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ABSTRACT
Optimization of water use relies on accurate measurement

of water status of crops. Stem water potential (SWP) has be-
come one of the most popular methods to monitor the water sta-
tus of almond trees. However, it needs to take twice visit and at
least thirty minutes to obtain one measurement, which makes it
very difficult to understand the water status information in the or-
chard level. Unmanned aerial vehicle (UAV) based remote sens-
ing promises to deliver reliable and precise field-scale informa-
tion more efficiently by providing multispectral higher-resolution
images with much lower cost and higher flexibility. This paper
aims to extract almond water status from UAV-based multispec-
tral images via building the correlation between SWP and veg-
etation indices. Different from the traditional method that fo-
cuses on normalized difference vegetation index (NDVI) means,
higher-order moments of non-normalized canopy distribution de-
scriptors were discussed to model SWP measurements. Results
showed that the proposed methods performed better than tradi-
tional NDVI mean.

∗Corresponding author

INTRODUCTION

By value, almonds are the top one export agriculture prod-
ucts in California, where over 82 percent of global almonds
are produced [1]. There has been steady growth in the amount
of acreage dedicated to almonds production with 900,000 acres
planted in 2016, up from 442,000 acres in 1997 [2]. Just in the
past year, almost 108,000 acres of almonds were planted (USDA,
2016). Almonds are water-intensive crop, using 9.5 percent of
the states’ agricultural water. However, California has been ex-
periencing severe drought since winter 2011. Back to Novem-
ber [3], 2016, 75 percent of California was under drought, along
with 43 percent of California enduring extreme to exceptional
drought. Driven by the high value of the crop community, the
increased growth and serious water scarcity in the state, it is im-
perative to develop efficient irrigation strategies for almond pro-
duction.

Optimization of the irrigation lies on accurate measurement
of the water status in the plants. Instead of soil moisture, telling
the information in the limited region, and evapotranspiration, in-
dicating water loss from weather changes, stem water potential
(SWP) measures the water status of plants directly. It has been
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FIGURE 1. OVERVIEW OF TESTFIELD, INCLUDING THREE TEST BLOCKS IN THE ORCHARD, EACH COMPOSED OF FIVE PLOTS
TREATED WITH 70%, 80%,90%,100%,110% of CROP EVAPTRANSPIRATION.

proved to be useful in many fruit tree species and able to indi-
cate short-term and mid-term plant response to stress [4]. Con-
sidering at least ten minutes after the sample leaf is covered [5]
and twice visit, it is a big challenge to conduct measurements
frequently, especially in the large orchard. With the fast develop-
ment of multispectral cameras and UAV platforms, it is promis-
ing to conduct the real-time crop monitoring in a large scale with
sufficient accuracy.

Quite a few studies have been conducted on the correla-
tion between SWP and vegetation indices in different species of
crops using UAVs based remote sensing. Crop water stress index
(CWSI) showed good correlation with SWP in peach trees [6],
pistachio trees [7] and almond trees [8]. PRI was correlated
well with SWP in olive trees [9] and significant correlation was
found between PRI and CWSI in vineyards [10]. NDVI was
correlated well with SWP in mandarin citrus trees [11]. Non-
normalized NDVI was shown a good correlation with SWP in
almond trees [12]. Although the image spatial resolutions and
camera band configurations in these studies were different, all
these vegetation indices were obtained by averaging the pixel
values in the scales of canopy or blocks.

The averages of vegetation indices such as NDVI, were sim-
ilar under different image resolutions, whether they were ob-
tained from satellites, UAVs, ground spectrometers or hand-hold
scanners [13, 14]. This indicates that higher resolution images
will not contribute extra accuracy in the final measurement be-
sides fine resolution if just the statistic average is applied. It

was shown that the temperature distribution within individual
crowns indicated water stress [8, 15], where canopy temperature
distributions of stressed trees showed a positive skewness. His-
togram shapes of NDVI, the green normalized difference veg-
etation Index (GNDVI), and the soil adjusted vegetation index
(SAVI) were also used to compare stress levels of different re-
gions [16].

