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ABSTRACT
This paper is concerned with the investigation of the re-

gional controllability of the fractional order differential inclu-
sion(FODI). First, some preliminaries and definitions of region-
al controllability of the system are introduced. Then we ob-
tained some equivalent conditions of regional controllable from
the viewpoint of set relations and analyzed the regional control-
lability with minimum energy of a class of time fractional order
differential inclusion.

1 INTRODUCTION
Recently, fractional order differential equations (FODEs)

have attracted increasing attention and many monographs are ob-
tained [15,20,22,23]. Due to their nonlocal and heredity proper-
ties, they are widely applied in mechanics, electricity, economic-
s, control theory and anomalous diffusion processes, et.al, such
as [14, 16, 25, 27, 31].

Differential inclusions (DIs) are generalization of differen-
tial equations, which describe the maps from points to sets. It
appears with practical applications and the development of con-
trol theories. In fact, in practical systems, single-valued maps
are not adequate to describe the actual systems due to the exis-
tence of uncertainties, thus, the study of differential inclusions is
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meaningful and has attracted the attention of many mathemati-
cians and physicists [1, 3–5, 24, 28].

Controllability is the basis of control theories. It is worth
mentioning that, in general, not all states in the whole domain are
reachable, and sometimes, the systems do not need to be control-
lable in the whole domain or state space. This is way we investi-
gate the regional control, that is, the system is not necessary to be
controllable in the whole domain, but in a given subregion. For
regional controllability theories, El Jai and Zerrik have got some
results on zone control, pointwise control and boundary control
on integer order system, [2,9,29,30]. Recently, Ge et. al. extend-
ed the results on integer order to fractional order cases [10–13].
But for differential inclusions, there is no result so far to our best
knowledge.

Based on the above, in this paper, we study the regional con-
trol of fractional order differential inclusion (FODI). First, we
give some equivalent definitions of regionally exactly control-
lable and regionally approximately controllable from the view-
point of set theory. Then, we assume that the fractional order d-
ifferential inclusion is regionally approximately controllable, and
establish conditions of the existence of optimal control.

The rest of this paper is organized as follows: some basic
concepts on fractional order differential inclusions and regional
controllability are presented in the next section. In section 3, the
main results on regional controllability are given, together with a
discussion on regional optimal control.
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2 PRELIMINARIES
In this section, some definitions and preliminaries are given,

which will be used throughout this paper.
Let Ω be an open bounded subset of Rn with smooth bound-

ary ∂Ω, Q = Ω× [0,T ],Σ = ∂Ω× [0,T ]. Let Lp(0,T ;Ω)(p≥ 1)
be the space of Bochner integrable function on [0,T ] with the
norm ‖x‖Lp(Ω) = (

∫ T
0 ‖x(s)‖

p
Rnds)1/p [19].

In this paper, we are concerned with the regional controlla-
bility of the fractional order differential inclusions

{C
0 Dα

t z(t) ∈ Az(t)+Bu(t)+F(t)u(t),
z(0) = z0 ∈ D(A)

(1)

where t ∈ [0,T ],0 < α < 1,z ∈ L2(0,T ;Ω),CDα
t denotes the Ca-

puto fractional derivative of order α [22]. D(A) holds for the
domain of the operator A and A generates a strongly continuous
semigroup {Φ(t)}t≥0 on the Hilbert space L2(Ω). F : [0,T ]→
P(Rn×m) is a set-valued map which maps u(t) into L2(Ω).
In addition, z0 ∈ L2(Ω),u ∈ L2(0,T ;Rm) and B : Rm → L2(Ω)
is a linear operator and there exists a constant MB such that
‖B‖ ≤MB.

For a set-valued map G : [0,T ]→P(Rn×m), G is said to
be convex (closed), if G(t) is convex (closed) for all t ∈ [0,T ].
G is bounded on the bounded set if for any bounded subset J of
[0,T ], G(J) = ∪t∈JG(t) is bounded in P(Rn×m). In this paper,
we suppose F is closed and convex.

