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ABSTRACT
In this paper, the literature of fractional-order neural net-

works is categorized and discussed, which includes a general
introduction and overview of fractional-order neural network-
s. Various application areas of fractional-order neural networks
have been found or used, and will be surveyed and summarized
such as neuroscience, computational science, control and opti-
mization. Recent trends in dynamics of fractional-order neural
networks are presented and discussed. The results, especially
the stability analysis of fractional-order neural networks, are re-
viewed and different analysis methods are compared. Further-
more, the challenges and conclusions of fractional-order neural
networks are given.

1 INTRODUCTION
Fractional-order neural networks (FNN) have been an im-

portant topic in biology and computational science in the last
two decades. Combining fractional calculus and neural network-
s, FNN brings the high efficiency and significant improvements.
Compared with the classical integer-order neural networks, FNN
is a better tool to describe the memory and hereditary proper-
ties of various processes in neuroscience. Besides, FNN own-
s a fundamental and general computation ability that can con-
tribute to efficient information processing, stimulus anticipation
and frequency-independent phase shifts of oscillatory neuronal
firing. So, it has great potential applications in the original areas
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of neural networks. Then, an introduction to neural networks is
given firstly.

A nerve cell (neuron) is the basic unit of the nervous sys-
tem. Hundreds of neurons constitute the neural networks, whose
researches began from the study the human brain before over
thousands years old. The first step toward artificial neural net-
works came in 1943 when Warren McCulloch, a neurophysiolo-
gist, and a young mathematician, Walter Pitts, wrote a paper on
how neurons might work [1]. Since Minsky and Papert showed
the deficiencies of perceptron models in their published book
Perceptrons in 1969 [2], most researchers left the field due to
the redirected neural network funding. Only a few researchers
continued their efforts, notably such as Teuvo Kohonen, Stephen
Grossberg, James Anderson, and Kunihiko Fukushima.

In the beginning of the 1980s, J. Hopfield designed a new
associative memory neural network, named Hopfield. He un-
derstood that some models of physical systems could be used
to solve computational problems [3]. Such systems could be
implemented in hardware by combining common and standard
components such as capacitors and resistors. This feature is so
significant especially in hardware implementation point of view.
Neural networks have received much attention in recent years.
Ranging from image processing, combinatorial optimization, as-
sociative memories, pattern recognition and other areas, neural
networks have witnessed a large amount of successful applica-
tions in many fields. It is well known that the unique globally
stable equilibrium is crucial to solve some optimization prob-
lems.
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Fractional calculus is a generalization of integration and d-
ifferentiation to non-integer order fundamental operator. In the
past decade, engineers and scientists became aware of the fact
that the description of some phenomena is more accurate when
the fractional derivative is used. Nowadays, it has witnessed sig-
nificant progress on fractional calculus, because the application-
s of fractional calculus were found in more and more scientif-
ic fields, covering mechanics, physics, engineering, informatics,
and materials. So long list of the applications includes viscoelas-
ticity [4, 5], colored noise, dielectric polarization [6], electrode-
electrolyte polarization [7], electromagnetic waves [8], quantita-
tive finance [9], quantum evolution of complex system [10], the
control of fractional-order dynamic systems [11, 12], fractional
kinetics, anomalous attenuation [13] and so on. The main ad-
vantage of fractional-order models in comparison with classical
integer-order models is that fractional derivatives provides an ex-
cellent tool for the description of memory and hereditary proper-
ties of various processes. In fact, fractional-order systems have
infinite memory. Taking into account these facts, it is easy to see
that the incorporation of a memory term (in the form of a frac-
tional derivative or integral) into a neural network model is an
extremely important improvement.

The purpose of this paper is to provide a summary and re-
view of the recent trends in FNN from both application point of
view and the theoretical point of view. Section I is a general
introduction to fractional calculus and neural networks. In Sec-
tion II, we summarize the survey FNN that we used and present
selected results from recent literature. Sections III and IV are
the main parts of the paper, where we separate the literature into
applications-focused results and theory-focused results respec-
tively. Section V presents the challenges and issues being faced
in FNN.

2 An Overview
In this section, we give an overview of the results obtained

from our search for literature. The statistics presented in this
section comes from the FNN search in “Web of Science”. All
databases up to August 2016, may vary because of the updating
of new ones.

