RIOTS 95 — a MATLAB Toolbox for Solving General Optimal
Control Problems And Its Applications to Chemical Processes

ADAM L. SCHWARTZ
LGC Wireless Inc.
2540 Junction Avenue, San Jose, CA 95134-1902, USA
E-mail: adam@lgcwireless.com
URL: http://www.accesscom.com/~adam

YANGQUAN CHEN
Center for Self-Organizing and Intelligent Systems (CSOIS),
Dept. of Electrical and Computer Engineering, 4160 Old Main Hill,
Utah State University, Logan, UT 84322-4160, USA.
E-mail: yqchen@ieee.org
URL: http://www.crosswinds.net/ yqchen

ABSTRACT

RIOTS 95 is a group of programs and
utilities, written mostly in C, Fortran and
M-file scripts and designed as a toolbox
for Matlab ! , that provides an interac-
tive environment for solving a very broad
class of optimal control problems. RIOTS 95
comes pre-compiled for use with the Windows
95/98/2000 or Windows NT operating sys-
tems. This Chapter describes the use and op-

Matlab is a registered trademark of Mathworks, Inc.
(http://wuw.mathworks.com/)

eration of RIOTS 95 together with a demon-
strative example in solving optimal control
problems appeared in chemical enigneering.

The numerical methods wused by
RIOTS 95 are supported by the theory
in the PhD. Dissertations of Dr. Adam
L. Schwartz [1], which uses the approach
of consistent approximations as defined by
Polak [2]. In this approach, a solution is
obtained as an accumulation point of the
solutions to a sequence of discrete-time
optimal control problems that are, in »

specific sense, consistent approximations
to the original continuous-time, optimal
control problem. The discrete-time optimal
control problems are constructed by dis-
cretizing the system dynamics with one of
four fixed step-size Runge-Kutta integration
methods and by representing the controls
as finite-dimensional B-splines. Note that
RIOTS 95 also includes a variable step-size
integration routine and a discrete-time
solver. The integration proceeds on a (pos-
sibly non-uniform) mesh that specifies the
spline breakpoints. The solution obtained
for one such discretized problem can be
used to select a new integration mesh upon
which the optimal control problem can be
re-discretized to produce a new discrete-time
problem that more accurately approximates
the original problem. In practice, only a few
such re-discretizations need to be performed
to achieve an acceptable solution.

RIOTS_95 provides three different pro-

grams that perform the discretization and
solve the finite-dimensional discrete-time
problem. The appropriate choice of opti-
mization program depends on the type of
problem being solved as well as the number of
points in the integration mesh. In addition to
these optimization programs, RIOTS 95 also
includes other utility programs that are used
to refine the discretization mesh, to compute
estimates of integration errors, to compute
estimates for the error between the numeri-
cally obtained solution and the optimal con-
trol and to deal with oscillations that arise
in the numerical solution of singular optimal
control problems.
Key words: Optimal control prob-
lem solver, MATLAB Toolbox, consistent
approximation, B-splines, Runge-Kutta
integration, fed-batch chemical process.

1. INTRODUCTION

Optimization is a routine work in engi-
neering practice. In general, optimization
tasks can be classified into two categories:
static optimization tasks and dynamic ones.
Dynamic optimization has not been devel-
oped as "matured” as static optimization.
More often, dynamic optimization is referred
to as ”optimal control problems (OCPs)”.
Numerical methods for solving optimal con-
trol problems have not reached the stage
that, say, methods for solving differential
equations have reached. Solving an optimal
control problem can, depending on the diffi-
culty of the problem, require significant user
involvement in the solution process. This
sometimes requires the user to understand
the theory of optimal control, optimization
and/or numerical approximation methods.
Among the existing software packages for nu-
merically solving dynamic optimization o1
optimal control problems, such as SOCS [3].
RIOTS 95 [4], DIRCOL [5], or MISERZ3 [6], nc
single program can solve all sort of problems.
For example, a typical challenge is the opti-
mal drug scheduling for cancer chemotherapy
problem [7]. For a recent survey on solving

OCPs, refer to [8].

Nevertherless, theoretically speaking, it
is well known that dynamic programming
(DP) of Bellman can solve all types of OCPs
9, 10, 11]. It is a powerful method for solv-
ing optimization problems by breaking up s
complex optimization problem into a num-
ber of simpler problems. The solution of
the simpler problems leads to the solution
of the original problem. This is an attrac-
tive feature with guaranteed global optimum.
Although the computers are now more and

more powerful, use of dynamic programming
idea to solving OCPs is still not popular to-
day due to the inherent drawbacks of DP
method: curse of dimensionality, problems
in the expanding grids and problems in the
interpolations etc., that limit its use to only
solving problems of very low dimension. To
overcome these limitations, the author Rein
Luus suggested using DP in an iterative fash-
ion, first introduced in [12] in terms of "It-
erative Dynamic Programming (IDP)”. Af-
ter 10 years development, IDP has evolved
as a standard macro numerical procedure to
cost-effectively solve various hard OCPs as
evidenced in the book [13] with a published
book review [14].

In view of the above discussions, while
solving OCPs is still an “art’, it is im-
portant to have a good software environ-
ment for the user to play with. Ideally, no
compiling/linking is requred. To this re-
gard, RIOTS 95 is the most favorable due
to the MATLAB platform. RIOTS_95 is de-
signed as a MATLAB toolbox written mostly
in C, Fortran and M-file scripts. It pro-
vides an interactive environment for solving
a very broad class of optimal control prob-
lems. RIOTS_95 comes pre-compiled for use
with the Windows 95/98/2000 or Windows
NT operating systems. The user-OCPs can be
prepared purely in M-files and no compiler is
needed to solve the OCPs. To speed up the
OCP solving process, there are two ways go:
by using the MATLAB Compiler or by pro-
viding the user-OCP in C which is to be com-
piled by a C-compiler and then linked with
some pre-built linking libraries (currently,
only WATCOM C compiler is supported).
This Chapter describes the use and opera-
tion of RIOTS 95 together with a demonstra-
tive example in solving optimal control prob-

lems appeared in chemical enigneering. We
will demonstrate both M-file interface and
the CMEX/DLL interface with detailed user-
supplied codes listed in the Appendices A
and B.

The major objective of this Chapter is
to demonstrate that RIOTS 95 is an efficient
and easy-to-use platform for solving OCPs
through two examples. After introducing
the major features of RIOTS 95 in Sec. 2.
the optimal control problems which can
be handled by RIOTS 95 are described in
Sec. 3. Section 4 presents the first example
for the textbook bang-bang OCP (M-files
listed in Appendix A). Section 4 presents
the second example for a relatively tough
OCP of a bed-batch fermentor (C-files listed
in Appendix B). Finally, concluding remarks
and future work are discussed in Sec. 6.

2. MAJOR FEATURES OF RIOTS 95

The name RIOTS stands for “Recursive
2 Integration Optimal Trajectory Solver.”
This name highlights the fact that the func-
tion values and gradients needed to find the
optimal solutions are computed by forward
and backward integration of certain differen-
tial equations.

