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In this paper, we are concerned with the regional boundary controllability of the Riemann–Liouville time
fractional diffusion systems of order α ∈ (0, 1]. The characterizations of strategic actuators are established
when the systems studied are regionally boundary controllable. The determination of control to achieve
regional boundary controllability with minimum energy is explored. We also show a connection between
the regional internal controllability and regional boundary controllability. Several useful results for the
optimal control from an implementation point of view are presented in the end.
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1. Introduction

In the past several decades, a lot of work has been carried out to deal with the problem of steering a
system to a target state, especially after the introduction of the notions of actuators and sensors (El Jai &
Pritchard, 1988; El Jai, 1991). However, in many real-world applications, we are only concerned with
those cases where the target states of the problem studied are defined in a given subregion of the whole
space domain. Then the regional idea emerges and we refer the reader to Sakawa (1974) and Zerrik
et al. (1999, 2000) for more information on the concept of regional analysis for the Gaussian diffusion
process. Besides, it should be pointed out that not only does the concept of regional analysis make sense
closer to real-world problems, it also generalizes the results of existence contributions.

In addition, after the introduction of continuous time random walks by Montroll & Weiss (1965),
the anomalous diffusion equation of fractional-order has attracted increasing interest and has been
proved to be a useful tool in modelling many real-world problems (Adams & Gelhar, 1992; Metzler
& Klafter, 2000, 2004; Meerschaert & Scalas, 2006; Cartea & Negrete, 2007). More precisely, the
mean squared displacement of the anomalous diffusion process is described by a power law of frac-
tional exponent, which is smaller (in the case of sub-diffusion) or bigger (in the case of super-diffusion)
than that of the Brownian motion. It is confirmed that the time fractional diffusion system, where the
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traditional first-order time derivative is replaced by a Riemann–Liouville time fractional derivative of
order α ∈ (0, 1], can be used to well characterize those sub-diffusion process (Metzler & Klafter, 2000,
2004). For example, the flow through porous media microscopic processes (Uchaikin & Sibatov, 2013),
or swarm of robots moving through dense forest (Spears & Spears, 2012) etc. With regard to frac-
tional calculus, as we all know, it has shown great potential in science and engineering applications
and some phenomena such as self-similarity, non-stationary, non-Gaussian process and short- or long-
memory process are all closely related to fractional calculus (Podlubny, 1999; Agrawal, 2002; Kilbas
et al., 2006). It is now widely believed that using fractional calculus in modelling can better capture
the complex dynamics of natural and man-made systems, and fractional-order controls can offer better
performance not achievable before using integer-order controls (Mandelbrot, 1983; Torvik & Bagley,
1984), which in fact raise important theoretical challenges and open new research opportunities.

Motivated by the argument above, the contribution of this present work is on the regional boundary
controllability of the anomalous transport process described by time fractional diffusion systems. More
precisely, for an open bounded subset Ω ⊆ Rn with smooth boundary ∂Ω , we consider:

• a subregion Γ of ∂Ω which may be unconnected.

• various kinds of actuators (zone, pointwise, internal or boundary) acting as controls.

The rest of this paper is organized as follows. The mathematical concept of regional boundary control-
lability and several preliminaries are presented in the next section; then we present an example which
is regional boundary controllability but not globally boundary controllable. Section 3 is focused on the
characterizations of Γ -strategic actuators and our main result on regional boundary controllability with
the minimum energy problem is given in Section 4. In Section 5, a connection between internal and
boundary regional controllability is established and, at last, we work out some useful results for the
optimal control from an implementation point of view.

2. Regional boundary controllability

2.1 Problem statement

In this paper, we consider the following abstract time fractional diffusion system:

{
0Dα

t z(t)= Az(t)+ Bu(t), t ∈ [0, b],

lim
t→0+ 0I1−α

t z(t)= z0,
(2.1)

where A generates a strongly continuous semi-group {Φ(t)}t�0 on the Hilbert space Z := H1(Ω),
z ∈ L2(0, b; Z) and the initial vector z0 ∈ Z. It is supposed that B : Rp → Z is the control operator and
u ∈ L2(0, b; Rp) depends on the number and structure of actuators. Moreover, the Riemann–Liouville
fractional derivative 0Dα

t and the Riemann–Liouville fractional integral 0Iαt are, respectively, given by
Podlubny (1999) and Kilbas et al. (2006)

0Dα
t z(t)= d

dt
0I1−α

t z(t), α ∈ (0, 1] and

0Iαt z(t)= 1

Γ (α)

∫ t

0
(t − s)α−1z(s) ds, α > 0.

