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Abstract

Heart Rate Variability (HRV) analysis is based on variability between each heartbeat which is used
as a diagnosis method for assessing the cardiovascular modulation of autonomic nerve system. Up to
now, most HRV analysis has been done offline. However, in many relevant applications, HRV should be
analyzed online such as the analysis of stress level and the detection of the drowsiness while driving. This
paper proposes an online analysis method which can be used in platforms for human robot cooperation.
This online analysis method based on a sliding Hurst window can be applied to estimate the heart status.
By the sliding Hurst series, the two indices, cumulative mean of Hurst series (CMHurst) and cumulative
standard deviation of Hurst series (CStdHurst) are introduced as indicators to distinguish heart health
status. Using this method, the hardware requirement is significantly low, and the execution time is short.
Some databases from the PhysioBank are used for test these indices. The results show this method can
distinguish between the groups who have normal rhythm and abnormal rhythm.

Keywords: Heart Rate Variability (HRV); Hurst Parameter; Fractional Differintegration; Sliding
Window Hurst; Human-robot Interaction

1 Introduction

As technology is becoming more ubiquitous, there is an increasing amount of interaction between
robots and people in various activities [1, 2]. Diverse methods are applied in these interactions,
such as vocal intonation, gestures and postures, facial expression and psychological states. With
an ability to recognize psychological states, human-robot platforms help people perform tasks
better, especially some tasks in risky environments. Psychological signals can be utilized to
determine the underlying psychological and affective state of persons. Heart Rate Variability
(HRV) is the physiological phenomenon of variation in the time interval between heart beats.
HRV can be a reliable reflection of physiological status and can even be used for the diagnosis of
coronary artery heart disease, hypertension, sudden cardiac death, stress detection [3], drowsiness
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estimation [4], and also for health status analysis [5]. RR time series is the series of heartbeat
interval, where R is a peak point respect to each heartbeat of the electrocardiography (ECG)
wave, and RR is the interval between successive R.

Three major classes of HRV analysis techniques are defined: time-domain analysis, frequency-
domain analysis and non-linear dynamics analysis. The most popular tool for HRV in clinical
practice is the time-domain analysis due to its intuitive interpretation. The most employed indices
in time domain analysis are mean of RR time series and standard deviation of RR time series.
In HRV frequency domain analysis, the power spectrum signal has been widely used. Commonly
used methods in non-linear dynamics analysis of RR time series are Fractal Dimension (FD),
Fractional Brownian Motion (FBM), and approximate entropy.

Many studies have shown physiological series are more likely to be “fractal”, or more accurately
to be Long Range Dependent (LRD) and fractal statistics. The application of nonlinear dynamics
and fractal statics to physiologic phenomena has enabled physicians to uncover and interpret a new
richness in physiologic time series [6]. Previous papers have utilized fractal techniques in human
respiration [7], brain activity [8], gait [9], and immune patterning [10] research. Similar to other
physiologic signals, the nature of HRV time series or RR time series are fractal-like. RR time
series display non-stationary characteristics and exhibit long-range dependence (memory) [11].
An LRD process can be characterized by the Hurst parameter or Hurst exponent. The Hurst
exponent has close relationship with power law, long memory, fractal, fractional calculus and
chaos theory. Therefore Hurst exponent estimation is crucial to fractional system identification
and forecasting [12].

In this paper, we introduce a novel online method of analyzing RR time series utilizing a sliding
window Hurst. This paper will focus on the Hurst series analysis which is computed from RR
time series based on sliding window. Based on the Hurst series, the two indices cumulative mean
of Hurst Series (CMHurst) and cumulative standard deviation of Hurst series (CStdHurst) are
proposed. The two indices are tested by 43 healthy and unhealthy subjects from three different
databases. The result shows the two indices can serve as the indicators of heart status.

