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Abstract: Motivated by the fact that the danger may increase if the source of pollution problem
remains unknown, in this paper, we study the source sensing problem for subdiffusion processes
governed by time fractional diffusion systems based on a limited number of sensor measurements.
For this, we first give some preliminary notions such as source, detection and regional spy sensors,
etc. Secondly, we investigate the characterizations of regional strategic sensors and regional spy
sensors. A regional detection approach on how to solve the source sensing problem of the considered
system is then presented by using the Hilbert uniqueness method (HUM). This is to identify the
unknown source only in a subregion of the whole domain, which is easier to be implemented and
could save a lot of energy resources. Numerical examples are finally included to test our results.

Keywords: source sensing, time fractional diffusion systems, regional detection method, strategic
sensors, spy sensors

1. Introduction

Recently, the studies of transport dynamics in complex systems which exhibit the subdiffusion
property have attracted increasing attention. Typical examples include the water in membranes for fuel
cells [1], charge transport in amorphous semiconductors [2] or heating processes of the heterogeneous
rod [3]. It is worth mentioning that the mean squared displacement of subdiffusion process is a
power-law function of fractional exponent, which is smaller than that of the Gaussian diffusion
process [4,5]. Due to the strong interactions between components in these processes, a rather complex
dynamical behavior would emerge. Note that a fractional order derivative itself is a kind of convolution
and naturally links to subdiffusion processes, time fractional diffusion system is confirmed in [5–8] to
be used to efficiently describe these subdiffusion processes. Then, some model-based investigations
are needed to deal with their rather complex dynamical behaviors.

Source seeking is a fundamental issue in nature and, currently, different approaches have
been developed to study it for the non-fractional diffusion systems (see monographs [9,10] and
the survey [11] for example). This is motivated by the fact that, in some practical applications, such
as the pollution problems, the danger may increase if the source remains unknown [12]. However,
from a practical point of view, engineers are more interested in the sensing problem that, if a source
is detectable, how can it be identified based on a limited number of sensor measurements. Then, in
this paper, we consider this source sensing problem for the subdiffusion processes governed by time
fractional diffusion systems.
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Motivated by these above considerations, in this paper, we deal with the following time fractional
diffusion systems with a Riemann–Liouville fractional order derivative:{

0Dα
t y(t) = Ay(t) + S(t), t ∈ [0, T], 0 < α ≤ 1,

lim
t→0+

0 I1−α
t y(t) = y0 ∈ L2(Ω), (1)

where Ω ⊆ Rn is an open bounded subset with a smooth boundary ∂Ω, 0Dα
t and 0 Iα

t represent the
Riemann–Liouville fractional order derivative and integral, respectively. Here, S (t) denotes the
unknown source to be specified later and A is the infinitesimal generator of a strongly continuous
semigroup {Φ(t)}t≥0 in L2(Ω). It is supposed that −A is a self-adjoint uniformly elliptic operator and,
in addition, y ∈ L2(0, T; V), where V is a Hilbert space such that V∗ ⊆ L2(Ω) ⊆ V with continuous
injections (V∗ is the dual of V).

It is worth noting that, although the initial condition for Riemann–Liouville type time fractional
diffusion system does not take the same form as that of non-fractional differential equations,
expressions like lim

t→0+
0 I1−α

t y(t) in system (1) make sense. The reason is that it does not require a

direct experimental evaluation of these fractional integrals. Instead, one can get it by measuring
the initial values of its “inseparable twin”, which is obtained based on some basic physical law for
the particular field of science. That is, the physical meaning for the Riemann–Liouville fractional
integral of a function is equivalent to the initial value of its “inseparable twin”. For example, in the
fractional Voigt model (a spring and a spring-pot in parallel) of viscoelasticity, the physical meaning
of a Riemann–Liouville fractional integral of the unknown strain ε(t) is in fact identical to the initial
condition of its “inseparable twin”—the stress [13]. This is also consistent with the known fact that the
spring in the Voigt model only affects long-term behavior. For more “inseparable twins”, we refer the
reader to e.g., monographs [14,15] for more information on the pair of current and voltage in electrical
circuits or the pair of temperature difference and heat flux in heat conduction, etc.

The applications of system (1) are rich in the real world. As stated in [16], system (1) is usually
used to describe the dynamic process in spatially inhomogeneous environments. Typical examples
include the flow through porous media with a source or sensing the source of groundwater flow, etc.
The corresponding sensing techniques cited in this paper can also be used to enable more complex tasks
such as landmine clearing, the disease spreading control in agriculture lands or the crowd evacuation
in the case of emergencies.

Let the limited number of sensor measurements be given by

z(t) = Cy(t), (2)

where C : L2(0, T; V)→ L2(0, T; Z) depends on the structure of sensors and Z is a Hilbert space. Then,
the source sensing problem can be stated as follows:

Given the measurements z ∈ L2(0, T; Z), find a source S such that the solution of system (1)
satisfies

Cy(t) = z(t). (3)

Several questions arise in such problems: can the available measurements z uniquely determine
S? If so, how does S depend on z and is there an approach to determine it (sensing)?

In the past two decades, several numerical algorithm approaches have been proposed for the
source sensing problem of non-fractional diffusion systems. In [17], fast algorithms to solve the source
sensing problem for elliptic partial differential equations (PDEs) were presented, in which the solution
was approximated by using the Fourier–Galerkin truncated method. By using the multidimensional
frequency estimation techniques, a new framework for solving the source sensing problems for systems
governed by linear PDEs was presented in [18,19]. In addition, if the source is assumed to be a sum of
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a finite number of Dirac delta functions at unknown locations, numerical algorithms for the source
identification problem of linear heat equations and time-dependent advection-diffusion systems with
a nonlinear reaction were considered in [20,21], respectively. For an overview of the optimisation
approaches for pollution source sensing in groundwater, we refer the reader to [22] and the references
cited therein, although it was confirmed in [23,24] that the transport phenomena under the ground
should be a subdiffusion process governed by time fractional diffusion systems.

