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A B S T R A C T

This paper presents a multichannel compressed sampling scheme based on the modulated wideband converter
and the fractional Fourier transform. The system consists of modulators, analog filters, and analog-to-digital
converters. The analog signal is multiplied by a chirp signal and a bank of periodic waveforms. After filtering,
the product is uniformly sampled at a rate that is considerably lower than the Nyquist rate. The proposed
method which is valid for fractional multiband signals is proven based on the fractional Fourier series. The
robustness, recovery accuracy and influence of the fractional order are analyzed by the empirical probability of
the successful recovery and the mean squared error.

1. Introduction

Fractional order theory has been developed for many years. The
research on fractional order theory has experienced its boom. The
fractional Fourier transformation (FrFT) was developed by Namias as a
generalization of the standard Fourier transform (FT) and a tool in
quantummechanics [1]. FrFT was a new tool for signal processing until
the fast digital computational algorithms were introduced [2–5].
Recently, FrFT has received considerable attention due to its numerous
applications, such as signal reconstruction, image processing, neural
networks, pattern recognition, radar, sonar, communication, informa-
tion security and so forth [6–10].

Due to the advantages of FrFT in signal processing, many tradi-
tional signal processing theories in the frequency domain (FD) have
been extended to the fractional Fourier domain (FrFD) based on the
relationship between FrFT and FT, such as the Shannon-Nyquist
sampling law [11]. The multichannel sampling structures of fractional
bandlimited signals have been studied [9,12,13]. Xu and Tao [14]
introduced a randomized nonuniform sampling and reconstruction
method. Liu and Bhandari [15,16] employed FrFT to achieve a shift-
invariant function by forming an orthogonal basis and a Riesz basis.
However, implementations of these existing extensions may be ineffi-
cient due to the high sampling rate. To reduce the computational load
and save the storage space, compressed samplings are typically
required in a fractional signal processing system.

In most scenarios, the carrier frequency of the signal is unknown.
Designing a receiver at a sub-Nyquist rate is a challenging task.

Compressed sensing (CS) is introduced to collect the information
directly, which creatively performs the sampling and compressing at
the same time [17–19]. It breaks through the limitations of the
conventional Nyquist theorem and greatly reduces the sampling
pressure, signal processing rate and the storage capacity [20].
Recently, Mishali and Eldar [21] proposed a novel compressed
sampling architecture for multiband signals called the modulated
wideband converter (MWC). Along with the development of the
MWC system, the hardware prototype of the MWC system has been
shown [22,23]. A generalized MWC in the FrFD was proposed in [24].
The extended system can recover the fractional bandlimited signal with
a normal filter and low sampling rate, but the recovery probability
would be very low since the constructed sparse representation is not
shift invariant. Most research efforts have focused on the compressed
sampling theorem expansions for the bandlimited signal in FD from
different perspectives [25,26], but few have focused on the fractional
bandlimited signals. It is necessary to generalize a compressed
sampling theorem for bandlimited signals in the FrFD.

Our main contribution is a compressed sampling method in the
FrFD that constructs a sparse representation for fractional bandlimited
signals. We describe how to construct a sub-Nyquist system using
modulators, low-pass filters and ADCs; how to choose the parameters
of the compressed sampling such that an unique multiband signal can
be completely recovered; and how to recover the signal by the frame-
work of compressed sensing. The reminder of this paper is organized as
follows. In Section 2, the problem formulation is introduced based on
the basic preliminaries. In Section 3, a compressed sampling method
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for fractional multiband signals is proposed. The parameters are
appropriately selected based on the analysis in the FrFD. In Section
4, the performance of the proposed sampling scheme is analyzed in
terms of the robustness, recovery accuracy and influence of the
fractional order.

2. Preliminaries

2.1. Fractional Fourier Transform

The fractional Fourier transform (FrFT) is a generalized version of
the traditional continuous Fourier transform, which essentially allows
the signal in the time-frequency domain to be projected onto a line of
arbitrary angle [2]. The definition is denoted by:

∫F u f t K u t f t t( ) = { ( )} = ( , ) ( )d ,α
α

α
−∞

+∞

(1)

where α denotes the FrFT operator. The kernel function K u t( , )α is as
follows:
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The inverse FrFT operator is α− which is denoted as follows:
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In contrast to the standard Fourier analysis, FrFT is suitable for the
analysis of non-stationary signals because FrFT is unified in the time-
frequency plane [10]. Some basic properties of FrFT are listed below
for our presentation.

(1) Boundedness. The relationship between FrFT and FT is as follows:
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where is the integer order Fourier transform operator.
f t u f t{ ( )}( ) = [ ( )]α when α nπ= 2 + π

2 .
α is an identity operation

when α nπ= 2 [27].
(2) Additivity. =α α α α+1 2 1 2.
(3) Fractional Fourier convolution [28].
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where *
α
denotes the fractional convolution operator. * denotes the

traditional convolution operator. The FrFT of z(t) can be denoted as
follows:

Z u π X u H u α( ) = 2 ( ) ( csc ).α α (6)

2.2. Fractional bandpass signal and its sampling theorems

A fractional bandpass signal f(t) satisfies that its energy is finite.
The FrFT of f(t) is zero outside the region Ω Ω Ω Ω(− − , − + )α α0 0

Ω Ω Ω Ω∪( − , + )α α0 0 .

