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a b s t r a c t 

In this paper, a fractional-order sliding mode controller (FO SMC) based on an FO exponen- 

tial switching technique and an FO proportional–integral (PI) switching surface is proposed 

for robust stabilization of uncertain FO nonlinear systems. The FO exponential switching 

technique, involving an FO sign function, is designed to guarantee the existence of the 

sliding motion in finite time. Reaching time is analytically derived and the reachability 

analysis is presented to explicate the superiority of the control performance. The stability 

analysis of sliding mode dynamics is performed relying on stable region analysis of FO sys- 

tems. Simulation and practical results demonstrate the advantages of the designed control 

scheme. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

FO calculus [1–4] can date back to the end of the 17th century, when the classical IO calculus was established. In recent

years, the applications of fractional order in science and engineering have attracted attention from researchers in different

fields, such as developing FO control techniques. Providing more flexibility to enhance control performance, many FO con-

trollers such as FO PID controllers and FO optimal controllers have aroused further interest [5–9] . For example, Yin et al. in

[6] have shown the benefits of the FO extremum seeking control (ESC) over the IO ESC. 

On the other hand, since that uncertainties and external disturbances always exist in many practical engineering plants,

the robustness of the controllers is a necessary issue that must be concerned about in practical applications. Due to the

strong robustness and attractiveness, the SMC has became a popular control technology and has been widely applied in sci-

ence and engineering [10–16] . In [14] , Feng et al. have discussed chattering free full-order sliding-mode control technique. In

general, the design of SMC contains two phases: (a) definition of an appropriate sliding surface, (b) design of a control law

to move the state variables to the surface. Recently, with the development of fractional calculus theory, the SMC has been
� This work was supported by National Basic Research Program of China (Grant 61503064 and 51502338) and 2015HH0039. 
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investigated for FO systems. Most published results about the FO SMC are restricted in FO linear systems under SMC [17] ,

FO chaotic systems via SMC [18–21] . In [19] , Yin et al. have studied the FO SMC for a general FO nonlinear system which

can represent many FO chaotic system. Tavazoei et al. [18] have applied the SMC for the synchronization problem of the FO

chaotic systems. Meanwhile, there are many application of FO SMC in practice [22] , such as permanent magnet synchronous

motor [23] , antilock braking systems [24] , electrostatic and electromechanical transducers [25] and wind turbines [26] . In

[22] , Zhong et al. have studied the application of the chattering-free variable structure control method based on fractional

calculus. Zhang et al. [23] have investigated the FO SMC for the velocity control and the auto-tuning mechanism of parame-

ters in the synchronous motor. Aghababa et al. in [25] have utilized the FO SMC to guarantee the stabilization of electrostatic

and electromechanical transducers. The FO SMC has been considered as maximum power point tracking for wind turbines in

[26] . Obviously, establishing direct systematic methods for proposing the FO SMC could be useful for some general FO non-

linear systems in engineering and scientific fields [27] . Hence, the investigation on direct systematic techniques is essential

to guarantee desired robustness and performance criteria for general FO nonlinear systems, and the further analysis on how

to improve control performance is needed for designing the FO SMC. Due to the absence of appropriate mathematical meth-

ods, most contributions about the FO SMC just focused on the FO equivalent control law to obtain the sliding surface, such

as [17–27] . It should be mentioned that the switching law is another important part of SMC. The purpose of designing the

switching law is to drive the plant’s state trajectory to the desired sliding surface in finite time. Moreover, researchers want

to further improve the convergence speed in reaching phase by investigating the switching technique and try to ensure that

the chattering phenomenon won’t be enlarged [28,29] . The shorten reaching time can guarantee that the system states could

quickly approach to the sliding surface and become nonsensitive to the uncertainty and external disturbance. Chakrabarty

et al. in [28] have investigated the generalized switching law for discrete time sliding mode control. Considering the better

flexility of fractional calculus, the discussion and design for the FO switching technique could realize the above expectation.

Although this scheme has been preliminarily discussed in our recent works [30,31] , it also needs further exploration on the

properties of the FO switching technique. Especially, it is necessary to analyze why and how to reduce reaching time and

chattering as much as possible, when using the FO switching technique. Hence, in order to improve the control performance

for general FO nonlinear systems, it is very important to investigate how to construct some direct systematic methods and

FO switching techniques. 

With this motivation, we propose an FO SMC with an FO switching technique and an FO PI sliding surface for uncertain

FO nonlinear systems. For reachability analysis, an FO sign function D 

q 
t sgn (s ) , 0 ≤ q < 1 , involving an FO differentiator, is

introduced to construct the FO exponential rate switching law. D 

q 
t sgn (s ) is proven to be able to ensure the reaching phase

in finite time. The analytical reaching time t reach under the FO exponential rate switching law is obtained, for the first time.

The comparison of FO/IO exponential rate switching laws discloses the potential benefits of one controller over the other.

For the stability analysis, the FO PI sliding surface is proposed for FO nonlinear systems. The stability condition of the FO

sliding mode dynamics is discussed. The stable region analysis of FO systems is incorporated into the Lyapunov stability

condition. Finally, simulation results show the advantages (i.e. faster and lower chattering performance) of the designed

control scheme. 

The rest of the paper is organized as follows: Section 2 shows problem formulation. Section 3 describes the sliding

surface and controller design scheme. The reachability analysis is given in Section 4 . The stability analysis is investigated in

Section 5 . In Section 6 , simulation results are shown the effectiveness of the proposed controller. Finally, some concluding

remarks are drawn in Section 7 . 

2. Problem statements 

Consider the FO nonlinear system under uncertainty 

d βx (t) 

dt β
= (A + δ(t )) x (t ) + F f (x, t) + Bu (t) , 

y (t) = �x (t) , (1) 

where x (t) ∈ R n , u (t) ∈ R n , y (t) ∈ R υ denote the state vector, input and output. f ( x, t ) ∈ R l is a nonlinear function. A ∈ R n × n ,

F ∈ R n ×l , B ∈ R n ×n , � ∈ R υ×n are constant known matrices. Furthermore, B is reversible. The fractional order β satisfies 0 <

β < 1. The uncertainty δ(t) = W G (t) N, in which W, N are known real constant matrices, ‖ G ( t ) ‖ < 1, ∀ t > 0. To derive main

results, the following definition and lemmas are used. 