G is called upper semi-continuous (u.s.c.) at t∗ ∈ [0,T ], if
the set G(t∗) is a nonempty, closed subset of P(Rn×m), and for
each open subset V of P(Rn×m) containing G(t∗), there exists
an open neighbor J of t∗ such that G(J)⊂V .

G is said to be lower semi-continuous (l.s.c.) at t∗ ∈ [0,T ], if
for any x∗ ∈G(t∗) and any neighborhood B(x∗) of x∗, there exists
a neighborhood B(t∗) of t∗ such that

∀t ∈ B(t∗), G(t)∩B(x∗) 6= /0.

G is said to be u.s.c. on [0,T ] if G is u.s.c. at each t∗ ∈ [0,T ]
and l.s.c. on [0,T ] if G is l.s.c. at each t∗ ∈ [0,T ].

Definition 2.1. The left-side Caputo fractional derivative of
order α > 0 is defined by the operator

C
0 Dα

t z(t) =
1

Γ(n−α)

∫ t

0
(t− s)n−α−1z(n)(s)ds

provided that it exists almost everywhere on [0,+∞) where n =
[α]+1.

Let ω ⊂ Ω be a given region of positive Lebesgue measure
and zT ∈ L2(ω) (the target function) be a given element of the
state space.

Based on the argument in [8] and [33], we can get the solu-
tion of (1).

Definition 2.2. For any given u ∈ L2(0,T ;Rm), a set of func-
tions z ⊂ L2(0,T ;Ω) is said to be a mild solution of the system
(1) denotes by z(·,u), if it satisfies

z(t,u) = {Sα(t)z0 +
∫ t

0
(t− s)α−1Kα(t− s)Bu(s)ds

+
∫ t

0
(t− s)α−1Kα(t− s)F(s)ds},

(2)

where

Sα(t) =
∫

∞

0
φα Φ(tα

θ)dθ , (3)

and

Kα(t) = α

∫
∞

0
θφα(θ)Φ(tα

θ)dθ . (4)

Here {Φ(t)}t≥0 is the strongly continuous semigroup generated
by A, φα(θ) =

1
α

θ−1Ψα(θ
1
α ), where Ψα is a probability density

function defined by

Ψα(θ) =
1
π

∞

∑
n=1

(−1)n−1
θ
−αn−1 Γ(nα−1)

n!
sin(nπα),θ ∈ (0,∞),

it satisfies the following properties:

∫
∞

0
e−λθ

Ψα(θ)dθ = e−λ α

,
∫

∞

0
Ψα(θ)dθ = 1,α ∈ (0,1) (5)

and

∫
∞

0
θ

ν
φα(θ)dθ =

Γ(1+ν)

Γ(1+αν)
,ν ≥ 0.

We can see that, since F(t) is a set valued map, the solu-
tion of system (1), written as z(t,u), is a set. For any selection
f (t) ∈ F(t), we denote z f (t,u) = Sα(t)z0 +

∫ t
0(t− s)α−1Kα(t−

s)Bu(s)ds+
∫ t

0(t − s)α−1Kα(t − s) f (s)ds, it is easy to see that
z f (t,u) is a selection of z(t,u).

Lemma 2.1. [17, 32] (1) For any t ≥ 0, the operators Sα(t)
and Kα(t) are linear and bounded, i.e., for any x ∈ L2(Ω), we
have

‖Sα(t)x‖L2(Ω) ≤M‖x‖L2(Ω)
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and

‖Kα(t)x‖L2(Ω) ≤
αM

Γ(1+α)
‖x‖L2(Ω),

where M is defined in the inequality (7).

(2) Operators {Sα(t)}t≥0 and {Kα(t)}t≥0 are strongly con-
tinuous, that is, for any x ∈ L2(Ω) and 0≤ t1 ≤ t2 ≤ T ,

‖Sα(t1)x−Sα(t2)x‖L2(Ω)→ 0

and

‖Kα(t1)x−Kα(t2)x‖L2(Ω)→ 0 as t1→ t2

hold.

(3) For t > 0,Sα(t) and Kα(t) are compact operators if Φ(t)
is compact.

Lemma 2.2. [3] Let X be a metric space, Y a Banach space.
Let F from X into the closed convex subsets of Y be lower semi-
continuous. Then there exists f : [0,T ]→P(Rn×m), a continu-
ous selection of F.

