CHAPTER 6

Emission Source
Quantification

EMISSION SOURCE QUANTIFICATION (ESQ) plays a vital role in the methane

measurement and mitigation process, as well as, provides a way to verify car-
bon credits from engineering controls and technologies used to capture methane
(e.g. biogas digestors). In this chapter, we will overview the conventional and sUAS-
based advanced leak detection and quantification (LDAQ) methodology. The LDAQ
methods utilize several concepts and approaches within numerics, control, and op-
timization as well as approaches based on different available sensing modalities (see
Fig. 6.1 for effective length-scales). In this chapter, we divided these approaches into
five general categories, namely: Simulation-based (Section 6.1.1), Optimization-based
(Section 6.1.2), Mass-Balance-based (Section 6.1.3), Imaging-based (Section 6.1.4),
and Correlation-based (Section 6.1.5).
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Figure 6.1 Leak detection and quantification methods and modalities.
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6.1 TYPES OF QUANTIFICATION APPROACHES

In the Simulation-based approaches, the methods depend heavily on simulation and
computational tools for solving dynamic partial differential equations, which are used
to determine the source rate estimation. Sometimes other source parameters are also
estimated in the process and this is typically referred to as source term estimation
(STE) or the source determination problem (SDP). Two methods that show up in
the literature are backwards Lagrangian stochastic (bLS) and mesoscale recursive
Bayesian least squares inverse (RB-LSI).

The optimization-based methods showcased in this manuscript depend on some
form of a parameterized system model, which undergoes a model fitting or recursive
optimization (statistical or information based). Many of these methods include several
variations of the point source Gaussian (PSG) solution of the classical Gaussian plume
model. This is seen in the PSG approach based on the EPA’s other test method
(OTM) 33A, where the data is gathered from a single sensor downwind and undergoes
model fit of the peak concentration measured.

Next is the conditionally sampled PSG (PSG-CS) approach that utilizes meteo-
rological data in the model fitting process using conditionally sampled concentration
data based on the incremental changes in wind direction. Another variation to this
is the recursive Bayesian PSG (PSG-RB) that utilizes a moving sensor and meteoro-
logical data to condition the models likelihood function and prior for updating the
posterior distribution that is used to quantify the source estimate. This approach also
considers past knowledge about equipment characteristics if this is known.

A different approach to the Bayesian way of thinking is to solve for the param-
eters of the model conditioned on the observations. This approach also utilizes a
particle filter and Markov Chain Monte Carlo (MCMC) to update the posterior and
is referred to as the PSG sequential Bayesian MCMC (PSG-SBM). The last opti-
mization approach mentioned is the Near-Field Gaussian Plume Inversion (NGI) and
the modified NGI approach.

The NGI utilizes fitting the Gaussian plume model based on sampling of a perpen-
dicular plane downwind of the source. The vertical and horizontal dispersion relations
are used to find the center of the plume within the perpendicular plane and mini-
mize, by least square fit, the difference between the modeled concentration and the
observed concentration (integrated over the lateral dispersion direction).

The next category is the Mass-Balance-based approaches, which includes meth-
ods that utilize equations based on mass conservation and continuity. The simplest
approach is the vertical flux plane (VFP), which takes a control volume approach to
estimating the emission rate by measuring the flux entering and leaving the control
volume. Traditionally, the plume is sampled using a raster scanning approach in a
perpendicular plane upwind and downwind of the source. The sparse set of observa-
tions within the plane undergo a spatial interpolation process and are combined with
the wind to estimate the source rate.

A direct variation to this approach is the cylindrical flux plane (CFP), which
the sensing system measures concentrations on successive loops around the source at
different altitudes. The flux going into and out of this cylindrical plane is used to



Emission Source Quantification W 27

estimate the flux. Using different sensing modalities (such as imaging or backscatter-
based sensors), a path integrated vertical flux plane (PI-VFP) method can be formu-
lated. Both aircraft and sUAS-based approaches to PI-VFP have been implemented,
which rely on horizontal scanning of the area of interest.

For sUAS-based PI-VFP, concentric circles are flown to confirm that sources are
contained inside the path before estimating the source rate. A flux plane approach has
also been explored using a series of TDLAS-based laser fetches at different altitudes
and utilizes the time-average of the line-integral of the instantaneous product of the
wind speed and concentration. This is advantageous to other VFP approaches as it
provides very good performance and does not take time to scan the plane. However,
it is in ways impractical as it requires setup of the laser fetches and knowledge of the
source geometry.

The next method is the Gauss divergence theorem (GDT) approach. It utilizes the
CFP approach with mass flux continuity as well as the expected time rate of change
of the mass within the control volume to estimate the source rate. Another VFP
approach was included in this review that uses Gaussian plume model optimization
with a general linear model (GLM) to help determine the contributions of multiple
sources. This approach is referred to as the VFP-GLM.

The last Mass-Balance-based approach is vertical radial plume mapping (VRPM).
The VRPM approach uses a ground based laser with retro-reflectors at different
altitudes downwind of the source. The path integrated concentrations are measured
at different radial angles and used to estimate the flux.

The next category is the Imaging-based approaches that utilize MWIR, hyper-
spectral cameras, and absorption spectroscopy (such as iterative maximum a poste-
riori differential optical absorption spectroscopy (IMAP-DOAS)).

The last category covered in this manuscript is the correlation-based approaches,
which includes the traditional Eddy covariance (EC) method (in brief) and the tracer
correlation method (TCM). The TCM has also been referred to in the literature as
the tracer dispersion method (TDM) and atmospheric tracer method (ATM).

6.1.1 Simulation-based
6.1.1.1 Forward Modeling

Forward modeling is typically used for projecting or forecasting dispersion. Forward
modeling is not directly used in emission quantification by itself, but rather paired
with feedback in the optimization sense. This can include numerically solving a gov-
erning set of equations, such as the advection diffusion equation (ADE) or apply-
ing a parameterized general model (such as the Gaussian plume). It is also com-
mon in practice to utilize existing numerical models, such as the WindTrax 2.0,
WRF model, FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-
WRF), SCIPUFF, QUIC, and others that can be Lagrangian-base, include turbulence
e.g., Large eddie simulation (LES), and Reynolds averaged Navier Stokes (RANS).
Interested readers can check the review paper from [53] on dispersion models.
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6.1.1.2 Backward Lagrangian Stochastic (bLS)
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Figure 6.2 A diagram depicting the bLS approach (e.g. see [35]).

The accepted backward modeling approach used in the draft OTM- 33A docu-
ment [33] and in several applications (e.g., Dairy Farm [8], etc.) is the backwards
Lagrangian stochastic (bLS) approach by [35]. The bLS approach aims to answer the
general questions: What is the proper form of the LS trajectory model? As well as,
how can source estimates be extracted from the particle’s backward LS trajectory?
The forward model, formulated as a generalized Langevin equation, is evolved jointly
as a Markov process,

dui = CLi(X, u, t)dt + bi’]‘ (X7 u, t)dfj, dfz = Uidt, (61)

where the particle position is given by x = (21, z2, x3), and d§; is a random increment
governed by a Gaussian process. The functions a; and b; ; have to be specified such
that the velocity probability density function, g,(x,u,t), satisfies the Fokker—Planck
equation (FPE) [35],
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ot a_xi(uiaga) - 6_W[ai(x’ u, t)ga] +

0
52 (B j(x,u,t)gq]. (6.2)
This method provides a source estimation for an area source given the source
location (with unknown source rate), assuming horizontally uniform surface source,
and that the atmosphere is in horizontal equilibrium (see Fig. 6.2). To make an
emission estimate using bLS, the method utilizes the dispersion model relation,

Uy _
- =

where U is the wind speed, y is the measured concentrations, () is the source rate, L
is the Monin—Obukhov length, A is the depth of the mixing layer, G describes the set
of parameters characterizing the plume, and x3,, represents the measurement height.
As the particles from the back trajectories touchdown in the source area, the vertical

n = f(Xm,Xo, L, h, G), (6.3)
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velocities, wy are logged and used to estimate n,

yY(@s3m)U(z3m)

1 2
Q N 2 ‘wo/U(fC:sm) ’ (64)

n(xgm) =
Once n is known, an estimate of the source rate can be determined using the
measured concentration and wind speed, @ = n/(yU). In this approach, due to the
time-averaged ensemble, the accuracy improves over time (nominal averaging period
of 15 min [35]). An alternate expression for the emission estimate is given as
Y— U

Qvrs = WD (6.5)

where g is the background concentration and (y/Q)sim is calculated using

4/ @im = 5 Ll (65)

This Monin—Obukhov similarity theory (MOST)-based bLS emission estimation
methodology was validated against the mass balance approach (given the along-wind
distance of the source d),

Qm = é/ooo y(x3)U(xs)dxs, (6.7)

and field tested in [34, 37, 36]. A lagoon environmental leak was simulated and ex-
plored with the bLS approach by constructing a large 45 m by 45 m emission source
on a pond. The accuracy was shown to be lower during the summer period due to
more frequent unstable atmospheric conditions [72].