(2.2)
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Definition 2.1 (Ge et al., 2015b) For any given f ∈ L2(0, b; Z), α ∈ (0, 1], a function v ∈ L2(0, b; Z) is
said to be a mild solution of the following system:

{
0Dα

t v(t)= Av(t)+ f (t), t ∈ [0, b],

lim
t→0+ 0I1−α

t v(t)= v0 ∈ Z,
(2.3)

if it satisfies

z(t)= Kα(t)v0 +
∫ t

0
(t − s)α−1Kα(t − s)f (s) ds, (2.4)

where Kα(t)= α
∫ ∞

0 θφα(θ)Φ(tαθ) dθ , {Φ(t)}t�0 is the strongly continuous semi-group generated by
A, φα(θ)= (1/α)θ−1−1/αψα(θ

−1/α) and ψα is a probability density function defined by

ψα(θ)= 1

π

∞∑
n=1

(−1)n−1θ−αn−1Γ (nα + 1)

n!
sin(nπα), θ > 0. (2.5)

In addition, we have Mainardi et al. (2000) and Zhou & Jiao (2010)

∫ ∞

0
ψα(θ) dθ = 1 and

∫ ∞

0
θνφα(θ) dθ = Γ (1 + ν)

Γ (1 + αν)
, ν � 0. (2.6)

By Lemma 2.1, the mild solution z(·, u) of (2.1) can be given by

z(t, u)= tα−1Kα(t)z0 +
∫ t

0
(t − s)α−1Kα(t − s)Bu(s) ds. (2.7)

Let H : L2(0, b; Rp)→ Z be

Hu =
∫ b

0
(b − s)α−1Kα(b − s)Bu(s) ds ∀u ∈ L2(0, b; Rp). (2.8)

Suppose that {Φ∗(t)}t�0, generated by the adjoint operator of A, is also a strongly continuous semi-group
on the space Z. For any v ∈ Z, it follows from 〈Hu, v〉 = 〈u, H∗v〉 that

H∗v = B∗(b − s)α−1K∗
α(b − s)v, (2.9)

where 〈·, ·〉 is the duality pairing of space Z, B∗ is the adjoint operator of B and

K∗
α(t)= α

∫ ∞

0
θφα(θ)Φ

∗(tαθ) dθ .

Let γ : H1(Ω)→ H1/2(∂Ω) be the trace operator of order zero, which is linear continuous and
surjective, γ ∗ denotes the adjoint operator. Moreover, if Γ ⊆ ∂Ω , pΓ : H1/2(∂Ω)→ H1/2(Γ ) defined by

pΓ z := z|Γ (2.10)
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and, for any z̄ ∈ H1/2(Γ ), the adjoint operator p∗
Γ can be given by

p∗
Γ z̄(x) :=

{
z̄(x), x ∈ Γ ,

0, x ∈ ∂Ω\Γ .
(2.11)

2.2 Definition and characterizations

Let ω⊆Ω be a given region of positive Lebesgue measure. Denote the projection operator on ω by the
restriction map

pω : H1(Ω)→ H1(ω); (2.12)

then we are ready to state the following definitions.

Definition 2.2 The system (2.1) is said to be exactly (respectively, approximately) regionally con-
trollable on ω at time b if, for any yb ∈ H1(ω), given ε > 0, there exists a control u ∈ L2(0, b; Rp) such
that

pωz(b, u)= yb (respectively, ‖pωz(b, u)− yb‖H1(ω) � ε). (2.13)

Definition 2.3 The system (2.1) is said to be exactly (respectively, approximately) regionally bound-
ary controllable on Γ ⊆ ∂Ω at time b if, for any zb ∈ H1/2(Γ ), given ε > 0, there exists a control
u ∈ L2(0, b; Rp) such that

pΓ (γ z(b, u))= zb (respectively, ‖pΓ (γ z(b, u))− zb‖H1/2(Γ ) � ε). (2.14)

Proposition 2.1 The following properties are equivalent:

(1) the system (2.1) is exactly regionally boundary controllable on Γ at time b;

(2) Im(pΓ γH)= H1/2(Γ );

(3) Ker(pΓ )+ Im(γH)= H1/2(∂Ω);

(4) for any z ∈ H1/2(Γ ), there exists a positive constant c such that

‖z‖H1/2(Γ ) � c‖H∗γ ∗p∗
Γ z‖L2(0,b;Rp). (2.15)

Proof. By Definition 2.3, it is not difficult to see that (1)⇔ (2).
(2)⇒ (3) : For any z ∈ H1/2(Γ ), let ẑ be the extension of z to H1/2(∂Ω). Since Im(pΓ γH)=

H1/2(Γ ), there exists u ∈ L2(0, b; Rp), z1 ∈ Ker(pΓ ) such that ẑ = z1 + γHu.
(3)⇒ (2) : For any z̃ ∈ H1/2(∂Ω), z̃ = z1 + z2, where z1 ∈ Ker(pΓ ) and z2 ∈ Im(γH). Then there

exists a control u ∈ L2(0, b; Rp) such that γHu = z2. Hence, it follows from the definition of pΓ that
Im(pΓ γH)= H1/2(Γ ).

(1)⇔ (4) : the equivalence between (1) and (4) can be deduced from the following general result
(Pritchard & Wirth, 1978): let E, F, G be reflexive Hilbert spaces and f ∈L(E, G), g ∈L(F, G). Then
the following two properties are equivalent:

(1) Im(f )⊆ Im(g),
(2) ∃ γ > 0 such that ‖f ∗z∗‖E∗ � γ ‖g∗z∗‖F∗ , ∀z∗ ∈ G.