Definition 2.1. [1] The fractional integral with α ∈ (0, 1) is defined as follows: 

I αt ζ (t) = 

1 

�(α) 

∫ t 

0 

(t − τ ) α−1 ζ (τ ) dτ , (2) 

in which ζ ( t ) denotes any properly behaved function, � is the Gamma function. The Riemann–Liouville definition of the

β̄th-order derivative is 

d β̄ ζ (t) 

dt β̄
= 

1 

�(n − β̄ ) 

(
d 

dt 

)n ∫ t 

0 

ζ (τ ) 

(t − τ ) 1+ ̄β−n 
dτ , (3) 

in which n − 1 ≤ β̄ < n, n is an integer. 
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Lemma 2.1. [8] For D 

˜ β
t σ (t) = 

1 

�(1 − ˜ β) 

d 
dt 

∫ t 
0 

σ (τ ) 

(t−τ ) 
˜ β

dτ with σ (t) ∈ R, 0 ≤ ˜ β < 1 and the sign function, one has 

D 

˜ β
t sgn (σ (t)) 

{
> 0 , if σ (t) > 0 , t > 0 , 

< 0 , if σ ( t) < 0 , t > 0 . 
(4)

Remark 2.1. A concept of the FO sign function D 

˜ β
t sgn (σ ) , including an FO differentiator, has been firstly proposed to extract

the sign of σ in our recent work [8] . Similar to the sign function, D 

˜ β
t sgn (σ ) is demonstrated to be capable of extracting the

sign of σ . One may think it is trivial compared with the sign function itself; others may doubt that it is against instinct

compared with the derivative of a generic function. The meaning of D 

˜ β
t sgn (σ ) , 0 ≤ ˜ β < 1 is the fractional order derivative

of the sign function. The derivative represents a measure of how a function changes as its input changes. The sign of

the derivative is generally not the same as the sign of the function itself. However, the sign of the FO sign function

D 

˜ β
t sgn (σ ) , 0 ≤ ˜ β < 1 is proven to be the same as the sign function sgn( σ ) in our recent work [8] . This is an important

property of the FO sign function. 

Remark 2.2. The FO sign function will be applied to build an FO switching function. According to Lemma 2.1 , the corre-

sponding FO switching function can guarantee to force the system on the sliding surface. It will be shown in the following.

Lemma 2.2. [32] The autonomous system D 

ρ
t ς = Ā ς , ς (0) = ς 0 , in which ρ denotes the differential order, ς ∈ R n and Ā ∈ R n ×n ,

is asymptotically stable if | arg (eig( ̄A )) | > ρπ/ 2 . Furthermore, the system is stable if | arg (eig( ̄A )) | ≥ ρπ/ 2 and those critical

eigenvalues that satisfy | arg (eig( ̄A )) | = ρπ/ 2 have geometric multiplicity one. 

Lemma 2.3. [32] For any matrix M 1 and M 2 of compatible dimensions and any scalar ζ > 0, one has M 

T 
1 

M 2 + M 

T 
2 

M 1 ≤
ζM 

T 
1 M 1 + (1 /ζ ) M 

T 
2 M 2 . 

Lemma 2.4. [33] For constant matrices �1 , �2 , �3 , in which �1 = �T 
1 
, and �2 = �T 

2 
> 0 , then �1 + �T 

3 
�−1 

2 
�3 < 0 if and

only if [
�1 �T 

3 

�3 −�2 

]
< 0 , or 

[
−�2 �3 

�T 
3 �1 

]
< 0 . (5)

3. Sliding surface and control scheme design 

Firstly, the sliding surface is selected as 

s = C 1 D 

β−1 
t x + C 2 z, (6)

in which ˙ z = K̄ x − D 

1 −β
t z, with s = [ s 1 , s 2 , . . . , s n ] 

T ∈ R n , z ∈ R ι, C 1 ∈ R n ×n , C 2 ∈ R n ×ι, K̄ ∈ R ι×n . Furthermore, C 1 is reversible. De-

fine sgn (s ) : R n → R n , D 

q 
t sgn (s ) : R n → R n as follows: 

sgn (s ) = [ sgn (s 1 ) , sgn (s 2 ) , . . . , sgn (s n )] T , 

D 

q 
t sgn (s ) = [ D 

q 1 
t sgn (s 1 ) , D 

q 2 
t sgn (s 2 ) , . . . , D 

q n 
t sgn (s n )] T , 

with 0 ≤ q i < 1 , (i = 1 , 2 , . . . , n ) . Then, an FO exponential rate switching law is defined as: 

u sw 

= −HD 

q 
t sgn (s (t)) − Ks (t) 

= −

⎡ 

⎢ ⎢ ⎣ 

h 1 0 · · · 0 

0 h 2 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · h n 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

D 

q 1 
t sgn (s 1 ) 

D 

q 2 
t sgn (s 2 ) 

. . . 

D 

q n 
t sgn (s n ) 

⎤ 

⎥ ⎥ ⎦ 

−

⎡ 

⎢ ⎢ ⎣ 

k 1 0 · · · 0 

0 k 2 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · k n 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

s 1 
s 2 
. . . 

s n 

⎤ 

⎥ ⎥ ⎦ 

, (7)

where H = diag (h 1 , h 2 , . . . , h n ) , K = diag (k 1 , k 2 , . . . , k n ) with h i , k i > 0 , (i = 1 , 2 , . . . , n ) . 

Remark 3.1. The FO sign functions D 

q i 
t sgn (s i ) , q i ∈ [0 , 1) , i = 1 , 2 , . . . , n are applied to built the FO exponential rate switching

law. Note that sgn( s i ) (i.e. q i = 0 ) is a special case of D 

q i 
t sgn (s i ) . Therefore, the classical IO exponential rate switching law

is equivalent to the above FO exponential rate switching law with q i = 0 . Hence, there is a better flexibility in adjusting FO

than IO exponential rate switching law. 

Based on (6) and (7) , a SMC is given by 

u = −(C 1 B ) −1 [(C 1 A + C 2 ̄K + C 1 ) x + C 1 F f (x, t) + ū ] , (8)

in which ū = w 1 + Ks − D 

1 −β
t s with w 1 = ‖ C 1 W ‖‖ Nx ‖ sgn (s ) + HD 

q 
t sgn (s ) . Fig. 1 shows the block diagram of the proposed

control strategy. 
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Fig. 1. The block diagram of the control strategy. 
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Fig. 2. (a) The solutions t reach of 
∫ t reach 

0 τ−q e τ dτ = �(1 − q ) when q = 0 , 0 . 1 , . . . , 0 . 9 , respectively. (b) The solutions s j of ˙ s j = −s j − D q 
j 

t ( sgn (s j )) , ( j = 

0 , 2 , 4 , 6 , 8) with q 0 = 0 , q 2 = 0 . 2 , q 4 = 0 . 4 , q 6 = 0 . 6 , q 8 = 0 . 8 , when s j (0) = 1 . (c) The solutions t reach of 
∫ t reach 

0 τ−q e kτ dτ = 

1 . 5�(1 −q ) 
1 . 3 

, where q = 0 , 0 . 1 , . . . , 0 . 9 , 

respectively. (d) The solutions s j of ˙ s j = −s j − 1 . 3 D q 
j 

t ( sgn (s j )) with q 0 = 0 , q 2 = 0 . 2 , q 4 = 0 . 4 , q 6 = 0 . 6 , q 8 = 0 . 8 , when s j (0) = 1 . 5 . 