Our survey for FNN started from a search on “Web of Sci-
ence”, “IEEE Xplore”, and “ScienceDirect” sites conducted on
August 2016. We analyzed the statistics from searching the key-
words “fractional-order neural network” in “Web of Science”,
and have a total of 267 publications. Among them, 179 publi-
cations come from “Web of Science Core Collection”, and the
oldest ones were published in 1998. Fig. 1 and Fig.2 give the
numbers of FNN publications and its citations in the latest 20
years respectively. It is an exponential growth approximately for
the increasing tendency of FNN publications, which shows that
FNN has been a hot topic for researchers all around the world.

Overall, great majority of publications focused on the the-

FIGURE 1: Published items of FNN in the latest 20 years

FIGURE 2: Citations of FNN in the latest 20 years

oretical innovations of the dynamic analysis of FNN. Besides,
the FNN advantages in applications of computational algorithms
have attracted more attentions. As the development of the re-
searches of FNN, more kinds of FNN models, appeared based
on some practical situations, were studied such as delayed FN-
N, memristor-based FNN, impulsive FNN and so on. Therefore,
FNN is an open and meaningful topic in both theory and appli-
cations.

3 Applications for Fractional-order Neural Networks

In this section, we list the main applications of fractional-
order neural networks in many fields, such as neuroscience, com-
putational science, control, optimization and so on. The curren-
t applications for FNN have involved various fields. However,
many works for FNN are always in the stage of initial attempts,
and the corresponding results are scattered and not deep enough.

2 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/13/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



3.1 Oculomotor Integrator
Oculomotor integrator is a network which consists of neu-

rons in the nuclei prepositus hypoglossi and medial vestibular nu-
clei in the brainstem. Among it, premotor neurons mediate some
oculomotor subsystems such as pursuit and saccades, and relay
eye movement commands to extraocular motoneurons. They re-
ceive vestibular signals from canal afferents, whose frequency
responses are able to be described by a fractional-order differen-
tiation dα x

dtα ,α > 0. T. J. Auastasio first used fractional calculus to
characterize the dynamics in motor and premotor neurons [14],
which pointed out that the oculomotor integrator may belong to
fractional order depending on eye velocity and eye position com-
mands. This order is less than one, However the order of the ve-
locity commands may be more than one. Since then, fractional
differentiation has been combined into the eye position and given
a better description on the output of motor and premotor neurons.

3.2 Fractional-order Hopfield Neural Networks (FHN-
N)

Hopfield Neural Networks (HNN) is a new associative mem-
ory neural network to solve computational problems, which was
designed by J. Hopfield in the beginning of the 1980s [3]. HNN
can be implemented in hardware by combining common and s-
tandard components such as capacitors and resistors, which is so
significant especially in hardware implementation point of view.
The topological structure of Hopfield net is shown in Fig. 3.
In Fig. 3, the input and output of the net are analog signals.
The resistance Ri0 and capacitor Ci are parallel to simulate the
time-delay characteristics of biologic neurons. The resistance
Ri j(i, j = 1,2, · · · ,n) and the op-amps are used to simulate the
synapse and the non-linear characteristic of biologic neurons, re-
spectively. Then, the state and output equations of the Hopfield
network with n neurons are obtained as:

Ci
dPi

dt
=

n

∑
j=1

Wi jVj−
Pi

Ri
+ Ii, Pi =

(
1
λ

)
ϕ
−1
i (Vi) . (1)

where Pi(t) and Vi(t) are the input and output of op-amp for the
ith neuron at time t, respectively. Ii is the external input, λ is the
learning rate and Wi j is the conductance between the ith and jth
neuron with satisfying

Wi j =
1

Ri j
,

1
Ri

=
1

Ri0
+

n

∑
j=1

Wi j.

Because of easy structure of the continuous HNN for imple-
mentation, they are often used for solving optimization problems.

In 2008, Fractional-order Hopfield Neural Networks (FHN-
N) was proposed by replacing the classical capacitors with frac-
tance components [15]. Similar with FCNN, fractance is used in

FIGURE 3: The dynamic neuron of continuous Hopfield

the continuous HNN instead of common capacitor and propos-
es a new continuous network, named Fractional-order Hopfield
Neural Network (FHNN), which can obtained by (1):

Ci
dα Pi

dtα
=

n

∑
j=1

Wi jVj−
Pi

Ri
+ Ii, (2)

where 0<α < 1 and the corresponding parameters are same with
(1).