However, the investigations for the source sensing problem of time fractional diffusion systems
are still very limited. This is due to the fact that there is a need for further studies on the optimization
variant theory and gradient theory of fractional order systems. As a result, the above optimisation
numerical methods seem to be inapplicable for system (1). Furthermore, a source detection method
has been proposed by El Jai and Afifi [25], in which the source is characterized by three parameters
according to its properties. Here, we adopt these concepts and introduce the notion of regional
detection of unknown sources, where we are interested in the sensing of unknown source only in a
subregion of the whole domain. As it will be shown, the idea of regional detection can surely save
energy resources. In addition, it is easier to be implemented even for some cases where we have a
possibility to detect it in the whole domain.

After the introduction, the mathematical concepts of source and detection are given in the next
section. The third section is focused on the regional strategic sensors, regional spy sensors and their
relationships. In Section 4, an approach on solving the source sensing problem is presented. Two
applications are worked out in the end.

2. Preliminary Results

The purpose of this section is to introduce the notions of sources, detection and some basic results
to be used thereafter.

2.1. Sources

Let I := [0, T]. The definition of a source S is as follows:

Definition 1. [25] A source S is characterized by a triplet (Σ, g, I), where

1. Σ(·) : t ∈ I → Σ(t) ⊆ Ω represents the support of source that varies in time t;
2. g(·, t) : x ∈ Σ(t)→ g(x, t) defines the intensity of source in x at time t;
3. I = {t : g(·, t) 6= 0 on Σ(t)} denotes the support of g and represents the life duration of source S.

Here, the support Σ(·), which describes the moving trajectory of the source, is usually determined
by the evolution of some dynamic systems. With this, S is said to be a

• moving pointwise source if Σ(t) is reduced to a single point of Ω for all t ∈ I;
• moving zone source if Σ(t) is reduced to a region of Ω for all t ∈ I;
• boundary source if Σ(t) ⊆ ∂Ω, t ∈ I and, in this case, we can define the similar pointwise/zone

boundary sources;
• fixed source if Σ is independent of t, which may be pointwise, zone or boundary.

In addition, it is worth noting that, when discussing the sensing problem, the pointwise fixed source
defined as Σ(t) = {σ} ⊆ Ω, ∀t ∈ I is always used. In this case, Σ is independent of t, which is used to
describe a single point of Ω.

2.2. Regional Detection

Since the detection of a source can be done by neglecting its life duration, we consider the source
as a couple (Σ, g). Let the set of such sources be E . One has

E ⊆ F (0, T;P(Ω)) . (4)
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Here, P(Ω) represents the set of parts of Ω and F (0, T; ∗) denotes the space of functions f : I → ∗.
With this, E can be a vector space with convenient scalar product operations.

Definition 2. A source S is said to be detectable on I if the knowledge of system (1), together with the output
function (2), is sufficient to guarantee that the operator

Q : S ∈ E → z ∈ L2(0, T; Z) (5)

is injective.

However, in many cases, it is impossible or too costly to reconstruct all parameters of a source.
Let ω be a non-empty, not necessarily connected subregion of Ω. In what follows, we introduce the
concepts of regional detection.

Assume that the source is located in ω such that Σ(t) ⊆ ω, ∀t ∈ I. Considering the subspace

Eω :=
{
(Σ, g) ∈ E : Σ(t) ⊆ ω, ∀t ∈ I, g ∈ L2(0, T; L2(ω))

}
(6)

and defining the operator Qω : S ∈ Eω → z ∈ L2(0, T; Z), we obtain the following definition.

Definition 3. A source S is called to be ω−detectable on I if (1), (2) is sufficient to ensure that Qω is injective.

Note that a source, which is ω1−detectable, is called to be ω2−detectable if ω1 ⊆ ω2 ⊆
Ω with Σ(t) ⊆ ω1.

2.3. Some Basic Results

To obtain our results, in this part, we present some basic results on fractional calculus.

Definition 4 ([26]). The Riemann–Liouville fractional integral of order α > 0 for a function y is given by

0 Iα
t y(t) =

∫ t

0

(t− s)α−1

Γ(α)
y(s)ds, (7)

where Γ(α) represents the Euler gamma function defined by Γ(α) =
∫ ∞

0 tα−1e−tdt and the right side is pointwise
defined on [0, T].

Definition 5 ([26]). The Riemann–Liouville fractional derivative of order α ∈ (0, 1] for a function y is defined
as

0Dα
t y(t) =

{ d
dt 0 I1−α

t y(t), α ∈ (0, 1),
d
dt y(t), α = 1

(8)

provided that the right side is pointwise defined on [0, T].

Consider system (1); without loss of generality, suppose that y(t) ≡ 0 and S(t) ≡ 0 when t /∈ I.
Let

ỹ(s) =
∫ ∞

−∞
e−sty(t)dt and S̃(s) =

∫ ∞

−∞
e−stS(t)dt (9)

be the Laplace transforms of functions y and S. Based on

L {0Dα
t y} (s) = sL

{
0 I1−α

t y
}
(s)− y0 = sαỹ(s)− y0, α ∈ (0, 1], (10)
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system (1) is equivalent to sαỹ(s)− y0 = Aỹ(s) + S̃(s), which yields

ỹ(s) = (sα I − A)−1(y0 + S̃(s)) =
∫ ∞

−∞
e−sατΦ(τ)[y0 + S̃(s)]dτ. (11)

Then, if there exists a function ψα(t) such that its Laplace transform is∫ ∞

−∞
e−stψα(t)dt = e−sα

, α ∈ (0, 1], (12)

let φα(t) = 1
α t−1− 1

α ψα(t−
1
α ), El-Borai has shown in [27,28] that the unique solution of system (1)

satisfies

y(t) = α
∫ ∞

0 θtα−1φα(θ)Φ(tαθ)y0dθ + α
∫ t

0

∫ ∞
0 θ(t− τ)α−1φα(θ)Φ((t− τ)αθ)dθS(τ)dτ. (13)

Here, ψα(t) can, for example, be [29],

ψα(t) =

 1
π

∞
∑

n=1
(−1)n−1t−αn−1 Γ(nα+1)

n! sin(nπα), t ∈ (0, ∞),

0, t ∈ (−∞, 0].
(14)

In addition, for the sake of simplicity, let Kα(t) = α
∫ ∞

0 θφα(θ)Φ(tαθ)dθ. Equation(13) yields that

y(t) = tα−1Kα(t)y0 +
∫ t

0 (t− τ)α−1Kα(t− τ)S(τ)dτ. (15)

For more knowledge on the expression of solutions to system (1), we refer the reader to [7,30,31]
and the references cited therein.