Inspired by these works we are interested in whether we
could monitor water status of almond trees by quantifying the
histogram shapes of non-normalized canopy distribution [12] via
higher order moments. Correlations between SWP and average,
skewness and kurtosis of canopy distributions are compared us-
ing the data collected in growing season 2015.

MATERIALS AND METHODS
Remote sensing platform

The remote sensing platform includes a quadcopter and
a near-infrared(NIR) camera, a red-green-blue(RGB) camera
(ELPH110HS, Canon, Japan). The quadcopter was built from
scratch using Quadkit (3DRobotics, Berkeley, USA), as shown
in Fig. 2. The model aircrast comprises four sets of electric speed
controllers (ESCs), brushless motors and plastic propellers, con-
trolled by the ardupilot, mounted on the fiberglass frame with
four aluminum arms. Two blue arms indicate forward and two
black arms tell backwards.

The NIR camera was modified from a regular Commercial-
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FIGURE 2. THE UAV-BASED REMOTE SENSING PLATFORM
INCLUDING A QUADCOPTER, A NIR CAMERA AND A RGB
CAMERA, CREDITS TO LARRY BURROW.

off-the-shelf (COTS) RGB camera (ELPH110HS, Canon, Japan)
by LDP LLC, USA. The peaks of its blue, green and NIR bands
are located in 450nm, 520nm, 720nm. Both RGB and NIR cam-
eras have a resolution 4608×3459, with a radiometric resolution
of 24 bit.The camera supported Cannon hack development kit
(CHDK), which makes it programmable to trigger cameras via
the autopilot. Most importantly, it synchronizes the images with
their GPS and IMU information during flights.

Study areas
The study was carried out in a commercial almond or-

chard located in Merced County, CA, USA(37.493498◦N, -
120.634914◦W). Three varieties Nonpareil, Carmel, and Mon-
terey were planted on Lovell peach rootstocks 16 years ago at a
spacing of 5.5 m×6.1 m. The soil of the site is of Rocklin and
Greenfield sandy loam. The climate is Mediterranean, charac-
terized by wet, cool, rainy winters and hot, dry summers. The
averave anual extreme temperature is between 25◦F and 30◦F.
Three blocks were chosen for the study. Each block comprised
five different plots, where five irrigation levels are run, one per
plot from 70% to 110% of crop evaptranspiration (ETc) with in-
crement by 10%. Each plot includes three rows of trees with 18
trees per row, as shown in Fig. 1. The water is delivered accord-
ingly by tuning microsprinklers(Supernet, Netafim).

Crop evapotranspiration was calculated according to Food
and Agriculture Orgination (FAO) method [17].

ETc = Kc ∗ETo (1)

where ETo is the evapotranspiration rate of a reference surface

under optimum treatment and certain climatic conditions, and
crop coefficient Kc is defined as the ratio ETc/ETo. Kc utilized in
this study was developed in California [18].

Field measurements
Concomitant to each flight and multispectral image acqui-

sition, stem water potential ψs were measured with the aim of
comparing image-based results with a ground-truthed indicator.
The ψs of fifteen trees were measured within a block, three trees
per irrigation level in the center of the plot, as marked in Fig. 1.
One block was measured each week and three blocks were mea-
sured in truns. A lower shaded bagged leave was taken from each
sample tree and was measured with a pressure chamber (PMS
Instrument Model 600, Oregon, USA) following the recommen-
dations [5].

Airborne imagery
The airborne compaign were conducted at 60 meters above

the ground and the spatial resolution was 1.87 cm/pix. The cam-
eras were triggered at a distance of 16 m to obtain the overlap
upto 75% in order to stitch images using the software PhotoScan
(Agisoft,Russia). The images of white panels and dark panels
were taken right before flight missions serving as reflectance ref-
erences. The digital number (DN) value of raw image is con-
verted to reflectance with an empirical method [19] as shown in
Eqn.2. The DN of dark panels (DND) and white panels (DNW )
are determined by the point located in the central part of its his-
togram. NDVI is calculated according to Eqn.3, where the re-
flectance in the red band (ρR) is replaced with that of the blue
band (ρB). It is reasonable because the distance between ob-
jects and cameras is 60 meters and atmosphere scattering and
absorption would not have a significant effect in the blue band.
Most importantly, this saves effort to register the images between
bands and decreases error from low regeneration accuracy.