Definition 2.3. The system (1) is said to be regional exactly
controllable (or ω-exactly controllable), if for any zT ∈ L2(ω),
there exists a control u ∈ L2(0,T ;Rm) such that, there exists a
selection z f (t,u) ∈ z(t,u) satisfies

Pω z f (T,u) = zT ,

where Pω : L2(Ω)→ L2(ω) defined by Pω z = z|ω is a projection
operator.

Remark 2.1. From this definition, we see that, if system (1) is
controllable, then for ∀zT ∈ L2(ω), there exists a control u ∈
L2(0,T ;Rm) such that zT ∈ Pω(z(T,u)).

Definition 2.4. The system (1) is said to be regionally approx-
imately controllable (or ω-approximately controllable), if for
∀zT ∈ L2(ω) and ∀ε > 0, there exists a control u ∈ L2(0,T ;Rm)
such that, there exists a selection z f (t,u) ∈ z(t,u) satisfies

‖Pω z f (T,u)− zT‖L2(ω) ≤ ε.

Remark 2.2. From this definition, we see that, if system (1) is
controllable, then for ∀zT ∈ L2(ω), there exists a control u ∈
L2(0,T ;Rm) such that

d(zT ,Pω z(T,u))< ε,

where d denotes the distance from a point to a set, defined as
d(x,E) = infy∈E d(x,y).

3 MAIN RESULT
In this section, we first give some equivalent definitions of

regional exactly controllable and regional approximately control-
lable, then we will explore the possibility of finding a minimum
energy control which can steer the time FODI (1) from the initial
z0 to a target zT on the region ω .

For ∀u ∈ L2(0,T ;Rm), for convenience, we define H :
L2(0,T ;Rm)→P(L2(Ω)) as

Hu = {
∫ T

0
(T − s)α−1Kα(T − s)Bu(s)ds

+
∫ T

0
(T − s)α−1Kα(T − s)F(s)u(s)ds}.

(6)

Theorem 3.1. Let H be defined as (6), the following properties
are equivalent:
(1) The system (1) is regionally exactly controllable in ω at time
b;
(2) L2(ω)⊂ im(Pω H);
(3) L2(Ω)⊂ ker(Pω)+ im(H).

Proof. (1)⇒ (2): Since system (1) is regionally exactly control-
lable, for ∀zT ∈ L2(ω), there exists z f ∈ z such that Pω z f (T,u) =
zT , that is, there exists f (t) ∈ F(t), such that z f (t,u) = H f u, this
implies L2(ω)⊂ im(Pω H).
(2)⇒ (1): For any y∈ L2(ω), we know y∈ im(Pω H), then, there
exists u ∈ L2(0,T ;Rm) such that y ∈ Pω Hu, this means that there
exists f (t) ∈ F(t) satisfies y = Pω H f u, which implies system (1)
is regionally exactly controllable.
(2)⇒ (3): For any y ∈ L2(ω), let ȳ be the extension of y to
L2(Ω). Since L2(ω) ⊂ im(Pω H), there exists u ∈ L2(0,T ;Rm),
such that y ∈ Pω Hu, also, there exists y1 ∈ ker(Pω), such that
ȳ ∈ y1 +Hu.
(3) ⇒ (2): For any ȳ ∈ L2(Ω), from (3), there exist y1 ∈
ker(Pω),u ∈ L2(0,T ;Rm), such that ȳ ∈ y1 +Hu. Hence, it fol-
lows from the definition of Pω that L2(ω)⊂ im(Pω H).

Theorem 3.2. For regionally approximately controllable, we
have the following equivalent conditions:
(1) The system (1) is regionally approximately controllable in ω

at time b.
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(2)L2(ω)⊂ im(Pω H);
(3)L2(Ω)⊂ ker(Pω)+ im(H).

The proof of Theorem 3.2 is similar to the proof of Theorem
3.1, so we omitted.

Now we prove the optimal result on the FODI (1), for this
purpose, we make use the following hypotheses.

