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a b s t r a c t

In order to achieve a desired control performance characterized by satisfying specifications in both
frequency-domain and time-domain simultaneously, an optimal fractional order proportional integral
derivative ( λ μPI D ) controller design strategy is proposed based on analytical calculation and Differential
Evolution algorithm for a permanent magnet synchronous motor (PMSM) servo system in this paper. In
this controller design, the frequency-domain specifications can guarantee the system stability with both
gain margin and phase margin, and also the system robustness to loop gain variations. The time-domain
specifications can ensure the desired step response performance with rapid rising curve, constrained
overshoot, and proper power consuming. Compared with the λPI controller and the traditional PID
controller, λ μPI D controller can get obvious benefits from two more degrees of freedom of the fractional
orders λ and μ on satisfying multiple constraints simultaneously and achieving better servo tracking
performance for the PMSM servo system. PMSM speed tracking simulations and experiments are de-
monstrated to show the significant advantages of using the proposed optimal λ μPI D controller over the
optimal fractional order λPI controller and traditional integer order PID controller.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, fractional calculus has been widely used in
system modeling [1–4] and control area [5–9]. The characteristics
of real-world systems can be described more precisely using
fractional order mathematical models [10,11]. Meanwhile, pro-
portional integral derivative (PID) control has been the most
widely used and developed control method in industrial control
area [12–15]. Fractional order proportional integral derivative
( λ μPI D ) controller has the potential to achieve better control per-
formance over the traditional PID controller because the differ-
ential order and integral order are introduced as adjustable con-
troller parameters, which increase the flexibility of the controller
[16,7–9,17–20]. But the tuning of λ μPI D controller is more compli-
cated over the traditional PID controller because two extra para-
meters are added [16,21–25]. Especially, how to design an opti-
mized λ μPI D controller to achieve desired performance specified in
both frequency-domain and time-domain is deserved to be
investigated.

In present, the tuning methods for the fractional order λ μPI /D
controller mainly contain the frequency-domain design methods
rights reserved.
[26] and other time-domain optimization methods [27–29]. The
frequency-domain method is often applied to design the fractional
order λPI or μPD controllers [21,26]. As presented in [26], based on
the given gain crossover frequency and phase margin, the con-
troller parameters are calculated according to the gain robustness
specification. The obtained control system can achieve the ro-
bustness to gain variations. However, this frequency-domain
method may not be directly applied to design the fractional order

λ μPI D controller, because two extra parameters are introduced.
Meanwhile, the system gain margin is an important stability index
in real industrial control applications, but it is always ignored in
the frequency-domain method. The time-domain optimization
methods search for the optimal controller parameters by opti-
mizing an objective function [27,28]. The obtained control system
can achieve the optimal time-domain dynamic performance. But
the system stability with gain and phase margin, and the robust-
ness performance specified in frequency-domain may not be able
to be guaranteed simultaneously.

In order to obtain a controller to achieve good dynamic per-
formance under the condition that both the requirements in time-
domain and frequency-domain are satisfied, a fractional order

λ μPI D controller design strategy is proposed in this paper and a
fractional order λ μPI D controller is designed for a permanent
magnet synchronous motor (PMSM) servo system, based on
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analytical calculation and Differential Evolution (DE) algorithm
[30]. In frequency-domain, taking the loop-gain robustness spe-
cification as a constraint condition, the gain margin and phase
margin specifications as the boundary conditions, in time-domain,
taking the integral of time and absolute error (ITAE) [31] as the
objective function, the step response overshoot upper-limit as the
dynamic threshold, the power consumption upper-limit as the
energy threshold, an optimal λ μPI D controller can be obtained by
using the DE algorithm [30]. Under this controller design strategy,
the frequency-domain specifications can guarantee the control
system stability with not only phase margin but also gain margin;
the system robustness to loop-gain variations can also be satisfied
from a flat-phase specification in frequency-domain; the time-
domain specifications can ensure the desired step response per-
formance with rapid rising curve, constrained overshoot, and
proper power consuming.

