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Abstract: In this study, the authors attempt to explore the boundary feedback stabilisation for an unstable heat pro-
cess described by fractional-order partial differential equation (PDE), where the first-order time derivative of normal
reaction–diffusion equation is replaced by a Caputo time fractional derivative of order α ∈ (0, 1]. By designing an invert-
ible coordinate transformation, the system under consideration is converted into a Mittag–Leffler stability linear system
and the boundary stabilisation problem is transformed into a problem of solving a linear hyperbolic PDE. It is worth
mentioning that with the help of this invertible coordinate transformation, they can explicitly obtain the closed-loop solu-
tions of the original problem. The output feedback problem with both anti-collocated and collocated actuator/sensor pairs
in one-dimensional domain is also presented. A numerical example is given to test the effectiveness of the authors’
results.

1 Introduction

The heat process, also known as reaction–diffusion process, is
used widely in science and engineering and a great deal of
contributions have been given to them [1–6]. It is well known
that the boundary stabilisation problem of integer-order unsta-
ble heat system is solved in [7–12], where the boundary control
law, known as backstepping control law, is in the form of an
integral operator with a known, continuous kernel function. How-
ever, to the best of our knowledge, there are very few results
concerning the boundary feedback stabilisation of an unstable
time fractional-order anomalous diffusion system. Based on the
numerical simulation techniques, the boundary stabilisation of a
one-dimensional (1D) fractional diffusion-wave equation was stud-
ied in [13, 14], the boundary control of a Caputo fractional
wave equation via a fractional-order boundary controller was
presented.

Moreover, as cited in [15], the heat conduction process in 1D
system did not obey the Fourier law and a connection between
anomalous heat conduction and anomalous diffusion in 1D sys-
tems was established. It is confirmed that many real-world life
systems can be well characterised by utilising the notions of frac-
tional order [16, 17], this is the reason why the fractional-order
models are superior in comparison with the integer-order mod-
els. For the anomalous diffusion process in real world, as we all
know, it is essentially distributed and the continuous time ran-
dom walks (CTRWs) can be regarded as a useful tool to describe
this phenomenon [18–21]. For example, when the particles are
assumed to jump at fixed time intervals with a incorporating
waiting times, the particles then undergo a sub-diffusion process
and the time fractional-order anomalous diffusion system can be
used to efficiently characterise them. Besides, we refer the read-
ers to the monographs [22–24] and the references therein for more
basic knowledge on fractional calculus and fractional-order partial
differential equation (PDE).

Motivated by the arguments above, in this paper, we consider
the following abstract fractional reaction–diffusion system with a
destabilising linear term on the right-hand side

C
0 Dα

t z(x, t) = zxx(x, t) + a(x)z(x, t) in (0, b) × (0, ∞) (1)

with the boundary conditions

z(0, t) = 0, z(b, t) = u(t), t ≥ 0 or

zx(0, t) = 0, zx(b, t) = u(t), t ≥ 0, (2)

where 0 < α ≤ 1, a ∈ C1[0, b], u(t) is the control input, C
0 Dα

t
and 0Iα

t denote the Caputo time fractional-order derivative and
Riemann–Liouville time fractional-order integral, respectively,
given by [22, 23]

C
0 Dα

t z(x, t) =

⎧⎪⎨
⎪⎩

∂

∂t
z(x, t), α = 1,

0I 1−α
t

∂

∂t
z(x, t), 0 < α < 1

and

0Iα
t z(x, t) = 1

�(α)

∫ t

0
(t − s)α−1z(x, s) ds, α > 0.

The applications of (1) are rich in real world. In [25], (1) is usually
introduced to better characterise those reaction–diffusion processes
in the spatially inhomogeneous environment. For example, the
reaction–diffusion processes in dispersive transport media [26], the
flow through porous media with a source [27], or other diffusion-
assisted dynamical processes occurring in disordered media [28].
Here (1) can be viewed as a model of a thin rod with not only the
heat loss to a surrounding medium, but also the heat generation
inside the rod in a spatially inhomogeneous environment. For more
information on fractional reaction–diffusion equations, we refer the
readers to [29–32] and the reference therein.

When α = 1, the problem (1) is reduced to the classical integer-
order unstable heat equation. The boundary feedback control law
with any given continuously differentiable function a was stud-
ied in [7, 8] and its backstepping observers was investigated in
[33]. For more basic theory on boundary feedback stabilisation and
adaptive control, we refer the reader to the monographs [9, 10].
This paper is devoted to discussing the boundary feedback control
law for the problem (1) and its application in observer design in
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two setups: the anti-collocated setup, when the sensor and actua-
tor are placed at the opposite ends and the collocated setup, when
the sensor and actuator are placed at the same end. We hope that
the results here could provide some insights into the qualitative
analysis of the design of fractional order controller and observer.

