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ABSTRACT Based on Nesterov accelerated gradient method, the problem of iterative learning control for a
class of linear discrete-time systems is considered in this paper. Firstly, the iterative learning control problem
of linear discrete-time systems is transformed into an iterative least-squares problem. Then, the Nesterov
accelerated gradient method is introduced into the iterative learning control framework. Note that the
Nesterov accelerated gradient learning algorithm has the capability of fast convergence. It is shown that
the algorithm presented in this paper can guarantee the output tracking error converges to zero with rate
O(1/k), where k is the iteration counter. Moreover, the monotonic convergence of the Nesterov accelerated
gradient learning algorithm is analyzed and discussed. Finally, the effectiveness of the proposed method is
verified by two simulation examples.

INDEX TERMS Iterative learning control, Nesterov accelerated gradient method, monotonic convergence,
learning algorithm.

I. INTRODUCTION
As well known, iterative learning control (ILC) is an effi-
cacious method to achieve perfect trajectory tracking for
repetitive dynamic systems with complex modeling, uncer-
tainty, and strong nonlinear coupling over a finite time inter-
val (see [1]–[4]). The basic idea of ILC, that is inspired
by human’s learning capability, is to improve the tracking
accuracy gradually by utilizing the previous control experi-
ence. On account of its simplicity and effectiveness, ILC has
attracted extensive attention in theory and applications, and
many significant achievements have been achieved in the past
decades (see, e.g., [5]–[12] and references therein).

In ILC algorithm design, monotonic convergence should
be considered first as an important issue, which means better
and better. Recently, there are many efforts have been made
on norm optimal ILC and parameter optimal ILC to improve
the convergence rate. For example, in [13]–[16], the ILC
algorithms were designed for discrete-time systems by using
the quadratic performance index, which can ensure the track-
ing error converges monotonically to zero as the number of
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iterations increases. In [17]–[20], as effective optimization
techniques, the Newton method and quasi-Newton method
have been used to construct the optimal ILC laws. Moreover,
a gradient-type ILC algorithm was designed in [21] for a
class of linear discrete-time systems, then a complete analysis
of the robust monotone convergence of the algorithm was
presented with the help of necessary and sufficient matrix
inequalities and frequency domain conditions. Based on [21]
and [22], a combined inverse and gradient algorithm was
developed in [23], which has a good convergence perfor-
mance over the standard gradient-type algorithm. In [24],
a reinforced gradient-type ILC algorithm was proposed for a
class of linear discrete-time systems with model uncertainties
and external bounded noises, where the ILC algorithm with
symmetric learning gain matrix. It is noted that, however,
the searching path of the gradient-type algorithm is a saw-
tooth shape, which may lead to slow convergence speed and
low efficiency. Fortunately, there exists an accelerated gra-
dient method called as Nesterov accelerated gradient (NAG)
method, which was proposed by Nesterov in [25] to minimize
smooth convex functions. At each iteration, NAG method
is used to evaluate point of the gradient and provides a
larger and more timely correction to velocity. NAG scheme is
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one of the most effective approaches among first-order opti-
mization techniques. In recent years, many important works
on first-order accelerated methods have been reported (see,
e.g., [26]–[29] and references therein). Thus, it is beneficial
to introduce the NAG method into the ILC framework. This
motivates our present study.

In this paper, the ILC problem for a class of linear discrete-
time systems is investigated based on NAG method. Then,
a NAG learning algorithm is constructed for lifted systems.
Under the action of the NAG learning algorithm, the con-
vergence of the output tracking error is guaranteed with
rate O(1/k). Furthermore, the monotonic convergence of the
proposed algorithm is analyzed and discussed. This paper is
organized as follows. Section II gives the problem formu-
lation of ILC in the form of the super-vector framework.
In Section III, the NAG learning algorithm is developed
and the corresponding convergence and monotonic conver-
gence are analyzed, respectively. Numerical simulations are
given to show the effectiveness of the proposed algorithm in
section IV. Finally, a conclusion is drawn in Section V.

