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ABSTRACT
In recent years, as fractional calculus becomesmore andmore broadly used in research across differ-
ent academic disciplines, there are increasing demands for the numerical tools for the computation
of fractional integration/differentiation, and the simulation of fractional order systems. Time to time,
being asked about which tool is suitable for a specific application, the authors decide to carry out
this survey to present recapitulative information of the available tools in the literature, in hope of
benefiting researchers with different academic backgrounds. With this motivation, the present arti-
cle collects the scattered tools into a dashboard view, briefly introduces their usage and algorithms,
evaluates the accuracy, compares the performance, and provides informative comments for selec-
tion.

1. Introduction

The fractional calculus (FC) got birth 300 years ago, and
the research on FC experienced its boom in the past
decades (Machado, Kiryakova, & Mainardi, 2011; Miller
& Ross, 1993; Sabatier, Agrawal, & Machado, 2007).
Besides the fundamental mathematical study, more and
more researchers from different academic disciplines
begin to utilise it in a variety of subject-associated
research, such as in biology and biomedical (Magin, 2006;
West, 2006), sociology (Lewis, 2014; West, Turalska, &
Grigolini, 2014), economics (Ding, Granger, & Engle,
1993;Malkiel, 1999), and control engineering (Li&Chen,
2014; Monje, Chen, Vinagre, Xue, & Feliu, 2006; Yin,
Chen, &Zhong, 2014). Alongwith the rapid development
of theoretical study, the numerical methods and practical
implementation also made considerable progress (Bar-
bosa & Machado, 2006; Bohannan, 2008; Jiang, Hartley,
Carletta, & Veillette, 2013).

Sharp tools are prerequisite to a successful job. In this
paper, an extensive collection of Matlab-based tools are
exhibited for the numerical computation of fractional
order (FO) integration/differentiation, as well as some
toolboxes for engineering applications, with an emphasis
on FO controls. A comprehensive table (Table 1) is cre-
ated to list the recapitulative information of these tools in
a dashboard view. Brief description and basic evaluation
of these numerical algorithms are presented, in terms of

CONTACT YangQuan Chen ychen@ucmerced.edu; http://mechatronics.ucmerced.edu

usage, accuracy, unique features, advantages, and draw-
backs. Through such efforts, it is hoped that an informa-
tive guidance is provided to the readerswhen they face the
problem of selecting a numerical tool for a specific appli-
cation. Thanks to the authors of these tools. It is these
pioneers who bring great convenience for the practical
use of FC and FO control. While a text descriptive sur-
vey on some of the tools under discussion can be found
in the book (Das & Pan, 2012), and 28 alternatives for
the time-domain implementation of FO derivatives are
documented in Valério and da Costa (2005), the present
paper addresses more quantitative comparison and prac-
tical usage.

The rest of the paper are organised as follows:
Section 2 reviews 20 selected numerical tools through
brief description; Section 3 evaluates and compares the
quantitative performance of the tools in three categories;
Section 4 gives comments for tool selection based on
empirical use.

2. Review and description

This article mainly covers the tools for fundamental FC,
such as the numerical computation of fractional inte-
gration/differentiation of a function or a signal, and
the Laplace transform of fractional differential equations
(Podlubny, 1999a). Since automatic control is one of the
engineering disciplines that got the earliest exposure to

©  Informa UK Limited, trading as Taylor & Francis Group
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Table . Matlab-based numerical tools for computation of fractional operations and fractional order controls.