2 HRV Analysis

2.1 Hurst Parameter

A stationary process is said to have Long-range Dependence (LRD) if its auto-correlation function
(assuming that the process has finite second-order statistics) decays slowly as k → ∞. The Auto-
correlation Function (ACF):

ρ(k) =
E[(xt − µt)(xt+k − µt+k)]

σtσt+k

(1)

where µ is the mean and σ is the standard deviation. The ACF measures the correlation between
xt and xt+k. The following functional form for the ACF is often assumed

ρ(k) ∼ Cρ|k|−2(1−H) (2)

where Cρ is assumed asymptotically constant for slow varying at infinity, and H is the Hurst
parameter.
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2.2 Fractional Differintegrated RR Time Series (FDIRR)

To estimate Hurst parameter in this paper, the RR time series is fractional differentiated according
to a certain order. In [13], the implementation of fractional differintegration is described as:

DαRR(k) ∼=
k∑

j=0

cαj RR(k − j) (3)

where α is the order of the operator and the coefficients cαj are recursively computed as:

cα0 = 1, cαj =
(
1− 1 + α

j

)
× Cα

(j−1) (4)

The set of possible time series obtained by different α order will be named as the Fractional
Differintegrated RR time series set (FDIRR set). SDFDINN(α) is defined as the standard devi-
ation of FDIRR for α-th order. SDFDINNmin is represented as the minimum standard deviation
of the FDIRR set and αc as the order provides the minimum standard deviation. Then

H = αc + 0.5 (5)

2.3 An Online Analysis Method Using Sliding Window Hurst

It is very important to know about humans’ physiological status in human-robot interaction
environment. RR time series is a useful tool to know human physiological status. Intelligent
robots will be able to cooperate with human to implement various kinds of tasks. In executing
progress, robots should not only interact with the surrounding environment, but also with human.
Fig. 1 shows how intelligent robots cooperate with a human to execute a task. In this human-robot
cooperation platform, a human dressing with physiological sensors can use a control device to
cooperate with robots. The control device would be a tablet, a smart phone, a personal computer
or an embedded device. As an interaction component, the control device should implement
the following three main modules. Physiological analysis module implements the HRV signal
acquisition and analysis (further research including other physiological signal). Robot-Human
interface is an interface between the human and robot. Task load module receives the task and
explains it.

In the physiological analysis module, there are three sub-modules: data acquisition, storage
and analysis. For supporting diverse sensors, an abstract layer is designed in this module. The
control device can use different link methods (such as cable, bluetooth, Wi-Fi) to connect sensors,
and use different data transfer protocols to receive data. After data receiving, RR data is saved
in text or database modalities. The next and the most important work is the data analysis. The
analysis module is executed synchronously with the data acquisition module.

The two indices are obtained by a Hurst series which is calculated from RR time series. Hurst
series is defined as:

Hs(i) = Calculate Hurst(RRTS(i× Step Size : i× Step size+Window Size)) (6)

where Hs is Hurst series, and i is the index. Calculate Hurst is a method to calculate Hurst
parameter using fractional differintegration. RRTS is the RR time series, and each Hurst
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Fig. 1: Human-robot cooperation platform

parameter calculated by a sub-series of RRTS. The i-th sub-series is from i×Step size to
i×Step Size + Window Size. Step Size is the interval between the adjacent sub-series. For
accurately reflecting RR variability, Step Size is far less than Window Size, and these RR sub-
series overlap. The Hurst series are based on a sliding window. Firstly, after the length of RR time
series reaches the Window size, Hs(0) is calculated. Then with another Step size length RR
data are received, the next Hs value should be calculated. The two adjacent Hurst parameters
are calculated by moved and overlapped RR sub-series. Fig. 2 shows a Hurst series of a subject
in Normal Sinus Rhythm Database of PhysioBank by calculating RR time series.

Hurst parameter is crucial estimator to a fractional system. Because HRV is a fractional signal,
Hurst series is a good reflection of heart status. This series also can be analyzed by time-domain,
frequency-domain, and non-linear dynamics method. In this paper, we use a time-domain method
to analyze it, and the two indices CMHurst and CStdHurst are proposed.