3. Regional Strategic Sensors and Regional Spy Sensors

The aim of this section is to explore the notions of regional strategic sensors, regional spy sensors
and their relationships.

3.1. Regional Strategic Sensors

Let pω : L2(Ω)→ L2(ω) be the projection operator in ω defined by pωy = y|ω and we use

p∗ωy(x) :=

{
y(x), x ∈ ω,
0, x ∈ Ω\ω (16)

to denote its adjoint operator. Consider the following autonomous system:
0Dα

t y(t) = Ay(t), t ∈ I,
lim

t→0+
0 I1−α

t y(t) = y0 supposed to be unknown,

z(t) = Cy(t).

(17)

Based on (15), one has z(t) = K(t)y0 := Ctα−1Kα(t)y0.

Definition 6. System (17) is said to be ω−weakly observable if

Ker (K(t)p∗ω) = {0}, t ∈ I. (18)
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As pointed out in [32], a sensor can be described by a couple (D, f ) such that D ⊆ Ω represents
the support of the actuator and f denotes its spatial distribution. Then, to obtain our main results, it is
supposed that the measurements are made by p sensors (Di, fi)1≤i≤p and the output function becomes

z(t) =
(
( f1, y(t))L2(D1)

, · · · ,
(

fp, y(t)
)

L2(Dp)

)T
, t ∈ I. (19)

Here, L2(Ω) is a Hilbert space endowed with the inner product (·, ·)L2(Ω); p denotes the number of
the sensors, Di ⊆ Ω is the support of the sensors and fi ∈ L2(Ω) represents their spatial distributions.
In this case, Z = Rp.

Definition 7. Sensors (Di, fi)1≤i≤p are said to be ω−strategic if the system (17) is ω−weakly observable.

For the self-adjoint uniformly elliptic operator −A with Dirichlet boundary conditions, i.e.,

D(A) =
{

ξ ∈ L2(Ω) : ξ(x) = 0 in ∂Ω
}

, (20)

we see that the spectrum of (A,D(A)) is composed of eigenvalues and counting according to the
multiplicities [33]. Then, there exists a sequence (λj, ξ j)j≥1 such that

• λj is real for each j = 1, 2, · · · , and λj is the eigenvalue of A with multiplicities rj such that

0 > λ1 > λ2 > · · · > λj > · · · , lim
j→∞

λj = −∞. (21)

• ξ jk (k = 1, 2, · · · , rj), which is the non-trivial solution of the problem:{
Aξ j(x) = λjξ j(x), x ∈ Ω,
ξ j(x) = 0, x ∈ ∂Ω,

(22)

is the eigenfunction corresponding to λj such that (ξ jkm , ξ jkn)L2(Ω) = δkm ,kn , km, kn = 1, 2, · · · , rj,
where δkm ,kn is Kronecker delta function concentrated at the origin. In addition, we get that
the sequence {ξ jk}j=1,2,··· ,k=1,2,··· ,rj

forms a complete and orthonormal basis in L2(Ω) and any
ϕ ∈ L2(Ω) can be expressed by

ϕ(x) =
∞

∑
j=1

rj

∑
k=1

(ϕ, ξ jk)ξ jk(x). (23)

Note that the above assumptions on operator A is general. For example, if Ω = (0, 1), A =

4 = ∂2/∂x2, then −A is a symmetric operator. Considering the Dirichlet boundary conditions
z(0, t) = z(1, t) = 0, we get that λn = −n2π2, ξn(x) =

√
2 sin(nπx), n = 1, 2, · · · and, in addition,

{
√

2 sin(nπx)}n≥1 forms a complete and orthonormal basis in L2(Ω) [33].
We are now ready to state the following result.

Theorem 1. Define p× rj matrices Gj as

Gj =


ξ1

j1 ξ1
j2 · · · ξ1

jrj

ξ2
j1 ξ2

j2 · · · ξ2
jrj

...
...

...
...

ξ
p
j1 ξ

p
j2 · · · ξ

p
jrj


p×rj

, (24)
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where ξ i
jk = (ξ jk, fi)L2(Di)

, i = 1, 2, · · · , p and k = 1, 2, · · · , rj. Then, the sensors (Di, fi)1≤i≤p are
ω−strategic if and only if

p ≥ r = max{rj} and rank Gj = rj, ∀j = 1, 2, · · · . (25)

Proof. It follows from Definition 7 that the sensors (Di, fi)1≤i≤p are ω−strategic if and only if

Ctα−1Kα(t)p∗ωy = 0⇒ y = 0, ∀y ∈ L2(ω). (26)

Considering that αE2
α,β = Eα,β−1 − (1 + α− β)Eα,β [7], where

Eµ
α,β(z) :=

∞

∑
n=0

(µ)n

Γ(αn + β)

zn

n!
, z ∈ C, α, β, µ ∈ C, Re(α) > 0 (27)

is known as the generalized Mittag–Leffler function in three parameters. In particular, write E0
α,β(z) =

Eα,β(z) and Eα,1(z) = Eα(z) for short when µ = 0 and µ = 0, β = 1, respectively. With this, we have

Kα(t)p∗ωy = α
∫ ∞

0 θφα(θ)Φ(tαθ)p∗ωydθ

= α
∫ ∞

0 θφα(θ)
∞
∑

j=1

rj

∑
k=1

exp(λjtαθ)(p∗ωy, ξ jk)ξ jk(x)dθ

=
∞
∑

j=1

rj

∑
k=1

∞
∑

n=0

α(n+1)!(−λjtα)n

Γ(αn+α+1)n! (p∗ωy, ξ jk)ξ jk(x)

=
∞
∑

j=1

rj

∑
k=1

αE2
α,α+1(λjtα)(p∗ωy, ξ jk)ξ jk(x)