II. PROBLEM FORMULATION
Consider the following single input single output (SISO)
discrete-time linear system:{

xk (t + 1) = Axk (t)+ Buk (t),
yk (t) = Cxk (t),

(1)

where k denotes the iteration index and t ∈ [0,N − 1]
is the discrete-time index. xk (t) ∈ Rn, uk (t) ∈ R and
yk (t) ∈ R represent the state, control input and output,
respectively. A, B and C are real matrices with appropriate
dimensions. The initial condition is the same for all iterations,
i.e., xk (0) = x0, without loss of generality, the initial value
is set as x0 = 0. Assume that the system (1) has relative
degree 1, i.e., CB 6= 0.
Taking t = 0, 1, 2, · · · ,N − 1 in (1), and the relationships

between the input and output can be expressed as follows:

yk (1) = CAxk (0)+ CBuk (0) = CBuk (0),

yk (2) = CAxk (1)+ CBuk (1) = CABuk (0)+ CBuk (1),
...

yk (N ) = CAxk (N − 1)+ CBuk (N − 1)

= CAN−1Buk (0)+ CAN−2Buk (1)

+ · · · +CABuk (N − 2)+ CBuk (N − 1).

Then, the system (1) can be written in an equivalent form

yk = Guk , (2)

where

uk = [uk (0) uk (1) · · · uk (N − 1)]T,

yk = [yk (1) yk (2) · · · yk (N )]T,

G =


CB 0 · · · 0

CAB CB
. . .

...
...

. . .
. . . 0

CAN−1B · · · CAB CB

 .
For a given desired trajectory yd= [yd (1) yd (2) · · · yd (N )]T,

our aim is to find the desired input ud which is a solution
of the equation yd = Gu. Since the Markov matrix G is
invertible under the assumption that CB 6= 0, there exists
a unique ud such that yd = Gud , i.e., ud = G−1yd .
In practice, however, especially for the Markov matrix is
ill-conditioned or large-scaled, inversion technique requires
complex calculation process and is sensitive to the interven-
tion of system parameters or the accumulation of calculation
errors. Therefore, the control objective of this paper is to
design an appropriate iterative learning algorithm to generate
a control input sequence {uk} such that

lim
k→∞
||ek || = 0, lim

k→∞
||ud − uk || = 0,

where ek = yd − yk is the output tracking error and notation
|| · || denotes 2-norm of a vector and its compatible matrix
norm.

The ILC problem of the lifted system (2) can be seen as
equivalent to finding the minimizing input ud for the follow-
ing least-squares problem

min
uk

J (uk ) =
1
2
||yd − Guk ||2. (3)

III. NESTEROV ACCELERATED GRADIENT
LEARNING ALGORITHM
We can derive from (3) that the gradient of the function J (uk )
with respect to uk is∇J (uk ) = −GT(yd−Guk ). Subsequently,
its Hessian matrix is H = ∇2 J (uk ) = GTG and H is a
positive definite matrix, which means that the function J (uk )
is convex. Note that the traditional gradient-type learning
algorithm is constructed as

uk+1 = uk + βGTek ,

where β > 0 is the learning gain. In this paper, the ILC
algorithm based on NAG method for the system (2) is
designed as follows [25]:

uk+1 = zk − ω∇J (zk ),

zk = uk +
ak − 1
ak+1

(uk − uk−1),

ak+1 =
1+

√
4a2k + 1

2
,

(4)

where ω ∈ R is the step size, let u−1 = u0 and a0 = 1.
For carrying out the analysis, we further give the following

definitions.
Definition 1 [30]: A function f : U → R is said to be

convex if U is convex set and if for all x, y ∈ U , and
0 ≤ α ≤ 1, we have

f (αx + (1− α)y) ≤ αf (x)+ (1− α)f (y).
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Definition 2 [8]: In higher-order ILC, the ILC process is
monotonically convergent in an appropriate norm topology if
‖ek+1‖ < max{‖ei‖, i = k, · · · , k − n}.
Correspondingly, we have the following theorem.
Theorem 1: Consider the system (2) with the NAG learn-

ing algorithm (4). If we choose the step size ω such that
0 < ω ≤ 1/||H ||, then the output tracking error ‖ek‖
converges to zero with rate O(1/k).

Proof: For the function J (u), there exists a
ξ = v+ θ (u− v)(0 < θ < 1) such that

J (u) = J (v)+ [∇J (v)]T(u− v)+
1
2
(u− v)T∇2 J (ξ )(u− v)

= J (v)+ [∇J (v)]T(u− v)+
1
2
(u− v)TH (u− v)

≤ J (v)+ [∇J (v)]T(u− v)+
1
2
||H ||||u− v||2.

Since uk+1 = zk − ω∇J (zk ), we obtain

J (uk+1) ≤ J (zk )− ω||∇J (zk )||2 + 1
2ω

2
||H ||||∇J (zk )||2.