CMHurst(i) =
1

i

i∑
j=0

Hs(j) (7)

CStdHurst(i) =

√√√√ 1

n

i∑
j=0

(Hs(j)− CMHurst(i))2 (8)

CMHurst(i) and CStdHurst(i) stands for mean and standard deviation of Hurst series from iter-
ation 0 to i respectively. Hs is the Hurst series. Fig. 3 shows the CMHurst and CstdHurst Series
calculated from the Hurst series of Fig. 2.

3 Results and Discussion

3.1 Database

To certificate the effect of the two indices, 43 subjects in three databases representing different
heart conditions are used to test. These databases downloaded from PhysioBank. These databases
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Fig. 3: CMHurst and CStdHurst series calculated
from Hurst series of Fig. 2

can be assumed as one kind of sensor for there is an abstract layer in data acquisition module. The
drive for the “database” sensor samples RR data at a regular time like a real sensor, yet it doesn’t
bring any changes to the platform. We use these databases to classify healthy and unhealthy heart
status. First database is MIT-BIH Normal Sinus Rhythm Database. This database includes
18 long-term ECG recordings of subjects referred to the Arrhythmia Laboratory at Boston’s
Beth Israel Hospital. Subjects included in this database were found to have had no significant
arrhythmias. Another database is BIDMC Congestive Heart Failure database. This database
includes long-term ECG recordings from 15 subjects (11 men, aged from 22 to 71, and 4 women,
aged 54 to 63) with severe congestive heart failure (NYHA class 3-4). The final database is Sudden
Cardiac Death Holter Database. The database was mainly obtained in the 1980s in Boston area
hospitals, and were later compiled as part of a study of ventricular arrhythmias. Because of the
retrospective nature of this collection, there are important limitations [14].

3.2 Health Status Classification

Let CMHurst(N, Window Size, Step Size) and CMHurst(N, Window Size, Step Size) represent
the mean and standard deviation of Hurst series. N is the length of a RR time series. Table 1
shows CMHurst(N, Window Size, 20) and CstdHurst(N, Window Size, 20) of all records in the
three databases. Window Size is assigned to 1024 and 512 respectively.

The values of CMHurst(N, 1024, 20) in Normal Sinus Rhythm Database are in [0.8151, 1.1917],
and the values of CStdHurst(N, 1024, 20) are in [0.1773, 0.3596]. Most values of CMHurst(N,
1024, 20) in BIDMC Congestive Heart Failure Database are lower than 0.8151 or higher than
1.1917, except the record “54F” which value of CMHurst is 0.9482, but CStdHurst(N, 1024, 20)
of this record is 0.4113 higher than 0.3596. In Sudden Cardiac Death from the Holter Database,
the underlying cardiac rhythm of most people is sinus. Record 35 and 36 are atrial fibrillation,
and record 49 and 51 are sinus with intermittent pacing. Hurst series of this database are also
different from Normal Sinus Rhythm Database. Record 46 can not be distinguished from the
first database for the values of CMHurst(N, 1024, 20) and CStdHurst(N, 1024, 20) are in normal
regions. But by the following analysis, it also can be distinguished.

In Normal Sinus Rhythm Database, the values of CMHurst(N, 512, 20) are in [0.7138, 1.0255].
This region is lower than the region of CMHurst(N, 1024, 20), and all value of CMHurst(N, 512,
20) are lower than corresponding values of CMHurst(N, 1024, 20). The values of CStdHurst(N,



396 T. Lv et al. / Journal of Fiber Bioengineering and Informatics 8:2 (2015) 391–400

Table 1: Sliding Window Hurst based Window size=1024, Step size=20

Database Information
Data

length

Window size=1024 Window size=512

CMHurst

(N, 1024, 20)

CStdHurst

(N, 1024, 20)

CMHurst

(N, 512, 20)

CStdHurst

(N, 512, 20)