=
∞
∑

j=1

rj

∑
k=1

Eα,α(λjtα)(p∗ωy, ξ jk)L2(Ω)ξ jk,

(28)

which is following from the property
∫ ∞

0 θνφα(θ)dθ = Γ(1+ν)
Γ(1+αν)

for some ν ≥ 0 [29,30]. Consequently,
the necessary and sufficient condition for strategic sensors (Di, fi)1≤i≤p is that

∞

∑
j=1

rj

∑
k=1

Eα,α(λjtα)

t1−α
Gj(p∗ωy, ξ jk)L2(Ω) = θ := (0, · · · , 0) ∈ Rp ⇒ y = 0. (29)

Finally, we cover our proof by using Reductio ad Absurdum.
Necessity. If p ≥ r = max{rj} and rank Gj < rj for some j = 1, 2, · · · , there exists a non-zero

vector ỹj =
(

ỹj1, ỹj2, · · · , ỹjrj

)T
satisfying Gjỹj = θ. Then, we can construct a non-zero element

ỹ ∈ L2(ω) with ỹjk = (p∗ω ỹ, ξ jk), for which

Ctα−1Kα(t)p∗ω ỹ = θ. (30)

This implies that the sensors (Di, fi)1≤i≤p are not ω−strategic.
Sufficiency. If the sensors (Di, fi)1≤i≤p are not strategic, we can find a element ŷ 6= 0, ŷ ∈ L2(Ω)

such that Ctα−1Kα(t)p∗ω ŷ = θ. Since Eα,α(λjtα)/t1−α > 0 for all t ≥ 0, there exists some j∗ = 1, 2, · · ·
satisfying

rj

∑
k=1

Gj∗(p∗ω ŷ, ξ j∗k)L2(Ω) = θ. (31)

Consequently, if p ≥ r = max{rj∗}, it is sufficient to see that rank Gj∗ < rj∗ . The proof is
complete.
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3.2. Regional Spy Sensors

Consider system (1) with measurements given by p sensors (Di, fi)1≤i≤p, we state the following
definition of regional spy sensors, which may lead to numerous problems and pose challenging
research topics at the same time.

Definition 8. Sensors are said to be ω−spy sensors if they can detect any unknown sources in Eω ⊆ E .

3.3. The Relationships between ω−Spy Sensors and ω−Strategic Sensors

Note that the detection problem and the observation problem are different [34]. Consequently, it
leads immediately to the difference between ω−strategic sensors and ω−spy sensors.

Lemma 1. Strategic (ω−strategic) sensors are spy (ω−spy) sensors, while the converse is not true.

Proof. Based on the conclusion in [35] that S→ y(t) is injective but not surjective, it is not difficult to
see that, if sensors are ω−strategic, they are ω−spy sensors, while the converse fails. Here, ω may be
whole domain. The proof is finished.

In addition, we explore the following further result. For the sake of convenience, it is assumed
that y0 = 0 in the following discussion by realizing that system (1) is linear.

Theorem 2. Suppose that g in S satisfying g ∈ L2 (0, T; L2(ω)
)
. Then, (Di, fi)1≤i≤p are ω−spy sensors if

and only if they are ω−strategic sensors.

Proof. From Lemma 1, strategic sensors are spy sensors. Then, we next focus on showing its converse.
For any unknown sources S ∈ Eω ⊆ E , define the operator Qω : Eω → L2(0, T; Rp) as

S→ (QωS)(t) = z(t) =
(
z1(t), z2(t), · · · , zp(t)

)T , (32)

where ξ i
jk = (ξ jk, fi)L2(Di)

and

zi(t) =
∞
∑

j=1

rj

∑
k=1

∫ t
0

Eα,α(λj(t−τ)α)

(t−τ)1−α (S(τ), ξ jk)L2(Ω)dτξ i
jk, i = 1, 2, · · · , p. (33)

Based on Definitions 3 and 8, the necessary and sufficient condition for the ω−spy sensors
(Di, fi)1≤i≤p is that Qω is injective. Then, if the sensors (Di, fi)1≤i≤p are not ω−strategic, by Theorem

1, there exists an element ŷ 6= 0, ŷ ∈ L2(ω) such that
rj

∑
k=1

ξ i
j∗k(p∗ω ŷ, ξ j∗k)L2(Ω) = θ for some j∗ = 1, 2, · · · .

That is,

Qω p∗ω ŷ = θ with ŷ 6≡ 0. (34)

Therefore, since S ∈ Eω and g ∈ L2 (0, T; L2(ω)
)

, let ĝ = g + ŷ. One has

Qω Ŝ = QωS, (35)

where Ŝ is the source having ĝ as its intensity. This means that Ŝ is not detectable. As a result, we
conclude that (Di, fi)1≤i≤p are not ω−spy sensors and the proof is finished.

4. Source Sensing Approach

In this section, we show how to identify the source S = (Σ, g) ∈ Eω under the hypothesis that
(Di, fi)1≤i≤p are ω−spy sensors.
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Theorem 3. If (Di, fi)1≤i≤p are ω−spy sensors, then the source S = (Σ, g) ∈ Eω in system (1) can be
uniquely identified by the observation z as the unique solution of the following equation

ΛωS = Q∗ωz. (36)

That is, given any S1, S2 ∈ Eω, the equality QωS1 = QωS2 could imply S1 = S2.

