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Abstract— This paper presents an adaptive PD control law
by using a modified MIT rule. The adjustment mechanism
of the MIT rule has been implemented with three types of
sliding-mode control, i.e., classical sliding-mode control, second
order sliding-mode (2-SM), and high order sliding-mode control
(HOSM). The proposed controllers have been designed for the
directional and lateral dynamics of a fixed-wing mini aerial
autonomous vehicle (MAV). Several simulations have been
carried out in order to analyze the modified MIT rule.

I. INTRODUCTION

In control theory, there exist several dynamic systems
possessing constant uncertain parameters or parameters vary-
ing slowly [1]. For example, when we develop an MAV
(Mini Aerial Vehicle), we can add or remove sensors or
batteries, then we modify the weight and consequently the
inertia parameters. In the same way, when an MAV flies
in bad weather, it is exposed to changes in the air density
which are usually considered as a constant value. In order
to solve the aforementioned problems, several control laws
could be designed. One of such options is the use of an
adaptive controller [2] allowing the MAV performs a stable
flight under such conditions. The adaptive control has been
applied in areas as the robot manipulators, airplanes, rockets,
chemical process, electronic systems, ships, bioengineering,
etc. [1]. We can find in the literature some works related to
the MIT rule, as in [3], where it has been applied the MIT
rule based in model reference adaptive control (MRAC) for
the regulation of a second order system; the contribution of
[3] is the modification of the MIT rule with the objective
to obtain a major amplitude of reference desired, due to the
MIT rule tends to be unstable with large reference values,
and this is one of the inconvenient in work with the MIT rule
and even more, is sensitive to big numerical changes in the
adaptation gain, this is, even with decimal changes in this
gain, the system tends to be unstable. In [3] only show an
example of how to make one gain adaptable of the control
law, and the other gain of the control law proposed is not
adaptable.
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In [4], the MIT rule has been applied to a distillation
process, considering a linearized model, in addition to ap-
plying an adaptive feedback control for two parameters of
the controller, and by considering as reference a unitary
step signal. In [5], they have presented a comparison of the
MIT rule with the gradient method and by the Lyapunov
method. In [5] has been designed a control law for tracking
and regulation for an aspheric tank with selecting a small
reference for the input, and they have not presented a
modification to the MIT rule. The works mentioned at the
top have shown results using the Matlab software (simulation
results).

In this work, we have applied the MIT rule with the sliding
modes theory, the objective of this union is to obtain an
adaptive control with gain scheduling. Thus, the MIT rule
with the sliding mode theory has been used as the adjustment
mechanism for the gains of a PD control law, this adaptive
controller is applied in order to lead the yaw and roll angles
to a desired angular position. To the theory of the MIT rule
we have added a sliding mode control, and due to that with
this union presented the chattering effect, we have added
a second order sliding mode in order to reduce this effect,
and finally we have appreciated than the effect chattering is
presented still with two sliding modes, so we have added
a high order sliding mode in order to reduced or almost
eliminate the effect chattering in the design of the adaptive
control.

In addition to the changes made to the MIT rule, we
have obtained a lower sensitivity in the adaptive gain, and
it is possible to vary the reference required with bigger
values, unlike the aforementioned works. Furthermore, we
have proposed a different definition of the MIT rule with
sign function and with sign−sign functions for the adaptive
mechanism to that shown in [6], [1]. Our proposal is based
on the theory of sliding-modes, that is, we have designed
a sliding surface with the output of the plant which defines
the aerodynamic (directional-lateral) of a fixed-wing aerial
vehicle and with the output of the model-reference and
considering this, we have designed the adaptive mechanism.
We also added a disturbance which acts on the process input
[6], with the objective of test the robustness of the adaptive
controller in presence of not modeled disturbances in fixed-
wing MAVs. Such disturbances are small, but unknown and
random.

The paper is organized as follows: section II shows the
equations that define the dynamical model of the MAV. The
section III illustrates the general theory of the MIT rule;
in section IV, it is presented the control law design for the
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Fig. 1. Pure pitching motion

directional and lateral dynamics. In section V, it is presented
the altitude control design. In section VI it is shown the
simulation results and an analysis of the error signals and
the efforts of the control inputs. Finally, Section VII presents
the conclusions of this work.

