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Abstract

This paper considers the systematic design of robust stabilizing state feedback
controllers for fractional order nonlinear systems with time-varying delay being
possibly unbounded. By using the fractional Halanay inequality and the Caputo
fractional derivative of a quadratic function, stabilizability conditions expressed
in terms of bilinear matrix inequalities are derived. The controllers can then
be obtained by computing the gain matrices. In order to derive the gain matri-
ces, two algorithms are proposed by using the existing computationally linear
matrix inequality techniques. Two numerical examples with simulation results
are provided to demonstrate the effectiveness of the obtained results.
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1 INTRODUCTION

Fractional calculus as a hot spot is recently widely used
in control theory, viscoelastic systems, engineering, and
some interdisciplinary fields although it is considered as
a sole mathematical branch with few applications for a
long time. Fractional order control theory is first proposed
by A. Oustloup in 1991 [1] named as CRONE robust con-
troller. For fractional order control theory, it usually means
that the system is a fractional order system or the con-
troller is a fractional order controller. In 1999, when I.
Podlubny introduced the PI𝜆D𝜇 controller [2], fractional
order control theory achieves a great continuous develop-
ment in the past two decades. Since fractional calculus
possesses the property of nonlocal and many process with

memory and heredity can be well modeled by fractional
order systems, it catches more and more researchers' atten-
tion and many interesting results of the above issues have
been reported in the literature [2–5]. Fractional damping,
fractional oscillators and quenching phenomenon charac-
terized by fractional system can also be found in recent
works [6–9].

Stability and stabilization are two of the fundamen-
tal issues in control theory. Since the seminal paper of
D. Matignon in 1996 [10] where the stability condition
for linear fractional order system is presented, the prob-
lems of stability and stabilization have received a huge
interest from the control community. Many interesting
results about the stability/stabilization of fractional order
systems are obtained, see [11,12,14,18]. In [11], sufficient
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conditions of the asymptotic stability and output feedback
stabilizing controller for fractional order linear systems
with positive real uncertainty are presented. In [12], a
general stability condition for fractional-order switched
non-linear systems is established by using the concepts
of Mittag-Leffler increment and average Mittag-Leffler
increment. In [13], the stability and L∞-gain analy-
sis problem for continuous-time fractional-order systems
with bounded time-varying delays are discussed to prove
the asymptotic stability of positive not being sensitive to
the magnitude of delays and L∞-gain being independent of
the magnitude of delays. In [14], the Riesz basis approach
and the semigroup method are respectively exploited to
Mittag-Leffler stabilize the unstable time fractional reac-
tion diffusion equation. In [15], the active disturbance
rejection control (ADRC) is developed to design a sta-
bilizing controller for time fractional reaction diffusion
equation with the general disturbance. The ADRC for
wave and beam equations can also be found in [16,17].
In [18], the bounded-input bounded-output stability of
two types of distributed-order systems is analyzed. To get
the stability conditions, a large number of researchers
have developed the different approaches for resolving the
issues, such as Laplace transform method [19], linear
matrix inequality (LMI) approach [11], Lyapunov method
[20], and so on. For the stability of fractional order system
with delay, Razumikhin method is explored in [21,22]. In
[23], a comparison theorem for a class of fractional-order
systems with time delay is proved to investigate the global
asymptotic stability conditions of fractional-order Hop-
field neural networks with time delay. In [24], the asymp-
totic stability for fractional nonlinear systems without
and with unbounded delays is presented by calculating
integer-order derivative of the Lyapunov function, which
is essentially to apply the classic Lyapunov direct method
not fractional Lyapunov method. In [25] and [26], the
authors present the fractional type Halanay inequality
with bounded delay and unbounded delay respectively,
which provides the effective tools to analyze the stability
of fractional order system with time delay. For the mixed
delays of neural networks, the reader can refer to [27,28].

LMI is a convex constraint which is widely used in
many control problems. For examples, in [29], the stabi-
lizing control law of fractional order nonlinear system is
obtained by using the state feedback control and the Lya-
punov direct method, and the stabilizability conditions are
expressed in terms of LMI. In [30], some simplified LMI
stability conditions is developed to globally stabilize the
fractional-order linear and nonlinear systems and asymp-
totic stability of the fractional-order neural networks is
ensured. In [31], the fractional-order uncertain systems
with the order 0 < 𝛼 < 1 and 1 ≤ 𝛼 < 2 is robustly
asymptotically stabilized employing LMI, the method of

observer-based control and static output feedback control
and the existence condition of a robust stabilizing con-
troller is discussed. More results concerning LMI approach
to fractional systems can be found in [32–36] and refer-
ences therein.