# Name Typical usage Sample syntax Author(s) Source Delay MIMO

 fotf FO control toolbox s = fotf(‘s’) Dingyü Xue Xue and Chen (a) � Could
 ninteger FC and FOC toolbox nid(k, a, [w1w2], 5,‘crone’) D. Valério Valério and da Costa () Could Could
 Crone FO control toolbox frac_tf(1, frac_poly_exp(1, 0.5) CRONE team The CRONE Team () × �
 FOMCON FOmodeling and control sys_foss = tf2ss(g) A. Tepljakov Tepljakov et al. () � �
a mlf -paramM–L func y = mlf(a,b, −t) I. Podlubny Podlubny ()
b ml_func ∼  paramM–L func y = ml_func([a,b, r],−t) Dingyü Xue Monje et al. ()
c ml_fun -paramM–L func y = ml_fun(a,b, x, n, e) S. Mukhopadhyay Mukhopadhyay () N/A N/A
d gml_fun Generalized M–L func gml_fun(a,b, r, x, eps0) Y.Q. Chen Chen (a)
e ml ,,-paramM–L func e = ML(x, a,b, r) R. Garrappa Garrappa ()
a NILT Num Inverse of Laplace Script based L. Branc̆ík Branc˘ík () � ×
b INVLAP Num Inverse of Laplace [t, y] = INVLAP(‘1/s′, 1, 10, 100) Code by Juraj Juraj () � ×
 dfod,, Digital FO diff/int sysdfod = dfod3(n, T, r) I. Petráš Petráš (a) N/A N/A
 irid_fod ... Impulse Resp Invariant df = irid_fod(−.5, .1, 5) Y.Q. Chen Chen (b) N/A N/A
 ora_foc Oustaloup-Rec-Approx ora_foc(0.5, 2, 0.1, 100) Y.Q. Chen Chen () N/A N/A
 fderiv FO diff of r(t) y = fderiv(0.5, r, Ts) F. M. Bayat bayat () N/A N/A
 glfdiff Finite Diff of G–L y1 = glfdiff(y, t, r) Dingyü Xue Xue and Chen (a) N/A N/A
 fourier_diffint FO diff of f(x) fourier_diffint(f, x, ...) G. Papazafeiropoulos Papazafeiropoulos () N/A N/A
 FIT FO integration toolbox fracIntegrationSIM(...) Marinov et al. Marinov et al. (b) N/A N/A
 DFOC Discrete FO PID DFOC(K, Ti, Td,m,d, Ts,n) I. Petráš Petráš (b) N/A ×
 FOPID FO PID — Lachhab et al. Lachhab et al. () — ×
 FOCP Fractional optimal control Calling RIOTS C. Tricaud et al. Tricaud () × �
 FSST FO S-S toolkit Simulink blocks D. Sierociuk Sierociuk () � �
 FVO Fractional variable order ban(alpha,N,h) Podlubny et al. Podlubny () N/A N/A
 forlocus RL plot of FO TFs forlocus(num,den, l) Zhuo Li et al. Li () N/A N/A

The ‘Delay’ column denotes whether the script/toolbox is able to handle time delay in the FO model.
The ‘MIMO’column denotes whether the script/toolbox is able to handle MIMO FOmodels.

FC (Axtell & Bise, 1990; Bagley & Calico, 1989; Bode,
1945; Podlubny, 1999b), the tools for the application of
FO controls are given more focus, associated with the
authors’ expertise.

2.1 @fotf

@fotf (fractional order transfer function) is a control tool-
box for FO systems developed by Xue et al. Most of the
functions inside are extended from the Matlab built-in
functions. In Chen, Petráš, and Xue (2009), the code and
usage of the @fotf toolbox are described in very detail.
It uses the overload programming technique to enable
the related methods of the Matlab built-in functions to
deal with FO models. The transfer function objects gen-
erated from it can be interactive with those generated
from the Matlab transfer function class. Yet, the over-
loading of associated functions, such as impulse() and
step(), lost the plotting functionality. As a work around,
users can simply define a time vector as the second input
to these functions. fotf toolbox supports time delay in
the TF, e.g. fotf(a, na,b, nb,delay). It does not directly
support transfer function matrix, hence, MIMO systems
cannot be simulated directly. However, since it provides
Simulink block encapsulation of the involved function
fotf(), multiple input/output relationship can be estab-
lished by manually adding loop interactions in Simulink
block diagrams. Therefore, the remark ‘could’ is put in
the ‘MIMO’ column in Table 1 (where the ‘Delay’ column
denotes whether the script/toolbox is able to handle time

delay in the FO model; and the ‘MIMO’ column denotes
whether the script/toolbox is able to handle MIMO FO
models.).

A small drawback with @fotf is that the sampling
time has relatively big impact on the accuracy, which has
been remarked in the validation comments in Chen et al.
(2009). Encouragingly, an update is upcoming according
to the author.

2.2 Ninteger

Ninteger, non-integer control toolbox for Matlab, is a
toolbox intended to help with developing FO controllers
and assessing their performance (Valério & da Costa,
2004). It uses integer order transfer functions to approxi-
mate the FO integrator/differentiator,C(s) = ksν, ν ∈ R.
It offers three frequency domain approximation meth-
ods,

(1) The CRONE method, which uses a recursive dis-
tribution,

C(s) = k′
N∏

n=1

1 + s/ωzn

1 + s/ωpn
;

(2) The Carlson’s method, which solves Cα(s) using
Newton’s iterative method,

Cn(s) = Cn−1(s)
(α − 1)Cα

n−1(s) + (α + 1)g(s)
(α + 1)Cα

n−1(s) + (α − 1)g(s)
;
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(3) The Matsuda’s method, which approximates C
with a gain known at several frequencies.