 

 

 

Remark 3.2. The FO exponential rate switching law u sw 

( t ) is firstly introduced in the manuscript. Comparing with the

traditional IO switching law u IO −sw 

= −K c sgn (s (t)) , K c = diag (k c1 , . . . , k cn ) with k ci > 0 , (i = 1 , . . . , n ) adopted in [13–16,19–

21,23,26,27] , u sw 

( t ) contains the proportional rate term −HD 

q 
t sgn (s (t)) and the FO sign function D 

q i 
t sgn (s i ) , q i ∈ [0 , 1) , i =

1 , 2 , . . . , n . The terms −HD 

q 
sgn (s (t)) could push the state to converge to the switching manifold faster when s ( t ) is large.
t 
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Table 1 

Calculation formulae of reaching time. 

Switching law Reaching time t reach ( s ∈ R ) Reaching time t reach ( s ∈ R n ) 

IO version 
1 

k 
ln 

h + k | s (0) | 
h 

max 

{
1 

k i 
ln 

h i + k i | s i (0) | 
h i 

, i = 1 , . . . , n 

}

FO version 

∫ t reach 

0 

τ−q e kτ dτ = 

| s (0) | �(1 − q ) 

h 
� max 

{∫ t i 
reach 

0 

τ−q i e k i τ dτ = 

| s i (0) | �(1 − q i ) 

h i 

� , i = 1 , . . . , n 

}
� t reach under the FO exponential rate switching law can be obtained from this equation by applying the intermediate 

value theorem. 
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Fig. 3. Time responses of the FO n-scroll attractor (26) without the controller and the uncertainty. 

 

 

 

 

 

 

 

 

Moreover, for | D 

q i 
t sgn (s i ) | , it is more likely to choose a series of q i ∈ [0, 1) such that | D 

q i 
t sgn (s i ) | is bigger than 1 during the

initial time interval, and | D 

q i 
t sgn (s i ) | ≤ 1 during the next time interval, as analyzed in [6] . So, the proposed FO switching

type control law u sw 

( t ) could increase the reaching speed when the state is far away from the switching manifold. Further-

more, it reduces the rate when the state is near the switching manifold. The result can be expected to be fast with a low

chattering reaching mode. For the traditional IO switching control law u IO −sw 

, it constrains the state to reach s ( t ) at a con-

stant rate K c . If K c is too small, the reaching time will be too long. Otherwise, a very large K c will result in high chattering.

Hence, u IO −sw 

cannot improve the control performance by reducing reaching time and chattering simultaneously, while, the

the control structure of u sw 

( t ) could be expected to improve the control performance of sliding mode method. 

4. Reachability analysis 

The reachability analysis will be considered. 

Theorem 4.1. Consider the FO system (1) , the state trajectories under the controller (8) with the FO exponential rate switching

law (7) can achieve s (t) = 0 in finite time. 

Proof. Considering V (t) = s T (t ) s (t ) , one has 

˙ V = [ C 1 δ(t) x − w 1 − Ks ] T s + s T [ C 1 δ(t) x − w 1 − Ks ] . 
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Since ‖ G ( t ) ‖ < 1, one has 

˙ V ≤ � + �T − (s T HD 

q 
t sgn (s ) + (HD 

q 
t sgn (s )) T s + 2 s T Ks ) 

≤ −(s T HD 

q 
t sgn (s ) + (HD 

q 
t sgn (s )) T s + 2 s T Ks ) , (9) 

where � = s T C 1 δ(t) x − s T ‖ C 1 W ‖‖ Nx ‖ sgn (s ) . From Lemma 2.1 , one has ˙ V < 0 . Thus, the controlled system can reach the

switching surface in finite time. The proof is completed. �

Next, the calculation formula of reaching time will be discussed and computed. 

First, we consider s ( t ) ∈ R . Then, we have 0 . 5 ̇ V = s ̇ s ≤ −hsD 

q 
t sgn (s ) − ks 2 ≤ 0 , in which 0 ≤ q < 1 and h, k are positive

constants. Let s ̇ s = −hsD 

q 
t sgn (s ) − ks 2 ≤ 0 . 

Before deriving t reach under the FO exponential rate switching law, t reach under the IO exponential rate switching law

u sw 

= −h sgn (s ) − ks will be calculated. For the IO exponential rate switching law, one has s ̇ s = −h | s | − ks 2 ≤ 0 . There are

two cases: 1) When s (0) > 0, one has 

˙ s (t) = −ks − h ⇒ 

˙ s (t) + ks = −h. (10) 

Since ( s ( t) e kt ) ′ = e kt ( ̇ s (t) + ks ) = −he kt , one obtains s (t) e kt − s (0) = 

h 
k 

− h 
k 

e kt . 

Thus, one can conclude s (t) = ( s (0) + 

h 
k 
) e −kt − h 

k 
. Since s (t reach ) = 0 , one has 

t reach = 

1 

k 
ln 

s (0) + 

h 
k 

h 
= 

1 

k 
ln 

ks (0) + h 

h 

> 0 . (11) 

k 
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2) When s (0) < 0, one has ˙ s (t)= −ks + h ⇒ ̇ s (t)+ ks = h . Similarly, one has s (t) e kt −s (0)= h 
k 

e kt − h 
k 
. Hence, it can be obtained that s (t) =

( s ( 0) − h 
k 
) e −kt + 

h 
k 
. At t = t reach , s (t reach ) = 0 . Thus, 

t reach = 

1 

k 
ln 

h 
k 

− s (0) 
h 
k 

= 

1 

k 
ln 

h − ks (0) 

h 

> 0 . (12)

According to the above analysis from cases 1) - 2) , one can obtain t reach under the IO exponential rate switching law as

follows 

t reach = 

1 

k 
ln 

h + k | s (0) | 
h 

> 0 . (13)

Similarly, t reach under the FO exponential rate switching law will be calculated as follows: 

3) When s (0) > 0, one has ˙ s (t)= −ks −hD 
q 
t sgn (s ) where D 

q 
t sgn (s ) = 

1 
�(1 −q ) 

d 
dt 

∫ t 
0 

sgn (s (τ )) 
(t−τ ) q 

dτ . Hence, one has ˙ s (t)= −ks (t) −
h 

�(1 −q ) 
d 
dt 

∫ t 
0 

1 
(t−τ ) q 

dτ . Furthermore, one has 

(
s (t) e kt 

)′ = e kt ( ̇ s (t) + ks ) = − he kt 

�(1 − q ) 

d 

dt 

∫ t 

0 

1 

(t − τ ) q 
dτ . (14)

Hence, s (t) e kt = s (0) − h 
�(1 −q ) 

∫ t 
0 τ

−q e kτ dτ . Due to s (t reach ) = 0 , one has s (t reach ) e 
kt reach = s (0) − h 

�(1 −q ) 

∫ t reach 
0 

τ−q e kτ dτ=0 . 

