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Abstract

This paper presents a state-of-art survey of the research on fractional-
order (FO) modeling with parameter identification, and FO estimation
methods for state of charge (SOC), state of health (SOH), and remain-
ing usage life (RUL) of lithium-ion batteries (LIBs) mainly in recent five
years. FO electrochemical models and six different types of FO equivalent
circuit models (ECMs) are introduced in detail. Then, the corresponding
tuning algorithm for parameters of these FO models are also provided in
brief. Moreover, FO estimation methods for SOC are listed and analyzed,
mainly including FO observers, and FO Kalman filters (FO-KFs). SOH
and RUL estimation is another vital aspect for LIBs ageing and degrada-
tion monitoring, thus FO estimation methods proposed in recent research
within five years are all listed. Finally, some suggestions that may be help-
ful for further research are proposed in conclusion.

MSC 2010 : Primary 26A33; Secondary 34A08, 60G22, 93A30, 93C95,
93E10, 93E12

Key Words and Phrases: fractional-order modeling; lithium-ion batter-
ies; constant phase elements; state of charge; state of health; fractional-
order Kalman filters

c© 2019 Diogenes Co., Sofia
pp. 1449–1479 , DOI: 10.1515/fca-2019-0076



1450 Y.N. Wang, Y.Q. Chen, X.Z. Liao

1. Introduction

Battery is an emerging research aspect due to the increasing energy
consumption in current applications, and batteries are the main energy
storage device for several types of alternative energy, such as solar, wind,
and hydroenergy. As Jeremy Rifkin said, in current third industrial revo-
lution, three pivotal technologies: a communication internet, a renewable
energy internet, and a mobility internet, all are connected to the Internet of
Things (IoTs) [57]. Basically, batteries are everywhere to construct energy
internet and ensure the energy supply for the other two internets in this
big data era, so the design and control of batteries are the most concerning
aspects for researchers around the world.

According to the charging and storage ways, batteries can be divided
into four types: primary battery, secondary battery (rechargeable battery),
fuel cell, and reserve battery. Since 21th century, people are pursuing more
sustainable and portable batteries, thus lithium-ion batteries (LIBs) stand
out among other kinds of batteries, such as lead-acid battery, Zinc bat-
tery, Nickel battery, and hydrogen-oxygen fuel cell. Besides, LIBs have
high working voltage, high energy density, relatively low self-discharge, low
maintenance and specific high current to applications, which make LIBs
most widely used in applications [66]. However, LIBs have dynamic non-
linearity and ageing is always a concern. In Chemistry field, researchers are
introducing new and enhanced chemical combinations to improve lithium-
ion, while in electrical engineering field, researchers are aiming to learn more
about LIBs, then monitoring and controling LIBs more accurately. This
paper is mainly focused on the electrical aspect, that is, the modeling, and
estimation methods for LIBs. Several performance index illustrating infor-
mation of LIBs can be estimated, such as state of charge (SOC) [15], state
of health (SOH) [83], remaining usage life (RUL) [38], degradation level or
ageing level [69]. The well-known ampere-hour (Ah) integral method, and
the open circuit voltage (OCV) measurement are proposed and commonly
used for the estimation of SOC [10, 78, 94]. However, with growth spurt
of mobile phones and electric vehicles (EVs), monitoring and management
of LIBs in these appliances is faced with higher requirements, which stim-
ulates various prominent modeling and estimation research [9, 35, 65, 85].
Among modeling and estimation research on LIBs, fractional calculus was
firstly applied to present constant phase element (CPE), which starts a new
fractional research era of LIBs.

Fractional calculus has been initiated more than 300 years, and started
from mathematic definitions, that is, fractional derivate and fractional in-
tegral [29, 45]. Further extensions of fractional calculus, such as fractional-
order (FO) state space model (SSM) [46], FO PID controller [52], fractional
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capacitor (CPE) [2], and fractional convection [30, 31], were gradually pro-
posed and applied by electrical engineering researchers in recent 20 years
[1, 6, 64]. As to fractional calculus for LIBs research, fractional model-
ing with identification and estimation of SOC, SOH, RUL are the two
main aspects, which are the key monitoring points for further control and
management of LIBs. The earliest FO battery research was designed for
lead-acid battery about fractional system identification in 2006 [58], when
lithium-ion battery has not been widely applied in EVs and mobile devices.
After that, some research on fractional modeling of lead-acid battery have
been proposed [12, 59]. With LIB gradually replacing lead-acid battery,
fractional calculus was firstly applied to LIB for cell impedance analysis
in 2007 [28]. Then fractional impedance analysis, fractional modeling, and
fractional estimation methods for LIBs emerging [50, 95, 101], and Fig-
ure 1.1 shows the amount and research areas of published articles since
2006. The results are searched by “fractional AND battery” and “frac-
tional AND lithium battery” in Web of Science, and are classified into
“LIB” and “Other Battery”.

Fig. 1.1: Published articles and research areas of “fractional AND
battery” since 2006 in Web of Science

From Figure 1.1, fractional research efforts on LIBs have developed
rapidly in the past five years, and mainly focus on engineering, energy fu-
els, electrochemistry, and automation. As fractional research of LIBs is still
at the beginning stage, it is worth drawing a literature review of these frac-
tional research over the last five years. Although there are some existing
early reviews introducing fractional techniques both on LIBs and superca-
pacitors (SCs) [4, 21, 77, 88], a specific and detailed analysis only for LIBs
in recent five years is very necessary. Hence, this paper is written to present
the novel fractional modeling and estimation methods for LIBs mainly be-
tween 2015 to 2019, and make an integration of these fresh research, then
may provide some innovative suggestions for future fractional research on
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LIBs. The rest of this paper is divided into four parts. Firstly, some nec-
essary fundamental knowledge including SOC, SOH, RUL, and fractional
basic definitions are introduced in the second part. Secondly, fractional
modeling and corresponding identification methods are concluded and com-
pared in the third part. Then, all fractional estimation methods of SOC,
SOH, and RUL for LIBs in the past five years are provided in the fourth
part, including fractional Kalman filter, fractional observer, online estima-
tion, and so on. Finally, the last part provides current challenges and some
suggestions for future work about fractional calculus applied to LIBs. It
needs to be noted that all the modeling and estimation methods for LIBs
mentioned in the following are referred to battery cells, rather than battery
banks or battery packs in EVs.