Note that ω ≤ 1/||H ||, we further have

J (zk )− J (uk+1) ≥
1
2
ω(2− ω||H ||)||∇J (zk )||2

≥
1
2
ω||∇J (zk )||2. (5)

Denote Tk = (ak − 1)(uk−1 − uk ), then we derive

Tk+1 − uk+1
= (ak+1 − 1)(uk − uk+1)− uk+1
= (ak+1 − 1)uk − ak+1uk+1
= (ak+1 − 1)uk − ak+1(zk − ω∇J (zk ))

= (ak+1 − 1)uk + ωak+1∇J (zk )− ak+1

(
uk −

Tk
ak+1

)
= Tk − uk + ωak+1∇J (zk ).

We further have

||Tk+1 − uk+1 + ud ||2

= ||Tk − uk + ud + ωak+1∇J (zk )||2

= ||Tk − uk + ud ||2 + ω2 a2k+1||∇J (zk )||
2

+ 2ωak+1[∇J (zk )]T(Tk − uk + ud )

= ||Tk − uk + ud ||2 + ω2 a2k+1||∇J (zk )||
2

+ 2ωak+1[∇J (zk )]T
(
Tk − zk −

Tk
ak+1

+ ud

)
= ||Tk − uk + ud ||2 + ω2 a2k+1||∇J (zk )||

2

+ 2ωak+1[∇J (zk )]T(ud − zk )

+ 2ω(ak+1 − 1)[∇J (zk )]TTk . (6)

By mean of the expression (5) and the convexity of the
function J (u), we get

J (uk+1)− J (ud )+
1
2
ω||∇J (zk )||2

≤ J (uk+1)− J (ud )+ J (zk )− J (uk+1)

= J (zk )− J (ud )

≤ [∇J (zk )]T(zk − ud ).

Note that J (ud ) = 0, thus

[∇J (zk )]T(ud − zk ) ≤ −J (uk+1)−
1
2
ω||∇J (zk )||2. (7)

Since zk = uk −
Tk
ak+1

, we have

J (zk ) ≤ J (uk )+ [∇J (zk )]T(zk − uk )

= J (uk )−
1

ak+1
[∇J (zk )]TTk ,

it is obvious that

J (zk )− J (uk+1) ≤ J (uk )− J (uk+1)−
1

ak+1
[∇J (zk )]TTk ,

which together with (5) yields
1
2
ω||∇J (zk )||2 ≤ J (uk )− J (uk+1)−

1
ak+1

[∇J (zk )]TTk ,

which means that

[∇J (zk )]TTk≤ak+1[J (uk )− J (uk+1)]−
1
2
ωak+1||∇J (zk )||2.

(8)

Substituting (7) and (8) into (6) becomes
||Tk+1 − uk+1 + ud ||2 − ||Tk − uk + ud ||2

= ω2 a2k+1||∇J (zk )||
2
+ 2ωak+1[∇J (zk )]T(ud − zk )

+ 2ω(ak+1 − 1)[∇J (zk )]TTk
≤ ω2(a2k+1 − ak+1)||∇J (zk )||

2
− 2ωak+1J (uk+1)

+ 2ω(ak+1 − 1)[∇J (zk )]TTk
≤ 2ω(a2k+1 − ak+1)[J (uk )− J (uk+1)]− 2ωak+1J (uk+1)

= 2ω(a2k+1 − ak+1)J (uk )− 2ω(a2k+1 − ak+1)J (uk+1)

− 2ωak+1J (uk+1)

= 2ωa2kJ (uk )− 2ωa2k+1J (uk+1).

Therefore, we have

2ωa2k+1J (uk+1)

≤ 2ωa2k+1J (uk+1)+ ||Tk+1 − uk+1 + ud ||
2

≤ 2ωa2kJ (uk )+ ||Tk − uk + ud ||
2

≤ 2ωa20J (u0)+ ||T0 − u0 + ud ||
2

≤ 2ωJ (u0)+ ||u0 − ud ||2

= ω||yd − Gu0||2 + ||u0 − ud ||2

≤ ω||H ||||u0 − ud ||2 + ||u0 − ud ||2

≤ 2||u0 − ud ||2.

It is easy to yield that

||ek+1||2 = 2J (uk+1) ≤
2||u0 − ud ||2

ωa2k+1
.

Note that

ak+1 =
1+

√
4a2k + 1

2
>

1+
√
4a2k

2

= ak +
1
2
> a0 +

1
2
(k + 1)

=
1
2
(k + 3),
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correspondingly, we get

||ek+1|| ≤

√
2||u0 − ud ||
√
ωak+1

<
2
√
2||u0 − ud ||
√
ω(k + 3)

,

which means that NAG learning algorithm (4) can ensure to
have an O(1/k) convergence rate. Furthermore, we have

lim
k→∞
||ek || = 0.