So, the solution of s (0) = 

h 
�(1 −q ) 

∫ t 
0 τ

−q e kτ dτ is t reach . Let ϑ(t) = 

∫ t 
0 τ

−q e kτ dτ = 

s (0)�(1 −q ) 
h 

> 0 . Obviously, ϑ( t ), t ∈ [0, ∞ ) is an

increasing function, ϑ(0) = 0 and ϑ(∞ ) = ∞ . Based on the intermediate value theorem, there exists t ∗ > 0 such that

ϑ(t ∗) = 

∫ t ∗
0 τ−q e kτ dτ = 

s (0)�(1 −q ) 
h 

. Hence, we can use numerical approximation to obtain t reach = t ∗. 

4) When s (0) < 0, one has ˙ s (t) = −ks − hD 

q 
t sgn (s ) . Hence, one has ˙ s (t) = −ks (t) − h 

�(1 −q ) 
d 
dt 

∫ t 
0 

−1 
(t−τ ) q 

dτ . Similar to 3) ,

( s ( t) e kt ) ′ = e kt ( ̇ s (t) + ks ) = 

he kt 

�(1 −q ) 
d 
dt 

∫ t 
0 

1 
(t−τ ) q 

dτ . One has s (t reach ) e 
kt reach = s (0) + 

h 
�(1 −q ) 

∫ t reach 
0 

τ−q e kτ dτ=0 . 
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Let ϑ(t) = 

∫ t 
0 τ

−q e kτ dτ = 

s (0)�(1 −q ) 
−h 

> 0 . Since ϑ( t ), t ∈ [0, ∞ ) is an increasing function, ϑ(0) = 0 and ϑ(∞ ) = ∞ . Based on

the intermediate value theorem again, there exists t ∗ > 0 such that ϑ(t ∗) = 

−s (0)�(1 −q ) 
h 

. So, the reaching time t reach = t ∗ can

be found by numerical approximation. 

From the analysis in cases 3) - 4) , t reach of the FO exponential rate switching law can be obtained from ϑ(t) =∫ t 
0 τ

−q e kτ dτ = 

| s (0) | �(1 −q ) 
h 

. 

Remark 4.1. From the calculation formulae , the parameters s (0), h, k and q have impact on t reach . For s ( t ) ∈ R , the above

analysis can also be used to derive a shorter t reach by adjusting q , such as the following cases ( I - II ). Let k = 1 . 

(I) When | s (0) | = h = 1 , the solutions t reach of 
∫ t reach 

0 
τ−q e kτ dτ = 

| s (0) | �(1 −q ) 
h 

are depicted in Part (a) of Fig. 2 , where q =
0 , 0 . 1 , . . . , 0 . 9 , respectively. It can be seen that t reach under q = 0 . 8 is the smallest in this case. 

Meanwhile, the solutions of ˙ s j = −s j − D 

q j 

t ( sgn (s j )) are shown in Part (b) of Fig. 2 , in which s (0) = 1 and q 0 = 0 , q 2 =
0 . 2 , q 4 = 0 . 4 , q 6 = 0 . 6 , q 8 = 0 . 8 , respectively. It shows that t reach of s 8 is the shortest. Furthermore, the reaching times of

s j , j = 0 , 2 , 4 , 6 , 8 in Part (b) are the same as t reach in Part (a) of Fig. 2 . 

(II) When | s (0) | = 1 . 5 and h = 1 . 3 , Part (e) of Fig. 2 shows the solutions t reach of 
∫ t reach 

0 
τ−q e kτ dτ = 

| s (0) | �(1 −q ) 
h 

, where q =
0 , 0 . 1 , . . . , 0 . 9 . It shows that t reach under q = 0 . 6 is the smallest in this case. The solutions s j of ˙ s j = −s j − 1 . 3 D 

q j 

t sgn (s j ) are

depicted in Part (f) of Fig. 2 , when s (0) = 1 . 5 and q 0 = 0 , q 2 = 0 . 2 , q 4 = 0 . 4 , q 6 = 0 . 6 , q 8 = 0 . 8 . It can verify the accuracy of

the above result. 

Next, for s = [ s 1 (t) , s 2 (t ) , . . . , s n (t )] T ∈ R n , t i 
reach 

of s i (t ) , (i = 1 , 2 , . . . , n ) under the FO exponential rate switching law can

be obtained from this equation 

∫ t i 
reach 

τ−q i e k i τ dτ = 

| s i (0) | �(1 − q i ) 

h 

(15) 

0 i 
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by using numerical approximation, as same as the analysis in 3) - 4) . Hence, one obtains t reach = max { t i 
reach 

, i = 1 , 2 , . . . , n } .
The calculation formulae of t reach under the FO and IO exponential rate switching law are listed in Table 1 . 

Remark 4.2. Clearly, sgn( s ) is a special case of D 

q 
t ( sgn (s )) , 0 ≤ q i < 1 , (i = 1 , . . . , n ) , since 

D 

0 
t sgn (s i (t)) = 

1 

�(1 − 0) 

d 

dt 

∫ t 

0 

sgn ( s i ( ε)) 

( t − ε) 0 
dε = sgn ( s i ( t)) , , i = 1 , 2 , . . . , n. 

Hence, u sw 

with D 

q 
t ( sgn (s )) , 0 ≤ q i < 1 can be considered as an FO/IO controller synthesis ( i.e. IO law −H sgn (s ) − Ks

with sgn( s ) and FO law −HD 

q 
t sgn (s ) − Ks, with D 

q i 
t sgn (s i (t)) , 0 < q i < 1 , (i = 1 , 2 , . . . , n ) ). In the other words, the IO law

−H sgn (s ) − Ks is equal to the above FO exponential rate switching law sgn( s ) and FO law −HD 

q 
t sgn (s ) − Ks when q i =

0 , (i = 1 , 2 , . . . , n ) . Therefore, the overall FO exponential rate switching law with D 

β̄ ( sgn (s (t))) , 0 ≤ β̄ < 1 could be expected

to improve the system performance, when just considering −H sgn (s ) − Ks applied in [17,18,22,24,25] . Nonetheless, choosing

q i = 0 , (i = 1 , 2 , . . . , n ) for some special systems could result in a better performance. However, there would be no contradic-

tion, since the switching type control law −H sgn (s ) − Ks is the special case of the proposed FO exponential rate switching

law −HD 

q 
t sgn (s ) − Ks, 0 < q i < 1 , (i = 1 , 2 , . . . , n ) . The following simulations results will show the potential advantage of the

proposed method. 

Remark 4.3. From the equivalent control concept, SMC has this form u = u eq + u sw 

, in which u eq and u sw 

represent the

equivalent control law and the switching law, respectively. In this paper, the FO sliding surface is considered to develop

direct systematic methods for designing SMC for FO nonlinear systems. The FO exponential rate switching law based on

D 

q 
t sgn (s ) is proposed and the corresponding calculation formulae in Table 1 is deduced by utilizing the property of D 

q 
t sgn (s ) .