Using this proposed controller design method, the fractional
order λ μPI D controller can obtain obvious benefits from two more
degrees of freedom of the fractional orders λ and μ. This designed

λ μPI D is able to satisfy multiple constraints in both frequency-do-
main and time-domain simultaneously. Especially, it can achieve
better servo tracking performance over the traditional PID con-
troller for the PMSM servo system with a fractional order model
which can describe the real PMSM servo system more precisely
over the integer order model [32]. PMSM speed-tracking simula-
tions and experiments are demonstrated to show the advantages
of the proposed tuning method over the methods proposed in
[29]. Besides, the significant advantages of using the proposed

λ μPI D controller over the fractional order λPI controller and tradi-
tional integer order PID controller are also demonstrated.

The rest of this paper is arranged as follows: the model of the
PMSM servo control system is discussed in Section 2; the fractional
order λ μPI D controller design method is proposed in Section 3;
PMSM speed control simulations are presented in Section 4. The
obtained λ μPI D controller is compared with those obtained using the
time-domain and frequency-domain tuning methods proposed in
[29]. The dynamic performance of the obtained λ μPI D controller is
also studied by comparison with the λPI controller and traditional
PID controller; real PMSM speed control experiments are presented
in Section 5; the conclusion is given in Section 6.
2. PMSM speed control system

According to our previous work [32], a fractional order model is
able to describe the real PMSM servo system more precisely over
the integer order model. Therefore, the fractional order model is
applied for the PMSM servo system controller design in this paper.
The block diagram of the fractional order model of the PMSM
speed control system is shown in Fig. 1, where nr is the reference
speed, n is the actual speed, Cv(s) is the speed controller, iqr is the
speed controller output, iq is the q-axix current, Ci(s) is the current
controller, K0 is the voltage conversion factor, K1 is the current
Fig. 1. Diagram of the feed
conversion factor, Ti is the current filter time constant, K2 is the
speed conversion factor, R is the resistor, L is the inductor, Cm is the
torque constant, GD2 is the flywheel inertia, Ce is the induced
voltage constant, ϑ ∈ ( )0, 2 and ζ ∈ ( )0, 2 are the fractional orders
in the model.

In order to obtain the plant model of the speed control system,
the current loop is properly simplified. Since the changing of the
current is much faster than that of the motor speed, the induced
voltage E can be considered unchanging when studying the var-
iations of the current. Therefore, the influence of the induced
voltage E can be eliminated [33] and the current loop is simplified
as shown in Fig. 2.

A proportional-integral (PI) controller is chosen to be the cur-
rent controller, whose integral time constant is set to be Ti, as
described by (1),
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Then the current loop model is simplified as shown in Fig. 3,
where

κ =
( )

K K

TL
.

2
pi

i

0

Therefore, the closed-loop transfer function of the current loop is
described by (3),
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The speed control loop can be converted into an unit feedback
control system, as shown in Fig. 4.

The plant model of this speed control system can be general-
ized as the following form,

( ) =
+ + + ( )α β γG s

d
s as bs c

,
4

where α ξ= + ϑ + 1, β ξ= + 1, γ ξ= , =a R
L
, κ=b K1 , c¼0,

= κd C K
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2 .

The fractional order λ μPI D controller is designed based on this
PMSM speed control model described by (4) in this paper.
3. Fractional order λ μPI D optimal design method

The fractional order λ μPI D controller is described by (5),

⎛
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where, Kp, Ki and Kd are proportional, integral and derivative gains,
respectively; λ ∈ ( )0, 2 and μ ∈ ( )0, 2 are the fractional orders.
back control system.



Fig. 2. The simplified model-I of the current loop in Fig. 1.

Fig. 3. The simplified model-II of the current loop in Fig. 1.

Fig. 4. The block diagram of the speed control loop model.
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3.1. Controller design specifications

The controller design specifications are selected according to
the following three aspects: stability, loop-gain robustness and
dynamic performance. Using the frequency-domain design
method [26], the phase margin is specified, but there is no con-
straint for the gain margin. Only the phase margin specification
may not be enough to describe the stability of the control system.
In order to ensure the comprehensive control system stability,
both the phase margin and the gain margin specifications are in-
troduced as the boundary conditions for the controller design in
this paper.