6.1.1.3 Mesoscale Recursive Bayesian Least Squares Inverse (RB-LSI)

Utilizing the NOAA P-3 aircraft and a wavelength-scanned CRDS, [23] used a
mesoscale bayesian least squares approach to solve the inverse problem of estimating
emissions. They use the FLEXPART-WRF to model the forward problem, which was
compared to physical observations and minimized on an iterative cost function that
assumes lognormal distributions,

J = L0 (yo) — 0 () (10 (30) — In (H2))
2 (6.8)
—|—§a(ln (z) — In (23))? (In (z) — In (z3)),

where the observed concentration enhancements are given as 19, posterior solutions
are r, FLEXPART-WRF outputs are H, prior fluxes are xy, error covariance matrix
from observations are R, and error covariance matrix from prior fluxes are B in the
lognormal space.
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6.1.2 Optimization-based

In this section, we discuss the emission quantification techniques that utilize some
form of optimization in the methodology that fits a model.

6.1.2.1 Point Source Gaussian (PSG) - OTM33A
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Figure 6.3 (a) Depiction of Gaussian plume dispersion with an observer making a sta-
tionary measurement downwind. (b) Resulting time-integrated data with a Gaussian

fit applied [33].

In [33], the point source Gaussian (PSG) is discussed. The measurement involves
a vehicle with a concentration measurement instrument (CMI) to park downwind of
the known source with the vehicle off. The CMI (such as Picarro or LGR UGGA)
collects data at roughly 2.5 m above ground at a known distance from the source.
The variations in the wind direction are measured using a sonic anemometer (e.g.,
R.M. Young). The PSG calculations are based off of enhanced emission levels and can
be calculated as the fifth percentile of the concentration time series signal. The PSG
estimate then becomes a simple 2-D Gaussian integration with no reflection term.
The source estimate is given as,

Qr = 277'0'9020':83 Umypa (69)

where g, is the peak concentration from the Gaussian fit, U, is the mean wind speed,
0z, and oy, are the vertical and lateral plume dispersion that can be determined
from the meteorological conditions, such as the Pasquill-Gifford stability classification
curves [54] (see Fig. 6.3). The accuracy of the OTM33A method is explored in [30, 31].

6.1.2.2 Conditionally Sampled PSG (PSG-CS)

To capture the ensemble mean of the downwind plume behavior, a dispersion model
is used in [39], where we denote x = [x1, 72, 23]7 is the downwind distance, crosswind
distance (z9 = 0 is the plume center) and vertical position, respectfully. The model is
a function of downwind distance and dispersion factors D,,(x1,z2) and Dy, (x1, z3),



Emission Source Quantification W 31

given as,

Ym(X) = =Dy, (21, x2) Dy, (21, 3). (6.10)

=L

This method essentially aims to determine the source rate, @), using the condi-
tional mean concentration data, ¥,,, of the downwind plume. The lateral dispersion
downwind of a continuous point source can be shown to have a Gaussian distribution
such that it can be represented as,

1 1 T2 2
Dy, (21, 72) = [—5(=— I (6.11)

B V2moy, 2 0z
However, the vertical dispersion (assuming vertical eddy diffusivity and wind

speed that scales vertically to a power law) can be formulated as a parameterized
stretched exponential (originally expressed in [84]),

B.’Eg

)°]. (6.12)

D,y = Dy, (x1,23) = I:?)exp[—( =

The parameters T3, s, A, and B are functions of the atmospheric stability and
downwind distance, 1. A and B can be described using the usual Gamma function,

() as,
A= sT'(2/8)[1(1/5)]%, (6.13)
B =sI'(2/s)T'(1/s). (6.14)

The conditional averaged concentration can be calculated using,

1 n
{ylo) == > y(6h), (6.15)
" g.co
where the set O(6) = {6; : |0 — 0;| < A0/2,Vi =1,2,...,n} and Af = 2°. The basic
idea is to capture the plume geometry in the crosswind direction, which is further
used to derive the least squares source estimate,

Q=[5 2Pes iy [ 3o o] (6.16)

As shown in [39], the lateral dispersion can be determined in two ways: classically,
using atmospheric stability (for constants a,, and p.,) [29],

Opy = Ay T3, 1.9(Ly /3, )Po2; (6.17)

and by reconstructing the lateral dispersion,

1 N
Oxy = N; 79 (618)

10
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where the N is the number of values in (y|d), and d are d values that are greater
than the minimum concentration (i.e., background) and 4+40° off the plume center
6. The distance d is calculated as,

A

d(f) = Lgsin (6 —6,), (6.19)
with 6, = arg maxg(y|6) (see Figure 6.4).
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Figure 6.4 (left) Polar plot with the wind direction, 6 as the radial axis, and the
conditionally averaged concentration, (y|f) as the distance from the center. 6, is the
peak wind direction located at the maximum conditionally averaged concentration.
(right) Illustration of the wind direction geometry for conversion of 6 to crosswind
position d with the source plume represented by the dashed lines [39].

6.1.2.3 Recursive Bayesian Point Source Gaussian Method (PSG-RB)

In work from [2, 47], a moving sensor measured a point source concentration that
can be formulated as,

Y(x) = =Dy, (21, 22) Dy, (1, 73). (6.20)

<o

The source rate is given as Q, the effective wind speed is U, and the lateral
and vertical dispersion is characterized by D,,(x1,22) and D,,(z1,x3), respectfully.
The equation is formulated such that the downwind distance, x1, is aligned with the
predominant wind direction. Since the measurement is taken at closer distances to
the source, the lateral dispersion is taken as a random function such that,

/ Dm(.fl?l,xz)dl’z =1. (621)

This can be advantageous for instantaneous plumes. The integrated lateral con-
centration can be written as,

y* (21, 23) = =Dy (1, 23). (6.22)

=R
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The choice of the vertical dispersion D,, (originally expressed in [84]) is that of
a parameterized stretched exponential function,

A Bz
D:E3 - DI3(x17m3) = :eXp [_(_3

= — )%, (6.23)

where T3, s, A, and B are functions of atmospheric stability and downwind distance,
x1. The lateral dispersion is given as

1 [ 1< T2
= exp [—
V271o,, P Oxs

Then, by numerically integrating (6.20) and incorporating the vehicle movement

v,

Dy, )3 (6.24)

> AtV
Z Xz AtV QZ Dy, 1'1,7I3 )sz(xliax%)' (6'25)
i=0
The recursive Bayesian approach described here is based on well pads and oil and
gas production, which are used to help inform the path planning of the mobile sensor.
For brevity, we will only cover the formulation of the quantification only. Starting
with the definition of the posterior distribution,

p(@W)p(M|Q, A)
p(M]A) ’

where M is the concentration data, W is the ancillary information (e.g., well pad
characteristics), A is the meteorological conditions, p(Q|W) is the prior, p(M|Q, A) is
the likelihood, and p(M|A) is the evidence (which can be thought of as a normalization
constant for the likelihood [91]). The prior is given as

Q—p Q- u) 1-1/v

p(QIW)—%eXp{ (1+VT) ](1+ e

where the hyperparameters need to be fit to the application (for well-pad source,
v =1, p=0.19, 8 = 0.23 based on [14]). The likelihood function is chosen to be a
Gaussian,

p(QIM, W, A) = (6.26)

. (627)

1 (yibz _ yzQ,M

1
exp | — =
V2o, P { 2 O
where y is the modeled concentration for a given source rate, and o, is the
combined model and measurement error (outlined in [90]). The recursive approach
involves replacing the prior with the previous posterior distribution found using the
likelihood function,

p(M[Q, ) =

)2}, (6.28)

xo, M

p(Q\W), =1,

6.29
p(QIM, W, A);_r, 0> 1. (6.29)

p(QIW); = {
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As the number of passes increases, the posterior distribution improves and can
be used to estimate the source rate,

N

Qmaz
= / Qp(QIM, W, A)dQ. (6.30)
Qmin

Variations of this method were seen in [47], where the measurement noise was
assumed to be Gaussian and also included a UAV with sensor noise and utilized
the flux plane mass balance method to estimate the source rate, which was used in
the calculation of the posterior distribution. Further field tests of this method were
carried out in [93].

6.1.2.4 Point Source Gaussian Sequential Bayesian Markov Chain Monte Carlo (PSG-
SBM)

Utilizing the Gaussian plume model for the likelihood of a sequential Bayesian
Markov Chain Monte Carlo (MCMC) method, a UAV scans horizontally to update
the estimated posterior distribution in [55]. The parameters are given as O where
Or = [xI, Qs, us, ¢s, Cs]T, the position is x;, source rate @, wind speed and direc-
tion ug and @, and the model diffusion coefficients (s = [, CSQ]T. The point source
observations, y1.x = {y1,¥2, ..., yx } are used within Bayes rule to update the posterior,

P(Vi4+1|Ok+1)P(Oks1|y1:1)
P(Yk+1]Y1:k+1)

The likelihood model, M (xx, (), in [55], based on observational data, 7, =
M(xg, (k) + Tk, was taken to be detection event, p(7,|Ok), if yx > Yinr,

0. — _ G = M, )
PlO) = ——75= exp | 207 ]

and a non-detection event otherwise,

P(Okt1|y1ht1) = (6.31)

(6.32)

thr — s tr_( +M(X7€))
p(y,|O%) = (%[Herf(%)mpm(%[Herf(yh ubabﬂ k k( )]))-
6.33

The three terms in the non-detection event account for instrument noise, tur-
bulence, and observing concentrations above the threshold, where py + pm, + ps = 1,
and pp and op are mean background noise and standard deviation, respectively. Using
a particle filter, ‘rhe posterior can be approximated by a set of n weighted random

samples {91(;); wk o }z 1

P(O[F1.x) Zw,;)é o). (6.34)
where ¢ is the Dirac delta function. The un-normalized weights are then updated using

wi(grl = wl(c) (yk+1‘@g4)rl)' (6.35)
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Once the weights are determined they can be normalized by dividing by the
summation of all the weights. Additionally, an effective sample size must be considered
to avoid the degeneracy problem. The new samples undergo a MCMC step that
is accepted with the likelihood probability distribution described earlier (see more
details in [55]).