Normal
Sinus
Rhythm
Database

32 M 1.0963 0.1773 50477 0.9616 0.3303

20 F 48572 1.0099 0.2627 0.8840 0.3380

28 F 45048 1.0673 0.2386 0.9287 0.3490

38 F 51217 1.1225 0.2712 0.8812 0.3903

42 M 52280 1.1240 0.3596 0.7875 0.4073

35 F 54336 0.8253 0.2711 0.7317 0.2909

26 M 56448 0.9523 0.2424 0.9184 0.3032

32 F 50869 0.9578 0.3333 0.7138 0.3344

20 F 43838 0.9755 0.2692 0.7998 0.3363

45 F 44000 1.0332 0.2333 0.9244 0.3427

32 F 50586 0.9762 0.2874 0.7792 0.3461

26 F 58501 0.8916 0.3058 0.7203 0.3175

34 F 51335 1.1917 0.2597 0.9558 0.4068

41 F 58939 0.8151 0.2201 0.7472 0.2502

45 M 40976 1.1176 0.2658 0.8342 0.3887

34 M 41834 1.0573 0.2196 1.0255 0.3180

38 F 48495 0.9965 0.2878 0.7934 0.3535

50 F 55631 0.8891 0.3169 0.7138 0.3212

BIDMC
Congestive
Heart
Failure
Database

71 M 0.8037 0.3919 37773 0.6077 0.2828

61 F 0.7170 0.3528 57273 0.6976 0.3558

63 M 0.5253 0.0988 40650 0.5081 0.0548

54 M 0.6087 0.2472 56182 0.5257 0.1325

59 F 0.5918 0.2578 59576 0.5119 0.0897

? M 0.5019 0.0163 59316 0.5007 0.0159

48 M 0.5180 0.0960 46291 0.5088 0.0712

51 M 0.6884 0.3228 45379 0.5590 0.2082

63 F 0.5247 0.1270 57525 0.5122 0.0935

22 M 0.5077 0.0348 73652 0.5040 0.0288

54 F 0.9482 0.4114 57819 0.7070 0.3694

61 M 1.3188 0.3089 57563 0.9348 0.4738

63 M 0.5014 0.0094 57824 0.5008 0.0079

53 M 0.5545 0.1580 57598 0.5155 0.0859

Sudden
Cardiac
Death
Holter
Database

record 30 0.6108 0.2580 64403 0.5358 0.1430

record 31 0.5059 0.0300 31608 0.5030 0.0204

record 34 1.1952 0.2047 13382 1.0549 0.3824

record 35 0.5533 0.0897 50370 0.5237 0.0584

record 36 0.5219 0.0775 38661 0.5184 0.0740

record 41 0.5758 0.1554 8969 0.5709 0.1559

record 45 0.5990 0.2006 49568 0.5494 0.1482

record 46 0.8635 0.2881 8394 0.8287 0.3196

record 49 0.7309 0.2696 41345 0.6344 0.2581

record 51 0.6172 0.2339 38965 0.5794 0.2046

record 52 0.7083 0.2489 23883 0.6619 0.2603
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512, 20) in this database are in [0.2502, 0.4073]. This region is higher than CStdHurst(N, 1024,
20), and all values of CStdHurst(N, 512, 20) are higher than corresponding values of CStdHurst(N,
1024, 20). In BIDMC Congestive Heart Failure Database, it is as same as CMHurst(N, 1024,
20). Most CMHurst(N, 512, 20) are not in the region [0.7138, 1.0255] of Normal Sinus Rhythm
Database. Only the record “61” is in the region, but CStdHurst(N, 512, 20) of this record is higher
than 0.4073, not in the region of CStdHurst(N, 512, 20) in Normal Sinus Rhythm Database. In
this database, all CMHurst(N, 512, 20) become lower than corresponding CMHurst(N, 1024, 20),
as same as the first database. But the change between CStdHurst(N, 512, 20) and CStdHurst(N,
1024, 20) is not like the first database. All CStdHurst(N, 512, 20) are lower than corresponding
CStdHurst(N, 1024, 20), except record “61” and “61M”. This different trend of CStdHurst can
be an indicator to do classification. In Sudden Cardiac Death from the Holter Database, most
CMHurst and CStdHurst are different from the first database, and they are very similar to the
second database.

