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ABSTRACT
Strong coupling between values at different time that exhi-

bit properties of long range dependence, non-stationary, spiky
signals cannot be processed by the conventional time series ana-
lysis. The ARFIMA model, which employs the fractional order
signal processing techniques, is the generalization of the conven-
tional integer order models—ARIMA and ARMA model. There-
fore, it has much wider applications since it could capture both
short-range dependence and long range dependence. For now,
several software have developed functions dealing with ARFIMA
processes. However, it could be a big difference, if using diffe-
rent numerical tools for time series analysis. Time to time, being
asked about which tool is suitable for a specific application, the
authors decide to carry out this survey to present recapitulative
information of the available tools in the literature, in hope of be-
nefiting researchers with different academic backgrounds. In this
paper, 4 primary functions concerning simulation, fractional or-
der difference filter, estimation and forecast are compared and
evaluated respectively in the different software and informative
comments are also provided for selection.

INTRODUCTION
Humans are obsessed about their future so much that they

worry more about their future than enjoying the present. Time
series modelling and analysis are scientific ways to predict the
future. When dealing with empirical time series data, it usually
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comes to the classic book of Box and Jekin’s methodology for
time series models in the 1970s, in which it introduced the au-
toregressive integrated moving average (ARIMA) models to fo-
recast and predict the future behavior [1]. However, the conven-
tional integer order models can only capture short-range depen-
dence (SRD); for example, Poisson processes, Markov proces-
ses, autoregressive (AR), moving average (MA), autoregressive
moving average (ARMA) and ARIMA processes [2].

In time series analysis, another traditional assumption is that
the coupling between values at different time instants decreases
rapidly as the time difference or distance increases. Long-range
dependence (LRD), also called long memory or long-range per-
sistence, is a phenomenon that may arise in the analysis of spatial
or time series data. LRD was first highlighted in hydrological
data by the British hydrologist H. E. Hurst, and then the other
fields in econometrics, network traffic, linguistics and the earth
sciences. LRD, which is characterized by the Hurst parameter
means that there is a strong coupling between values at different
time. This indicates that the decay of the autocorrelation function
is hyperbolic and decays slower than exponential decay, and that
the area under the function curve is infinite. We can also say that
their autocorrelation functions (ACF) are power-law distributed.

Due to the increasing demand on modeling and analysis of
LRD and self-similarity in time series, such as financial data,
communications networks traffic data and underwater noise, the
fractional order signal processing (FOSP) technique is becoming
a booming research area. Moreover, fractional Fourier trans-
form (FrFT), which is the generalization of the FFT, has become
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one of the most valuable and frequently used techniques in the
frequency domain analysis of the fractional order systems.

Compared to conventional integer order models, the AR-
FIMA model gives a better fit and result when dealing with the
data which possess the LRD property. Sun et al. applied the
ARFIMA model to analyze the data and predict the future le-
vels of the elevation of Great Salt Lake (GSL) [3]. The re-
sults showed that the prediction results have a better performance
compared to the conventional ARMA models. Li et al. exa-
mined 4 models for the GSL water level forecasting: ARMA,
ARFIMA, GARCH and FIGARCH. They found that FIGARCH
offers best performance indicating that conditional heteroscedas-
ticity should be included in time series with high volatility [4].
Sheng and Chen proposed a new ARFIMA model with stable
innovations to analyze the GSL data, and predicted the future
levels. They also compared accuracy with previously published
results [5]. Contreras-Reyes and Palma developed the statistical
tools “afmtools” package in R for analyzing ARFIMA models.
In addition, the implemented methods are illustrated with appli-
cations to some numerical examples and tree ring data base [6].
Baillie and Chung considered the estimation of both univariate
and multivariate trend-stationary ARFIMA models, which gene-
rated a long memory autocorrelated process around a determinis-
tic time trend. The model was found to be remarkably successful
at representing annual temperature and width of tree ring time
series data [7]. Dr. Jurgen Doornik is a research fellow at the
University of Oxford and a director of OxMetrics Technologies
Ltd. OxMetrics is an econometric software including the Ox pro-
gramming language for econometrics and statistics, developed
by Doornik and Hendry. Several papers and manuals are availa-
ble for the ARFIMA model with OxMetrics [8–10].