To minimize the influence of bidirectional reflectance dis-
tribution function (BRDF) effects [20], only the canopy images
collected with nadir view angles were used. Then the canopy
image of each sample tree was separated from soil manually and
the pixels within the canopy were further analyzed.

ρλ =
DN −DND

DNW −DND
(2)

NDV I =
ρNIR −ρB

ρNIR +ρB
. (3)
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FIGURE 3. CORRELATION BETWEEN SWP AND MEAN, VARIANCE, SKEWNESS AND KURTOSIS USING DATA COLLECTED IN THE
MIDDLE BLOCK ON JUNE 18TH,2015.
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FIGURE 4. CORRELATION BETWEEN SWP AND MEAN, VARIANCE, SKEWNESS AND KURTOSIS USING DATA COLLECTED IN THE
EAST BLOCK ON JULY 16TH, 2015.

RESULTS AND DISCUSSIONS

Non-normalized NDVI index was compared with traditional
NDVI in [12]. In the study, we are interested in how the higher
order moments of canopy distributions are related to SWP mea-

surements. After canopy images seperated from soil, the DN
value difference between the NIR band and blue band of every
pixel within canopies was calculated, Then for each sample tree,
its canopy distribution was described using the histogram of DN
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FIGURE 5. CORRELATION BETWEEN SWP AND MEAN, VARIANCE, SKEWNESS AND KURTOSIS USING DATA COLLECTED IN THE
MIDDLE BLOCK ON AUGUST 20TH, 2015.

TABLE 1. MODELING PERFORMANCE PARAMETERS BE-
TWEEN SKEWNESS AND SWP WITHIN THREE DIFFERENT
MONTHS

Parameters 06-18-2015 07-16-2015 08-20-2015

R2 0.4166 0.3351 0.574

pValue (Intercept) 0.00013054 0.0017892 0.00018639

pValue (Skewness) 0.0093539 0.030068 0.0010684

value difference of all the pixels within the canopy, where the
range of DN value difference is 0 to 255 and the number of
bins is 255. Variance, skewness and kurtosis of canopy distri-
butions were calculated based on the its histogram of DN value
difference. Traditional canopy NDVI average was also calcu-
lated as a reference. Correlations analysis between these four
vegetation indices and SWP measurements of sample trees on
June 18th, July 16th and August 20th, 2015 were conducted to
compare their performance. Statistic analysis was carried out in
Matlab2013b (Mathworks, Massachusetts, United States).

Figures 3 to 5 show scatter plots and fitted line between veg-
etation indices and SWP measurements collected in three differ-
ent months. In each figure, x axis stands for SWP and y axes
stand for canopy NDVI means, variances of canopy DN differ-
ence distribution, skewness of canopy DN difference distribu-
tion, kurtosis of canopy DN difference distribution in order. R2

is labeled on top of each subfigure. It is demonstrated that skew-

ness performs the best among all these features. This can be
explained in the way that the larger the skewness, the more pix-
els in the left part of its histogram, where the DN difference is
smaller and the region is under higher stress. R2, pValue of inter-
cept and skewness on three months are listed in Tab.1, showing
the correlations are significant (p<0.05).

CONCLUSION
The development of UAVs and payloads makes it easier

to collect images with higher spatial resolution than those of
satellites. With this bigger data, it is possible to monitor crops
with not only higher spatial resolution, but also higher accu-
racy. Contrast to traditional vegetation indices such as NDVI
average [21, 22], new types of vegetation indices are necessary
to extract more information from images. The paper continues
the research of non-normalized NDVI [12] and discusses the re-
lationship between higher order moments of canopy distributions
and SWP. Statistical analysis shows skewness has the best linear
correlation with SWP and it is aligned with the findings in [8,16].
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Suárez, L., Berni, J. A., Goldhamer, D., and Fereres, E.,
2013. “A pri-based water stress index combining structural
and chlorophyll effects: Assessment using diurnal narrow-
band airborne imagery and the cwsi thermal index”. Remote
sensing of environment, 138, pp. 38–50.