F u u Ω Ω u Ω Ω Ω Ω( ) = 0, for | | ≥ ( + ) and | | ≤ ( − ), ≥ ,α α α α0 0 0 (7)

where Ω2 α is the fractional bandwidth of f(t). Ω Ω Ω= +h α0 , and
Ω Ω Ω= −l α0 . According to Parseval's theorem, the bandlimited signal
can also be expressed as:
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Sampling and reconstruction in the FrFD can be viewed as an

orthogonal projection of a signal onto a subspace of fractional
bandlimited signals. Xia [11] noted that if a nonzero signal f(t) is
bandlimited with angle α, then f(t) cannot be bandlimited with another
angle β, where β α nπ≠ + for any integer n.

Suppose that the carrier Ω0 is unknown; the sampling rate would
thus be T π α Ω Ω= sin /( + )s α0 to avoid spectrum aliasing. In other
words, the rate of the analog-to-digital converter depends on the
maximum fractional “frequency” of the signal. The sampling rate must
also be no less than Ω π α/( sin )h when the signal is bandlimited within
the region Ω Ω( , )l h . The sampling rate is difficult to realize when Ω0 is
very large. If the carrier is known, then the sampling rate can be
reduced by multiplying the original signal with the carrier [29]. f(t) can
be restored as:
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where the sampling rate Ω π α= /( sin )
T α
1
s

is twice the bandwidth of f(t).

For a low-frequency narrowband signal with Ω = 0l , Ω Ω=h α, Eq.
(8) will reduce to the well-known sampling theorem [11].
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Fractional Fourier series (FrFS) are a generalization of Fourier
series [25]. FrFS will converge to FrFT when the computing interval T
approaches infinity. FrFS is denoted by:
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where Cα n, is the coefficient of the FrFS expansion. The coefficients of
the FrFS expansion are computed by the inner product of the signal
and chirp basis signals.

∫C α j α
T

f t e t= sin − cos ( )· d .α n
T

T j t n π
T α α jnt π

T,
− /2

/2
2 ( +( 2 sin ) )cot − 22 2
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2.3. Modulated wideband converter

Mishali et al. presented a multichannel parallel modulated and
sampled architecture called the modulated wideband converter
(MWC) [21], which is composed of a bank of modulators, low-pass
filters and ADCs. The MWC is effective for the sparse signal in FD. A
block diagram of the MWC system is presented in Fig. 1.

The signal x(t) is sent in parallel to m mixing channels, being
multiplied in each channel by a different periodic repeating pattern of
M random equiprobable sign values. The sign vector
p t s s s( ) = [ , ,…, ]i i i i M,0 ,1 , −1 with s ∈ {−1, 1}i k, . The index i m= 1, 2,…,
identifies the mixing channel. The sign vectors are assumed to be
mutually uncorrelated with E p t p t[ ( ), ( )] = 0i

T
j for i j≠ . E [·] denotes

the statistical expectation operator, which refers to the probability of

Fig. 1. Structure of the modulated wideband converter.
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sign values. For simplicity, suppose that the observation interval of x(t)
is P periods of the modulating sign pattern such that the signal length
can be expressed as N P M= · . After mixing, the signals are low-pass
filtered and downsampled by a decimation factor M. The amount of
data at the MWC outputs is thus reduced from N=MP samples in a
single vector to a measurement matrix with size mP. The ratio M m/ is
called the compression factor. The system has three stages:

(1) Mixing and sub-Nyquist downsampling. It is an important im-
plementation of the MWC concept that allows compressive acqui-
sition of sparse wideband signals at sub-Nyquist rates. The
sampling sequence y f z fA( ) = ( ), where A is the sensing matrix.
The ith vector Ai is the coefficient of the DFT of the pi(t) vector.

(2) Finite support recovery. It is based on the recovery of jointly sparse
vectors. y f z fA( ) = ( ) is rewritten in the discrete frequency domain
as y n θ x n( ) = ∑ ( )i l L

L
il l=−

+
0

0 where xl(n) is the sampling sequence of
the lth spectrum slice of x(t) and Ail is the entries of A. It is easy to
prove that A satisfies the restricted isometry property (RIP) [30].
The reconstruction of unknown sparse vectors xl(n) could be cast
as the multiple measurement vector (MMV) problem, which could
be resolved by joint recovery.

(3) Signal recovery is realized by simple inversion of the linear
measurement equation restricted to active sub-bands.

The MWC system is constructed based on the sparsity of the
multiband signals. Most of the system parameters depend on the
maximum bandwidth of the signals. Occasionally, the signal is sparse
in the FrFD rather than in the FD, and even if the signals satisfy the
condition of the MWC, the maximum bandwidth of signals in the FD is
considerably wider than the bandwidth in the FrFD. Although the
classic MWC can sample and reconstruct such signals that show better
sparsity in the FrFD such as the signals in Fig. 2, the probability of
successful recovery is low even with many hardware resources. It is not
economical to use the classic MWC to sample the signals that are more
sparse in the FrFD.

3. Compressed sampling for multiband signals in the FrFD

3.1. Problem formulation

An example for the sparsity of fractional multiband signals is shown
in Fig. 2. In this figure, “FT” and “FrFT” are the Fourier transform and
fractional Fourier transform of the “signals” respectively. It is observed
that the signal has better sparsity in the FrFD than in the traditional
FD. As we know, the narrower the nonzero part of the available
spectrum is, the better property the spectrum has.