A bilinear matrix inequality (BMI) is usually of the form

F(x, 𝑦) =
m∑

i=1

n∑
𝑗=1

xi𝑦𝑗Fi𝑗 < 0

where x = (x1, x2, … , xn)⊤ ∈ Rn, y = (y1, y2, … , 𝑦m)⊤ ∈
Rm, Fi𝑗 = F⊤

i𝑗 is a symmetric matrix with suitable dimen-
sion. It can be seen that the BMI is a LMI in x for fixed y and
is a LMI in y for fixed x, so is convex in x or y individual but
not jointly. Although BMI is much more difficult to handle
computationally than LMI, BMI is still an effective tool for
those control problems that cannot be written in terms of
an LMI but can be written in terms of BMI. It can describe
much wider classes of problems than LMI since the prob-
lems described by BMI are not necessarily convex. For the
more difference and connections between LMI and BMI,
the reader can refer to [37–39].

In practice engineering application, the uncertainties
are widely exist in real control systems, like interval uncer-
tainty [40,41], unknown external disturbances [32] and
positive real uncertainty [11]. If the uncertainties are not
well-handled, some unexpected performances, like unsta-
ble and uncontrollable, may occur. Therefore, in order to
avoid this phenomenon happens, it is worthy studying the
control design of the robust controller to copy with the
uncertainties .

Two basic control problems to be solved of this paper
are: First, for a class of given fractional order system with
uncertainties, how to verify whether the system is stabi-
lizable or not? Second, for a stabilizable system, how to
construct a stabilizing control law? With these problems in
mind, in this paper, we present a BMI method for fractional
order system with time-varying structured uncertainties
and time delay being possibly unbounded.

The main contributions of this work are summarized as
follows: (i) By using the fractional type Halanay inequal-
ity and an important fractional derivative inequality of
quadratic function, we derive a new stabilization criteria
in terms of BMIs, which gives the design of stabilizing
state feedback controllers. These controllers can be solved
by using the existing computationally effective algorithms.
(ii) The proposed BMI-based criteria are quite general
since many factors, such as time-varying delay that can
either be bounded or be unbounded, time-varying uncer-
tainties, nonlinear Lipschitz functions, are considered. (iii)
The derived results are easily checkable and two numerical
examples are presented to confirm this.

The rest of the paper is organized as follows: Section 2
presents some basic definitions and lemmas that will be
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used in the follows. Section 1 is the main result of the
paper. Two examples are given in Section and Section 5 is
a conclusion about this paper..

2 PRELIMINARY AND PROBLEM
STATEMENT

There are some definitions of fractional derivatives, among
many others, we know that the fractional derivative in
Caputo sense than in other fractional derivatives is more
applicable to real-world problems and well understood in
physical situations due to its consistency with the deriva-
tive of constants and the initial state of the integer order.
In this paper, we adopt the Caputo fractional derivative.
Some important definitions and useful lemmas are given
in order.

Definition 1 ([2], Page 79). The Caputo's fractional
derivative of order 𝛼 > 0 for a function 𝑓 ∶ R+ → R is
defined by

C
0 D𝛼

t 𝑓 (t) =
1

Γ(m − 𝛼)

t

∫
0

𝑓 (m)(𝜃)
(t − 𝜃)𝛼−m+1 d𝜃, t > 0

with m = min{k ∈ N ∶ k > 𝛼 > 0}, where f(m)(t) is
the m-order derivative of f(t), and 𝛤 (·) is the Gamma
function defined as Γ(z) = ∫ ∞

0 𝜏z−1e−𝜏d𝜏.

In particular, when 0 < 𝛼 < 1, we have

C
0 D𝛼

t 𝑓 (t) =
1

Γ(1 − 𝛼)

t

∫
0

𝑓 ′(𝜃)
(t − 𝜃)𝛼

d𝜃.

