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Abstract: Lévy flights is a random walk where the step-lengths have a probability distribution that

is heavy-tailed. It has been shown that Lévy flights can maximize the efficiency of resource search-

ing in uncertain environments, and also movements of many foragers and wandering animals have

been shown to follow a Lévy distribution. The reason mainly comes from that the Lévy distribution,

has an infinite second moment, and hence is more likely to generate an offspring that is farther away

from its parent. However, the investigation into the efficiency of other different heavy-tailed proba-

bility distributions in swarm-based searches is still insufficient up to now. For swarm-based search

algorithms, randomness plays a significant role in both exploration and exploitation, or diversifica-

tion and intensification. Therefore, it’s necessary to discuss the optimal randomness in swarm-based

search algorithms. In this study, CS is taken as a representative method of swarm-based optimization

algorithms, and the results can be generalized to other swarm-based search algorithms. In this paper,

four different types of commonly used heavy-tailed distributions, including Mittag-Leffler distribu-

tion, Pareto distribution, Cauchy distribution, and Weibull distribution, are considered to enhance the

searching ability of CS. Then four novel CS algorithms are proposed and experiments are carried out

on 20 benchmark functions to compare their searching performances. Finally, the proposed methods

are used to system identification to demonstrate the effectiveness.
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1 Introduction

Swarm-based search algorithms have attracted great interest of researchers in fields of computational intel-

ligence, artificial intelligence, optimization, data mining, and machine learning during the last two decades [1].

Moreover, the swarm intelligence algorithms and artificial intelligence have been successfully used in complex

real-life applications, such as wind farm decision system, social aware cognitive radio handovers, feature selec-

tion, truck scheduling and so on [2, 3, 4, 5]. Up to now, a lot of swarm-based search algorithms have been

presented, including artificial bee colony (ABC) [6], cuckoo search (CS)[7], firefly algorithm (FA) [8], particle

swarm optimization (PSO) [9] and so on.

Among the existing swarm-based search algorithms, CS is presented in terms of the obligate brood parasitic

behavior of some cuckoo species and the Lévy flight behavior of some birds and fruit flies. CS searches for new

solutions by performing a global explorative random walk together with a local exploitative random walk. CS is

famous for utilizing Lévy flights in its global explorative random walk. Lévy flights play a critical role in enhancing

randomness, as Lévy flights is a random walk where the step-lengths have a probability distribution that is heavy-

tailed. At each iteration process, CS firstly searches for new solutions in Lévy flights random walk. Secondly, CS

proceeds to obtain new solutions in local exploitative random walk. After each random walk, a greedy strategy is

used to select a better solution from the current and newly generated solutions according to their fitness values. Due

to the salient features such as simple concept, limited parameters, and implementation simplicity, CS has aroused

extensive attention and has been accepted as a simple but efficient optimization technique for solving optimization

problems. Accordingly, many new CS variants have been continuously presented recently [10, 11, 12, 13, 14].

However, there’s still a lot of space in designing newly improved or enhanced techniques to help to increase the

accuracy and convergence speed and enhance the searching stability for the original CS algorithm.

In nature, the movements of many foragers and wandering animals have been shown to follow a Lévy dis-

tribution [15] rather than Gaussian distribution. It is found that foragers frequently take a large step to enhance

the searching efficiency since it is the natural evolution for millions of years. Inspired by the mentioned natu-

ral phenomena, CS is proposed by combination with Lévy, where the step-length is drawn from a heavy-tailed

probability distribution and large steps frequently take place flights. In fact, before CS, the idea of Lévy flights

has been applied in [16] to solve a problem of non-convex stochastic optimization, due to big jumps of the Lévy

flights process. In this way, it can enhance the searching ability compared with Gaussian distribution where large

steps seldom happen. More exactly, we have to say the foragers should move following a heavy-tailed distribu-

tion since Lévy distribution is a simple heavy-tailed distribution which is easy to analyze. There are many other

heavy-tailed distributions such as Mittag-Leffler distribution, Pareto distribution, Cauchy distribution, and Weibull
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distribution, and large steps still frequently happen when using them to generate the steps. For swarm-based opti-

mization algorithms, randomness plays a significant role in both exploration and exploitation, or diversification and

intensification [17]. Therefore, it’s necessary to discuss the optimal randomness in swarm-based search algorithms.

In this paper, we mainly focus on the discussion on the impact of different heavy-tailed distributions on the

performance of swarm-based search algorithms. In the study, CS is taken as a representative method of swarm-

based optimization algorithms, and the results can be generalized to other swarm-based search algorithms. At

first, some basic definitions of the heavy-tailed distributions and how to generate the random numbers according

to the given distribution are provided. Then by replacing the Lévy flight with steps generated from other heavy-

tailed distributions, four different randomness-enhanced CS algorithms (namely CSML, CSP, CSC, and CSW)

are presented by applying Mittag-Leffler distribution, Pareto distribution, Cauchy distribution and Weibull dis-

tribution. Finally, dedicated experimental studies are carried out on a test suite of 20 benchmark problems with

unimodal, multimodal, rotated and shifted properties to compare the performance of different variant algorithms.

The experimental results demonstrate that the four proposed randomness-enhanced CS algorithms show a signif-

icant improvement over the original CS algorithm. This suggests that the performance of CS can be improved

by means of integrating different heavy-tailed probability distributions rather than Lévy flights into it. Moreover,

comparisons of CSML, CSP, CSC, and CSW with other optimization algorithms are also performed. At last, an

application problem of parameter identification of unknown fractional-order chaotic systems is further considered.