This paper is proceed as follows. In the following section,
the boundary feedback stabilisation of an unstable heat equation
described by a time fractional-order anomalous diffusion system
with Dirichlet boundary conditions is presented and the system
under consideration with Neumann boundary conditions is showed
in Section 3. In Section 4, the observers for collocated and anti-
collocated sensor/actuator pairs are designed. A numerical example
is given to illustrate the effectiveness of our results.

2 Dirichlet boundary conditions

In what follows, we denote by L2(0, b) the usual Lebesgue inte-
grable functions on (0, b) with the norm ‖ · ‖ and H 1(0, b) denotes
the usual Sobolev space with the norm

‖z‖H 1(0,b) = ‖z‖ + ‖zx‖, z ∈ H 1(0, b).

Consider the following Dirichlet boundary value system⎧⎨
⎩

C
0 Dα

t z(x, t) = zxx(x, t) + a(x)z(x, t) in (0, b) × (0, ∞),

z(0, t) = z(b, t) = 0 in (0, ∞),
(3)

by Matignon [34], the stability of the system (3) is guaranteed
if and only if the roots of some polynomial [the eigenvalues of
∂2/∂x2 + a(x) or the poles of its corresponding transfer function]
lie outside the closed angular sector

∣∣∣∣arg

(
spec

(
∂2

∂x2
+ a(x)

))∣∣∣∣ ≤ απ

2
. (4)

Moreover, since the eigenvalues of operator ∂2/∂x2 are {λn}n≥1
and satisfy

0 > λ1 > λ2 > · · · > λn > · · · , lim
n→∞ λn = −∞,

we conclude that the system (3) is unstable if a is positive and large
enough. Moreover, since the term az is the source of the instability,
the purpose here is to design a boundary feedback law and use the
backstepping method to ‘eliminate’ it for any a ∈ C1[0, b].

Consider the following coordinate transformation

ω(x, t) = z(x, t) +
∫ x

0
k(x, y)z(y, t) dy, (5)

along with the Dirichlet boundary feedback control

z(b, t) = −
∫b

0
k(b, y)z(y, t) dy, (6)

the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 Dα

t z(x, t) = zxx(x, t) + a(x)z(x, t) in (0, b) × (0, ∞),

z(0, t) = 0 in (0, ∞),

z(x, 0) = z0(x) in (0, b)

(7)

can be transformed into the target system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 Dα

t ω(x, t) = ωxx(x, t) − λω(x, t) in (0, b) × (0, ∞),

ω(0, t) = ω(b, t) = 0 in (0, ∞),

ω(x, 0) = ω0(x) in (0, b),

(8)

where ω0(x) = z0(x) + ∫x
0 k(x, y)z0(y) dy and λ > 0 is a positive

constant depending on the control input u to describe the desired

convergence speed. To state our results, the following compatible
conditions for the initial data are introduced

z0(0) = 0, z0(b) = −
∫b

0
k(b, y)z0(y) dy. (9)

By utilising the Dirichlet boundary feedback law (6), we have

ω(b, t) = z(b, t) +
∫b

0
k(b, y)z(y, t) dy = 0 (10)

and from the boundary condition of (7), we deduce that ω(0, t) = 0.
Next, before we try to find out what conditions k(x, y) has to

satisfy, let us introduce the following notations

kx(x, x) = ∂

∂x
k(x, y)|y=x,

ky(x, x) = ∂

∂y
k(x, y)|y=x,

d

dx
k(x, x) = kx(x, x) + ky(x, x).

The α-order derivative of the transformation (5) with respect to
time is

C
0 Dα

t ω(x, t) = C
0 Dα

t z(x, t) +
∫ x

0
k(x, y)C

0 Dα
t z(y, t) dy

= C
0 Dα

t z(x, t) +
∫ x

0
k(x, y)

[
zyy(y, t) + a(y)z(y, t)

]
dy

= C
0 Dα

t z(x, t) + k(x, x)zx(x, t) − k(x, 0)zx(0, t)

− ky(x, x)z(x, t) + ky(x, 0)z(0, t)

+
∫ x

0

[
kyy(x, y)z(y, t) + k(x, y)a(y)z(y, t)

]
dy

and differentiating the transformation (5) on x gives

ωx(x, t) = zx(x, t) + k(x, x)z(x, t) +
∫ x

0
kx(x, y)z(y, t) dy,

ωxx(x, t) = zxx(x, t) + d

dx
k(x, x)z(x, t) + k(x, x)zx(x, t)

+ kx(x, x)z(x, t) +
∫ x

0
kxx(x, y)z(y, t) dy.