(H1) The semigroup {Φ(t)}t≥0 generated by operator A is
uniformly bounded on L2(Ω), i.e., there exists a constant M > 0
such that

sup
t≥0
‖Φ(t)‖ ≤M. (7)

(H2) For any t > 0, Φ(t) is a compact operator.
(H3) The set-valued map F is closed and convex and lower-

semicontinuous.
(H4) The set-valued map F is uniformly bounded, that is,

there exists MF > 0 such that

sup
t≥0
‖F(t)‖ ≤MF .

By (H3) and Lemma 2.2, we know that F(t) has continuous
selection f (t). For a given f (t) ∈ F(t), let

UT = {u ∈ L2(0,T ;Rm) : ‖Pω z f (T,u)− zT‖L2(ω) ≤ ε,∀ε > 0},

and H f u =
∫ T

0 (T − s)α−1Kα(T − s)Bu(s)ds +
∫ T

0 (T −
s)α−1Kα(T − s) f (s)u(s)ds. Consider the following mini-
mization problem

inf
u

J(u) = inf
u
{
∫ T

0
‖u(t)‖2

Rmdt : u ∈UT}. (8)

Since system (1) is linear, without loss of generality, we suppose
z0 = 0 in the following discussion.

Theorem 3.3. Suppose hypotheses (H1)-(H4) hold and system
(1) is ω-approximately controllable. Then, the minimization
problem (8) admits at least one optimal solution.

Proof. We can see that UT is a closed and convex set. First, we
prove that the operator H f is strongly continuous [6], which ad-
mits the existence of optimal control for the minimization prob-
lem. According to the argument in [7], we only need to show that
the operator H f is compact since it is linear and continuous.

Define the operator N : L2(Rm)→ L2(Ω) by

Nu(t) =
∫ t

0
(t− s)α−1Kα(t− s)Bu(s)ds

+
∫ t

0
(t− s)α−1Kα(t− s) f (s)u(s)ds, t ∈ [0,T ].

(9)

Let ρr = {u ∈ L2(0,T ;Rm) : ‖u‖L2(0,T ;Rm) ≤ r}, now we show
that N maps bounded set into relatively compact set. For any
fixed t ∈ [0,T ],ε,δ ∈ (0, t),u ∈ ρr. Let

N(ε,δ )u(t)

= α

∫ t−ε

0

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ)Bu(s)dθds

+α

∫ t−ε

0

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ) f (s)u(s)dθds.

(10)
Since Φ(εqδ ) is compact and

N(ε,δ )u(t)

= Φ(εq
δ )α

∫ t−ε

0

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ − ε
q
δ )

×Bu(s)dθds

+Φ(εq
δ )α

∫ t−ε

0

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ − ε
q
δ )

× f (s)u(s)dθds,
(11)

we can see that {N(ε,δ )u(t)|u ∈ ρr} is relatively compact. Con-
sider ‖Bu(·)‖ ≤ MBr and ‖ f (·)u(·)‖ ≤ MF r, for any t ∈ [0,T ],
we have

‖Nu(t)−N(ε,δ )u(t)‖

= α‖
∫ t

0

∫
δ

0
(t− s)α−1

θφα(θ)Φ((t− s)α
θ)Bu(s)dθds

+
∫ t

0

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ) f (s)u(s)dθds

+
∫ t

0

∫
δ

0
(t− s)α−1

θφα(θ)Φ((t− s)α
θ) f (s)u(s)dθds

+
∫ t

0

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ) f (s)u(s)dθds

−
∫ t−ε

0

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ)Bu(s)dθds

−
∫ t−ε

0

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ) f (s)u(s)dθds‖

≤ α‖
∫ t

0

∫
δ

0
(t− s)α−1

θφα(θ)Φ((t− s)α
θ)Bu(s)dθds‖

+α‖
∫ t

t−ε

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ)Bu(s)dθds‖

+α‖
∫ t

0

∫
δ

0
(t− s)α−1

θφα(θ)Φ((t− s)α
θ) f (s)u(s)dθds‖
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+α‖
∫ t

t−ε

∫
∞

δ

(t− s)α−1
θφα(θ)Φ((t− s)α

θ) f (s)u(s)dθds‖

≤ MMBrT α

∫
δ

0
θφ(θ)dθ +

MMBrεα

Γ(1+α)

+MMF rT α

∫
δ

0
θφ(θ)dθ +

MMF rεα

Γ(1+α)

→ 0

as ε,δ → 0. We conclude that Nρr is a relatively compact set in
L2(Ω) [21].