Based on the observations and results analysis, the randomness-enhanced CS algorithms are able to exactly iden-

tify the unknown specific parameters of the fractional-order system with better effectiveness and robustness. The

randomness-enhanced CS algorithms can be regarded as an efficient and promising tool for solving the real-world

complex optimization problems besides the benchmark problems.

The remainder of this paper is organized as follows. The principle of the original CS algorithm is described

in Section 2. Section 3 gives details of four randomness-enhanced CS algorithms after a brief review of several

commonly used heavy-tailed distributions. Experimental results and discussions of randomness-enhanced CS

algorithms are presented in Section 4. Finally, Section 5 summarizes the conclusions and future work.

2 Cuckoo Search Algorithm

Cuckoo search (CS), developed by Yang and Deb, is considered to be a simple but promising stochastic nature-

inspired swarm-based search algorithm [7, 18]. CS is inspired by the intriguing brood parasitism behaviors of

some species of cuckoos, and is enhanced by Lévy flights instead of simple isotropic random walks. Cuckoos

are considered to be fascinating birds not only for their beautiful sounds but also for their aggressive reproduction
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strategy. Some cuckoo species lay their eggs in host nests, and at the same time, they may remove host birds’ eggs

in order to increase the hatching probability of their own eggs. For simplicity in describing the standard CS, there

are three idealized rules as follows [7]: (1) Only one egg is laid by each cuckoo bird at a time, and dumped in

a randomly chosen nest; (2) The next generations of cuckoos search for new solutions using the best nests with

high-quality; (3) The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by the host

bird with a probability Pa ∈ [0, 1]. In this condition, the host bird can either remove the egg or simply abandon the

nest and build a completely new nest.

The purpose of CS is to substitute a not-so-good solution in the nests with the new and potentially better

solutions (cuckoos). At each iteration process, CS employs a balanced combination of a local random walk and the

global explorative random walk under control of a switching parameter Pa. A greedy strategy is used after each

random walk to select better solutions from the current and newly generated solutions based on their fitness values.

2.1 Lévy Flights Random Walk

At generation t, a global explorative random walk carried out by using Lévy flights can be defined as follows:

U t
i = Xt

i + α ⊗ Lévy ⊗ (Xt
i − Xbest), (1)

where U t
i

denotes a new solution generated in Lévy flights random walk, and Xbest is the best solution obtained

so far. α > 0 is the step size related to the scales of the problem of interest, Xbest is the best solution obtained so

far, the product ⊗ represents entrywise multiplications, and Lévy(λ) is defined according to a simple power-law

formula as follows:

Lévy(λ) ∼ t−1−λ, (2)

where t is a random variable, 0 < λ ≤ 2 is a stability index. Moreover, it is worth mentioning that the well-known

Gaussian and Cauchy distribution are its special cases when its stability index λ is respectively set to 2 and 1.

In practice, Lévy(λ) can be updated as follows:

Lévy(λ) ∼
φ × µ

|v|1/λ
, (3)

where λ is suggested as 1.5 [18], µ and v are random numbers drawn from a normal distribution with mean of 0
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and standard deviation of 1, Γ(·) denotes the gamma function, and φ is expressed as:

φ =















Γ(1 + λ) × sin( π×λ
2

)

Γ( 1+λ
2

) × λ × 2
λ−1

2















1/λ

. (4)

Algorithm 1 Pseudo code of the standard CS algorithm

1: t = 1;

2: Generate an initial population of NP host nests Xt
i
, (i = 1, 2, . . . ,NP);

3: Evaluate the fitness value of each nest Xt
i
;

4: FES = NP;

5: Determine the best nest with the best fitness value;

6: while FES<Max FEs do

7: // Lévy flights random walk

8: for i = 1, 2, ...,NP do

9: Generate a new solution U t
i

randomly using Lévy flights random walk according to Equation. (1);

10: Greedily select a better solution from U t
i

and Xt
i

according to their fitness values;

11: FES = FES + 1;

12: end for

13: // Local random walk, a fraction (Pa) of worse nests are abandoned and new ones are built

14: for i = 1, 2, ...,NP do

15: Search for a new solution U t
i

using local random walk according to Equation. (5);

16: Greedily select a better solution from U t
i

and Xt
i

according to their fitness values;

17: FES = FES + 1;

18: end for

19: Obtain the best solution so far Xbest;

20: t = t + 1;

21: end while

22: Output the best solution.
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2.2 Local Random Walk

The local random walk can be defined as:

U t
i = Xt

i + r ⊗ H(Pa − ǫ) ⊗ (Xt
j − Xt

k), (5)

where Xt
j

and Xt
k

are two different selected random solutions, r and ǫ are two independent random numbers with

uniform distribution, and H(u) is a Heaviside function. The local random walk utilizes a far field randomization

to generate a substantial fraction of new solutions which are sufficiently far from the current best solution. The

pseudo-code of the standard CS algorithm is given in Algorithm 1.

3 Randomness-Enhanced CS Algorithms

The standard CS algorithm uses Lévy flights in global random walk to explore the search space. The Lévy

step is taken from the Lévy distribution which is a heavy-tailed probability distribution. In this case, a fraction of

large steps is generated, which plays an important role in enhancing the search capability of CS. Although many

foragers and wandering animals have been shown to follow a Lévy distribution [15], the investigation into the

impact of other different heavy-tailed probability distributions on CS is still insufficient up to now. This motivates

us to make an attempt to apply the well-known Mittag-Leffler distribution, Pareto distribution, Cauchy distribution

and Weibull distribution to the standard CS algorithm, by using which, more efficient searches are supposed to

take place in the search space thanks to the long jumps. In this section, a brief review of several commonly used

heavy-tailed distributions is given, and then the scheme of the randomness-enhanced CS algorithms is introduced.