From the property of D 

q 
t sgn (s ) and the calculation formulae in Table 1 , a shorter reaching time can be derived by choosing

the parameters q i , h i , k i , s i (0). Although the choice of q i , h i , k i , s i (0) has the influence on the control performance, it is a

bit difficult to analyze how q i affects the control performance (i.e. reaching time and chattering) when comparing the other

parameters h i , k i , s i (0). However, the calculation formulae in Table 1 of the manuscript could be helpful to built a tuning

mechanism for the controller parameters including q i . Our technique are suitable for solving this issue and this is a topic of
our future research. 
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Fig. 8. Time responses of the sliding functions s 1 , s 2 , s 3 under the proposed FO exponential rate switching law u sw = −HD q t sgn (s ) − Ks with q = 0 . 26 , 0 . 14 , 0 . 

 

 

 

5. Stability analysis 

Next, the stability analysis of the sliding mode dynamics will be investigated. First, the following proposition is given. 

Proposition 5.1. The FO system D 

β
t ς = Ā ς , ς (0) = ς 0 , 0 < β < 1 is asymptotically stable if the IO system Dς = Ā ς , ς (0) = ς 0

is asymptotically stable. 

Proof. For the IO systems Dς = Ā ς, it is well-known that the stability condition of the IO systems is 

Re (λ j ( ̄A )) < 0 , j = 1 , 2 , . . . , n, (16)

where λ j ( ̄A ) is the j th eigenvalue of A . Furthermore, the above condition is equivalent to the following: 

| arg (λ j ( ̄A )) | > π/ 2 , j = 1 , 2 , . . . , n, (17)

where arg represents the argument of λ j ( ̄A ) . In other words, the stability condition can be concluded that 

| sI − Ā | = (s − λ1 ( ̄A ))(s − λ2 ( ̄A )) · · · (s − λn ( ̄A )) = 0 

�⇒ Re (λ j ( ̄A )) < 0 , j = 1 , 2 , . . . , n. (18) 

Since λ j ( ̄A ) = r j ( cos φ j + i sin φ j ) = r j e 
iφ j where r j = | λ j ( ̄A ) | , φ j = arg (λ j ( ̄A ))) , 

�⇒ | φ j | = | arg (λ j ( ̄A )) | > π/ 2 , j = 1 , 2 , . . . , n. (19) 
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Now back to the fractional order case. According to [1,2] , for the FO system D 

β
t ς = Ā ς , ς (0) = ς 0 , 0 < β < 1 , the system

is asymptotically stable if and only if | arg (λ j ( ̄A )) | > βπ/ 2 . Clearly, due to 0 < β < 1 and (19) , it is straight forward to

obtain 

| φ j | = | arg (λ j ( ̄A )) | > π/ 2 

0 <β< 1 �⇒ | arg (λ j ( ̄A )) | > βπ/ 2 , j = 1 , 2 , . . . , n. (20)

Hence, it is demonstrated that D 

β
t ς = Ā ς , ς (0) = ς 0 , 0 < β < 1 is asymptotically stable if the IO system Dς = Ā ς , ς (0) = ς 0

is asymptotically stable. This completes the proof. �

Remark 5.1. The matrix Ā is the same in both the IO system Dx = Ā x and the FO system D 

β
t ς = Ā ς, 0 < β < 1 . Since that

the stability condition of the IO system is Re (λ j ( ̄A )) < 0 , j = 1 , 2 , . . . , n, one concludes that the real part of all eigenvalues

λ j ( ̄A ) in the FO system are negative. Following the stability theorem of FO systems [1,2] , the stability region SR FO of the

FO system with 0 < β < 1 contains the stability region SR IO of the IO system, i.e. SR FO ⊃SR IO . Hence, one can conclude

that λi ( ̄A ) ∈ SR F O when λi ( ̄A ) ∈ SR IO . That is, due to SR FO ⊃ SR IO , all the eigenvalues of D 

β
t ς = Ā ς, 0 < β < 1 lie in SR FO

because they belong to SR IO . Meanwhile, the stability condition | arg (λ j ( ̄A )) | > π/ 2 of the IO system can guarantee the

stability condition | arg (λ j ( ̄A )) | > π/ 2 > βπ/ 2 of the FO system with 0 < β < 1. So, the FO system D 

β
t ς = Ā ς, 0 < β < 1 is

asymptotically stable if the IO system Dς = Ā ς is asymptotically stable. 

From (1) and (8) , the sliding mode dynamics is obtained 

d βx (t) 

dt β
= (−C −1 

1 C 2 ̄K − I + δ(t )) x (t ) , y (t ) = �x (t) . (21)

Hence, the following theorem can ensure the robust stabilization of the system (21) . 
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Theorem 5.1. The sliding mode dynamics (21) is asymptotically stable if there exist a real symmetric positive matrix P̄ and

positive scalars ε1 , ε2 satisfying the following LMI ⎡ 

⎢ ⎢ ⎢ ⎣ 

�11 0 N 

T 0 P̄ W 

∗ −ε 1 I 0 P̄ W 0 

∗ ∗ −(ε 1 I) 
−1 0 0 

∗ ∗ ∗ −ε 2 I 0 

∗ ∗ ∗ ∗ −ε 2 I 

⎤ 

⎥ ⎥ ⎥ ⎦ 

< 0 , (22) 

where �11 = P̄ E + ( ̄P E) T + ε 2 N 

T N, E = −C −1 
1 

C 2 ̄K − I. 

Proof. For the FO sliding mode dynamic (21) , the corresponding IO system can be derived 

dx (t) 
dt 

= (−C −1 
1 

C 2 ̄K − I + δ(t)) x (t) .

Define p(t) = G (t ) q (t ) = G (t ) Nx (t ) . Then, the IO system can be rewritten by dx (t) 
dt 

= Ex (t) + W p(t) , where E = −C −1 
1 

C 2 ̄K − I.

Define ξ (t) = [ x T (t ) p T (t )] T . Construct the Lyapunov function V (x (t)) = x T P̄ x, where P̄ > 0 . The derivative of V can be

obtained as 

˙ V = ξ T 

([
� 0 

0 0 

]
+ 

[
P̄ δ(t) + ( ̄P δ(t)) T 0 

0 0 

])
ξ , (23) 

where � = P̄ E + ( ̄P E) T . For the uncertainty, there exists ε2 > 0 satisfying by Lemma 2.3 , [
P̄ (W G (t) N) + (W G (t) N) T P̄ 0 

0 0 

]
≤ 1 

ε 2 

[
0 P̄ W 

P̄ W 0 

][
0 W 

T P̄ 

W 

T P̄ 0 

]
+ ε 2 

[
N 

T N 0 

0 0 

]
. (24) 

On the other hand, the following inequality can be obtained p T (t) p(t) ≤ ξ T (t) ̄N 

T N̄ ξ (t) , where N̄ = [ N 0] . Using the

S-procedure [34] , suppose there exists ε1 > 0 satisfying [
P̄ E + ( ̄P E) T 0 

0 0 

]
+ ε 2 

[
N 

T N 0 

0 0 

]
+ 

[
0 0 

0 −ε 1 I 

]
+ N̄ 

T ε 1 I ̄N + 

1 

ε 2 

[
0 P̄ W 

P̄ W 0 

][
0 W 

T P̄ 

W 

T P̄ 0 

]
< 0 , (25) 
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Fig. 11. Time responses of the Chua’s circuit (31) under the controller (35) ; (b) the time response of the sliding surface (36) ; (c) the time response of the 

FO SMC (35) . 