2. Fundamental knowledge

This part is designed to provide some basic performance indexes of
LIBs, like SOC, SOH, and RUL, also offer brief introduction to fractional
calculus and fractional elements, like fractional Caputo definition, and con-
stant phase element (CPE).
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Fig. 2.1: Schematic of lithium-ion battery, which consists of four parts:
negative electrode (anode), positive electrode (cathode), electrolyte, and

separator (modified from [76]).

2.1. Performance indexes of LIBs. Figure 2.1 is a schematic of a LIB
cell shown in [76], the cell includes four main elements: the positive elec-
trode, negative electrode, electrolyte, and separator. During charging pro-
cess, lithium ions are transported from cathode into electrolyte and then
stored in anode, which builds up a potential difference between the pos-
itive and negative electrodes [76]. Discharging is based on the reversed
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process. The physical and chemical mechanism of a LIB cell can commonly
be described by a two-dimensional (2-D) electrochemical model, that is, the
Doyle-Fuller-Newman model, which is rarely used in real-time BMS due to
the prohibitive computation [17]. Hence, single particle model (SPM) is
derived by neglecting the electrolyte dynamics, so that the 2-D electro-
chemical model is simplified to one spatial dimension [56]. Due to the het-
erogeneity in the chemistry process, LIBs would show up some stochastic
behaviors, like diffusion effect, leak current, and self-discharge, which can
affect LIBs working states. To illustrate transient states of LIBs, several
performance indexes have been defined. Three key indexes are introduced
in this part, that is, state of charge (SOC), state of health (SOH), remain-
ing usage life (RUL). Furtherly, fractional calculus is also applied to build
the governing equations of a SPM for these reactions, specifically for the
diffusion phenomena [49], and the details will be introduced in Section 3.1.

2.1.1. State of charge. SOC illustrates the remaining amount of available
charge Q(t) in a LIB, and cannot be directly measured. SOC can be ex-
pressed as the remaining percentage of a reference capacity Qref as follows
[16],

SOC =
Q(t)

Qref
=

Q(t0)

Qref︸ ︷︷ ︸
SOC0

+

∫ t
t0
I(τ)dτ

Qref︸ ︷︷ ︸
ΔSOC(t)

= SOC0 +ΔSOC(t). (2.1)

In practice, the relaxation period is too long thus it cannot obtain SOC0

when LIB works in dynamic applications. Hence, how to measure real time
SOC or design an estimator for SOC estimation is a key point of the battery
management system (BMS) to prevent overcharge or overdischarge.

2.1.2. State of health. SOH is always considered with battery ageing
and degradation process of LIBs, which can be affected by temperature,
charging current, and discharge level [87]. SOH does not have the specific
definition as SOC, but is usually defined as the ratio between remaining
capacity and initial nominal capacity, as shown in the following [77],

SOH =
Cp

C0
, (2.2)

where Cp represents the available capacity, and C0 represents the rated
capacity specified per design and measured under the aforementioned con-
ditions prior to operation. From equation (2.2), SOH decreases with fading
capacity and rising ohmic resistance due to loss of active electrodes, solid
electrolyte interphase (SEI), and irreversible lithium reactions [7].

There are four significant points for the ageing of battery indicated by
SOH as listed below [47]:
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(1) FL-BOL: First life beginning of life, serves as the reference for all
the internal cell parameters monitored (SOH = 100%).

(2) FL-EOL: First life end of life, represents the moment when the
batteries are retired from the automotive use (SOH = 80%) [70].

(3) SL-BOL: Second life beginning of life, represents the moment when
the batteries are reimplemented on a second life applications.

(4) SL-EOL: Second life end of life, reproduces the moment of second
life battery retirement.

2.1.3. Remaining usage life. RUL is the corresponding definition of SOH
in aspect of battery ageing cycles amount. From Section 2.1.2, LIB needs
to be replaced when reaching the FL-EOL point. Hence, there is a certain
limited LIB cycles amount before the cycle life threshold, and RUL means
the remaining cycles before this threshold. The RUL estimation is always
companied with SOH estimation, and the estimation methods vary from in-
ternal resistance measurement of physics-based model, to data-driven prog-
nostics [37]. The detailed introduction will be provided in the Section 4 of
this paper.