6.1.2.5 Near-Field Gaussian Plume Inversion (NGI)

The near-field Gaussian plume inversion (NGI) method [76, 1] is a mass continuity
model in principle, where the upwind and downwind concentration measurements,
combined with wind measurements, of an emission source are differenced to quantify
emission flux. The NGI method is typically sampled around 100 m from the source.
The sampling aims to capture the time-invariant behavior of the plume, which, un-
der turbulent conditions, may not map out the characteristic Gaussian plume shape.

This is because it is assumed that spatial variability in the time-averaged plume
is Gaussian. This method was initially carried out with a DJI S900 equipped with a
ultra portable greenhouse gas analyzer (UGGA) by Los Gatos Research Inc. (LGR).
The flux estimate is derived by fitting the experimentally measured flux values, gme,
to the modeled flux values, g,,0 given as,

dme = (¥ — yp)U (x3)p, (6.36)

where the modeled flux is given by the Gaussian model,

—(1'3 + h)2 ))
20, (1) 77
(6.37)
The lateral and vertical dispersion relations are typically looked up in the PGT
stability tables, however, in this method, they are assumed to be linearly proportional
to downwind distance,

Qe

270, (21) 04y (71

— (22 — 29.)? —(2z3 — h)?
S e VO e k0 WP

qmo 204, (x1)? 20,,(71)?

)eXp(

Try = Ogxq (xl)/arl, Txs = 0'553(371)/371. (638)

Trying to solve (6.37) is not always well constrained, and thus the method pro-
poses to separate (6.37) and fit the model along the zs-direction,

B Tas L1V 2T
Qmewz - Qme —(il}‘“;—h)z _(I3+h)2))

. (6.39)
(exp (5i7 237) + exp (002

The spatial variability in the xs-direction has to be sampled to determine 7,,.
The lateral spatial variability 7,,, and plume center x4, are determined simultaneously,

Toe = —Zj (e 2, 727) (6.40)

Zj (Qme,zg) ’
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Z‘ Qmew 7 Iij_?_Qc 2
%:J s{meeo, (75 )). (6.41)

Zj (Qme,zzj )

Once the unknowns, 7,,, 7,,, and x9. are determined, the source emission rate,
@, can be estimated by minimizing the least square fit between ¢, and ¢,, param-
eterized by Q. and 7,,. The uncertainty in () and the impact of limiting 7,, are given
in [76].

6.1.2.6 Modified NGI

To improve the optimization routine of the NGI method, the modified NGI (mod-
NGI) method looks at conditioning the parameter estimates by using the following
flux-based likelihood function, represented by,

P(Q|9) - Dwz(xlam%szv/lxz)Dw3(x17m3;UJB37/~‘$3)7 (6'42)

where 0 = [Q, [1zy, Hzss Oz, Ozy) L and the dispersion functions are,

D, (‘Tl L2;O0gqy Mo ) = T = exXp _<$2 — Hw2)2 (643)
2 b ’ 27 2 27T0'z2 (l'l) 20';[2 (1'1)2 b

—(#3—plag)? —(x3+ta5)?
eXp( 200y (@1)2 ) +GXP( D00y (@1)2 )

Dy (1,23, 044, = 6.44
963( 1,43,0z3 /’Lxs) \/%0'1:3 (331) ( )

When the source rate is multiplied we have the modelled flux equation,
qmo = M<X> 0) = Qsz (Ila L2;0gy, ,ng)ng (Ila T35 0x5, ng,)- (645)

Consider that experimental measurements do not give access to the above likelihood
function but can rather give an estimate of it and let’s assume an initial source rate
estimate () such that,

5 Ao Q . L.
P(Qmem) ~ E-sz(mlul?;szusz)ng(xlamS;nga,uxg)- (646)

The likelihood of observing the entire dataset then becomes,

P(D10) = T}, P(g;,10). (6.47)
Given that analytically solving for an optimizer using (6.44) can be complex, we
make the assumption that the plume is far from the ground only for the parameter
initialization steps. This allows for the approximation of (6.44) by,

Doy (21, 5 Gy frag) ~ exp (L2~ )" (6.48)
’ o V2710, (11) 20, (21)?
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Solving for the maximum log likelihood estimate (MLE) yields,

A 1 : Ly
Txy = \l W (m2i - M:Ez)2u Tzs = \l m ;(1'31' - /’LIB)z‘ (649)

It can be readily apparent that the MLE is the definition of the standard devia-
tion conditioned only on the spatial coordinates. To make this MLE conditioned on
the flux measurements one can substitute for the weighted standard deviation. For
example, the horizontal scale factor is given by,

. N Zi]\;1 Qe (T2 — flay)?
" J RS IE A SR (6.50)
1 Zi:l Qe

In order to estimate 7,, and 7, the plume centers need to be computed. This is done
using the measured flux as weights, and computing the center of mass,

D O Y D Sy MR
To N ; Has = ~N ., (651)
Zi:l e Zi:l e
Alternatively, the plume widths can be estimated directly without knowledge of plume
location,

- 1) sz\il Qrine ,

and similarly for o,. Once the dispersion and plume center parameters are estimated
and a initial estimate of the source rate is established for (), the optimization of
parameters 6 can be undertaken, such that,

. N SN G (@i — phay)?
e [ .

5 ; 1 i \2
f=min J(X,0), J(X,0)=+ ;(M(xi, 0) —q-.)% (6.53)
where X is the observation data set X = [x1,X1, - ,Xy]. This optimization can be

carried out using the MATLAB fminsearchbnd function [27].

6.1.3 Mass Balance-based

The mass balance approach aims to estimate an emission source by balancing the
mass flux leaving or entering a control volume. Generally, there are two path plan-
ning approaches to the mass balance method: (1) rectangular vertical flux plane (or
curtain) downwind of the source and (2) a cylindrical flux plane enclosing the source.
For a well behaved plume under stable atmospheric conditions, the downwind plume
contains all the flux. The sampling distance from the source may vary based on each
submethod. The measured flux plane data can be sparse and is typically subject to
spatial interpolation.
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6.1.3.1 Vertical Flux Plane (VFP)
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Figure 6.5 Demonstration of using sampled flux plane data and applying kriging to it
for spatial interpolation [52].

The flux plane method generally involves sampling within a plane, vertically or
horizontally, upwind and downwind, of an emission source. It has been applied in
several works [6, 5, 19, 18, 41, 51, 65, 70, 71, 77, 78, 88, 87, 86, 13]|. The plane is
typically sampled using a raster-scanning approach, capturing the plume within the
width and height of the plane. The emission rate (in moles s™!) can be estimated as,

Qe = //Q nij(y — yp)u - ypdaodrs, (6.54)

where n;; is the mole density of air (given standard temperature and pressure), (y—ys)
is the enhanced mole fraction (referenced to air), yp is the background mole fraction,
u is the wind speed vector, and ny is the flux plane normal vector (see Fig. 6.5).
Since the measurements are sparse, the integral irregularly spaced. To combat this,
the sparsely sampled points are spatially interpolated using techniques, such as in-
verse distance weighting (IDW) [22] or kriging [85]. This is a common problem in
geostatistics to interpret unknown data, y(xo), from desired spatial locations xq in
domain € R? (in our case is the domain of the plane Q, € R?), only using N sparse
sampling points, y(x;), based on some optimal weights, \;,

N
9(x0) = > Niy(x;). (6.55)
i=1

For example, in ordinary kriging [85], a semivariogram is used to model the spatial
variability and, given a spatial distance, h, is defined as,

LN
A(h) = IN(R) ; (y(xi) — y(x; + h))>. (6.56)

This experimental semivariogram can be fitted to the model semivariogram with
one of several common functions: circular, spherical, exponential, Gaussian, or linear.
The weights are determined by solving
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N
D NC(xi — x5) + p(xo) = C(x; — Xq), for i =1,2,..N, (6.57)
j=1

where C(-), in this context, represents the point support covariance matrix. This
matrix is related to the semivariogram, v(h) = C(0) — C(h) [85], and the mean
square prediction error is 02 = Var(y(xo) — §(xo)), which, for ordinary kriging, is
minimized to make the estimated values §j(x¢) optimal. Furthermore, the estimator
should be unbiased (e.g., E[j(x0)] = E[y(x0)]), which requires Y  A\; = 1 and the
spatial mean to be stationary Ely(x)] = p, Vx € Q.

If the kriging process is not stationary, it is considered, at best, an approximate so-
lution to the spatial interpolation problem and incorrect at worst. A better approach
could be to apply a spectral method that takes into consideration non-stationarity
and higher frequencies, namely, the high frequency kriging method [44]. Consideration
of temporal observations could be included as well, see quantile kriging in [60].