 

 

 

 

 

 

 

 

 

then, one has ˙ V ≤ 0 . By Lemma 2.4 , (25) is satisfied if (22) holds. Hence, it guarantees the IO system asymptotic stability.

From Proposition 5.1 , LMI (22) holds, the sliding mode dynamics (21) is asymptotically stable. �

Remark 5.2. We remark that the FO exponential switching method with the FO sign function is not just limited for the FO

nonlinear system (1) . The FO exponential switching method with the FO sign function may be proposed for more general

or more complex nonlinear systems. This will complicate the reachability analysis and stability analysis, including the cal-

culation formula of reaching time since it appears to need to combine more generic or more intricate condition with the

FO exponential rate switching law. We will further investigate the rule about how to select the fractional order q i ∈ [0, 1)

of the FO exponential rate switching law in different systems, so as to obtain the better performance. 

Remark 5.3. It should be mentioned that the linear matrix inequality (LMI) method has been widely developed to solve

the problem of the stability of IO systems, including IO linear systems. Now, from Proposition 5.1 , some interesting method

based on LMI can be directly utilized to deal with the problem of the FO linear systems. 

6. Numerical simulation 

This section is utilized to show the advantages of the proposed control method. 

Example 1. Consider the FO n-scroll attractor with uncertainty 

D 

β
t x = 

{ [ −am 2 ι a 0 

1 −1 1 

0 −b 0 

] 

+ δ(t) 

} 

x + 

[ 

1 0 0 

0 1 0 

0 0 1 

] [ 

f (x 1 ) 
0 

0 

] 

+ 

[ 

1 0 1 

0 1 1 

0 0 1 

] 

u (t) , (26)
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Fig. 12. Time responses of the states x 1 , x 2 , x 3 under the proposed controller (35) , the states x IO 1 , x IO 2 , x IO 3 under u IO . 

 

where β = 0 . 87 , the uncertainty is 

δ(t) = 

[ 

0 . 15 cos (0 . 2 t) 0 0 

0 0 . 15 cos (0 . 2 t) 0 

0 0 0 . 15 cos (0 . 2 t) 

] 

. 

And f (x 1 ) = 0 . 5 
2 ι−1 ∑ 

i =1 

(m i − m i +1 )(| x 1 + c i | − | x 1 − c i | ) , ι = 3 . Here, the parameters are c = [1 , 2 . 15 , 3 . 6 , 6 . 2 , 9] , m =
[0 . 9 / 7 , −3 / 7 , 3 . 5 / 7 , −2 . 7 / 7 , 6 / 7 , −2 . 4 / 7] and a = 9 , b = 14 . 28 . The uncertainty δ(t) = W G (t) N with 

W = N = 

[ 

1 0 0 

0 1 0 

0 0 1 

] 

, G (t) = 

[ 

ν 0 0 

0 ν 0 

0 0 ν

] 

, 

in which ν = 0 . 15 cos (0 . 2 t) . Let 

C 1 = −
[ 

0 . 7813 0 0 

0 0 . 7813 0 

0 0 0 . 7813 

] 

, C 2 = 

[ 

1 0 0 

0 1 0 

0 0 1 

] 

, K = 

[ 

2 . 5 0 0 

0 2 . 5 0 

0 0 2 . 5 

] 

, 

H = 

[ 

0 . 315 0 0 

0 0 . 315 0 

0 0 0 . 315 

] 

. 

In the absence of the uncertainty, the time responses of the system (26) without the controller is depicted in Fig. 3 . 
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Fig. 13. Time responses of the sliding functions s 1 , s 2 , s 3 (36) under the proposed controller (35) , s IO 1 , s IO 2 , s IO 3 under u IO . 

 

 

 

 

 

 

 

 

By using Theorem 5.1 , a feasible solution of the symmetric matrices and scalars is found using LMI Control Toolbox: 

K̄ = −
[ 

3 . 5194 0 0 

0 2 . 6478 0 

0 0 1 . 5362 

] 

, P̄ = 

[ 

0 . 7941 0 . 2892 −0 . 2141 

0 . 2892 0 . 8687 0 . 1646 

−0 . 2141 0 . 1646 0 . 9745 

] 

, 

ε 1 = 0 . 1789 , ε 2 = 0 . 2934 . (27)

From (8) , we can obtain the following SMC: 

u = 

[ −8 . 5903 −23 . 2800 2 . 9662 

−1 . 0 0 0 0 −17 . 6690 1 . 9662 

0 14 . 2800 −2 . 9662 

] 

x −
[ 

1 0 −1 

0 1 −1 

0 0 1 

] 

f (x, t) + 

[ 

� 0 −� 

0 � −� 

0 0 � 

] 

ū , (28)

in which � = 1 . 2799 , ū = 0 . 7813 || Nx || sgn (s ) − D 

1 −β
t s + HD 

q 
t sgn (s ) + Ks with q = 0 . 12 . By Theorem 4.1 , the system (26) under

the controller (28) reaches the sliding surface 

s = C 1 D 

−0 . 2 
t x + C 2 z, ˙ z = K̄ x − D 

0 . 2 
t z. (29)

[ x 1 (0) , x 2 (0) , x 3 (0)] T = [ −1 . 51 , −2 . 39 , −3 . 77] T is the initial condition. The fractional integration operator is approximated

via Carlson method in frequency range (0.01,100) rad/s by using MATLAB toolbox called Ninteger. Parts (a), (b) and (c) of

Fig. 4 separately show the time responses of the states x 1 , x 2 , x 3 , s in (29) and u in (28) . It shows that u in (28) stabilizes

the FO n-scroll attractor. Next, to demonstrate the better control performance of the proposed FO switching technique, some
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comparisons are provided. First, from the traditional IO switching law in [11,13] , u IO −sw 

is given by 

u IO −sw 

= −
[ 

0 . 685 0 0 

0 0 . 875 0 

0 0 1 . 415 

] 

sgn (s ) . (30) 

The sliding surface in the corresponding FO SMC u IO with u IO −sw 

is same as (29) . To make this a fair comparison, the other

parameters are remain the same in both of u and u IO . Part (a) of Fig. 5 shows the comparison between x 1 under u and x IO 1 
under u IO . Meanwhile, Parts (b) and (c) of Fig. 5 separately show the comparisons between x 2 under u and x IO 2 under u IO ,

x 3 under u and x IO 3 under u IO . The comparisons between the sliding surfaces s under u and s IO under u IO are presented in

Fig. 6 . Specifically, it can be seen that the reaching times of the sliding surfaces s 1 , s 2 and s 3 under the proposed controller

(28) are separately 3.9154, 3.3262 and 1.4732 in Fig. 6 . Meanwhile, it can be found that the reaching times of the sliding

surfaces s 1 , s 2 and s 3 under the corresponding FO SMC u IO with u IO −sw 

are separately 4.7421, 3.5148 and 1.8357 in Fig. 6 .