In most practical applications, the signals of interest are sparse in a
certain domain, which typically occupy only a few among several

possible bands, for example, spectrum sensing and wireless commu-
nications. In Fig. 3, a sparse multiband signal in the αth FrFD contains
N nonzero narrow fractional Fourier bandlimited signals. The spectral
positions of the narrow fractional bandlimited signals are random and
unknown. The valid fractional “frequency” components of signal f(t)
are the set of non-zero spectrum. The maximum spectral width of the
signal is B b a i N= max( − ), ∈ [1, /2]α i i . B α2 cscα is considered to be the
minimum sampling frequency for the multiband signal according to
information theory [11,31]. N is even due to the conjugate symmetry of
the signal. The sampling method for the multiband signal is to
construct the relationship between the sampling rate and the maximum
width of the signal. A high sampling rate is not necessary until a
compressed sampling method for fractional Fourier bandlimited
signals is proposed.

3.2. System description

Roughly speaking, our proposal is based on two points. First, a
frequency shifting does not have any impact on the signal's fractional
bandlimited order. Second, a signal is occasionally sparse in the αth-
order FrFD rather than in the FD; in other words, one signal is
bandlimited or sparse in some FrFD but not both. The α-bandlimited
signal could be compressively sampled with a digital structure, which is
similar to the classic MWC. The structure of our proposed fractional
Fourier MWC system is shown in Fig. 4. There are two mixing steps.
The first mixing is to establish the relationship between FrFT and FT.
The spectrum of the mixed product is aliased by the random modula-
tion at the second step. At the first mixing, we multiply t αexp( cot )j

2
2

with the original signal, and then the product is mixed with the random
sign signal. The production of the mixing signal is filtered by a low-pass
filter, and then it is sampled and reconstructed by the orthogonal
matching pursuit. The final result can be recovered by multiplying the
reconstructed signal by t αexp(− cot )j

2
2 . Because the feature that the α-

bandlimited signal is sparse at the αth-order FrFT, it is easy to recover
the input signal from the FrFD. It is clear that the classic MWC is a
special case at α = π

2 .

3.3. Fractional Fourier transform domain analysis

In this part, we derive the relationship between the unknown signal
x(t) and sampling sequences y n( )∼

i . Specifically, x(t) is input to m
channels simultaneously. We take the ith channel as an example to
explain how every channel works. The system only requires pi(t) to be
periodic; thus, pi(t) is selected as a sign function for each of M equal
intervals as the follows:

p t s k
T
M

t k
T
M

k M( ) = , ≤ ≤ ( + 1) , 0 ≤ ≤ − 1,i ik
p p

(12)

where s ∈ {+1, −1}ik and pi(t) is a periodic function with period Tp.

Fig. 2. Illustration of the sparsity of fractional multiband signals.

Fig. 3. Illustration of a multiband signal in αth-order FrFT domain.
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Fig. 4. Multichannel compressed sampling method in the FrFD.
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where T is the time duration. Cα il, is the coefficient of the FrFS
expansion with the transform angle α. The FrFS coefficients are
computed by the inner product of the signal and chirp basis which is
denoted by the following:
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where u( )α is the FrFT of x(t). It is a bandlimited
signal with the maximum bandwidth not exceeding Bα.

c C e=il
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T α il
l α αsin + cos

,
− ( sin ) cotj π
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2 2

. The two-step mixing simply pro-

duces a scale transformation and a fractional “frequency” shifting in
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p p
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signal with the maximum bandwidth Bα and a relative πl α
T
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p

shift in

the FrFD.
The mixing product is truncated by a low-pass filter with cutoff us,

where us is the fractional sampling rate for each channel. Consider h(t)
to be an ideal rectangular function in the FrFD and serves as a
preceding anti-aliasing filter. If the sampling rate is chosen to be
u B=s α, then f u α= cscs s . The low-pass filter

H u α u( csc ) = 1, ∈ [− , ]B B
2 2
α α ; otherwise, H u α( csc ) = 0, as Fig. 5,

h t B α( ) = sinc( csc /2)α . Substituting Eq. (17) into Eq. (15), y t( ( ))∼
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be simplified as:
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where us is the fractional sampling rate. u =p
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“frequency” of the mixing signal pi(t). The fractional Nyquist sampling
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where T is the time duration which is an integral multiple of Tp. Eq.
(20) reduces to the following:
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Let F be an M M× discrete Fourier transform (DFT) matrix. The
ith column is denoted by:

θ θ θ i MF = [ , ,…, ] , ∈ [0, − 1].i
i i M i T0˙ 1˙ ( −1) ˙ (22)

Let F F F= [ ,…, ]L L−0 0 be M L× matrix which is a column subset of F.
To guarantee no distortion of the original signal's spectrum, set M=L.
Let S be the m M× sign matrix with ith row and kth column element
sik. diag d dD = ( ,…, )L L−0 0 is an L L× diagonal matrix with dl defined
by the following:
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where θ e= j π M− 2 / . The output y u( )α is given by:
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termed as the sensing matrix. The final expression is provided in Eq.
(25).

Fig. 5. Low-pass filter h(t) in the FD.
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Fig. 6 illustrates how the proposed system works. The system
implicitly applies a grid on the fractional “frequency” axis, which
divides a partition of the spectrum into M equal-width sub-bands.
Consider the symmetry of the real signal spectrum. There are 4 limited
bands when the number of input bandlimited signals is 2. The
spectrum slices are moved to the baseband with the coefficient cij. To
provide a clear relationship between the result y u( )α and the support set
z u( ) in the ith channel, the figure separates the spectrum slices into
vertical panes. In the real system, all of the spectrum slices alias
together in the ith channel. Each entry of z u( ) is a slice of y u( )α whose
length is us. In the left half plane, u u B= ≈s p α, and thus, the number of
spectrum slices is L=11. In the right half plane, u u B= 3 ≈ 3s p α, L=11. It
is clear that the right plane can be divided into three similar channels.
There is a tradeoff between the number of channels and every channel's
sampling rate, in which a higher sampling rate corresponding to more
channels.