An enhanced version of the IDW was proposed in [62] to include an adaptive
distance-decay parameter based on the density characteristics of the sampled points.
Available tools, such as Kriging Assistant (KA) [63], Golden Software Surfer, or ESRI
Geostatistical Analyst for ArcMap have been used in the literature before. For irreg-
ular geographical units with different sizes and shapes, the interested reader should
consult [49].

A variation of the VFP technique is illustrated in [21], where a path-averaged
long open path duel-comb spectroscopy is operated from a ground vehicle to a SUAS
with a retro-reflector. A vertical profile is flown downwind of the source to conduct
the VFP. This technique is also vary similar to VRPM.

6.1.3.2 Cylindrical Flux Plane (CFP)

A variation to the VFP is the Cylindrical Flux Plane (CFP). This method has been
used with manned aircraft as it is not as easy to raster-scan a rectangular flux plane.
The methodology is essentially vary similar to the VEP and can be found in the work
by [74], omitted here for brevity.

6.1.3.3 Path Integrated Vertical Flux Plane (PI-VFP)

A variation of the VFP is the path integrated vertical flux plane (PI-VFP). This
method utilizes a bs-TDLAS approach in that the instrument points straight down
and scans or circles the emission source (see Fig. 6.6). In [42], the AVIRIS-NG manned
aircraft used IMAP-DOAS technique to retrieve methane concentrations and esti-
mated fluxes using a PI-VFP type calculation. This approach was compared with the
GDT and Gaussian inverse approaches during a joint-flight campaign.

The emission rates were estimated by, @ ~ u-n)_; V;As;, were V; represents
the vertically integrated concentration, and As; is a path segment along the bound-
ary. The individual measurements are integrated together (referred to as integrated
methane enhancement (IME)) such that IME = k3" Xcm, (7) - S(i). The value Xcm,
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Internal Leak (flux>0) External Leak (flux=0)

outflux

Figure 6.6 Example of the VFP-PI strategy via a UAV sensing in circular trajectories
with (a) being an internal leak producing a net positive flux and (b) being an external
leak producing a net zero flux. The color of the arcs are indicative of methane flux
strength with green being more negative and red being more positive (see [89] for
more details).

is the methane plumes that exceed the minimum threshold of 200 ppm/m and £ is a
conversion factor.

Using an RMLD sensor fitted to a small quadrotor UAV, a circular scanning ap-
proach can be applied to sample horizontally a site of interest. The sensor uses a
bsTDLAS to measure integrated methane emissions from a known height. The re-
sulting measurements are then combined with wind measurements to estimate the
flux [43, 89,

Q= fg u-n(y — yb)ds, (6.58)

where ng is the normal with respect to the path of travel such that s € S, y is
the column measured concentration and ¥ is the column background concentration.
This calculation encompasses a single circular loop and if the source is encapsulated,
multiple passes can be used to estimate the source. For instance, given n passes,

0=-Ya (6.59)

In practice, the circular flight path is actually made up of line segments that are
box-like. The source location was also identified by course raster scanning over the
area of interest followed by a more fine flight pattern free approach combined with
triangular natural neighbor interpolation. The maximum observed concentration was
used for the source location.

6.1.3.4 Micrometeorological Mass Difference (MMD)

Utilizing the technique from [26], sampling the plume far enough downwind of the
source, the averaged MMD can be calculated as,

Q= // Utwszs) Ywa,zs) — Yb)dT2dr3 = /X(I3)d$37 (6.60)
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where Uy, 4, is the normal wind speed relative to the plane. The work in [45] utilized
the time-average of the line-integral of the instantaneous product of U and y in the
zo-direction. Alternatively, while using a laser fetch, an instantaneous product of a
single wind measurement U and line-averaged laser concentration was used,

X = ArU(2s) (PL(2s) — Ub)- (6.61)

This method can also be used to calculate the turbulent fluxes,

Qtur (Qﬁﬂ B QU_y)

= ) 6.62
0 O (6.62)

where Q7 is calculated from the flux term in (6.61) and Qg in (6.63),
X & AwoU(ey) (YL (zs) — Yb)- (6.63)

This prescription of the flux does not capture the turbulent component of the
horizontal flux (albeit wrong), is often necessary due to the short time-scale behavior
of the wind (e.g., limitations in wind measurement devices).

6.1.3.5 Gauss Divergence Theorem (GDT)
In the paper by [20], Conley et al. they focused on the continuity equation,

Qe = <66—T> + ///V -yudV, (6.64)

where m is the mass of the aerosol, () is the expectation or average, y = Y + ¢/
is the concentration (comprised of an average term and a deviation term), u is the
wind speed, and V is the volume of the area of interest. The flux divergence can be
expanded as,

V-yu=u-Vy+yV-u. (6.65)

The surface integral is taken to be a cylinder, which can be broken into several
parts: the floor, the walls of the cylinder, and the top. The height of the cylinder
is taken such that the emission is encapsulated with the minimum and maximum
height. The resulting emission rate can be calculated as

8m Zmax R
Qe = <5> + /0 7{ yuy, - dldas, (6.66)

where x3 represents the altitude, and [ the flight path. The temporal trend of the total

mass (%—T) within the volume can be estimated from the measurements. The cylinder

passes can be vertically binned and discretely summed up,

A T3=T3,maz L
m

Q=57+ 2 (2w as) Ax, (6.67)

0

and p represents the scalar air density.
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6.1.3.6 \Vertical Flux Planes with GLM (GLM-VFP)

In [46], a 3D grid of airborne measurements are collected across multiple landfill sites.
The resulting downwind observational points are then spatially interpolated with
IDW and used to calculate the total mass flux. The multiple steady state Gaussian
dispersion models,

2 2

—x5 1 —(z3 — L)
X) = 6.68
y(x) 203y Oy U exp(QO_%Z )(\/27Tax3)eXp[ 2023 ) ( )

are applied to a fixed grid (50 m by 50 m), where the mixing ratios found over each
individual landfill was used to calculate a model mass flux (for each site, integrated
along the 1, x9, and z3 directions). The experimental measurements are then used
with simulation measurements and a general linear model,

max
min [ M F — X;(MMFi - )], (6.69)
1=
to approximate the emission coefficient, «;, from multiple landfill sources. The emis-
sion findings are further corroborated with a local eddy covariance tower measure-
ment.

6.1.3.7 Vertical Radial Plume Mapping (VRPM)

The vertical radial plume mapping approach (compared with other methods in [9]),
utilizes a long path TDLAS instrument from the ground. The laser is aimed at retro-
reflectors, situated perpendicular and downwind of the source. The height of the
retro-reflector constitutes the different radial angles where the path-integrated con-
centrations are combined with the normal wind component to estimate the flux (sim-
ilar to VFP or MMD). An illustration of this is seen in Fig. 6.1 (see [9] for more
details).

6.1.4 Image-based

In this section, we overview the imaging-based methodology for quantifying methane
emissions. This typically includes techniques that sample images passively, such as
TIR, MWIR, or other OGI-based instrumentation. The methods mentioned here that
can quantify methane emissions are considered as quantitative optical gas imaging

(QOGI).

6.1.4.1 Mid-Wave Infrared (MWIR) and Hyperspectral

In the work by [75], the detection limits of MWIR band of a hyperspectral data
was explored using the Spatially-Enhanced Broadband Array Spectrograph System
(SEBASS) airborne instrument. They also provided a comparison between LWIR and
MWIR (see [75] for more details) using the radiative transfer model,
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4 4
Ry = (Rh+ RL) + t{e, B(Ty) + (1 — es)[%]}, (6.70)

where R, is the total radiance at the sensor, R; is the upwelling emitted atmospheric
path radiance, R%p is the downwelling emitted atmospheric path radiance, Rg is the
scatter path radiance at the sensor, ng total solar radiance that reaches the surface,
t is the atmospheric transmittance, €5 is the surface emissivity, and B(Ty) is the
blackbody radiation at the surface temperature.

Other works, such as [15], have used MWIR cameras combined with two Pergam
Methane Mini G lasers in pipeline leak detection. In [28], a FLIR GF320 and a RMLD
were used together to make volumetric flow rate calculations in the laboratory using a
data fusion approach. In [81], they utilized a thermal camera and steady state energy

balance approach to estimate methane emissions from thermal anomalies in urban
landfills.

6.1.4.2 lterative Maximum a Posteriori Differential Optical Absorption Spectro-scopy
(IMAP-DOAS)

The IMAP-DOAS method was applied to the AVIRIS-NG [82, 83] aircraft and mea-~
sures reflected solar radiation between 0.35 pm and 2.5 pm with 5 nm spectral res-
olution and sampling. Using a nonlinear iterative minimization of the differences
between modeled and measured radiance. The measured concentrations can be ap-
plied to the PI-VFP method to calculate fluxes [42]. Variations in this approach for
retrieving methane concentrations has been seen in [38] for albedo correction and [61]
anomaly-based mass balance.

6.1.5 Correlation-based
6.1.5.1 Tracer Correlation (TCM)

The tracer correlation method, or isolated source tracer ratio method, initially pro-
posed and implemented in works by Lamb et al [58] and Czepiel et al [24], aims to
quantify the emission rate of an unknown gas species by releasing a tracer gas at a
known flow rate while measuring both the tracer and the unknown signals collocated
downwind. This method assumes that the location of the source is known and, at the
measurement location, the plume is well mixed. The elevated signal downwind also
needs to typically be greater than 50 ppb. The authors report uncertainty estimates
of £15%. The general equation is given as

Qm = QL™ (6.71)

Yt
where @); is the tracer release rate, and y,, and 1; are the elevated mixing ratios of
the unknown source gas and tracer gas, respectively. A comparison study between
TCM and other fugitive emission quantification methods are studied in [9]. The effect
of wind on accuracy of the TCM was explored for landfills using WRF model [57].
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An in situ method was used to evaluate the collection efficiency of gas extraction
wells based on tracer gas [56].