II. AIRPLANE MODEL

In order to obtain the model equations, by omitting any
flexible structure of the MAV, the fixed-wing MAV can then
considered as a rigid body. Also, we do not consider the
curvature of the earth, it is considered just as a plane because
we assume that the fixed-wing MAV will only fly short
distances. With the previous considerations, we obtain the
model by applying the Newton’s laws of motion.

A. Longitudinal dynamics

The used dynamical model to control the altitude of the
MAV is given by [14]:

θ̇ = q (1)
q̇ = Mqq+Mδe δe (2)
ḣ = V sin(θ) (3)

where V is the magnitude of the airplane speed, θ denotes the
pitch angle. q is the pitch angular rate with respect to the y-
axis of the aircraft body, h defines the airplane altitude and
δe represents the elevator deviation [14]. In aerodynamics,
Mq and Mδe are linked with the stability derivatives which
are implicit in the pitch motion. We can see these variables
in the in Figure 1. The aerodynamic stability derivatives are
defined by:

Mq =
ρSV c̄2

4Iyy
Cmq

Mδe =
ρV 2Sc̄

2Iyy
Cmδe

where:
ρ: Air density (1.05 kg/m3).
S: Wing area (0.09 m2).
c̄: Standard mean chord (0.14 m).
b: Wingspan, (0.914 m).
Iyy: Moment of inertia in pitch (0.17 kg ·m2).
Cmq : Dimensionless coefficient for longitudinal
movement, obtained experimentally (-50).
Cmδe

: Dimensionless coefficient for elevator move-
ment, obtained experimentally (0.25).
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Fig. 2. Pure yawing motion

B. Directional-lateral dynamic

The lateral dynamics generates the roll motion and, at the
same time, induces a yaw motion (and vice versa), then
a natural coupling exists between the rotations about the
roll and yaw axes [10]. In our case, to solve it, we have
considered a decoupling of the yaw and roll angles [2]. Thus,
each angle can be controlled independently. Generally, the
effects of the engine thrust are also ignored [10]. In the
Figure 2, the yaw angle (directional dynamics) is represented,
which can be described by the following equations:

ψ̇ = r (4)
ṙ = Nrr+Nδr δr (5)

where ψ represents the yaw angle and r denotes the yaw rate
with respect to the center of gravity of the MAV. δr is the
rudder deflection. Nr and Nδr are the stability derivatives for
yaw motion. The aerodynamic stability derivatives for the
yaw angle are defined as [10]:

Nr =
ρV Sb2

4Izz
Cnr

Nδr =
ρV 2Sb

2Izz
Cnδr

where:
Izz: Moment of inertia in yaw (0.02 kg ·m2).
Cnr : Dimensionless coefficient for the yaw angle,
obtained experimentally (-0.01).
Cnδ r : Dimensionless coefficient for the rudder
movement, obtained experimentally (0.0005).

The following equations describe the dynamics for the roll
angle (lateral dynamics):

φ̇ = p (6)
ṗ = Lp p+Lδaδa (7)

where p denotes the roll rate, φ describes the roll angle,
and δa represents the deviation of the ailerons. Lp and Lδa
represent the stability derivatives of the roll motion [14].
In the Figure 3, they are shown the variables of the roll
motion. The aerodynamic stability derivatives for roll angle
are defined as [10]:

Lp =
ρV Sb2

4Ixx
Clp

Lδa =
ρV 2Sb

2Ixx
Clδa
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where:
Ixx: Moment of inertia in roll (0.16 kg ·m2).
Cl p: Dimensionless coefficient for roll angle, ob-
tained experimentally (-0.15).
Clδa : Dimensionless coefficient for ailerons move-
ment, obtained experimentally (0.005).