3.1 Commonly Used Heavy-Tailed Distributions

This subsection provides the definition of heavy-tailed distribution and several examples of commonly used

heavy-tailed distributions.

Definition 1 (Heavy-Tailed Distribution). The distribution of a real-valued random variable X is said to have a

heavy right tail if the tail probabilities P(X > x) decay more slowly than those of any exponential distribution, i.e.,

if

lim
x→∞

P(X > x)

e−λx
= ∞ (6)

for every λ > 0. Heavy left tails are defined in a similar way [19].
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Example 1 (Mittag-Leffler Distribution). A random variable is said to subject to Mittag-Leffler distribution if its

distribution function has the following form

Fβ(x) =

∞
∑

k=1

(−1)k−1xkβ

Γ(1 + kβ)
, (7)

where 0 < β ≤ 1, x > 0, and Fβ(x) = 0 for x ≤ 0. For 0 < β < 1, the Mittag-Leffler distribution is a heavy-tailed

generalization of the exponential, and reduces to the exponential distribution when β = 1.

A Mittag-Leffler random number can be generated using the most convenient expression proposed by Kozubowski

and Rachev [20]:

τβ = −γ ln u(
sin(βπ)

tan(βπv)
− cos(βπ))1/β, (8)

where γ is the scale parameter, u, v ∈ (0, 1) are independent uniform random numbers, and τβ is a Mittag-Leffler

random number.

Example 2 (Pareto Distribution). A random variable is said to subject to Pareto distribution if its cumulative

distribution function has the following expression:

F(x) =



























1 −
(

b
x

)a
, x ≥ b,

0, x < b,

(9)

where b > 0 is the scale parameter, a > 0 is the shape parameter (Pareto’s index of inequality).

Example 3 (Cauchy Distribution). A random variable is said to subject to Cauchy distribution if its cumulative

distribution function has the following expression:

F(x) =
1

π
arctan

(

2(x − µ)

σ

)

+
1

2
, (10)

where µ is the location parameter, σ is the scale parameter.

Example 4 (Weibull Distribution). A random variable is said to subject to Weibull distribution if it has a tail

function F as follows:

F(x) = e−(x/κ)ξ , (11)
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where κ > 0 is the scale parameter, ξ > 0 is the shape parameter. If and only if ξ < 1, the Weibull distribution is a

heavy-tailed distribution.

3.2 Improving CS with Different Heavy-Tailed Probability Distributions

For swarm-based search algorithms, randomness plays a significant role in both exploration and exploitation,

or diversification and intensification [17]. It’s very necessary to discuss the optimal randomness in swarm-based

search algorithms. Randomness is normally realized by employing pseudorandom numbers, based on some com-

mon stochastic processes. Generally, randomization is achieved by simple random numbers that are drawn from

a uniform distribution or a normal distribution. But in other cases, more sophisticated randomization approaches

are considered, for example, random walks and Lévy flights. Here, we have to say the foragers should move

following a heavy-tailed distribution since Lévy distribution is a simple heavy-tailed distribution which is easy to

analyze. There are many other heavy-tailed distributions such as Mittag-Leffler distribution, Pareto distribution,

Cauchy distribution, and Weibull distribution, and large steps still frequently happen when using them to generate

the steps. In this paper, we mainly focus on the discussion on the impact of different heavy-tailed distributions

on the performance of swarm-based search algorithms. In the study, CS is taken as a representative method of

swarm-based optimization algorithms, and the results can be generalized to other swarm-based search algorithms.

In this section, four randomness-enhanced cuckoo search algorithms are proposed in this paper. Specifically,

the following modified CS methods are considered: (1) CS with the Mittag-Leffler distribution, denoted as CSML;

(2) CS with the Pareto distribution, denoted as CSP; (3) CS with the Cauchy distribution, denoted as CSC; (4)

CS with the Weibull distribution, referred to CSW. In the modified CS methods, the aforementioned four different

heavy-tailed probability distributions are respectively used to be integrated into CS instead of the original Lévy

flights in the global explorative random walk. By using these heavy-tailed probability distributions, the updating

equation (1) can be reformulated as follows

U t
i = Xt

i + α ⊗Mittag − Leffler(β, γ) ⊗ (Xt
i − Xbest), (12)

U t
i = Xt

i + α ⊗ Pareto(b, a) ⊗ (Xt
i − Xbest), (13)

U t
i = Xt

i + α ⊗ Cauchy(µ, σ) ⊗ (Xt
i − Xbest), (14)
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U t
i = Xt

i + α ⊗Weibull(ξ, κ) ⊗ (Xt
i − Xbest), (15)

where Mittag − Leffler(β, γ) in Equation (12) denotes a random number drawn from Mittag-Leffler distribution;

Pareto(b, a) in Equation (13) represents a random number drawn from Cauchy distribution; Cauchy(µ, σ) in Equa-

tion (14) denotes a random number drawn from Cauchy distribution; Weibull(α, κ) in Equation (15) means a

random number drawn from Weibull distribution. Compared with the standard CS algorithm, the differences of

randomness-enhanced cuckoo search methods lie in line 9 from Algorithm 1.

Remark 1. In this paper, our emphasis is to study the effects of different heavy-tailed distributions on the swarm-

based search algorithms.

Remark 2. Since CS is a popular swarm-based search algorithm, we only use it as an representative. Similar

analyses for optimal randomness can be applied to other swarm-based algorithms.

Remark 3. The source code of randomness-enhanced cuckoo search algorithms (namely CSML, CSP, CSC, CSW),

written in Matlab, is available at

https://www.mathworks.com/matlabcentral/fileexchange/71758-optimal-randomness-in-swarm-based-search.