Variations of the quantification of TCM were explored in [64], which quantified
emission rates based on the plume integration of a transect, peak height of the transect
using a scatter plot to calculate the ratio (best fit line), and comparison with fitted
Gaussian plume model. A landfill field comparison of methane emission models were
compared to measured emissions using TCM [25]. The TCM method was also applied
to quantifying emissions from dairy farms in [8].

A dual tracer method was explored in [73]. The second tracer provides for closer
downwind measurements that can be refined by assessment of plume position as well
as in the far-field measurements the second tracer becomes an internal standard to
the measurement. A mobile version of the TCM approach was proposed in [40].

6.1.5.2 Eddy Covariance (EC)

The Eddy covariance method aims to estimate the emission flux from a footprint
area given the boundary layer meteorology. Historical developments and current im-
plementations of this method are summarized in [50]. This method generally assumes
stationarity of the measured data and fully developed turbulent conditions [48]. One
way it can be expressed is,

Q= = [ ) - pwte) ~w (6.72)

where the time-averaged concentration and vertical wind speed is § and w, re-

spectively. There are several assumptions required to make this flux calculation (for
more details see [17]).

6.2 ASSESSMENT AND SUMMARY OF METHODS

In an attempt to analyze the methods covered in the previous section we decided
to use the following Figure of Merit metrics,, such as: required assumptions, sample
distance, survey time, complexity, average precision, average accuracy, and average
cost. The required assumptions are meant to inform the practitioner so the best
method can be applied to a given problem. For example, if the source location is
unknown, the PSG method may not be directly applicable unless a source location
estimate is supplied. The sample distance is defined as the distance from the source
at which the required method is able to take measurements from. The survey time
consists of the time required to make a single flux estimate. Understandably, some
methods may require multiple flux estimates in order to approximate the emission
source to within an acceptable error. Complexity is the measure of how difficult it is to
implement any given method. In order to determine a value for complexity, a scheme
was developed using figures of merit (FOM) that assigns factors and weights to the
metrics (detailed in Table 6.1). Determining the values for these factors were based
on loose estimates, inferred from papers found in the literature. Ranges were assigned
to the metrics, as to capture variations in the factors due to either the operators or
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Table 6.1 Figures of merit for defining complexity of an estimation method

FOM (%) Low (2.5) Medium (5) Med-High (7.5) High (10)
Operator skill 30 Little Moderate Professional Expert
Number of operators 25 1 2 3 3+
Equipment cost 15 <$10,000 <$50,000 <$100,000 >$100,000
Setup Time 20 <1lhr <4hr <8hrs 8+hrs
Survey Time 10 <0.5hr <1hr <2hrs 2+hrs

the equipment being used, and are given in Table 6.2. For example, some setups may
use more expensive equipment or more people for the same method, and as a result
are reflected in the complexity metric.

Evaluating methane quantification techniques is important and much work has
already gone into this topic through controlled release experiments and evaluation
frameworks. Examples from controlled release facilities (CRF') consist of but are not
limited to the following: In the Joint Urban 2003 study [7, 59|, static sensors were
distributed in an urban setting to measure the dispersion of tracer particulates; In
[67], area-averaged velocity and turbulent kinetic energy profiles are derived from
data collected at the Mock Urban Setting Test (MUST); Mock Urban Setting test
(MUST) was also evaluated with photo-ionization detectors (PID) [12, 11]; MUST
was further simulated using MISKAM 6 [32]; In [66], the WRF model was used to
model wind and turbulence inside the Quick Urban & Industrial Complex (QUIC)
model for comparing simulated and observed plume transport; A test plan for Jack
Rabbit 1T was developed in [68] which aimed to improve chemical hazard model-
ing, produce better planning for release incidents, improve emergency response, and
improve mitigation measures.

More recently, single-blind tests at the Methane Emission Technology Evaluation
Center (METEC) in Fort Collins, Colorado evaluated several types of LDAQ sens-
ing modalities as apart of the Standford/EDF Mobile Monitoring Challenge (MMC)
and the Advanced Research Projects Agency-Energy (ARPA-E) MONITOR program
(such as by vehicle, plane, and drone - see [70, 16] for more details). In the Stand-
ford EDF MMC it was observed that the drone based technologies performed quite
well (e.g. SeekOps) with an R? = 0.42 [70]. While, the results in [70, 16] seem quite
promising, there is still exists some improvements in precision that can be done. In the
ARPA-E MONITOR program, 6 of the 11 participants tested their technologies at the
METEC facility in [10] against 6 other industry-based participants. Due to confiden-
tiality agreements at the time of testing, the data gathered from the 12 participants
were aggregated to compare the methodologies based on measurement type (hand-
held, mobile and continuous monitoring). However, to the best of authors knowledge
only four of the MONITOR program participants have published data regarding the
METEC tests (see [92, 3, 4, 16]). In the white paper by Bridger Photonics [16], a
sUAS-based approach using LiDAR-based sensor has also shown promising results
even though the uncertainty is not given. In [89], a RMLD is used on a sUAS with
the PI-VFP method. In contrast, [92] utilized a portable TDLAS-based instrument
and the PSG method to quantify emissions. Lastly, [3] uses a dual frequency comb



46 m Smart Environmental Sensing of Methane with Digital Twins: Source Emission Determination with SUAS

spectrometer (from over one kilometer away) with the non-zero minimum bootstrap
method (see [4]) and the Gaussian plume model to estimate the source rate. Exam-
ples from active operations with comparison to conventional OGI-based methods are
conducted in the Alberta Methane Field Challenge (AMFC) [88, 69, 80] which aim
to answer the questions: Are Leak detection and repair (LDAR) programs effective
at reducing methane emissions and can new technologies provide more cost-effective
leak detection compared to existing approaches?

In order to compare the performances of the each of the methods to one another,
their performance metrics were garnered from different studies where the method
was utilized in either a field study or a controlled release scenarios and recorded in
Table 6.2. Performance values were gathered from the standard deviations of consec-
utive flux estimates of a singular source leak scenario. Accuracy pertains to error of
the flux estimate to the known source rate. This information was limited primarily
to controlled release scenarios. For each method, performances and details were sep-
arated into the broad types of sampling strategies: fixed /static, on foot, mounted on
a vehicle, mounted on an aircraft, and mounted on a sUAS. This prevents convolu-
tion of performance values between, for example, long aircraft sampling flights at far
distances and short sampling flights near the source via sUAS.

After analyzing the quantification methods we can separate methods based on
whether they have used sUAS or not. In this manuscript we observed that the sUAS-
based methods consist of: Near-field Gaussian plume inverse (NGI), vertical flux plane
(VFP), and the path-integrated vertical flux plane (PI-VFP). The non-sUAS-based
methods consist of: backwards Lagragian Stochastic (bLS), point source Gaussian
(PSG), recursive Bayesian point source Gaussian (PSG-RB), conditionally sampled
point source Gaussian (PSG-CS), micrometeorological mass difference (MMD), Gauss
divergence theorem (GDT), VFP, PI-VFP, cylindrical flux plane (CFP), general lin-
ear model verticl flux plane (GLM-VFP), vertical radial plume mapping (VRPM),
quantitative optical gas imaging (QOGI), tracer correlation method (TCM), and
Eddy covariance (EC). When comparing their performances in Table 6.2, it can be
seen that, when categorizing by means of mobility (i.e. fixed, on-foot, etc.), methods
using static sensors show a trend of having higher complexity values while UAV-based
methods display generally lower complexity values. For a subset of the methods, the
survey times, sample distances, and average accuracies can be seen in Fig. 6.7. This
subset was specifically displayed for these methods had both upper and lower bounds
for survey times and sample distances along with accuracy data which allowed for
the plotting of these quantities for each method in the form of ellipses on a log-log
plot. When analyzing this plot, it can be seen that the sUAS-based methods are
generally lower in sample distances and survey times as opposed to manned aircraft-
based methods (being the one of the highest in both). The bLS and TCM methods
are shown to have the best average accuracy with several sUAS and mobile meth-
ods close in accuracy. The long sample times of bLLS method are due to the values
reported in [79], and it is possible that these values don’t reflect typical bLS sample
times. The advantages and disadvantages of each of the methods can be seen in Table
6.3 along with what typical application fields that they were applied in.