This completes the proof. �
Remark 1: The result of theorem 1 can be extended to

system with high relative degree. Assume that the system (1)
has relative degree γ (2 ≤ γ ≤ N ), i.e.,

CB = CAB = · · · = CAγ−2B = 0, CAγ−1B 6= 0.

Then, the system (1) can be described by the following lifted
system form

yk = Guk ,

where

uk = [uk (0) uk (1) · · · uk (N − γ )]T,

yk = [yk (γ ) yk (γ + 1) · · · yk (N )]T,

G =


CAγ−1B 0 · · · 0

CAγB CAγ−1B
. . .

...
...

. . .
. . . 0

CAN−1B · · · CAγB CAγ−1B

 .
Let yd = [yd (γ ) yd (γ + 1) · · · yd (N )]T represent the
desired trajectory. Similarly, we can conclude that ‖ek‖ con-
verges to zero with rate O(1/k) by using the NAG learning
algorithm (4).

Now, we further analyze and discuss the monotonic
convergence of the NAG learning algorithm.
Theorem 2:Consider the system (2) with the NAG learning

algorithm (4). If the step size ω satisfying

ρ = ‖I − ωGGT
‖ ≤

1
3
, (9)

then the output tracking error ‖ek‖ is monotonically conver-
gent.

Proof: From the algorithm (4), we can obtain

uk+1 = zk − ω∇J (zk ) = zk + ωGT(yd − Gzk )

= uk +
ak − 1
ak+1

(uk − uk−1)+ ωGTyd − ωGTGzk

= uk +
ak − 1
ak+1

(uk − uk−1)+ ωGTyd − ωGTGuk

−
ak − 1
ak+1

ωGTG(uk − uk−1)

= uk +
ak − 1
ak+1

(I − ωGTG)(uk − uk−1)

+ωGT(yd − Guk ). (10)

Note that the matrixG is invertible, it is obvious from (2) that

uk = G−1yk , (11)

Substituting (11) into (10) becomes

G−1yk+1 = G−1yk +
ak − 1
ak+1

(I − ωGTG)

× (G−1yk − G−1yk−1)+ ωGT(yd − yk )

By inserting yk = yd − ek into the above expression, it yields

G−1(yd − ek+1)

= G−1(yd − ek )+
ak − 1
ak+1

(I − ωGTG)

× [G−1(yd − ek )− G−1(yd − ek−1)]+ ωGTek .

Furthermore, we get

G−1ek+1 = G−1ek +
ak − 1
ak+1

(I − ωGTG)G−1(ek − ek−1)

−ωGTek . (12)

Left multiplying both sides of (12) by matrix G, it gives

ek+1 = ek +
ak − 1
ak+1

(G− ωGGTG)G−1(ek − ek−1)

−ωGGT ek

= (I − ωGGT)ek +
ak − 1
ak+1

(I − ωGGT )(ek − ek−1)

= (I − ωGGT)ek +
ak − 1
ak+1

(I − ωGGT)ek

−
ak − 1
ak+1

(I − ωGGT)ek−1

=
ak+1 + ak − 1

ak+1
(I − ωGGT)ek

−
ak − 1
ak+1

(I − ωGGT)ek−1. (13)

Taking norm to the above expression and combining with (4)
and (9), we get

‖ek+1‖ ≤
ak+1 + ak − 1

ak+1
‖I − ωGGT

‖‖ek‖

+
ak − 1
ak+1

‖I − ωGGT
‖‖ek−1‖

≤
ak+1 + 2ak − 2

ak+1
ρmax{‖ei‖, i = k, k−1}

<

(
1+

2ak
ak+1

)
ρmax{‖ei‖, i = k, k − 1}

=

1+
4ak

1+
√
4a2k+1

 ρmax{‖ei‖, i = k, k−1}

<

(
1+

4ak
1+ 2ak

)
ρmax{‖ei‖, i = k, k−1}

< 3ρmax{‖ei‖, i = k, k−1}.