Definition 2 ([2], Page 16). The one-parameter
Mittag-Leffler function and two-parameter
Mittag-Leffler function are defined by

E𝛼(z) =
+∞∑
k=0

zk

Γ(𝛼k + 1)

and

E𝛼,𝛽(z) =
+∞∑
k=0

zk

Γ(𝛼k + 𝛽)

respectively, where 𝛼 > 0, 𝛽 > 0.

Especially, from the above definition, we have that
E𝛼,1(z) = E𝛼(z) and E1(z) = E1,1(z) = ez.

As we all know, the well-known Leibniz chain rule
is invalid for fractional order derivative. Luckily, the
following lemma make it possible to estimate the Caputo
fractional derivative of quadratic function, which plays a
vital role in applying fractional Lyapunov method and frac-
tional Halanay inequality to derive the stability conditions
for fractional system with or without time delay.

Lemma 1 ([42]). Let x(t) ∈ Rn be a vector of differ-
entiable functions. Then, for any t ≥ 0, the following
relationship holds

C
0 D𝛼

t (x
⊤(t)Px(t)) ≤ 2x⊤(t)PC

0 D𝛼
t x(t),∀𝛼 ∈ (0, 1),

where P ∈ Rn×n is a constant, square, symmetric and
positive define matrix.

Lemma 2 ([26]). Let 𝛼 ∈ (0, 1) and V ∶ [−h,+∞) →
R+ be bounded on [−h, 0] and continuous on [0,+∞).
Suppose that 𝜏 ∈ C(R+,R+) satisfies 𝜏(t) ≤ t + h for
some fixed h > 0, t − 𝜏(t) → +∞ as t → +∞. For some
positive constants 𝜆 > 𝜇 > 0, the following inequality
holds: for all t ≥ 0,

C
0 D𝛼

t V(t) ≤ −𝜆V(t) + 𝜇 sup
−𝜏(t)≤𝜎≤0

V(t + 𝜎). (1)

Then lim
t→+∞

V(t) = 0.

Lemma 3 ([43,44], Page 38, Lemma 2.8). (Schur com-
plement lemma)Let the partitioned matrix

A =
(

A11 A12
A⊤

12 A22

)
(2)

be symmetric. Then

A < 0 ⇐⇒ A11 < 0,A22 − A⊤
12A−1

11 A12 < 0

⇐⇒ A22 < 0,A11 − A12A−1
22 A⊤

12 < 0.
(3)

Lemma 4 ([44], Page 30, Lemma 2.3). Let X ∈
Rm×n,Y ∈ Rn×m,F ∈ Rn×n with F⊤F ≤ I. Then for
arbitrary scalar 𝛿 > 0, arbitrary nonzero vectors x and
y, there holds

2x⊤XFY𝑦 ≤ 𝛿x⊤XX⊤x + 𝛿−1𝑦⊤Y⊤Y𝑦.

Consider the following fractional order system with
time-varying structured uncertainties and time delay:

⎧⎪⎨⎪⎩
C
0 D𝛼

t x(t) = [A + ΔA(t)]x(t) + [B + ΔB(t)]u(t)
+[A1 + ΔA1(t)]x(t − 𝜏(t))
+𝑓 (x(t)) + g(x(t − 𝜏(t))),

x(𝜃) = 𝜙(𝜃), 𝜃 ∈ [−h, 0]

(4)

where 0 < 𝛼 < 1, x(t) ∈ Rn is the state vector, u(t) ∈
Rm is the control input vector, 𝑓, g ∶ Rn → Rn are two
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continuous functions and there exist two constants
L1,L2 > 0 such that for all x, 𝑦 ∈ Rn:

||𝑓 (x) − 𝑓 (𝑦)||Rn ≤ L1||x − 𝑦||Rn , (5)

and

||g(x) − g(𝑦)||Rn ≤ L2||x − 𝑦||Rn . (6)

ΔA(t),ΔA1(t),ΔB(t) represent time-varying struc-
tured uncertainties which are assumed to be of
form ΔA(t) = GaFa(t)Ha, ΔA1(t) = Ga1 Fa1 (t)Ha1 ,
ΔB(t) = GbFb(t)Hb where A, A1, B, Ga, Ga1 , Gb, Ha, Ha1 , Hb

are known real constant matrices of appropriate dimen-
sions and Fa(t), Fa1 (t), Fb(t) are unknown real time-varying
matrices satisfying F⊤

a (t)Fa(t) ≤ I, F⊤
a1
(t)Fa1(t) ≤ I and

F⊤

b (t)Fb(t) ≤ I. 𝜏(t) ∈ C(R) represents the time delay with
𝜏(t) ≥ −h for all t ≥ 0 and t − 𝜏(t) → ∞ as t → ∞. It
is worth to note that the condition that t − 𝜏(t) → ∞ as
t → ∞ implies that the time delay 𝜏(t) can be unbounded,
for example, 𝜏(t) = t∕2 + sin2(t).