The phase margin specification is shown in (6),

ω ω π φ[ ( )] + [ ( )] ≥ − + ( )G j C jArg Arg , 6c c mb

where φmb is the lower bound of the phase margin, ωc is the gain
crossover frequency, satisfying

ω ω| ( ) ( )| = ( )G j C j 1. 7c c

Eq. (6) ensures that the phase margin of the control system will
not be smaller than φmb.

The gain margin specification is shown in (8),

ω ω| ( ) ( )| ≤ − ( )G j C j L20lg , 8g g gb

where Lgb is the lower bound of the gain margin, ωg is the phase
crossover frequency, satisfying

ω ω π[ ( )] + [ ( )] = − ( )G j C jArg Arg . 9g g

Eq. (8) ensures that the gain margin of the control system will not
be smaller than Lgb.

In order to achieve the robustness to loop-gain variations, the
following robustness specification is introduced as the constraint
condition,

ω ω
ω

[ [ ( ) ( )]] =
( )ω ω=

d G j C j
d

Arg
0.

10c
The derivative of the phase-frequency characteristic curve is zero,
namely, the phase Bode plot is flat around the gain crossover fre-
quency. It means that the system is robust to loop-gain changes and
the peak overshoots of the step responses are almost the same [26].

In order to obtain the optimal dynamic performance in time-do-
main, the ITAE is selected to be the objective function for the tuning
algorithm to minimize. The ITAE index is described by (11) [31],

∫= ( ) ( )
∞

J t e t dt, 11ITAE 0

where e(t) represents the deviation between the expected output and
the actual output.

3.2. Controller parameters calculation

According to (4), the amplitude and phase of the plant model
are obtained as shown in (12) and (13),

ω
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According to (5), the amplitude and phase of the controller are
obtained as shown in (16) and (17),
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Given the gain crossover frequency ωc, the phase margin φm

(φ φ≥m mb), the controller orders λ and μ, from (6) it gives,

ω ω π φ( [ ( )] + [ ( )]) = ( − + ) ( )G j C jtan Arg Arg tan , 20c c m

According to the trigonometric formula, it gives
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Substituting (13) and (17) into (21), yields
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Denoting T as π φ( − + )tan m , substituting (18) and (19) into (22),
yields,
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Given the gain crossover frequency ωc, the controller orders λ
and μ, from flat-phase robustness constraint (10),
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Substituting (17) into (26), the equation about Ki and Kd can be
obtained, as shown in (27),
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Then substituting (23) into (27), the equation about Ki is ob-
tained, as shown in (29),
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Ki can be obtained by solving (29). Therefore, the procedure for
calculating the controller parameters are obtained. First, the gain
crossover frequency ωc, the phase margin φm, the controller or-
ders λ and μ are selected. Second, Ki is obtained by solving (29).
Then Kd is obtained using (23). Finally, Kp is obtained by solving
(7).

3.3. Controller optimal design process based on DE algorithm

As shown in [34,35], DE algorithm can be applied to search for
the optimal controller parameters in control system design. In this
paper, the DE algorithm is used for the optimal design of the λ μPI D
controller.
3.3.1. Initialization
The algorithm starts with the initialization of the popula-

tion. N individuals are randomly generated. As a potential so-
lution to the optimization problem, each individual contains
four parameters: the gain crossover frequency ωc, the
phase margin φm, the controller orders λ and μ, as shown in
(33),

ω φ λ μ= ( ) ( )X , , , , 33i G c m,

where i represents the index of the individual, = …i N1, 2, , , G
is the evolution generations count, = …G G1, 2, , m, Gm is the
maximum generation number.

Then the controller parameters are calculated according to
the procedure mentioned in Section 3.2. All individuals are
checked by the boundary conditions (6) and (8). Only those
satisfying the boundary conditions are selected into the in-
itialized population.