Nowadays, there are lots of numerical tools available for the
analysis of the ARFIMA processes. Since applications are de-
veloped by different groups based on different understandings of
algorithms and definitions of accuracies and procedures. As a
consequence, the estimation and prediction results may be diffe-
rent or even conflicting with others. For the scholars or engineers
who are going to do the modeling work of the ARFIMA pro-
cesses, they might get confused that which tool is more suitable
to choose. Thus, we have evaluated techniques concerning AR-
FIMA process analysis so as to provide some guidelines when
choosing appropriate methods to do the analysis. With this mo-
tivation, this paper briefly introduces their usage and algorithms,
evaluates the accuracy, compares the performance, and provides
informative comments for selection. Through such efforts, it is
hoped that an informative guidance is provided to the readers
when they face the problem of selecting a numerical tool for a
specific application.

The rest of the paper is organized as the follows: Section 2
introduces the basic mathematics of LRD and the ARFIMA mo-
del. Section 3 gives a brief review and description on the soft-
ware commonly used for the analysis of the ARFIMA proces-

ses. In Section 3, the quantitative performances of the tools are
evaluated and compared in four primary categories—simulation,
processing, estimation and prediction in the ARFIMA process.
Conclusions are given in Section 4.

LRD AND ARFIMA MODEL
When the hydrologist Hurst, H.E. spent many years analy-

zing the records of elevation of the Nile river in the 1950s, he
found a strange phenomena: the long-range recording of the ele-
vation of the Nile river has much stronger coupling, and the ACF
decays slower than exponentially [11]. In order to quantify the
level of the coupling, the rescaled range (R/S) analysis method
was provided to estimate the coupling level, which is now cal-
led the Hurst parameter. Many valuable Hurst parameter esti-
mators were provided to more accurately characterize the LRD
time series. Since then the LRD or long memory phenomenon
has attracted numerous research studies. Based on Hurst’s ana-
lysis, more suitable models, such as ARFIMA and fractional in-
tegral generalized autoregressive conditional heteroscedasticity
(FIGARCH) were built to accurately analyze LRD processes.

Autocorrelation analysis is a very useful technique for iden-
tifying trends and periodicities in the data, in a manner that is
often more precise than can be obtained with simple visual in-
spection.

ρk =
Cov(Xt ,Xt−k)

Var(Xt)
. (1)

The correlations function ρ(k) of the stationary SRD stochastic
models, such as the ARMA processes and Markov processes, is
absolutely summable, while the correlations function ρk is not
absolutely summable for the processes with long-range depen-
dence. Signals with long-range correlations, which are charac-
terized by power-law decaying autocorrelation function, occur
ubiquitously in nature and many man-made systems. Because of
the strong coupling and the slow decaying autocorrelation, these
processes are also said to be long memory processes. Typical ex-
amples of LRD signals include financial time series, underwater
noise, electroencephalography (EEG) signal, etc. The level of
the dependence or coupling of LRD processes can be indicated
or measured by the estimated Hurst parameter, or Hurst exponent
H ∈ (0,1) [11]. If 0 < H < 0.5, the time series is a negatively
correlated process, or an anti-persistent process. If 0.5 < H < 1,
the time series is a positively correlated process. If H = 0.5, the
time series has no statistical dependence. The LRD processes
are also closely related to fractional calculus. In order to capture
the property of coupling or power-law decaying autocorrelation,
fractional calculus based LRD models have been suggested, such
as ARFIMA and FIGARCH models [12,13]. The ARFIMA mo-
del is a generalization of ARMA model, which is a typical fracti-
onal order system.
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Autoregressive (AR) model
The notation AR(p) refers to the autoregressive model of

order p. The AR(p) model is written [1]:

Xt = c+
p

∑
i=1

φiXt−i + εt , (2)

where φ1, · · · , φp are autoregressive parameters, c is a constant,
and the random variable εt is white noise. Some constraints are
necessary on the values of the parameters so that the model re-
mains stationary. For example, processes in the AR(1) model
with |φ1| ≥ 1 are not stationary. In statistics and signal proces-
sing, an autoregressive (AR) model is a representation of a type
of random process; as such, it describes certain time-varying pro-
cesses in nature, economics, etc.

Moving Average (MA) model
The notation MA(q) refers to the moving average model of

order q [1]:

Xt = µ +
q

∑
i=1

θiεt−i + εt , (3)

where the θ1, · · · , θq are the moving average parameters of the
model, µ is the expectation of Xt (often assumed to equal 0), and
the εt , εt−1 ,. . . are again, white noise error terms. The moving
average (MA) smooths a time series, which can produce cyclic
and a trend like plots even when the original data are themselves
independent random events with fixed mean. This characteristic
lessens its usefulness as a control mechanism.

ARIMA and ARFIMA model
The above AR and MA models can be generalized as fol-

lows:

(1−
p

∑
i=1

φiBi)(1−B)d(Xt −µ) = (1+
q

∑
i=1

θiBi)εt . (4)

The above (1− B)d is called a difference operator ∇d . The
ARMA or ARIMA models can only capture the SRD property
since d is confined in the range of integer order. Therefore,
in order to capture the LRD property of the fractional system,
ARFIMA(p,d,q) model was proposed. In fact, the operator can
be defined in a natural way by using binomial expansion for any
real number d with Gamma function.

(1−B)d =
∞

∑
k=0

(
d
k

)
(−B)k =

∞

∑
k=0

Γ(d +1)
Γ(k+1)Γ(d +1− k)

(−B)k.

(5)

White Gaussian Noise
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FIGURE 1. ARFIMA MODEL

Many authors suggested the use of the fractionally ARIMA mo-
del by using a fractional difference operator rather than an integer
one could better take into account this phenomenon of LRD [14].
Hosking et al. defined an extension of the ARIMA model which
allows for the possibility of stationary long-memory models [15].
Thus, the general form of ARIMA(p,q,d) process Xt in the
Eq. 4—the ARFIMA(p,d,q) process is defined as:

Φ(B)(1−B)dXt = Θ(B)εt , (6)

where d ∈ (−0.5,0.5), and (1−B)d is defined as the fractional
differencing operator in the Eq. 5. ARFIMA(p,d,q) processes
are widely used in modeling LRD time series, where p is the
autoregressive order, q is the moving average order and d is the
level of differencing [16]. The larger the value of d, the more
closely it approximates a simple integrated series, and it may ap-
proximate a general integrated series better than a mixed fractio-
nal difference and ARMA model.

Fig. 1 presents the discrete ARFIMA process which can be
described as the output of the fractional-order system driven by
a discrete wGn. The ARFIMA(p,d,q) process is the natural ge-
neralization of the standard ARIMA or ARMA processes. In
a fractionally differenced model, the difference coefficient d is
a parameter to be estimated first. The intensity of self-similar
of ARFIMA is measured by a parameter d [17]. For the finite
variance process with fractional Gaussian noise, d has a closed
relation with Hurst parameter H [2, 17]:

d = H−1/2. (7)

In this way, the parameter d may be chosen to model long-time
effects, whereas p and q may be selected to model relatively
short-time effects.
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REVIEW AND EVALUATION
ARFIMA(p,d,q) processes are widely used in modeling

LRD time series, especially for the high frequency trading data,
network traffic and hydrology dataset etc. In practice, several
time series exhibit LRD in their observations, leading to the deve-
lopment of a number of estimation and prediction methodologies
to account for the slowly decaying autocorrelations. The AR-
FIMA process is one of the best-known classes of long-memory
models. As introduced in Section 1, most statistical analysis soft-
ware are embedded with ARIMA models. A review of the cur-
rent software dealing with fractional ARIMA model analysis are
as follows:

1. MATLAB applications
MATLAB R© (Matrix laboratory) is a multi-paradigm nu-
merical computing environment and fourth-generation pro-
gramming language developed by MathWorks. The MAT-
LAB applications are interactive applications written to per-
form technical computing tasks with the MATLAB scripting
language from MATLAB File Exchange, through additional
MATLAB products, and by users.