4 Experimental Results

This study focuses on discussing the effectiveness and efficiency of the proposed randomness-enhanced CS

algorithms. To fulfill this purpose, extensive experiments are carried out on a test suite of 20 benchmark functions,

which are chosen from the literature [21, 22]. The superiority of randomness-enhanced CS algorithms over the

standard CS is tested, then a scalability study and comparison with other optimization algorithms are performed.

Finally, an application to parameter identification of fractional-order chaotic systems is also investigated.

4.1 Experimental Setup

For parameter settings of CS, CSML, CSP, CSC and CSW, the probability Pa is set to 0.25 [7], the scaling

factor α is set to 0.01. The proposed randomness-enhanced CS algorithms introduce new parameters to CS: the

scale parameter γ and the Mittag-Leffler index β in CSML; the scale parameter b and the shape parameter a

in CSP; the location parameter µ and the scale parameter σ in CSC; the scale parameter κ > 0 and the shape

parameter ξ in CSW. As for these newly introduced parameters, their values are given in Table 1 after analysis

in Section 4.2. Moreover, the population size satisfies NP = D where D denotes the dimension of the problem

9
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unless a change is mentioned. In the experimental studies, the maximum number of function evaluations (namely

Max FEs) is taken as the termination criterion and set to 10, 000 × D. All the algorithms are evaluated for 50

times and the averaged experimental results are recorded for each benchmark function respectively. Besides, two

non-parametric statistical tests for independent samples are taken to detect the differences between the proposed

algorithm and the compared algorithms. The tests contain the Wilcoxon signed-rank test at the 5% significance

level and the Friedman test. The symbol ”‡”, ”†” and ”=” respectively denote the average performance gained

by the chosen approach is weaker than, better than, and similar to the compared algorithm. Meanwhile, the best

experimental results for each benchmark problem are marked in boldface, for clarity.

Table 1 Parameters for randomness-enhanced CS algorithms.

Distribution Algorithm Parameters

Mittag-Leffler distribution CSML γ = 4.5, β = 0.8
Pareto distribution CSP a = 1.5, b = 4.5
Cauchy distribution CSC σ = 4.5, µ = 0.8
Weibull distribution CSW ξ = 0.3, κ = 4

4.2 Parameter Tuning

From Section 3.2, it’s obvious that each of the four randomness-enhanced CS algorithms brings two new user-

defined parameters, for example, the scale parameter γ and the Mittag-Leffler index β in CSML. To illustrate the

impact of these two parameters on the optimization results and to offer reference values to users of our algorithm,

parameter analyses are conducted in advance and corresponding experiments are performed on unimodal function

Fsph and multimodal function Fack with dimension D set to 30. The optimal value of selected benchmark functions

is 0. 10, 000×D is the default value for Max FEs. 15 independent runs are carried out for each parameter setting to

reduce statistical sampling effects. The experimental results are plotted in Figure 1. For simplicity of description,

only the result of parameter tuning for CSML is shown here, and the same operation is conducted on CSP, CSC,

and CSW. In Figure 1(a), γ varies within interval [0.5, 4.5] in steps of 0.5, β varies from 0.1 to 0.9 in steps of 0.1,

and ‘Error’ represents the average error to the optimal value.

From Figure 1(a), we can see that the Mittag-Leffler index β, in general, has a slight effect on the performance

of CSML, whereas the value of scale parameter γ shows a more significant impact on the experimental results.

According to the right part of each subfigure in Figure 1(a), the larger the value of scale parameter γ is, the better

the performance of CSML will be. In view of the above considerations, we set the values of γ and β to 0.8 and

4.5 for all the experiments being conducted in the next subsections. For Pareto distribution, Cauchy distribution
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Figure 1. Impact of user-defined parameter values of CSML, CSP, CSC and CSW on the results for selected

benchmark functions.
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and Weibull distribution, the same parameter analysis is performed according to Figures 1(b) 1(c) 1(d). The user-

defined parameter values for all the randomness-enhanced CS algorithms are listed in Table 1.

4.3 Performance Evaluation of Randomness-Enhanced CS Algorithms

In this section, lots of experiments are performed in order to probe into the effectiveness and efficiency of

different heavy-tailed distributions on the performance of CS, and meanwhile, to decide the optimal randomness

in improving CS. In our experiments, the standard CS and four proposed randomness-enhanced CS algorithms

(namely, CSML, CSP, CSC, and CSW) are tested on 20 test functions where D is set to 30. The experimental

results are presented in Table 2.

According to Table 2, it can be clearly found that CS with different heavy-tailed probability distributions

provides significantly better results when compared with the original CS. Specifically speaking, in terms of the

total number of ”‡/≈ /†”, CS is inferior to CSML, CSP, CSC, and CSW on 17, 17, 16 and 16 test functions,

similar to CSML, CSP, CSC and CSW on 1, 1, 2 and 1 test functions, and superior to CSML, CSP, CSC, and CSW

on 2, 2, 2 and 3 test functions, respectively. It is worth noting that CSML, CSP, CSC and CSW are capable of

achieving the global optimum on test problem Fgrw and F1, while CS doesn’t. Moreover, all the p-values are less

than 0.05. These results suggest that CSML, CSP, CSC, and CSW are able to significantly improve the performance

of CS for the test functions at D = 30. The comprehensive ranking orders are CSW, CSC, CSML, CSP, and CS

in a descending manner. This indicates that the integration of different heavy-tailed probability distributions into

CS not only retains the merit of CS, but also performs even better. Besides, the Weibull distribution performs the

best in enhancing the search ability of CS, that is, CSW is supposed to be the optimal randomness in improving

CS among all the comparison methods for solving benchmark problems at D = 30.