3.3.2. Mutation
When the population initialization is finished, the mutation

and crossover operations are implemented. Some individuals are
selected to be the target individuals according to a certain prob-
ability (mutation rate Pm). The mutation is implemented by dis-
turbing each target individual using the difference vector between
different individuals. Then a mutated individual corresponding to
the target individual in the current generation is generated, as
shown in (34),

( )= + · − ( )V X F X X , 34i G i G r G r G, , , ,1 2

where Vi G, is the mutated individual, Xi G, is the target individual,
Xr G,1

and Xr G,2
are different individuals, F is a scale factor.

3.3.3. Crossover
The algorithm performs the crossover operation using binary

crossover scheme. Each mutated individual exchanges its compo-
nents with the corresponding target individual and then a trial
individual is generated. The trial individual should also be checked
by the boundary conditions. If the boundary conditions are not
satisfied, the trial individual will be generated again until the
boundary conditions are satisfied.

3.3.4. Selection
The step response simulations are implemented after the

crossover operation and then the ITAE of the trial and target in-
dividuals are calculated. The simulation time T is 10 s, with the
sampling time Δt to be 0.0001 s. The ITAE of each individual is
calculated using (35),

∑= [ ] [ ] Δ
( )=

Δ
J t k e k t.

35k

T
t

1

In order to obtain the controller that minimizes the ITAE, the fit-
ness function of each individual is set as follows,

=
( )

F
J
1

.
36

The selection is implemented by comparing the trial individual
with the corresponding target individual according to their fitness
values. The individual with larger fitness will be selected into the
next population, while that with smaller fitness will be aban-
doned. When the optimization process is finished, the individual
with the largest fitness will be selected to be the optimal
individual.
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Fig. 5. The main procedure of the optimal controller design algorithm.

Table 1
The ranges of the parameters in each individual.

Parameters ωc(rad/s) φm(deg) λ μ

minimum 1 60 0 0
maximum 100 180 2 2
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3.3.5. Improvement to the optimization process
In order to avoid too high overshoot of the step response, a

penalty operation is implemented on the fitness of the individuals
whose overshoot peaks are larger than a selected upper bound sb.
If the overshoot peak is higher than sb, the fitness of the individual
will be set as 0. Meanwhile, the power consumption of the con-
troller output should also be limited to an upper bound Jb, as
shown in (37),

∫ ( ) ≤ ( )
∞

i t dt J , 37qr b0

where iqr(t) is the output of the speed controller Cv(s) in Fig. 1. If
the power consumption is larger than Jb, the fitness of the in-
dividual will also be set to be 0.

In order to avoid the convergence to the local optimum during
the optimization process, an improvement is implemented on the
mutation rate Pm in this paper, as described by (38) [34],

= · ( )λP P 2 , 38m 0

where

λ = ( )−
− +e , 39
G

G G
1

1
m

m

where P0 is the initial mutation rate, G is the current generation
count and Gm is the maximum generation. The improved mutation
rate is close to 2P0 at the beginning of the optimization process,
allowing the maintenance of the diversity of individuals, helping
to avoid the population converging to some local optimums. In the
later period of the optimization process, the mutation rate is close
to P0, reducing the risk of the optimal individual being damaged by
mutation.

In order to present the procedure of this optimal controller
design and tuning course based on DE algorithm clearly, a design
flow chart diagram is shown in Fig. 5.

3.4. λ μPI D optimal design for the PMSM speed control system

The fractional order model parameters of the PMSM speed
control system used in this paper are identified using an output-
error method [32]. Besides, the gain Kpi and integral time Ti of the
current controller Ci(s) in Fig. 1 are set to be 1 and 0.02, respec-
tively. Therefore, the plant model of PMSM speed control system
can be described by (40),

( ) =
+ + ( )

G s
s s s

47979.2573
127.38 9995.678

.
402.9544 2.0463 1.0463

In order to ensure the system stability, the lower bounds of the
phase margin and gain margin are set as °60 and 15 dB, respec-
tively. The range of the gain crossover frequency is set as 1 to
100 rad/s. The upper bound of the peak overshoot sb is 12% and
that of the power consumption Jb is 0.16. The ranges of the con-
troller fractional orders λ and μ are both 0 to 2. The population size
N is set as 50 and the maximum generation Gm is 300. The initial
mutation rate P0 is 0.1. The ranges of the parameters in each in-
dividual in the optimal algorithm are shown in Table 1.