2. SAS software
SAS (Statistical Analysis System), is a software suite deve-
loped by SAS Institute for advanced analytics, multivariate
analyses, business intelligence, data management, and pre-
dictive analytics.

3. R packages
The R Studio team contributes code to many R packages and
projects. R users are doing some of the most innovative and
important work in science, education, and industry. It’s a
daily inspiration and challenge to keep up with the commu-
nity and all it is accomplishing.

4. Ox Metrics
OxTM is an object-oriented matrix language with a compre-
hensive mathematical and statistical function library. Many
packages were written for Ox including software mainly for
econometric modelling. The Ox packages for time series
analysis and forecasting

MATLAB codes are open-source applications where we could
download, view and revise the code if possible while other three
are packaged and embedded in the software modules. In the fol-
lowing evaluation parts, we could clearly see the differences be-
tween them even with the same input.

As introduced in the Section 1 and 2, four primary embed-
ded functions concerning simulation, fractional difference filter,
parameter estimation and forecast, are tested and evaluated for
the ARFIMA processes in Tab. 1. It should be noted that the first
two functions can be regarded as the forward problem solving
system, while the latter two are developed for the backward pro-
blem solving systems which is much more significant. In view
of the above, this section can be divided into 4 parts.

TABLE 1. NUMERICAL TOOLS FOR THE ARFIMA PROCESS

MATLAB R SAS OxMetrics

Simulation "∗ " " %

Fractional Difference " " " %

Parameter Estimation " " " "

Forecast " " % "

Note: "∗ means it can simulate ARFIMA processes, but cannot
choose or define the initial seeds.

Simulation
On the website of MATLAB Central, there are two files that

can simulate ARFIMA processes. They are developed by Fa-
tichi [18] and Caballero [19]. But user cannot choose initial
random seed, that is, it can only simulate one certain series of
ARFIMA process. ARFIMA(p,d,q) estimator is developed by
Inzelt, which is used for linear stationary ARFIMA(p,d,q) pro-
cess [20].

R is a freely available language and environment for statis-
tical computing and graphics which provides a wide variety of
statistical and graphical techniques: linear and nonlinear model-
ling, statistical tests, time series analysis, classification, cluste-
ring, etc. Like the MATLAB Central, CRAN is a platform that
store identical, up-to-date, versions of code and documentation
for R. There are several major packages concerning ARFIMA
process according to the authors’ survey in the Fig. 2.

The first two packages are used for the processing of the AR-
FIMA processes, including Hurst fitting, calculation and fractio-
nal order differencing etc., while the latter two are mainly used
for the parameter estimation of ARFIMA. The last package ‘ar-
fima’ is the most comprehensive tool that could simulate, esti-
mate and predict the results of ARFIMA processes. In the paper,
we use the last one package to compare with the other software.