The objective of this paper is to design a state feedback
controller

u(t) = Kx(t) + K1x(t − 𝜏(t))

such that the following closed-loop system

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C
0 D𝛼

t x(t) = [A + GaFa(t)Ha + BK
+GbFb(t)HbK]x(t) + 𝑓 (x(t))

+[A1 + Ga1 Fa1 (t)Ha1 + BK1

+GbFb(t)HbK1]x(t − 𝜏(t))
+g(x(t − 𝜏(t))),

x(𝜃) = 𝜙(𝜃), 𝜃 ∈ [−h, 0]

(7)

is asymptotically stable while rejecting the time-varying
structured uncertainties.

3 MAIN RESULTS

Theorem 1. The closed-loop system 7 is asymptotically
stable if there exist a symmetric positive definite matrix P,
matrices K,K1 with appropriate dimensions, six positive
constants 𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6 and two constants 𝜆 > 𝜇 >

0, such that BMI (8) holds,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜀3I 0 0 0 Ha1 P 0 0 0
0 −𝜀4I 0 0 HbK1P 0 0 0
0 0 −𝜀6I 0 L2P 0 0 0
0 0 0 M11 A1P + BK1P PH⊤

a PK⊤H⊤

b L1P
PH⊤

a1
PK⊤

1 H⊤

b L2P PA⊤
1 + PK⊤

1 B⊤ −𝜇P 0 0 0
0 0 0 HaP 0 −𝜀1I 0 0
0 0 0 HbKP 0 0 −𝜀2I 0
0 0 0 L1P 0 0 0 −𝜀5I

≤ 0,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

where
M11 = AP + PA⊤ + BKP + PK⊤B⊤

+ 𝜀1GaG⊤
a + (𝜀2 + 𝜀4)GbG⊤

b

+ 𝜀3Ga1 G⊤
a1
+ (𝜀5 + 𝜀6)I + 𝜆P,

(9)

Moreover, the state feedback control law is designed by
letting

u(t) = Kx(t) + K1x(t − 𝜏(t)). (10)

Proof. Since P is a symmetric positive definite matrix,
so does P−1. We construct a Lyapunov function candi-
date as V(t) = x⊤(t)P−1x(t).

Finding Caputo's derivative of V(t) with respect to t
along the solution to (7) and using Lemma 1 yield

C
0 D𝛼

t (x
⊤(t)P−1x(t)) ≤ 2x⊤(t)P−1C

0 D𝛼
t x(t)

= 2x⊤(t)P−1 [(A + GaFa(t)Ha + BK

+GbFb(t)HbK) x(t) + 𝑓 (x(t))

+
(

A1 + Ga1 Fa1 (t)Ha1 + BK1 + GbFb(t)HbK1
)

× x(t − 𝜏(t)) + g(x(t − 𝜏(t)))
]

= x⊤(t)
(

P−1A + A⊤P−1 + P−1BK + K⊤B⊤P−1)
× x(t) + 2x⊤(t)P−1GaFa(t)Hax(t)

+ 2x⊤(t)P−1GbFb(t)HbKx(t) + 2x⊤(t)P−1𝑓 (x(t))

+ x⊤(t)
(

P−1A1 + P−1BK1
)

x(t − 𝜏(t))

+ x⊤(t − 𝜏(t))
(

A⊤
1 P−1 + K⊤

1 B⊤P−1) x(t)

+ 2x⊤(t)P−1Ga1 Fa1 (t)Ha1 x(t − 𝜏(t))

+ 2x⊤(t)P−1GbFb(t)HbK1x(t − 𝜏(t))

+ 2x⊤(t)P−1g(x(t − 𝜏(t))).