C(s) = [d0(ω0); (s − ωk−1)/dk(ωk)]+∞
k−1,

d0(ω) = |C( jω)|, dk+1(ω) = ω − ωk

dk(ω) − dk(ωk)
.

It also provides Simulink block encapsulation of the
involved functions, such as ‘nid’ and ‘nipid’ blocks. More-
over, it offers a user-friendly GUI for fractional order PID
(FOPID) controller design.

There is a problem with ninteger toolbox in Matlab
version 2013a or later. Without additional editing, it has
conflicts with some built-in functions due to the over-
load editing of the Matlab built-in function isinteger().
For example, calling themean() function will prompt an
error.

2.3 ooCroneToolbox

The CRONEToolbox, developed since the nineties by the
CRONE team, is a Matlab and Simulink toolbox dedi-
cated to applications of non-integer derivatives in engi-
neering and science (Oustaloup, Melchior, Lanusse, Cois,
& Dancla, 2000). It evolved from the original script ver-
sion to the current object-oriented version. A good fea-
ture of the Crone toolbox is that some of the methods
are implemented forMIMO fractional transfer functions.
For example, executing sysMIMO = [sys, sys; sys2, sys2]
generates a two-input-two-output TF matrix. Many sim-
ulation results in the literature are obtained using the
CRONE toolbox such as the design of centralised
CRONE controller with the combination of the MIMO-
QFT approach in Yousfi, Melchior, Rekik, Derbel, and
Oustaloup (2012). Several other toolboxes are inspired
by CRONE, e.g. ninteger and FOMCON. A drawback of
the CRONE toolbox is that time delay cannot be incorpo-
rated into the generated FO TF.Manually multiplying the
delay to the frac_tf object does not work either because
the exp() operation is not overloaded by frac_tf class.
CRONE is a toolbox much more powerful than merely
simulating FO systems. In spite of this basic functionality,
it is also capable of FO system identification and robust
control analysis and design.

2.4 FOMCON

The FOMCON (fractional-order modelling and control)
toolbox is developed by Tepljakov, Petlenkov, and Belikov
(2011). Its kernel utilises the algorithms in FOTF, Ninte-
ger, and CRONE. It encapsulates some of the major func-
tionalities of those three toolboxes, and builds a GUI shell
on top, aiming at extending classical control schemes for

FOMCON

Crone ninteger

fotf

Figure . FOMCON’s relation to other numerical tools (Tepljakov,
).

FO controller designs. The relation of FOMCON with
the three toolboxes is shown in Figure 1. Some notable
changes/patches to the original FOTF are:

� newfotf() uses the string parser to enable users to
input TF as a string;

� tf2ss() is overloaded and foss() is added, which
makes the conversion between an FO TF object and
an FO state-space (SS) object possible. The CRONE
toolbox is also able to do the task, yet the script is
encrypted in Matlab P code format.

2.5 M–L functions

M–L functions, as the name implies, areMatlab functions
developed for numerically computing the Mittag–Leffler
function (definitions can be found in Magin (2006), etc).
There are several versions of code by different authors
available in the literature. Five of them are listed in
Table 1, where

(1) mlf(α, β , x, p) is for the calculation of the two-
parameter M–L function in the form of Eα, β(x)
with the precision of p for each element in x;

(2) ml_func([α, β , γ , q], z, n, ε0) is capable of com-
puting the M–L function with either 1, 2, 3, or 4
parameters, and the script is available in the books
by Xue and Chen (2014b) andMonje et al. (2006).
It uses the fast truncation algorithm to improve the
efficiency, and embeds the mlf() in the file such
that when the fast truncation algorithm is not con-
vergent, solution is guaranteed by trading off some
efficiency;

(3) ml_fun(α, β , x, n, ε0) (α > 0, β > 0) is also for
two-parameterM–L function with error tolerance
of ε0, which is implemented using C-MEX .dll
(dynamic-link library) technique and can be used
in Simulink through s-functions;

(4) gml_fun(α, β , γ , x, ε0) calculates the generalised
M–L function with three parameters in the form
of Eγ

α,β (x) (Prabhakar, 1971);
(5) ml(x, α, β , γ ) can calculate theM–L function with

either 1, 2, or 3 parameters.
Alternatively, the generalised hypergeometric func-

tion [pfq] = genHyper(a,b, z, lnpfq, ix, nsigfig) in

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 P

ol
yt

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 0

0:
34

 1
4 

D
ec

em
be

r 
20

17
 



1168 Z. LI ET AL.

Barrowes (2005), or [y, tt, nterms] = pfq(a,b, z,d) in
Huntley (2012) can also achieve the numerical compu-
tation of the generalised M–L functions under certain
conditions. For more details, refer to Chaurasia and
Pandey (2010).