Next, we shall prove that {Nu|u ∈ ρr} is equicontinuous on
[0,T ]. For any u ∈ ρr,0≤ σ1 ≤ σ2 ≤ T ,

‖Nu(σ2)−Nu(σ1)‖

≤ ‖
∫

σ1

0
[(σ2− s)α−1− (σ1− s)α−1]Kα(σ2− s)Bu(s)ds‖

+‖
∫

σ1

0
(σ1− s)α−1[Kα(σ2−1)−Kα(σ1− s)]Bu(s)ds‖

+‖
∫

σ2

σ1

(σ2− s)α−1Kα(σ2− s)Bu(s)ds‖

+‖
∫

σ1

0
[(σ2− s)α−1− (σ1− s)α−1]Kα(σ2− s) f (s)u(s)ds‖

+‖
∫

σ1

0
(σ1− s)α−1[Kα(σ2− s)−Kα(σ1− s)] f (s)u(s)ds‖

+‖
∫

σ2

σ1

(σ2− s)α−1Kα(σ2− s) f (s)u(s)ds‖

≤ MMBr
Γ(1+α)

(σα
2 −σ

α
2 +(σ2−σ1)

α)+ζ

+
MMF r

Γ(1+α)
(σα

2 −σ
α
2 +(σ2−σ1)

α)+ξ

+
MMBr

Γ(1+α)
(σ2−σ1)

α +
MMF r

Γ(1+α)
(σ2−σ1)

α ,

where

ζ = ‖
∫

σ1

0
(σ1− s)α−1[Kα(σ2− s)−Kα(σ − s)]Bu(s)ds‖

and

ξ = ‖
∫

σ1

0
(σ1− s)α−1[Kα(σ2− s)−Kα(σ − s)] f (s)u(s)ds‖.

Since ε > 0 small enough, we have

ζ ≤
∫

σ1−ε

0
(σ1− s)α−1‖Kα(σ2− s)−Kα(σ1− s)‖‖Bu(s)‖ds

+
∫

σ1

σ1−ε

(σ1− s)α−1‖Kα(σ2− s)−Kα(σ1− s)‖‖Bu(s)‖ds

≤
[MBr

α
(σq

1 − ε
q)
]

s∈[0,σ1−ε]
‖Kα(σ2− s)−Kα(σ1− s)‖

+
2MMBr

Γ(1+α)
ε

q

→ 0
(12)

as σ2→ σ1 (due to the continuity of Kα(t)(t > 0) in the uniform
operator topology). Similarly, we have ξ → 0 as σ2→σ1. By the
Arzela-Ascoli theorem [6], the operator N is compact. Thus, H f
is strongly continuous, which guarantees the existence of optimal
control to the minimization problem (8) under the fact that UT is
a closed and convex set.

By assumption, system (1) is ω-approximately controllable,
for any zT ∈ ω , suppose that J(u∗) = infu J(u) = ε < ∞, by the
definition of infimum, we deduce that there exists a sequence
{ui}i=1,2,··· such that for ∀ε > 0,

‖Pω z f (T,ui)−zT‖L2(ω)≤ ε,ui ∈UT ⊂L2(0,T ;Rm),(i= 1,2, · · ·),

and J(ui)→ J(u∗). Then we have ui→w u∗ in L2(0,T ;Rm)(→w
denotes weak convergent). For any t ∈ [0,T ], by Definition 2.2
and Lemma 2.1, we get

‖Pω z f (t,u∗)−Pω z f (t,ui)‖L2(Ω)

= ‖Pω

∫ t

0
(t− s)α−1Kα(t− s)(B+ f (s))(u∗(s)−ui(s))ds‖

≤ ‖
∫ t

0
(t− s)α−1Kα(t− s)(B+ f (s))(u∗(s)−ui(s))ds‖

≤ αM(MB +MF)

Γ(1+α)

∫ t

0
(t− s)α−1‖u∗(s)−ui(s)‖L2(Rm)ds,

(13)

which yields that

Pω z f (t,ui)→ Pω z f (t,u∗) in C(0,T ;ω) as i→ ∞.