Proof. Let yi(t), i = 1, 2 be the solution of system{
0Dα

t yi(t) = Ayi(t) + Si(t), t ∈ I,
lim

t→0+
0 I1−α

t yi(t) = y0. (37)

Then, the difference y(t) := y1(t)− y2(t) satisfies{
0Dα

t y(t) = Ay(t) + S1(t)− S2(t), t ∈ I,
lim

t→0+
0 I1−α

t y(t) = 0. (38)

In what follows, we divide the proof into three steps.
Step 1, we consider the following semi-norm

‖S‖Fω = ‖QωS‖L2(0,T;Rp), S ∈ Eω (39)

and show that ‖ · ‖Fω defines a norm for the space Fω := Eω. For this, we only need to prove that any
S ∈ Eω with ‖S‖Fω = 0 could yield S = 0 [36]. Indeed, by Definitions 3 and 8, since (Di, fi)1≤i≤p are
ω−spy sensors, we get that Qω is injective, i.e., QωS = 0 could imply S = 0. With this, we conclude
that Fω is a Hilbert space endowed with the norm ‖ · ‖Fω and the inner product

(S1, S2)Fω
:= (QωS1, QωS2)L2(0,T;Rp) . (40)

Step 2, we prove that the operator Λω : Fω → F∗ω given by

ΛωS = Q∗ωQωS (41)

is an isomorphism from space Fω into its dual F∗ω . Here, Q∗ω denotes the adjoint operator of Qω . Indeed,
given any v ∈ L2(0, T; Rp), by (15), one has

〈QωS, v〉L2(0,T;Rp)×L2(0,T;Rp) = 〈Cy(t), v〉L2(0,T;Rp)×L2(0,T;Rp)

=
∫ T

0 v(t)C
∫ t

0 (t− τ)α−1Kα(t− τ)S(τ)dτdt
=
∫ T

0

∫ T
τ v(t)C(t− τ)α−1Kα(t− τ)dtS(τ)dτ.

(42)

Then, the duality relationship 〈QωS, v〉L2(0,T;Rp)×L2(0,T;Rp) = 〈S, Q∗ωv〉Fω×F∗ω and (28) yield that

(Q∗ωv)(t) =
∫ T

t (ς− t)α−1Kα(ς− t)C∗v(ς)dς

=
∞
∑

j=1

rj

∑
k=1

∫ T
t

Eα,α(λj(ς−t)α)

(ς−t)1−α (C∗v(ς), ξ jk)L2(Ω)dςξ jk.
(43)

Based on (43), define

(ΛωS)(t) := (Q∗ωQωS)(t) =
∞
∑

j=1

rj

∑
k=1

∫ T
t

 Eα,α(λj(ς−t)α)

(ς−t)1−α

∞
∑

m=1

rm
∑

n=1

∫ ς
0

Eα,α(λm(ς−τ)α)
(ς−τ)1−α dτ×

(S(τ), ξmn)L2(Ω)

(
C∗Cξmn, ξ jk

)
L2(Ω)

dςξ jk. (44)
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It follows from (40) that

(ΛωS1, S2)L2(0,T;Rp) = (S1, S2)Fω
. (45)

Then, if we consider the linear mapping ΛS1
ω : Fω → R given by

ΛS1
ω S2 = (ΛωS1, S2)L2(0,T;Rp) , (46)

it leads to
∣∣∣ΛS1

ω S2

∣∣∣ ≤ ‖S1‖Fω‖S2‖Fω . Therefore, ΛS1
ω is a continuous operator and has a unique extension

to Fω such that

‖ΛS1
ω ‖F∗ω = ‖S1‖Fω , ∀S1 ∈ Fω. (47)

Moreover, we obtain that the linear operator Λω : Fω → F∗ω is continuous. Then, Λω is an
isomorphism from Fω to F∗ω, which is following from (45) and (47).

Step 3, based on Theorem 1.1 of [37], to complete the proof, we only need to show that Λω is a
coercive operator. That is, there exists a positive constant γ such that

〈ΛωS, S〉Fω×F∗ω ≥ γ‖S‖2
Fω

, ∀S ∈ Fω. (48)

In fact, with these above preliminaries, if Qω is injective, Fω is Hilbert space endowed with the
norm ‖S‖Fω and the inner product

(S1, S2)Fω
= (QωS1, QωS2)L2(0,T;Rp) . (49)

For any S ∈ Fω, one has

〈ΛωS, S〉Fω×F∗ω = 〈Q∗ωQωS, S〉Fω×F∗ω = (QωS, QωS)L2(0,T;Rp) = ‖S‖Fω . (50)

Then, (36) has a unique solution. This means that any S1, S2 ∈ Eω satisfying the equality
QωS1 = QωS2 could yield S1 = S2. Consequently, the unknown source S is uniquely identified and
the proof is finished.

Remark 1. From Theorem 3, if (Di, fi)1≤i≤p are ω−spy sensors, we get that the operator Qω is injective by
using the knowledge of the considered time fractional diffusion system and the sensor measurements. The main
tool used in the above proof is the duality theory and our results could be used for sensing both the bounded
time-varying space-dependence source (the zone source) and the unbounded time-varying space-dependence
source (the pointwise source). With this, we see that the obtained results can be considered as a generalization
of that in [38]. In particular, if y0 = 0 and S(t) in the integral (15) is uniformly bounded with respect to all
t ∈ [0, T], i.e., |S(t)| ≤ M, ∀t ∈ [0, T] holds for some constant M > 0, we have [7]

|y(t)| =
∣∣∣∫ t

0 (t− τ)α−1Kα(t− τ)S(τ)dτ
∣∣∣ = ∞

∑
n=1

∫ t
0

Eα,α(λn(t−τ)α−1)
(t−τ)1−α |S(τ)|dτ

≤ M
∞
∑

n=1

1−Eα(λntα−1)
λn

≤ M
∞
∑

n=1

1
λn

,
(51)

which is convergent and is consistent with the conditional stability results in Theorem 3.1 of [38].

Remark 2. Note that Theorem 3 is obtained by assuming that the measurement doesn’t contain noise and the
considered domain is regular so that the eigenvalue pairing of operator A satisfying Equations (21) and (22) is
obtained. However, these assumptions may fail in some practical applications. For this, due to the memory effect
of the fractional derivative, more new properties on fractional derivatives (or on Mittag–Leffler functions) and
more constraints on a system operator are required. While interesting, we conclude that source sensing problems
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for time fractional diffusion systems under uncertain measurements of an irregular bounded domain and their
robust analysis are of great interest.

Next, we give a concrete algorithm to recover the unknown fixed zone source S = (ω, g(x)). Here,
ω ⊆ Ω denotes the support of the source and g ∈ L2(ω) represents its intensity.