By choosing E = G = H1/2(Γ ), F = L2(0, b; Rp), f = IdH1/2(Γ ) and g = pΓ γH , then we complete the
proof. �
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Proposition 2.2 There is an equivalence among the following properties:

〈1〉 The system (2.1) is approximately regionally boundary controllable on Γ at time b;

〈2〉 Im(pΓ γH)= H1/2(Γ );

〈3〉 Ker(pΓ )+ Im(γH)= H1/2(∂Ω);

〈4〉 the operator pΓ γHH∗γ ∗p∗
Γ is positive definite.

Proof. By Proposition 2.1, 〈1〉 ⇔ 〈2〉 ⇔ 〈3〉. Finally, we show that 〈2〉 ⇔ 〈4〉. In fact, since

Im(pΓ γH)= H1/2(Γ )⇔ (pΓ γHu, z)H1/2(Γ ) = 0 for any u ∈ L2(0, b; Rp) implies z = 0,

where (·, ·)H1/2(Γ ) is the inner product of H1/2(Γ ). Let u = H∗γ ∗p∗
ωz. Then we see that

Im(pΓ γH)= H1/2(Γ )⇔ (pΓ γHH∗γ ∗p∗
Γ z, z)H1/2(Γ ) = 0 implies z = 0, z ∈ H1/2(Γ ),

i.e. the operator pΓ γHH∗γ ∗p∗
Γ is positive definite and the proof is complete. �

Remark 2.1 (1) A system which is boundary controllable on Γ is boundary controllable on Γ1 for
every Γ1 ⊆ Γ .

(2) The definitions (2.2) can be applied to the case where Γ = ∂Ω and there exist systems that
are not boundary controllable but which are regionally boundary controllable. This is illustrated by the
following example.

2.3 An example

Consider the following two-dimensional time fractional diffusion equation defined on Ω = [0, 1] ×
[0, 1], which is excited by a zone actuator:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0Dα
t z(x, y, t)= ∂2

∂x2
z(x, y, t)+ ∂2

∂y2
z(x, y, t)+ pDu(t) in Ω × [0, b],

lim
t→0+ 0I1−α

t z(x, y, t)= 0 in Ω ,

z(ξ , η, t)= 0 on ∂Ω × [0, b],

(2.16)

where α ∈ (0, 1], D = {0} × [d1, d2] ⊆Ω , A = ∂2/∂x2 + ∂2/∂y2 with λij = −(i2 + j2)π2, ξij(x, y)=
2aij cos(iπx) cos(jπy), aij = (1 − λij)

−1/2, Φ(t)z = ∑∞
i,j=1 exp(λijt)(z, ξij)Zξij and Kα(t)z(x)=

α
∫ ∞

0 θφα(θ)Φ(tαθ)z(x) dθ = ∑∞
i,j=1 Eα,α(λijtα)(z, ξij)Zξij(x). Furthermore, since

(H∗γ ∗z)(t)= (b − t)α−1
∞∑

i,j=1

Eα,α(λij(b − t)α)(γ ∗z, ξij)Z(pD, ξij)Z

and (pD, ξij)Z = (2aij/jπ)[sin(jπd2)− sin(jπd1)+ jπ(cos(jπd2)− cos(jπd1)], there exists d1,
d2 ∈ [0, 1] satisfying Ker(H∗) |={0} (Im(pDH) |= L2(ω)), i.e. the system (2.16) is not boundary
controllable.
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Moreover, let d1 = 0, d2 = 1
2 , Γ = {0} × [ 1

4 , 3
4 ] and z∗ = ξij(0, y), (i, j = 4k, k = 1, 2, 3, . . .).

Obviously, z∗ is not reachable on ∂Ω . However, since

Eα,α(t) > 0 (t � 0) and (pD, ξij)Z = 2aij

jπ
[sin(jπ/2)+ jπ(cos(jπ/2)− 1)], j = 1, 2, . . . ,

we see that

H∗γ ∗p∗
Γ z∗)(t)=

∞∑
i,j=1

Eα,α(λij(b − t)α)

(b − t)1−α (ξij, γ
∗z∗)H1/2(Γ )(pD, ξij)Z

=
∞∑

i,j=1,j |= 4k

2aijEα,α(λij(b − t)α)

jπ(b − t)1−α (ξij, γ
∗z∗)H1/2(Γ )

× [sin(jπ/2)+ jπ(cos(jπ/2)− 1)]

|= 0. (2.17)

Hence z∗ is regionally boundary controllable on Γ = {0} × [ 1
4 , 3

4 ].
To end this section, we finally recall a necessary lemma to be used afterwards.

Lemma 2.1 (Dacorogna, 2008) Let Ω ⊆ Rn be an open set and C∞
0 (Ω) be the class of infinitely differ-

entiable functions on Ω with compact support in Ω and u ∈ L1
loc(Ω) be such that

∫
Ω

u(x)ψ(x) dx = 0, ∀ψ ∈ C∞
0 (Ω). (2.18)

Then u = 0 almost everywhere in Ω .

3. Regional strategic actuators

The characteristic of actuators to achieve the regionally approximately boundary controllable of the
system (2.1) will be explored in this section.