This chapter describes the implementa-
tion of a Matlab Toolbox called RIOTS 95 for
solving optimal control problems.

RIOTS_95 3 is a collection of programs
that are callable from the mathematical sim-
ulation program Matlab for Windows. Most
of these programs are written in either C.

2 [terative is more accurate but would not lead to a nice
acronym.

3Tt is runnable in Matlab version 4.0, 4.2¢, 5.x, or 6.0. Spline
Toolbox is required. Evaluation versions are downloadable fromr
http://www.accesscom. com/~adam/RIOTS/

Fortran (and linked into Matlab using Mat-
lab’s MEX/DLL facility) or Matlab’s M-
script language. All of Matlab’s functional-
ity, including command line execution and
data entry and data plotting, are available
to the user. The following is a list of some of
the main features of RIOTS 95.

e Solves a very large class of finite-time
optimal controls problems that includes:
trajectory and endpoint constraints, con-
trol bounds, variable initial conditions
(free final time problems), and problems
with integral and/or endpoint cost func-
tions.

e System functions can be supplied by the
user as either object code or M-files.

e System dynamics can be integrated with
fixed step-size Runge-Kutta integration,
a discrete-time solver or a variable step-
size method. The software automatically
computes gradients for all functions with
respect to the controls and any free ini-
tial conditions. These gradients are com-
puted exactly for the fixed step-size rou-
tines.

e The controls are represented as splines.
This allows for a high degree of function
approximation accuracy without requir-
ing a large number of control parameters.

e The optimization routines use a coordi-
nate transformation that creates an or-
thonormal basis for the spline subspace
of controls. The use of an orthogonal ba-
sis can results in a significant reduction in
the number of iterations required to solve
a problem and an increase in the solu-
tion accuracy. It also makes the termina-
tion tests independent of the discretiza-
tion level.

e There are three main optimization rou-
tines, each suited for different levels oi
generality of the optimal control prob-
lem. The most general is based on se-
quential quadratic programming meth-
ods. The most restrictive, but most ef-
ficient for large discretization levels, is
based on the projected descent method.
A third algorithm uses the projected de-
scent method in conjunction with an aug-
mented Lagrangian formulation.

e There are programs that provide esti-
mates of the integration error for the
fixed step-size Runge-Kutta methods
and estimates of the error of the numer-
ically obtained optimal control.

e The main optimization routine includes &
special feature for dealing with singulax
optimal control problems.

e The algorithms are all founded on rigor-
ous convergence theory.

In addition to being able to accurately
and efficiently solve a broad class of optimal
control problems, RIOTS 95 is designed in s
modular, toolbox fashion that allows the user
to experiment with the optimal control algo-
rithms and construct new algorithms. The
programs outer and aug lagrng, described
in detail in [4], are examples of this toolbox
approach to constructing algorithms.

RIOTS 95 is a collection of several dif-
ferent programs (including a program which
is, itself, called riots) that fall into roughly
three categories: integration/simulation rou-
tines, optimization routines, and utility pro-
grams. Of these programs, the ones avail-
able to the user are listed in the following
table, Several of the programs in RIOTS 9t
require functions that are available in the

Table 1: Three categories of programs in RIOTS 95

Simulation Optimization | Utility
Routines Routines Programs
simulate riots control_error
check_deriv | pdmin distribute
check_grad | aug_lagrng est_error
eval_fnc outer make_spline
transform

Matlab Spline toolbox. In addition to these
programs, the user must also supply a set
of routines that describe the optimal control
problem which must be solved. Several ex-
ample optimal control problems come sup-
plied with RIOTS 95. Finally, there is a Mat-
lab script called RIOTSdem which provides a
demonstration of some of the main features
of RIOTS_95.

Limitations: This is the first version of
RIOTS 95. As it stands, there are a few sig-
nificant limitations on the type of problems
which can be solved by RIOTS_95:

e Problems with inequality state con-
straints that require a very high level
of discretization cannot be solved by
RIOTS 95. Also, the computation of gra-
dients for trajectory constraints is not
handled as efficiently as it could be.

e Problems that have highly unstable, non-
linear dynamics may require a very good
initial guess for the solution in order to
be solved by RIOTS 95.

e General constraints on the controls that
do not involve state variables are not
handled efficiently: adjoints are com-
puted but not used.

e RIOTS 95 does not allow delays in the
systems dynamics (although Padé ap-
proximations can be used).

e Numerical methods for solving optimal
control problems have not reached the
stage that, say, methods for solving dif-
ferential equations have reached. Solv-
ing an optimal control problem can, de-
pending on the difficulty of the problem:.
require significant user involvement in
the solution process. This sometimes re-
quires the user to understand the theory
of optimal control, optimization and/o1
numerical approximation methods.

3. OPTIMAL CONTROL PROB-
LEMS IN RIOTS. 95

RIOTS 95 is designed to solve optimal
control problem of the form *

OCP: min {f(u¢)=g.(¢ ()
+/ (t, z,u)d }
subject to:
b= hte,0), w(a)=¢ teab],

umfm(t) < U](t) < u%wx()’] = 17' T, M,
mm—€] <€ ax?.] :1,"',71,

Bt a(t) u(®) <0, vEan t€ ol
gu(&,z(b) <0, veEQq,
9ee(&,w(b)) =0, v € qe,

where z(t) € R", u(t) € R™ g : R" X
R" - R, Il : RxR"XR"™ — R, h
R x R® x R™ — R"™ and we have used

the notation q = 1,---,q and L7[a,b] is
the space of Lebesgue measurable, essentially
bounded functions [a,b] — R™. The func-
tions in OCP can also depend upon parame-
ters which are passed from Matlab at execu-
tion time using get _flags. Refer to [4](Sec.
4) for details.

4Not all of the optimization routines in RIOTS_95 can handle
the full generality of problem OCP.

The subscripts o, ti, ei, and ee on the
functions g¢(-,-) and I(-,-,:) stand for, re-
spectively, “objective function”, “trajectory
constraint”, “endpoint inequality constraint”
and “endpoint equality constraint”. The
subscripts for g(-,-) and I(-,-,-) are omitted
when all functions are being considered with-
out regard to the subscript. The functions
in the description of problem OCP, and the
derivatives of these functions °, must be sup-
plied by the user as either object code or as
M-files. The bounds on the components of xi
and u are specified on the Matlab command
line at run-time.

The optimal control problem OCP al-
lows optimization over both the control v and
one or more of the initial states £&. To be con-
cise, we will define the variable

n=(uw¢) € Hy=Ll[a,b] x R".

With this notation, we can write, for ex-
ample, f(n) instead of f(&,u). We define the
inner product on H, as

<M, Mo >p,=<u, U >r, + < &,&% >

The norm corresponding to this inner prod-
uct is given by || 7 ||m,=< 1,71 >}q/22. Note
that H, is a pre-Hilbert space.