To further discuss the convergence speed of the four randomness-enhanced CS algorithms, several test prob-

lems (namely Fsph, Fgrw, F1 and F10) at D = 30 are selected to plot the convergence curves of the averages of the

function error values within Max FEs over 50 independent runs, which are presented in Figure 2. From Figure 2,

it can be observed that CSML, CSP, CSC, and CSW converge outstandingly faster than CS according to the con-

vergence curves. In summary, it can be concluded that the standard CS algorithm can be improved by integrating

different heavy-tailed probability distributions rather than Lévy distribution into it.

Besides, to analyze the reasons for different performances among the four proposed randomness-enhanced CS

algorithms, the jump lengths of CS, CSML, CSP, CSC, and CSW (namely, α ⊗ Lévy(λ), α ⊗MittagLeffler(β, γ),

α⊗Pareto(b, a), α⊗Cauchy(µ, σ), and α⊗Weibull(ξ, κ)) are depicted in Figure 3, where the parameters are given in

Table 1 and the scaling factor is set to 0.01. From Figure 3, it can be observed that (1) Lévy distribution and Cauchy
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Figure 2. Convergence curves of CS and different improved CS algorithms for selected functions at D = 30.
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Table 2 Comparisons between CS and four randomness-enhanced CS algorithms at D = 30.

Fun CS CSML CSP CSC CSW

Fsph 9.58E-31 4.90E-54‡ 4.74E-59‡ 1.17E-57‡ 4.40E-51‡

Fros 1.20E+01 5.22E+00‡ 3.10E+00‡ 2.74E+00‡ 8.62E+00‡

Fack 7.70E-13 1.06E-14‡ 1.07E-14‡ 9.56E-15‡ 8.28E-15‡

Fgrw 7.11E-17 0.00E+00‡ 0.00E+00‡ 0.00E+00‡ 0.00E+00‡

Fras 2.32E+01 1.38E+01‡ 1.88E+01‡ 1.49E+01‡ 8.34E+00‡

Fsch 1.57E+03 5.37E+02‡ 1.32E+03‡ 4.80E+02‡ 3.56E+01‡

Fsal 3.76E-01 2.96E-01‡ 3.00E-01‡ 2.84E-01‡ 2.20E-01‡

Fwht 3.73E+02 2.00E+02‡ 2.49E+02‡ 2.27E+02‡ 1.93E+02‡

Fpn1 2.07E-03 1.57E-32‡ 1.57E-32‡ 2.07E-03≈ 1.57E-32‡

Fpn2 4.82E-28 1.35E-32‡ 1.35E-32‡ 1.35E-32‡ 1.35E-32‡

F1 6.48E-30 0.00E+00‡ 0.00E+00‡ 0.00E+00‡ 0.00E+00‡

F2 1.05E-02 1.10E-03‡ 2.77E-04‡ 1.40E-03‡ 1.23E-02†

F3 2.17E+06 3.04E+06† 2.99E+06† 3.25E+06† 3.61E+06†

F4 1.79E+03 4.98E+02‡ 3.58E+02‡ 4.02E+02‡ 5.51E+02‡

F5 3.17E+03 2.44E+03‡ 1.98E+03‡ 2.11E+03‡ 1.94E+03‡

F6 2.78E+01 1.57E+01‡ 9.91E+00‡ 1.23E+01‡ 1.59E+01‡

F7 1.34E-03 2.22E-03† 5.79E-03† 3.73E-03† 2.49E-03†

F8 2.09E+01 2.09E+01≈ 2.09E+01≈ 2.09E+01≈ 2.09E+01≈

F9 2.84E+01 1.30E+01‡ 2.74E+01‡ 1.28E+01‡ 6.81E+00‡

F10 1.69E+02 1.21E+02‡ 1.31E+02‡ 1.18E+02‡ 1.03E+02‡

‡/≈ /† - 17/1/2 17/1/2 16/2/2 16/1/3
p-value - 8.97E-03 1.00E-02 1.00E-02 1.87E-02
Avg. rank 4.35 2.78 2.88 2.58 2.43
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distribution are one-sided distribution where all the random numbers are positive, and the other three distributions

are two-sided; (2) large steps frequently take place for all distributions; (3) since the tail of Weibull distribution is

the lightest, the extreme large steps (compared with its mean) are less likely to happen.
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Figure 3. Jump lengths of CS, CSML, CSP, CSC and CSW.

4.4 Scalability Study

In this section, a scalability study comparing with the standard CS algorithm is conducted in order to study the

effect of problem size on the performance of the four proposed randomness-enhanced CS algorithms. We carry out

experiments on the 20 benchmark functions with dimension D set to 10 and 50. When D = 10, the population size

is chosen as NP = 30; meanwhile, when D = 50, the population size is selected as NP = D. All the other control

parameters are kept unchanged. The experimental results achieved by CS and four proposed randomness-enhanced

CS algorithms at D = 10 and D = 50 are listed in Tables 3 and 4, respectively, and the results of the Wilcoxon

signed-rank test are also given in the tables.

According to Table 3, CSML, CSP, CSC, and CSW are significantly better than CS on 7, 17, 18 and 19 test

functions, similar to CS on 0, 1, 1 and 1 test functions, and worse than CS on 13, 2, 1 and 0 test functions,
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Table 3 Comparisons between CS and four randomness-enhanced CS algorithms at D = 10.