It is clear that the reaching times under the FO exponential rate switching law are smaller than the reaching times under

u IO −sw 

in (30) . Furthermore, the oscillating regions of s 1 , s 2 and s 3 under the proposed controller (28) are approximately

maintaining at (−1 . 5 × 10 −3 , 2 × 10 −3 ) , (−1 . 2 × 10 −3 , 2 × 10 −3 ) and (−2 × 10 −3 , 2 × 10 −3 ) , respectively. In the meantime,

the oscillating regions of s 1 , s 2 and s 3 under the corresponding FO SMC u IO with u IO −sw 

are approximately maintained at

(−2 × 10 −3 , 3 × 10 −3 ) , (−2 . 1 × 10 −3 , 2 . 5 × 10 −3 ) and (−2 . 5 × 10 −3 , 4 × 10 −3 ) , respectively. It is obvious that the oscillations

of s 1 , s 2 and s 3 under the FO exponential rate switching law are decreased, when comparing with the oscillations of s 1 , s 2 
and s 3 under u IO −sw 

in (30) . The time responses of u, u IO are drawn in Fig. 7 . They show that the proposed FO SMC under

the FO exponential rate switching law owns a faster and lower chattering performance. 

Furthermore, in order to illustrate the potential benefits in adjusting the fractional-order q , the simulations are performed

while the q is changed. The sliding functions s = [ s , s , s ] T under the proposed FO exponential rate switching law u sw 

=
1 2 3 
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−HD 

q 
t sgn (s ) − Ks with q = 0 . 26 , 0 . 14 , 0 are depicted in Fig. 8 , when the other parameters of the SMC u are the same as (28) .

It can be seen that the reaching times of s 1 , s 2 , s 3 under u sw 

with q = 0 . 26 , 0 . 14 are smaller than the reaching times of s 1 ,

s 2 , s 3 under u sw 

with q = 0 . Meanwhile, the chattering phenomena of s 1 , s 2 , s 3 under u sw 

with q = 0 . 26 , 0 . 14 are smaller

than the chattering of s 1 , s 2 , s 3 under u sw 

with q = 0 . Meanwhile, Fig. 9 shows the comparisons of x = [ x 1 , x 2 , x 3 ] 
T under u sw

with q = 0 . 26 , 0 . 14 , 0 . According to Figs. 8 –9 , the FO switching type control law u sw 

can have better tracking performance

including faster convergence speed and lower chattering performance by adjusting the fractional-order q . 

Example 2 . Consider the following FO Chua’s circuit 

D 

β
t x = 

[ 

18 / 7 + 0 . 15 cos (0 . 2 t) 9 0 

1 −1 + 0 . 15 cos (0 . 2 t) 1 

0 −14 . 78 0 . 15 cos (0 . 2 t) 

] 

x 

+ 

[ 

1 0 0 

0 1 0 

0 0 1 

] [ 

f (x 1 ) 
0 

0 

] 

+ 

[ 

1 0 1 

0 1 1 

0 0 1 

] 

u (t) , (31)

with nonlinear characteristic f (x 1 ) = 0 . 5(m 0 − m 1 )(| x 1 + c| − | x 1 − c| ) and parameters c = 1 , m 0 = −1 / 7 , m 1 = 2 / 7 , β = 0 . 98 .

The uncertainty δ(t) = W U(t) N with 

W = N = 

[ 

1 0 0 

0 1 0 

0 0 1 

] 

, U(t) = 

[ 

0 . 15 sin (0 . 2 t) 0 0 

0 0 . 1 sin (0 . 2 t) 0 

0 0 0 . 1 sin (0 . 2 t) 

] 

. (32)
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Let 

C 1 = 

[ −0 . 5137 0 0 

0 −0 . 5137 0 

0 0 −0 . 5137 

] 

, C 2 = 

[ 

1 0 0 

0 1 0 

0 0 1 

] 

, 

K = 

[ 

2 . 3 0 0 

0 4 . 3 0 

0 0 1 . 3 

] 

, H = 

[ 

0 . 414 0 0 

0 0 . 414 0 

0 0 0 . 414 

] 

. (33) 

In the absence of the uncertainty, the time responses of the system (31) without the controller are depicted in Fig. 10 .

By using Theorem 5.1 to the system (31) , a feasible solution of the symmetric matrices and scalars is found using MATLAB

LMI Control Toolbox: 

K̄ = 

[ −2 . 2940 0 0 

0 −1 . 4758 0 

0 0 −0 . 4512 

] 

, P = 

[ 

0 . 5102 −0 . 1775 −0 . 0486 

−0 . 1775 0 . 0777 0 . 0375 

−0 . 0486 0 . 0375 1 . 2298 

] 

, 

ε 1 = 8 . 5956 , ε 2 = 5 . 0217 . (34) 

By using (8) , we can obtain the following SMC law: 

u = 

[ −8 . 0371 −23 . 7800 1 . 8783 

−1 . 0 0 0 0 −17 . 6529 0 . 8783 

0 14 . 7800 −1 . 8783 

] 

x −
[ 

1 0 −1 

0 1 −1 

0 0 1 

] 

f (x, t) + 

[ 

� 0 −� 

0 � −� 

0 0 � 

] 

ū , (35) 

in which � = 1 . 9467 and ū = 0 . 5137 || Nx || sgn (s ) − D 

1 −β
s + H 

RL D 

q 
sgn (s ) + Ks with q = 0 . 1 . 
t t 
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Fig. 17. The fractional horsepower dynamometer. 

Fig. 18. Simulink/RTW model used in the SMC real time experiment using RTW Windows Target. 