Transcription for Free Final Time
Problems. Problem OCP is a fixed final
time optimal control problem. However, free
final time problems are easily incorporated
into the form of OCP by augmenting the
system dynamics with two additional states
(one additional state for autonomous prob-
lems). The idea is to specify a nominal time
interval, [a,b], for the problem and to use
a scale factor, adjustable by the optimiza-

5If the user does not supply derivatives, the problem can
still be solved using riots with finite-difference computation
of the gradients.

tion procedure, to scale the system dynam-
ics and hence, in effect, scale the duration
of the time interval. This scale factor, and
the scaled time, are represented by the extra
states. Then RIOTS 95 can minimize over the
initial value of the extra states to adjust the
scaling. For example, the free final time op-
timal control problem

a+T1 ~
ming(T,y(T) + [1t,y,w)dt

subjectto ¥ = h(t,y,u),y(a) = (,t € [a,a+T

can, with an augmented state vector z =
(y, 2" 1, 2"), be converted into the equivalent
fixed final time optimal control problem

r&irgg(f, z(b)) + /ab I(t, z,u)dt

x"ﬁ(az”fl, Y, u)

subjectto & = h(t,x,u) = "
0

¢
o)== a |, t€]ab],

gn

where y is the first n — 2 components of
z, 9(§2(b)) = gla + TE,y(b)), It z,u) =
[(z" ', y,u) and b = a + T. Endpoint and
trajectory constraints can be handled in the
same way. The quantity T' = b — a is the
nominal trajectory duration. In this tran-
scription, ™ ! plays the role of time and &”
is the duration scale factor so named because
T¢™ is the effective duration of the trajecto-
ries for the scaled dynamics. Thus, for any
t€la,b], 2™(t) =& 2" H(t) = a+ (t — a)f"
and the solution, ¢, for the final time is t; =
2" 1b) = a+ (b — a)f™. Thus, the optimal
duration is 7% =ty —a = (b — a)" = T¢"
If a =0and b =1, then t;y = T% = ¢
The main disadvantage to this transcription

is that it converts linear systems into nonlin-
ear systems.

For autonomous systems, the extra vari-

able 21 is not needed. Note that, it is pos-
sible, even for non-autonomous systems, to
transcribe minimum time problems into the
form of OCP using only one extra state vari-
able. However, this would require functions
like h(t,x,u) = h(tz",y,u). Since RIOTS_95
does not expect the user to supply deriva-
tives with respect to the ¢t argument it can
not properly compute derivatives for such
functions. Hence, in the current implementa-
tion of RIOTS_95, the extra variable 2" ! is
needed when transcribing non-autonomous,
free final time problems.
Trajectory constraints. The defini-
tion of problem OCRP allows trajectory con-
straints of the form [;;(¢, z,u) < 0 to be han-
dled directly. However, constraints of this
form are quite burdensome computationally.
This is mainly due to the fact that a sepa-
rate gradient calculation must be performed
for each point at which the trajectory con-
straint is evaluated.

At the expense of increased constraint vi-
olation, reduced solution accuracy and an in-
crease in the number of iterations required to
obtain solutions, trajectory constraints can
be converted into endpoint constraints which
are computationally much easier to handle.
This is accomplished as follows. The sys-
tem is augmented with an extra state vari-

able z"*1 with
") = pmax{0, I (¢, z(t), u(t))}* |

" (a) =0,

where p > 0 is a positive scalar. The right-
hand side is squared so that it is differen-
tiable with respect to x and u. Then it is

clear that either of the endpoint constraints
gei (&, 2(b)) = 2"1(B) <0 or

Gee(&, (b)) = 2" (B) = 0

is satisfied if and only if the original tra-
jectory constraint is satisfied. In practice.
the accuracy to which OCP can be solved
with these endpoint constraints is quite lim-
ited because these endpoint constraints dc
not satisfy the standard constraint qualifi-
cation (see detailed description in Sec. 4 of
[4]). This difficulty can be circumvented by
eliminating the constraints altogether and.
instead, adding to the objective function the
penalty term g,(&, z(b)) = 2™*1(b) where now
L serves as a penalty parameter.

However, in this approach, p must now
be a large positive number and this will ad-
versely affect the conditioning of the prob-
lem.

Continuum Objective Functions and
Minimax Problems. Objective func-
tions of the form

min max [(t, z(t), u(t))

U tela,b]

can be converted into the form used in prob-
lem OCP by augmenting the state vector
with an additional state, w, such that

w=0; w(0)=¢"

and forming the equivalent trajectory con-
strained problem
: n+1
Jain, &

subject to
1t z(t),u(t) =€ <0, telab].

A similar transcription works for standard
min-max objective functions of the form

: 14 b v
minmax g (u, €) + [(), u()dt

In this case, an equivalent endpoint con-
strained problem with a single objective

function,

Hﬂn.§n+1
u’§n+1

subject to

§V<u7€)__'€n+lf§ 07 S Qo

is formed by using the augmented state vec-
tor (z,w, z) with

w=0, w()=¢*
2V =1"(t,z(t),u(t)) , 2(0)=0,
and defining

9" (u, &) = g"(u, &) + 2"(b) .

Ve,

4. EXAMPLE 1: BANG-BANG OCP

This is a textbook OCP problem [15,
p. 112] with control bounds and free final
time. It is used to demonstrate the tran-
scription, explained in Sec. 3, of a free final
time problem into a fixed final time problem.
The transcribed problem has bounds on the
control and free initial states. Also, distrib-
ute.m (see [4]) is used to improve integra-
tion mesh after an initial solution is found.
A more accurate solution will then be com-
puted by re-solving the problem on the new
mesh. For self-containing, this OCP is given
as follows:

Problem Bang: minJ(u,T)="T

u, T
subject to
1 =m9; x1(0) = 0,21(T) = 300
o =u; 22(0) =0,29(T) =0

and

—2<u(t) <1, Vtel0,T].

This problem has an analytical solution
which is given by T* = 30. When ¢ € [0, 20).
u*(t) = 1, zi(t) = t2/2, x5(t) = t while
when t € [20,30], u*(t) = —2, zj(t) =
—t2 4+ 60t — 600, x3(t) = 60 — 2t.

The above OCP is a minimum-time prob-
lem with two states and one input. This
problem is converted into a fixed final time
problem using the transcription described
in Sec. 3. Only one extra state variable
was needed since the problem has time-
independent (autonomous) dynamics. The
augmented problem is implemented in the
M-file form listed in Appendix A. First we
will define the integration mesh and then the
initial conditions.

>> N = 20; % Discretization level
>> T = 10; % Nominal final time
>> t=[0:T/N:T]; % Nominal time interval

The nominal time interval is of duration
T. Next, we specify a value for xi*, the du-
ration scale factor, which is the initial condi-
tion for the augmented state. The quantity
T3 represents our guess for the optimal du-
ration of the maneuver.