FHNN has infinite memory and shows good significations
comparing with the common Hopfield in various fields such as
optimization problems. Due to the applications of FHNN to par-
allel computation and signal processing, the dynamics of FHNN
became a hot topic. E. Kaslik and S. Sivasundaram firstly inves-
tigated several dynamical behaviors of FHNN, such as stability,
multi-stability, bifurcations and chaos [16–19]. Then, more rela-
tional results appeared in the stability [20–26] and synchroniza-
tion [25–28] of FHNN. These above theoretical results will be
discussed detailed in Sections IV and V.

Fractional-order PID control in backpropagation dia-
grams

In theory, neural networks own the ability of learn arbitrarily
complex functions for classification, decision, and similar tasks.
For example, the weights between nodes in a fixed topology are
trained by iteratively adjusting, such that the resulting values de-
termine the performance of the network. Define a thresholding
function at the output of each node as

σ=
1

1+e−net .

The input

net = ∑
i ∈ U pstream( j)

xi ·w ji,

where xi denotes each upstream node i’s output and w ji is the
weight of its connection to the node of interest j.
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Backpropagation algorithm based on stochastic gradient de-
scent shown in Fig. 4.a, can be used to train a neural network
[29]. A set of training samples is provided along with the net-
work’s target outputs. For each output node i, by comparing the
resulting outputs o and the target values t, an error is calculated
by

δi = ȯ(t−o) .

With respect to each of its downstream connections j, the error
at hidden node i is

δi = ȯ ∑
j ∈ Downstream(i)

w ji ·δ j.

For basic neural network (BNN), the weight w ji is updated as

∆w ji = η ·δ j · xi,

where η is the learning constant.
Proportional, integral, derivative (PID) control shown in Fig.

4. b is a popular strategy for designing a simple feedback control
system. For the PID neural network (PNN), the update law of the
weight w ji becomes

∆w ji =

(
Kpδ j +Ki

∫
δ jdt +Kd

d
dt

δ j

)
· xi,

where Kp, Ki and Kd are the corresponding PID control parame-
ters. Combined with fractional calculus, the PID can be extended
to fractional-order PID (PIλ Dµ ) [30, 31]. For FNN, the update
law of the weight w ji becomes

∆w ji =

(
Kpδ j +Ki

∫
δ j(dt)λ +Kd

dµ

dtµ
δ j

)
· xi,

where λ and µ are the orders of the fractional integral and deriva-
tive respectively. In [30], the authors discussed the above FNN
and compared FNN with PNN and BNN, and showed that FN-
N can reach a lower mean squared error in both long-term and
short-term.

4 Dynamic Analysis of FNN
Due to the wide applications of FNN, the theoretical devel-

opments of FNN have been also paid attention to, especially, the
dynamic analysis of the continuous FNN. It was seen that the

(a)

(b)

FIGURE 4: (a) Typical PID, (b) Basic Backpropagation Control
System Diagrams

literature related to the dynamics of FNN was broadly classified
into chaos, limit cycle and bifurcation, stability of FNN, and sta-
bility of fractional-order delayed neural networks (FDNN).

Masses of papers discussed the above dynamical properties
of FCNN and FHNN (2). In this section, we present a brief sur-
vey of these dynamical results.

4.1 Chaos of FNN
Chaos is a kind of nonlinear dynamical systems, which is

sensitive to the initial conditions and looks random. It has been
applied to numerous areas such as biology, physiology, math-
ematics, physics, electronics, information sciences, economics.
With the presentation of FNN, the chaos phenomenon in FNN
was discovered under some parameter conditions, such as FCN-
N in [32].

Since then, many scholars focused on the researches to dis-
cover or construct chaotic FNN [16, 19, 33–35]. The common
analysis method is to vary the fractional order and observe the
corresponding dynamics performance in numerical simulation,
then it could obtain the some intervals of fractional order to dis-
tinguish different dynamics in studied systems.