Then we get that

C
0 Dα

t ω(x, t) − ωxx(x, t) + λω(x, t)

= C
0 Dα

t z(x, t) + k(x, x)zx(x, t) − k(x, 0)zx(0, t) − ky(x, x)z(x, t)

+ ky(x, 0)z(0, t) +
∫ x

0

[
kyy(x, y)z(y, t) + k(x, y)a(y)z(y, t)

]
dy

− zxx(x, t) − d

dx
k(x, x)z(x, t) − k(x, x)zx(x, t) − kx(x, x)z(x, t)

−
∫ x

0
kxx(x, y)z(y, t) dy + λ

(
z(x, t) +

∫ x

0
k(x, y)z(y, t) dy

)

=
(

a(x) − kx(x, x) − ky(x, x) − d

dx
k(x, x) + λ

)
z(x, t)

+ ky(x, 0)z(0, t) − k(x, 0)zx(0, t)

+
∫ x

0

[
kyy(x, y) − kxx(x, y) + (a(y) + λ)k(x, y)

]
z(y, t) dy.

For the right-hand side to be zero for all z, it follows from the
Dirichlet condition z(0, t) = 0 that the following three conditions
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have to be satisfied
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kxx(x, y) − kyy(x, y) = (a(y) + λ)k(x, y), 0 ≤ y ≤ x ≤ b,

k(x, 0) = 0, 0 ≤ x ≤ b,

kx(x, x) + ky(x, x) + d

dx
k(x, x) = a(x) + λ, 0 ≤ x ≤ b.

(11)
In fact, these three conditions of the system (11) are compatible
and form a well-posed PDE of hyperbolic type. Besides, based on
the argument in [7] or Chapter 4 in [8], we see that

Lemma 1 [7, 8]: The problem (11) has a unique solution which
is twice continuously differentiable in 0 ≤ y ≤ x ≤ b provided that
a ∈ C1[0, b].

Lemma 2 [7, 8]: If k(x, y) is the solution of problem (11) and
define the linear bounded operator K : H i(0, b) → H i(0, b)(i =
0, 1, 2) by

ω(x, t) = (Kz)(x) := z(x, t) +
∫ x

0
k(x, y)z(y, t) dy. (12)

Then we get that

i. K has a linear bounded inverse K−1: H i(0, b) → H i(0, b) (i =
0, 1, 2), and
ii. K converts the system (1) with the Dirichlet boundary feedback
control (6) into the target system (8).

Then we are ready to state the following result:

Theorem 1: Suppose that a ∈ C1[0, b], λ > 0 is any positive con-
stant, ω(·, t) is a continuous and differentiable function on [0, ∞)
and the Laplace transform of ω(·, t)2 exists.

i. For arbitrary initial value z0 ∈ L2(0, b) with the compatible
conditions (9), given t ≥ 0, (1) with Dirichlet boundary feed-
back control (6) has a unique solution satisfying the following L2

Mittag–Leffler stability estimate

‖z(·, t)‖2 ≤ c1‖z0‖2Eα(−2λtα), t ∈ [0, ∞) (13)

for some positive constant c1, where

Eα(t) :=
∞∑

i=0

ti

�(αi + 1)
, Re α > 0, t ∈ R

is known as the Mittag–Leffler function in one parameter.
ii. For arbitrary initial value z0 ∈ H 1(0, b) with the compatible
conditions (9), given t ≥ 0, then (1) with Dirichlet boundary feed-
back control (6) admits a unique solution satisfying the following
H 1 Mittag–Leffler stability estimate

‖z(·, t)‖2
H 1(0,b)

≤ c2‖z0‖2
H 1(0,b)

Eα(−2λtα), t ∈ [0, ∞) (14)

for some positive constant c2.

The following lemma plays a central role in the proof of
Theorem 1.

Lemma 3 [35]: Suppose that x : [0, ∞) → R is a continuous and
differentiable function, Then, for any given t ≥ 0, we have

1

2
C
0 Dα

t x2(t) ≤ x(t)C
0 Dα

t x(t), ∀α ∈ (0, 1]. (15)

Proof of Theorem 1: First, we see that the problem (1) with Dirich-
let boundary condition (6) can be transformed to the target system

(8) via the isomorphism (5) and both systems (1) and (8) are well
defined. Moreover, by Lemma 2, there exists a positive constant
ν1 such that

‖z(·, t)‖ ≤ ν1‖ω(·, t)‖, ‖ω0‖ ≤ ν1‖z0‖ (16)

and there exists a positive constant ν2 such that

‖z(·, t)‖H 1(0,b) ≤ ν2‖ω(·, t)‖H 1(0,b), ‖ω0‖H 1(0,b) ≤ ν2‖z0‖H 1(0,b).