>> x0=[0 0 1]’; % Init. cond. for aug. sys.
>> fixed=[1 1 0]’; 9% with init. cond. fixed
>> x0_lower=[0 0 .1]’;%free init.cond. low bnd
>> x0_upper=[0 0 10]’;%free init.cond. up bnd
>> X0=[x0,fixed,x0_lower,x0_upper]
X0 =

0 1.0000 0 0

0 1.0000 0 0

1.0000 0 0.1000 10.0000

The first column of X0 is the initial condi-
tions for the problem; there are three states
including the augmented state. The ini-
tial conditions for the original problem were

z(0) = (0,0)T. The initial condition for the
augmented state is set to z0(3) = & =1 to
indicate that our initial guess for the opti-
mal final time is one times the nominal final
time of T' = 10, i.e. £3T. The second column
of X0 indicates which initial conditions are
to be considered fixed and which are to be
treated as free variables for the optimization
program to adjust. A one indicates fixed and
a zero indicates free. The third and fourth
col umns provide lower an upper bound for
the free initial conditions.

>> u0=zeros(1,N+1) ;% f=x(3,1)=x0(3)
>> [u,x,f]l=riots(X0,u0,t,-2,1,[]1,100,2);
>> £*T % Show the final time.
ans =
29.9813

In this call to riots, we have also speci-
fied a lower bound of -2 and an upper bound
of 1 for all of the control spline coeflicients.
Since we are using second order splines, this
is equivalent to specifying bounds on the
value of the control at the spline breakpoints,
i.e. bounds on u(t;). We also specify that the
second order Runge-Kutta integration rou-
tine should be used. The objective value
f = &3 is the duration scale factor. The final
time is given by a + (b — a)&3 = T¢& = 10f.
Here we see that the final time is 29.9813. A
plot of the control solution indicates a fairly
broad transition region whereas we expect a
bang-bang solution. We can try to improve
the solution by redistributing the integration
mesh. We can then re-solve the problem
using the new mesh and starting from the
previous solution interpolated onto the new
mesh. This new mesh is stored in new_t, and
new_u contains the control solution interpo-
lated onto this new mesh.

>> [new_t,new_u]=distribut(t,u,x,2,[],1,1);

redistribute_factor = 7.0711
Redistributing mesh.

>> X0(:,1) = x(:,1);
>> [u,x,f]=riots(X0,new_u,new_t,-2,1,[],100,2);
>> £x10
ans =
30.0000

Notice that before calling riots the sec-
ond time, we set the initial conditions (the
first column of X0) to x(:,1), the first col-
umn of the trajectory solution returned from
the preceding call to riots. Because £ is
a free variable in the optimization, x(3,1)
is different than what was initially specified
for x0(3). Since x(3,1) is likely to be closer
to the optimal value for £ than our original
guess we set the current guess for X0(3,1)
to x(3,1). We can see the improvement in
the control solution and the solution for the
final time. The reported final time solution
is 30 and this happens to be the exact an-
swer. The plot of the control solution before
and after the mesh redistribution is shown
below. The circles indicate where the mesh
points are located. The improved solution
does appear to be a bang-bang solution.

5. EXAMPLE 2: FED-BATCH RE-
ACTOR OPTIMIZATION

The fed-batch fermentor involving
biosynthesis of penicillin was studied by
Lim et al. [16] and revised by Cuthrell and
Biegler [17], where the system is described
by the four differential equations

dwl h i

— = Ty — u

dt 500,

dzo T2

— = hoxy — 0.01zy —

dt 2 2 5002y
dwg hlxl hgxl (l029$3$1

dt 047 1.2 0.0001 + z3

Solution on uniform mesh Solution on redistributed mesh

Optimal Control

25 i ‘ 25
0 0

Figure 1: Bang-bang OCP solutions with and without
mesh re-distribution

500 — z3
—u
500z 4
dzy U
— 1
dt 500 (1)
with
0.11x5
h, =
0.006z; + x3
0.0055
hy = & (2)

0.0001 + z3(1 + 10z5)

where z; is the biomass concentration [g/1],
xo the penicillin concentration [g/1] (product
concentration [g/l]), z3 the glucose concen-
tration [g/l] (nutrition concentration [g/l]),
x4 the working volume of fermentor [l] and
u the glucose feeding rate [1/h]. The initial
state 1s

x(0)=1[1.5 0 0 7] (3)
The constraints on the feed rate are
0 <wu <50, (4)
and on the state variables are
0 <z <40
0<x3<25

z4(ty) =10 =0 (5)

where ¢ is the batch time. The performance
index to be maximized is the total amount
of penicillin produced at time t¢, given by

Jlu] = —za(ts)za(ty). (6)

The optimal control problem is to find the
batch time ¢; and the control policy u(t) in
the time interval 0 < ¢ < t; so that the per-
formance index given in (6) is minimized J[u
(or xo(tys)xs(ty) maximized) and all the con-
straints are satisfied.

Determining the optimal control policy
of highly nonlinear systems in the presence
of state constraints is a very difficult prob-
lem. To handle the state equality constraint
(for x4) and state inequality constraints (for
z1 and z3), we introduce the auxiliary vari-
ables x5, ¢ and x; through the differential
equations

wl(xl — 40)2 if r1 > 40
dCE5 . . \
= 0 if 0 <ay <40 (7)
w3 if z;1 <0
UJ3(CE'3 — 25)2 if T3 > 25
dCE’@ . . \
— = 0 if 0 <z3 <25 (8
dt 9)
W35 if z3 < 0.
UJ4(CE'4 — 10)2 if ry > 10
diL’7 o) \
— = 0 if0<xzy <10 (9
dt 9)
Wyx] if 4 < 0.

where wy, w3 and w, are positive constants
specified by the user. The above treatment
for state constraints on x; and z3 is similaz
to what was done by Mekarapiruk and Luus
[18], and by Luus and Hennessy [19] to han-
dle the state inequality constraints. The ini-
tial conditions for x5, ¢ and x; are chosen
zero. If constraints are violated then these
auxiliary variables will become positive. We
now are ready to form the augmented perfor-
mance index to be minimized

J1=J + za(ty) + @s(ty) + xe(ty). (10)

The C source codes (0CP1.C) for the
above transcribed OCP are listed in Appen-
dix B. Within MATLAB, the following script
will generate the simulate.dll for running

the OCP

>> mex -V4 simulate.obj utility.obj ocpl.c ...
drivers.lib 1ibf77.1ib 1ibi77.1lib;

Here 1ibf77.1ib and 1ibi77.1ib are
the official libraries for £2c 5. simulate.obj
and utility.obj are precompiled objective
files for the RIOTS 95 users. drivers.lib
contains all the supported integration meth-
ods including the LSODA 7 module con-
verted from its Fortran form.

Now we are ready to solve this OCP via
RIOTS 95. This is shown in the following
scripts.

>> N = 126%2; T = 126.5; t = [0:T/N:T];

>> u00=16.5; % initial control is a constant

>> U_max=50; % maximum control (upper limit)

>> u0 = u00+zeros(1,N); Yuse Spline of order 1

> x0=[1.5007 000 1]’; % initial states

>> simulate(0,[1,1,1]);%initialization of simu.