2.2. Fractional calculus and fractional elements.

2.2.1. Fractional calculus. Fractional calculus is based on FO integrals
and FO derivatives, also called non-integer-order integrals and derivatives
[55], which can also be divided into left and right ones [32]. Since FO
derivatives are applied to LIBs modeling and estimations rather than FO
integrals, only left fractional derivatives are presented in the following. Ba-
sic fractional definitions commonly include Riemann-Liouville (R-L) def-
inition, Grünwald-Letnikov (G-L) definition, Caputo definition [5], which
may not equivalent to each other. Firstly, the three types of fractional
derivatives are provided in the following. The R-L definition is expressed
as [32]

RLDα
t f(t) =

1

Γ(n− α)

dn

dtn

t∫
a

f(τ)

(t− τ)α−n+1dτ, t > a, (2.3)

where f(t) is an arbitrary integrable function in [a, b], α ∈ (n−1, n), RLDα
t

represents the R-L type derivative operator, Γ(·) is the Gamma function.
The G-L definition is expressed as [91]

GLDα
t f(t) = lim

h→0
h−α

[
t−t0
h

]∑
j=0

(−1)j
(

α
j

)
f(t− jh), (2.4)
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where GLDα
t represents the G-L type derivative operator, [ t−t0h ] is the ap-

proximate recurrence term for integer part, and

(
α
j

)
=

α!

j!(α − j)!
repre-

sents the coefficient of the recursive function. Caputo definition is another
widely used one in engineering and control field due to the same initial
conditions with integer-order (IO) derivative. The Caputo definition is ex-
pressed as [91]

CDα
t f(t) =

1

Γ(n− α)

t∫
a

f (n)(τ)

(t− τ)α−n+1dτ , t > a, (2.5)

where CDα
t represents the Caputo type derivative operator. According to

[32], if f(t) is suitably smooth, i.e. f ∈ Cn[a, b], then the R-L derivative
and the G-L derivative are equivalent, that is, RLDα

t f(t)=
GLDα

t f(t); the
R-L derivative and Caputo derivative have the following equation

RLDα
t f(t) =

CDα
t f(t) +

n−1∑
k=0

f (k)(a)(t− a)k−α

Γ(k + 1− α)
, (2.6)

where n − 1 < α < n, f ∈ Cn−1[a, t] and f (n) is integrable on [a, t]. How-
ever, for LIB research, G-L definition is easy to be discretized in time do-
main, thus it is most commonly applied to fractional time-domain models
or fractional estimators for LIBs. Besides, the Laplace transform of Ca-
puto definition under zero initial conditions is LC

0 D
α
t f(t) = sαF (s), which

is suitable for fractional research in frequency domain. Hence, Caputo
definition and G-L definition are more widely used in LIB modeling and
estimations. The reason is that the initial conditions of Riemann-Liouville
definition have more complicated forms than that of Caputo definition as
shown in equation (2.6). Besides, the computational load of FO derivatives
are heavier than integer-order ones, so some numerical methods have been
designed in [29, 32].

2.2.2. Fractional elements. Besides basic fractional calculus definitions,
“fractor” is another essential element for modeling and estimation of LIBs.
It is well-known that capacitors and inductors are not ideal ones in practical
system, and the relationship between voltage and current is not just first-
order derivative or integral, especially in low frequency or high frequency.
Hence, the term “fractor” arose following the successful synthesis of a FO
capacitor or an inductor, and the transfer function of fractor is given by
[2],

ZF (s) =
1

Fsα
, (2.7)
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where F is the impedance of the fractor, named as “fractance”. Fractor is
also called constant phase element (CPE), and FO capacitor and fractional-
order inductor are the two types of fractor in nature, respectively. Equation
(2.8) shows the voltage-current relationship of a typical FO capacitor [91]:⎧⎨⎩ i(t) = Cw

dαu(t)
dtα , 0 < α < 1, t ≥ 0

U(s)
I(s) = 1

Cwsα ,
(2.8)

where Cw is a constant related to the capacitance, and α represents the
order of the FO derivative in Caputo definition. From equations (2.7) and
(2.8), CPE was firstly proposed to replace the IO capacitors inside LIB
models and explain the low-frequency dynamics of LIB. A similar fractional
element is called Warburg element, which is a 0.5th order CPE in a typical
Randles model for LIB [67]. In recent five years, Warburg element turns
to be any fractional order instead of 1/2, same as CPE. Hence, CPE is the
basis of FO electrical circuits for LIBs, which will be further introduced
and discussed in the following sections.

3. Fractional order modeling

In BMS, it is always necessary to build a model with parameter iden-
tification before other estimations, monitoring, and charge or discharge
control. Plenty of research has been published in the modeling and pa-
rameter identification aspects of LIBs [39, 80, 92]. As fractional calculus is
extended from integer calculus [32], FO modeling and corresponding iden-
tification are also vital extensions. In an early survey of FO techniques
applied to LIBs, lead-acid batteries, and SCs [101], four kinds of typical
FO circuit models for LIBs have been offered. While in this section, a more
complete set of FO models are presented, including some new research pub-
lished in recent two years. Then the corresponding parameter identification
methods for these LIB models are also provided in Section 3.3.

FO modeling of LIBs mainly can be divided into two aspects, that
is, electrochemical model (equations) and equivalent circuit model (ECM).
The main difference is that, ECM is applied electric components to build an
equivalent circuit instead of electrochemical equations to reflect the elec-
trochemical reactions inside LIBs. Thermal and ageing models for LIBs
are also investigated recent years due to the important roles in the kinet-
ics of charge transfer process and side reactions introduced in Section 2.1
and shown in Figure 2.1, [49]. Figure 3.1 presents the available capacity
of four 18650 LIBs (rated capacity = 2Ah) in five temperatures, that is,
15◦C, 25◦C, 30◦C, 35◦C, and 40◦C. It illustrates that the available ca-
pacity of a battery cell varies much in different temperatures, especially in
low temperatures which may happen in EVs’ battery pack during winter.
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In this way, the model parameters and performance indexes estimations
(SOC, SOH, RUL) would be influenced by the temperatures, so that FO
thermal models is another necessary aspect for LIBs. While integer-order
thermal and ageing models are also two vital aspects for modeling of LIBs,
the extended FO ones are still very few and worthy of further investigation.
Moreover, the existing research on FO thermal and ageing models are con-
sidered together with electrochemical model [49], and this paper is inclined
to more electrical engineering aspects, so the thermal and ageing models
are just briefly discussed together with the FO electrochemical model in
Section 3.1.