(17)

i. Let W (t) = 1/2
∫b

0 ω(x, t)2 dx. Since ω(·, t) is a continuous and
differentiable function on [0, ∞), by Lemma 3, we have

C
0 Dα

t W (t) = 1

2

∫b

0

C
0 Dα

t ω(x, t)2 dx ≤
∫b

0
ω(x, t)C

0 Dα
t ω(x, t) dx

=
∫b

0
ω(x, t)ωxx(x, t) dx − λ

∫b

0
ω(x, t)2 dx

= −
∫b

0
ωx(x, t)2 dx − λ

∫b

0
ω(x, t)2 dx

≤ −2λW (t).

Similar to the arguments in [36, 37], let

M (t) = −2λW (t) − C
0 Dα

t W (t). (18)

Since the Laplace transform of ω(·, t)2 exists and ω(x, t) is the
solution of system (8), it follows that both C

0 Dα
t W (t) and M (t) are

continuous and differentiable on [0, ∞) and their Laplace trans-
forms on t exist. Moreover, we see that M (t) is a non-negative
function on [0, ∞).

Taking the Laplace transform on both sides of (18) gives

M̂ (s) = −2λŴ (s) − sαŴ (s) + sα−1W (0), (19)

where W (0) = 1/2
∫b

0 ω(x, 0)2 dx = 1/2
∫b

0 ω0(x)2 dx ≥ 0

Ŵ (s) :=
∫∞

0
e−stW (t) dt and M̂ (s) :=

∫∞

0
e−stM (t) dt (20)

are, respectively, the Laplace transform of the functions W (t) and
M (t). Hence, we see that

Ŵ (s) = sα−1W (0) − M̂ (s)

sα + 2λ
. (21)

Since M (t) is a non-negative continuous and differentiable function
on [0, ∞), and its Laplace transform exits, given t ≥ 0, it follows
from the uniqueness and existence theorem [22], and the inverse
Laplace transform that the unique solution of (18) is

W (t) = Eα(−2λtα)W (0)

− M (t) ∗
[
tα−1Eα,α(−2λtα)

]
, t ≥ 0, (22)

where ∗ denotes the convolution operator. Moreover, since tα−1

and Eα,α(−2λtα) are non-negative function, it follows that

W (t) ≤ Eα(−2λtα)W (0), t ≥ 0. (23)

This, together with (16), implies that

‖z(·, t)‖2 ≤ ν1‖ω(·, t)‖2 ≤ ν1‖ω0‖2Eα(−2λtα)

≤ ν2
1‖z0‖2Eα(−2λtα), t ∈ [0, ∞). (24)
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ii. Define V (t) = ∫b
0 ωx(x, t)2 dx. Multiplying the first equation of

(8) by ωxx and integrating from 0 to b by parts we obtain

∫b

0
ωxx(x, t)C

0 Dα
t ω(x, t) dx =

∫b

0
ωxx(x, t)2 dx + λV (t).

Moreover, since ω(0, t) = ω(b, t) = 0 for all t ≥ 0, we see that
C
0 Dα

t ω(0, t) = C
0 Dα

t ω(b, t) = 0 for all t ≥ 0. Together with w ∈
H 1(0, b), we deduce that

∫b

0
ωxx(x, t)C

0 Dα
t ω(x, t) dx =

[
ωx(x, t)C

0 Dα
t ω(x, t)

]∣∣∣b
x=0

−
∫b

0
ωx(x, t)C

0 Dα
t ωx(x, t) dx

= −
∫b

0
ωx(x, t)C

0 Dα
t ωx(x, t) dx

and

C
0 Dα

t V (t) =
∫b

0

C
0 Dα

t ωx(x, t)2 dx

≤ 2
∫b

0
ωx(x, t)C

0 Dα
t ωx(x, t) dx ≤ −2λV (t).

Similarly, we see that

V (t) ≤ Eα(−2λtα)V (0), t ≥ 0 (25)

and the proof of Theorem 1 is completed.

�

3 Neumann boundary conditions

In this section, we continue the discussion of boundary feedback
control of the following time fractional-order anomalous diffusion
problem

⎧⎨
⎩

C
0 Dα

t z(x, t) = zxx(x, t) + a(x)z(x, t) in (0, b) × (0, ∞),

zx(0, t) = zx(b, t) = 0 in (0, ∞)
(26)

with the Neumann boundary feedback law

zx(b, t) = −k(b, b)z(b, t) −
∫b

0
kx(b, y)z(y, t) dy in (0, ∞). (27)

Similarly, the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 Dα

t z(x, t) = zxx(x, t) + a(x)z(x, t) in (0, b) × (0, ∞),

zx(0, t) = 0 in (0, ∞),

z(x, 0) = z0(x) in (0, b)

(28)

can be converted into the target system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 Dα

t ω(x, t) = ωxx(x, t) − λω(x, t) in (0, b) × (0, ∞),

ωx(0, t) = ωx(b, t) = 0 in (0, ∞),

ω(x, 0) = ω0(x) in (0, b),

(29)

where λ > 0 is a positive constant, ω0(x) = z0(x) + ∫x
0 k(x, y)z0(y) dy

and k(x, y) satisfies the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kxx(x, y) − kyy(x, y) = (a(y) + λ)k(x, y), 0 ≤ y ≤ x ≤ b,

ky(x, 0) = 0, 0 ≤ x ≤ b,

kx(x, x) + ky(x, x) + d

dx
k(x, x) = a(x) + λ, 0 ≤ x ≤ b.