Detailed, we provide an example to show this method. The
dynamics of a ring neural network with 3 neurons were analyzed
in [16] described by


C
0 Dα

t x1 =−ax1 +T0 sinx1 +T1 sinx2 +T2 sinx3,
C
0 Dα

t x2 =−ax2 +T2 sinx1 +T0 sinx2 +T1 sinx3,
C
0 Dα

t x3 =−ax3 +T1 sinx1 +T2 sinx2 +T0 sinx3.
(3)

To discuss the connections between the dynamics of system (3)
and its fractional order α , the other parameters in [16] are chosen
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FIGURE 5: The trajectory of system (3) with α = 0.65 (asymp-
totically stable)

FIGURE 6: The trajectory of system (3) with α = 0.67 (an
asymptotically stable limit cycle)

as a = 1, T0 = 2, T1 = 1 and T2 =−9. By increasing the fraction-
al order α from 0.65 to 1, system (3) shows different dynamics
around the original point (0,0,0)T such as asymptotical stability,
limit cycle and chaos. When α ∈ [0.65, 2

3 ), the null solution of
system (3) is asymptotically stable. In Fig. 5, the trajectory of
system (18) with α = 0.65 converges to zero solution asymptot-
ically. As α increases to 2

3 ≈ 0.667, a Hopf bifurcation occurs,
then an asymptotically stable limit cycle appears in a neighbor-
hood of the origin with α ∈ ( 2

3 ,0.78]. When α ∈ (0.78,0.8),
two symmetrical asymptotically stable limit cycles can be found.
Finally, the chaotic attractor appears as α ∈ [0.8,1).

4.2 Limit Cycle and Hopf Bifurcation of FNN
Limit cycle belongs to a special periodic solution of dynamic

system, which plays an important role in neuroscience and biol-
ogy [36] due to its good descriptions of stable periodic variation.

FIGURE 7: The trajectory of system (3) with α = 0.79 (two
asymptotically stable limit cycle)

Since fractional calculus was found in biological, economic, so-
cial, and neural systems, limit cycle of FNN was frequently dis-
cussed based on numerical evidence [16, 37, 38], such as Figs. 6
and 7 in last subsection.

In 2009, H.A. El-Saka et. al., presented a Hopf bifurcation
condition for fractional-order system [39]. For an n-dimensional
fractional-order systems,

C
0 Dα

t x = f (x,a),

the corresponding Hopf bifurcation condition at a = a∗ is

1. |arg[λ (a∗)]|= απ

2 ,
2. |λ (a∗)|= 1,
3. d[λ (a∗)]

da 6= 0.

Based on above condition, the Hopf bifurcation for FNN was
studied in [19, 40, 41], which was a standard to discuss Hopf bi-
furcation of FNN in theory and simulation until a reference [42]
in 2012 broke all above results.

In [42], E. Kaslik and S. Sivasundaram pointed that periodic
solutions in fractional-order autonomous dynamical systems do
not exist. That means that FNN, modeled as fractional-order au-
tonomous dynamical systems, can not own limit cycle and Hopf
bifurcation in theory. Thus, the previous simulation results which
seems to obtain the existence of limit cycle in FNN may be not
effective. Since then, few research focused on the limit cycle
and hopf Bifurcation, and more scholars paid their attentions on
stability or chaos of FNN.

4.3 Stability of FNN
Due to the lack of theoretical results, more works for FNN

were to explore the chaos and limit cycle via numerical simula-
tions. However, as the non-existence of limit cycle in FNN was
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(a)

(b)

FIGURE 8: The trajectory of system (3) with α = 0.9 (chaotic)

provided in [42], more researches return to theoretical innovation
at the stability of FNN [43–48].

The FHNN was introduced in Section III, and its modeling
process was shown as system (1). According to system (1), a
common FHNN model is modified and described by

C
0 Dα

t xi (t) =−cixi (t)+
n

∑
j=1

ai j f j (x j (t))+ Ii, (4)

where i= 1,2, · · · ,n and n denotes the number of units in a neural
network, xi (t) is the state of the ith unit at time t, f j is the activa-
tion function of the jth neuron, ci > 0 is the rate with which the
ith neuron resets its potential to the resting state when discon-
nected from the network, ai j represents the constant connection
weight of the jth neuron on the ith neuron, and Ii is the constant
external inputs.

Then system (4) can be transformed as the vector form as
follows:

C
0 Dα

t x(t) =−Cx(t)+A f (x(t))+ I, (5)

where C = diag{c1,c2, · · · ,cn}, A = (ai j)n×n, f (x) =
( f1(x1), f2(x2), · · · , fn(xn))

T , I = (I1, I2, · · · , In)
T .