Fig. 3.1: The available capacity of four 18650 LIBs (rated capacity =
2Ah, named as Bat1, Bat2, Bat3, and Bat4) in five temperatures, that is,

15◦C, 25◦C, 30◦C, 35◦C, and 40◦C.

3.1. Fractional-order electrochemical model. This type of FO model
was firstly proposed by Sabatier et al. in [62]. The FO model is converted
from a typical electrochemical model, called single particle model (SPM),
which was built based on the electrochemical reactions inside a lithium-ion
cell. A typical SPM generally includes four partial differential equations
(PDEs) describing four key variables of the electrode and electrolyte, that
is, lithium concentration cse in the spherical particle by the diffusion law,
lithium concentration ce in electrolyte, charge conservation in electrode
(electrode potential φs) by the Ohm’s law, and charge conservation in elec-
trolyte (electrolyte potential φe), respectively [63]. Then all of the four
differential equations are linked by the Bulter-Volmer equation. As said in
Section 2.1, a SPM is derived by neglecting the electrolyte dynamics and
treating each electrode as a spherical particle that stores Li+ as shown in
Figure 3.2. From [49], FO electrochemical modeling for LIBs is based on
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the solution of Fick’s first law of diffusion, and lithium ions concentration
gradient in the particle can be described by the following:

∂cse
∂t

=
Dse

r2
∂

∂r
(r2

∂cse
∂r

)

{
∂cse
∂t

∣∣
r=0

= 0

Dse
∂cse
∂r

∣∣
r=Rs

= − jLi
mean
asF

(3.1)

where cse is the lithium concentration, Dse is the diffusion coefficient, r is
the radius of the sphere, and jLimean is the average current density.

Fig. 3.2: Single particle model with concentration gradient through the
sphere (modified from [49]).

The analytical solution of equation (3.1) is a transfer function, linking
the mean value of the lithium current density in the electrode JLi

mean(s)
to lithium concentration cse. Based on the traditional SPM, Sabatier et
al. have found that this transfer function can be approximated using the
fractional transfer function [60]

Hcsi,e(s) =
cse(s)

JLi
mean(s)

=
K1i(1 +

s
ωcsei

)0.5

s
. (3.2)

Based on equation (3.2) and we assume that the electrolyte potential
is constant, a SPM can be simplified to a single-electrode model shown in
Figure 3.3, if removing the negative electrode contribution [16, 61]. In this
way, the FO electrochemical model has a concise structure without using
large number of model parameters, but still holds the accuracy to reflect
electrochemical dynamics.

I(t)

K2

U(t)Y(t)
Up = f(Y)

Fig. 3.3: Single-electrode model in frequency domain
(modified from [61]).
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Then, Sabatier et al. have published a new research related with this
fractional-order electrochemical model in 2018 [49], which combined with
an efficient simple thermal model and an ageing model designed for gen-
eration of fast charging algorithms. Like the FO electrochemical model,
thermal and ageing models are presented in partial differential equation
(PDE) forms. For example, the efficient thermal model is mainly based on
a heat transfer equation as

mCp
dT (t)

dt
= Qgen(t)−Qloss(t). (3.3)

where m is the mass of the cell, Cp is the specific heat capacity, Qgen and
Qloss are the generated heat and convective exchanged heat with the en-
vironment, respectively. As to the ageing model, the structure is driven
from the degradation caused by formation of solid electrolyte interphase
(SEI) layer growth on the anode shown in Figure 2.1, and the detail PDEs
can also be found in [49]. Similar fractional transfer function approxima-
tion has been applied to electrochemical equations in [34], and a simplified
state space model of battery terminal voltage and load current was pro-
posed and transferred into discrete form for further research. Since this
type of FO model for LIB is a simplified one for SPM, it may also be use-
ful to other kinds of enhanced SPM, like SPM with electrolyte dynamics
(SPMe), SPM with electrolyte and thermal dynamics (SPMeT) [54]. More-
over, the FO thermal and ageing models still have lots to be explored and
are worthy of further research. While the fractional calculus applied in
the electrochemical models can better illustrate the dynamic reactions or
thermal influences for LIBs, the FO PDEs of the FO electrochemical mod-
els remains computationally expensive for real-time BMS, which is also an
aspect to be improved.

3.2. Fractional-order equivalent circuit model. As to the FO ECM,
it is another electrical engineering way to analyze LIBs dynamics, while
temperature and ageing are converted into parametric functions or SOC,
SOH estimations [102]. Almost all ECMs structures were proposed accord-
ing to the electrochemical impedance spectrum (EIS) of LIBs as shown
in Figure 3.4, because the EIS reveals the electrochemical dynamics in
frequency-domain and varies with SOC, SOH, RUL, temperature of LIBs.
So various kinds of ECMs were proposed to explain the three main parts of
the EIS, that is, high-frequency inductive tail, mid-frequency reaction, and
low-frequency Warburg diffusion dynamics. Here four forms of ECMs are
presented in Figure 3.5, and each form can be separated into certain types
of ECMs in the following sections.