>> [f,x]=simulate(1,x0,u0,t,5,2);

>> disp(’Before Optimization, J value =’)

>> x(2,N+1) *x(4,N+1)

>> tic

>> [u,x,f]=riots(x0,u0,t,0,U_max,[1,1,1],...
[100,.01],5);

>> toc

>> disp(’Optimal value =’); x(2,N+1)*x(4,N+1)

We first run the simulate without per-
forming the optimization using just the ini-
tial states. Of course, the state trajectories
may violate the contraints although the J
value looks bigger.

5For more information on f2c, visit
http://www.netlib.org/f2c/.
"See http://www.netlib.no/netlib/odepack/ for details.

Fed-batch penicillin biosynthesis
This is a nonlinear system with 7 states,
1 inputs and 3 parameters,

LSODA detected stiffness.
Before Optimization, J value = 112.1933

Now by calling riots, we proceed tc
sovle the OCP via the embedded NPSOL mod-
8. The following lists a part of the run-
ning results.

ule

Treating linear constraints as nonlinear.
LSODA detected stiffness.

Calling NPSOL.

LSODA detected stiffness.

I
©

Exit NP phase. Inform 6 Majits

33 ngrad

]
©

nfun
Exit NPSOL-Current point cannot be improvd upon

Final nonlinear objective value = -84.53666
Completed 9 riots iterations.Line search failed

13.5600
84 .5367

elapsed_time =
Optimal value =

We can see that the solving process is
quite fast. Now, based on the above solu-
tion, a call to distribute will automatically
re-distribute the mesh points and then based
on the new mesh, we can call one more time
riots to refine the solution. This is illus-
trated as follows:

>> [new_t,new_u]l=distribut(t,u,x,5,[]1,0,1);

>> [u,x,f]l=riots(x0,new_u,new_t,0,U_max,
[1,1,1],50,5);

>> disp(’Optimal value after distribut()=’)

>> x(2,N+1) *x(4,N+1)

From the results listed below, we can see
that the optimal performance has been im-

proved from 84.5367 to 86.58981 which is
about 2.43% more productive.

8See http://www.sbsi-sol-optimize.com/NPSOL.htm for
details.

Changing spline order.

Calling NPSOL.

3
3

Exit NP phase. Inform 6 Majits

19 ngrad

nfun
Exit NPSOL-Current point cannot be improved upon

Final nonlinear objective value = -86.58981

Completed 3 riots iterations. Line search failed
elapsed_time = 4.9500

Optimal value after distribut()= 86.5897

The detailed optimal control function
and the states are shown in Fig. 2 and Figs. 3-
4. We can conclude that by using RIOTS 95,
it is relatively easy to obtain an optimal so-
lution with reasonable accurary and compu-
tational cost. Notice that all optimal re-
sults shown in this chapter are for the fixed
ty = 126.5 hours.

It should be mentioned that, so far, the
maximum yield of J = 88.076 is obtained
with 6, = 0 and with the corresponding
batch time ¢; 139.48 h as reported in [13].
It was noted in [13] that the performance in-
dex is not affected much if the batch time ¢
is reduced from 139.48 yielding J = 88.076
to t; = 132 giving J = 88.009. A 5% reduc-
tion in batch time reduces the yield by only
0.1%.

6. Future Work

This version of RIOTS_95 was developed
over a period of more than two years. Many

Figure 2: The optimial control function u

desirable features that could have been in-
cluded were omitted because of time con-
straints. Moreover, there are many exten-
sions and improvements that we have envi-
sioned for future versions. We provide here
a synopsis of some of the improvements cur-
rently being planned for hopefully, upcoming
versions of RIOTS 95.

1. Automatic Differentiation of
supplied functions. This would provide
automatic generation of the deriva-
tive functions Dh, D1 and Dg using

USET~

techniques of automatic differentiation
20, 21].

2. Extension to Large-Scale Problems.
The size of the mathematical program-
ming problem created by discretizing an
optimal control problem (the way it is
done in RIOTS 95 depends primarily on
the discretization level N. The work
done by the projected descent algorithm.
pdmin, grows only linearly with N and

hence pdmin (aug lagrng) can solve

35

0 50 100 150
Time (hour)

Figure 3: Optimal trajectories for z; and x3

very large problems. However, these
programs cannot handle trajectory con-
straints or endpoint equality constraints
9 The main program in, riots, is
based on dense sequential quadratic pro-
gramming (SQP). Hence, riots is not
well-suited for high discretization levels.
There are many alternate strategies for
extending SQP algorithms to large-scale
problems as discussed in [1] (Chapter 6)
The best approach is not known at this
time and a great deal of work, such as
the work in [22, 23, 24, 25| as well as our
on investigations, is being done in this
area.

. Tragectory constraints.

Our current method of computing func-
tions gradients with respect to the con-
trol is based on adjoint equations. There
is one adjoint equation for each function.
This is quite inefficient when there are

. Stabilization of Iterates.

10

N T .

0 50 100 150
Time (hour)

Figure 4: Optimal trajectories for x5 and x4

trajectory constraints because for each
trajectory constraint there is, in effect.
one constraint function per mesh point.
Thus, for an integration mesh with N +1
breakpoints, roughly N adjoint equations
have to be solved to compute the gradi-
ents at each point of a trajectory con-
straint. An alternate strategy based on
the state-transition (sensitivity) matrix
may prove to be much more efficient.
Also, it is really only necessary to com-
pute gradients at points, t;, where the
trajectory constraints are active or near-
active. The other mesh points should
be ignored. Algorithms for selecting the
active or almost active constraint are
present in [26, 27| along with convergence
proofs.

One of the
main limitations of the current imple-

mentation of RIOTS is that it is not well-
equipped to deal with problems whose

9Endpoint inequality constraints can be handled effectively
with aug_lagrng by incorporating a suitable active constraint
set strategy.

dynamics are highly unstable. For such
problems, the iterates produced by the

optimization routines in RIOTS can eas-
ily move into regions where the system
dynamics “blow-up” if the initial con-
trol guess is not close to a solution. For
instance, a very difficult optimal con-
trol problem is the Apollo re-entry prob-
lem [28]. This problem involves find-
ing the optimum re-entry trajectory for
the Apollo space capsule as it enters
the Earth’s atmosphere. Because of
the physics of this problem, slight de-
viations of the capsules trajectory can
cause the capsule to skip off the Earth’s
atmosphere or to burn up in the at-
mosphere. Either way, once an iterate
is a control that drives the system into
such a region of the state-space, there is
no way for the optimization routine to re-
cover. Moreover, in this situation, there
is no way to avoid these regions of the
state-space using control constraints.

This problem could be avoided using con-
straints on the system trajectories. How-
ever, this is a very expensive approach
for our method (not for collocation-based
methods), especially at high discretiza-
tion levels. Also, for optimization meth-
ods that are not feasible point algo-
rithms, this approach still might not
work. An intermediate solution is possi-
ble because it is really only necessary to
check the trajectory constraints at a few
points, called nodes, in the integration
mesh. This can be accomplished as fol-
lows. Let t; be one such node. Then de-
fine the decision variable zj(which will
be taken as the initial condition for in-
tegrating the differential equations start-
ing at time ?;. This 7 is allowed to be
different than the value Z; of the state
integrated up to time t;. However, to

ensure that these values do, in fact, co-
incide at a solution, a constraint of the
form g(u) = &1 90—, = 0 must be added
at each node. Note that, for nonlineai
systems, gx(u) is a nonlinear constraint,
The addition of these node variables al-
lows bounds on that states to be applied
at each node point. This procedure is
closely related to the multiple shooting
method for solving boundary value prob-
lems and is an intermediate approach be-
tween using a pure control variable pa-
rameterization and a control/state para-
meterization (as in collocation methods).
See [29] for a discussion of node place-
ment for multiple shooting methods.