As cited in El Jai & Pritchard (1988), an actuator can be expressed by a couple (D, g) where D ⊆Ω

is the support of the actuator and g is its spatial distribution. To state our main results, it is supposed that
the control is made by p actuators (Di, gi)1�i�p and let Bu = ∑p

i=1 pDi gi(x)ui(t), where p ∈ N, gi(x) ∈ Z,
u = (u1, u2, . . . , up) and ui(t) ∈ L2(0, b). As cited in Coopmans et al. (2015), all these distributed param-
eter systems with moving sensors and actuators form the so-called cyber-physical systems, which are
rich in real-world applications. For instance, in the pest-spreading process, p is the number of the spread-
ing machines and ui(·) stands for the control input strategic of every spreading machine with respect to
time t (Cao et al., 2015). Then the system (2.1) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

0Dα
t z(t, x)= Az(t, x)+

p∑
i=1

pDi gi(x)ui(t), (t, x) ∈ [0, b] ×Ω ,

lim
t→0+ 0I1−α

t z(t, x)= z0(x).
(3.1)
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Moreover, we suppose that −A is a self-adjoint uniformly elliptic operator, by Courant & Hilbert (1966),
we get that there exists a sequence (λj, ξjk) : k = 1, 2, . . . , rj, j = 1, 2, . . . such that

(1) For each j = 1, 2, . . ., λj is the eigenvalue of operator A with multiplicities rj and

0>λ1 >λ2 > · · ·>λj > · · · , lim
j→∞

λj = −∞.

(2) For each j = 1, 2, . . ., ξjk(k = 1, 2, . . . , rj) is the orthonormal eigenfunction corresponding to λj,
i.e.,

(ξjkm , ξjkn)=
{

1, km = kn,

0, km |= kn,

where 1 � km, kn � rj, km, kn ∈ N and (·, ·) is the inner product of space Z.
Hence, the sequence {ξjk , k = 1, 2, . . . , rj, j = 1, 2, . . .} is an orthonormal basis in Z, the strongly con-

tinuous semi-group {Φ(t)}t�0 on Z generated by A is

Φ(t)z(x)=
∞∑

j=1

rj∑
k=1

exp(λjt)(z, ξjk)ξjk(x), x ∈Ω (3.2)

and for any z(x) ∈ Z, it can be expressed as z(x)= ∑∞
j=1

∑rj

k=1(z, ξjk)ξjk(x).

Definition 3.1 A actuators (suite of actuators) is said to be Γ -strategic if the system under considera-
tion is regionally approximately boundary controllable on Γ at time b.

Before to show our main result in this part, by Eq. (3.2), for any z ∈ L2(Ω), we have

Kα(t)z(x)= α

∫ ∞

0
θφα(θ)Φ(t

αθ)z(x) dθ

= α

∫ ∞

0
θφα(θ)

∞∑
j=1

rj∑
k=1

exp(λjt
αθ)(z, ξjk)ξjk(x) dθ

=
∞∑

j=1

rj∑
k=1

∞∑
n=0

α(λjtα)n

n!
(z, ξjk)ξjk(x)

∫ ∞

0
θn+1φα dθ

=
∞∑

j=1

rj∑
k=1

∞∑
n=0

α(n + 1)!(λjtα)n

Γ (αn + α + 1)n!
(z, ξjk)ξjk(x)

=
∞∑

j=1

rj∑
k=1

αE2
α,α+1(λjt

α)(z, ξjk)ξjk(x),

where Eμα,β(z) := ∑∞
n=0((μ)n/Γ (αn + β))(zn/n!), z ∈ C, α,β,μ ∈ C, Reα > 0 is the generalized

Mittag–Leffler function in three parameters and, here, (μ)n is the Pochhammer symbol defined by (see
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Erdèlyi et al., 1953, Section 2.1.1)

(μ)n =μ(μ+ 1) · · · (μ+ n − 1), n ∈ N. (3.3)

If α,β ∈ C such that Reα > 0, Reβ > 1, then (see Mathai & Haubold, 2008, Section 2.3.4 or Gorenflo
et al., 2014, Section 5.1.1)

αE2
α,β = Eα,β−1 − (1 + α − β)Eα,β . (3.4)

It then follows that

Kα(t)z(x)=
∞∑

j=1

rj∑
k=1

Eα,α(λjt
α)(z, ξjk)ξjk(x) (3.5)

and ∫ t

0
τα−1Kα(τ )Bu(t − τ) dτ =

∞∑
j=1

rj∑
k=1

p∑
i=1

∫ t

0
gi

jkui(t − τ)τα−1Eα,α(λjτ
α) dτξjk(x), (3.6)

where gi
jk = (pDi gi, ξjk), j = 1, 2, . . ., k = 1, 2, . . . , rj, i = 1, 2, . . . , p and Eα,β(z) := ∑∞

i=0 zi/Γ (αi + β),
Reα > 0, β, z ∈ C is known as the generalized Mittag–Leffler function in two parameters.

Theorem 3.1 For any j = 1, 2, . . ., define p × rj matrices Gj as

Gj =

⎡
⎢⎢⎢⎢⎢⎣

g1
j1 g1

j2 · · · g1
jrj

g2
j1 g2

j2 · · · g2
jrj

...
...