3.2.1. FO Thevenin model (n = 1). If n in Figure 3.5(a) is 1, ECM in
Figure 3.5(a) becomes a FO Thevenin model, which is also called 1-RC
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model in traditional integer-order model. The state space model (SSM) of
FO Thevenin model in Caputo definition was proposed and approximated
into a discrete system in [102]. Since FO Thevenin model is already a sim-
plified one and the approximation accuracy requires heavy computation,
a data-based FO Thevenin model was built in continuous-time form [26].
From Figure 3.5(a) (n = 1), the FO Thevenin model is proved to be a
simpler fractional ECM for LIB on the basis of the EIS and hybrid pulse
power characteristic (HPPC) test [74]. As it only considers high-frequency
and mid-frequency reactions, and ignores Warburg element of diffusion ef-
fects [51]. So FO Thevenin model is seldom applied in recent five years in
fractional modeling. In comparison, FO Partnership for a New Generation
of Vehicles (PNGV) and FO “Randles” model are the more widely used
models.

Re(Z)/m

Im
(Z

)/m

mHz

kHz

High frequency inductive tail

Mid-frequency section Low-frequency section
Charge transfer and 
double layer effect Warburg diffusion 

dynamics

Fig. 3.4: A typical schematic diagram of EIS of LIB.

3.2.2. FO PNGV and Randles model. Figure 3.5(b) and Figure 3.5(c)
are the FO Randles model and FO PNGV model, respectively. Both of
them are systems with two fractional orders. Actually, traditional Randles
model is already a FO system, because the Warburg element reflecting
diffusion dynamics was always considered as 0.5th order in the previous
research. Since the diffusion effect varies due to different temperature, SOC,
ageing level, the first step is changing the 0.5th order Warburg element into
an arbitrary fractional order element, that is, another CPE [86]. Then,
Wang et al. have found that the curve in mid-frequency shows a semi-ellipse
rather than semi-circle due to capacitance dispersion, so the ideal capacitor
reflecting double layer effect was replaced by a CPE in [71], constructing
the FO Randles model in Figure 3.5(b).

On the other side, FO PNGV model is also quite popular FO model for
LIBs, and the corresponding state-space model (SSM) is denoted by the
followings [36]
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[
dmUW
dtm

dnUcpe

dtn

]
=

[
0 0
0 − 1

RctCcpe

] [
UW

Ucpe

]
+

[
1

CW

1
Ccpe

]
I,

U0 = [ 1 1 ]

[
UW

Ucpe

]
+RΩI + U,

(3.4)

where UW and Ucpe mean the voltages of Warburg element and CPE1; CW

and Ccpe mean the capacitance of Warburg element and CPE1; m and n
mean the fractional order of Warburg element and CPE1, respectively; I
is the current of the FO PNGV model.

(a)

(d)

V Vo

(b)

V Vo

R1

R  

CPE1

R2

CPE2

W

V Vo

R1

R  

CPE1

R2

CPE2

Rn

CPEn

...

Rct

R  

CPE1

W

V Vo

Rct

R  

CPE1

(c)

W

Fig. 3.5: Four forms of ECMs for LIBs, (a) n-RCα Model, (b) FO
Randles model, (c) FO PNGV model, (d) three-orders FO model

(CPEi, i = 1, 2, ..., n and W are the fractional elements
introduced in Section 2.2.2).

It can be known from equation (2.8) that FO PNGV model is an in-
commensurate order SSM, while some researchers would make m = n to



1462 Y.N. Wang, Y.Q. Chen, X.Z. Liao

simplify into a commensurate order one. Xiao et al. have made a compari-
son among FO PNGV, FO Thevenin, IO PNGV, and IO Thevenin models
[79]. The results prove that FO PNGV model can describe the OCV vari-
ation and low-frequency dynamics of LIB, and better capture the dynamic
performance than the other three kinds of models. Moreover, it is interest-
ing that a simplified FO Randles model analyzed in frequency domain [53]
may have some connections with FO PNGV model. The authors of [53]
separated the charge transfer process with diffusion dynamics [14], which
turns out to be the structure of FO PNGV model. The Nernst diffusion
phenomenon is firstly involved in [53], then simulated by FO integrator,
which turns out to be a 0.5 order integrator. Hence, it seems that the
simplified Randles models in [53] is a specific FO PNGV model.

3.2.3. 2-RCα model (n = 2). If in Figure 3.5(a) n = 2, ECM in Figure
3.5(a) becomes a FO system with two fractional orders. This type of FO
model was proposed because the low-frequency part of EIS is proved to
be a part of a depressed semicircle with a large diameter rather than a
straight line, by certain dynamic tests, such as hybrid pulse power charac-
teristic (HPPC) tests [84, 96]. Hence, the Warburg element is represented
by the parallel combination of a CPE and a resistance, which is also called
“ZARC” element [8]. The structure has little difference with FO PNGV
model, but would bring more computation burden for further investigation,
especially when the two fractional orders are incommensurate. However,
more research used this 2-RCα models recently [40, 72].

3.2.4. High order FO model (n ≥ 3). For higher modeling accuracy to
fit EIS, some researchers have proposed extended high-order FO models
for LIB. Hu et al. have improved the 2-RC integer-order model by adding
low-frequency component and replacing ideal capacitor with CPE [22, 33],
which results in a high-order FO model with three fractional orders α, β, γ
as in Figure 3.5(d). Another type of high-order FO model with three frac-
tional orders is based on the FO Randles model [98]. Similar to [84], a
“ZARC” element was added to describe the high-frequency part of EIS,
which intersects with the mid-frequency part. Moreover, Jacob et al. have
proposed a general FO battery EIS model with the structure in Figure
3.5(a), which has n CPEs with n fractional orders [25]. The number of
parallel tanks depends on the required accuracy, and the parallel resistance
can be neglected to build a Warburg term, so that this general EIS model
with n fractional orders holds high flexibility.