Using the optimal algorithm mentioned in Section 3.4, the
optimal fractional order λ μPI D controller can be designed as shown
in (41),

⎛
⎝⎜

⎞
⎠⎟( ) = + +

( )
C s

s
s8.281 1

3.5062
0.0229 .

410.8371
0.941

The average fitness of all individuals and the best fitness in
each generation are shown in Fig. 6, which shows that both the
average fitness and the best fitness have converged to the steady
values at the end of the optimization process.
The gain crossover frequency of the control system is
ωc ¼ 40.8 rad/s, the phase margin is φ = °82.7m . The phase cross-

over frequency is ω = ×1.04 10 rad/sg
4 and the gain margin is

Lg ¼ 82.8 dB. Obviously, the boundary conditions of the phase
margin and gain margin are both satisfied. The open-loop Bode
plot is shown in Fig. 7.

It can be seen that the phase is flat around the gain crossover
frequency, which satisfies the requirement for loop-gain
robustness.



0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

generation

fit
ne

ss

 

 
average fitness
best fitness

Fig. 6. The average fitness and the best fitness.

Fig. 7. Open-loop Bode plot of the control system using C(s).

Fig. 8. Open-loop Bode plot of the control system using ( )C s1 .
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4. Simulation study

The optimal fractional order λ μPI D controller obtained using the
design method proposed in Section 3 can achieve the desired
stability, robustness to loop-gain variations, and optimal dynamic
performance. In [29], a time-domain design method and a fre-
quency-domain method for fractional order λ μPI D controller design
are presented. In order to demonstrate the advantages of the
tuning method proposed in this paper, two λ μPI D controllers are
designed using the time-domain and frequency-domain methods
presented in [29] in this section. PMSM speed-tracking simula-
tions are implemented to compare the robustness and tracking
performance of the controller obtained using the method pro-
posed in this paper and those obtained using the methods pre-
sented in [29].

Besides, In order to verify the advantages of the fractional order
λ μPI D controller, an optimal fractional order λPI controller as shown

in (42) and an optimal integer order PID controller as (43) are
designed using the similar design algorithm for comparison in this
section.
⎛
⎝⎜

⎞
⎠⎟( ) = +

( )λC s K
K
s

1 ,
42p

i

where, Kp and Ki are proportional and integral gains, respectively;
λ ∈ ( )0, 2 is the fractional order.

⎛
⎝⎜

⎞
⎠⎟( ) = + +

( )
C s K

K
s

K s1 ,
43p

i
d

where, Kp, Ki and Kd are proportional, integral and derivative gains,
respectively.

PMSM speed-tracking simulations are implemented to test the
tracking performance and the anti-load-disturbance performance
of three control systems. The Oustaloup method [36,37] is used to
approximate the fractional order operator sr in the simulation
models.

4.1. Comparison with the time-domain method

The robustness specification is introduced as the constraint
condition for the controller design in this paper, which ensures
that the phase curve is flat at the gain crossover frequency.
Therefore, when the system loop-gain has small variations, the
overshoot of the step response will be almost constant. In contrast,
the robustness specification is not introduced in the time-domain
tuning method proposed in [29]. In order to guarantee the fair
comparison, applying the ITAE index as the loss function, a λ μPI D
controller is obtained using the time-domain design method
proposed in [29], as shown in (44),

⎛
⎝⎜

⎞
⎠⎟( ) = + +

( )
C s

s
s8.1909 1

11.9094
0.081 .

441 1.1348
0.5514

The open-loop Bode plot is shown in Fig. 8. According to Fig. 8,
the phase curve is not flat at the gain crossover frequency.

In order to verify the robustness of two controllers, the loop-
gains of C(s) and ( )C s1 are set to be 100%, 120% and 80% of their
original values respectively to simulate the plant model un-
certainties. PMSM speed-tracking simulations are implemented
using two controllers to control the motor speed. The step re-
sponse curves of two control systems are shown in Figs. 9 and 10,
respectively.