The final ranking of the methods depends heavily on the desired application,
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which also depends on factors such as sample distance, sample time, and desired
accuracy. For that reason, it is difficult to rank the methods in general. Thus, we
provide a ranking of the methods in terms of complexity (outlined in Table 6.1)
with highlights from the precision and cost in Fig. 6.8. The results indicate that the
simplest methods, in terms of complexity, are the sUAS-based NGI® and VFP?® as
well as fixed QOGI'. The most complex methods include bLS' and manned aircraft-
based approaches. In terms of precision, bLS!, NGI?, GDT*, VFP5, QOGI', TCM3,
and EC! tend to be the best. Thus, for sUAS-based methods, NGI? and VFP?, are
the most promising approaches. Additionally, the GDT*, TCM?, and EC! approaches
can be treated as candidate methods for future implementation using sUAS.
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Figure 6.7 Diagram of summary of methods (based on Table 6.2) showing relationship
between typical survey time versus sample distance and there associated normalized
accuracy, where lower values represent more accurate measurements. (measured using
lixed, %foot, 3vehicle, “manned aircraft, or SUAV)

6.3 CHAPTER SUMMARY

In this chapter, we examined several key emission source quantification (ESQ) meth-
ods that utilize simulation-, mass-balance-, correlation-, and image-based approaches.
Within the methods examined, we noted several sUAS-based approaches. This in-
cludes methods that utilize optimization and mass-balance principals, such as the
near-field Gaussian plume inversion (NGI) and the mass-balance vertical flux plane
(VFP) —also cylindrical flux plane (CFP). While, some of the methods utilized mobile
vehicles, it is possible that methods such as the recursive Bayesian point source Gaus-
sian (PSG-RB) or tracer correlation method (TCM) can be extended to sUAS-based
too.

An analysis and summary of the all methods were conducted to showcase the
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Figure 6.8 Diagram of the complexity ranking of the methods (based on Table 6.1),
showing the relationship between the method complexity (red), precision (green),
and cost (blue). The precision is normalized on the source estimate multiplied by 10
and the cost is ranked from 0 to 10. (measured using fixed, ?foot, 3vehicle, “manned

aircraft, or SUAV)

complexity, cost and accuracy (or variance if not available). These insights were
displayed in Section 6.2’s Tables and Figures to help give practitioners a large scale
overview of the required sample distance, sample time, accuracy, cost and complexity.
While, these metrics are generalized to some extent, the usefulness is in the selec-
tion of the appropriate method and mode of sensing for your desired application. In
this context, the sUAS-based approaches tended to be the simplest (in regards to
comlpexity) compared to the other methods examined. Additionally, of the sUAS-
based approaches, the mass balanced-based and NGI methods were more dominant.
It should be noted that the Sequential Bayesian Markov Chain Monte Carlo approach
in [55] shows promise in terms of source term estimation but needs further evaluation
for applications in Oil & Gas (ONG). This is in part due to operator concerns of
intrinsically safe devices being near ONG equipment, as well as, some operators do
not allow flights over the equipment [88, 80].



Bibliography

1]

Adil Shah. Supplement to A Near-Field Gaussian Plume Inversion Flux Quan-
tification Method, Suitable For Unmanned Aerial Vehicle Sampling. Atmosphere,
2020.

John D Albertson, Tierney Harvey, Greg Foderaro, Pingping Zhu, Xiaochi Zhou,
Silvia Ferrari, M Shahrooz Amin, Mark Modrak, Halley Brantley, and Eben D
Thoma. A mobile sensing approach for regional surveillance of fugitive methane
emissions in oil and gas production. FEnvironmental Science & Technology,
50(5):2487-2497, 2016.

Caroline B Alden, Sean C Coburn, Robert J Wright, Esther Baumann, Kevin
Cossel, Edgar Perez, Eli Hoenig, Kuldeep Prasad, lan Coddington, and Gre-
gory B Rieker. Single-blind quantification of natural gas leaks from 1 km distance
using frequency combs. Environmental science € technology, 53(5):2908-2917,
2019.

Caroline B Alden, Subhomoy Ghosh, Sean Coburn, Colm Sweeney, Anna Kar-
ion, Robert Wright, lan Coddington, Gregory B Rieker, and Kuldeep Prasad.
Bootstrap inversion technique for atmospheric trace gas source detection and
quantification using long open-path laser measurements. Atmospheric Measure-
ment Techniques, 11(3):1565-1582, 2018.

David Allen, Shannon Stokes, Erin Tullos, Brendan Smith, Scott Herndon, and
Bradley Flowers. Field trial of methane emission quantification technologies. In
Proc. of the SPE Annual Technical Conference and Ezhibition. OnePetro, 2020.

Grant Allen, Peter Hollingsworth, Khristopher Kabbabe, Joseph R Pitt, Mo-
hammed I Mead, Samuel Illingworth, Gareth Roberts, Mark Bourn, Dudley E
Shallcross, and Carl J Percival. The development and trial of an unmanned
aerial system for the measurement of methane flux from landfill and greenhouse
gas emission hotspots. Waste Management, 87:883-892, 2019.

K Jerry Allwine and Julia E Flaherty. Joint urban 2003: Study overview and
instrument locations. Technical report, Pacific Northwest National Lab.(PNNL),
Richland, WA (United States), 2006.

C Arndt, AB Leytem, AN Hristov, D Zavala-Araiza, JP Cativiela, S Conley,
C Daube, Ian Faloona, and SC Herndon. Short-term methane emissions from 2
dairy farms in california estimated by different measurement techniques and us

51



52 m Bibliography

[14]

environmental protection agency inventory methodology: A case study. Journal
of Dairy Science, 101(12):11461-11479, 2018.

Antoine Babilotte. Field comparison of methods for assessment of methane fugi-
tive emissions from landfills. Environmental Research and Education Foundation

(EREF), 2011.

Clay S Bell, Timothy Vaughn, Daniel Zimmerle, Detlev Helmig, and Brian Lamb.
Evaluation of next generation emission measurement technologies under repeat-
able test protocols. Elementa: Science of the Anthropocene, 8, 2020.

C. A. Biltoft and E Yee. Overview of the Mock Urban Setting Test (MUST)
C.A. Engineering, 2001.

CHRISTOPHER A Biltoft. Customer report for mock urban setting test. DPG
Document, (8-CO):160-000, 2001.

M Bourn, G Allen, P Hollingsworth, K Kababbe, P I Williams, H Ricketts,
J R Pitt, and A Shah. The development of an unmanned aerial system for the
measurement of methane emissions from landfill. Sizteenth International Waste
Management and Landfill Symposium, (October 2017), 2018.

Halley L Brantley, Eben D Thoma, William C Squier, Birnur B Guven, and
David Lyon. Assessment of methane emissions from oil and gas produc-

tion pads using mobile measurements. FEnvironmental Science & Technology,
48(24):14508-14515, 2014.

Timo Rolf Bretschneider and Karan Shetti. UAV-based gas pipeline leak detec-
tion. 35th Asian Conference on Remote Sensing 2014, ACRS 2014: Sensing for
Reintegration of Societies, (April), 2014.

Bridger Photonics. Gas mapping lidar™ METEC round 1 results.

George Burba. FEddy covariance method for scientific, industrial, agricultural
and regulatory applications: A field book on measuring ecosystem gas exchange
and areal emission rates. LI-Cor Biosciences, 2013.

Maria Obiminda L. Cambaliza, Jean E Bogner, Roger B Green, Paul B Shepson,
Tierney A Harvey, Kurt A Spokas, Brian H Stirm, Margaret Corcoran, Detlev
Helmig, and Armin Wisthaler. Field measurements and modeling to resolve m?
to km? chy emissions for a complex urban source: An indiana landfill study.
Elementa: Science of the Anthropocene, 5, 2017.

MOL Cambaliza, PB Shepson, DR Caulton, B Stirm, D Samarov, KR Gurney,
J Turnbull, KJ Davis, A Possolo, A Karion, et al. Assessment of uncertainties of
an aircraft-based mass balance approach for quantifying urban greenhouse gas
emissions. Atmospheric Chemistry and Physics, 14(17):9029-9050, 2014.



[20]

[21]

[24]

[25]

Bibliography ® 53

Stephen Conley, Ian Faloona, Shobhit Mehrotra, Maxime Suard, Donald H
Lenschow, Colm Sweeney, Scott Herndon, Stefan Schwietzke, Gabrielle Pétron,
Justin Pifer, et al. Application of gauss’s theorem to quantify localized surface
emissions from airborne measurements of wind and trace gases. Atmospheric
Measurement Techniques, 10(9):3345-3358, 2017.

Kevin C. Cossel, Eleanor M. Waxman, Eli Hoenig, Michael Cermak, Chris
Choate, Daniel Hesselius, Ian Coddington, and Nathan R. Newbury. Microm-
eteorological flux measurements using spatially- scanned open-path dual-comb
spectroscopy. Optical Sensors and Sensing Congress, 2020(c):EM3C.2, 2021.

Noel Cressie. Kriging nonstationary data. Journal of the American Statistical
Association, 81(395):625-634, 1986.

Yu Yan Cui, Jerome Brioude, Stuart A McKeen, Wayne M Angevine, Si-Wan
Kim, Gregory J Frost, Ravan Ahmadov, Jeff Peischl, Nicolas Bousserez, Zhen
Liu, et al. Top-down estimate of methane emissions in California using a
mesoscale inverse modeling technique: The South Coast Air Basin. Journal
of Geophysical Research: Atmospheres, 120(13):6698-6711, 2015.

PM Cgzepiel, B Mosher, RC Harriss, JH Shorter, JB McManus, CE Kolb, E All-
wine, and BK Lamb. Landfill methane emissions measured by enclosure and
atmospheric tracer methods. Journal of Geophysical Research: Atmospheres,

101(D11):16711-16719, 1996.

Florentino B De la Cruz, Roger B Green, Gary R Hater, Jeffrey P Chanton,
Eben D Thoma, Tierney A Harvey, and Morton A Barlaz. Comparison of field

measurements to methane emissions models at a new landfill. Environmental
Science €& Technology, 50(17):9432-9441, 2016.