3.2.5. Variable and specific FO models. Considering the fractional or-
ders may change with several working factors (time, temperature, ageing),
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some researchers have proposed variable FO models for LIBs. Lu et al. con-
structed a monotonous relationship between SOC and the fractional order,
which was considered reflecting the fractal morphology of charge distribu-
tion [42]. Then, Lu et al. also applied the fractional order as an indicator
for electrode ageing [41]. In this way, variable FO model provides a rapid
method to estimate SOC and evaluate ageing level. However, the real-time
identification for fractional orders of the variable FO model is a tough work
in some practical application which may require online adaptive algorithm
[8].

Despite those models cited above, some specific FO models can also
provide novel explanation for LIBs, like the three types of FO impedance
models involving bounded diffusion with three kinds of particle geometry
[18]. Also Zhang et al. combined kinetic battery model (KiBaM) with ECM
to build a hybrid FO model [89]. Considering the linear requirement of EIS
test, Xiong et al. replaced charge transfer resistance by Bulter-Volmer
(BV) equation, and ohmic resistance by a piecewise quadratic function of
current, resulting in a BV-FOM [82].

3.3. Parameters and fractional orders identification. Before all the
FO models applied further to estimation or control, parameter identifica-
tion is the first step to ensure the accuracy of FO models. Compared to
integer-order models, the added fractional orders increase the identifica-
tion difficulty for the researchers, so they are also searching effective tuning
methods. Here state-of-art tuning methods are introduced briefly, and some
suggestions are offered.

In earlier period of FO modeling, the Thevenin model was often ap-
plied because the corresponding identification methods were simpler, e.g.
step response curve [60], algebraic calculation [90, 93], least squares (LS)
method [27], and gradient method [14]. With more complicated FO mod-
eling including two or three fractional orders, optimization algorithm and
adaptive observer were increasingly designed [3, 13]. In the observer aspect,
a Kreisselmeier-type adaptive observer has been proposed for FO Randles
model [67, 68]. As for the optimization part, genetic algorithm (GA) and
particle swarm optimization (PSO) are the two most applied algorithms for
FO models among the large amount of optimal algorithm [71, 98].

In recent three years, it tends to design more enhanced algorithms for
2-RCα and high-order FO models, like LS-GA (combination of the LS meth-
ods and GA) [84], and mixed-swarm-based cooperative particle swarm op-
timization (MCPSO) [22]. These long-name algorithms have complicated
procedures and high cost, which may not be available in practical battery
working situations. Investigating online algorithms like LS improved adap-
tive method in [74], or automatic updating methods, like the automatic
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updating of parameters value at different ageing stages in [34] are more de-
sirable. Moreover, the analysis of specific algorithm and influencing factors,
such as Bayesian inference [25], and the historical data dynamics [24], are
also very necessary for other researchers to refer in their new FO modeling
for LIBs.

4. Fractional order estimations

Either fractional modeling or parameters identification, the aims are
building an accurate model of LIB for further monitoring or control. For
battery monitoring, SOC, SOH, and RUL are three main performance in-
dexes to indicate dynamic working states of LIBs. Based on different kinds
of FO models, FO estimation methods for SOC, SOH, and RUL are also
proposed in recent five years, which will be presented in this section.

4.1. SOC estimation methods. The traditional SOC estimation meth-
ods for LIBs generally include four aspects: basic methods (Ah and OCV
methods), model-based observers, model-based Kalman filter (KF) series,
and machine learning (ML). From equation (2.1), it is obvious that the
Ah method is the simplest direct way to estimate SOC, its definition is
presented as follows [11]:

SOC(t) = SOC0 +

∫ t
0 ηi(t)

QN
dt, (4.1)

where SOC0 is the initial SOC value, QN is the rated battery capacity, and
η is the charge-discharge efficiency. Ah method is simple but it depends
on current measurement accuracy and has accumulated error. Thus, the
monotonous relationship of OCV to SOC was proposed, however, OCV
needs to be measured after long time rest of LIBs, which is not possible
in some practical working situations. Hence, model-based methods are
the main focus in recent research, such as sliding mode observer (SMO),
Luenberger observer, and various types of KFs, while Ah and OCVmethods
are usually applied as SOC reference in current research.

By analyzing the published articles of SOC FO estimation for LIBs from
2014-2019, these methods can mainly be divided into four types: SMO and
Luenberger observers, other observer, FO Kalman filter series, and special
estimator, as shown in Figure 4.1(b). It is obvious that FO-KF series
methods were investigated and proposed mostly. To better illustrate the
state-of-art research distribution, four main aspects of traditional methods
are also collected from Web of Science by searching “lithium-ion battery”,
“state of charge” and corresponding key words, as shown in Figure 4.1(a).
Since various kinds of FO ECMs listed in Section 3.2 have been applied
to LIBs modeling, the traditional model-based estimation methods can be
directly transferred to FO estimation methods. However, other fractional
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filters and fractional neural network were already proposed but still not
applied, which may be the new direction of FO methods. In the following,
we respectively present the methods shown in Figure 4.1(b).
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Fig. 4.1: Distribution of published articles about SOC estimation
methods for LIBs, (a)Four main aspects of the traditional estimation
methods: observers, other filters, KFs, and neural network (NN) &

extreme learning (EL); (b)four main FO estimation methods: SMO and
Luenberger observer, other observer, KFs, and special estimator.