From Table 1, it can be concluded the CMHurst and CStdHurst are very useful indices which
can determine heart health status. There are more useful information that should be extracted
from CMHurst and CStdHurst series. Fig. 4 shows CMHurst series and CStdHurst series in
Normal Sinus Rhythm Database. These series in the first database are different from the other
databases. The minimum value of CMHurst series is 0.5, and the maximum value is 1.29. After
iteration 100, 250, 1000, and 2000, all values of CMHurst series exceed 0.60, 0.65, 0.69, and 0.8,
respectively. The maximum value of CStdHurst series is 0.37. After iteration 100, 250, 1000,
and 2000, all values of CStdHurst series exceed 0.035, 0.070, 0.125, and 0.155, respectively. This
phenomenon only exists in the first database. Fig. 5 shows CMHurst and CStdHurst series in
BIDMC Congestive Heart Failure database. There are two different kinds of CMHurst series in
this database. The values of CMHurst in the first kind are very low and change very little. Most
of them are around 0.5 or even lower than 0.5. The curve nearly overlap the line y=0.5 and
corresponding CStdHurst is nearly 0. The value of CMHurst in the second kind change relatively
larger and corresponding CStdHurst is larger than the value in the first kind. It can be seen
CMHurst series of the second database often exceed 1.29 or are lower than 0.5. The top dot curve
change quickly and the value of corresponding CStdHurst exceeds 0.4. From iteration 0 to 20, the
value decreases from 1.4 to 0.75. The value of the Hurst series is mainly in [1.3, 1.4] and [0.5, 0.6],
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Fig. 4: The CMHurst and CStdHurst series were calculated from RR time series of all subjects in Normal
Sinus Rhythm Database. These curves look similar, and they are converging
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Fig. 5: The CMHurst and CStdHurst series were calculated from RR time series of all subjects in
BIDMC Congestive Heart Failure Database
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Fig. 6: The CMHurst and CStdHurst series were calculated from RR time series of all subjects in Sudden
Cardiac Death Holter Database

the two different region. This curve is obviously the second kind. If we use [0.5, 1.29] for CMHurst
and 0.37 for CStdHurst as criteria, all record of the second databases can be distinguished from
the first database before iteration 20, except record “48M” and “63M”. After iteration 100, we
use [0.60, 1.29] for CMHurst, the rest records of this database can be distinguished from the first
database. The CMHurst and CStdHurst in Sudden Cardiac Death Holter Database are similar
to those in the second database. There are 7 records which can be distinguished from the first
database by [0.5, 1.29] for CMHurst and 0.37 for CStdHurst as criteria. After iteration 100,
record 41 and 51 are distinguished by [0.6, 1.29] for CMHurst. After iteration 500, record 35 is
distinguished by [0.65, 1.29] for CMHurst. After iteration 2000, record 49 is distinguished by [0.8,
1.29] for CMHurst.

4 Conclusion

For human-robot interaction in a collaborative task, it is very important that they know each
other’s status, and human physical status should affect the task execution. HRV provides a win-
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dow through which we can observe the heart ability to respond to disturbance that can affect its
rhythm. The distribution of heartbeat interval has a fractal appearance, Hurst parameter is a
good tool to analyze it. In this paper, we propose two indices CMHurst and CStdHurst based
on slide window Hurst series which are calculated from RR time series by fractional differintegra-
tion. Healthy and unhealthy heart status display different CMHurst and CStdHurst series. The
result shows the record of Normal Sinus Rhythm Database can be discriminated from other two
databases by these two indices.

In this paper, the sample size is not large enough, and Hurst series calculated from RR time
series is only used in heart health analysis. The continue work is to test more samples, and use
Hurst series in analysis of stress, downiness and hydration.
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