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ABSTRACT
The emergence of the systematic study of complexity as a

science has resulted from the growing recognition that the fun-
damental assumptions upon which Newtonian physics is based
are not satisfied throughout most of science, e.g., time is not nec-
essarily uniformly flowing in one direction, nor is space homo-
geneous. Herein we discuss how the fractional calculus (FC),
renormalization group (RG) theory and machine learning (ML)
have each developed independently in the study of distinct phe-
nomena in which one or more of the underlying assumptions of
Newtonian formalism is violated. FC has been shown to help us
better understand complex systems, improve the processing of
complex signals, enhance the control of complex networks, in-
crease optimization performance, and even extend the enabling
of the potential for creativity. RG allows one to investigate the
changes of a dynamical system at different scales. For example,
in quantum field theory, divergent parts of a calculation can lead
to nonsensical infinite results. However, by applying RG, the
divergent parts can be adsorbed into fewer measurable quanti-
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ties, yielding finite results. To date, ML is a fashionable research
topic and will probably remain so into the foreseeable future.
How a model can learn efficiently (optimally) is always essential.
The key to learnability is designing efficient optimization meth-
ods. Although extensive research has been carried out on the
three topics separately, few studies have investigated the associ-
ation triangle between the FC, RG, and ML. To initiate the study
of their interdependence, herein the authors discuss the critical
connections between them (Fig. 1). In the FC and RG, scaling
laws reveal the complexity of the phenomena discussed. The au-
thors emphasize that the FC’s and RG’s critical connection is the
form of inverse power laws (IPL), and the IPL index provides a
measure of the level of complexity. For FC and ML, the crit-
ical connections in big data, wherein variability, optimization,
and non-local models are described. The authors introduce the
derivative-free and gradient-based optimization methods and ex-
plain how the FC could contribute to these study areas. In the
end, the association between the RG and ML is also explained.
The mutual information, feature extraction, and locality are also
discussed. Many of the cross-sectional studies suggest a con-
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nection between the RG and ML. The RG has a superficial sim-
ilarity to deep neural networks (DNNs) structure in which one
marginalizes over hidden degrees of freedom. The authors re-
mark in the conclusions that the association triangle between FC,
RG, and ML, form a stool on which the foundation to complexity
science might comfortably sit for a wide range of future research
topics.

1. Fractional Calculus
Fractional calculus (FC) is the quantitative analysis of

functions using non-integer-order integration and differentiation.
The order can be a real number, a complex number, or even the
function of a variable. The first recorded query regarding the
meaning of a non-integer order differentiation appeared in a letter
written in 1695 by Guillaume de l’Hôpital to Gottfried Wilhelm
Leibniz. Leibniz was a contemporary of Sir Isaac Newton, and
independently of him, co-invented the infinitesimal calculus [1].
Since then, many contributors have provided definitions for frac-
tional derivatives and integrals [2], and the theory along with the
applications of FC expanded greatly over the centuries [3, 4, 5].

In more recent decades, the concept of fractional dynam-
ics has merged and gained followers in the statistical and chem-
ical physics communities [6, 7, 8]. For example, optimal im-
age processing has improved through the use of fractional-order
differentiation and fractional-order partial differential equations
as summarized in Chen et al. [9, 10, 11]. Anomalous diffusion
was described using fractional diffusion equations in [12,13] and
Metzler et al. used fractional Langevin equations to model vis-
coelastic materials [14].

Fractional-order thinking (FOT) is a way of thinking us-
ing FC. For example, there are non-integers between the inte-
gers. Between logic 0 and logic 1, there is the fuzzy logic
[15]. Compared with integer-order splines, there are fractional-
order splines [16]. Between the high-order integer moments,
there are non-integer-order moments. FOT has been entailed by
many research areas, for example, self-similar [17, 18], scale-
free or scale-invariant, power law, long-range dependence (LRD)
[19, 20], and 1/ f α noise [21, 22].