. Other Issues and FExtensions. Some

other useful features for RIOTS would
include:

e A graphical user interface. This
would allow much easier access to the
optimization programs and selection
of options. Also, important informa-
tion about the progress of the opti-
mization such as error messages and
warnings, condition estimates, step-
sizes, constraint violations and opti-
mality conditions could be displayed
in a much more accessible manner.

e Dynamic linking. Currently, the user
of RIOTS must re-link simulate for
each new optimal control problem.
It would be very convenient to be
able to dynamically link in the object
code for the optimal control prob-
lem directly from Matlab (without
having to re-link simulate). There
are dynamic linkers available but
they do not work with Matlab’s
MEX /DLL facility.

e For problems with dynamics that are
difficult to integrate, the main source
of error in the solution to the ap-
proximating problems is due to the
integration error. In this case, it
would be useful to use an integra-
tion mesh that is finer than the con-
trol mesh. Thus, several integration
steps would be taken between control
breakpoints. By doing this, the error
from the integration is reduced with-
out increasing the size (the number
of decision variables) of the approxi-
mating problem.

The variable transformation needed
to allow the use of a standard in-
ner product on the coefficient space
for the approximating problems adds
extra computation to each function
and gradient evaluation. Also, if the
transformation is not diagonal, sim-
ple bound constraints on the controls
are converted into general linear con-
straints. Both of these deficits can be
removed for optimization methods
that use Hessian information to ob-
tain search directions. If the Hessian
is computed analytically, then the
transformation is not needed at all.
If the Hessian is estimated using a
quasi-Newton update, it may be suf-
ficient to use the transformation ma-
trix My or M, as the initial Hessian
estimate (rather than the identity
matrix) and dispense with the vari-
able transformation. We have not
performed this experiment; it may
not work because the the updates
will be constructed from gradients
computed in non-transformed coor-

dinates 10,

e It may be useful to allow the user tc

specify bounds on the control deriva-
tives. This would be a simple matter
for piecewise linear control represen-
tations.

Currently the only way to specify
general constraints on the controls is
using mixed state-control trajectory
constraints. This is quite inefficient
since adjoint variables are computed
but not needed for pure control con-
straints.

Currently there is no mechanism in
RIOTS for to directly handle sys-
tems with time-delays or, more gen-
erally, integro-differential equations
[32]. This would be a non-trivial ex-
tension.

Add support for other nonlinear pro-
gramming routines in riots.

There have been very few attempts
to make quantitative comparisons
between different algorithms for
solving optimal control problems.
The few reports comparing algo-
rithms [33, 34], involve a small num-
ber of example problems, are incon-
clusive and are out of date. There-
fore, it would be of great use to have
an extensive comparison of some of
the current implementations of al-
gorithms for solving optimal control
problems.

Make it easy for the user to smoothly
interpolate from data tables.

0With appropriate choice of Hy, quasi-Newton methods are
invariant with respect to objective function scalings [30, 31]
but not coordinate transformations (which is variable scaling)

References

1]

3]

7]

A. Schwartz, Theory and Implemen-
tation of Numerical Methods Based on
Runge-Kutta Integration for Solving Op-
timal Control Problems, Ph.D. thesis,
U.C. Berkeley, 1996.

E. Polak, “On the use of consistent
approximations in the solution of semi-
infinite optimization and optimal con-

trol problems,” Math. Prog., vol. 62, pp.
385-415, 1993.

John T. Betts, “SOCS:the sparse
optimal control software family,”
Tech. Rep., http://www.boeing.com/

assocproducts/socs/index.html,
1996.

A. Schwartz, E. Polak, and Y. Q.
Chen, RIOTS: A Matlab Tool-
bor for Solving Optimal Control
Problems Version 1.0 for Windows,

http://www.accesscom.com/~adam/
RIOTS, May 1997.

Oskar von Stryk, “DIRCOL:a di-
rect collocation method for the
numerical solution of optimal
control problems,” Tech. Rep.,

http://www-m2.ma.tum.de/ " stryk/
dircol.html, 1997.

L. S. Jennings, M. E. Fisher, K. L.
Teo, and C. J. Goh, “MISERS:
Software for solving optimal con-
trol problems,” Tech. Rep.,

http://www.cado.uwa.edu.au/miser/,
1997.

R. B. Martin, “Optimal control drug
scheduling of cancer chemotherapy,”

8]

9]

[10]

11]

[12]

[13]

[14]

[15]

[16]

Automatica, vol. 28, no. 6, pp. 1113.
1992.

J. T. Betts, “Survey of numerical meth-
ods for trajectory optimization,” Jour-

nal of Guidance, Control, and Dynam-
ics, vol. 21, no. 2, pp. 193-207, 1998.

R. E. Bellman, Dynamic Programminyg.
Princeton University Press, 1957.

R.E. Bellman and S Dreyfus, Appliec
Dynamic Programming, Princeton Uni-
versity Press, 1962.

Dimitri P. Bertsekas, Dynamic Pro-
grammang and Optimal Control, vol. 1 of

Optimization and Computation Series.
Athena Scientific, Nov. 2000.

R. Luus, “Optimal control by dynamic
programming using systematic reduc-
tion in grid size,” Int. J. of Control
vol. 19, pp. 144-151, 1990.

Rein Luus, [lterative Dynamic Program-
ming, vol. 110 of Monographs and Sur-
veys in Pure and Applied Mathematics
Series, Chapman and Hall/CRC, 2000.

YangQuan Chen, “Book review: “Iter-
ative Dynamic Programming” by Rein
Luus,” Int. of Robust and Nonlinea
Control, to appear, 2001.

A. E. Bryson and Y. C. Ho, Appliec
Optimal Control, Hemisphere Publish-
ing Corp., 1975.

H. C. Lim, Y. J. Tayeb, J. M. Modak.
and P. Bonte, “Computational algo-
rithms for optimal feed rates for a class
of fed-batch fermentation: numerical re-
sults for penicillin and cell mass produc-
tion,” Biotechnol. Bioeng., vol. 28, pp.
1480-1420, 1986.

17]

18]

[19]

[20]

[21]

22]

23]

[24]

J. E. Cuthrell and L. T. Biegler, “Com-
putational algorithms for optimal feed
rates for a class of fed-batch fermenta-
tion: numerical results for penicillin and

cell mass production,” Comput. Chem.
Eng., vol. 13, pp. 49-62, 1989.

W. Mekarapiruk and R. Luus, “Optimal
control of inequality state constrained

systems,” Ind. Eng. Chem. Res., vol.
36, pp. 1686—-1694, 1997.