(30)

To state our results, the following compatible conditions for the
initial data are introduced

z0
x (0) = 0, z0

x (b) = −k(b, b)z0(b) −
∫b

0
kx(b, y)z0(y) dy. (31)

By utilising the Neumann boundary feedback law (27), we have

ωx(b, t) = zx(b, t) + k(b, b)z(b, t) +
∫b

0
kx(b, y)z(y, t) dy = 0 (32)

and from the boundary condition of (28), we deduce that
ωx(0, t) = 0.

Next, before to show our main results in this part, we state the
following lemma first.

Lemma 4 [7]: If a ∈ C1[0, b], then the problem (30) has a unique
solution which is twice continuously differentiable in 0 ≤ y ≤
x ≤ b.

Theorem 2: Suppose that a ∈ C1[0, b], λ > 0 is any positive con-
stant, ω(·, t) is a continuous and differentiable function on [0, ∞),
and the Laplace transform of ω(·, t)2 exists.

i. For arbitrary initial value z0 ∈ L2(0, b) with the compatible
conditions (31), given t ≥ 0, then (26) with Neumann boundary
feedback law (27) admits a unique solution satisfying the following
L2 Mittag–Leffler stability estimate

‖z(·, t)‖2 ≤ c3‖z0‖2Eα(−2λtα), t ∈ [0, ∞) (33)

for some positive constant c3.
ii. For arbitrary initial value z0 ∈ H 1(0, b) with the compatible
conditions (31), given t ≥ 0, then (26) with Neumann boundary
feedback law (27) has a unique solution satisfying the following
H 1 Mittag–Leffler stability estimate

‖z(·, t)‖2
H 1(0,b)

≤ c4‖z0‖2
H 1(0,b)

Eα(−2λtα), t ∈ [0, ∞) (34)

for some positive constant c4.

Proof: Very similar to the proof of Theorem 1. �

4 Observer design for anti-collocated and
collocated sensor/actuator pairs

In this section, we try to discuss the observer design with the avail-
able measurement being at the opposite/same end of the actuation
in two setups, where the boundary conditions is Dirichlet boundary
conditions or Neumann boundary conditions.

4.1 Observer design for anti-collocated sensor/actuator
pairs

4.1.1 Dirichlet boundary conditions: We propose the fol-
lowing observer for the system (1) with the available measurement
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being at the opposite end of the actuation and the Dirichlet bound-
ary conditions under the assumption that the observer error at x = 0
is zero

⎧⎨
⎩

C
0 Dα

t ẑ(x, t) = ẑxx(x, t) + a(x)ẑ(x, t) + ρ(x)
[
z(0, t) − ẑ(0, t)

]
,

ẑ(0, t) = 0, ẑ(b, t) = u(t).
(35)

Here ρ(x) is the output injection function to be designed. It then
follows that the observer error z̃(x, t) = z(x, t) − ẑ(x, t) satisfies

⎧⎨
⎩

C
0 Dα

t z̃(x, t) = z̃xx(x, t) + a(x)z̃(x, t) − ρ(x)z̃(0, t),

z̃(0, t) = 0, z̃(b, t) = 0.
(36)

Consider the following invertible coordinate transformation

ω̃(x, t) = z̃(x, t) +
∫ x

0
k(x, y)z̃(y, t) dy, (37)

together with the Dirichlet boundary feedback controller

z̃(b, t) = −
∫b

0
k(b, y)z̃(y, t) dy, (38)

the system (36) is converted into the following system

⎧⎨
⎩

C
0 Dα

t ω̃(x, t) = ω̃xx(x, t) − λω̃(x, t) + [
ky(x, 0) − ρ(x)

]
ω̃(0, t),

ω̃(0, t) = ω̃(b, t) = 0 .
(39)

where λ > 0 is a constant and is used to set the desired observer
convergence speed. Moreover, the function k(·, ·) described by sys-
tem (11) satisfies Lemma 1. Compared with the system (8), it
follows that the observer gains should be chosen as

ρ(x) = ky(x, 0). (40)

Moreover, by Lemma 1, if a ∈ C1[0, b], the function k(x, y) exists
uniquely in 0 ≤ y ≤ x ≤ b and the observer gains can be obtain
from (40). The results can be formulated as follows.