C. Change of variables of the directional-lateral aerody-
namic model

In order to design the adaptive control law, we have con-
ducted a change in the variables notation for the directional
and lateral dynamics; this is due to the fact that the dynamics
are similar. Then, the directional dynamics is represented in
the new variables by:

ẋ1ψ = x2ψ (8)
ẋ2ψ = C1ψ x2ψ +C2ψ uψ (9)

The change of variables for the lateral dynamics is also
defined by:

ẋ1φ = x2φ (10)
ẋ2φ = C1φ x2φ +C2φ uφ (11)

III. MIT RULE

The MIT rule has been the first proposed approach to
design adaptive control by reference model. The name is
derived from the fact that it was developed at the MIT Lab-
oratory Instrumentation. In order to describe the MIT rule,
let us consider a closed-loop system in which the controller
has one adjustable parameter θ . The desired closed-loop
response is obtained from model-reference whose output is
given by ym. The error e is defined between the output y of
the closed-loop system and the output ym, from the model-
reference. One way to solve it is to adjust the parameter in
such a way that a loss function (12) is minimized; the loss
function is given by:

J(θ) =
1
2

e2 (12)

To minimize J, we must change the parameters in the
direction of the negative gradient of J, thus,

dθ

dt
=−γ

∂J
∂θ

=−γe
∂e
∂θ

(13)

The equation (13) represents the called MIT rule. The
partial derivative ∂e/∂θ is the derivative of the sensitivity
of the system and defines how the error is influenced by
the adjustable parameter. If it is assumed that the changes
of the parameters are slower than the other variables in the

Model

Adjustment

Mechanism

Controller Plant

Controller Parameters

Fig. 4. Block diagram of the MRAS

system, then the derivative ∂e/∂θ can be evaluated under the
assumption that θ is constant. There are many alternatives
for the loss function (12). For example, if it is chosen:

J(θ) = |e| (14)

thus, the gradient method would be given by:

dθ

dt
=−γ

∂e
∂θ

sign(e) (15)

The first implemented model reference adaptive system
(MRAS) was based on (15). However, there are many other
formulations in the literature, for example, in [6] it is
presented:

dθ

dt
=−γ sign

(
∂e
∂θ

)
sign(e) (16)

which is known as the algorithm sign−sign.

IV. DESIGN OF THE ADAPTIVE CONTROL

We have designed a PD control law with adaptive gains,
thus, the adaptive part of the controller is given by the
proportional and the derivative gains. These gains are defined
as kp and kv respectively. The methodology to design the
adaptive control is based on the MRAS, in order to design the
adjustment mechanism by the MIT rule. We have modified
the MIT rule by inserting the theory of first order sliding-
mode, second order (2-SM) and high order sliding-mode
(HOSM), with the purpose of obtaining a robust control
law that stabilizing the system, and always trying to remove
the chattering effect. The block diagram representing the
MRAS is shown in Figure 4, where the Plant represents
the directional-lateral aerodynamic model of the fixed-wing
MAV, and the block called as Model represents the model-
reference.

Consider the equations (8)-(11), and let us use the
subindex l = ψ,φ for the directional-lateral dynamics, re-
spectively. Thus, ul defines the control input. Thereby, The
adaptive control is given by:

ul = k̂plael + k̂vlaėl (17)

where k̂pla and k̂vla are called as the position and velocity
gains, respectively, thus, these are the adaptive gains. The
error of the directional and lateral dynamics has been defined
as el = x1l − xd

1l . The gains of the PD control have implicit
a subscript to indicate the algorithm that has been applied
as adjustment mechanism, a = a1,a2,a3,a4 where a1 corre-
sponds to the MIT rule, a2 corresponds to the MIT rule with
sliding-mode, a3 uses the MIT rule with 2-sliding-mode, and
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finally a4 represents the MIT rule with HOSM. Therefore,
for the design of the MIT rule, it is introduced an error given
by:

elm = x1lm − x1l (18)

where x1lm is the output from the reference model. We have
followed the methodology that has been presented in [6]
for the MIT rule, taking this into account, the aerodynamic
model has been transformed into the representation of a
transference function in order to develop the derivatives of
sensitivity; these have been obtained by computing partial
derivatives with respect to the controller parameters k̂pla and
k̂vla. Thus, the closed-loop transfer function with the adaptive
PD controller has been defined as:

x1l =
C2l(k̂pl + k̂vls)

s2 +(C1l +C2l k̂vl)s+C2l k̂pl
xd

1l (19)

and the model of reference for the directional-lateral dynam-
ics has been defined as:

x1lm =
ω2

n

s2 +2ζ ωns+ω2
n

xd
1l (20)

where ζ = 3.17 and ω = 3.16. Consider (18)-(20) and
calculate the partial derivatives with respect to k̂pla and k̂vla,
then it is obtained:

∂elm

∂ k̂pl
=

C2l

s2 +(C1l +C2l k̂vl)s+C2l k̂pl
(x1l− xd

1l) (21)

∂elm

∂ k̂vl
=

C2ls
s2 +(C1l +C2l k̂vl)s+C2l k̂pl

(x1l− xd
1l) (22)

Generally, the expressions (21) and (22) cannot be used
due to the unknown parameters k̂pla and k̂vla. Thus, an
optimum case has been assumed, it is defined as:

s2 +(C1l +C2l k̂vl)s+C2l k̂pl = s2 +2ζ ωns+ω
2
n (23)

thus, after these approximations, we have obtained the dif-
ferential equations of the adaptive PD controller.

˙̂kpla1 = −γ1l

(
1

s2 +2ζ ωns+ω2
n
(x1l− xd

1l)

)
elm (24)

˙̂kvla1 = −γ2l

(
s

s2 +2ζ ωns+ω2
n
(x1l− xd

1l)

)
elm (25)

Now, it is proposed an MIT rule with second order
sliding-mode; this approach is different than the defined
in (15), and then, it is defined a sliding-mode surface as
s1l = ẋ1lm− x2l + k1lelm (we search to increase the stability
to the adjustment mechanism), where k1l is a positive gain.
Then, the differential equations of the adaptive controller,
with the methodology by sliding-mode, are given by:

˙̂kpla2 = −γ1l

(
1

s2 +2ζ ωns+ω2
n
(x1l− xd

1l)

)
(βp1l sign(s1l)) (26)

˙̂kvla2 = −γ2l

(
s

s2 +2ζ ωns+ω2
n
(x1l− xd

1l)

)
(βv1l sign(s1l)) (27)

where βp1l and βv1l are positive values. Due to the chattering
effect of the first order sliding-mode, let us design an adjust-
ment mechanism with a second order sliding-mode. These
second order sliding-mode includes a robust differentiator of
first order [7]. This differentiator is defined by:

ẋ0 = v0 = −λ0|x0− s1l |1/2 sign(x0− s1l)+ x1

ẋ1 = −λ1 sign(x1− v0)

where x0 and x1 are real-time estimations of s1l and ṡ1l ,
respectively. The values of λ1 and λ2 are constant positives.
Thus, the differential equations of the adaptive PD controller
with a second order sliding-mode are defined by:

˙̂kpla3 = −γ1l

(
1

s2 +2ζ ωns+ω2
n
(x1l− xd

1l)

)
(βp1l sign(s1l)+βp2l sign(ṡ1l)) (28)

˙̂kvla3 = −γ2l

(
s

s2 +2ζ ωns+ω2
n
(x1l− xd

1l)

)
(βv1l sign(s1l)+βv2l sign(ṡ1l)) (29)

where βp1l , βp2l , βv1l and βv2l are positive gains.
In order to reduce or eliminated the chattering effect in the

second order sliding-mode, we have designed an adjustment
mechanism with HOSM. To design the adjustment mecha-
nism, it is necessary a robust differentiator of second order
[7], which is given by:

ẋ0 = v0 = −λ0|x0− s1l |2/3 sign(x0− s1l)+ x1

ẋ1 = v1 = −λ1|x1− v0|1/2 sign(x1− v0)+ x2

ẋ2 = −λ2 sign |x2− v1|

where x0, x1 y x2 are real-time estimations of s1l , ṡ1l and
s̈1l . The values of λ0, λ1 and λ2 are defined as positive
constants. Finally, the differential equations of the adaptive
PD controller with HOSM are defined by:

˙̂kpla4 = −γ1l

(
1

s2 +2ζ ωns+ω2
n
(x1l− xd

1l)

)
(αpl [s̈1l +2(|ṡ1l |3 + |s1l |2)1/6

sign(ṡ1l + |s1l |2/3 sign(s1l))]) (30)

˙̂kvla4 = −γ2l

(
s

s2 +2ζ ωns+ω2
n
(x1l− xd

1l)

)
(αvl [s̈1l +2(|ṡ1l |3 + |s1l |2)1/6

sign(ṡ1l + |s1l |2/3 sign(s1l))]) (31)

where αpl and αvl are positive constant gains.