R. Luus and D. Hennessy, “Optimiza-
tion of fed-batch reactors by the Luus-
Jaakola optimization procedure,” Ind.
Eng. Chem. Res., vol. 38, pp. 1948-
1955, 1999.

A. Griewank, “On automatic dif-
ferentiation,” Preprint MCS-P10-
1088 ftp://info.mcs.anl.gov/pub/
tech reports/reports, Argonne
National Laboratory, 1988.

A. Griewank, D. Juedes, and J. Utke,
“ADOL-C: A package for the auto-
matic differentiation of algorithms
written in C/CH+,” Preprint
ftp://info.mcs.anl.gov/pub/ADOLC,
Argonne National Laboratory, 1988.

J. T. Betts and P. D. Frank, “A sparse
nonlinear optimization algorithm,” J.
Optim. Theory and Appl., vol. 82, no. 3,
pp- 519-541, 1994.

J. T. Betts and W.P.Huffman, “Path-
constrained trajectory optimization us-
ing sparse sequential quadratic pro-
gramming,” J. Guidance, Control, and
Dynamics, vol. 16, no. 1, pp. 59-68,
1993.

Henrik Jonson, Newton Method
for Solving Non-linear Optimal Con-

[25]

[26]

27]

28]

[29]

30]

31]

trol Problems with Genereal constraints.
Ph.D. thesis, Linkoping Studies in Sci-
ence and Technology, 1983.

J. C. Dunn and D. P.Bertsekas, “Effi-
cient dynamic programming implemen-
tations of newton s method for uncon-
strained optimal control problems,” J.

Optim. Theory and Appl., vol. 63, no. 1.
pp. 2338, 1989.

J. E. Higgins and E. Polak, “An reac-
tive barrier-function method for solving

minimax problems,” Appl. Math. Op-
tim., vol. 23, pp. 275-297, 1991.

J. L. Zhou and A. L. Tits, “An SQP al-
gorithm for finely discretized continuous
minimax problems and other minimax
problems with many objective func-
tions,” SIAM J. of Optimization anc
Control, 1996.

O. Stryk and R. Bulirsch, “Direct
and indirect methods for trajectory op-

timization,” Annals of Operational Re-
search, vol. 37, pp. 357-373, 1992.

U. Ascher, R. Mattheij, and R. Rus-
sell, Numerical Solution of Boundar
Value Problems for Ordinary Differen-

tial Equations, Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

D. F. Shanno and K. H. Phua, “Ma-
trix conditioning and nonlinear opti-

mization,” Math. Prog., vol. 14, pp.
149-160, 1978.

S. S. Oren, “Perspectives on self-scaling
variable metric algorithms,” J. of Op-
tim. Theory and Appl., vol. 37, no. 2.
pp. 137-147, 1982.

[32] F. H. Mathis and G. W. Reddien, “Dif- % The default value is O for all except
ference approximations to control prob- ; neq = 6 WhiCh[aiefaults to 1.
. . ’ % if params == then setup neq. Otherwise
lems with functional arguments,” SIAM % the system parameters are getting passed.

J. of Control and Optim., vol. 16, no. 3, if isempty(params)

PP- 436_¢L497 1978. % Each row of neq specifies a setting for
% one of the pieces of system
133] D. L. Jones and J. W. Finch, “Compari- k information. For example, to set the
.. .) ” % number of parameters to 5
son of optimization algortihms,” Int. J. % onme row in neq should be [3 5].

of Control, vol. 40, pp. 747-761, 1984. neq = [13; 21 ; 12 3]; % nstates = 3;

% mninputs = 1; 3 endpoint constr.
[34] S. Strand and J. G. Balchen, “A com- else
parison of constrained optimal control ii:b;irz:-zagzzms'
algorithms,” in IFAC 11th Triennial ongq =~ ’

World Congress, Estonia, USSR, 1990, ‘
pPp- 439-447. function xdot = sys_h(neq,t,x,u)

global sys_params
% xdot must be a column vector with n rows.

APPENDIX 1: M-FILES FOR THE :tau = x(3);

OCP EXAMPLE 1. xdot = [tau*x(2) ; tauxu(1l) ; 0];
To solve any user specified OCP via M- .. = _ sys_g(neq,t,x0,xf)

file interface, the user only needs to provide global sys_params

a set of MATLAB M-files. No C-compiler is % J is a scalar.

needed. The following list is the OCP bang. FNUM = 10q(5);

if F_NUM ==
J = x0(3);

function message = sys_activate elseif F NUM == 2
message = ’bang’; J = x£(1)/300.0 - 1;

elseif F_NUM ==
function neq = sys_init(params) J = xf(2);
% Here is a list of the different system end
% information paramters.
% neq = 1 : number of state variables. function z = 1l(neq,t,x,u)
% neq = 2 : number of inputs. global sys_params
% neq = 3 : number of parameters. % z is a scalar.
% neq = 4 : reserved. z = 0;
% neq = 5 : reserved.
% neq = 6 : number of objective functions. function [h_x,h_u] = sys_Dh(neq,t,x,u)
% neq = 7 : number of nonlinear global sys_params
% trajectory constraints. % h_x must be an n by n matrix.
% neq = 8 : number of linear trajectory % h_u must be an n by m matrix.
VA constraints. tau = x(3);
% neq = 9 : number of nonlinear endpoint h_x = zeros(3,3);
% inequality constraints. h_u = zeros(3,1);
% neq = 10 : number of linear endpoint h_x(1,2) = tau;
% inequality constraints. h_x(1,3) = x(2);
% neq = 11 : number of nonlinear endpoint h_x(2,3) = u(1);
% equality constraints. h_u(2,1) = tau;
% neq = 12 : number of linear endpoint
% equality constraints. function [J_x0,J_xf,J_t] = sys_Dg(neq,t,x0,xf)
% neq = 13 : 0 => nonlinear, 1 => linear, global sys_params

% 2 => LTI, 3 => LQR, 4 => LQR and LTI. % J_x0 and J_xf are row vectors of length n.

% J_t is not used.
F_NUM = neq(5);
J_x0 = [0 0 0];
J_xf = [0 0 0];
if F_NUM ==
J_x0(3) = 1;
elseif F_NUM ==
J_xf(1) = 1/300;
elseif F_NUM ==
J_xf(2) = 1;
end

function [1_x,1_u,l_t] = sys_Dl(neq,t,x,u)
global sys_params

% 1_x should be a row vector of length n.
% 1l_u should be a row vector of length m.
% 1_t is not used.

1.x = [0 0 0];

l_u=0;

APPENDIX 2: C-FILES FOR THE
OCP EXAMPLE 2.

To solve any user specified OCP via C-
MEX/DLL interface to MATLAB, the user
needs to provide a set of ANSI C-files. A
compiling and linking process is required us-
ing a C compiler (WATCOM) together with
some pre-compiled libraries distributed with
the RIOTS 95. The following is the source
list for the OCP fedbatch.