2.6 NILT

The inversion of Laplace transform is fundamentally
important in the applications of the Laplace transform
method. It can be carried out with one of the follow-
ing three approaches: (1) analytical solution using defi-
nition and basic properties; (2) Laplace transform tables;
and (3) numerical computation. While analytical solu-
tions are usually too hard to be obtained, and tables
do not cover arbitrary cases, the numerical computa-
tion becomes an inevitable way. Among the numerous
algorithms for numerical inversion of Laplace transform
(NILT), NILT in de Hoog, Knight, and Stokes (1982),
Liang (2005) and the ‘improved NILT’ in Valsa and
Branc˘ík (1998), Branc˘ík (1999), and Branc˘ík (2001)
have relatively bigger literature exposure. Lubomir’s NILT
method applies the fast Fourier transformation (FFT) and
the ε-algorithm to speed up the convergence of infinite
complex Fourier series. A very detailed description and
performance evaluation of these methods is available in
Sheng, Li, and Chen (2011). Hence, repetitive compari-
son among different NILTs are not presented here. Focus
is mainly put on the comparison betweenNILT and other
numerical methods.

A good feature of the two NILT code is that both
support the direct input of time delay in the form of
exp(−Ls). Yet, INVLAP() gives some glitch at the end of
the delay, for example, [x, y] = INVLAP(‘1/(s* (s^0.5+1))
* exp(-s)’, 0.01,10,1000). There is a tricky part need
to be noted in evaluating the computational error of
NILT. If the same initial, terminating, and sampling time
(t0, t f and Ts) for other tools are used in the script, the
NILT actually computes one point less than the other tools
which use regularly spaced time vector. That is because:
let M = t f −t0

Ts
represent the amount of points computed

by NILT, then, the time interval is actually T ′
s = t f −t0

M−1
due to the script t = linspace(0, tm,M), whereas the
conventional assignment of time vector (t = t0 : Ts : tf)
generates M + 1 points. In order to compute the same
amount of points aligned to the time stamps used for
baseline analytical solution, the time vector for analyti-
cal computation needs to be adjusted so as to adapt to
that used by NILT. This means to let analytical compu-
tation use the time vector generated by NILT, which can
be achieved by either (1) t = 0 : M ∗ Ts/(M − 1) : M ∗ Ts,
or (2) t = linspace(0, tm,M). This cannot be done the

other way around, i.e. replaced by t = 0 : Ts : M ∗ Ts − Ts
nor t = linspace(0, tm − Ts,M). Otherwise, cumulated
computation error will cause inaccuracy of the final sim-
ulation result. Alternatively, if tf is not a concern, user can
assign one point less toM in theNILT script while keeping
Ts unchanged. Thus,NILT generates the same time stamps
except a tf shortened by one sampling period. The differ-
ence in dealing with time vectors can be easily visualised
if longer sampling time is assigned. An example of the
resulting computation error is demonstrated in Figure 2.
A similar time stamp assignment issue exists in INVLAP().
In addition, the initial time stamp is not allowed to be 0
due to the constraint in the INVLAP() script.

2.7 dfod

dfod (digital fractional order differentiator/integrator) is
a set ofMaltab functionswritten by Petráš, for the approx-
imation of FO differentiators and integrators. There are
three versions of dfod:

(1) dfod1() is the infinite impulse response (IIR) type
based on continued fraction expansion (CEF),
shown in Equation (1), of weighted operator with
the mixed scheme of the trapezoidal (Tustin) rule
and the backward difference (Euler) rule (Petráš,
2003a);

Z{Dαx(t )} = CFE
{(

1 − z−1

T

)α }
X (z)

≈
(
1
T

)α Pp
(
z−1)

Qq(z−1)
X (z). (1)

(2) dfod2() is the finite impulse response (FIR) type
based on power series expansion (PSE), shown in
Equation (2), of the backward difference (Euler)
rule (Petráš, 2003b);

D∓α(z) = 1
(1 − z−1)

±α

= T∓α

∑∞
j=0 (−1) j

(±α

j

)
z− j

≈ T∓α

Qq(z−1)
(2)

(3) dfod3() is a new IIR type based on power series
expansion of the trapezoidal (Tustin) rule Petráš
(2011a).