Theorem 3: Let k(x, y) be the solution of the system (11) and ρ(x)
be given by (40). Suppose that all conditions in Theorem 1 are sat-
isfied. Then for any z̃0 ∈ L2(0, b) or z̃0 ∈ H 1(0, b), the system (36)
admits a unique solution z̃(x, t) satisfying the L2 Mittag–Leffler sta-
bility estimate (13) in L2(0, 1) or the H 1 Mittag–Leffler stability
estimate (14) in H 1(0, 1), respectively.

4.1.2 Neumann boundary conditions: Consider the fol-
lowing observer for the system (26) with the available measure-
ment being at the opposite end of the actuation and the Neumann
boundary conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 Dα

t ẑ(x, t) = ẑxx(x, t) + a(x)ẑ(x, t) + ρ(x)
[
z(0, t) − ẑ(0, t)

]
,

ẑx(0, t) = c
[
z(0, t) − ẑ(0, t)

]
,

ẑx(b, t) = u(t).
(41)

Here ρ(x) and c are output injection functions (c ∈ R is a constant)
to be designed. Then the observer error z̃(x, t) = z(x, t) − ẑ(x, t)

satisfies
⎧⎨
⎩

C
0 Dα

t z̃(x, t) = z̃xx(x, t) + a(x)z̃(x, t) − ρ(x)z̃(0, t),

z̃x(0, t) = −cz̃(0, t), z̃x(b, t) = 0
(42)

and the system (42) can be transformed into

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 Dα

t ω̃(x, t) = ω̃xx(x, t) − λω̃(x, t) + [
ky(x, 0) − ρ(x)

]
ω̃(0, t),

ω̃x(0, t) = [k(0, 0) − c] ω̃(0, t),

ω̃x(b, t) = 0
(43)

by using the following invertible coordinate transformation

ω̃(x, t) = z̃(x, t) +
∫ x

0
k(x, y)z̃(y, t) dy (44)

and the Neumann boundary feedback controller

z̃x(b, t) = −k(b, b)z̃(b, t) −
∫b

0
kx(b, y)z̃(y, t) dy, t ∈ (0, ∞),

(45)
where λ > 0 is a constant, ω̃0(x) = z̃0(x) + ∫x

0 k(x, y)z̃0(y) dy and
k(·, ·) satisfies (30).

Corresponding to the system (29), we obtain that the observer
gains should be chosen as

ρ(x) = ky(x, 0), c = k(0, 0). (46)

Moreover, it follows from Lemma 4 that if a ∈ C1[0, b], the func-
tion k(x, y) exists uniquely in 0 ≤ y ≤ x ≤ b and we conclude
that:

Theorem 4: Let k(x, y) be the solution of (30) and if ρ(x), c be
given by (46). Suppose that all conditions in Theorem 2 hold. Then
for z̃0 ∈ L2(0, b) or z̃0 ∈ H 1(0, b), the system (42) admits a unique
solution z̃(x, t) satisfying the L2 Mittag–Leffler stability estimate
(33) in L2(0, 1) or the H 1 Mittag–Leffler stability estimate (34) in
H 1(0, 1), respectively.

4.2 Observer design for collocated sensor/actuator
pairs

4.2.1 Dirichlet boundary conditions: Consider the follow-
ing observer for the system (1) with the available measurement
being at the same end of the actuation and the Dirichlet boundary
conditions under the assumption that the observer error at x = b is
zero
⎧⎨
⎩

C
0 Dα

t ẑ(x, t) = ẑxx(x, t) + a(x)ẑ(x, t) + ρ(x)
[
z(b, t) − ẑ(b, t)

]
,

ẑ(0, t) = 0, ẑ(b, t) = u(t),
(47)

where ρ(x) is a output injection function to be designed. The differ-
ence with the anti-collocated case is that the gain ρ(x) is introduced
in the other boundary condition.

It then follows that the observer error z̃(x, t) = z(x, t) − ẑ(x, t)
satisfies

⎧⎨
⎩

C
0 Dα

t z̃(x, t) = z̃xx(x, t) + a(x)z̃(x, t) − ρ(x)z̃(b, t),

z̃(0, t) = 0, z̃(b, t) = 0.
(48)

Try to find the transformation

z̃(x, t) = ω̃(x, t) −
∫b

x
k(x, y)ω̃(y, t) dy (49)
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that convert (48) into the following target system
⎧⎨
⎩

C
0 Dα

t ω̃(x, t) = ω̃xx(x, t) − λω̃(x, t),

ω̃(0, t) = ω̃(b, t) = 0
. (50)