Since ρ ≤ 1/3, we have ‖ek+1‖ < max{‖ei‖ , i = k, k − 1}.
Based on definition 2, we know that ‖ek‖ is strictly monoton-
ically convergent. This completes the proof. �
Remark 2: In Theorem 2, a sufficient condition for mono-

tone convergence of the algorithm (4) is given, but it is
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difficult to achieve the condition (9). The argument is as
follows. Note that the matrix GGT is positive definite, which
means that all eigenvalues of GGT are positive. Let λi be the
ith eigenvalue of GGT, then the eigenvalues of I −ωGGT are
1 − ωλi. Therefore, the condition (9) holds if we choose the
step size ω such that 2

3ω ≤ λi ≤
4
3ω .

IV. NUMERICAL SIMULATIONS
Two numerical examples are constructed in this section to
demonstrate the effectiveness of the proposed NAG learning
algorithm.
Example 1: Consider the following SISO discrete-time

system:
xk (t + 1) =

 0.02 0 0.1
0 0.1 0
0 0.1 0.01

 xk (t)+
 1
1
0

 uk (t),
yk (t)= [1 0 1]xk (t),

where t ∈ [0, 7], and the initial state vector is set as xk (0) = 0.
It is easy to see that the relative degree of above system is 1.
The desired output trajectory is taken as yd (t) = t

2π , then

yd = [
1
2π

1
π

3
2π

2
π

5
2π

3
π

7
2π

4
π
]T.

And the initial control is chosen as

u0 = [0 0 0 0 0 0 0 0]T.

Furthermore, we can compute that the eigenvalues of the
matrix GGT are 0.8158, 0.8384, 0.8789, 0.9399, 1.0211,
1.1164, 1.2109, 1.2822. For the NAG learning algorithm (4),
take the step size ω = 1 according to Remark 2, then the
monotonic convergence of ||ek || is guaranteed. Figure 1 gives
the tracking situation of the output yk (t) to the desired trajec-
tory yd (t) at the 2nd, 6th and 12th iterations, respectively. It is
seen from Figure 2 that, as the iteration number increases,
the output tracking error converges monotonically to zero
in the sense of 2-norm. It is found that the NAG learning
algorithm performs better than the gradient-type learning
algorithm in the speed of convergence.
Example 2: Consider the following SISO discrete-time

system:
xk (t + 1) =

 0.8 0.6 0.3
0 0.6 0.3
0.3 0 0.1

 xk (t)+
 1
1
1

 uk (t),
yk (t) = [1 1 1]xk (t),

where t ∈ [0, 7], and the initial state vector is set as xk (0) = 0.
Here, the relative degree of above system is 1. The desired
output trajectory is taken as yd (t) = t , then

yd = [1 2 3 4 5 6 7 8]T.

Furthermore, the initial control is chosen as

u0 = [0 0 0 0 0 0 0 0]T.

FIGURE 1. The output trajectories yd (t) and yk (t) at 2nd, 6th and 12th
iterations by using the NAG learning algorithm.

FIGURE 2. The maximum output tracking error with iterations.

FIGURE 3. The output trajectories yd (t) and yk (t) at 3rd, 7th and 14th
iterations by using the NAG learning algorithm.

Accordingly, the eigenvalues of the matrix GGT are 2.5101,
2.7001, 3.085, 3.842, 5.5127, 10.1149, 28.9524, 331.9192.
Obviously, the monotone convergence condition (9) is not
satisfied. For the NAG learning algorithm (4), take the step
size ω = 1/||H || = 0.003 according to Theorem 1, which
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FIGURE 4. The maximum output tracking error with iterations.

means that ‖ek‖ can converge to zero with rate O(1/k).
Figure 3 shows that the output trajectory yk (t) at 14th iteration
is close to the desired trajectory yd (t). We observe from
Figure 4 that ||ek || is monotonically convergent under the
action of the NAG learning algorithm, and the convergence
rate is much faster at the 1st iteration than the gradient-type
learning algorithm.

V. CONCLUSION
In this paper, the ILC for a class of discrete-time systems
is studied by using the NAG method. And the ILC problem
for discrete-time systems is transformed into an optimization
problem. Furthermore, the NAG learning algorithm is con-
structed and the convergence of the proposed algorithm is
analyzed. We show that the algorithm can ensure the output
tracking error converges to zero with rate O(1/k) along the
iteration axis. Besides, the monotonic convergence of the
NAG learning algorithm is discussed and a sufficient con-
vergence condition is established. In the end, two simulation
examples are given to verify the theoretical results. Although
the quasi-Newton-type ILC algorithms have been proposed
in [19], [20], these algorithms are still often slow in practice.
In future work, we will investigate the ILC problem for linear
discrete-time systems based on Nesterov’s accelerated quasi-
Newton method [31].
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