Euler : sα ≈
[
1 − z−1

T

]α

,

Tustin : sα ≈
[
2
T
1 − z−1

1 + z−1

]α

. (3)
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Figure . Computation error of NILT caused by mis-assignment of Ts.

There are other FO algorithms based on IIR, such as
newfod() by Chen and Vinagre (2003).

Regarding discretisation, besides the aforementioned
methods used in the various tools, other methods
exist such as the Prony’s technique, direct discreti-
sation, and the binomial expansion of the backward
difference (Caponetto, Dongola, Fortuna, & Petráš,
2010).

2.8 IRID

The impulse response invariant discretisation (IRID) is
a family of functions designed by Li, Sheng, and Chen
(2010) and Chen (2008b), for different approximation
purposes based on the algorithm as its name implies. It
includes the following members:

(1) irid_fod() is designed to compute a discrete-time
finite dimensional (z) transfer function to approx-
imate a continuous irrational transfer function sα

where ‘s’ is the Laplace transform variable and −1
< α < 1. It has been tested that the algorithm still
works for α > 1 and α < −1, by removing the
input checking statement.

(2) irid_doi() is for the approximation of distributed
order integrator

∫ b
a

1
sα dα, where ‘a’ and ‘b’ are

arbitrary real numbers in the range of (0.5, 1), and
a < b.

(3) irid_dolp() is for the approximation of a
continuous-time fractional order low-pass fil-
ter in the form of 1/(τ s + 1)α

(4) irid_fsof() is for the approximation of fractional
second-order filter in the form of 1/(s2 + as + b)α

where 0 < α < 1.
(5) BICO_irid() is for the approximation of BICO

(Bode’s ideal cut-off) transfer function in the form
of 1/(s/w0 + √

(s/w0)2 + 1)α , where α > 0.

2.9 ora_foc

ora_foc() is for the approximation of FO differen-
tiators, 1

sα (Xue, Chen, & Atherton, 2009), using the
Oustaloup-recursive-approximation method described
in Oustaloup, Levron, Mathieu, and Nanot (2000).

2.10 fderiv

fderiv() calculates the fractional derivative of order α

for the given function r(t) using the Grünwald–Letnikov
(G–L) definition (Bayat, 2007). The input of the given
function is represented by a vector of signal values.
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1170 Z. LI ET AL.

There is an improved implementation of this func-
tion, fgl_deriv(), by Jonathan, which uses vectorisa-
tion for faster computation with Matlab (Jonathan,
2014).

2.11 glfdiff

glfdiff(y,t,α) (G–L finite diff) is aMatlab function written
by Xue and Chen (2014a) for calculating the αth deriva-
tive of a given function, whose inputs y and t are the signal
and time vectors. It is based on the forward finite differ-
ence approximation of the G–L definition,

aDα
t f (t ) ≈ 1

hα

(t−1)/h∑
j=0

ω
(α)
j f (t − jh), (4)

where the binomial coefficients are recursively calculated
(Xue and Chen, 2014a):

ω
(α)
0 = 1, ω

(α)
j =

(
1 − α + 1

j

)
ω

(α)

( j−1), j = 1, 2, . . .

(5)

2.12 Fractional differentiation and integration

Many of the above functions approximate the FO inte-
gral or derivative operator. This Matlab function calcu-
lates the αth-order derivative or integral of a function,
defined in a given range through Fourier series expan-
sion. The necessary integrations are performed with
the Gauss–Legendre quadrature rule (Papazafeiropoulos,
2014). Three examples are offered in this package, namely
FO differ/integral of identity, cubic polynomial, and tab-
ular functions, respectively. The main call function is
fourier_diffint().

2.13 FIT

FIT is the fractional integration toolbox developed by
Santamaria Laboratory at the University of Texas at
San Antonio (Marinov, Ramirez, & Santamaria, 2013b).
It is for the numerical computation of fractional inte-
gration and differentiation of the Riemann–Liouville
(R–L) type, and is designed for large data size, which
allows parallel computing of multiple fractional inte-
gration/differentiation on GPUs (graphical processing
units). The extrapolation and interpolation algorithms
used by this toolbox are implemented in C++ and are
integrated with Matlab via the MEX mechanism. A
detailed explanation can be found in Marinov, Ramirez,
and Santamaria (2013a).

2.14 DFOC

DFOC,written by Petráš, is a digital version of the FOPID
controller of the form:

C(s) = K + Ti
1
sm

+ Tdsd. (6)

It provides a transfer function of the FO PID controller
for given parameters (Petráš, 2011b).