V. ALTITUDE CONTROL LAW

In order to keep a fixed altitude, we have designed a
PD control law by considering the longitudinal dynamics
equations (1)-(3). The altitude error has been defined as
ẽh = hd−h, and it denotes the difference between the desired
altitude hd with respect to the current altitude h, where
h is obtained by integrating (3). The desired altitude is
achieved by controlling the pitch angle, thus it has been
defined an error for this angle, given by ẽθ = θd−θ , where
θd = arctan(ẽh/ς); θd is the desired pitch angle, ς denotes
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Fig. 5. Adaptive PD controller using the MIT rule in roll angle (with
disturbances)

the longitude from the center of mass of the fixed-wing MAV
to the nose of the UAV.

The PD control law, for the altitude motion, is given by:

δe = kphẽl + kvh ˙̃el (32)

where kph and kvh are the positive constant gains of the PD
controller

VI. SIMULATION RESULTS

A. MIT rule

The Figure 5 shows the obtained results when using the
MIT rule in roll angle. The dashed line corresponds to
the output signal of the model-reference, and the solid line
represents the actual roll angle. In the same Figure, it is
shown the control action which has been saturated in ±40◦;
the obtained value of the control law is too big for our
fixed-wing MAV platform which will be considered for the
experimental test in a future work, the value allowed is ±20◦.
We can also see, in this Figures, the related error signal
between the model-reference and the actual roll angle. We
have conducted several simulations in order to reduce the
control law signal, but it was not possible to obtain a better
response.
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Fig. 6. Adaptive PD controller using the MIT rule in yaw angle (with
disturbances)

For the yaw angle case, the MIT rule has presented a good
performance, see the Figure 6, that is, the signal value of
the control law is inside of the allowed values for the rudder
(±20◦). In this Figure, we can also observe the results for
the yaw angle and its error.

B. MIT rule with sliding-mode

The Figure 7 shows the results of the MIT rule with a first
order sliding-mode. It has been observed an improvement
with respect to the results that have been obtained with
the MIT rule; it can be observed than the actual roll angle
achieves the model-reference signal in a lower time in
comparison with the MIT rule. We also observe that the
control action is saturated in ±20◦ which is the allowed value
for the ailerons of our fixed-wing MAV. However, we observe
an inconvenient in this algorithm, that is, the presence of the
chattering effect in the control signal.

In the Figure 8, it is presented the obtained results when
applying the MIT rule with the first order sliding-mode. This
adaptive control algorithm also presents a lower error and
control effort in comparison with the MIT rule for the yaw
angle. In addition, this algorithm reduces the noise that has
presented with the MIT rule. Besides, it also generates a low
chattering effect at the control signal.
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Fig. 7. Adaptive PD controller using the MIT rule with first order sliding-
mode in roll angle (with disturbances)

C. MIT rule with second order sliding-mode

In the Figure 9, it is observed the performance of the MIT
rule with second order sliding-mode. With this technique, we
have reduced the chattering effect in some parts of the control
signal, with respect to the MIT rule and the MIT rule with
first order sliding-mode.

The MIT rule with second order sliding-mode for the yaw
angle has presented a minimal difference in the reduction of
chattering effect; due to the minimal chattering effect that
has been generated by the MIT rule with first order sliding-
mode, but if the model-reference has a higher amplitude,
then the chattering effect will also increase.

D. MIT rule with high order sliding-mode

The Figure 11 shows the performance of the MIT rule
with high order sliding-mode (HOSM) for the roll angle.
The chattering effect has been reduced significantly and the
noise generated by the MIT rule has been eliminated.