SAS and R could also generate the ARFIMA process by de-
fining the order of AR(p) and MA(q), setting the parameters φ ,
θ and d, respectively. Besides, the number of the initial random
seeds could/should be set for the stochastic process. Random
seeds are defined by the internal algorithm, which make the ini-
tial stochastic process a difference. However, it may be a big
difference if picking arbitrary seeds. In order to illustrate the
above problems, we have generated the ARFIMA(1,0.4,1) pro-
cess with the d = 0.4, φ = 0.5, θ = −0.1 and σ = 1. Then we
set 100 different initial random seeds with 3000 sampling points,
and do the same estimation. It should be kept in mind that even
with the same simulation software that generates the processes,
the estimation results could be a big difference in the Fig. 2. Ho-
wever, from the perspective of the sample-path analysis for the
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TABLE 2. COMPARISON OF ARFIMA PACKAGES IN R

Package Author Release Date Typical Functions Requirements

fractal William Constantine et al. [21] 2016-05-21 hurstSpec R>= 3.0.2

fracdiff Martin Maechler et al. [22] 2012-12-02 fracdiff longmemo, urca

afmtools Javier E. Contreras-Reyes et al. [23] 2012-12-28 arfima.whittle
R (>= 2.6.0), polynom, fracdiff,

hypergeo, sandwich, longmemo

ArfimaMLM Patrick Kraft et al. [24] 2015-01-21 arfimaMLM R (>= 3.0.0), lme4, fractal

arfima Justin Q. Veenstra et al. [25] 2015-12-31 arfima R (>= 2.14.0), ltsa

stochastic processes, this could be the advantage compared to the
MATLAB ARFIMA applications, which can only generate one
certain series (path). Besides, we have also found that the SAS
software is somewhat better or “conservative” while R software
is more “aggressive”. We could check the comparisons below
with dashed lines showing true values of parameters.

It should be also noted that, even with a certain series of the
initial starting random seeds, the estimation results could also
have quite a few variations. For example, we have set the fracti-
onal order d from 0 to 0.5, and do the simulation and estimation
accordingly in MATLAB. It can be seen that the estimation d̂ are
jumping up and down around the true values (the red line) in the
Fig. 3.

Here are some comments of this subsection:
I. Estimation results are also depended on the of the initial

random seeds, even series are from their own simulations.
II. The test results may be different if not enough points are

generated.
III. Estimation results may not be accurate if only use one

method.

Fractional Order Difference Filter
Many time series contain trends, i.e. they are non-stationary.

Trends may be linear, or have some more complex form, such
as polynomial or logistic. Whatever the form of the trend it is
usually preferable to remove and/or specify the trend explicitly
prior to further analysis and modeling. By differencing the trend
if necessary, the smoothed data should stay stationary. Based
on the theory of Box-Jekins, an ARIMA model can be viewed
as a “filter” that tries to separate the signal from the noise, and
the signal is then extrapolated into the future to obtain forecasts.
Since the beginning of the 1980s, long memory ARFIMA model
has been well investigated, especially many papers that based on
the parameter estimation problem. Shumway and Stoffer gave a
brief overview of “long memory ARMA” models in [26]. This

type of model might possibly be used when the ACF of the series
tapers slowly to 0 and spectral densities are unbounded at f = 0.

In some instances, however, we may see a persistent pat-
tern of non-zero correlations that begins with a first lag correla-
tion that is not close to 1. In these cases, models that incorpo-
rate “fractional differencing” may be useful. Difference the time
series data using the approximated binomial expression of the
long-memory filter is a prerequisite to estimate of the memory
parameter in the ARFIMA(p,d,q) model. The user should not
only put numeric vector or univariate time series, but also specify
the order of the fractional difference filter. By passing through
fractional order difference filter, the ARFIMA series will yield
residuals which are uncorrelated and normally distributed with
constant variance in the Fig. 4.

The sample ACF and partial autocorrelation function
(PACF) are useful qualitative tools to assess the presence of
autocorrelation at individual lags. The Ljung-Box Q-test is a
more quantitative way to test for autocorrelation at multiple lags
jointly [27]. The Ljung-Box test statistic is given by:

Q(m) = N(N +2)
m

∑
h=1

ρ̂2
h

N−h
, (8)

where N is the sample size, m is the number of autocorrelation
lags, and ρh is the sample autocorrelation at lag m. Under the null
hypothesis, the asymptotic distribution of Q is chi-square with m
degrees of freedom. If use lbqtest function in the MALTAB
Econometrics Toolbox, it returns the rejection decision and p-
value for the hypothesis test. P−values indicate the strength at
which the test rejects the null hypothesis. If all the p−values are
larger than 0.01, there is strong evidence to accept the hypothesis
that the residuals are not autocorrelated.