Fun CS CSML CSP CSC CSW

Fsph 4.87E-26 3.39E-31‡ 4.21E-48‡ 2.04E-46‡ 2.48E-46‡

Fros 9.63E-01 3.02E+01† 1.12E-01‡ 1.75E-01‡ 2.97E-01‡

Fack 4.16E-11 2.50E-14‡ 4.37E-15‡ 4.44E-15‡ 4.44E-15‡

Fgrw 3.44E-02 0.00E+00‡ 2.22E-02‡ 2.07E-02‡ 1.44E-02‡

Fras 3.00E+00 6.93E+01† 2.25E+00‡ 2.95E-01‡ 2.26E-09‡

Fsch 6.72E+01 3.80E+03† 1.38E+01‡ 6.91E-03‡ 1.27E-04‡

Fsal 1.04E-01 4.78E-01† 9.99E-02‡ 9.99E-02‡ 9.99E-02‡

Fwht 2.40E+01 9.89E+02† 1.54E+01‡ 1.01E+01‡ 5.72E+00‡

Fpn1 1.96E-16 2.01E-28‡ 4.71E-32‡ 4.71E-32‡ 4.71E-32‡

Fpn2 4.86E-23 9.17E-30‡ 1.35E-32‡ 1.35E-32‡ 1.35E-32‡

F1 4.13E-26 0.00E+00‡ 0.00E+00‡ 0.00E+00‡ 0.00E+00‡

F2 8.16E-14 3.73E+02† 1.33E-21‡ 4.54E-19‡ 1.51E-16‡

F3 2.08E+02 1.70E+07† 7.20E+02† 6.78E+02† 8.31E+02†

F4 1.01E-05 1.96E+04† 1.46E-09‡ 1.20E-08‡ 4.82E-08‡

F5 9.30E-05 6.82E+03† 6.13E-10‡ 5.11E-09‡ 9.27E-09‡

F6 9.78E-01 4.11E+01† 6.38E-01‡ 3.48E-01‡ 2.69E-01‡

F7 5.33E-02 1.07E-03‡ 5.91E-02† 4.72E-02‡ 4.39E-02‡

F8 2.04E+01 2.11E+01† 2.04E+01≈ 2.04E+01≈ 2.03E+01‡

F9 2.75E+00 7.37E+01† 1.80E+00‡ 1.79E-01‡ 2.35E-10‡

F10 1.99E+01 2.89E+02† 1.63E+01‡ 1.59E+01‡ 1.43E+01‡

‡/≈ /† - 7/0/13 17/1/2 18/1/1 19/1/0
Avg. rank 4.10 4.28 2.28 2.25 2.10
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respectively. The comprehensive ranking orders in the case of D = 10 are CSW, CSC, CSP, CS, and CSML in

descending manner. The results show that the performance improvement of using different heavy-tailed probability

distributions persists expect CSML when the problem dimension reduces to 10. In the case of D = 50, it can be

observed from Table 4 that CSML, CSP, CSC and CSW perform better than CS on 16, 14, 16 and 16 test functions,

to CS on 1, 1, 1 and 1 test functions, and worse than CS on 3, 5, 3 and 3 test functions, respectively. Meanwhile,

the corresponding comprehensive ranking orders when D = 50 are CSC, CSML, CSP, CSW and CS. In general,

we can draw conclusions that the advantages of four randomness-enhanced CS algorithms over the standard CS are

overall stable when the problem dimension increases, except CSML which deteriorates to a certain extent when D

set to 10. Furthermore, regarding to the different comprehensive ranking orders obtained at every dimension, it is

pointed out that CS with Lévy flights seems not the optimal randomness when compared with those using different

heavy-tailed probability distributions in CS.

Table 4 Comparisons between CS and four randomness-enhanced CS algorithms at D = 50.

Fun CS CSML CSP CSC CSW

Fsph 3.79E-17 3.47E-31‡ 7.41E-36‡ 5.75E-32‡ 2.73E-24‡

Fros 4.22E+01 3.07E+01‡ 2.82E+01‡ 2.99E+01‡ 3.41E+01‡

Fack 2.85E-02 2.43E-14‡ 2.05E-14‡ 2.05E-14‡ 7.40E-13‡

Fgrw 1.93E-10 0.00E+00‡ 0.00E+00‡ 0.00E+00‡ 0.00E+00‡

Fras 8.44E+01 6.80E+01‡ 8.69E+01† 7.54E+01‡ 7.37E+01‡

Fsch 4.87E+03 4.14E+03‡ 6.05E+03† 4.38E+03‡ 2.38E+03‡

Fsal 6.69E-01 4.68E-01‡ 4.87E-01‡ 4.22E-01‡ 3.68E-01‡

Fwht 1.36E+03 9.58E+02‡ 1.21E+03‡ 1.09E+03‡ 1.13E+03‡

Fpn1 8.13E-03 6.74E-28‡ 1.04E-27‡ 7.21E-30‡ 1.47E-23‡

Fpn2 3.25E-14 1.02E-29‡ 1.57E-32‡ 1.44E-30‡ 2.01E-23‡

F1 1.40E-16 0.00E+00‡ 0.00E+00‡ 0.00E+00‡ 3.57E-24‡

F2 2.34E+02 3.57E+02† 1.86E+02‡ 4.49E+02† 8.59E+02†

F3 8.53E+06 1.66E+07† 1.47E+07† 1.83E+07† 1.85E+07†

F4 2.72E+04 1.99E+04‡ 1.72E+04‡ 1.91E+04‡ 1.88E+04‡

F5 1.06E+04 6.95E+03‡ 6.49E+03‡ 6.65E+03‡ 6.30E+03‡

F6 6.38E+01 3.90E+01‡ 4.15E+01‡ 3.63E+01‡ 4.43E+01‡

F7 1.30E-03 1.81E-03† 3.56E-03† 2.43E-03† 3.64E-03†

F8 2.11E+01 2.11E+01≈ 2.11E+01≈ 2.11E+01≈ 2.11E+01≈

F9 1.24E+02 7.04E+01‡ 1.27E+02† 7.47E+01‡ 6.50E+01‡

F10 3.87E+02 2.87E+02‡ 3.13E+02‡ 2.85E+02‡ 2.69E+02‡

‡/≈ /† - 16/1/3 14/1/5 16/1/3 16/1/3
Avg. rank 4.10 2.58 2.70 2.55 3.08
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4.5 Comparison with Other Optimization Algorithms