Figs. 9 and 10 show that the overshoots of the response curves
of the system using C(s) are close to each other, while those of the
system using ( )C s1 show obvious difference. Therefore, compared
with the time-domain tuning method in [29], the tuning method
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Fig. 9. Step response of the control system using C(s) with gain variations
(simulation).
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Fig. 10. Step response of the control system using ( )C s1 with gain variations
(simulation).

Fig. 11. Open-loop Bode plot of the control system using ( )C s2 .
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Fig. 12. Step response curves of two control systems using C(s) and ( )C s2
(simulation).

Table 2
Step response performance indexes of two control systems using C(s) and ( )C s2
(simulation).

Controller Rising time(s) Settling time(s) Overshoot(%) JITAE

C(s) 0.157 0.471 5.84 10.152
( )C s2 0.177 0.742 8.83 21.145
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proposed in this paper can ensure better robustness to gain
variations.

4.2. Comparison with the frequency-domain method

The frequency-domain tuning method proposed in [29] sear-
ches for the control system with flat curve at the gain crossover
frequency. Thus, the controller obtained using the frequency-do-
main can achieve good robustness to gain variations. However,
without the consideration of the dynamic performance, this
method cannot ensure the system to achieve good dynamic per-
formance. In order to guarantee the fair comparison, a λ μPI D con-
troller is obtained using the frequency-domain design method
proposed in [29], as shown in (45),

⎛
⎝⎜

⎞
⎠⎟( ) = + +

( )
C s

s
s3.5276 1

4.5108
0.0016 .

452 1.2383
0.7627

The open-loop Bode plot is shown in Fig. 11, which shows that
the phase curve is flat at the gain crossover frequency. Therefore,
the control system can achieve good robustness to gain variations.

PMSM speed step response simulation is implemented using C
(s) and ( )C s2 to control the motor speed. The response curves of
two control systems are shown in Fig. 12. The step response per-
formance indexes of two control systems are shown in Table 2.

According to Fig. 12 and Table 2, compared with the response
curve of the system using ( )C s2 , the response curve of the system
using C(s) has shorter rising time and settling time, smaller over-
shoot and ITAE. Therefore, the tuning method proposed in this
paper can ensure the control system to achieve better dynamic
performance.

4.3. Dynamic performance study

Applying the same constraint condition in (10), boundary
conditions in (6) and (8), objective function JITAE in (11), fitness



Fig. 13. Open-loop Bode plot of the control system using ( )C s3 . Fig. 14. Open-loop Bode plot of the control system using ( )C s4 .
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Fig. 15. Step response curves of the control systems using C(s), ( )C s3 and ( )C s4
(simulation).

Table 3
Step response performance indexes of the control systems using C(s), ( )C s3 and ( )C s4
(simulation).

Controller Rising time(s) Settling time(s) Overshoot(%) JITAE

C(s) 0.157 0.471 5.84 10.152
( )C s3 0.173 0.802 11.15 25.904

( )C s4 0.153 0.657 7.53 17.274
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function F in (33), and the algorithm parameter settings of ωc, φm,
Lg, sb, Jb, λ, N and P0, DE algorithm [34,35] is applied to search for
the optimal λPI controller parameters. As a potential solution to the
optimization problem, each individual contains two parameters:
the gain crossover frequencyωc and the integral order λ. Then Ki is
calculated by solving (10) and Kp is calculated by solving (7). All
the individuals are checked by the boundary conditions (6) and
(8). Only those satisfying the boundary conditions are selected into
the initialized population. Following the procedure shown in
Fig. 5, the optimal fractional order λPI controller can be obtained as
shown in (46),

⎛
⎝⎜

⎞
⎠⎟( ) = +

( )
C s

s
3.1514 1

2.5205
.

463 0.9802

The gain crossover frequency of the control system is
ωc¼13.7 rad/s, the phase margin is φ = °64.8m , the phase crossover
frequency is ωg¼115 rad/s and the gain margin is Lg¼23.6 dB. The
open-loop Bode plot is shown in Fig. 13, which shows that the
phase curve of the system is flat at the gain crossover frequency,
satisfying the robustness requirement.