To study the stability of FNN, the original method is to lin-
earize system (5) and obtain its local stability conditions. How-
ever the linearized stability method is just to obtain the local
stability. To gain the global stability conditions, Mittag-Leffler
stability method (Lyapunov direct method) became popular and
promoted more stability results. In addition, some other method-
s were proposed in last few years. Detailed, they are all list as
follows.

4.3.1 Linearized stability method We first intro-
duce the widely accepted necessary and sufficient condition for
the stability of linear fractional-order systems.

Consider an n-dimensional linear fractional-order system,

C
0 Dq

t x = Ax,

where 0 < q < 2 is fractional order and A ∈ Rn×n is constant.
Above linear autonomous fractional-order system is asymptoti-
cally stable if and only if

|arg(λ )|> qπ

2
, ∀λ ∈ ϕ (A) ,

where ϕ (A) is the set of all eigenvalues of the matrix A. When
0 < q < 1, equivalently, another necessary and sufficient condi-
tion of above inequality is

|Im(λ )|> Re(λ ) tan
qπ

2
, ∀λ ∈ ϕ (A) .

Its corresponding stability region is shown in Fig. 9.
For FNN (5), the linearized stability method can be de-

scribed by
1. Calculate the steady states x̄s of FNN (5), which is the

solutions of

−Cx̄+A f (x̄)+ I = 0.

2. For an x̄, calculate its Jacobian matrix by

J (x̄) =−C+AD f (x̄) ,

where D f (x̄) = diag{ f1(x̄1)
dx1

, f2(x̄2)
dx2

, · · · , fn(x̄n)
dxn
}.

3. If all eigenvalues λ s of the Jacobian matrix J (x̄) satisfy

|arg(λ )|> qπ

2
, ∀λ ∈ ϕ (J (x̄)) ,
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FIGURE 9: Stability region of the linear fractional-order system
with order q.

the steady state x̄ is locally asymptotically stable.
The linearized stability method is simple and effective to an-

alyze the local stability of a steady state. However, by using this
method, the global stability can not be gained due to the nonlin-
earity of FNN (5).

4.3.2 Mittag-Leffler stability method To obtain the
the global stability of FNN (5), one of the most frequently used
methods is Mittag-Leffler stability method (or called Lyapunov
direct method). If the nonlinear fractional-order system

C
0 Dα

t x(t) = f (t,x(t)),

has a steady state x̄ = 0. Then its solution is called to be Mittag-
Leffler stable, if

‖x(t)‖ ≤ [m(x0)Eα(−λ (t)α)]b,

where λ > 0, b > 0, ‖ ·‖ denotes an arbitrary norm and m(x)≥ 0
(m(0) = 0) satisfies locally Lipschitz condition on x ∈ Rn with
Lipschitz constant m0 Eα(·) is a Mittag-Leffler function.

Mittag-Leffler stability implies asymptotic stability for
fractional-order systems i.e., lim

t→+∞
‖x(t)‖ = 0. To obtain the

Mittag-Leffler stability, Y. Li, Y.Q. Chen and I. Podlubny pre-
sented a remarkable sufficient condition called Lyapunov direct
method shown as follow.

(Fractional-order) Lyapunov direct method [49]: The steady
state x̄ = 0 of above nonlinear fractional-order system is Mittag-
Leffler stable if there exist positive constants α1, α2, α3, a, b,
and a continuously differentiable function V (t,x(t)) satisfying

α1‖x‖a ≤V (t,x(t))≤ α2‖x‖ab,

0Dq
t V (t,x(t))≤−α3‖x‖ab,

where t ≥ 0, q ∈ (0,1), V (t,x(t)) : [0,∞)×D→ R satisfies local-
ly Lipschitz condition on x; D ⊂ Rn is a domain containing the
origin. If the assumptions hold globally on Rn, x̄ = 0 is globally
Mittag-Leffler stable.