/***/

#define NSTATES 7

#define NINPUTS 1

#define NPARAMS 3

/* Number of (fixed) system parameters. */
/* act as 3 weights for the penalty terms.*/
#define NFUNCTIONS 1

/* Number of objective functions. */

#define NLTC O

/* Nonlinear traj. inequ. constraints. */
#define LTC O

/* Linear traj. inequ. constraints. */
#define NLEIC O

/* Nonlinear endpoint inequ. constraints. */
#define LEIC 3

/* Linear endpoint inequ. constraints. */

/* for x1 x3 x4 */

#define NLEEC O

/* Nonlinear endpoint equ. constraints. */
#define LEEC O

/* Linear endpoint equ. constraints. */

#define LTI 0

/* 1 => Linear, 2 => LTI, 3 => LQ, 4 => LQTI */
#define F_NUM neql[4]

double Wx1l, Wx3, Wx4;

/* user input weights for x1 x4 state const. */
[AR KKK KKK KoK oK kKoK ok ok o KK ok ok Kok Kok oK ok Kok o

void activate(message)
char **xmessage;
{
*message = "Fed-batch penicillin biosynthesis

}

void init(neq,params)
int neq[13];
double *params;

neq[0] = NSTATES;
neq[1] = NINPUTS;
neq[2] = NPARAMS;
neq[5] = NFUNCTIONS;
neq[6] = NLTC;
neql[7] = LTC;

neq[8] = NLEIC;
neq[9] = LEIC;

neq[10] = NLEEC;
neq[11] = LEEC;
neq[12] = LTI;

Wxl=params[0];

Wx3=params[2] ;

Wx4=params[1];
}

/¥ SYSTEM DYNAMTICS *
void h(neq,t,x,u,xdot)
int neql[];
double *t,x[NSTATES] ,u[NINPUTS] ,xdot [NSTATES]
{
double temp,hlx1,h2x1;
hix1l=.11*x[2]*x[0]/(0.006*x[0]+x[2]);
h2x1=.0055*x[2]*x[0]/(.0001+x [2]*(1.+10*x[2])
xdot [0]=hi1x1 - x[0]*u[0]/(500%x[3]);
xdot[1]=h2x1 - .01#*x[1] - x[1]1*u[0]/(500#*x[3]
xdot[2]= - h1x1/0.47 - h2x1/1.2
- 0.029*x[2]*x[0]/(0.0001+x[2])
+ ul0]*(1.0 - x[2]/500)/x[3];
xdot[3] = u[0]/500;
/* x[0] =/
temp=(x[0]1>40.) ?Wx1*(x[0]-40.0)*(x[0]-40.0) :0
xdot [4] =temp+(x[0]1<0.) ?Wx1*(x[0])*(x[0]):0.;
/* x[3] */
temp=(x[3]1>10.) ?Wx4*(x[3]1-10.)*(x[3]1-10.):0.;
xdot [6]=temp+(x[3]1<0.) 7Wx4* (x[3])*(x[3]):0.;

/* x[2] */ break;

temp=(x[2]>25.) ?Wx3*(x[2]-25.)*(x[2]-25.):0.; }
xdot [6]=temp+(x[2]<0.) ?Wx3*(x[2])*(x[2]):0.; }
T
double Dl(neq,t,x,u,l_x,1_u)
void Dh(neq,t,x,u,h_x,h_u) int neql];
int neql]; double *t,x[NSTATES] ,u[NINPUTS];
double *t,x[NSTATES],u[NINPUTS]; double 1_x[NSTATES],1_u[NINPUTS];
double h_x[NSTATES] [NSTATES] ; {
double h_u[NSTATES] [NINPUTS]; return 0.0;
{ T
double numil,denl,num2,den?2;
double temp, hi,h2,hlx1,h2x1; /* FINAL COST FUNCTION
double dhidx1,dh1dx3,dh2dx3; double g(neq,t,x0,xf)
num1=0.11%x[2]; den1=(.006%x[0]+x[2]); int neql];
num2=0.0055*%x[2] ; den2=.0001+x[2]*(1.+10*x[2]); double *t,x0[NSTATES],xf [NSTATES];
hi= numi/deni; h2= num2/den2; {
dhidx1l =-x[2]*0.11%0.006/(denl*denl) ; switch (F_NUM) {
dh1dx3 =.11%0.006/(denl*denl) ; case 1:
dh2dx3 =.0055*%(.0001-10*x[2] *x[2]) / (den2*den?2) ; return —xf[1]*xf[3];
h_x[0]1[0] = hl + x[0]*dhidxl - u[0]/(500%x[3]); break;
h_x[0][2] = x[0]*dh1dx3 ; case 2:
h_x[0]1[3] = x[0]*ul[0]/(500*x[3]*x[3]); return xf[4];
h_x[1]1[0] = h2; break;
h_x[1]1[1] = -0.01 - u[0]/(500%x[3]);; case 3:
h_x[1][2] = x[0]*dh2dx3; return xf[5];
h_x[11[3] = x[11*ul0]/(500*x[3]*x[3]); break;
h_x[2]1[0] = (-h1-x[0]*dhi1dx1)/0.47 case 4:
-h2/1.2 - .029%x[2]/(0.0001+x[2]); return xf[6];
h_x[2][2] = -x[0]*dh1dx3/0.47-x[0]*dh2dx3/1.2 break;
- 0.029%x[0]*.0001/((.0001+x[2])*(.0001+x[2])) }
- ul[0]/(500%x[3]); }
h_x[2]1[3] = —u[0]*(1.0-x[2]/500)/(x[3]1*x[3]);
temp = (x[0] > 40.0) 7 Wx1#2.0%(x[0]-40.0):0.; double Dg(neq,t,x0,xf,J_x0,J_xf)
h_x[4]1[0] = temp+(x[0]<0.)?Wx1*2.0%(x[0]):0.; int neql];
temp = (x[3] > 10.0) 7 Wx4*2.0%(x[3]1-10.0):0.; double *t,x0[NSTATES],xf [NSTATES];
h_x[5][3] = temp+ (x[3]<0.)7Wx4*2.*(x[3]):0.; double J_xO[NSTATES],J_xf[NSTATES];
temp = (x[2] > 25.0) ? Wx3*2.0*(x[2]-25.):0.; { switch (F_NUM) {
h_x[6][2] = temp+ (x[2]1<0.)7Wx3%2.*(x[2]):0.; case 1:
h_u[0][0] = -x[0]/(500*x[3]); J_xf[1] = —x£f[3];
h_ul1]1[0] = -x[11/(500%x[3]); J_xf[3] = -xf[1];
h_ul[2][0] = (1.0 - x[2]/500)/x[3]; break;
h_u[3][0] = 1.0/500.0; case 2:
} J_xf[4] = 1.0;
break;
/*INTEGRAL COST FUNCTION =/ case 3:
double 1l(neq,t,x,u) J_xf[5] = 1.0;
int neql[]; break;
double *t,x[NSTATES],u[NINPUTS]; case 4:
{ J_xf[6] = 1.0;
switch (F_NUM) { break;
case 1: }
neql[3] = -1; return 0.0;

return 0.0; }