Thus, we have generated ARFIMA(0,0.4,0) processes in
Fig. 5 and use fractional order difference filter with the order
d = 0.4 to filter the LRD property in the Fig. 6. It is obvious that
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FIGURE 4. FRACTIONAL ORDER DIFFERENCE OF THE
ARFIMA(0,0.4,0) PROCESS

by passing through the fractional order difference filter, the slow
decaying property of LRD has been eliminated.

In order to evaluate the residuals, we choose to use p-values
to quantify the goodness of fitting in the Tab. 3.
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FIGURE 5. SIMULATION OF ARFIMA(0,0.4,0) PROCESS

Comments: The above four software all have fractional or-
der operator to filter the LRD process successfully. In general,
d is the parameter to estimate first. If use the calculation defi-
ned by the Hurst method, d could probably be the fractional one.
Therefore, the fractional order filter would be the primary tool to
eliminate the LRD property or the heavy-tailedness in order to
get the stationary series.

Meanwhile, however, the fractional order d is closely related
to the Hurst parameter in Eq. 7. There are more than ten methods
to estimate Hurst parameters, R/S method, aggregated variance
method, absolute value method, periodogram method, whittle
method, Higuchi’s method etc. These methods are mainly use-
ful as simple diagnostic tools for LRD time series. These Hurst
estimators have been introduced to analyze the LRD time series
in [28–30]. Therefore, the results of Hurst estimators can be dif-
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FIGURE 6. ARFIMA(0,0.4,0) PROCESS PASSING THROUGH
THE FRACTIONAL DIFFERENCE FILTER

TABLE 3. FRACTIONAL FILTERS

MATLAB R SAS Ox

Function d filter diffseries fdif N/A

p-values with

1,5,10,15 lags

0.0710 0.09998 0.1062 N/A

0.2253 0.2395 0.2414 N/A

0.5850 0.5320 0.5198 N/A

0.5330 0.4571 0.4473 N/A

ferent if applying different methods. In addition, from Eq. 5, it is
interesting to note that, there are infinite factorial series in the ex-
pansion of binomial expansion. In practice, we usually take the
first three factorials for approximation. That is to say, the accu-
racy of differencing is also determined by how many factorials
are used for approximation. As a result, the different methods
make the subsequent estimation differ from each other in the fol-
lowing section.

Parameter Estimation
From Fig. 2, we could see that even though R and SAS can

both simulate the ARFIMA processes, the properties of these
processes are not the same mainly because of the distinctive
random seeds defined by different software. Therefore, when re-
viewing and evaluating the accuracy of above software, the same
ARFIMA series should be guaranteed first. Herein, we have pro-
posed to use the following steps to compare the results in the
Fig. 7. In addition, OxMetrics is a software that cannot generate
ARFIMA simulation, but it can estimate and forecast ARFIMA-
FIGARCH processes. MATLAB cannot generate multiple AR-
FIMA series for the same parameter combinations. So we have
used R and SAS to provide the ARFIMA series for the inputs of

ARFIMA Process

R Package

SAS software

R Package

SAS software

Ox software

EstimateSimulate

MATLAB 

FIGURE 7. SIMULATION AND ESTIMATION OF THE ARFIMA
PROCESS

estimations. Since we have got the simulation results, the para-
meters of the ARFIMA processes can be estimated and compared
with true values (parameter setting values). First, we have used
the simulation data from R software, and then use these three
software to do the estimation in the Fig. 8. Second, we have used
SAS to do the same simulation, and then use these three software
to do the estimation in the Fig. 9. Without loss of generality, we
pick 10 groups of 3000 sampling points to see who could capture
the accuracy.