2.15 FOPID

The FOPID controller toolbox, presented by Lachhab,
Svaricek, Wobbe, and Rabba (2013), is for the design
of robust fractional order PIαDβ controllers. The tun-
ing rules for the parameters follow those promoted in Li,
Luo, and Chen (2010) and Luo and Chen (2013). Thus,
the FOPID tuning is converted to a five-parameter opti-
misation problem. This toolbox utilise the ‘non-smooth’
H� synthesis in Apkarian and Noll (2006) to perform the
minimisation. For now, there is not a publicly available
source for download.

2.16 Sysquake FO PID

Pisoni, Visioli, and Dormido (2009) presented an inter-
active tool for FOPID controllers developed on the
Sysquake software environment, which is a similar effort
with that for integer order PIDs done by Åström et al. in
Guzman et al. (2008). Sysquake is a numerical computing
environment based on a programming language mostly
compatible withMatlab. However, the interactive tool for
FOPID runs in the Sysquake environment instead ofMat-
lab. Hence, it is not reviewed in detail here.

2.17 FOCP

Tricaud and Chen (2009) formulated the fractional opti-
mal control problems (FOCPs) into the integer order for-
mat by using a rational approximation of the fractional
derivative obtained from the singular value decomposi-
tion (SVD) of the Hankel matrix of the impulse response.
Then, RIOTS_95 (Tricaud & Chen, 2008; Zhao, Chen, &
Li, 2014) is used to perform the optimisation. The scheme
is potentially able to solve any type of FOCPs and is imple-
mented inMatlab for public accessibility (Tricaud, 2009).
It supports MIMO FO optimal control, but does not han-
dle time delay due to the limitation of RIOTS.

2.18 FSST

FSST is a simulation toolkit in Matlab/Simulink for the
FO discrete SS system education. The toolkit consists
of a set of C-MEX s-functions which are encapsulated
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Figure . The Simulink block set provided in FSST.

in Simulink blocks. Several typical FO system simula-
tion examples are provided as shown in Figure 3, such as
the FO SS model and the fractional Kalman filter (FKF)
(Dzieliński& Sierociuk, 2008). The version 1.7 is available
for free download at Sierociuk (2003). Two of the superior
strengths of FSST are (1) it can directly simulate MIMO
systems since it is a Simulink block kit handling SS rep-
resentations; (2) it is able to incorporate the initial condi-
tions into the dynamic equations to be simulated, which is
a unique feature among all the aforementioned tools. The
drawback of FSST is that the step size has large impact
on the simulation results, even larger than the impact by
‘circular’ buffer size. A sample illustration is plotted in
Figure 4.

2.19 Fractional variable orders

All the above tools/toolboxes (except irid_doi())
deal with constant FOs. Yet, there exists a type of
differentiations that have fractional variable orders

(FVOs). The definitions in the G–L format are given as
follows (Lorenzo & Hartley, 2002):

Theorem 1 (The first type FVO):

0Dα(t )
t f (t ) = lim

h→0

1
hα(t )

n∑
r=0

(−1)r
(

α(t )
r

)
f (t − rh).

(7)

The second and third types can be found in the same ref-
erence.

Regarding the FVO differentiation, there are dedi-
cated tools. Podlubny (2000) offers a matrix approach
that unifies the numerical differentiation of integer order
and the n-fold integration, using the so-called triangular
strip matrices. It is available for download at Podlubny
(2008) and can be applied on the solution to FODEs and
FPDEs.

Sierociuk (2012) provides a C-MEX s-function-based
Simulink toolkit, ‘fvoderiv’, for this purpose. It supports
real-time workshop.

The toolbox ‘vod’ created by Valério et al. calculates
variable fractional or complex order derivatives. R–L,
Caputo, andG–L definitions are provided; the three types
of definitions in Lorenzo and Hartley (2002) are all con-
sidered. Fuzzy-supervised implementations in Simulink
are also provided (Valério, 2009).

2.20 FO root locus

Three Matlab-based scripts for plotting root locus of FO
TFs are available. Two early works are frlocus() in bayat
(2008), and the code attached in the paper by Machado
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Figure . The impact of simulation step size on the FSST toolbox.
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Figure . The RL plot of equation () on different planes. (a) On s-plane. (b) Onw-plane.