OT Denmead, LA Harper, JR Freney, DW'T Griffith, R Leuning, and RR Sharpe.
A mass balance method for non-intrusive measurements of surface-air trace gas
exchange. Atmospheric Environment, 32(21):3679-3688, 1998.

John D’Errico. fminsearchbnd, fminsearchcon, Feb 2022.

Soren Dierks and Andreas Kroll. Quantification of methane gas leakages using
remote sensing and sensor data fusion. In Proc. of the 2017 IEEE Sensors
Applications Symposium (SAS), pages 1-6. IEEE, 2017.

Richard M Eckman. Re-examination of empirically derived formulas for hori-
zontal diffusion from surface sources. Atmospheric Environment, 28(2):265-272,
1994.

Rachel Edie, Anna M Robertson, Robert A Field, Jeffrey Soltis, Dustin A Snare,
Daniel Zimmerle, Clay S Bell, Timothy L. Vaughn, and Shane M Murphy. Con-
straining the accuracy of flux estimates using OTM 33A. Atmospheric Measure-
ment Techniques, 13(1):341-353, 2020.



54 m Bibliography

[31]

[34]

[35]

[40]

Rachel Edie, Anna M Robertson, Jeffrey Soltis, Robert A Field, Dustin Snare,
Matthew D Burkhart, and Shane M Murphy. Off-site flux estimates of volatile
organic compounds from oil and gas production facilities using fast-response
instrumentation. Environmental Science & Technology, 54(3):1385-1394, 2019.

Joachim Eichhorn and Mérton Balczé. Flow and dispersal simulations of the
mock urban setting test. Hrvatski meteoroloski easopis, 43(43/1):67-72, 2008.

EPA. Draft Other Test Method 33A: Geospatial measurement of
air  pollution, remote emissions quantification - direct assessment
(GMAP-REQ-DA). Environmental — Protection Agency (EPA), 2014.
https://www3.epa.gov/ttnemc01 /prelim /otm33a.pdf.

Thomas K Flesch, Sean M McGinn, Deli Chen, John D Wilson, and Raymond L
Desjardins. Data filtering for inverse dispersion emission calculations. Agricul-
tural and Forest Meteorology, 198:1-6, 2014.

Thomas K Flesch, John D Wilson, and Eugene Yee. Backward-time lagrangian
stochastic dispersion models and their application to estimate gaseous emissions.

Journal of Applied Meteorology and Climatology, 34(6):1320-1332, 1995.

TK Flesch, JD Wilson, and LA Harper. Deducing ground-to-air emissions from
observed trace gas concentrations: a field trial with wind disturbance. Journal
of Applied Meteorology, 44(4):475-484, 2005.

TK Flesch, JD Wilson, LA Harper, BP Crenna, and RR Sharpe. Deducing
ground-to-air emissions from observed trace gas concentrations: a field trial.
Journal of Applied Meteorology, 43(3):487-502, 2004.

Markus D Foote, Philip E Dennison, Andrew K Thorpe, David R Thompson,
Siraput Jongaramrungruang, Christian Frankenberg, and Sarang C Joshi. Fast
and accurate retrieval of methane concentration from imaging spectrometer data
using sparsity prior. IEEE Transactions on Geoscience and Remote Sensing,

58(9):6480-6492, 2020.

Tierney A Foster-Wittig, Eben D Thoma, and John D Albertson. FEstima-
tion of point source fugitive emission rates from a single sensor time series:

A conditionally-sampled gaussian plume reconstruction. Atmospheric Environ-
ment, 115:101-109, 2015.

Tierney A Foster-Wittig, Eben D Thoma, Roger B Green, Gary R Hater,
Nathan D Swan, and Jeffrey P Chanton. Development of a mobile tracer cor-
relation method for assessment of air emissions from landfills and other area
sources. Atmospheric Environment, 102:323-330, 2015.

James L France, Prudence Bateson, Pamela Dominutti, Grant Allen, Stephen
Andrews, Stephane Bauguitte, Max Coleman, Tom Lachlan-Cope, Rebecca E
Fisher, Langwen Huang, et al. Facility level measurement of offshore oil and



[46]

Bibliography ® 55

gas installations from a medium-sized airborne platform: method development
for quantification and source identification of methane emissions. Atmospheric
Measurement Techniques, 14(1):71-88, 2021.

Christian Frankenberg, Andrew K Thorpe, David R Thompson, Glynn Hulley,
Eric Adam Kort, Nick Vance, Jakob Borchardt, Thomas Krings, Konstantin
Gerilowski, Colm Sweeney, et al. Airborne methane remote measurements reveal
heavy-tail flux distribution in four corners region. Proc. of the National Academy
of Sciences, 113(35):9734-9739, 2016.

Michael B. Frish. Monitoring fugitive methane emissions utiliz-
ing advanced small unmanned aerial sensor technology. 2016.
http://www.psicorp.com/sites/psicorp.com/files/articles/SR-2018-3.pdf.

Montserrat Fuentes. A high frequency kriging approach for non-stationary en-
vironmental processes. Environmetrics: The official journal of the International
Environmetrics Society, 12(5):469-483, 2001.

Zhiling Gao, Raymond L Desjardins, and Thomas K Flesch. Comparison of
a simplified micrometeorological mass difference technique and an inverse dis-
persion technique for estimating methane emissions from small area sources.
Agricultural and Forest Meteorology, 149(5):891-898, 2009.

D. Gasbarra, P. Toscano, D. Famulari, S. Finardi, P. Di Tommasi, A. Zaldei,
P. Carlucci, E. Magliulo, and B. Gioli. Locating and quantifying multiple landfills
methane emissions using aircraft data. Environmental Pollution, 254:112987,
2019.

Jake R Gemerek, Silvia Ferrari, and John D Albertson. Fugitive gas emission
rate estimation using multiple heterogeneous mobile sensors. In Proc. of the
2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose
(ISOEN), pages 1-3. IEEE, 2017.

Mathias Gockede, Corinna Rebmann, and Thomas Foken. A combination of
quality assessment tools for eddy covariance measurements with footprint mod-
elling for the characterisation of complex sites. Agricultural and Forest Meteo-
rology, 127(3-4):175-188, 2004.

Pierre Goovaerts. Kriging and semivariogram deconvolution in the presence of
irregular geographical units. Mathematical Geosciences, 40(1):101-128, 2008.

Bruce B Hicks and Dennis D Baldocchi. Measurement of fluxes over land:
Capabilities, origins, and remaining challenges. Boundary-Layer Meteorology,
177:365-394, 2020.

Derek Hollenbeck and YangQuan Chen. Characterization of ground-to-air emis-
sions with sUAS using a digital twin framework. In Proc. of the 2020 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), pages 1162-1166.
IEEE, 2020.



56 W Bibliography

[52]

[55]

[56]

[59]

[60]

[61]

Derek Hollenbeck, Kristen Manies, YangQuan Chen, Dennis Baldocchi, Fugenie
Euskirchen, and Lance Christensen. Evaluating a uav-based mobile sensing sys-
tem designed to quantify ecosystem-based methane. Farth and Space Science
Open Archive, page 15, 2021.

Nicholas S Holmes and Lidia Morawska. A review of dispersion modelling and
its application to the dispersion of particles: an overview of different dispersion
models available. Atmospheric Environment, 40(30):5902-5928, 2006.

C Hunter. A recommended Pasquill-Gifford stability classification method for
safety basis atmospheric dispersion modeling at SRS. Technical report, Savannah
River Site (SRS), 2012.

Michael Hutchinson, Cunjia Liu, and Wen-Hua Chen. Source term estimation of
a hazardous airborne release using an unmanned aerial vehicle. Journal of Field
Robotics, 36(4):797-817, 2019.

Paul Imhoff, Ramin Yazdani, Byunghyun Han, Changen Mei, and Don Augen-
stein. Quantifying capture efficiency of gas collection wells with gas tracers.
Waste Management, 43:319-327, 2015.

Paul T Imhoff and Fotini K Chow. Assessing Accuracy of Tracer Dilution Mea-
surements of Methane Emissions from Landfills with Wind Modeling Research
Proposal Assessing Accuracy of Tracer Dilution Measurements of Methane Emis-
sions from Landfills with Wind Modeling. 2014.

Brian K Lamb, J Barry McManus, Joanne H Shorter, Charles E Kolb, Byard
Mosher, Robert C Harriss, Fugene Allwine, Denise Blaha, Touche Howard,
Alex Guenther, et al. Development of atmospheric tracer methods to measure
methane emissions from natural gas facilities and urban areas. Environmental

Science & Technology, 29(6):1468-1479, 1995.

MJ Leach. Final report for the joint urban 2003 atmospheric dispersion study
in Oklahoma City: Lawrence livermore national laboratory participation. Tech-
nical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), 2005.

Henning Lebrenz and Andrés Bérdossy. Geostatistical interpolation by quantile
kriging. Hydrology and Earth System Sciences, 23(3):1633-1648, 2019.

Ira Leifer, Christopher Melton, Marc L Fischer, Matthew Fladeland, Jason
Frash, Warren Gore, Laura T Iraci, Josette E Marrero, Ju-Mee Ryoo, Tomoaki
Tanaka, et al. Atmospheric characterization through fused mobile airborne and
surface in situ surveys: methane emissions quantification from a producing oil
field. Atmospheric Measurement Techniques, 11(3):1689-1705, 2018.