In order to demonstrate the superiority of the four proposed randomness-enhanced CS algorithms, we compare

the performance of CSML, CSP, CSC and CSW with several classical state-of-the-art optimization algorithms,

namely ABC[6], DE[23], FA[8], FPA[24] and PSO[9], by conducting numerical experiments on the 20 benchmark

functions at dimension D = 30. In our experimental study, Max FEs set to 10, 000 × D is taken as the termination

criterion, and population size is set to 30. For ABC, the number of food sources S N = 30, maximum number

of trial for abandoning a source limit = 100; for PSO, inertia weight defined as ωt+1 = ωt+1 ∗ 0.99 and t denotes

iteration number, acceleration constants c1 = 1.5, c2 = 2.0. The MATLAB source codes of FA and FPA are

obtained from [17]. And the results of DE are taken from the literature [21] which has the same termination

criterion. The comparative simulation results of all the optimization algorithms are listed in Table 5. Additionally,

Table 5 records the statistical results obtained by both of the Wilcoxon signed-rank test and the Friedman test for

20 benchmark functions at dimension D = 30.

The experimental results in Table 5 clearly demonstrate that all of the four proposed randomness-enhanced CS

algorithms perform better on the majority of benchmark functions. More specifically, CSW is overall the best,

CSC is the second best, CSML is the third best, and CSP is the fourth best followed by DE, PSO, ABC, FPA,

and FA. This suggests that the proposed randomness-enhanced CS algorithms are also highly competitive when

compared with other optimization algorithms.

Table 5 Comparisons of four randomness-enhanced CS algorithms with other optimization algorithms at D = 30.

Fun CSML CSP CSC CSW ABC DE FA FPA PSO

Fsph 4.90E-54 4.74E-59 1.17E-57 4.40E-51 6.28E-157 5.73E-17 2.90E+03 8.65E-04 2.05E-06
Fros 5.22E+00 3.10E+00 2.74E+00 8.62E+00 3.00E+02 5.20E+01 7.91E+07 1.16E+02 3.99E+01
Fack 1.06E-14 1.07E-14 9.56E-15 8.28E-15 2.51E-01 1.37E-09 1.07E+01 1.57E+00 1.90E+01
Fgrw 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.33E+00 2.66E-03 2.71E+01 2.39E-02 9.76E-03
Fras 1.38E+01 1.88E+01 1.49E+01 8.34E+00 1.99E-01 2.55E+01 2.20E+02 4.05E+01 1.21E+02
Fsch 5.37E+02 1.32E+03 4.80E+02 3.56E+01 1.65E+02 4.90E+02 1.00E+04 3.49E+03 1.13E+04
Fsal 2.96E-01 3.00E-01 2.84E-01 2.20E-01 2.98E+00 2.52E-01 5.60E+00 1.74E+00 8.94E-01
Fwht 2.00E+02 2.49E+02 2.27E+02 1.93E+02 6.79E+03 3.10E+02 1.30E+13 5.14E+04 7.04E+02
Fpn1 1.57E-32 1.57E-32 2.07E-03 1.57E-32 8.18E+06 4.56E-02 4.58E+02 4.41E-01 4.09E-01
Fpn2 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.38E-15 1.44E-01 3.94E+05 2.47E+00 7.69E-01
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.81E+03 3.87E-14 6.39E+04 9.32E-03 1.08E-05
F2 1.10E-03 2.77E-04 1.40E-03 1.23E-02 4.19E+03 8.50E-02 9.45E+04 8.61E+00 3.79E-14
F3 3.04E+06 2.99E+06 3.25E+06 3.61E+06 2.90E+07 3.63E+06 1.71E+09 1.00E+05 1.53E+06
F4 4.98E+02 3.58E+02 4.02E+02 5.51E+02 1.26E+05 5.54E+01 1.23E+05 5.16E+03 1.11E+03
F5 2.44E+03 1.98E+03 2.11E+03 1.94E+03 1.45E+04 1.08E+03 4.28E+04 1.74E+03 5.66E+03
F6 1.57E+01 9.91E+00 1.23E+01 1.59E+01 1.62E+02 6.67E+01 2.85E+10 2.69E+03 4.17E+01
F7 2.22E-03 5.79E-03 3.73E-03 2.49E-03 4.70E+03 7.59E-03 1.22E+04 4.70E+03 2.71E+03
F8 2.09E+01 2.09E+01 2.09E+01 2.09E+01 2.12E+01 2.09E+01 2.12E+01 2.10E+01 2.09E+01
F9 1.30E+01 2.74E+01 1.28E+01 6.81E+00 1.65E-01 2.43E+01 3.89E+02 9.23E+01 1.21E+02
F10 1.21E+02 1.31E+02 1.18E+02 1.03E+02 4.58E+02 7.33E+01 6.42E+02 1.91E+02 2.23E+02
Avg. rank 3.85 3.95 3.60 3.35 7.20 5.50 9.78 7.58 6.95

18



4.6 Application to Parameter Identification of Fractional-Order Chaotic Systems

In this section, the four proposed randomness-enhanced CS algorithms (namely, CSML, CSP, CSC, and CSW)

are applied to identify unknown parameters of fractional-order chaotic systems, which is a critical issue in chaos

control and synchronization. Our main task of this section is to further demonstrate that improving CS with differ-

ent heavy-tailed probability distributions can also effectively tackle the real-world complex optimization problems

besides the benchmark problems. In fact, by using a non-Lyapunov way according to problem formulation sug-

gested in [25], the nonlinear function optimization can be converted to from parameter identification of uncertain

fractional-order chaotic systems.