...
...

gp
j1 gp

j2 · · · gp
jrj

⎤
⎥⎥⎥⎥⎥⎦ , (3.7)

where gi
jk = (pDi gi, ξjk), j = 1, 2, . . ., k = 1, 2, . . . , rj, i = 1, 2, . . . , p. Then the suite of actuators

(Di, gi)1�i�p is said to be Γ -strategic if and only if

p � r = max{rj} and rank Gj = rj for j = 1, 2, . . . . (3.8)

Proof. For any z∗ ∈ H1/2(Γ ), denote by (·, ·)H1/2(Γ ) the inner product of space H1/2(Γ ); we then see
that

(pΓ γHu, z∗)H1/2(Γ ) =
∞∑

j=1

rj∑
k=1

p∑
i=1

∫ b

0
τα−1Eα,α(λjτ

α)ui(b − τ) dτgi
jkzjk = 0, t ∈ [0, b], (3.9)

where zjk = (pΓ γ ξjk , z∗)H1/2(Γ ), j = 1, 2, . . ., k = 1, 2, . . . , rj. Further, Lemma 2.1 gives

∞∑
j=1

rj∑
k=1

tα−1Eα,α(λjt
α)gi

jkzjk = 0p := (0, 0, . . . , 0) ∈ Rp for t> 0, i = 1, 2, . . . , p. (3.10)

Then we conclude that the suite of actuators (Di, gi)1�i�p is Γ -strategic if and only if

∞∑
j=1

bα−1Eα,α(λjb
α)Gjzj = 0p ⇒ z∗ = 0, (3.11)
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REGIONAL BOUNDARY CONTROLLABILITY 9 of 18

where zj = (zj1, zj2, . . . , zjrj)
T is a vector in Rrj and j = 1, 2, . . ..

(a) If we assume that p � r = max{rj} and rank Gj < rj for some j = 1, 2, . . ., there exists a non-zero
element z̃ ∈ H1/2(Γ ) with z̃j = (z̃j1, z̃j2, . . . , z̃jrj)

T ∈ Rrj such that

Gjz̃j = 0p. (3.12)

It then follows from Eα,α(λjtα) > 0 (t � 0) that we can find a non-zero vector z̃ satisfying

∞∑
j=1

bα−1Eα,α(λjb
α)Gjz̃j = 0p. (3.13)

This means that the actuators (Di, fi)1�i�p are not Γ -strategic.

(b) However, on the contrary, if the actuators (Di, gi)1�i�p are not Γ -strategic, i.e.,
Im(pΓ γH) |= H1/2(Γ ), then there exists a non-zero element z |= 0n satisfying

(pΓ γHu, z)H1/2(Γ ) = 0 for all u ∈ L2(0, b; Rp). (3.14)

Then we can find a non-zero element zj∗ ∈ Rrj such that

Gj∗zj∗ = 0p. (3.15)

This allows us to complete the conclusion of the theorem. �

4. Regional boundary controllability with minimum energy control

In this section, we explore the possibility of finding a minimum energy control when the system (2.1)
can be steered from a given initial vector z0 to a target function zb on the boundary subregion Γ . The
method used here is an extension of those in El Jai & Pritchard (1988), El Jai (1991), Zerrik et al. (2000,
1999) and Sakawa (1974).

Consider the following minimization problem:

⎧⎨
⎩inf

u
J(u)=

∫ b

0
‖u(t)‖2

Rp dt,

u ∈ Ub = {u ∈ L2(0, b; Rp) : pΓ γ z(b, u)= zb},
(4.1)

where, obviously, Ub is a closed convex set. We then show a direct approach to the solution of the
minimum energy problem (4.1).

Theorem 4.1 If the system (2.1) is regionally approximately boundary controllable on Γ , then, for any
zb ∈ H1/2(Γ ), the minimum energy problem (4.1) has a unique solution given by

u∗(t)= (pΓ γH)∗R−1
Γ (zb − pΓ γ bα−1Kα(b)z0), (4.2)

where RΓ = pΓ γHH∗γ ∗p∗
Γ and H∗ is defined in Eq. (2.9).
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Proof. To begin with, since the solution of (2.1) excited by the control u∗ is given by

z(t, u∗)= tα−1Kα(t)z0 +
∫ t

0
(t − s)α−1Kα(t − s)Bu∗(s) ds, (4.3)

we get that

pΓ γ z(b, u∗)= pΓ γ

[
bα−1Kα(b)z0 +

∫ b

0
(b − s)α−1Kα(b − s)Bu∗(s) ds

]

= pΓ γ bα−1Kα(b)z0 + pΓ γH(pΓ γH)∗R−1
Γ (zb − pΓ γ bα−1Kα(b)z0)

= zb.

Next, we show that if the system (2.1) is regionally approximately boundary controllable on
Γ at time b, then the operator RΓ is coercive. In fact, for any z1 ∈ H1/2(Γ ), there exists a control
u ∈ L2(0, b, Rp) such that

z1 = pΓ γ [bα−1Kα(b)z0 + Hu] (4.4)

and

〈RΓ z1, z1〉H1/2(Γ ) = ‖H∗γ ∗p∗
Γ z1‖2

L2(0,b,Rp)

= ‖B∗(b − ·)α−1K∗
α(b − ·)γ ∗p∗

Γ z1‖2
L2(0,b,Rp)

� ‖z1‖2
H1/2(Γ ).