3.4. Choice of parameters and recovery

The best parameters need to be chosen, such as the number of
channels m and the sampling rate u π T α= 2 / sins s . To make each band
only contribute to a continuous nonzero sequence z(u), we choose the
sign matrix signal u B≥p α, which means that f B α T≥ csc , ≤p α p

π α
B

2 sin
α

.

Each channel's sampling rate us is set as u u≥s p to keep every slice of

the spectrum sampled under the Nyquist law. The number of channels
m and the sampling rate of a single channel determine the system's
sampling rate mus. The number of channels, every channel's sampling
rate and the frequency of the mixing sign signal need to satisfy
mu Nu≥ 2s p such that the sampling data can cover the least width of

the spectrum and M ≥ u
u
NYQ

p
. In practical applications, the hardware is

unalterable once produced. A sufficient number of channels allows to
the signal to be easily recovered considering the burden of the
hardware. There is a tradeoff among the hardware costs, number of
channels and sampling rate of every channel.
z u( ) is partly composed by x u( )α in Eq. (24); thus, the recovery of the
original signal x(t) directly is almost impossible, but it could be

changed to be the recovery of the spectrum of x t e( ) t αcotj
2

2
. The system

falls into the problem of sparse solutions [32]. The reconstruction
method for the multiband signals is specified in [21]. The problem is
converted to develop an adaptive reconstruction algorithm for signals
with unknown spectral occupation. The reconstruction could be
divided into two stages: spectral support estimation in the FrFD and
signal reconstruction in the time domain. The digital computations of
the recovery support are grouped by a continuous to finite (CTF) block.
One of the elements of the CTF is to solve a multiple measurement
vectors (MMV) problem, which is an uncertain linear system for the
sparest solution matrices. We rewrite Eq. (18) in the discrete fractional
Fourier domain as:

∑y n c z n( ) = ( ),α i
l L

L

il α l,
=−

+

,
0

0

(26)

where z n( )α l, is the sampling sequence of the lth fractional spectrum

slice of x t e( ) t αcotj
2

2
and cil are the entries of the sensing matrix A.

The goal is to find z n z n z n z n( ) = [ ( ), ( ),…, ( )]α α α m,1 ,2 , with as few
nonzero rows as possible. Let U denote the index set that marks the
position of the nonzero elements of z n( ). The expression of the support
basis can be denoted by:

Fig. 6. Relationship between sparse representation and spectrum of signal.
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zI nU = ⋃ ( ( )). (27)

Reconstruction of the signal x t j πt α( )exp( 2 cot )2 can be achieved by
finding U. If the index set of z n( ) satisfies U A= rank( ), then it is a
perfect reconstruction. As long as the mixing function pi(t) is generated
randomly, the system satisfies the condition of the
reconstruction. It is achievable to recover the sparsity basis

u α uexp(− ( − ) cot ) ( − )j πl α
T α

πl α
T2

2 sin 2 2 sin
p p

by the orthogonal matching

pursuit (OMP). e x nT( )nT α( ) cotj
2

2
is recovered by inversion of the linear

measurement equation in the time domain. The original signal could be

recovered by multiplying e nT α− ( ) cotj
2

2
.

3.5. Influence of the fractional order

The αth-order FrFT is equivalent to rotating the signal in the
clockwise direction with angle α. Whereas FrFT can be regarded as the
projection on the rotated frequency axis u, the bandwidth of the signal
directly depends on the order of the FrFT. Suppose that

u u u( ) = 0, > | |,α α (28a)

v v v( ) = 0, > | |,β β (28b)

where u( )α and v( )β are αth-order and βth-order FrFTs of x(t),
respectively. β α α| − | = Δ , and the error αΔ between α and β can be
interpreted as the error between the real order and its theoretical value.

αΔ has some effect on the width of the fractional Fourier band.

x t v x t v u v[ ( )]( ) = { [ ( )]}( ) = { ( )}( ).β α α α
α

± Δ ± Δ (29)

Substitute the definition of the FrFT into Eq. (29).

d

d

d

∫ ∫

∫

u v u K u u u K u v

u λ u u λ u

u u u α
π u u

u u u u α
πu

{ ( )}( ) = ( ′) ( ′, ) ′ ( , )

× = * ( ) ( ′) ( ′)

sin( ( − ′)cscΔ )
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−
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Δ

α

α

β

β

β

β

(30)

where is the FT operator. *
αΔ
is the fractional convolution operator

defined by Eq. (5).
x(t) will not be bandlimited with the β FrFT in the same domain

u u[− , ]α α . If β = π
2 , then x t v v α e{ ( )}( ) = ( sin )β

π α
j v α α1

2
− sin cos1

2
2

, which
is bandlimited in u α u α[− csc , csc ]α α . The error of the fractional order
will lead to the variation of the bandwidth. The variation may lead to a
spectrum aliasing for the multiband signal in the FrFD. This bandwidth
of signal in two arbitrary fractional domains cannot be the same
simultaneously. It is difficult to obtain the real bandwidth, which
depends the property of the signal. Roughly speaking, the larger the
error of FrFT order, the more uncertainty there will be in reconstruc-
tion. The chirp signal is taken as an example to show how the αΔ affects
the bandwidth.