Comments: From above plots, it is very interesting to find
that the estimation results of ARFIMA simulations are relatively
accurate when they come from the same simulation data set. But
Ox Metrics and MATLAB estimated the negative values of θ .

Forecast
Simulation data could only be the auxiliary part of the soft-

ware, it can never be a powerful and useful tool for the ARFIMA
process analysis if the software cannot retrieve the estimation pa-
rameters from the real data with LRD. What’s more, the last and
the most significant part of the ARFIMA process is to forecast
thereby predict the future behavior. Therefore, mean absolute
percentage error (MAPE) values are used for the evaluation of
the forecast results for the data from real life. The error square of
the prediction results from different methods with the increasing
number of predictions are illustrated in the Fig. 10.

σ
2
t =

n

∑
t=1

(ŷt − yt)
2. (9)

Data description: Centered annual pinus longaeva tree ring width
measurements at Mammoth Creek, Utah, from 0 A.D to 1989
A.D with 1990 sampling points in time series [31, 32]. The data
can be divided into two part, the first part with 1900 points are
used to estimate ARFIMA parameters, and the second part with
90 points are used to compared with the prediction results from
the fitted ARFIMA models. Finally, the results with the imple-
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FIGURE 8. PARAMETER ESTIMATION WITH DIFFERENT METHODS (R SIMULATION INPUTS)
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FIGURE 9. PARAMETER ESTIMATION WITH DIFFERENT METHODS (SAS SIMULATION INPUTS)

mented methods which are applied to real-life time series are
summarized in the Tab. 4.

Here are some comments of this subsection:
I. d is the parameter to be estimated first when doing AR-

FIMA model fitting. Therefore, if the estimation of d is different
for a certain time series, the following estimations for AR(Φ) and
MA(Θ) will be of difference.

II. The ideal length (horizon) of predictions is within 30
steps. With the increasing steps of forecast, prediction errors are
adding up. If a long range prediction series is required, R and
MATLAB should be priorities for their smaller prediction errors.

III. Compared with other forecast result with true values in 4,
R produces the minimum prediction errors and MAPE.

CONCLUSIONS
Compared to the conventional integer order models which

can only capture SRD, the ARFIMA model gives a better fit
and result when dealing with the data which possess the LRD
property. Nowadays, several software have integrated with AR-
FIMA solutions. However, the final results of estimation and
prediction could be different or conflicting if choosing different
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TABLE 4. PARAMETER ESTIMATIONS AND FORECAST COMPARISONS

Parameters R SAS OxMetrices MATLAB

1 mu 0.9833 N/A 0.98799 0.9878

2 d 0.1670 0.1479624 0.282087 0.2313

3 ar 0.9070119 0.8939677 -0.254265 0.6473

4 ma 0.8603811 0.8318787 0.18698 0.6393

5 sigma 0.1078173 0.1073417 0.1246 0.1163

6 pvalue Lag1 0.9195 N/A 0.7709458 0.9101

7 pvalue Lag5 0.6369 N/A 0.341324 0.6959

8 pvalue Lag10 0.8659 N/A 0.4367925 0.9037

9 pvalue Lag15 0.6491 N/A 0.6229542 0.6776

10 LogLikelihood 2117.224 1851.5512 -570.599 1162.527

11 MAPE 28.95 N/A 29.36 29.02

0 10 20 30 40 50 60 70 80 90

Prediction Number

0
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4

6

8

10

12

σ
2
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FIGURE 10. PREDICTION COMPARISON WITH DIFFERENT
METHODS

methods. Therefore, a comprehensive review and evaluation of
the numerical tools for ARFIMA processes is presented in the pa-
per so as to provide some guidelines when choosing appropriate
methods to do the analysis. Qualitative analysis as well as quan-
titative evaluations of the selected ARFIMA tools are conducted.
Through such efforts, it is hoped that an informative guidance is
provided to the readers when they face the problem of selecting
a numerical tool for a specific application.
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