2. Renormalization Group
The Renormalization group (RG) is a conceptual frame-

work which contains multiple techniques, such as real-space
RG [23], functional RG [24], density matrix renormalization
group (DMRG) [25]. The RG was originally devised in particle
physics. Stueckelberg et al. [26] anticipated the idea in quan-
tum field theory and first proposed the field conceptually. They
noted that RG exhibited a group of transformations that trans-
ferred quantities from the bare terms to the counter terms. To
date, the RG has extended to many other areas, such as solid-
state physics, fluid mechanics, and physical cosmology. In theo-

retical physics, the RG refers to a formal apparatus, allowing one
to investigate a physical system’s changes at different scales. A
change in scale is usually defined as a scale transformation.

The RG is positively related to self-similarity. In quantum
field theory, divergent parts of a calculation can cause nonphysi-
cal infinite results. Using the RG, the divergent parts can be rede-
fined into a few measurable quantities, yielding finite results. For
instance, the quantum field theory is adopted to calculate the ef-
fects of fundamental forces at the quantum level. In quantum
electrodynamics, the electron can emit and reabsorb “virtual”
photons continuously, which means that its total energy and mass
can be infinite. However, the divergence problem can be resolved
by using RG theory, which means defining the mass of the “bare”
electron to include these virtual processes and setting it equal to
the measured mass. Inspired by the success of quantum electro-
dynamics, some other quantum field theories are also thriving,
such as the electroweak theory and quantum chromodynamics.
However, a renormalizable theory covering all the fundamental
forces, such as gravity, is still under investigation.

Two major areas of investigation not mentioned above in
which the non-inevitability of RG is explicit are the chaotic be-
havior in dynamical systems and the universality theory of crit-
ical points in statistical mechanics. Of more recent origin is the
RG application to describe the phase transition of complex dy-
namic networks, where at the critical point a physical observable
becomes discontinuous. Both social and biological complex dy-
namic networks have been shown to be members of the Ising
universality class even though they are finite dimensional and
therefore are not in the thermodynamic limit imposed for its use
in the historical applications, see, e.g., West et al. [27] for a more
extended discussion. A two-level model of cognition was devel-
oped using these ideas and provided insight into how linear log-
ical thinking is disrupted by paradox only to be resolved using
FOT [28].

3. Machine Learning
Machine Learning (ML) is the science (and art) of pro-

gramming computers so they can learn from data [29]. A more
engineering-oriented definition was given by Tom Mitchell in
1997 [30], “A computer program is said to learn from experience
E with respect to some task T and some performance measure P,
if its performance on T, as measured by P, improves with experi-
ence E”. In 2006, Hinton et al. [31] trained a DNN to recognize
handwritten digits with an accuracy of more than 98%. Since
then, researchers are more and more interested in Deep Learning
(DL), and this enthusiasm extends to many areas of ML, such as
image processing [32,33], natural language processing [34], and
even precision agriculture [35, 36, 37].

Why do we need ML? In summary, ML algorithms can usu-
ally simplify a solution and perform better than traditional meth-
ods, which may require much more hand-tuning rules. Further-
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FIGURE 1: The new triangle between the FC, RG, and ML. For FC and RG, scaling laws and complexity are discussed in the text. The
authors point out that FC’s and RG’s essential connection is the IPL. For FC and ML, the critical connections in big data, variability,
optimization, and nonlocal models are described. The authors introduce the derivative-free and gradient-based optimization methods
and explain how the FC contributes to these study areas. In the end, the association between the RG and ML is explained. The mutual
information, feature extraction, and locality are subsequently discussed. Many of the cross-sectional studies suggest a connection
between the RG and ML. The RG has a superficial similarity to DNNs structure in which one marginalizes over hidden degrees of
freedom.

more, there may not exist a right solution for the complex phe-
nomena by traditional methods. The ML techniques can help
explain that kind of complexity and can adapt to new data better.
The ML algorithms can obtain the variability about the complex
problems and big data [38]. There are many different types and
ways for ML algorithms classification (Fig. 2). ML can be clas-
sified as supervised, unsupervised, semi-supervised, and Rein-
forcement Learning (RL) based on whether human supervision
is included. According to whether or not the ML algorithms can
learn incrementally on the fly, they can be classified into online
and batch learning. Based on whether or not the ML algorithms
detect the training data patterns and create a predictive model,
the ML can be classified into instance-based and model-based
learning [29].