4.1.1. FO Luenberger observer and SMO. The FO SMO was firstly
proposed for SOC estimation of LIBs based on a 2-RCα FO Model with
commensurate fractional order α as shown in Figure 3.5(a)(n = 2) [95].
Zhong et al. derived the differential equations for the 2-RCα FO ECM
under uncertainty δi, i = 1, 2, 3, Ce, Cd disturbance caused by nonlinear
dynamics. Then, considering the fractional dynamic system [96],

DσX = f(X, Iin) +BW (t), σ ∈ (0, 1], (4.2)

where X denotes state variable, f(X, Iin) is the system function, B and Iin
are the constant matrix and the input vector, respectively. The proposed
SMO is that

DσX̂ = f(X̂, Iin) + Lisgn(X − X̂), (4.3)

where X̂ is the estimation for X, Li is the SMO gain. Thus, the SMO
in equation (4.3) was applied to the differential equation including SOC
variable S(t), to ensure the estimation error to approach zero. Zhong et
al. have reduced SMO chattering by adjusting the SMO gain Li, resulting
an adaptive FO SMO [96], and also estimated the polarization voltage at
the same time in a later article [97]. Similarly, a Luenberger observer
was designed for a 2-RCα FO Model with the same structure, but with
incommensurate fractional orders α1 and α2 [72]. The structure of the
Luenberger observer is also similar to equation (4.3) but without function
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sgn(·). Based on SMO and Luenberger observer, Zou et al. designed a
nonlinear FO estimator for LIBs with FO PNGV model [100], and the
nonlinear FO estimator has the form as follows:

Dαx̂ = Ax̂+Bu+H0(x̂, u)

+ Ll(y − ŷ) + Lssgn(y − ŷ),

ŷ = Cx̂+Du+ f(x̂).

(4.4)

The detailed parameters and variables definitions in equation (4.4) can
be referred to [100]. From equation (4.4), the nonlinear FO estimator is
actually the combination of SMO and Luenberger observer, and the original
SSM of the FO PNGV model is

Dαx(t) = Ax(t) +Bu(t) +H0(x, u),

y(t) = Cx(t) +Du(t) + f(x1(t)),
(4.5)

where x(t) = [SOC(t), Vcpe(t), VW (t)]T , y(t) is the output voltage Vo, and
f(x1(t)) is a nonlinear function related to SOC. It needs to be noted that
equation (4.5) is a more useful SSM expression for FO PNGV model instead
of SSM in equation (3.4), because SOC is inherently included in the state
variables.

4.1.2. FO Kalman filters. As the most commonly used kind of filters,
FO-KFs for SOC estimation of LIBs includes several types of KFs, such as
KF [44], extended KF (EKF) [36], unscented KF (UKF) [11, 73], cubature
KF (CKF)[43], and dual KFs. All kinds of KFs are able to eliminate
estimation error depending on the five basic equations including state time
update, state measurement update, gain matrix update, time update of
error covariance, and measurement update of error covariance [79]. While
fractional-order KFs are still based on the five basic equations, the state
update equations are in discrete forms with fractional differential. Since
KFs are working in an iterative process with discrete forms, the original
estimated FO continuous-time model needs to be discretized, which uses
G-L definition in all research. Table 1 lists all types of FO-KFs applied to
SOC estimation in recent five years, and the corresponding comments and
analysis are provided in the following.

It needs to be noted that not all references of a type of FO-KF are
listed in Table 1. Instead, a typical reference is chosen to be analyzed here,
because the other references with same type are similar and listed in the
references of this paper. The following comments and analysis are provided:

(1) FO-AEKF (FO Adaptive EKF) in [99] is able to change the process
noise covariance matrices Q and measurement noise covariance ma-
trices R with the estimation process, which is very intelligent and
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ensures the high estimation accuracy in practical dynamic working
situations.

(2) Dual FO-UKF in [8] is for SOC and fractional order estimation,
dual FO-EKF in [23] is very efficient for SOC and SOH estimation
at same time, and dual FO-KF in [33] is for SOC estimation and
parameter identification. The dual structure can avoid applying
other algorithm, reduce the system complexity, and improve the
estimation efficiency.

(3) Dual FO-KF in [33] is also an adaptive KF (AKF) with the real-time
parameter update, which is suitable for online SOC estimation.

(4) In all references, FO-KFs was compared with integer-order KF,
EKF or UKF, resulting in faster converges speed and higher accu-
racy. The reason to choose FO-KF, FO-EKF, or FO-UKF needs to
be further investigated, like for nonlinear dynamics, and a compar-
ison between these FO-KFs may be necessary.

(5) Most of FO-KFs are based on FO ECMs, especially 2-RCα,β model,
so the design process may be similar. FO-KFs based on other kinds
of FO models for LIBs can be discussed further, like the improve
model by BV equation in [82], and the FO-AEKF designed in [34].

4.1.3. Other FO observers and special estimator. Another observer
based on FO electrochemical model was proposed by Sabatier. et al. in
[16] and [61]. It is the same research group introduced in the electrochem-
ical model part of Section 3.1, and the electrochemical model is actually a
FO model with 0.5th order. The SOC estimation was implemented by em-
ploying two error injection schemes, that is, “input current feedback” and

No. FOKFs Types References Estimated FO-ECM
1 FO-KF [40] 2-RCα1,α2 model
2 FO-EKF [48] 2-RCα,β model
3 FO-AEKF [99] 2-RCm,n model

4 UKF
[51] FO PNGV model
[82] BV-FO Thevenin model

5 Dual FO-KF [33] three-orders FO model
6 Dual FO-EKF [23] 2-RCα,β model
7 Dual FO-UKF [8] 2-RCαd,αe model
8 FO-CKF [43] FO Thevenin model

Table 1. All types of FO-KFs for SOC estimation in recent
five years
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“SOC feedback” [16]. The structure of SOC feedback observer is much like
a Luenberger observer. Here a special SOC estimation method is presented,
that is, a rapid SOC estimation by fractional order [42], which has proposed
the fractional order can indicate SOC. The basic principle is finding the re-
lationship between SOC and fractional order, and building a look-up table
for the iterative estimating process to search.