By substituting (49) into (48) and utilise (50), we see that k(x, y)
must satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kxx(x, y) − kyy(x, y) = (a(y) + λ)k(x, y), 0 ≤ y ≤ x ≤ b,

k(x, b) = 0, 0 ≤ x ≤ b,

−kx(x, x) − ky(x, x) − d

dx
k(x, x) = a(x) + λ, 0 ≤ x ≤ b

(51)
that yield
⎧⎨
⎩

C
0 Dα

t ω̃(x, t) = ω̃xx(x, t) − λω̃(x, t) + (ky(x, b) − ρ(x))ω̃(x, b),

ω̃(0, t) = ω̃(b, t) = 0,
(52)

where λ > 0 is a positive constant. Then the observer gains should
be chosen as

ρ(x) = ky(x, b). (53)

Moreover, similar to the argument in the proof of Lemma 2.2 in
[7], we see that if a ∈ C1[0, b], the function k(x, y) exists uniquely
in 0 ≤ y ≤ x ≤ b. Choose the observer gains as (53), we see that

Theorem 5: Let k(x, y) be the solution of (30) and ρ(x) be given by
(53). Suppose that all conditions in Theorem 1 hold. Then for any
z̃0 ∈ L2(0, b) or z̃0 ∈ H 1(0, b), the system (48) admits a unique
solution z̃(x, t) satisfying the L2 Mittag–Leffler stability estimate
(13) in L2(0, 1) or the H 1 Mittag–Leffler stability estimate (14) in
H 1(0, 1), respectively.

4.2.2 Neumann boundary conditions: Consider the fol-
lowing observer for the system (26) with the available measure-
ment of our system being at the same end with actuation and the
Neumann boundary conditions
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 Dα

t ẑ(x, t) = ẑxx(x, t) + a(x)ẑ(x, t) + ρ(x)
[
z(b, t) − ẑ(b, t)

]
,

ẑx(0, t) = 0,

ẑx(b, t) = c
[
z(b, t) − ẑ(b, t)

] + u(t).
(54)

Here ρ(x) and c are output injection functions (c ∈ R is a constant)
to be designed. The difference with the collocated case is that
the gain c is introduced in the other boundary condition. Then
it follows that the observer error z̃(x, t) = z(x, t) − ẑ(x, t) satisfies

⎧⎨
⎩

C
0 Dα

t z̃(x, t) = z̃xx(x, t) + a(x)z̃(x, t) − ρ(x)z̃(b, t),

z̃x(0, t) = 0, z̃x(b, t) = −cz̃(b, t).
(55)

We are looking for the transformation

z̃(x, t) = ω̃(x, t) −
∫b

x
k(x, y)ω̃(y, t) dy, (56)

that maps the system (55) into the Mittag–Leffler stability target
system ⎧⎨

⎩
C
0 Dα

t ω̃(x, t) = ω̃xx(x, t) − λω̃(x, t),

ω̃x(0, t) = ω̃x(b, t) = 0.
(57)

By substituting (56) into (55) and utilise (57), we see that k(x, y)
must satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kxx(x, y) − kyy(x, y) = (a(y) + λ)k(x, y), 0 ≤ y ≤ x ≤ b,

k(x, b) = 0, 0 ≤ x ≤ b,

−kx(x, x) − ky(x, x) − d

dx
k(x, x) = a(x) + λ, 0 ≤ x ≤ b

(58)
that yield

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 Dα

t ω̃(x, t) = ω̃xx(x, t) − λω̃(x, t) + [−ky(x, b) − ρ(x)
]
ω̃(b, t),

ω̃x(0, t) = 0,

ω̃x(b, t) = [−k(b, b) − c] ω̃(b, t),
(59)

where λ > 0 is a positive constant. Then the observer gains should
be chosen as

ρ(x) = ky(x, b), c = −k(b, b). (60)

Similarly, if a ∈ C1[0, b], we get that the function k(x, y) exists
uniquely in 0 ≤ y ≤ x ≤ b. Choose the observer gains as (60), we
obtain that

a b

Fig. 1 Solution of the system (1) when α = 0.7

a Without control
b Approximation of controlled system
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Theorem 6: Let k(x, y) be the solution of (51) and if ρ(x), c be
given by (60). Suppose that all conditions in Theorem 2 are satis-
fied. Then for any z̃0 ∈ L2(0, b) or z̃0 ∈ H 1(0, b), the system (55)
has a unique solution z̃(x, t) satisfying the L2 Mittag–Leffler sta-
bility estimate (33) in L2(0, 1) or the H 1 Mittag–Leffler stability
estimate (34) in H 1(0, 1), respectively.

5 Numerical simulation

The aim of this section is to carry out a simulate example to test
the effectiveness of our theoretical results. For simplicity, here we
consider the Dirichlet boundary condition cases.

In system (1), we take a(x) = 10, b = 1. Let the initial data be

z0(x) = 9x(1 − x), x ∈ (0, 1). (61)

Fig. 1a shows that the system (1) is unstable without control [i.e.
z(1, t) = u(t) ≡ 0] when α = 0.7.