Most ML algorithms perform training by solving optimiza-
tion problems that rely on the first-order derivatives (Jacobians),
which decide whether to increase or decrease weights. For a
huge speed boost, faster optimizers are being used instead of tra-
ditional Gradient Descent (GD) optimizers. For example, the
most popular boosters are Momentum optimization [39], Nes-
terov Accelerated Gradient [40], AdaGrad [41], RMSProp [42],
and Adam optimization [43]. The second-order (Hessian) opti-
mization methods usually find the solutions with faster conver-
gence rates but higher computational costs. Therefore, the an-

swer to the following question is important: What is a more op-
timal ML algorithm? What if the derivative is fractional-order
instead of integer order?

4. Fractional Calculus and Renormalization Group
In the study of phase transitions and critical phenomena, the

RG can successfully characterize the self–similarity of systems
near critical points [44]. Since FC is another tool to explain the
self-similarity or complexity, suggest that there might be strong
connections between the FC and RG. Guo et al. [45] discussed
RG with scaling laws and complex phenomena to better under-
stand their relationship, which covers nonlinear dynamics, chaos
theory, fractal statistics, and FC from different disciplines.

The power law is usually described as:

f (x) = axk, (1)

when k is a negative constant, f (x) is an IPL. One important char-
acteristic of this power law is scale invariance [46] determined
by:

f (cx) = a(cx)k = ck f (x) ∝ f (x). (2)
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FIGURE 2: The ML can be classified as supervised, unsupervised, semi-supervised, and Reinforcement Learning (RL) based on whether
or not human supervision is included. According to whether or not the ML algorithms can learn incrementally on the fly, they can be
classified into online and batch learning. Based on whether or not the ML algorithms detect the training data patterns and create a
predictive model, the ML can be classified into instance-based and model-based learning [29].

Note that when x is the time, the scaling depicts a property of the
system dynamics. However, when the system is stochastic, the
scaling is a property of the PDF (or correlation structure) and is
a constraint on the collective properties of the system.

When complexity is under scrutiny, it is fair that we ask what
it means? At what point do investigators begin identifying a sys-
tem, network, or phenomenon as complex [47,48]? It seems that
a clear and unified definition of complexity is still unknown to us.
The joint use of FC and RG can potentially answer the following
two questions [45]:

1. How can we characterize complexity?
2. What method should be used for the analysis of complexity

in order to better understand real–world complex phenom-
ena?

There is agreement among a significant fraction of the sci-
entific community that when the distribution of the data associ-
ated with the process of interest is IPL, the phenomenon is com-
plex. In the book by West and Grigolini [49], there is a table
listing a sample of the empirical power laws and IPLs uncovered
in the past two centuries. For example, in scale-free networks,
the degree distributions follow an IPL in connectivity [50,51], in
the processing of signals containing pink noise the power spec-
trum is IPL [20]. For other examples, such as the PDF, the
auto-correlation function (ACF) [52], allometry (Y = aXb) [53],
anomalous relaxation (evolving over time) [54], anomalous dif-
fusion (mean squared dissipation versus time) [13], self-similar,

they can all be described by an IPL.
Douglas [55] investigated the surface–interacting polymers

model and achieved the exact solution of the partition function
using the FC. Furthermore, Douglas first explained the funda-
mental correlation between the RG scaling functions and the ex-
act scaling functions. Qian [56] explained the correlation be-
tween the fractional Brownian motion (FBM) and the RG in sta-
tistical physics, and analyzed the statistical, geometric, and frac-
tal properties of the complex phenomena. To prove that the con-
nection between the FC and RG is IPL, Guo et al. [45] gave an
example of the Weierstrass Random Walk (WRW) [57]. Then,
the RG method was applied to the lattice structure function and
determined the scaling properties of the WRW. Zaslavsky [58]
used non-integrable Hamiltonians to study the chaotic particle ki-
netics. The fractional Fokker-Planck-Kolmogorov (FFPK) equa-
tion was derived to explain the ensemble behavior of the random
walk in the fractal space–time system. The FFPK equation was
solved by using RG methods.

5. Fractional Calculus and Machine Learning
As mentioned previously, ML is a much discussed research

topic and will probably remain so for some time. How a machine
can learn efficiently (optimally) is always important. The key for
the learning process is the optimization method. Thus, design-
ing an efficient optimization method is necessary to answer the
following three questions,
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1. What is the optimal way to optimize?
2. What is the more optimal way to optimize? Multiple op-

tima?
3. Can we demand “More Optimal Machine Learning”, for

example, DL with minimum/smallest labelled data?