The Figure 12 shows the behavior of the MIT rule with
high order sliding-mode in the yaw angle.

E. Reduction of the chattering effect

The Figures 13 and 15 present the control signals with-
out the disturbances in order to appreciate the chattering
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Fig. 8. Adaptive PD controller when using the MIT rule with first order
sliding-mode in the yaw angle (with disturbances)

reduction. We observe that it was only necessary the use
of a second order sliding-mode in order to reduce the
chattering effect. Nonetheless, the MIT rule with HOSM
is necessary, given that, if the model-reference increase the
angle amplitude then the chattering effect increase too, then
we propose the use of the HOSM to eliminate such an effect.
On the other hand, the Figures 14 and 16 show the control
signals with disturbances. Now, we can observe how the
sliding mode technique is trying the reduce the disturbances,
even if they were not modeled in the controller design.

In the Figure17 is presented the obtained trajectory with
the altitude control and the adaptive control for the yaw and
roll angles.

F. Analysis of the error signals and the efforts of the control
laws

In order to analyze the error signals and the effort of the
control laws, we have applied the L2 norm to the error:

L2[el ] =

√
1

T − t0

∫ T

t0
‖el‖2dt (33)
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Fig. 9. Adaptive PD controller when using the MIT rule with second order
sliding-mode in roll angle (with disturbances)

and it is also used to the effort of the control law; it has been
defined as:

L2[δs] =

√
1

T − t0

∫ T

t0
‖δs‖2dt (34)

The errors and efforts that have been obtained with the
norms (33) and (34) are shown in the tables I and II for
the roll and yaw angles, respectively. In Tables I and II, we
can appreciate that the MIT rule with a first order sliding-
mode has presented lower errors, as well as in the controller
efforts for the yaw angle. However, if we observe the Figure
13, it has the presence of the chattering effect in the control
signal, thus, if we want to eliminate it, we need to use the
MIT rule with HOSM, in spite of its highest error and effort
of the controller. With this proposal, we have eliminated the
chattering effect and some noise generated by the MIT rule
in the control signal.

VII. CONCLUSIONS

In this work, the MIT rule was modified by adding sliding-
mode techniques in order to obtain a robust mechanism for
an adaptive PD controller, and the system has been subjected
to disturbances no modeled in the control law. The adaptive
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Fig. 10. Adaptive PD controller when using the MIT rule with second
order sliding-mode in yaw angle (with disturbances)

TABLE I
L2 NORM FOR THE ERRORS AND THE EFFORTS OF THE CONTROL LAWS

ON THE ROLL ANGLE

Roll angle eφ [deg] uφ [deg]

MIT 0.3587 0.5986
MIT-SM 0.3573 0.6035
MIT-2SM 0.9582 0.6744
MIT-HOSM 4.8928 3.4218

TABLE II
L2 NORM FOR THE ERRORS AND THE EFFORTS OF THE CONTROL LAWS

ON THE YAW ANGLE.

Yaw angle eψ [deg] uψ [deg]

MIT 0.3587 0.5540
MIT-SM 0.1787 0.2457
MIT-2SM 0.4791 0.2966
MIT-HOSM 2.4464 1.3002

control laws have been applied in the yaw and roll angles of
a fixed-wing MAV, and a classic PD control has been applied
for the altitude motion. The simulation results have shown
that the PD adaptive control with the MIT rule was saturated
to ±40◦, for roll angle, and this value cannot be allowed by
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Fig. 11. Adaptive PD controller using the MIT rule with high order sliding-
mode in roll angle (with disturbances)

our fixed-wing MAV platform, even more the control signal
has presented some noise without the disturbances, and also
the tuning of the adaptive gains are not easy, that is, with
some decimal changes in this gains the system tends to the
instability in the yaw and roll angles.

For the MIT rule with first order sliding-mode, it has
been obtained the desired tracking with an allowed the
control law signal of ±20◦, and even with the linkage of
these techniques, it has obtained a lower error and effort of
controller in the yaw angle, in comparison with the other
presented techniques, however in the control signal for the
roll angle, it has presented the undesired chattering effect,
that is appreciated better in the results of the control signal
without disturbances. The chattering effect, in the control
signal, has been reduced by the MIT rule with second order
sliding-mode, but it has not eliminated of the control signal
for the roll angle. Whereas in yaw angle, the chattering effect
has been eliminated, that is, when we consider low amplitude
values of the model-reference.