In 2014, two inequalities were proposed, which provided
powerful tool to choose qualified Lyapunov functions. The two
inequalities [23, 50] are described by

0Dq
t |x(t+)| ≤ sgn(x(t))0Dq

t x(t), ∀q ∈ (0,1),

1
2 0Dq

t x2(t)≤ x(t)0Dq
t x(t), ∀q ∈ (0,1),

where x(t) ∈ R be a continuous and derivable function. By using

these two inequalities, ‖x‖1 (or
n
∑

i=1
βi |xi|, βi > 0) and ‖x‖2

2 (or

xT Px, P is positive definite) can be effective Lyapunov functions
to analyze the global stability of FNN (5). The corresponding
stability results are given in [23, 26]. They always gave some
conditions to ensure the existence and uniqueness of the steady
state in FNN (5) based on contraction mapping theorem, and then
obtained the global stability conditions by using Lyapunov direct
method.

4.4 Stability of FDNN
As we know, time delay is unavoidable in practice and able

to cause oscillations or instabilities in dynamic systems. Thus,
in recent years, the stability of fractional-order delayed neural
networks (FDNN) has become an hot topic with increasing in-
terest [20–22, 24, 51–56]. The common model for FHNN with
constant delay is described by

{
C
0 Dα

t x(t) =−Cx(t)+A f (x(t))+Bg(x(t− τ))+ I,
x(t) = h(t) , t ∈ [−τ,0]. (6)

Similar with the stability methods for FNN, the current sta-
bility methods for FDNN include uniform stability method, lin-
earized stability method, Lyapunov-like stability method and so
on.

4.4.1 Linearized stability method for FDNN Lin-
earized stability method for FDNN [20, 24] is similar with that
for FNN. Firstly, the steady states are calculated and the nonlin-
ear FDNN is linearized under a steady state. Then, based on cor-
responding stability theorem of linear fractional-order delayed
system, it can obtain the local stability condition for FDNN.
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For FDNN (6), we assume I = 0 and give its linearized e-
quation with steady state x̄ = 0,

C
0 Dα

t x(t) =−Cx(t)+ Āx(t)+ B̄x(t− τ) .

Take the Laplace transform of above linearized equation and ob-
tain a characteristic matrix ∆(s) as

∆(s) = sα + c1−a11−b11e−sτ · · · −a1n−b1ne−sτ

...
. . .

...
−an1−bn1e−sτ · · · sα + cn−ann−bnne−sτ

 .

Based on the stability theorem of linear fractional-order delayed
system in [57], the steady state x̄ = 0 is local Lyapunov asymp-
totically stable if one of following two conditions holds.

1. All the roots of the characteristic equation det(∆(s)) = 0
have negative real parts.

2. All the eigenvalues of M =−C+ Ā+ B̄ have negative real
parts and the characteristic equation det(∆(s)) = 0 has no pure
imaginary roots for any τ > 0.

Certainly, this method is only to the gain the local asymptot-
ical stability condition. For global stability of FDNN, Lyapunov-
like stability method is introduced next.

4.4.2 Lyapunov-like stability method for FDNN
Lyapunov direct method in [58] is just valid for FNN. The Lya-
punov direct method was reformed in [22, 51], so that the new
Lyapunov-like stability method can be used to analyze the global
stability of FDNN. Besides, a comparison principle of fractional-
order delay systems was proposed, which was an effective tool in
the study of FDNN. The nonlinear FDNN could be transformed
to a linear fractional-order inequality by choosing a suitable Lya-
punov function. Then, due to the above comparison principle, the
stability of linear fractional-order inequality can be obtained by
analyze the corresponding linear fractional-order equation.

5 Challenges and Trends in FNN
As it shows in the above sections, the existing publications

of FNN have been introduced briefly in both theory and applica-
tion.

In recent few years, extreme learning machine [59] has be-
come a hot topic, because of its higher speed than classical
gradient-based learning algorithms. Different from the gradient-
based update law for weights in neural networks, the weights’
update law in extreme learning machine is an any continuous s-
tochastic process, such as Brownian motion.

Lévy flight is a random walk whose step size is a kinds of
heavy-tailed distributions and becomes large value occasionally

[60]. The probability distribution function p of Lévy distribution
is defined as

p(x,α,β ) =


√

β

2π

e
β

2(x−α) (x−α)3/2
, x > α,

0, x≤ α,

where α is the location parameter and β is the scale parameter.
Thus, Lévy flight can be regarded as a fractional stochastic pro-
cess, and has obtained some good computational results in the
applications of optimization [61]. The connection of Lévy flight
and extreme learning machine may gain better computational ef-
fects, and even bring an obvious improvement of machine learn-
ing.
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