Since {ξ jk}j≥1,k=1,2,··· ,rj
forms a complete and orthonormal basis in L2(Ω), p∗ωg ∈ L2(Ω) can be

rewritten as follows:

p∗ωg(x) =
∞
∑

j=1

rj

∑
k=1

gjkξ jk(x). (52)

Then, the source sensing problem is converted to identify the value of coefficients gjk. By (36), one
has

∞

∑
j=1

rj

∑
k=1

gjkΛωξ jk(x) = (Q∗ωz) (x). (53)

Multiplying both sides of (53) with ξmn(x) yields that

∞
∑

j=1

rj

∑
k=1

(
Λωξ jk, ξmn

)
L2(Ω)

gjk = (Q∗ωz, ξmn)L2(Ω) , ∀m ≥ 1, n = 1, 2, · · · , rm. (54)

With this, set Dmn
jk =

(
Λωξ jk, ξmn

)
L2(Ω)

and Fmn = (Q∗ωz, ξmn)L2(Ω). For a big enough integer J,

gjk can then be approximated by solving the following equation:

J
∑

j=1

rj

∑
k=1

Dmn
jk gjk = Fmn, m = 1, 2, · · · , J, n = 1, 2, · · · , rm. (55)

It is worth mentioning that the matrix of (55) is positive. Consequently, we have

g(x) = pω

J
∑

j=1

rj

∑
k=1

gjkξ jk(x). (56)

5. Further Remarks

Realize that the Caputo fractional order derivative is another widely used derivative in fractional
order systems; in this section, we consider the source sensing problem for the following time fractional
diffusion system with a Caputo fractional derivative:{

C
0 Dα

t y(t) = Ay(t) + S(t), t ∈ I, 0 < α ≤ 1,
y(0) = y0,

(57)

where C
0 Dα

t y(t) =

{
0 I1−α

t
d
dt y(t), α ∈ (0, 1),

d
dt y(t), α = 1

denotes the Caputo fractional derivative.

Taking a Laplace transform on both sides of system (57), it yields that

ỹ(s) =
sα−1y0 + S̃(s)

sα I − A
=
∫ ∞

−∞
sα−1e−sατΦ(τ)y0dτ +

∫ ∞

−∞
e−sατΦ(τ)S̃(s)dτ. (58)
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Observing that L
{

0 I1−α
t y

}
(s) = sα−1L {y} (s), α ∈ (0, 1] and

0 I1−α
t

Eα,α(λjtα)

t1−α =
∞
∑

i=0

∫ t
0

λi
j(t−τ)−αταi+α−1

Γ(1−α)Γ(αi+α)
dτ =

∞
∑

i=0

λi
jt

αi

Γ(αi+1) = Eα(λjtα), (59)

the unique solution of system (57) satisfies [7]

y(t) = 0 I1−α
t (tα−1Kα(t))y0 +

∫ t
0 (t− τ)α−1Kα(t− τ)S(τ)dτ

=
∞
∑

j=1

rj

∑
k=1

Eα(λjtα)(ξ jk, y0)L2(Ω)ξ jk +
∞
∑

j=1

rj

∑
k=1

∫ t
0

Eα,α(λj(t−τ)α)

(t−τ)1−α (S(τ), ξ jk)L2(Ω)dτξ jk.
(60)

For the approach on identifying the source S ∈ Eω governed by system (57), however, the
conclusions obtained in previous sections will never hold if the measurements are defined as in (19).
This is due to the fact that Eα(λjtα) is usually not equal to tα−1Eα,α(λjtα) if α ∈ (0, 1). Then, some new
revised definition of the measurements should be introduced.

Observing that 0D1−α
t Eα(λjtα) = tα−1Eα,α(λjtα) for any λj ∈ R, t ≥ 0 following from (59), if the

sensor measurements are revised to be given by p sensors (Di, fi)1≤i≤p as follows:

ẑ(t) = C2y(t) :=
((

f1, C
0 D1−α

t y(t)
)

L2(D1)
, · · · ,

(
fp, C

0 D1−α
t y(t)

)
L2(Dp)

)T
. (61)

Consider system (57) with S = 0, define ẑ(t) = K2(t)y0 := C2y(t), and we obtain the following
result.

Definition 9. System (57), (61) with S = 0 is said ω−weakly observable if Ker (K2(t)p∗ω) = {0}, t ∈ I.

Theorem 4. Define p× rj matrices Gj as

Gj =


ξ1

j1 ξ1
j2 · · · ξ1

jrj

ξ2
j1 ξ2

j2 · · · ξ2
jrj

...
...

...
...

ξ
p
j1 ξ

p
j2 · · · ξ

p
jrj


p×rj

, (62)

where ξ i
jk = (ξ jk, fi)L2(Di)

, i = 1, 2, · · · , p and k = 1, 2, · · · , rj. Then, the sensors (Di, fi)1≤i≤p are
ω−strategic for system (57) with S = 0 if and only if

p ≥ r = max{rj} and rank Gj = rj, ∀j = 1, 2, · · · . (63)

Since the proof of Theorem 4 is very similar to that of Theorem 1, we omit it.
Consider system (57), let the operator Q̂ω : Eω → L2(0, T; Rp) be given by

(Q̂ωS)(t) = ẑ(t) =
(
ẑ1(t), ẑ2(t), · · · , ẑp(t)

)T , (64)

where

ẑi(t) :=
∞

∑
j=1

rj

∑
k=1

∫ t

0

Eα,α(λj(t− τ)α)

(t− τ)1−α
(S(τ), ξ jk)L2(Ω)dτξ i

jk, i = 1, 2, · · · , p. (65)

The source sensing problem is stated as follows:
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Given the measurements ẑ ∈ L2(0, T; Rp) defined by (61), find a source S such that the solution
of system (57) satisfies (

Q̂ωS
)
(t) = ẑ(t). (66)

Theorem 5. Assume that (Di, fi)1≤i≤p are ω−spy sensors. Then, the source S = (Σ, g) ∈ Eω in system (57)
can be uniquely identified by the observation z in (61) as the unique solution of the following equation

ΛωS = Q̂∗ωz. (67)

Proof. For any two solutions y1, y2 of system (57), their difference y(t) := y1(t)− y2(t) satisfies{
C
0 Dα

t y(t) = Ay(t) + S1(t)− S2(t), t ∈ I,
y(0) = 0.