A good behavior in the control signal has been presented
by the MIT rule with high order sliding-mode. The chattering
effect has been reduced or even eliminated. Furthermore,
the control signal is inside of the allowed values for our
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Fig. 12. Adaptive PD controller when using the MIT rule with high order
sliding-mode in yaw angle (with disturbances)

fixed-wing MAV, that is, in ±20◦ of deflection of the control
surfaces. We have also observed that it is easier to tune the
adaptive gains with the MIT rule with HOSM, however, we
have a bigger error and control effort in comparison with the
others proposed techniques.

Finally, the control objective is achieved even if the
disturbances are not modeled in the control system. In the
future work, these control laws will be implanted in a fixed-
wing MAV testbed. By doing some changes, we consider
that our proposal could be tested in a VTOL UAV platform.
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[6] Åström K. J., Wittenmark B.: “Adaptive Control ”, 2nd Edition, Ed.
Prentice Hall, ISBN: 978-0201558661, 1994

[7] Levant A.: “Robust Exact Differentition Via Sliding Mode Technique”,
Automatica, 34, 379-384, 1998.

[8] Valavanis K. P.: “Advances in Unmanned Aerial Vehicles”, Ed.
Springer, ISBN: 1-4020-6113-4, 2007

[9] Guerrero J. and Lozano R.: “Flight Formation Control”, Ed. Wiley,
ISBN: 184-82-1323-9, 2012

[10] Mclean D.: “Automatic Flight Control Systems”, Ed. Prentice hall
International, ISBN: 0-13-054008-0, 1990

[11] Espinoza T., Parada R., Dzul A. and R. Lozano.: “Linear controllers
implementation for a fixed-wing MAV”, 2014 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA,
May 27-30, 2014.

[12] Harkegard O. and Glad S. T.: “A Backstepping design for Flight Path
Angle Control”, In proceedings of the 39th Conference on Decision
and Control, Sydney, Australia, December 2000.

[13] Espinoza T. , Dzul A. and Llama M.: “Linear and Nonlinear Con-
trollers Applied to Fixed-Wing UAV”, International Journal of Ad-
vanced Robotic Systems, vol. 10, 33:2013

[14] Brian L. S. and Frank L.: “Aircraft Control and Simulation”, Ed. Jhon
Wiley and Sons, second edition, ISBN: 0-471-61397-5, 1992

[15] Khalil H.: “Nonlinear Systems”, Ed. Prentice Hall, ISBN: 0-13-

Time (s)
0 20 40 60 80 100 120 140 160 180 200

A
ile

ro
n 

D
ef

le
ct

io
n 

[d
eg

]

-2

-1

0

1

2
Roll Control Signal (MIT)

Time (s)
0 20 40 60 80 100 120 140 160 180 200

A
ile

ro
n 

D
ef

le
ct

io
n 

[d
eg

]

-2

-1

0

1

2
Roll Control Signal (MIT-SM)

Time (s)
0 20 40 60 80 100 120 140 160 180 200

A
ile

ro
n 

D
ef

le
ct

io
n 

[d
eg

]

-2

-1

0

1

2
Roll Control Signal (MIT-2SM)

Time (s)
0 20 40 60 80 100 120 140 160 180 200

A
ile

ro
n 

D
ef

le
ct

io
n 

[d
eg

]

-2

-1

0

1

2
Roll Control Signal (MIT-HOSM)

Fig. 14. Zoom of the control actions of the adaptive PD control when
using the MIT rule with sliding-mode in the roll angle (with disturbances)
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Fig. 15. Zoom of the control actions of adaptive PD control when using
the MIT rule with sliding-mode in the yaw angle (without disturbances).
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Fig. 16. Zoom of the control actions of adaptive PD control when using
the MIT rule with sliding-mode in the yaw angle (with disturbances).
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control laws
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