 

 

 

 

 

By Theorem 4.1 , the system (31) under the controller (35) , designed with the above parameters, converges to the sliding

surface: 

s = C 1 D 

−0 . 02 
t x + C 2 z, ˙ z = K̄ x − D 

0 . 02 
t z. (36)

[ x 1 (0), x 2 (0), x 3 (0)] T = [ −9 . 9848 , 3 . 1414 , −4 . 6052] T is the initial condition. Parts (a),(b) and (c) of Fig. 11 separately show the

time responses of the states x 1 , x 2 , x 3 , s in (36) and u in (35) . It shows that u in (35) stabilizes the FO Chua’s circuit. Next,

in order to show the better control performance of the proposed FO switching technique, some comparisons are provided.
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First, from the traditional IO switching law in [11,13] , u IO −sw 

is given by 

u IO −sw 

= −
[ 

0 . 914 0 0 

0 1 . 015 0 

0 0 0 . 914 

] 

sgn (s ) . (37) 

The sliding surface in the corresponding FO SMC u IO with u IO −sw 

is same as (36) . Moreover, the other parameters are same

in both of u and u IO , so as to do the fair comparison. Part (a) of Fig. 12 shows the comparison between x 1 under u and

x IO 1 under u IO . Meanwhile, Parts (b) and (c) of Fig. 12 separately show the comparisons between x 2 under u and x IO 2 under

u IO , x 3 under u and x IO 3 under u IO . The comparisons between the sliding surfaces s under u and s IO under u IO are presented

in Fig. 13 . Specifically, it can be seen that the reaching times of the sliding surfaces s 1 , s 2 and s 3 under the proposed

controller (35) are separately 5.6427, 3.785 and 3.7514 in Fig. 6 . Meanwhile, it can be found that the reaching times of the

sliding surfaces s 1 , s 2 and s 3 under the corresponding FO SMC u IO with u IO −sw 

are separately 8.9735, 4.2109 and 3.9023

in Fig. 6 . It is clear that the reaching times under the FO exponential rate switching law are smaller than the reaching

times under u IO −sw 

in (37) . Furthermore, the oscillating regions of s 1 , s 2 and s 3 under the proposed controller (35) are

approximately maintained at (−1 × 10 −3 , 1 . 4 × 10 −3 ) , (−0 . 5 × 10 −3 , 0 . 5 × 10 −3 ) and (−0 . 3 × 10 −3 , 0 . 5 × 10 −3 ) , respectively.

In the meantime, the oscillating regions of s 1 , s 2 and s 3 under the corresponding FO SMC u IO with u IO −sw 

are approximately

maintaining at (−1 . 5 × 10 −3 , 2 . 5 × 10 −3 ) , (−1 . 1 × 10 −3 , 1 . 6 × 10 −3 ) and (−1 . 1 × 10 −3 , 1 . 3 × 10 −3 ) , respectively. It is obvious

that the oscillations of s 1 , s 2 and s 3 under the FO exponential rate switching law are reduced, when comparing with the

oscillations of s 1 , s 2 and s 3 under u IO −sw 

in (30) . The time responses of u and u IO are drawn in Fig. 14 . They show that the

proposed FO SMC under the FO exponential rate switching law owns a faster and lower chattering performance. 

Moreover, the simulations are performed while q is changed, in order to show potential benefits in adjusting q .

The sliding functions s = [ s 1 , s 2 , s 3 ] 
T under the proposed FO exponential rate switching law u sw 

= −HD 

q 
t sgn (s ) − Ks with

q = 0 . 23 , 0 . 11 , 0 are depicted in Fig. 15 , when the other parameters of the SMC u are the same as (35) . It can be seen that

the reaching times of s 1 , s 2 , s 3 under u sw 

with q = 0 . 23 , 0 . 11 are smaller than the reaching times of s 1 , s 2 , s 3 under u sw 

with

q = 0 . Meanwhile, the chattering phenomena of s 1 , s 2 , s 3 under u sw 

with q = 0 . 23 , 0 . 11 are smaller than the chattering of s 1 ,

s 2 , s 3 under u sw 

with q = 0 . Meanwhile, Fig. 16 shows the comparisons of x = [ x 1 , x 2 , x 3 ] 
T under u sw 

with q = 0 . 23 , 0 . 11 , 0 .

According to Figs. 15 –16 , the FO switching type control law u sw 

can have better tracking performance including faster con-

vergence speed and lower chattering performance by adjusting the fractional-order q . 

Remark 6.1. Examples 1–2 verify the effectiveness and advantages of the proposed control method with the FO exponential

switching technique for the FO nonlinear system (1) . In addition, as mentioned in Remark 5.2 , the proposed FO exponential
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switching technique is not just limited for the FO nonlinear system (1) . Next, the proposed FO exponential rate switching

law will be applied for the real nonlinear system, to show the practicality of the FO exponential switching technique. That

is, the proposed FO exponential rate switching law is implemented into a fractional horsepower dynamometer position

servo system shown in Fig. 17 . The dynamometer mainly involves a DC motor, a hysteresis brake, an optical encoder and a

tachometer. It is also linked to a Quanser Q4 terminal board for the system control through the Matlab/Simulink Real-Time

Workshop (RTW) software. The servo control system can be modeled by ˙ x = v , ˙ v = Bu + ρ(t, v ) where x, v and ρ( t, v ) denote

the position state, the velocity and the disturbance. u represents the control input with the gain coefficient B . In [6,35,36] ,

the DC motor of dynamometer is identified by G m 

(s ) = 

1 . 52 
1 . 01 s +1 . 

To demonstrate the practicality of the FO exponential switching technique, a position tracking control will be performed

through SMC with the FO exponential rate switching law. In the following, we will utilize the brake to carry out the position

tracking experiment. Let the reference signal r(t) = 4 sin ((2 π/ 40) t) . The FO exponential rate switching law and sliding sur-

face are chosen by u sw 

= −0 . 85 D 

0 . 1 sgn (s ) − s and s = e + ˙ e where e = r − x . Fig. 18 displays the Simulink model implemented

in the experiment. Figs. 19 and 20 show the tracking results. As depicted in Fig. 18 , the disturbance 0.1sin( t ) is append to

the Magtrol Hysteresis Brake, to verify the robust property of the FO exponential rate switching law. The experimental result

shows the practicality of the proposed FO exponential switching technique. 

7. Conclusion 

This paper has introduced the FO SMC with the FO exponential rate switching law and the FO PI sliding surface for un-

certain FO nonlinear systems. The FO sign function D 

q 
t sgn (s ) , 0 ≤ q < 1 has been developed to construct the FO exponential

rate switching law. The FO exponential rate switching law has been proven to guarantee the reaching phase in finite time.

The reaching time t reach has been analytically derived, for the first time. The reachability analysis has been illustrated and

visualized to disclose how the control performance is improved. The stability condition of the FO sliding mode dynamics

has been derived based on the stable region analysis and the Lyapunov stability method. Finally, simulation results have

been given to show the advantages of the designed control scheme. Future work will focus on built a tuning mechanism in



726 C. Yin et al. / Applied Mathematical Modelling 44 (2017) 705–726 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

its full generality for the controller parameters including q i . The rule about how to select q i ∈ [0, 1) of the FO exponential

rate switching law in different systems will be investigated, in order to obtain the better performance. 
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