Similarly, applying the constraint condition in (10), boundary
conditions in (6) and (8), objective function JITAE in (11), fitness
function F in (33), and the algorithm parameter settings of ωc, φm,
Lg, sb, Jb, N and P0, DE algorithm [34,35] is applied to search for the
optimal PID controller parameters as well. Each individual also
contains two parameters: the gain crossover frequency ωc and the
phase margin φm. Following the procedure shown in Fig. 5, an
optimal integer order PID controller is designed as shown in (45),

⎛
⎝⎜

⎞
⎠⎟( ) = + +

( )
C s

s
s8.3788 1

2.6953
0.0153 .

474

The gain crossover frequency of the control system is ωc¼37.1 rad/
s, the phase margin is φ = °83.7m and the gain margin is infinity.
The open-loop Bode plot is shown in Fig. 14, which shows that the
phase curve of the system is flat at the gain crossover frequency,
satisfying the robustness requirement.

4.3.1. Tracking performance study
PMSM speed step response simulation is implemented, using C

(s), ( )C s3 and ( )C s4 to control the motor speed. The response curves
of three control systems are shown in Fig. 15. The step response
performance indexes of three control systems are shown in Table 3.
Fig. 15 and Table 3 show that the rising time of the response
curve of the system using C(s) is close to that of the system using

( )C s4 , which is shorter than that of the system using ( )C s3 . Com-
pared with those of the systems using ( )C s3 and ( )C s4 , the response
curve of the system using C(s) has the shortest settling time,
smallest overshoot and ITAE. Therefore, the control system using C
(s) achieves the optimal tracking performance.

4.3.2. Anti-load-disturbance performance study
In order to test the anti-load-disturbance performance of the

control systems, load disturbance is injected when the motor
speed becomes stable. The disturbance responses of three control
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Fig. 16. Step responses with load disturbance of the control systems using C(s), ( )C s3
and ( )C s4 (simulation).

Table 4
Anti-load-disturbance performance indexes of the control systems using C(s), ( )C s3

and ( )C s4 (simulation).

Controller Recovery time(s) Dynamic speed drop(%)

C(s) 0.24 4.37
( )C s3 0.65 8.66

( )C s4 0.41 4.88

Fig. 17. PMSM speed control platform.
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Fig. 18. Step response of the control system using C(s) with gain variations
(experiment).

W. Zheng et al. / ISA Transactions 68 (2017) 212–222220
systems are shown in Fig. 16. The anti-load-disturbance perfor-
mance indexes of three control systems are shown in Table 4. In
Table 4, the recovery time is the interval from the point where the
speed drops out of the steady state range to the point where it
recovers back the to range. The steady state range is defined as the
range (98%, 102%) of the target steady state value.

Fig. 16 and Table 4 show that, compared with those of the
system using ( )C s3 and ( )C s4 , the response curve of the system
using C(s) has the shortest recovery time and smallest dynamic
speed drop.

According to two groups of simulation results, the step re-
sponse and anti-load-disturbance performances of the fractional
order λ μPI D controller are better than those of the fractional order

λPI controller and the integer order PID controller.
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Fig. 19. Step response of the control system using ( )C s1 with gain variations
(experiment).
5. Experimental study

In this section, the robustness and dynamic performance of the
proposed fractional order λ μPI D controller is studied by real PMSM
speed control experiments. The fractional order operator sr is
implemented by the impulse invariant discretization method [38]
in time-domain.

5.1. Experimental platform

The PMSM speed control platform is shown in Fig. 17. The
motor used is Sanyo-P10B18200BXS PMSM. The servo drive is an
embedded control system based on TI-DSP F2812 with the soft-
ware development platform Code Composer Studio on PC. The DC
generator is −Z 322 generator, which is coupled with the PMSM
for load adjustment. The load disturbance is injected by closing the
switch connecting the generator output terminal and the re-
sistance box.
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Fig. 20. Step response curves of two control systems using C(s) and ( )C s2
(experiment).
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Fig. 21. Step response curves of the control systems using C(s), ( )C s3 and ( )C s4
(experiment).

Table 6
Step response performance indexes of the control systems using C(s), ( )C s3 and ( )C s4
(experiment).