(2011). The other is forlocus() developed by the author
which is listed in the last row in Table 1 and can be down-
loaded from Li (2015). Besides, the newest version of
@fotf toolbox also features the root locus plot of FO sys-
tems. Figure 5 shows a demonstrating plot of the root
locus of the following FO transfer function:

G(s) = 1.2s1.3 + 1
0.8s2.6 + 0.6s1.3 + 1

, (8)

where Figure 5(a) shows the plot on the Laplace s-plane
and Figure 5(b) shows the plot on the w = s1.3 plane. A
closer view of the second quadrant in Figure 5(b) tells that
the root locus in this example has two branches on the
first layer of the Riemann sheet (Corless & Jeffrey, 1998;
Farkas & Kra, 1980). One starts from the pole marked in
green, and the other is from the next Riemann sheet. As
the system gain varies, they aggregate at (−1.25 + 1.1i)
and then bifurcate. One approaches the open loop zero
marked in red and the other goes to infinity.

2.21 Other tools

Text description of a few tools listed above can also be
found in Petráš (2011c). There are other FC-related tools
or Matlab scripts available for specific applications, such
as the fractional Fourier transform (FrFT) (Narayanana
& Prabhu, 2003; Ozaktas, Zalevsky, & Kutay, 2001),
closed-form solutions to linear FO differential equations,
fode_sol() (Monje et al., 2006), theM–L randomnumber
generator mlrnd() (Germano, 2008), digital fractional
order Savitzky–Golay differentiator (Chen, Chen, & Xue,
2011), and the functions for simulating FO chaotic sys-
tems (Petráš, 2011d). Considering the scope of research,
they are not enumerated here and only fundamental FC
and FO control-related tools are reviewed.

3. Evaluation and comparison

3.1 Comparison I

To evaluate the collected tools, several groups of bench-
mark problems and inputs are designed. For the FO con-
trol toolboxes, the following problems are used:

(1) Baseline model: first-order transfer function,

gb(s) = 1
s + 1

,

whose time domain analytical solution of its step
response is y(t) = 1 − e−t;

(2) Impulse response of half-order integrator:

ghint (s) = 1√
s
,

whose time domain analytical solution is 1√
πt ;

(3) TF with a half-order pole:

ghp(s) = 1√
s + 1

,

whose time domain analytical solution is

1√
t
E 1

2 , 12
(−√

t ), or equivalently,

1√
πt

− eter f c[
√
t];

(4) The commensurate order TF:

gcom(s) = 6s1.2 + s0.8 + 2s0.4 + 3
5s1.6 + s0.8 + 2

;
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Table . Quantitative evaluation results for the test problems –.

Method\ Error     

M  – – – –
 . . . ‘’ ‘’
 .× − . . . .
 . . . . .
a  – .× − – –
c .× − – .× − – –
a . . . . .
b . . .× − . .
 . . . – –

(5) Step response of the irrational order TF:

gir(s) = 2s
√
3 + 1

s
√
5 + 3s

√
2 + 1

.

The accuracy is quantified by the conventional integral
absolute error (IAE) criteria, S = ∫ T

0 |e(t )|dt . All com-
parisons have been kept as fair as possible. The numer-
ical values of the time domain analytical solution using
Matlab built-in functions are assumed to be accurate and
are adopted as the baseline. The computational errors
when Ts = 0.05 are summarised in Table 2, where the row
indices represent the methods numbered in Table 1, and
the column indices represent the test problems respec-
tively. Besides, ‘M’ denotes the Matlab built-in TF and ‘–’
means the underlyingmethod is not applicable for the test
problem. Two sample plots of the step responses of prob-
lems 1 and 5 are shown in Figures 6 and 7. For problems 4

and 5, since analytical solution is hard to obtain, all meth-
ods are compared to the values computed by fotf.

For the impulse response of the half-order integrator,
the first point is ignored for error calculation because it is
infinity. Two graphic views of the comparison are shown
in Figure 8 a and 8 b, with Ts = 0.01 and Ts = 0.1, respec-
tively.

As stated in Chen (2008b), irid_fod() uses finite
dimensional (z) TF as the approximationmethod. Hence,
the order of the (z) TF has impact on the approxima-
tion accuracy. The error listed in Table 2 is based on the
10th order approximation. An illustrative plot is shown
in Figure 11. The sampling time also has impact on its
accuracy. The anti-intuitive fact is that relatively greater
Ts gives higher accuracy. A heat map of the error on the
field of Ts = 0.01 : 0.001 : 0.1 and order = 3 : 30 is plot-
ted in Figure 12. At some particular high orders, ‘rank
deficiency’ would occur during the call of prony() inside
irid_fod(). Users can choose appropriate orders accord-
ing to their specific accuracy requirement.