From SOC estimation methods presented above, it still has many other
aspects to investigate. From Figure 4.1, the model-based methods depen-
dent on the FO ECMs is the mainstream of current SOC FO estimation
research, however, machine learning (ML) is another developing aspect and
has much to do in future, such as fractional-order neural network and FO
version of extreme learning (EL) for SOC estimation of LIBs.

4.2. SOH and RUL estimation methods. SOH and RUL are connected
with each other, so they are discussed together in this part. Since the degra-
dation of LIBs are nonlinear dynamics, SOH and RUL estimation cannot
be considered as linear measurements. Hence, fractional calculus provides
a novel way to estimate SOH and RUL during the ageing process of LIBs.
However, fractional-order SOH and RUL estimation methods proposed in
recent five years are not as many as those for SOC. One reason is that SOH
and RUL do not have a unique definition that is easy to be quantified, the
second reason is that battery ageing problems is difficult to be described
by fractional calculus, like end of life (EOL) and second-life reuse problems
[75]. From Section 2.1.2, SOH can be estimated by remaining capacity,
resistance, and related to lifetime, degradation level, RUL of LIB. Here a
SOH index is shown as [19]

SOHR =
REOL −Rcurrent

REOL −Rinit
, (4.6)

where REOL, Rcurrent, and Rinit are resistance values at EOL, current sta-
tus, and fresh status. Hence, the resistance of FO model can be estimated
to calculate SOH, which may be related with EIS measurement of LIB. Sim-
ilarly, RUL, degradation, and ageing level can also be investigated by the
resistance or even the fractional order [41, 65]. Table 2 lists all published
articles related with FO estimation methods for SOH, RUL, degradation,
lifetime, and battery ageing. Some brief explanations and analysis are listed
in the following.

(1) The investigated indexes in Table 2 are SOH (No.1 & No.2), RUL
(No.3), degradation (No.4 & No.5), and ageing level (No.6 & No.7),
respectively.

(2) Incremental capacity analysis (ICA) in [70] was designed to recog-
nize ageing mechanism and estimate SOH in real time.
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(3) Overall impedance in [20] means the diameter of the semicircular
part (in the mid-frequency) of EIS, which would increase due to the
increase of charge transfer resistance.

(4) SEI (solid electrolyte interface) resistance was observed in [81], and
it shows a linear relationship with the remaining capacity, which
can indicate the degradation behavior.

(5) Fractional order was considered as an indicator of ageing level and
SOH in [41], which is the research from the same group that has
illustrated fractional order can also indicate SOC linearly in [42].

(6) In [13], Sutter et al. provided both ohmic resistance and charge
transfer resistance evolution over lifetime.

(7) In [65], the fractional order αω was considered as an indicator of
ageing level just like that in [41], but the difference is that the vari-
able fractional order αω was investigated with the on-line capacitive
resistance arc of EIS in frequency domain, which is similar to that
in [20]. Hence, the fractional order αω was verified to be a meter of
states and performance of LIBs, like SOH, RUL, etc.

(8) Although the SOH estimation, RUL estimation, degradation, and
ageing problems of LIBs are related with each other, all the No.1-
No.6 methods in Table 2 were designed specifically for the certain
type of index. Hence, all the six kinds of methods would be ex-
tended for the other indexes, or for the combining estimation of
these indexes. As to the seventh method in [65], it only indicates
that fractional order αω is relevant with SOC, ageing level and dis-
charge rate of LIBs, but did not provide specific estimation method
for ageing level. Thus the findings in [65] remains open to more
practical applications.

No. References FO-ECMs Methods

1 [23] 2-RCα,β model Dual FO-EKF
2 [70] 2-RCα,β model incremental capacity analysis
3 [20] FO PNGV model overall impedance
4 [81] 2-RCα,β model SEI resistance
5 [41] Warburg model fractional order
6 [13] FO Thevenin model resistance
7 [65] EIS fractional order

Table 2. SOH and RUL estimation methods (2014-2019)
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5. Conclusion and future work

This paper presents a state-of-art survey on fractional-order modeling
and estimation methods for LIBs mainly in recent five years. FO electro-
chemical models and ECMs are the main model forms for LIBs, and a very
detail presentation and analysis of six types of ECMs in Figure 3.5 are pro-
vided in Section 3.2. Moreover, all the FO estimation methods for SOC,
SOH, and RUL of LIBs are introduced and analyzed in Section 4. FO ob-
servers and FO-KFs are the two main methods applied to SOC estimation,
and eight kinds of FO-KFs are listed in Table 1 with brief comments and
analysis. While SOH and RUL estimation methods listed in Table 2 are not
as many as those for SOC estimation, there is still a lot to be investigated
for fractional calculus in LIBs lifetime research. The following are some
suggestions that may be helpful in future work.

(1) Online and real-time monitoring and estimation are the new trends
for future BMS, thus FO modeling, parameter identification, and
estimation methods that can work online are interesting for LIBs.

(2) Adaptive methods are required for further research, including adap-
tive parameters of the FO identification algorithm, the weights up-
date of the FO iterative process during estimation, and the updates
over the LIBs ageing.

(3) Other technologies may be combined with current models and es-
timation methods. FO filters except FO-KFs, FONN and FO-EL
may be applied for parameter identification and SOC estimation.

(4) SOH, RUL, ageing, and degradation problems are lack of investi-
gation by using fractional calculus, and the integer-order aspects
already have lots results that can be referred from [77].
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