Moreover, since RΓ ∈L(H1/2(Γ ), H1/2(Γ )), by Theorem 1.1 in Lions (1971), it follows that RΓ is an
isomorphism.

Finally, we prove that u∗ solves the minimum energy problem (4.1). For this purpose, since
pΓ γ z(b, u∗)= zb, for any u ∈ L2(0, b, Rp) with pΓ γ z(b, u)= zb, one has

pΓ γ [z(b, u∗)− z(b, u)] = 0, (4.5)

which follows that

0 = pΓ γ
∫ b

0
(b − s)α−1Kα(b − s)B[u∗(s)− u(s)] ds = pΓ γH[u∗ − u].

Thus, by

J ′(u∗)(u∗ − u)= 2
∫ b

0

〈
u∗(s)− u(s), u∗(s)

〉
ds

= 2
∫ b

0

〈
u∗(s)− u(s), (pΓ γH)∗R−1

Γ (zb − pΓ γKα(b)z0)
〉

ds

= 2
∫ b

0

〈
pΓ γH[u∗(s)− u(s)], R−1

Γ (zb − pΓ γKα(b)z0)
〉

ds

= 0,

it follows that J(u)� J(u∗), i.e., u∗ solves the minimum energy problem (4.1) and the proof is complete.
�
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5. The connection between internal and boundary regional controllability

Based on an intension of the regional controllability of integer-order differential equations developed in
Zerrik et al. (1999, 2000), we here give a transfer on the internal and boundary regional controllability of
fractional-order sub-diffusion equations (2.1) and develop two types of controls, i.e., zone or pointwise.

5.1 Internal and boundary regional controllability

In this part, we present an internal and boundary regional controllability transfer of the problem (2.1).
To this end, suppose that z(b, u) ∈ Z and we first define an operator

T : H1/2(∂Ω)→ H1(Ω) such that γTg = g ∀g ∈ H1/2(∂Ω), (5.1)

which is linear and continuous (Lions, 1988). Let zb ∈ H1/2(Γ ) with the extension p∗
Γ zb ∈ H1/2(∂Ω)

and consider the sets

Ω1 = {Tp∗
Γ zb ∈ Z | zb ∈ H1/2(Γ )} and Ω2 =

⋃
zb∈H1/2(Γ )

Supp Tp∗
Γ zb. (5.2)

For any r> 0 be arbitrary sufficiently small, consider

Dr =
⋃
z∈Γ

B(z, r) and let ωr = Dr ∩Ω2, (5.3)

where B(z, r) is a ball of radius r centred in z.

Theorem 5.1 If the system (2.1) is exactly (respectively, approximately) controllable on ωr, then it is
also exactly (respectively, approximately) boundary controllable on Γ .

Proof. Let zb ∈ H1/2(Γ ) be the target function. By utilizing the trace theorem (Retherford, 1993), there
exists Tp∗

Γ zb ∈ Z with a bounded support such that γ (Tp∗
Γ zb)= p∗

Γ zb. Then

(1) if the system (2.1) is exactly controllable on ωr, for any yb ∈ H1(ωr), there exists a control
u ∈ L2(0, b; Rp) such that

pωr z(b, u)= yb. (5.4)

Then pωr Tp∗
Γ zb ∈ H1(ωr) and there exists a control u ∈ L2(0, b; Rp) such that

pωr z(b, u)= pωr Tp∗
Γ zb and γ pωr z(b, u)= p∗

Γ zb. (5.5)

Thus pΓ γ pωr z(b, u)= zb, i.e., the system (2.1) is exactly boundary controllable on Γ .

(2) if the system (2.1) is approximately controllable on ωr, for and ε > 0 and any yb ∈ H1(ωr), there
exists a control u ∈ L2(0, b; Rp) such that

‖pωr z(b, u)− yb‖H1(ωr) � ε. (5.6)

Then for any ε > 0, there exists a control u ∈ L2(0, b; Rp) such that

‖pωr z(b, u)− pωr Tp∗
Γ zb‖H1(ωr) � ε. (5.7)
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Moreover, by the continuity of the trace mapping γ on H1(ωr), one has

‖γ (pωr z(b, u))− γ (pωr Tp∗
Γ zb)‖H1(∂ωr) � ε, (5.8)

therefore ‖pΓ γ (pωr z(b, u))− zb‖H1(Γ ) � ε, Thus (2.1) is approximately boundary controllable
on Γ and the proof is complete. �

5.2 Regional boundary target control

This part is concerned with the approach for the control which drives the problem (2.1) from z0 to zb on
Γ . Let zb ∈ H1/2(Γ ) with the extension p∗

Γ zb ∈ H1/2(∂Ω). By Theorem 5.1, the problem may be solved
by driving the system (2.1) from z0 to yb ∈ H1(ωr) on ωr.