⎛
⎝⎜

⎞
⎠⎟s t A t τ

T
e( ) = rect − .i

i

i

j πθ t jπθ t2 +1 2 2

(31)

The spectrum section that signal s(t) occupies in the FrFD is
⎡
⎣⎢

⎤
⎦⎥θ α α θ α αsin − | sin |, sin + | sin |i i

π
T i i i

π
T i1

2
1

2
i i

when θ α= −cot2 . The band-

width in the FrFD is π α T4 sin / i. The bandwidth of signal s(t) at order β
where β α≠ can be computed as:

∫
∫

F s t u K t u s t t A e

e t

[ ( )]( ) = ( , ) ( )d =

× d .

β
β β

jπu β

T
jπt β θ j πt u β θ

−∞

∞
cot

0
(cot + )− 2 ( csc + )

2

2 2 1
(32)

The formula can be interpreted as the FT of e jπt β θ(cot + )2 2 , which
occupies the bandwidth of β θ T(cot + )2 . The result is also verified by

rotating in Fig. 7. The thick red line presents the time-frequency
distribution line of the signal s(t). β1 and β2 are the angles of the FrFT.
The u v⊥ means that there is a minimum bandwidth. The signal has the
best sparsity in the u domain. The maximum spectrum amplitude of
the signal is A

θ2
when θ β= −cot2 . The spectrum section that the signal

occupies in the FD is θ θ θ θ[ − , + ]T T
1 2 2 1 2 2 . The spectrum

section that signal s(t) occupies in the FrFD is
θ α θ α θ α θ α[ sin − | sin |, sin + | sin |]T T

1 2 2 1 2 2 . The best order α will tend to
zero as the modulated rate θ2 increases, and a slight error will lead to
large changes of bandwidth. From the above analysis, the chirp signal
has the best energy accumulation property in the corresponding order
FrFD and has a flat spectrum in the FrFD of other orders.

4. Numerical simulation

4.1. Design of simulation

To evaluate the performance of the proposed method, we use the
chirp signal as the test subject, which is a typical fractional Fourier
bandlimited signal. We simulate the system on the test subject
contaminated by zero-mean Gaussian noise. The original multiband
signal is denoted by x(t). The noisy signal is x t n t( ) + ( ), where n(t) is
white Gaussian noise. The SNR (signal-to-noise ratio) is defined by

x n10 log(|| || /|| ||)2 . x(t) is given by the following:

⎛
⎝⎜

⎞
⎠⎟∑ ∑x t x t E t τ

s
e πf t( ) = ( ) = rect − cos(2 ),

i

N

i
i

N

i
i

i

j πB t
i

=1

/2

=1

/2
2 i 2

(33)

where x (·)i is the ith original signal. N represents the number of active
bands. Suppose the symmetry of the real signal spectrum, where N /2 is
the number of signals. Ei is the amplitude of the signal which could be
random or fixed. Bi is the signal modulation rate
B = {0.190, 0.194, 0.198, 0.200} × 10i

9. si is the time scale factor which
determines the signal duration. Let B s ≤ 10 Mi i , which means that the
bandwidth in the FD does not exceed 10 MHz, with
s = {0.05, 0.05, 0.05, 0.05}i for convenience. τi is the time delay between
different signals which is selected randomly. fi is a random frequency
carrier. The bandlimited order α = −0.5 × 10−8. rect(·) is a rectangular
time-window denoted by rect(t) = 0, if t t| | > ; else, rect( ) = 11

2 . The
signal is both frequency bandlimited and fractional bandlimited with
different bandwidths in the observation interval. The choices of the
parameters are listed in Table 1.

Simultaneous orthogonal matching pursuit (SOMP) [33] is applied
in the system, which is fast and easy to implement for engineers to
construct signals in the simulations. The normalized mean squared
error (NMSE) and successful recovery probability are used to measure
the performance of the compressed sampling. Successful recovery
probability is defined as the ratio of the number of empirical successful
reconstructions and total trials. Successful recovery is defined when the
estimated support set is equal to the true support. Obviously, the
greater the successful recovery probability is, the better the perfor-
mance is. NMSE is defined as:

Fig. 7. Bandwidth of chirp signals with different fractional orders.
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∫
∫

x t x t t

x t t
NMSE =

| ( ) − ( )| d

| ( ) | d
,−∞

+∞ 2

−∞

+∞ 2
(34)

where x(t) is the original signal. x t( ) is denoted as the recovered signal.
We demonstrate the simulations for three different cases: robust-

ness, recovery accuracy, and the influence of the order α. These
comparisons show the recovery accuracy with different SNRs, the
robustness when the signal is contaminated by Gaussian noise, and the
influence of the fractional order α. Every simulation has 300 trials to
ensure statistically stable results.

4.2. Robustness

We use expected restricted isometry property (ExRIP) to quantify
the stability criterion.

Definition 1 (ExRIP [34]). A measurement matrix Ψ has the ExRIP, if
RIP guarantees that z zδ x δΦ(1 − )|| || ≤ || || ≤ (1 + )|| ||k k2

2
2
2

2
2 holds with a

probability of at least p for K-sparse random vectors z, whose support
is uniformly distributed and whose nonzeros are independent and
identically distributed random variables.