In order to further estimate C
0 D𝛼

t V(t) and to deal with
uncertainties terms ΔA(t) = GaFa(t)Ha, ΔA1(t) =
Ga1 Fa1 (t)Ha1 , ΔB(t) = GbFb(t)Hb, noting the properties
of Fa, Fa1 , Fb, f(x), g(x), we apply Lemma 4 to give the
following matrix inequalities:

2x⊤(t)P−1GaFa(t)Hax(t)
≤ 𝜀1x⊤(t)P−1GaG⊤

a P−1x(t)
+𝜀−1

1 x⊤(t)H⊤
a Hax(t),

(11)
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2x⊤(t)P−1GbFb(t)HbKx(t)
≤ 𝜀2x⊤(t)P−1GbG⊤

b P−1x(t)
+𝜀−1

2 x⊤(t)K⊤H⊤

b HbKx(t),
(12)

2x⊤(t)P−1Ga1 Fa1 (t)Ha1 x(t − 𝜏(t))
≤ 𝜀3x⊤(t)P−1Ga1 G⊤

a1
P−1x(t)

+𝜀−1
3 x⊤(t − 𝜏(t))H⊤

a1
Ha1 x(t − 𝜏(t)),

(13)

2x⊤(t)P−1GbFb(t)HbK1x(t − 𝜏(t))
≤ 𝜀4x⊤(t)P−1GbG⊤

b P−1x(t)
+𝜀−1

4 x⊤(t − 𝜏(t))K⊤
1 H⊤

b HbK1x(t − 𝜏(t)),
(14)

2x⊤(t)P−1𝑓 (x(t))
≤ 𝜀5x⊤(t)P−1P−1x(t) + 𝜀−1

5 𝑓⊤(x(t))𝑓 (x(t))
≤ 𝜀5x⊤(t)P−1P−1x(t) + 𝜀−1

5 L2
1x⊤(t)x(t),

(15)

and
2x⊤(t)P−1g(x(t − 𝜏(t)))
≤ 𝜀6x⊤(t)P−1P−1x(t)

+𝜀−1
6 g⊤(x(t − 𝜏(t)))g(x(t − 𝜏(t)))

≤ 𝜀6x⊤(t)P−1P−1x(t)
+𝜀−1

6 L2
2x⊤(t − 𝜏(t))x(t − 𝜏(t)).

(16)

Combining (11)-(16), we can obtain
C
0 D𝛼

t V(t) ≤ x⊤(t)Ωx(t) + x⊤(t − 𝜏(t))Φx(t − 𝜏(t))
+x⊤(t)Ψx(t − 𝜏) + x⊤(t − 𝜏(t))Ψ

⊤

x(t)

where

Ω = P−1A + A⊤P−1 + P−1BK + K⊤B⊤P−1

+𝜀1P−1GaG⊤
a P−1 + (𝜀2 + 𝜀4)P−1GbG⊤

b P−1

+𝜀3P−1Ga1 G⊤
a1

P−1 + (𝜀5 + 𝜀6)P−1P−1

+𝜀−1
1 H⊤

a Ha + 𝜀−1
2 K⊤H⊤

b HbK + 𝜀−1
5 L2

1I,

Φ = 𝜀−1
3 H⊤

a1
Ha1 + 𝜀−1

4 K⊤
1 H⊤

b HbK1 + 𝜀−1
6 L2

2I,

and
Ψ = P−1A1 + P−1BK1.

Hence we have
C
0 D𝛼

t V(t) + 𝜆V(t) − 𝜇sup−𝜏(t)≤𝜎≤0V(t + 𝜎)
≤ x⊤(t)Ωx(t) + x⊤(t − 𝜏(t))Φx(t − 𝜏(t))
+x⊤(t)Ψx(t − 𝜏(t)) + x⊤(t − 𝜏(t))Ψ

⊤

x(t)
+𝜆x⊤(t)P−1x(t)
−𝜇sup−𝜏(t)≤𝜎≤0 x⊤(t + 𝜎)P−1x(t + 𝜎)

≤ x⊤(t)(Ω + 𝜆P−1)x(t)
+x⊤(t − 𝜏(t))(Φ − 𝜇P−1)x(t − 𝜏(t))
+x⊤(t)Ψx(t − 𝜏(t)) + x⊤(t − 𝜏(t))Ψ