George Y Lu and David W Wong. An adaptive inverse-distance weighting spatial
interpolation technique. Computers & Geosciences, 34(9):1044-1055, 2008.



[63]

[66]

[67]

[68]

Bibliography ® 57

Alessandro Mazzella and Antonio Mazzella. The importance of the model choice
for experimental semivariogram modeling and its consequence in evaluation pro-
cess. Journal of Engineering, 2013, 2013.

Jacob G M@nster, Jerker Samuelsson, Peter Kjeldsen, Chris W Rella, and Char-
lotte Scheutz. Quantifying methane emission from fugitive sources by combining
tracer release and downwind measurements—a sensitivity analysis based on mul-
tiple field surveys. Waste Management, 34(8):1416-1428, 2014.

Randulph P Morales, Jonas Ravelid, Killian P Brennan, Béla Tuzson, Lukas
Emmenegger, and Dominik Brunner. Estimating local methane sources from
drone-based laser spectrometer measurements by mass-balance method. In EGU
General Assembly Conference Abstracts, page 14778, 2020.

Matthew A Nelson, Michael J Brown, Scot A Halverson, Paul E Bieringer, An-
drew Annunzio, George Bieberbach, and Scott Meech. A case study of the
weather research and forecasting model applied to the joint urban 2003 tracer

field experiment. part 2: Gas tracer dispersion. Boundary-Layer Meteorology,
161(3):461-490, 2016.

Matthew A Nelson, MJ Brown, ER Pardyjak, and JC Klewicki. Area-averaged
profiles over the mock urban setting test array. Technical report, Los Alamos
National Laboratory, 2004.

Damon K Nicholson, Allison Hedrick, Petr Serguievski, and Allyssa A Martinez.
Detailed test plan for Jack Rabbit (JR) II. Technical report, West Desert Test
Center Dugway Proving Ground UT, 2015.

Arvind P Ravikumar, Brenna Barlow, Jiayang Wang, and Devyani Singh. Re-
sults from the Alberta methane measurement campaigns: New insights into oil
and gas methane mitigation policy. In AGU Fall Meeting Abstracts, volume
2019, pages A41D-08, 2019.

Arvind P Ravikumar, Sindhu Sreedhara, Jingfan Wang, Jacob Englander, Daniel
Roda-Stuart, Clay Bell, Daniel Zimmerle, David Lyon, Isabel Mogstad, Ben
Ratner, et al. Single-blind inter-comparison of methane detection technologies—
results from the stanford /edf mobile monitoring challenge. Elementa: Science of
the Anthropocene, 7, 2019.

Maximilian Reuter, Heinrich Bovensmann, Michael Buchwitz, Jakob Borchardt,
Sven Krautwurst, Konstantin Gerilowski, Matthias Lindauer, Dagmar Kubistin,
and John P. Burrows. Development of a small unmanned aircraft system to
derive COq emissions of anthropogenic point sources. Atmospheric Measurement
Techniques, 14(1):153-172, 2021.

Kyoung S Ro, Melvin H Johnson, Kenneth C Stone, Patrick G Hunt, Thomas
Flesch, and Richard W Todd. Measuring gas emissions from animal waste la-

goons with an inverse-dispersion technique. Atmospheric Environment, 66:101—
106, 2013.



58 M Bibliography

[73]

[74]

[78]

[79]

JR Roscioli, TI Yacovitch, C Floerchinger, AL Mitchell, DS Tkacik, R Subrama-
nian, DM Martinez, TL Vaughn, L. Williams, D Zimmerle, et al. Measurements
of methane emissions from natural gas gathering facilities and processing plants:

measurement methods. Atmospheric Measurement Techniques, 8(5):2017-2035,
2015.

Ju Mee Ryoo, Laura T. Iraci, Tomoaki Tanaka, Josette E. Marrero, Emma L.
Yates, Inez Fung, Anna M. Michalak, Jovan Tadi¢, Warren Gore, T. Paul Bui,
Jonathan M. Dean-Day, and Cecilia S. Chang. Quantification of COy and CHy
emissions over Sacramento, California, based on divergence theorem using air-
craft measurements. Atmospheric Measurement Techniques, 12(5):2949-2966,
2019.

Rebecca Del Papa Moreira Scafutto and Carlos Roberto de Souza Filho. Detec-
tion of methane plumes using airborne midwave infrared (3-5 pm) hyperspectral
data. Remote Sensing, 10(8):1-16, 2018.

Adil Shah, Grant Allen, Joseph R Pitt, Hugo Ricketts, Paul I Williams,
Jonathan Helmore, Andrew Finlayson, Rod Robinson, Khristopher Kabbabe,
Peter Hollingsworth, et al. A near-field gaussian plume inversion flux quan-
tification method, applied to unmanned aerial vehicle sampling. Atmosphere,

10(7):396, 2019.

Adil Shah, Grant Allen, Hugo Ricketts, Joseph Pitt, and Paul Williams. Methane
flux quantification from lactating cattle using unmanned aerial vehicles. EGU
General Assembly, 20:7655, 2018.

Adil A Shah. Methane Flux Quantification Using Unmanned Aerial Vehicles.
Diss., University of Manchester, 2020.

Jacob T Shaw, Grant Allen, Joseph Pitt, Adil Shah, Shona Wilde, Laurence
Stamford, Zhaoyang Fan, Hugo Ricketts, Paul I Williams, Prudence Bateson,
et al. Methane flux from flowback operations at a shale gas site. Journal of the
Air & Waste Management Association, 70(12):1324-1339, 2020.

Devyani Singh, Brenna Barlow, Chris Hugenholtz, Wes Funk, Cooper Robin-
son, and Arvind P Ravikumar. Field performance of new methane detection
technologies: Results from the Alberta Methane Field Challenge. 2021.

Giovanni Tanda, Marco Balsi, Paolo Fallavollita, and Valter Chiarabini. A UAV-
based thermal-imaging approach for the monitoring of urban landfills. Inven-
tions, 5(4):1-13, 2020.

AK Thorpe, C Frankenberg, and DA Roberts. Retrieval techniques for airborne
imaging of methane concentrations using high spatial and moderate spectral res-

olution: Application to aviris. Atmospheric Measurement Techniques, 7(2):491—
506, 2014.



[83]

[87]

[90]

[91]

[92]

[93]

Bibliography ® 59

Andrew K Thorpe, Christian Frankenberg, David R Thompson, Riley M Duren,
Andrew D Aubrey, Brian D Bue, Robert O Green, Konstantin Gerilowski,
Thomas Krings, Jakob Borchardt, et al. Airborne doas retrievals of methane,
carbon dioxide, and water vapor concentrations at high spatial resolution: ap-
plication to aviris-ng. Atmospheric Measuremnt Techniques, 10(10), 2017.

AP Van Ulden. Simple estimates for vertical diffusion from sources near the
ground. Atmospheric Environment, 12(11):2125-2129, 1978.

Hans Wackernagel. Ordinary Kriging. In Multivariate Geostatistics, pages 79-88.
Springer, 2003.

M Whiticar, L Christensen, C Salas, and P Reece. GHGMap: novel approach for
aerial measurements of greenhouse gas emissions British Columbia. Geoscience
BC Summary of Activities 2017: Energy, Geoscience BC, Report 2018-4, pages
1-10, 2018.

M Whiticar, L Christensen, C Salas, and P Reece. Ghgmap: Detection of fugi-
tive methane leaks from natural gas pipelines British Columbia and Alberta.
Geoscience BC Summary of Activities 2018: Energy and Water, Geoscience BC,
Report 2019-2, pages 67-76, 2019.

M Whiticar, D Hollenbeck, B Billwiller, C Salas, and L.E Christensen. Applica-
tion of the bc GHGMapper™ platform for the Alberta Methane Field Challenge
(AMFC). Geoscience BC' Summary of Activities 2019: Energy and Water, Geo-
science BC, Report 2020-02, pages 87-102, 2020.

Shuting Yang, Robert W Talbot, Michael B Frish, Levi M Golston, Nicholas F
Aubut, Mark A Zondlo, Christopher Gretencord, and James McSpiritt. Natu-
ral gas fugitive leak detection using an unmanned aerial vehicle: Measurement
system description and mass balance approach. Atmosphere, 9(10):383, 2018.

Eugene Yee. Probability theory as logic: data assimilation for multiple source
reconstruction. Pure and Applied Geophysics, 169(3):499-517, 2012.

Eugene Yee and Thomas K Flesch. Inference of emission rates from multiple
sources using Bayesian probability theory. Journal of Environmental Monitoring,
12(3):622-634, 2010.

Eric J Zhang, Chu C Teng, Theodore G van Kessel, Levente Klein, Ramachan-
dran Muralidhar, Gerard Wysocki, and William MJ Green. Field deployment
of a portable optical spectrometer for methane fugitive emissions monitoring on
oil and gas well pads. Sensors, 19(12):2707, 2019.

Xiaochi Zhou, Seungju Yoon, Steve Mara, Matthias Falk, Toshihiro Kuwayama,
Travis Tran, Lucy Cheadle, Jim Nyarady, Bart Croes, Elizabeth Scheehle, et al.
Mobile sampling of methane emissions from natural gas well pads in California.
Atmospheric Environment, 244:117930, 2021.