Controller Rising time(s) Settling time(s) Overshoot(%) JITAE

C(s) 0.167 0.457 6.8 11.386
( )C s3 0.173 0.864 10.91 33.907

( )C s4 0.166 0.76 8.59 23.609
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Fig. 22. Step responses with load disturbance of the control systems using C(s),
( )C s3 and ( )C s4 (experiment).
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5.2. Comparison with the time-domain method

PMSM speed control experiment is implemented, using C(s)
and ( )C s1 to control the motor speed. The step response curves of
two control systems are shown in Figs. 18 and 19, respectively.

Similar to the simulation results, Figs. 18 and 19 show that the
overshoots of the response curves of the system using C(s) are
close to each other, while those of the system using ( )C s1 show
obvious difference. Therefore, compared with the time-domain
tuning method in [29], the tuning method proposed in this paper
can ensure better robustness to gain variations.

5.3. Comparison with the frequency-domain method

PMSM speed Step response experiment is implemented using C
(s) and ( )C s2 to control the motor speed. The response curves of
two control systems are shown in Fig. 20. The step response per-
formance indexes of two control systems are shown in Table 5.

According to Fig. 20 and Table 5, compared with the response
curve of the system using ( )C s2 , the response curve of the system
using C(s) has shorter rising time and settling time, smaller over-
shoot and ITAE. Therefore, the tuning method proposed in this
paper can ensure the control system to achieve better dynamic
performance.

5.4. Tracking performance study

PMSM speed step response experiment is implemented, using
C(s), ( )C s3 and ( )C s4 to control the motor speed. The response curves
of three control systems are shown in Fig. 21. The step tracking
performance indexes of three control systems are shown in
Table 6.

Similar to the simulation results, Fig. 21 and Table 6 show that
the rising time of the response curve of the system using C(s) is
Table 5
Step response performance indexes of two control systems using C(s) and ( )C s2
(experiment).

Controller Rising time(s) Settling time(s) Overshoot(%) JITAE

C(s) 0.167 0.457 6.8 11.386
( )C s2 0.176 0.889 10.61 33.392

Table 7
Anti-load-disturbance performance indexes of the control systems using C(s), ( )C s3

and ( )C s4 (experiment).

Controller Recovery time(s) Dynamic speed drop(%)

C(s) 0.21 3.11
( )C s3 0.86 8.39

( )C s4 0.41 3.95
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close to that of the system using ( )C s4 , which is shorter than that of
the system using ( )C s3 . Compared with those of the systems using

( )C s3 and ( )C s4 , the response curve of the system using C(s) has the
shortest settling time, smallest overshoot and ITAE. Therefore, the
control system using C(s) achieves the optimal tracking
performance.

5.5. Anti-load-disturbance performance study

In order to test the anti-load-disturbance ability of the control
systems, load disturbance is injected when the motor speed be-
comes stable. The disturbance responses of three control systems
are shown in Fig. 22. The anti-load-disturbance performance in-
dexes of three control systems are shown in Table 7.

Similar to the simulation results, Fig. 16 and Table 4 show that,
compared with those of the system using ( )C s3 and ( )C s4 , the re-
sponse curve of the system using C(s) has the shortest recovery
time and smallest dynamic speed drop.

According to two groups of experimental results, the step re-
sponse and anti-load-disturbance performances of the fractional
order λ μPI D controller are better than those of the fractional order

λPI controller and the integer order PID controller.
6. Conclusion

A fractional order λ μPI D controller design strategy satisfying
time and frequency domain specifications for a PMSM servo sys-
tem is proposed in this paper. Taking the robustness specification
as the constraint condition, the phase margin specification and
gain margin specification as the boundary conditions, the ITAE as
the objective function, the DE algorithm is applied to search the
optimal controller parameters. PMSM speed control simulations
and experiments are demonstrated, showing the significant ad-
vantages of the proposed λ μPI D controller by the comparisons with
the controllers obtained using the time-domain and frequency-
domain methods, the λPI controller and the traditional PID con-
troller. Simulation and experimental results show that the pro-
posed λ μPI D controller can satisfy the specifications in both fre-
quency-domain and time-domain simultaneously and achieve
optimal tracking performance.
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