliding-mode control
with respect to time.

Fig. 9. The response of sliding-mode control input u1 with respect
to time.

tions, we find that the tracking error in Fig. 5 using fractional
order controller has a fast convergence speed than the sliding
mode case in Fig. 8, moreover, the continuous fractional order
feedback in Fig. 7 shows more smoothness than the discontin-
uous sliding mode controller u1 in Fig. 9.

Remark 8. Compared to the existing sliding mode control
methods, the FOGPSS proposed in this paper is a model-free
design technique, which is directly based on the estimated
tracking error, while the conventional sliding mode design can
not deal with the case when the tracked objects are unavailable.

IV. CONCLUSION
In this article, a new conception of the generalized

fractional-order principle of self-support (FOGPSS) is pro-
posed for the first time. After a brief review of PSS, the
fractional-order-based framework is considered to deal with
the feedback control for practical complex system, which
cannot be perfectly controlled by integer-order feedback.
And some possible research fields such as practical tracking,
λ-tracking, etc. for robot systems, multiple mobile agents,
discrete dynamical systems, time delay systems and other
uncertain nonlinear systems are discussed using FOGPSS. A
simple example is presented to show the efficiency of the
fractional-order generalized principle of self-support control
strategy.
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