The probability p is defined as follows:

α β

γ β β

p M C
M σ

M B C M M C
M σ

S S

S S S

= 1 − (1 − )(1 + ( ) − 2 ( ))
( − 1)

− ( − )( ( ) − ( )) + ( − 1) ( ) − 1
( − 1)

,

K

K

K K K

K

2

2 (35)

where α S S S( ) = ∑ ( )
mM i k

m
i
T

k
1

( ) , =1
2

2 is defined as the correlation of the

rows. β S S S( ) = ∑ || ⊙ ||
m M i k

m
i k

1
, =1

2
2 3 is the total power of all auto-

correlation and cross-correlation functions where the operator ⊙
stands for cyclic convolution. γ S S S( ) = ∑ ( )

mM i k
m

i
T

k
1

( ) , =1
− 2

2 where the

vector S n S n n M[ ] = [− ], = 0,…, − 1k k with module M.
 zC z= { ∑ | | /|| || }K i

K
i=1

4 4 , and  zB z= {| ∑ | /|| || }K i
K

i=1
2 2 4 are distribution-

dependent constants. zi are K random nonzero variables of z. BK=1
whenever the nonzeros are real valued. C =K K

3
2 + when zi are standard

normal variables. It is easy to prove that the sensing matrix S has a
high probability of satisfying the ExRIP.

The robustness of the system is evaluated by the probability of
successful reconstruction in the noisy and noise-free cases. We
compare the proposed system with the classic MWC system. Because
the traditional Nyquist sampling can make full recovery, it is not
necessary to compare the Nyquist sampling methods with the proposed
method. The tradeoff between recovery probability and number of
channels is evaluated in the noise-free case. Specifically, Fig. 8 depicts
the performance when the number of active bands N is {4, 6, 8}. The

number of channels varies from 4 to 60 with a step of 2. It is observed
that the proposed system can use the limited number of channels to
recover the signal, and more bands corresponding to more channels. It
is clear that the original signal can be perfectly recovered when the
number of channels is approximately 20, but the classic MWC cannot
completely recovery the original signal. The overall sampling rate of
MWC is mf ≈ 210 MHzs . The total sampling rate of the proposed
method is mu αcsc ≈ 50 MHzs . The probability of successful recovery
dramatically increases when the number of channels becomes close to
the theoretical value, which can be obtained by the ExRIP.

In the noisy case, the simulations are demonstrated in two aspects,
including the tradeoff between successful recovery probability and the
number of channels and the balance between successful recovery rate
and signal-to-noise ratio (SNR). Each comparison is evaluated with two
different conditions. Fig. 9(a) and (b) depict the tradeoff of the number
of channels and successful rate. In Fig. 9(a), and the SNR is fixed to
20 dB, and the number of bands is {4, 6, 8}. In Fig. 9(b), the SNR is
{10, 15, 20} dB, and the number of bands is fixed to 6. In both
simulations, the number of channels varies from 4 to 60 with a step
of 2. It is observed that the requirement of the number of channels
depends on the number of bands, where more bands and a smaller SNR
correspond to more channels. Occasionally, a low SNR may lead to
failure of the recovery. Fig. 9(c) and (d) depict the tradeoff of SNR and
successful rate. In Fig. 9(c), the number of bands is {4, 6, 8}, the
number of channels is fixed to 20. In Fig. 9(d), the number of bands is
fixed to 6, and the number of channels is {10, 15, 20}. The SNR varies
from 1 dB to 35 dB with a step of 2 dB. It is observed that the
probability of a successful recovery has the same trend aa the SNR.
Although the chirp signal is bandlimited in the FD, the classic MWC
cannot effectively reconstruct the signal. The proposed method shows
better robustness than the classic MWC under various noise conditions
and numbers of channels.

Fig. 10 depicts the performance in terms of successful rate with
different SNRs and numbers of channels for the proposed method and
the classic MWC. The number of bands is fixed to 6. The SNR varies
from 5 dB to 35 dB with a step of 2 dB. The number of channels varies
from 10 to 60 with a step of 2. The classic MWC is not suitable for
fractional bandlimited signals because the successful recovery prob-
ability cannot reach one hundred percent even with more channels.

4.3. Recovery accuracy

The error between the original signal and recovered signal is mainly
produced by the noise and potentially wrong indices in the recovered
support. The recovery accuracy of the system is evaluated with different
noise conditions. We compare the proposed system with the classic

Table 1
Choices of parameters for multiband sampling.

FD FrFD Meaning

N: 4,6,8 N: 4,6,8 Number of sparse bands N
B: 10 MHz B αcsc : 0.5 MHzα Maximum bandwidth of the

active bands
f : 1 GHzNYQ u αcsc : 1 GHzNYQ Nyquist rate of the signal

m N≥ 2 = 16 m N≥ 2 = 16 Number of sampling
channels

f
f
M

B= ≥p
NYQ u

u
M

B= ≥p
NYQ

α
Frequency of each pi(t)

f f≥ = 10.53 MHzs p u α u αcsc ≥ csc = 2.5 MHzs p Sampling frequency of a
single channel

L
f

B
= 95 ≤ NYQ L

u
B

= 400 ≤ NYQ

α

Number of pi(t) changed
times

M L= = 95min M L= = 400min Number of sign intervals in
each pi(t)

mf ≥ 160 MHzs mu αcsc ≥ 8 MHzs The overall sampling rate for
the system Fig. 8. Performance of recovery probability with different numbers of channels for

noise-free signal.
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MWC. Fig. 11 has the same conditions as Fig. 9 for every subfigure.
Fig. 11 shows the relationship between the NMSE and SNR. It is
common that the NMSE decreases with increasing SNR and the

number of channels in both the proposed method and classic MWC.
Fig. 11(a) and (b) show that increasing the channels leads to a decrease
of the NMSE. The NMSE almost decreases to zero in the proposed

Fig. 9. Performance of robustness for the noisy signal.