(68)

Then, we divide the proof into three steps.
Step 1, if (Di, fi)1≤i≤p are ω−spy sensors, we get that Q̂ω is injective. Then, the semi-norm

‖S‖Fω = ‖Q̂ωS‖L2(0,T;Rp), S ∈ Eω (69)

defines a norm for the space Fω := Eω . Therefore, Fω is a Hilbert space endowed with the norm ‖ · ‖Fω

and the inner product (S1, S2)Fω
=
(

Q̂ωS1, Q̂ωS2

)
L2(0,T;Rp)

.

Step 2, given any v ∈ L2(0, T; Rp), since

〈
Q̂ωS, v

〉
L2(0,T;Rp)×L2(0,T;Rp)

=
∫ T

0

∞
∑

j=1

rj

∑
k=1

∫ T
τ

Eα,α(λj(t−τ)α)

(t−τ)1−α (C∗2 v(t), ξ jk)L2(Ω)dt(S(τ), ξ jk)L2(Ω)dτ. (70)

The duality relationship
〈

Q̂ωS, v
〉

L2(0,T;Rp)×L2(0,T;Rp)
=
〈

S, Q̂∗ωv
〉

Fω×F∗ω
leads to

(Q̂∗ωv)(t) =
∞
∑

j=1

rj

∑
k=1

∫ T
t

Eα,α(λj(ς−t)α)

(ς−t)1−α (C∗2 v(ς), ξ jk)L2(Ω)dςξ jk. (71)

Define Λ̃ω : Fω → F∗ω as

(Λ̃ωS)(t) := (Q∗ωQωS)(t)

=
∞
∑

j=1

rj

∑
k=1

∫ T
t

 Eα,α(λj(ς−t)α)

(ς−t)1−α

∞
∑

m=1

rm
∑

n=1

∫ ς
0

Eα,α(λm(ς−τ)α)
(ς−τ)1−α dτ×

(S(τ), ξmn)L2(Ω)

(
C∗Cξmn, ξ jk

)
L2(Ω)

dςξ jk.
(72)

Similar to Step 2 of Theorem 3, we get that the operator Λ̃ω is an isomorphism from Fω to its dual
F∗ω.

Step 3, for any S ∈ Fω, one has〈
Λ̃ωS, S

〉
Fω×F∗ω

=
〈

Q̂ωS, Q̂ωS
〉

L2(0,T;Rp)×L2(0,T;Rp)
= ‖S‖Fω . (73)

Then, Theorem 1.1 of [37] yields that (67) has a unique solution. As a result, the unknown source
S in system (57) is uniquely identified by the observation (61). The proof is finished.
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Similarly, for any unknown fixed zone source S = (ω, g(x)), by (52) and (67), we have

∞

∑
j=1

rj

∑
k=1

gjkΛωξ jk(x) =
(

Q̂∗ωz
)
(x). (74)

For big enough integer J, then gjk can be approximated by multiplying both sides of (74) with
ξmn(x) as follows:

J
∑

j=1

rj

∑
k=1

Dmn
jk gjk = F̂mn, m = 1, 2, · · · , J, n = 1, 2, · · · , rm, (75)

where Dmn
jk =

(
Λωξ jk, ξmn

)
L2(Ω)

and F̂mn =
(

Q̂∗ωz, ξmn

)
L2(Ω)

. With this, we obtain that

g(x) = pω

J
∑

j=1

rj

∑
k=1

gjkξ jk(x). (76)

6. Numerical Examples

The aim of this numerical work is to identify a fixed zone source S ∈ Eω according to the methods
given in Section 4.

Let Ω ⊆ Rn be an open bounded subset with smooth boundary ∂Ω, we consider the following
system 

0Dα
t y(x, t) = 4y(x, t) + S(x, t) in Ω× [0, T],

y(x, t) = 0 in ∂Ω× [0, T],
lim

t→0+
0 I1−α

t y(x, t) = 0 in Ω,
(77)

where 4 = ∂2/∂x2 denotes the Laplace operator and S(x, t) = (ω, g(x)) represents the unknown
source to be sought. The measurements are made by p sensors (Di, fi)1≤i≤p as follows:

z(t) = Cy(x, t) =
(
( f1, y(·, t))L2(D1)

, · · · ,
(

fp, y(·, t)
)

L2(Dp)

)T
, t ∈ I. (78)

Based on the arguments in Section 4, the sensing problem of system (77) under measurements (78)
can be solved via the following applicable steps:

1. Initial data α, Ω, T and the ω−spy sensors (p, Di, fi);
2. Given big enough integer J, obtain Dmn

jk and Fmn for all m = 1, 2, · · · J;
3. Solve the problem (55) to get gjk and then obtain g based on (52).

6.1. One-Dimensional Case

Let Ω = (0, 1). We get that λj = −j2π2, ξ j(x) =
√

2 sin(jπx) and rj = 1. Here,
{√

2 sin(jπx)
}

j≥1

forms a complete and orthonormal basis in L2(0, 1) [33]. Consider a fixed zone source S = (ω, g(x))
with the intensity g given by

g(x) =


(5.2− x)(x− 0.4) + 1, 0.2 ≤ x < 0.4;
1, 0.4 ≤ x < 0.6;
(x− 0.6)(x− 5.8) + 1, 0.6 ≤ x < 0.8;
0, elsewhere,

(79)

where ω = [0.2, 0.8] denotes the support of the source. Suppose that the measurements are made by
one sensor (D, f ). By Theorem 1, we obtain
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Proposition 1. The sensor (D, f ) is ω−strategic for some subregion ω ⊆ Ω if and only if∫
D

f (x) sin(jπx)dx 6= 0 (80)

holds true for all j = 1, 2, · · · .

Proof. Since rj = 1, n = 1, it then follows that

G1 =
√

2
∫

D
f (x) sin(jπx)dx. (81)

Theorem 1 shows that (80) holds and the proof is complete.