⊤

x(t)

=
(

x⊤(t) x⊤(t − 𝜏(t))
)(Ω + 𝜆P−1 Ψ

Ψ
⊤

Φ − 𝜇P−1

)
×
(

x(t)
x(t − 𝜏(t))

)
≤ 0

provided that(
Ω + 𝜆P−1 Ψ
Ψ

⊤

Φ − 𝜇P−1

)
≤ 0, (17)

holds. Now, using diag(P,P), it is easy to verify that LMI
(17) is equivalent to(

PΩP + 𝜆P PΨP
PΨ

⊤

P PΦP − 𝜇P

)
≤ 0,

that is (
Ω Ψ
Ψ⊤ Φ

)
≤ 0, (18)

where
Ω = AP + PA⊤ + BKP + PK⊤B⊤ + 𝜀1GaG⊤

a
+(𝜀2 + 𝜀4)GbG⊤

b + 𝜀3Ga1 G⊤
a1
+ (𝜀5 + 𝜀6)I

+𝜀−1
1 PH⊤

a HaP + 𝜀−1
2 PK⊤H⊤

b HbKP
+𝜀−1

5 L2
1PP + 𝜆P,

Φ = 𝜀−1
3 PH⊤

a1
Ha1 P + 𝜀−1

4 PK⊤
1 H⊤

b HbK1P
+𝜀−1

6 L2
2PP − 𝜇P,

and
Ψ = A1P + BK1P.

It follows from Lemma 3 that BMI (18) is equivalent
to BMI (8). In the light of Lemma 2, we know that the
closed-loop system (7) is asymptotically stable.

Corollary 1. The closed-loop system (7) is asymptoti-
cally stable if there exist a symmetric positive definite
matrix P, matrices Y,Y1 with appropriate dimensions
and six positive constants 𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5, 𝜀6 and two
constants 𝜆 > 𝜇 > 0, such that the following BMI (19)
holds,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜀3I 0 0 0 HaP 0 0 0
0 −𝜀4I 0 0 HbY1 0 0 0
0 0 −𝜀6I 0 L2P 0 0 0
0 0 0 N11 A1P + BY1 PH⊤

a Y⊤H⊤

b L1P
PH⊤

a Y⊤
1 H⊤

b L2P PA⊤
1 + Y⊤

1 B⊤ −𝜇P 0 0 0
0 0 0 HaP 0 −𝜀1I 0 0
0 0 0 HbY 0 0 −𝜀2I 0
0 0 0 L1P 0 0 0 −𝜀5I

≤ 0,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

where
N11 = AP + PA⊤ + BY + Y⊤B⊤

+ 𝜀1GaG⊤
a + (𝜀2 + 𝜀4)GbG⊤

b

+ 𝜀3Ga1
G⊤

a1
+ (𝜀5 + 𝜀6)I + 𝜆P,

Moreover, the state back control law is designed by letting

u(t) = YP−1x(t) + Y1P−1x(t − 𝜏(t)).

Proof. In the proof of Theorem 1, letting K = YP−1 and
K1 = Y1P−1, (19) can be immediately derived.

Theorem 1 and Corollary 1 solve two basic control prob-
lems raised in Introduction Section.

Remark 1. In [29], the authors used the Lyapunov
direct method [20] to prove the Mittag-Leffler stabil-
ity of fractional order system with time-varying struc-
tured uncertainties. Here, we use the fractional type
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Halanay inequality [26] to obtain the asymptotic stabil-
ity result of fractional order system with time-varying
structured uncertainties and time delay. Our result can
be regarded as a generalization/continuation of [29].

Remark 2. A robust stability criteria for integer
order delay system is presented in [45], where the
time-varying delay satisfies .

𝜏(t) ≤ 𝜇 < 1. Here, using
fractional type Halanay inequality, we only need the
delay satisfies t − 𝜏(t) → ∞ as t → ∞ and we don't
need the condition .

𝜏(t) ≤ 𝜇 < 1. Moreover, the
time-varying delay is allowed to be not only bounded
such as 𝜏(t) = sin2(t2) but also unbounded such as
𝜏(t) = t∕3 + cos2(t3).