Fig. 10. Performance of recovery probability in 3D space.
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system, but the remaining NMSE in the classic MWC cannot reach
zero. The performance of the tradeoff between the SNR and successful
rate is shown in Fig. 11(c) and (d). MWC is intolerable for noise. It is
clear that the proposed method has better recovery accuracy.

Fig. 12(a) and (b) show the performance in terms of reconstructed
accuracy of the proposed method and MWC respectively. Fig. 12 has
the same parameters as Fig. 10. The results marked in red are zeros
because the recovery probability is zero. The largest NMSE of the

Fig. 11. Performance of recovery accuracy for noisy signal.

Fig. 12. Performance of NMSE in the 3D space.
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proposed method is 0.85, which is generated based on the small
successful recovery probability, and the largest NMSE of MWC is 1.45.
The NMSE of the proposed method rapidly decreases when the number
of channels reaches the theoretical value, and the classic MWC exhibits
worse accuracy overall.

4.4. Simulation of influence of the order α

The prior fractional order α is an important factor that decides the
bandwidth of the signals. Consequently, it partially influences the
successful recovery probability. According to the foregoing analysis, an
inaccurate order α may lead to changes in the spectral width. If the
bandwidth of the real spectrum is wider than the bandwidth of the
theoretical order, then the real maximum bandwidth will be bigger
than the sampling rate. This will result in spectrum aliasing. The
successful recovery rate will rapidly decrease. Fig. 13 shows the results
of successful recovery with different fractional orders. The signal is the
same as above. The number of bands is 6. The SNR is 15 dB. The orders
are chosen to be {−0.50, −0.52, −0.53, −0.49, −0.47} × 10−8. The sys-
tem has better tolerance for the error of fractional order when the
sampling rate is larger than the maximum bandwidth of the signal. The
result for the order −0.52 × 10−8 is almost the same as that with
−0.50 × 10−8. The bandwidth in−0.47 × 10−8 may exceed the previously
proposed bandwidth.

5. Conclusion

This paper introduces a multichannel compressed sampling method
for the multiband signals in the FrFD. The theory combines the
modulated wideband converter with a sampling method in the FrFD
that is easy to implement with the mixing and convolution in the time
domain. The proposed system does not suffer from the high sampling
rate issue. The simulation shows that the method is feasible and robust
against additive Gaussian noise. Our results can be extended to the
linear canonical transform domain. There is also future work to
perform before the system can be placed into practice, including
investigations into the transform angle or the bandlimited angle α.

References

[1] V. Namias, The fractional order Fourier transform and its application to quantum
mechanics, IMA J. Appl. Math. 25 (3) (1980) 241–265.

[2] L.B. Almeida, The fractional Fourier transform and time-frequency representa-
tions, IEEE Trans. Signal Process. 42 (11) (1994) 3084–3091.

[3] H.M. Ozaktas, O. Arikan, M.A. Kutay, G. Bozdagi, Digital computation of the

fractional Fourier transform, IEEE Trans. Signal Process. 44 (9) (1996)
2141–2150.

[4] S.-C. Pei, M.-H. Yeh, C.-C. Tseng, Discrete fractional Fourier transform based on
orthogonal projections, IEEE Trans. Signal Process. 47 (5) (1999) 1335–1348.

[5] S.-C. Pei, J.-J. Ding, Closed-form discrete fractional and affine Fourier transforms,
IEEE Trans. Signal Process. 48 (5) (2000) 1338–1353.

[6] M.A. Kutay, H.M. Ozaktas, O. Ankan, L. Onural, Optimal filtering in fractional
Fourier domains, IEEE Trans. Signal Process. 45 (5) (1997) 1129–1143.

[7] M. Martone, A multicarrier system based on the fractional Fourier transform for
time-frequency-selective channels, IEEE Trans. Commun. 49 (6) (2001)
1011–1020.

[8] L. Qi, R. Tao, S. Zhou, Y. Wang, Detection and parameter estimation of multi-
component LFM signal based on the fractional Fourier transform, Sci. China Ser. F:
Inf. Sci. 47 (2) (2004) 184–198.

[9] R. Tao, B. Deng, W.-Q. Zhang, Y. Wang, Sampling and sampling rate conversion of
band limited signals in the fractional Fourier transform domain, IEEE Trans. Signal
Process. 56 (1) (2008) 158–171.

[10] E. Sejdić, I. Djurović, L. Stanković, Fractional Fourier transform as a signal
processing tool: an overview of recent developments, Signal Process. 91 (6) (2011)
1351–1369.

[11] X.-G. Xia, On bandlimited signals with fractional Fourier transform, Signal Process.
Lett., IEEE 3 (3) (1996) 72–74.

[12] F. Zhang, R. Tao, Y. Wang, Multi-channel sampling theorems for band-limited
signals with fractional Fourier transform, Sci. China Ser. E: Technol. Sci. 51 (6)
(2008) 790–802.

[13] J. Shi, Y. Chi, N. Zhang, Multichannel sampling and reconstruction of bandlimited
signals in fractional Fourier domain, Signal Process. Lett. IEEE 17 (11) (2010)
909–912.

[14] L. Xu, F. Zhang, R. Tao, Randomized nonuniform sampling and reconstruction in
fractional Fourier domain, Signal Process. 120 (2016) 311–322.

[15] A. Bhandari, A.I. Zayed, Shift-invariant and sampling spaces associated with the
fractional Fourier transform domain, IEEE Trans. Signal Process. 60 (4) (2012)
1627–1637.

[16] X. Liu, J. Shi, X. Sha, N. Zhang, A general framework for sampling and
reconstruction in function spaces associated with fractional Fourier transform,
Signal Process. 107 (2015) 319–326.