During the learning process of ML, we care about both of
the speed and the accuracy of the process. The algorithm is im-
portant, otherwise, data labelling and other labor can be costly.
Therefore, the key to ML is the optimization methods being ap-
plied. The convergence rate and global searching are two im-
portant parts of the optimization method. Theoretically, there
are two broad optimization categories, the derivative-free and
gradient-based. For the derivative-free methods, there are the
direct-search techniques, consisting of particle swarm optimiza-
tion (PSO) [59, 60], etc. For the gradient-based methods, there
are GD and its variants. Both of these categories have shown
better performance when using the FC as demonstrated below.

For derivative-free methods, there are single agent search
and swarm-based search methods. Exploration is often achieved
by randomness or random numbers in terms of some prede-
fined PDFs. Exploitation uses local information such as gra-
dients to search local regions more intensively, and such in-
tensification can enhance the rate of convergence. Then, the
question was posed: What is the optimal randomness? Wei
et al. [61] investigated the optimal randomness in a swarm-
based search. Four asymptotic heavy-tailed PDFs, the Mittag-
Leffler, Pareto, Weibull and Cauchy distributions, have been
used for sample paths analysis. Based on the experimental re-
sults, the randomness-enhanced cuckoo search (CS) algorithms
[62, 63, 64] can identify the unknown specific parameters of the
fractional-order system with better effectiveness and robustness.
The randomness-enhanced CS algorithms can be considered as a
promising tool for solving the real-world complex optimization
problems. The reason is that optimal randomness is being ap-
plied with fractional-order noise during the exploration, which
is more optimal than, the “optimized PSO”, CS. The fractional-
order noise refers to the stable PDFs [65]. In other words, when
we are discussing optimal randomness, we are discussing the
FC [66]!

The GD is a very common optimization algorithm, which
can find the optimal solutions by iteratively tweaking parameters
to minimize the cost function. The stochastic gradient descent
(SGD) random selects times during the training process. There-
fore, the cost function will bounce up and down, decreasing on
average, which is good for escape from local optima. Some-
times noise is added into the GD method and usually such noise
follows Gaussian PDF in the literature. We ask “Why not heavy-
tailed PDFs”? The answer to this question can lead to interesting
future research.

The key to developing an efficient learning process is the
method of optimization. Thus, it is important to design an effi-

cient optimization method. The derivative-free methods, as well
as the gradient-based methods, such as the Nesterov accelerated
gradient descent (NAGD) can contribute to this study area. For
NAGD, a main idea of Jordan’s work [67] is to analyze the iter-
ation algorithm in the continuous-time domain. For differential
equations, one can use the Laypunov or variational method to
analyze its properties, for example the convergence rate is O( 1

t2 ).
One can also use the variational method to derive the master dif-
ferential equation for an optimization method, such as the Least
Action Principle [68], Hamilton’s Variational Principle [69], and
the Quantum-Mechanical Path Integral Approach [70].

Jordan’s work revealed that one can transform an iterative
(optimization) algorithm to its continuous-time limit case, which
can simplify the analysis (Lyapunov methods). One can directly
design a differential equation of motion (EOM) and then dis-
cretize it to derive an iterative algorithm (variational method).
The key is to find a suitable Lyapunov functional to analyze the
stability and convergent rate. The new exciting fact due to Jordan
is that optimization algorithms can be systematically synthesized
using Lagrangian mechanics (Euler-Lagrange), EOM.

Inspired by M. Jordan’s idea in frequency domain, a contin-
uous time fractional-order system was designed in [38]. Further-
more, it is shown to be possible, following the internal model
principle (IMP), to design and analyze the ML algorithms in S
or Z transform domain [38]. In general, M. Jordan asked the
question: “Is there an optimal way to optimize”? Our answer
is yes, by limiting dynamics analysis, discretization and SGD
with other randomness, such as Langevin motion. Herein, the
question posed was: “Is there a more optimal way to optimize”?
Again the answer is yes, but it requires the FC to be used to op-
timize randomness in SGD, random search, and IMP. There are
more potentials for further investigations along this line of ideas.