The analytical expression of M–L function is a sum-
mation of infinite terms. Hence, it is not surprising to see
the numerical computation-induced error in the results.

3.2 Comparison II

fderiv(), glfdiff(), fourier_diffint() and FIT are integra-
tion /differentiation tools for functions. For this group of
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Figure . Comparison of the step responses of problem .

tools, the following two problems are designed to com-
pare the performance:

(1) Half-order derivative of the function y(t) = 3t on
the interval of [0, 5], whose analytical solution is

0D0.5
t y = 3
(2)


(1.5)
√
t. (9)

(2) 0.75 -order integration of the function y(t ) = √
t ,

whose analytical solution is

0D−0.75
t y = 
(1.5)


(2.25)
t1.25. (10)

The time steps are all set to 0.01 sec. It can be seen that
fourier_diffint() performs not as well as other methods
although a big number of Fourier and Gaussian coeffi-
cients have been assigned (default values are 260 and 520
for identity polynomial). Its performance on a third-order
polynomial is better. The results are plotted in Figures 9
and 10. Quantitative comparison including computa-
tional error and averaged elapsed time (for 20 runs
each) are listed in Table 3, for the above two problems
respectively.

3.3 Comparison III

Although the simulation of FO pseudo-SS models
can be achieved indirectly, some toolboxes do provide

Table . Quantitative comparison of function int/diff tools.

Criteria\Methods Analytical fderiv() glfdiff() fourier_diffint() FIT

Error  – . . . .
Elapsed T . . . . .
Error  – . . . .
Elapsed T . . . . .

the direct simulation capability, such as the CRONE
toolbox and FSST. Since the function frac_ss in
CRONE toolbox only adopts the input of commen-
surate order systems, for comparison purposes, the
following commensurate order pseudo-SS model is
selected:

[
x1
x2

](0.7)

=
[

0 1
−0.1 −0.2

] [
x1
x2

]
+

[
0
1

]
u

y = [
0.1 0.3

] [
x1
x2

] (11)

To involve more tools into comparison, the FO integra-
tor blocks in the FOTF and Ninteger toolboxes are used
to represent the above fractional differential equations in
Simulink, as shown in Figure 13. The comparison of the
unit step responses computed by the four toolboxes is
plotted in Figure 14, from which it can be seen that the
result obtained using FSST (1 sec for step size) has big-
ger difference from the others. However, since analytical
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Figure . Comparison of the impulse responses of the half-order integrator.

solution is not easy to obtain, it is insufficient to claim
which method gives the highest accuracy. Hence, quanti-
tative comparison is not provided. As an alternative, users
can transform the above FO SS model to an FO transfer

function model, assuming zero initial conditions,

G(s) = C(sαI − A)−1B = 3s0.7 + 1
10s1.4 + 2s0.7 + 1

. (12)
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Figure . Comparison of half derivative of function y(t)= t, using fderiv(), glfdiff(), fourier_diffint() and FIT, respectively.
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Figure . Comparison of .th order integration of function y(t ) = √
t , using analytical solution, fderiv(), glfdiff(), fourier_diffint()

and FIT, respectively.
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Figure . The Ts and order impact on irid_fod().

Thus, the NILT scripts can be used to compute the
numerical solution, which has relatively higher reliability
according to the authors’ observation.

4. Comments for selection

A tricky part for the simulation of FO systems is that even
if the system is broken down to the bottom layer, i.e. the
analytical solution, it usually still involves the computa-
tion of M–L functions, which still needs to rely on the

numerical tools or scripts. From the comparison, it can
be seen that in the category of integrating/differentiating a
function, glfdiff and FIT outperform other tools in terms
of accuracy; in the category of control system simula-
tion, NILT always provides higher accuracy. However,
other toolboxes have some advantages, for example, nin-
teger and CRONE toolbox provide integrator blocks in
Simulink, which makes the simulation of nonlinear sys-
tems possible.

Ts [sec]
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

O
rd

er
 o

f t
he

 z
 T

F

5

10

15

20

25

30

Figure . The heat map of approximation error of irid_fod() versus the order and sampling time.
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Figure . The Simulink block diagrams for simulating the FO pseudo-state space model in Equation ().
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Figure . Comparison of the simulation results of the FO SS model obtained with different toolboxes.
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5. Conclusion

In this paper, a comprehensive review of the Matlab-
based numerical tools for FC and FO controls is pre-
sented. Quantitative evaluation of the selected tools is
conducted. The summarised description and numerical
comparison are designated to serve as a reference and
guidance for readers when selecting tools for specific
applications.
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