In the numerical simulation, the fractional-order financial system [26] under the Caputo definition is taken for

example, which can be described as



































0D
q1

t x(t) = z(t) + x(t)(y(t) − a),

0D
q2

t y(t) = 1 − by(t) − x2(t),

0D
q3

t z(t) = −x(t) − cz(t),

(16)

where q1, q2, q3 and a, b, c are fractional orders and systematic parameters. When (q1, q2, q3) = (1, 0.95, 0.99),

(a, b, c) = (1, 0.1, 1), and initial point (x0, y0, z0) = (2,−1, 1), the system above is chaotic. Figure 4 depicts the

distribution figure of system (16) for the objective function values.
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Figure 4. Distribution of the objective function values for system (16).

The validation of the proposed methods in this paper is further proved by comparing CSML, CSP, CSC, and
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Table 6 Statistical results of different methods for system (16).

Method CS CSML CSP CSC CSW

a 0.999999825481796 0.999999979386471 1.000000001165006 0.999999930875086 0.999999994619958
|a−1.00|

1.00
1.75E-07 2.28E-08 1.17E-09 6.91E-08 5.38E-09

b 0.100000078306700 0.100000006492360 0.099999999732393 0.100000038684769 0.100000001325757
|b−0.10|

0.10
7.83E-07 1.12E-07 2.68E-09 3.87E-07 2.06E-08

c 1.000000126069434 0.999999979588057 0.999999995606294 0.999999876500337 0.999999979353103
|c−1.00|

1.00
1.26E-07 4.61E-08 4.39E-09 1.23E-07 1.33E-08

FAvg±S td 1.07E-05±5.46E-06 4.75E-07±2.74E-07 7.46E-08±3.29E-08 1.89E-06±9.38E-07 1.03E-07±6.12E-08

CSW with the standard CS algorithm for parameter identification. In the simulations, the maximum iteration

number is set to 200 and the population size is set to 40. For the system to be identified, the step size is set to 0.005,

and the number of samples set to 200. In addition, it is worth mentioning that the same computation effort is used

in implementation for all the compared algorithms to make a fair comparison. Table 6 lists the statistical results of

the average identified values, the corresponding relative error values, and the objective function values for system

(16). From Table 6, it can be clearly observed that all the four proposed randomness-enhanced CS algorithms

outperform CS according to the average objective function values, and they are able to generate estimated values

with much higher accuracy than CS. Besides, it can be seen that CSP surpasses CS, CSML, CSW, and CSC in

obtaining the best average identified values, the corresponding relative error values, and the objective function

values.

Moreover, Figure 5 shows the convergence curves of the relative error values of the estimated parameters

and objective function values for the corresponding system via CSML, CSP, CSC, CSW, and CS. From Fig-

ures 5(a) 5(b) 5(c), the relative error values of the estimated values generated by the randomness-enhanced CS

algorithms converge to zero more quickly than the original CS. This indicates that CS algorithms with the four

different heavy-tailed probability distributions are able to obtain more accurate values of the estimated parameters.

In terms of Figure 5(d), the objective function values of CSML, CSP, CSC, CSW also decline faster than CS, and

among which CSP performs the best. It is noteworthy that CSW has a similar convergence curve of objective

function values with CSP, and can converge to the nearby area of CSP. Therefore, CSW can still be considered as

an efficient tool for solving optimization problems.

According to the foregoing discussion, it can be summarized that the randomness-enhanced CS algorithms are

able to exactly identify the unknown specific parameters of the fractional-order system (16) with better effective-

ness and robustness, and CSP together with CSW may be treated as a useful tool for handling the problem of

parameter identification.
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Figure 5. The convergence curves of the relative error values and objective function values for system (16).
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5 Conclusions

The purpose of this paper is to discuss the optimal randomness in swarm-based search algorithms. In the study,

CS is taken as a representative method of swarm-based optimization algorithms, and the results can be generalized

to other swarm-based search algorithms. The impact of different heavy-tailed distributions on the performance of

CS is investigated. By replacing Lévy flights with steps generated from other heavy-tailed distributions in CS, four

different randomness-enhanced CS algorithms (namely CSML, CSP, CSC, and CSW) are presented by applying

Mittag-Leffler distribution, Pareto distribution, Cauchy distribution and Weibull distribution, in order to improve

the optimization performance of CS. The improvement in effectiveness and efficiency is validated through dedi-

cated experiments. The experimental results indicate that all four proposed randomness-enhanced CS algorithms

show a significant improvement in effectiveness and efficiency over the standard CS algorithm. Furthermore,

the randomness-enhanced CS algorithms are successfully applied to system identification. In summary, CS with

different heavy-tailed probability distributions can be regarded as an efficient and promising tool for solving the

real-world complex optimization problems besides the benchmark problems.

Future promising topics can be directed to 1) theoretically analyze the global convergence of randomness-

enhanced CS algorithms; 2) do a similar analyses to other swarm-based search algorithms for the optimal ran-

domness; 3) since the search range is always finite for swarm-based search algorithms, it is necessary to study the

optimal randomness in a finite range.
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