Matrix inequality (8) is a bilinear matrix inequality with
respect to variables P,K,K1 and 𝜆, 𝜇, 𝜀1-𝜀6. It is clear that
if P is fixed, finding K,K1, 𝜆, 𝜇 and 𝜀1-𝜀6 is a LMI feasibil-
ity problem, which is realizable with existing algorithms.
Thus, we denote BMI (8) as Λ(P,K,K1, 𝜆, 𝜇, 𝜀1-𝜀6), and
propose the following algorithm:
Algorithm 3.1
• Given: k ∶= 0, arbitrary symmetric positive definite
matrix P(0) ∈ Rn×n.
• Repeat:

Step 1. Set k:=k+1.
Step 2. Solve the minimum eigenvalue of Λ(P(k−1), K,

K1, 𝜆, 𝜇, 𝜀1-𝜀6) with solution K, K1, 𝜆, 𝜇, 𝜀1-𝜀6, denote the
solution as (K(k), K(k)

1 , 𝜆(k), 𝜇(k), 𝜀(k)1 -𝜀(k)6 ).
Step 3. Solve the minimum eigenvalue of

Λ(P,K(k),K(k)
1 , 𝜆(k), 𝜇(k), 𝜀

(k)
1 -𝜀(k)6 ) with solution P, denote

the solution as P(k).
• Until:
eig{Λ(P(k−1),K(k),K(k)

1 , 𝜆(k), 𝜇(k), 𝜀
(k)
1 -𝜀(k)6 )}< 0 or

eig{Λ(P(k), K(k), K(k)
1 , 𝜆(k), 𝜇(k), 𝜀(k)1 -𝜀(k)6 )} < 0.

Remark 3. Algorithm 3.1 includes iterative pro-
cess, which may be an endless loop whenever the
closed-loop system (7) is unstable. To avoid this case,
the maximum number of iterations should be given.

Note that (19) contains variables 𝜆P and −𝜇P, which
leads (19) to be nonlinear with respect to 𝜆, 𝜇 and P. How-
ever, we can use searching algorithm to determinate all
the variables. That is, for some 𝜆 and 𝜇 with 𝜆 > 𝜇 > 0,
find the feasible solution of LMI (19) (when 𝜆 and 𝜇 are
given, BMI (19) becomes LMI). Therefore, we can pro-
pose the following algorithm to find the feasible solution of
BMI (19).

Algorithm 3.2
Step 1. For some constants 𝜆, 𝜇 with 𝜆 > 𝜇 > 0,

substitute them into BMI (19), this makes BMI (19) be
a LMI.

Step 2. Solve LMI (19) to obtain P,Y,Y1, 𝜀1 − 𝜀6.

Remark 4. If the LMI (19) in Step 2 of Algorithm 3.2
is infeasible, it means that the feasible solution to BMI
(19) can not be obtained via the above Algorithm 3.2.
In such a case, some other algorithms should be pur-
sued, such as interior point method [46] and local
minima method [47]. Compared with Algorithm 3.1
that uses the iterative process, Algorithm 3.2 can be
easily implemented by utilizing the existing LMI opti-
mization techniques [43].

4 NUMERICAL EXAMPLES

Example 1. Consider the robust stability of the frac-
tional order system shown in (4) with the follow-

ing coefficients matrix A =
(
−8 20
−50 −20

)
,B =(

−10
10

)
,A1 =

(
−5 −2
−3 −6

)
,Ga =

(
0
0.5

)
,Ga1 =(

1
−1

)
, Gb =

(
1
0

)
, Fa = Fa1 = Fb =

1
t+1

,Ha =
(
−1 1

)
,Ha1 =

(
0 0.5

)
,Hb =

(
−0.05

)
,

and 𝑓 (x(t)) =
(

sin x2
1(t)

sin x2
2(t)

)
, g(x(t − 𝜏(t))) =(

sin x2
1(t − 𝜏(t))

sin x2
2(t − 𝜏(t))

)
.

With the help of MATLAB Toolbox, we found that
the LMI (19) is feasible and one of possible solution is
obtained as follows: 𝜀1 = 11.4403, 𝜀2 = 4.6994, 𝜀3 =
2.8845, 𝜀4 = 4.6830, 𝜀5 = 4.8894, 𝜀6 = 18.9786, and

𝜆 = 2, 𝜇 = 1, P =
(

2.4 0
0 0.25

)
,Y =

(
12 −5

)
, Y1 =(

0.6 0.1
)
.By computing the feedback control (10), the

state feedback control law is given by

u(t) =
(

5 −20
)

x(t) +
(

0.25 0.4
)

x(t − 𝜏(t)).