Next, we let λ = 1 in the kernel function. According to [38] (see
also [33]), it follows that

k(x, y) = −11y
I1

(√
11(x2 − y2)

)
√

11(x2 − y2)
, (62)

where I1 is the modified Bessel functions of order one. By using
the coordinate transformation (5), Fig. 1b shows that system (1)
converges smoothly. The results show that our method yields sat-
isfactory performance in dealing with the unstable heat process
described by the time fractional-order anomalous diffusion system.

6 Conclusion

In this paper, we present explicitly the closed-loop solutions to the
boundary feedback stabilisation problem for the time fractional-
order anomalous diffusion system. We hope that the results
obtained here could provide some insights into the qualitative anal-
ysis of the design of fractional order controller and observer. It
should be pointed out that the described method is not limited if
the existence of the explicit solution of system of kernel function
k(x, y) can be solved. For example, consider the following more
general time fractional-order anomalous diffusion system

C
0 Dα

t z(x, t) = zxx(x, t) + a(x, t)z(x, t) in (0, b) × (0, ∞) (63)

with the boundary conditions z(0, t) = 0, z(b, t) = u(t), t ≥ 0,
where the function a depends on t. By using the coordinate
transformation

ω(x, t) = z(x, t) +
∫ x

0
k(x, y)z(y, t) dy, (64)

the boundary stabilisation problem is then converted into a problem
of solving the following linear hyperbolic PDE

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kxx(x, y, t) − kyy(x, y, t) − kt(x, y, t) = (a(y, t) + λ)k(x, y, t),
0 ≤ y ≤ x ≤ b,

k(x, 0, t) = 0, 0 ≤ x ≤ b,

kx(x, x, t) + ky(x, x, t) + d

dx
(k(x, x, t)) = a(x, t) + λ, 0 ≤ x ≤ b,

(65)
where λ is a constant. Then all results here are still holding pro-
vided that the problem (65) admits at least a solution. The approach
here can also be modified to obtain a controller that minimises
a reasonable cost functional that puts penalty on both state and
control [39].

On the other hand, studied the results here can also be extended
to complex fractional-order distributed parameter systems and var-
ious open questions are still under consideration. For instance, the
problem of boundary feedback stabilisation of spatial fractional-
order distributed parameter systems, time-space fractional-order
distributed parameter systems as well as the sensor configurations
are of great interest.

7 Acknowledgments

This work was supported by Chinese Universities Scientific Fund
(no. CUSF-DH-D-2014061) and the Natural Science Foundation of
Shanghai (no. 15ZR1400800).

8 References

1 Russell, D.L.: ‘Controllability and stabilizability theory for linear partial differ-
ential equations: recent progress and open questions’, Siam Rev., 1978, 20, (4),
pp. 639–739

2 Lions, J.L.: ‘Exact controllability, stabilization and perturbations for distributed
systems’, Siam Rev., 1988, 30, (1), pp. 1–68

3 Izadi, M., Abdollahi, J., Dubljevic, S.S.: ‘PDE backstepping control of one-
dimensional heat equation with time-varying domain’, Automatica, 2015, 54,
pp. 41–48

4 Reis, T., Selig, T.: ‘Funnel control for the boundary controlled heat equation’,
Siam J. Control Optim., 2015, 53, (1), pp. 547–574

5 Wang, J., Su, L., Li, H.: ‘Stabilization of an unstable reaction–diffusion DE
cascaded with a heat equation’, Syst. Control Lett., 2015, 76, pp. 8–18

6 Guo, B., Yang, D.: ‘Optimal actuator location for time and norm optimal control
of null controllable heat equation’, Math. Control Signals Syst., 2014, 27, (1),
pp. 23–48

7 Liu, W.: ‘Boundary feedback stabilization of an unstable heat equation’, Siam
J. Control Optim., 2003, 42, (3), pp. 1033–1043
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33 Smyshlyaev, A., Krstić, M.: ‘Backstepping observers for a class of parabolic
PDEs’, Syst. Control Lett., 2005, 54, (7), pp. 613–625

34 Matignon, D.: ‘Stability results for fractional differential equations with applica-
tions to control processing’, Computational Engineering in Systems Applications,
vol. 2, Lille France, 1996, pp. 963–968

35 Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: ‘Lyapunov func-
tions for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2014,
19, (9), pp. 2951–2957

36 Li, Y., Chen, Y., Podlubny, I.: ‘Mittag–Leffler stability of fractional order
nonlinear dynamic systems’, Automatica, 2009, 45, (8), pp. 1965–1969

37 Li, Y., Chen, Y., Podlubny, I.: ‘Stability of fractional-order nonlinear dynamic
systems: Lyapunov direct method and generalized Mittag–Leffler stability’,
Comput. Math. Appl., 2010, 59, (5), pp. 1810–1821
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