Since UT is closed and convex, from Marzur Lemma [18] we see
that u∗ ∈UT . Thus it follows from the Balder’s theorem [26] that

ε = J(u∗) = lim
i→∞

J(ui)≥ J(u∗)≥ ε,

which means that u∗ is the optimal solution of the minimization
problem (8). This completes the proof.
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4 Conclusions
In this paper, we investigated a class of time fractional order

differential inclusion, First, we present some equivalent defini-
tions of regional exactly controllable and regional approximately
controllable. Then, base on the existing results [7, 10], we ex-
plore the existence of regional optimal control for a class of frac-
tional order differential inclusion assuming that the system (1)
is regional approximately controllable. The results we present
here are expected to be extended to nonlinear case, such as, con-
sider the following affine-in-control fractional order differential
inclusion {C

0 Dα
t z(t) ∈ Az(t)+Bu(t)+F(z)u(t),

z(0) = z0 ∈ D(A),
(14)

and investigate whether there exists a regional optimal control
for the minimization problem

inf
u

J(u) = {
∫ T

0
(‖z(t)‖2 +‖u(t)‖2)dt : u ∈UT}.

Motivated by this, in the future, we will try to consider the
regional controllability criteria and their optimal control results.

Acknowledgment
This work is partially supported by “the Fundamental Re-

search Funds for the Central Universities” (No. CUSF-DH-D-
2017083).

REFERENCES
[1] Amato F., Calabrese F., Cosentino C. and Merola A., 2011.

“Stability analysis of nonlinear quadratic systems via poly-
hedral Lyapunov functions”. Automatica, 47, pp.614-617.

[2] Al Saphory A., Al Joubory M. and Jasim M., 2013. “Region-
al strategic sensors characerizations”. Journal of Mathemat-
ics and Computer Science, 3, pp.401-418.

[3] Aubin J. P. and Cellina A., 1984. “Differential inclusions”.
Springer-Verlag, New York,342 pages, ISBN: 0-387-13105-
1.

[4] Cao J., Luo Y. and Liu G., 2016. “Some results for impul-
sive fractional differential inclusions with infinite delay and
sectorial operators in Banach spaces”. Applied Mathematics
and Computation, 273, pp.237-257.

[5] Cernea A., 2013. “On the controllability for nonconvex
semilinear differential inclusions”. Journal of Nonlinear Sci-
ence and Applications, 6, pp.145-151.

[6] Conway J. B., 1985. “A course in functional analysis”.
Springer-Verlag, New York, 404 pages, ISBN: 0-387-96042-
2.

[7] Debbouche A. and Nieto J. J., 2014, “Sobolev type fraction-
al abstract evolution equations with nonlocal conditions and
optimal multi-controls”. Applied Mathematics and Compu-
tation, 245, pp.74-85.

[8] El-Borai M. M., 2002, “Some probability densities and fund-
mental solutions of fractional evolution equations”. Chaos,
Solitions and Fractals, 14, pp.433-440.

[9] El Jai A., Simon M. C., Zerrik E. and Pritchard A. J., 1995.
”Regional controllability of distributed parameter systems”.
International Journal of Control, 62, pp.1351-1365.

[10] Ge F., Chen Y. and Kou C., 2015. “Regional controllability
of anomalous diffusion generated by the time fractional dif-
fusion equations”. Proceedings of the ASME 2015 Interna-
tional Design Engineering Technical Conference and Com-
puter and Information in Engineering Conference, Boston,
USA.

[11] Ge F., Chen Y. and Kou C., 2016. “On the regional gradient
observability of time fractional diffusion processes”. Auto-
matica, 74, pp.1-9.

[12] Ge F., Chen Y. and Kou C., 2016. “Regional gradient con-
trollability of sub-diffusion processes”. Journal of Mathe-
matics Analysis and Applications, 40, pp.865-884.