In view of Corollary 1, the system under the above
feedback control law is asymptotically stable. The
simulation of the system with 𝛼 = 0.7(𝛼 = 0.7 has no
speciality. It can be any value in (0, 1)) with bounded
delay 𝜏(t) = sin2(3t) and unbounded delay 𝜏(t) = t∕4+
tsin2(10t)∕4 + 3 can be seen in Figure 1 and Figure 2
respectively.

Example 2. Consider the robust stability of fractional

order system (4) with parameters A =

(−10 0 0
0 −15 0
0 0 1

)
,

B =

(−1
0
−10

)
, A1 =

(−1 0 3
0 −2 0
1 0 −5

)
, Ga =

( 0
−1
0

)
,

Ha =
(

1 0 0
)
, Ga1 =

(−1
0
0

)
, Ha1 =

(
0 −2 0

)
,
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FIGURE 1 Time responses of x1(t), x2(t) for the closed-loop
system with bounded delay 𝜏(t) = sin2(3t) [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 2 Time responses of x1(t), x2(t) for the closed-loop
system with unbounded delay 𝜏(t) = t∕4 + tsin2(10t)∕4 + 3 [Color
figure can be viewed at wileyonlinelibrary.com]

Gb =

( 0
1
−1

)
, Hb =

(
1
)
, Fa(t) = Fa1 (t) =

Fb(t) = sin t, 𝑓 (x(t)) =
⎛⎜⎜⎝

sin x2
1(t)

0
sin x2

3(t)

⎞⎟⎟⎠ and g(x(t − 𝜏(t))) =( 0
sin x2

2(t − 𝜏(t))
0

)
.

The purpose of designing a feedback control law is
to stabilize the given system. When there is no extra
control, that is, u(t) = 0, the system is unstable, this can
be seen in Figure 3, where 𝛼 = 0.7, x1(0) = x2(0) = 2
and the delay 𝜏(t) = 1.

With the help of MATLAB, we found that the BMI
(19) are satisfied with 𝜀1 = 4.24, 𝜀2 = 3.95, 𝜀3 = 10.04,
𝜀4 = 3.74, 𝜀5 = 4.66, 𝜀6 = 10.31, and 𝜆 = 1, 𝜇 = 0.5,

P =

( 2 0 0.5
0 2 0
0.5 0 0.4

)
,Y =

(
−0.6 −0.7 1.5

)
,Y1 =(

−0.08 0.01 −0.12
)
.Then under the state feedback

control law

u(t) =
(
−1.8 −0.35 6

)
x(t)

+
(

0.05 0.005 −0.36
)

x(t − 𝜏(t)),

system (4) is asymptotically stable.
The simulation of system (4) with 𝛼 = 0.5 with con-

stant delay 𝜏(t) = 1 and unbounded delay 𝜏(t) = t∕4 +
tsin2(10t)∕4 + 3 can be seen in Figure 4 and Figure 5,

FIGURE 3 Time responses of x1(t), x2(t), x3(t) for fractional order
system with bounded delay 𝜏(t) = 1 and without controller [Color
figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Time responses of x1(t), x2(t), x3(t) for the closed-loop
system with bounded delay 𝜏(t) = 1 [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 5 Time responses of x1(t), x2(t), x3(t) for the closed-loop
system with bounded delay 𝜏(t) = t∕4 + tsin2(10t)∕4 + 3 [Color
figure can be viewed at wileyonlinelibrary.com]

respectively. Moreover, compared Figure 4 with Figure
5, we can see that the state of the closed-loop system
with bounded delay converges to zero fast than the one
of system with unbounded delay.

5 CONCLUDING REMARKS

In this paper, we present BMIs method for the stabilization
of fractional order differential system with time-varying
delay, where the fractional Halanay inequality is used.
With the help of MATLAB Toolbox, either matrix P or 𝜆,
𝜇 are fixed, the feedback control law can be easily con-
structed by two proposed algorithms. How to construct an
output feedback controller to stabilize the fractional order
nonlinear systems with time-varying delay is interesting
and is what we will do in future.
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