In particular, if the support D of sensor reduces to a point δ(x− σ), we see that (80) is equal to
σ /∈ Q. Without loss of generality, let the measurements be given by a pointwise sensor located at
σ =
√

2/3 with the unit spatial distribution. Then, sensor (D, f ) reduces to
(

δ
(

x−
√

2/3
)

, 1
)

. With
this, we get that

(Qωg∗)(t) =
∞
∑

j=1

∫ t
0 (t− τ)α−1Eα,α(λj(t− τ)α)dτ

(
g∗, ξ j

)
L2(Ω)

ξ j(σ)

=
∞
∑

j=1

Eα(λjtα)−1
λj

(
g∗, ξ j

)
L2(Ω)

ξ j(σ),
(82)

which is injective. Therefore, (Q∗ωz)(t) =
∞
∑

m=1

∫ T
t

Eα,α(λm(ς−t)α)
(ς−t)1−α z(ς)dςξm(σ)ξm and

(Λωg∗)(t) =
∞
∑

m=1

∞
∑

j=1

∫ T
t

Eα,α(λm(ς−t)α)
(ς−t)1−α

Eα(λjς
α)−1

λj
dς(g∗, ξ j)L2(Ω)ξ j(σ)ξm(σ)ξm. (83)

Moreover, one has

Dm
j =

(
Λωξ j, ξm

)
L2(Ω)

=
∫ T

t
Eα,α(λm(ς−t)α)

(ς−t)1−α

Eα(λjς
α)−1

λj
dςξ j(σ)ξm(σ) (84)

and

Fm = (Q∗ωz, ξm)L2(Ω) =
∫ T

t
Eα,α(λm(ς−t)α)

(ς−t)1−α z(ς)dςξm(σ). (85)

Let α = 0.5. Figure 1 shows how the approximated g∗ is close to g.
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Figure 1. The exact intensity g and approximate intensity g∗ of the unknown fixed source.
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6.2. The Cases of n = 2

This part focuses on the system (77) in Ω2 = (0, 1) × (0, 1) ⊆ R2. In this case, the
eigenvalues and corresponding eigenfunctions of operator4 are λij = −(i2 + j2)π2 and ξij(x1, x2) =

2 sin(iπx1) sin(jπx2), respectively. Here, rij = 1. Let the system (77) be excited by a fixed zone source
S = (ω, g(x1, x2)) with g(x1, x2) = ϕ(x1)ψ(x2) such that

ϕ(x1) =


(5.2− x1)(x1 − 0.4) + 1, 0.2 ≤ x < 0.4;
1, 0.4 ≤ x < 0.6;
(x1 − 0.6)(x1 − 5.8) + 1, 0.6 ≤ x < 0.8;
0, elsewhere

(86)

and

ψ(x2) =


25
4 (x2 − 0.2)2, 0.2 ≤ x < 0.6;

25(x2 − 0.8)2, 0.6 ≤ x < 0.8;
0, elsewhere.

(87)

Then, the support of S is ω = [0.2, 0.8]× [0.3, 0.7] ⊆ Ω and its presentation is given by (a) of
Figure 2.

(a) g. (b) g∗.

(c) The error between g and g∗.
Figure 2. Comparison between the exact intensity g and the approximate intensity g∗.

Suppose that the measurements are made by one sensor (D, f ). It follows that
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Proposition 2. The sensor (D, f ) is ω−strategic for subregion ω ⊆ Ω2 if and only if for all m, n = 1, 2, · · · ,∫
D

f (x1, x2) sin(mπx1) sin(nπx2)dx1dx2 6= 0. (88)

The proof can be easily obtained similar to the proof of Proposition 1 following from Theorem 1.
Then, we omit it.

Let D =
[√

2/12,
√

2/6
]
× {0.5} and f = 1. Then, the sensor (D, f ) reduces to([√

2/12,
√

2/6
]
× {0.5}, 1

)
, which is a spy sensor. Moreover, it follows that Qω is injective and

is defined as

(Qω ĝ)(t) =
∞
∑

i,j=1

∫ t
0 (t− τ)α−1Eα,α(λij(t− τ)α)dτ

(
ĝ, ξij

)
L2(Ω)

(ξij, f )L2(D)

=
∞
∑

i,j=1

Eα(λijtα)−1
λij

(
ĝ, ξij

)
L2(Ω)

(ξij, f )L2(D).
(89)

Then, (Q∗ωz)(t) =
∞
∑

m,n=1

∫ T
t

Eα,α(λmn(ς−t)α)
(ς−t)1−α z(ς)dς(ξmn, f )L2(D)ξmn and

(Λω ĝ)(t) =
∞
∑

m,n=1

∞
∑

i,j=1

∫ T
t

Eα,α(λmn(ς−t)α)
(ς−t)1−α

Eα(λijς
α)−1

λj
dς
(

ĝ, ξij
)

L2(Ω)
(ξij, f )L2(D)(ξmn, f )L2(D)ξmn. (90)

Therefore, Theorem 3 shows that the source S can be sought from observation z by solving the
equation ΛωS = Q∗ωz. Let J = 50. We get that

Dmn
ij =

(
Λωξij, ξmn

)
L2(Ω)

=
∫ T

t
Eα,α(λmn(ς−t)α)

(ς−t)1−α

Eα(λijς
α)−1

λj
dς(ξij, f )L2(D)(ξmn, f )L2(D) (91)

and

Fmn = (Q∗ωz, ξmn)L2(Ω) =
∫ T

t
Eα,α(λmn(ς−t)α)

(ς−t)1−α z(ς)dς(ξmn, f )L2(D). (92)

Then, we refer the reader to (b) and (c) of Figure 2 on how close is the approximated ĝ to the
exact g when α = 0.5.

7. Conclusions

The aim of this paper is to discuss the source sensing problem in a subdiffusion process by a
regional detection method motivated by the great potential applications in environmental problems.
The characterizations of regional strategic sensors, regional spy sensors and their relationships are
presented. We discuss an approach on how to identify the unknown source only in a subregion of the
whole domain by using the HUM. Some comparison results are given between time fractional diffusion
system with a Riemann–Liouville fractional order derivative and that with a Caputo fractional order
derivative. The results here can be regarded as an extension of the results in [25]. Moreover, we claim
that some regularization method such as an iterative regularization method in [39] can be introduced
to combine the concrete algorithm in this paper. Therefore, the source sensing problems for a fractional
order distributed parameter systems by combining a regional detection method and the iterative
regularization method as well as their comparisons with existing methods are of great interest.
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