The following two sets will be used in our discussion:

G = {g ∈ H1(Ω) : g = 0 in Ω\ωr} and E = {e ∈ H1(Ω) : e = 0 in ωr}. (5.9)

5.2.1 Case of zone actuator Let us consider the system (2.1) with a zone actuator (D, f ) where
D ⊆Ω is the support of the actuator and f is its spatial distribution. Then the system can be written in
the form ⎧⎪⎨

⎪⎩
0Dα

t z(x, t)= Az(x, t)+ pDf (x)u(t) in Ω × [0, b],

lim
t→0+ 0I1−α

t z(x, t)= z0(x) in Ω ,

z(x, t)= 0 on ∂Ω × [0, b].

(5.10)

For any g ∈ G, consider the system

⎧⎪⎨
⎪⎩

QtDα
bϕ(x, t)= A∗Qϕ(x, t) in Ω × [0, b],

lim
t→0+

QtI
1−α
b ϕ(x, t)= p∗

ωr
g(x) in Ω ,

ϕ(x, t)= 0 on ∂Ω × [0, b].

(5.11)

where Q is a reflection operator on interval [0, b] such that

Qf (t) := f (b − t). (5.12)

By the argument in Małgorzata (2009), we see that the following properties on operator Q hold:

Q0Iαt f (t)= tI
α
b Qf (t), Q0Dα

t f (t)= tD
α
b Qf (t) (5.13)

and

0Iαt Qf (t)= QtI
α
b f (t), 0Dα

t Qf (t)= QtD
α
b f (t). (5.14)

Then system (5.11) can be rewritten as

⎧⎪⎨
⎪⎩

0Dα
t Qϕ(x, t)= A∗Qϕ(x, t) in Ω × [0, b],

lim
t→0+ 0I1−α

t Q[(b − t)1−αϕ(x, t)] = p∗
ωr

g(x) in Ω ,

ϕ(x, t)= 0 on ∂Ω × [0, b]

(5.15)
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and its unique mild solution is ϕ(x, t)= (b − t)α−1K∗
α(b − t)p∗

ωr
g(x). Moreover, we define the semi-

norm

g ∈ G → ‖g‖2
G =

∫ b

0
(f ,ϕ(·, t))2L2(D) dt (5.16)

on G and obtain the following result.

Lemma 5.1 (5.16) defines a norm on G if the system (5.10) is regionally approximately controllable on
ω at time b.

Proof. For any g ∈ G, if the system (5.10) is regionally approximately controllable on ω, we have

Ker(H∗p∗
ω)= Ker[(b − s)α−1(f , K∗

α(b − s)p∗
ωr

g)L2(D)] = Ker[(f ,ϕ(·, t))L2(D)] = {0}.

It then follows from

‖g‖2
G =

∫ b

0
(f ,ϕ(·, t))2L2(D) dt = 0 ⇔ (f ,ϕ(·, t))L2(D) = 0

that ‖ · ‖G is a norm of space G and the proof is complete. �

Moreover, let u(t)= (f ,ϕ(·, t))L2(D) and decompose the system (5.10) into an autonomous system
and a homogeneous initial condition one:

⎧⎪⎨
⎪⎩

0Dα
t ψ1(x, t)= Aψ1(x, t)+ pDf (x)(f ,ϕ(·, t))L2(D) in Ω × [0, b],

lim
t→0+ 0I1−α

t ψ1(x, t)= 0 in Ω ,

ψ1(x, t)= 0 on ∂Ω × [0, b]

(5.17)

and ⎧⎪⎨
⎪⎩

0Dα
t ψ2(x, t)= Aψ2(x, t) in Ω × [0, b],

lim
t→0+ 0I1−α

t ψ2(x, t)= z0(x) in Ω ,

ψ2(x, t)= 0 on ∂Ω × [0, b].

(5.18)

Let ∧ be the operator ∧ : G → E⊥ given by

∧ g = pωrψ1(·, b) ∀g ∈ G. (5.19)

Then for any zb ∈ H1(ωr), the regional control problem on ωr is equivalent to the resolution of the
equation

∧ g = zb − pωrψ2(·, b) (5.20)

and we have the following result.
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Theorem 5.2 Assume that the system (5.10) is regionally approximately controllable on ωr at time b;
then (5.20) admits a unique solution g ∈ G and the control

u∗(t)= (f ,ϕ(·, t))L2(D) (5.21)

steers the problem (5.10) to zb on ωr. Moreover, u∗ solves the minimum energy problem

inf
u

J(u)=
∫ b

0
‖u(t)‖2

Rp dt. (5.22)

Proof. From Lemma 5.1, if the system (5.10) is regionally approximately controllable on ωr at time b,
then ‖ · ‖G is a norm of space G. Let the completion of G with respect to the norm ‖ · ‖G again by G.

Next, we show that (5.20) admits a unique solution in G. For any g ∈ G, by Eq. (5.19), it follows
that

〈g, ∧g〉 = 〈
g, pωrψ1(·, b)

〉
=

〈
g, pωr

∫ b

0
(b − s)α−1Kα(b − s)pDf (·)(f ,ϕ(·, s))L2(D) ds

〉

=
∫ b

0
‖(f ,ϕ(·, t))L2(D)‖2 ds = ‖g‖2

G.