Nonlocal models have been commonly used to describe
physical systems and/or processes which can not be accurately
described by classical approaches [71]. For example, fractional
nonlocal Maxwell’s equations and the corresponding fractional
wave equations have been applied in [72] for fractional vector
calculus [73]. The nonlocal differential operators [74], including
nonlocal analogs of the gradient/Hessian, are the key of these
nonlocal models, which can be very interesting research with FC
in the near future.

6. Renormalization Group and Machine Learning
The objective of ML research is to learn and extract signifi-

cant features from the training data. As a sub-discipline of ML,
DL uses multiple layers of representation to learn features di-
rectly from training data, which has been successfully utilized in
many research topics, such as precision agriculture [75, 76, 77],
and object detection [78, 79, 80]. Despite the success of DL al-
gorithms, there remains a paucity of evidence on why ML tech-
niques perform well on feature learning.
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Recently, a number of cross-sectional studies suggest an as-
sociation between the RG and ML [81,82,83]. Jefferson pointed
out that the connection between RG and ML was originally made
in the context of certain lattice models [84]. The decimation RG
has a superficial similarity to the structure of DNNs in which
one marginalizes over hidden degrees of freedom. For example,
Mehta et al. proposed that the ML algorithms may be employing
a generalized RG-like scheme to learn features from data [82].
In DNN, the low-level features were fed into higher layers with
more abstract higher-level features. During the feature extraction
process, the DNNs learn to ignore the irrelevant features while
keeping the relevant ones. This continuous coarse-graining pro-
cedure is similar to the RG, which extracts relevant features of a
physical system to describe phenomena at large length scales by
integrating short-distance degrees of freedom. To illustrate their
ideas, they constructed a mapping from the variational RG and
DL architectures based on the Restricted Boltzmann Machines.

Lin et al. [83] explored how physics properties, such
as symmetry, locality, compositionality, and polynomial log-
probability, can translate into neural networks. They argued that
when the statistical process belongs to some hierarchical form
common in physics and ML, a DNN can perform better than a
shallow one. For instance, one of the principles of physics is
locality, which means that things only directly affect their imme-
diate vicinity. When the locality is considered in ML applica-
tions, an arbitrary transformation of a collection of local random
variables will result in a non-local collection [83]. However, the
locality may be preserved. For example, spins are grouped into
blocks in the simple block-spin RG, which are then treated as
random variables. According to a high degree of accuracy, these
blocks are only coupled to their nearest neighbors. This kind of
locality is commonly exploited by biological and artificial visual
systems. However, the lower layers perform fairly local opera-
tions.

In physical systems, the universal properties can determine
the physical characteristics at most time, which can be revealed
by the RG procedure. However, the critical degrees of freedom
may not be easy to figure out. Therefore, Koch-Janusz et al. pro-
posed an artificial neural network based on a model-independent,
information-theoretic characterization of a real-space RG proce-
dure [85]. Based on the ML algorithms, the model can iden-
tify the physically relevant degrees of freedom in a spatial region
and performing an RG coarse-graining step iteratively. The input
data follows a Boltzmann distribution, and no further knowledge
about the microscopic details of the system is provided. The
parameters of the NNs are optimized by a training algorithm
based on evaluating real-space mutual information (RSMI) be-
tween spatially separated regions. The Ising and dimer models
of classical statistical physics in two dimensions were used for
the method validation.

7. The New FC-RG-ML Triangle and Emerging Oppor-
tunities

In general, the authors discussed the connections between
the FC, RG, and ML in this article. It is shown that there exists a
new triangle relationship between FC, RG, and ML. In this sec-
tion, views on RG and physics informed ML with FC for future
research opportunities are presented.

1. Generalization
The generalization can be enhanced using the FC, RG, and
ML. The ML models have great potential to be enhanced,
referring to the generalization part being connected to FC
and RG methods. For example, Mehta et al. proposed
that the ML algorithms may be employing a generalized
RG-like scheme to learn features from data [82]. The
whole complex system usually has many small components
that can interact with their nearby components and the
environment, making their behavior challenging to pre-
dict. As a result, the ensemble PDF dynamics cannot be
described by the standard partial differential equations in
phase space. The PDF equations have been determined to
be fractional generalizations of the traditional phase-space
equations [45].