[11] Romero-Trigueros, C., Nortes, P. A., Alarcón, J. J., Hunink,
J. E., Parra, M., Contreras, S., Droogers, P., and Nicolás, E.,
2016. “Effects of saline reclaimed waters and deficit irriga-
tion on citrus physiology assessed by uav remote sensing”.
Agricultural Water Management.

[12] Zhao, T., Stark, B., Chen, Y., Ray, A., and Doll, D., 2016.
“More reliable crop water stress quantification using small
unmanned aerial systems (suas)”. IFAC-PapersOnLine,
49(16), pp. 409–414.

[13] Matese, A., Toscano, P., Di Gennaro, S. F., Genesio, L.,
Vaccari, F. P., Primicerio, J., Belli, C., Zaldei, A., Bianconi,
R., and Gioli, B., 2015. “Intercomparison of uav, aircraft
and satellite remote sensing platforms for precision viticul-
ture”. Remote Sensing, 7(3), pp. 2971–2990.

[14] Zheng, H., Zhou, X., Cheng, T., Yao, X., Tian, Y., Cao, W.,
and Zhu, Y., 2016. “Evaluation of a uav-based hyperspec-
tral frame camera for monitoring the leaf nitrogen concen-
tration in rice”. In Geoscience and Remote Sensing Sympo-
sium (IGARSS), 2016 IEEE International, IEEE, pp. 7350–
7353.

[15] Agam, N., Segal, E., Peeters, A., Levi, A., Dag, A., Yer-
miyahu, U., and Ben-Gal, A., 2014. “Spatial distribution
of water status in irrigated olive orchards by thermal imag-
ing”. Precision agriculture, 15(3), pp. 346–359.

[16] Candiago, S., Remondino, F., De Giglio, M., Dubbini, M.,
and Gattelli, M., 2015. “Evaluating multispectral images
and vegetation indices for precision farming applications
from uav images”. Remote Sensing, 7(4), pp. 4026–4047.

[17] Allen, R. G., Pereira, L. S., Raes, D., Smith, M., et al.,
1998. “Crop evapotranspiration-guidelines for computing
crop water requirements-fao irrigation and drainage paper
56”. FAO, Rome, 300(9), p. D05109.

[18] Doll, D., and Shackel, K., 2016. “Drought management for
california almonds”. Crops and Soils, 49(2), pp. 28–35.

[19] Smith, G. M., and Milton, E. J., 1999. “The use of the
empirical line method to calibrate remotely sensed data
to reflectance”. International Journal of remote sensing,
20(13), pp. 2653–2662.

[20] Stark, B., Zhao, T., and Chen, Y., 2016. “An analysis of the
effect of the bidirectional reflectance distribution function
on remote sensing imagery accuracy from small unmanned
aircraft systems”. In Unmanned Aircraft Systems (ICUAS),
2016 International Conference on, IEEE, pp. 1342–1350.

[21] Zhao, T., Stark, B., Chen, Y., Ray, A. L., and Doll, D.,
2015. “A detailed field study of direct correlations between
ground truth crop water stress and normalized difference
vegetation index (ndvi) from small unmanned aerial system
(suas)”. In Unmanned Aircraft Systems (ICUAS), 2015 In-
ternational Conference on, IEEE, pp. 520–525.

[22] Zhao, T., Stark, B., Chen, Y., Ray, A. L., and Doll, D., 2016.
“Challenges in water stress quantification using small un-
manned aerial system (suas): Lessons from a growing sea-
son of almond”. In Unmanned Aircraft Systems (ICUAS),
2016 International Conference on, IEEE, pp. 1366–1370.

6 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/13/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use