Hence, it follows from Theorem 1.1 in Lions (1971) that (5.20) admits a unique solution in G.
Let u = u∗ in problem (5.10); then pωr z(b, u∗)= zb. Finally, we show that the u∗ minimize the const

functional (5.22). For any u1 ∈ L2(0, b, Rp) with pωr z(b, u1)= zb, we have

pωr [z(b, u∗)− z(b, u1)] = 0. (5.23)

Then

0 = pωr

∫ b

0
(b − s)α−1Kα(b − s)pDf (x)[u∗(s)− u1(s)] ds.

Moreover, since

J ′(u∗)(u∗ − u1)= 2
∫ b

0
(u∗(s)− u1(s))u

∗(s) ds

= 2
∫ b

0
(u∗(s)− u1(s))(f ,ϕ(·, t))L2(D) ds

= 2
∫ b

0
(pDf [u∗(s)− u1(s)], (b − t)α−1K∗

α(b − t)p∗
ωr

g) ds

= 2

(
pωr

∫ b

0
(b − s)α−1Kα(b − s)pDf (x)[u∗(s)− u1(s)] ds, g

)

= 0,

one has J(u)� J(u∗), i.e., u∗ solves the minimum energy problem (5.22) and the proof is complete. �
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5.2.2 Case of pointwise actuator Consider the system (2.1) with a pointwise internal actuator, which
can be written in the form⎧⎪⎨

⎪⎩
0Dα

t z(x, t)= Az(x, t)+ δ(x − σ)u(t) in Ω × [0, b],

lim
t→0+ 0I1−α

t z(x, t)= z0 in Ω ,

z(x, t)= 0 on ∂Ω × [0, b],

(5.24)

where σ is the actuator support. For any g ∈ G, consider (5.11) and define the semi-norm

g → ‖g‖2
G =

∫ b

0
‖ϕ(σ , s)‖2 ds, (5.25)

which defines a norm on G if (5.24) is regionally approximately controllable.
Similar to the argument in Section 5.2.1, let u(t)= ϕ(σ , t) and we consider the following system:

⎧⎪⎨
⎪⎩

0Dα
t ψ1(x, t)= Aψ1(x, t)+ δ(x − σ)ϕ(σ , t) in Ω × [0, b],

lim
t→0+ 0I1−α

t ψ1(x, t)= 0 in Ω ,

ψ1(x, t)= 0 on ∂Ω × [0, b],

(5.26)

and ⎧⎪⎨
⎪⎩

0Dα
t ψ2(x, t)= Aψ2(x, t) in Ω × [0, b],

lim
t→0+ 0I1−α

t ψ2(x, t)= z0(x) in Ω ,

ψ2(x, t)= 0 on ∂Ω × [0, b].

(5.27)

Then the regional control problem on ωr is equivalent to the resolution of the equation

∧ g = zb − pωrψ2(·, b) (5.28)

and we see the following result.

Theorem 5.3 Assume that the system (5.24) is regionally approximately controllable on ωr at time b;
then (5.28) admits a unique solution g ∈ G and the control

u∗(t)= ϕ(σ , t) (5.29)

steers (5.10) to zb on ωr. Moreover, this control minimizes the cost functional (5.22).

5.2.3 Simulation The resolution of the regional boundary control problem may be seen via the fol-
lowing simplified steps (see the case of pointwise actuator for an example).

(1) Initial data Ω , Γ , zb and the actuator;

(2) Solve the problem (5.28) (→ g);

(3) Solve the problem (5.11) (→ ϕ(σ , t));

(4) Apply the control u∗(t)= ϕ(σ , t).
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Fig. 1. Final reached state and target function on Γ ⊆ ∂Ω at time t = 5.

Fig. 2. Control input function, which is calculated by the formula (5.29).
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For example, consider the system (2.16) and let Ω = [0, 1] × [0, 1], Γ = {0} × [1/4, 3/4], b = 5.
For the target function zb on Γ ⊆ ∂Ω , we assume that

zb(0, y)=

⎧⎪⎨
⎪⎩

0, 0 � y< 1/4;

0.017 + 4(y − 1/4)2(y − 3/4)2, 1/4 � y � 3/4;

0, 3/4< y � 1

(5.30)

and the actuator is supposed to be located in D = {0} × {0.5} ⊆Ω .
Figure 1 shows how the final reached state is very close to the target function on Γ ⊆ ∂Ω at time

t = 5 when α= 0.4, 0.6, 0.8, 1.0. This also implies that time fractional diffusion systems can offer better
performance compared with those using integer-order distributed parameter systems. Moreover, when
α = 0.4, the corresponding control input, which is calculated by the formula (5.29), is presented in
Fig. 2.

6. Conclusions

In this paper, the regional boundary controllability of the Riemann–Liouville time fractional diffusion
systems of order α ∈ (0, 1] is discussed, which is motivated by many realistic situation encountered in
various applications. The results here provide some insights into the qualitative analysis of the design of
fractional-order diffusion equations, which can also be extended to complex fractional-order distributed
parameter dynamic systems. Various open questions are still under consideration. The problem of con-
strained control as well as the case of fractional-order distributed parameter dynamic systems with more
complicated regional sensing and actuation configurations are of great interest. For more information
on the potential topics related to fractional-order distributed parameter systems, we refer the readers to
Ge et al. (2015a) and the references therein.
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