2. Training dataset variability and diversity
The variability is the most critical characteristic being
discussed during the training of ML algorithms. Variability
can refer to several properties of the training dataset. First,
the number of inconsistencies in the data needs to be under-
stood using anomaly and outlier detection methods. Second,
variability can also refer to diversity [86, 87], resulting from
disparate data types and sources, for example, healthy or
unhealthy [88, 89]. As mentioned for RG methods, in quan-
tum field theory, divergent parts of a calculation can lead
to nonsensical infinite research results. By applying RG,
the divergent parts can be adsorbed into fewer measurable
quantities, yielding finite results. RG and FC techniques
can enhance the training data diversity for ML algo-
rithms. In turn, we could expect “smaller data” rather than
“big data” for ML under the same performance requirement.

3. Accelerated learning
In DNNs, the low-level features were fed into higher
layers with more abstract higher-level features. During the
feature extraction process, the DNNs can learn to ignore
the irrelevant features while keeping the relevant ones,
which will make the learning process faster and efficient.
As mentioned previously, this procedure is similar to the
RG, which extracts relevant features of a physical system
to describe phenomena at large length scales by integrating
short-distance degrees of freedom. To illustrate this idea,
Mehta et al. [82] constructed a mapping from the varia-
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tional RG, and DL architectures based on the Restricted
Boltzmann Machines. The ML algorithms can be shown to
benefit from the RG and FC.

4. Optimal randomness
Randomness plays a significant role in both exploration and
exploitation. A good NNs architecture with randomly as-
signed weights can easily outperform a more deficient archi-
tecture with finely tuned weights [90]. Therefore, it is criti-
cal to discuss the optimal randomness for ML algorithms by
using RG and FC methods. For FC, there are rich forms in
stochasticity [91], for example, heavytailedness, which cor-
responds to fractional-order master equations [92]. In proba-
bility theory, heavy-tailed distributions are PDFs whose tails
do not decay exponentially [93]. Consequently, they have
more weight in their tails than does an exponential distribu-
tion. Heavy-tailed distributions are widely used for mod-
eling in different disciplines, such as finance [94], insur-
ance [95], and medicine [96].
In [83], Lin et al. explored how physics properties can trans-
late into neural networks (NNs) with RG methods. In [85],
Koch-Janusz et al. proposed an artificial neural network
based on a model-independent, information-theoretic char-
acterization of a real-space RG procedure. Based on the ML
algorithms, the model could identify the physically relevant
degrees of freedom in a spatial region and performing an
RG coarse-graining step iteratively [85]. These examples,
we believe, can open a new horizon to the optimal random-
ness study using the FC, RG, and ML together.

8. Concluding Remarks
FC, RG, and ML are three of the most productive research

areas and will probably remain so into the near future. Exten-
sive research has been carried out on the three topics separately.
However, few studies have investigated the association triangle
between the FC, RG, and ML. Thus, the authors have explained
the critical connections among the three points of the triangle in
this article. When dealing with complex systems, the connection
between FC and RG is revealed and explained. For FC and RG,
scaling laws and complexity are discussed and here we note the
scaled form of the PDF that solves the fractional diffusion equa-
tion [43]. The authors point out that the key connection between
FC and RG is the IPL, which is essential to studying complex
systems.

For FC and ML, the critical connections in big data, vari-
ability, optimization, and nonlocal models are described. The
authors introduced the derivative-free and gradient-based opti-
mization methods and explained how the FC could contribute to
these study areas. Fractional dynamics responds to the more ad-
vanced characterization of our more complex world to capture
structures at a too small or too large scale that had previously

been smoothed over. Suppose one wishes to obtain better results
than the best possible using integer order calculus-based meth-
ods, or to be “more optimal”, we advocate to apply FOT (frac-
tional order thinking). In the era of big data, decision and control
need FC, such as fractional-order signals, systems, and controls.

In the end, the association between the RG and ML was ex-
plained. The mutual information, feature extraction, and locality
were discussed. Many of the cross-sectional studies suggested
a connection between the RG and ML. The RG has a similarity
to DNNs structure in which one marginalizes over hidden de-
grees of freedom. The future of ML should be physics-informed,
scientific (cause-effect embedded or cause-effect discovery), and
involving the use of FC and RG, where the modeling is closer to
the true nature.
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