[13] Ge F., Chen Y. and Kou C., 2017. “Regional con-
trollability analysis of fractional diffusion equations with
Riemann-Liouville time fractional derivatives”. Automatica,
76, pp.193-199.

[14] Ji S, 2014. “Approximate controllability of semilinear
nonlocal fractional differential systems via an approximat-
ing method”. Applied Mathematics and Computation, 236,
pp.43-53.

[15] Kilbas A. A., Srivastava H. M. and Trujillo J. J., 2006.
“Theory and applications of fractional differential equation-
s”. Elsevier, Amsterdam, 523 pages, ISBN: 13-978-0-444-
51832-3.

[16] Kumar S. and Sukavanam N., 2012. “Approximate control-
lability of fractional order semilinear systems with bound-
ed delay”. Journal of Differential Equations, 252, pp.6163-
6174.

[17] Mainardi F., Paradisi P. and Gorenflo R., 2000. “Probabili-
ty distributions generated by fractional diffusion equations”.
in: J. Kertesz, I. Kondor(Eds.), Econophysics: An Emerging
Science, Kluwer, Dordrecht.

[18] Michael R. and Robert C. R., 2004. “An introduction to par-
tial differential equations”. Springer-Verlag, New York, 434
pages, ISBN: 0-387-00444-0.

[19] Mikusinski J., 1978. “The Bochner integral”. Academic
Press, New York, 233 pages, ISBN: 978-3-0348-5569-3.

[20] Oldham K. B. and Spanier J., 1974. “The fractional cal-
culus”. Academic Press, New York, 234 pages, ISBN: 0-12-
522-5550-0.

[21] Penot J. P.,2016. “Analysis, from concepts to applications”.
Springer, Switzerland, 669 pages, ISBN: 978-3-319-32411-

6 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/13/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



1.
[22] Podlubny I., 1999. “Fractional differential equations”. A-

cademic Press, San Diego, 340 pages, ISBN: 0-12-558840-2.
[23] Samko S. G., Kilbas A. A. and Marichev O. I., 1993. “Frac-

tional integrals and derivatives”. Gordon and Breach Science
Publishers, Amsterdam, 976 pages, ISBN: 2-88124-864-0.

[24] Smirnov G. V., 2002. “Introduction to the theory of dif-
ferential inclusions”. American Mathematical Society, Prov-
idence, Rhode Island, 226 pages, ISBN:0-8218-2977-7.

[25] Sukavanam N. and Kumar S., 2011. “Approximate control-
lability of fractional order semilinear delay systems”. Jour-
nal of Optimization Theory and Applications, 151, pp.373-
384.

[26] Valadier M., 1994. “Young measures, weak and strong con-
vergence and the Visintin-Balder theorem”. Set-valued Ana-
ysis., 2, pp.357-367.

[27] Wang J. and Zhou Y., 2011. “A class of fractional evolution
equations and optimal controls”. Nonlinear Analysis: Real
World Applications, 12, pp.262-272.

[28] Yang M. and Wang Q., 2016. “Approximate controllabil-
ity of Riemann-Liouville fractional differential inclusions”.
Applied Mathematics and Computation, 274, pp.267-281.

[29] Zerrik E., Boutoulout A. and El Jai A., 2000. “Actuators
and regional boundary controllability of parabolic systems”.
International Journal of Systems Science, 31, pp.73-82.

[30] Zerrik E., Bourray H. and El Jal A., 2004. “Regional
observability for semilinear distributed parabolic systems”.
Journal of Dynamical and Control Systems, 10, pp.413-430.

[31] Zhou Y. and Jiao F., 2010. “Nonlocal Cauchy problem for
fractional evolution equations”. Nonlinear Analysis: Real
World Applications, 11, pp.4465-4475.

[32] Zhou Y., 2014, “Basic theory of fractional differential equa-
tions”, World Scientific, Singapore, 293 pages, ISBN: 978-
9814579896.

[33] Zhou Y., 2016, “Fractional Evolution Equations and Inclu-
sions: Analysis and Control”, Elsevier, London, 283 pages,
ISBN: 978-0-12-804277-9.

7 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/13/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use