[17] D.L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52 (4) (2006)
1289–1306.

[18] J.N. Laska, S. Kirolos, M.F. Duarte, T.S. Ragheb, R.G. Baraniuk, Y. Massoud,
Theory and implementation of an analog-to-information converter using random
demodulation, in: Proceesings of IEEE International Symposium on Circuits and
Systems (ISCAS 2007), IEEE, 2007, pp. 1959–1962.

[19] J. Lei, W. Liu, S. Liu, Q. Liu, Multiscale reconstruction algorithm for compressed
sensing, ISA Trans. 53 (4) (2014) 1152–1167.

[20] J. Tropp, J.N. Laska, M.F. Duarte, J.K. Romberg, R.G. Baraniuk, et al., Beyond
Nyquist: efficient sampling of sparse bandlimited signals, IEEE Trans. Inf. Theory
56 (1) (2010) 520–544.

[21] M. Mishali, Y.C. Eldar, From theory to practice: sub-Nyquist sampling of sparse
wideband analog signals, IEEE J. Sel. Top. Signal Process. 4 (2) (2010) 375–391.

[22] M. Mishali, Y.C. Eldar, O. Dounaevsky, E. Shoshan, Xampling: analog to digital at
sub-Nyquist rates, IET, Circuits, Devices Syst. 5 (1) (2011) 8–20.

[23] G. Frigo, C. Narduzzi, Characterization of a compressive sensing preprocessor for
vector signal analysis, IEEE Trans. Instrum. Meas. 65 (6) (2016) 1319–1330.

[24] H. Zhao, L. Qiao, Y. Chen, Modulated wideband convertor for α-bandlimited
signals in fractional Fourier domain, in: Proceedings of 2016 17th International
Carpathian Control Conference (ICCC), 2016, pp. 831–835. http://dx.doi.org/10.
1109/CarpathianCC.2016.7501211

[25] Ç. Candan, H.M. Ozaktas, Sampling and series expansion theorems for fractional
Fourier and other transforms, Signal Process. 83 (11) (2003) 2455–2457.

[26] T. Erseghe, P. Kraniauskas, G. Cariolaro, Unified fractional Fourier transform and
sampling theorem, IEEE Trans. Signal Process. 47 (12) (1999) 3419–3423.

[27] A.I. Zayed, On the relationship between the Fourier and fractional Fourier
transforms, IEEE Signal Process. Lett. 3 (12) (1996) 310–311. http://dx.doi.org/
10.1109/97.544785.

[28] P. Kraniauskas, G. Cariolaro, T. Erseghe, Method for defining a class of fractional
operations, IEEE Trans. Signal Process. 46 (10) (1998) 2804–2807.

[29] A.I. Zayed, A.G. García, New sampling formulae for the fractional Fourier trans-
form, Signal Process. 77 (1) (1999) 111–114.

[30] R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, A simple proof of the restricted
isometry property for random matrices, Constr. Approx. 28 (3) (2008) 253–263.

[31] H. Landau, Necessary density conditions for sampling and interpolation of certain
entire functions, Acta Math. 117 (1) (1967) 37–52.

[32] M. Mishali, Y.C. Eldar, Reduce and boost: recovering arbitrary sets of jointly sparse
vectors, IEEE Trans. Signal Process. 56 (10) (2008) 4692–4702.

[33] J.A. Tropp, A.C. Gilbert, M.J. Strauss, Algorithms for simultaneous sparse
approximation. Part I: greedy pursuit, Signal Process. 86 (3) (2006) 572–588.

[34] M. Mishali, Y.C. Eldar, Expected RIP: conditioning of the modulated wideband
converter, in: Proceedings of Information Theory Workshop, 2009 (ITW 2009),
IEEE, 2009, pp. 343–347.

Fig. 13. Simulation of influence of the fractional orders.

H. Zhao et al. Signal Processing 134 (2017) 139–148

148

http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref1
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref1
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref2
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref2
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref3
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref3
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref3
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref4
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref4
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref5
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref5
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref6
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref6
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref7
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref7
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref7
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref8
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref8
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref8
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref9
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref9
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref9
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref10
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref10
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref10
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref11
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref11
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref12
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref12
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref12
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref13
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref13
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref13
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref14
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref14
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref15
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref15
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref15
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref16
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref16
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref16
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref17
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref17
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref18
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref18
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref19
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref19
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref19
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref20
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref20
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref21
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref21
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref22
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref22
doi:10.1109/CarpathianCC.2016.7501211
doi:10.1109/CarpathianCC.2016.7501211
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref23
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref23
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref24
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref24
http://dx.doi.org/10.1109/97.544785
http://dx.doi.org/10.1109/97.544785
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref26
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref26
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref27
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref27
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref28
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref28
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref29
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref29
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref30
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref30
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref31
http://refhub.elsevier.com/S0165-1684(16)30337-1/sbref31

	A multichannel compressed sampling method for fractional bandlimited signals
	Introduction
	Preliminaries
	Fractional Fourier Transform
	Fractional bandpass signal and its sampling theorems
	Modulated wideband converter

	Compressed sampling for multiband signals in the FrFD
	Problem formulation
	System description
	Fractional Fourier transform domain analysis
	Choice of parameters and recovery
	Influence of the fractional order

	Numerical simulation
	Design of simulation
	Robustness
	Recovery accuracy
	Simulation of influence of the order α

	Conclusion
	References




