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Abstract. The properties of aluminum alloy highly depend on the distribution, shape, and size of the micro-
structures. Thus accurate segmentation of these microstructures is crucial in the fields of material science.
However, it is often challenging due to large variations in microstructural appearance and insufficiency in
hand-labeled data. To address these challenges, we propose a hierarchical parameter transfer learning method
for the automatic segmentation of microstructures in aluminum alloy micrograph, which can be seen as the
generalization of the typical parameter transfer method. In the proposed method, we use the multilayer structure,
multinetwork structure, and retraining technology. It can make full use of the advantages of different networks
and transfer network parameters in the order from high transferability to low transferability. Several experiments
are presented to verify the effectiveness of the proposed method. Our method achieves 98.88% segmentation
accuracy and outperforms four typical segmentation methods. © 2019 SPIE and IS&T [DOI: 10.1117/1.JEI.28.5.053018]
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1 Introduction
Aluminum alloy is one of the most important and manifold
class of materials in aerospace manufacturing because of its
light weight and corrosion resistance.1 The properties of alu-
minum alloy highly depend on the distribution, shape, and
size of the microstructures.2 Thus correct segmentation of
these microstructures is crucial. However, the segmentation
of complex microstructures is difficult and typically requires
material science experts to manually divide microstructures
into separate parts. This process is often slow, labor inten-
sive, and suffers from poor repeatability.

The metal micrograph is a digital image taken through
a microscope, which contains extensive details of micro-
structures and provides an important tool for the analysis
of metal microstructures.3 Recently, automatic metal micro-
structural segmentation in micrograph has attracted the
attention of many scholars, which can greatly improve the
efficiency of metallographic analysis task. So far, the auto-
matic metal microstructural segmentation methods in micro-
graph can be mainly divided into two groups: rule-based
methods and learning-based ones.

Rule-based methods segment the microstructure using
presumed rules for microstructure. For example, the water-
shed-based method utilizes the edge information to segment
microstructures and the region adjacency graph algorithm is
used to reduce over-segmentation errors.4 The mean shift
algorithm, introduced in Ref. 5, fuses the watershed algo-
rithm and region information for the extraction of grain
boundary in metal micrograph. Morphology algorithms are
used to explore grain boundary shape features such as piece-
wise linearity and connectivity.6,7 The Markov random

field-based segmentation algorithm8 and multiscale hierar-
chical-based segmentation algorithm,9 respectively, utilize
the texture features to identify the different regions in
micrograph. The fuzzy C-means-based method takes full
advantage of the local spatial intensity feature to segment
ductile iron microstructure.10

Learning-based methods do not need the presumed rules.
Instead, they turn the segmentation problem into a classifi-
cation task. Classifiers are trained from a set of microstruc-
tural features along with labels. The usual features include
pixel intensities, edges feature, texture feature, and bag of
visual feature, which are fed to different classifiers such
as multilayer perceptron,11 random forest,12 optimum-path
forest,13 neural network,14 and support vector machine
(SVM).15,16 These methods, by introducing discriminative
features in microstructural representation, often outperform
traditional rule-based methods. However, it is very difficult
to acquire the discriminable features of microstructure gen-
erally. When the discriminable features are not known, these
segmentation methods are not able to identify the different
regions accurately in micrograph. This limits the general
applicability of the metal microstructural segmentation tech-
niques that operate on micrograph.

Deep learning methods have dramatically improved the
conventional machine learning techniques, due to their
strong ability to learn the hierarchical latent features of high-
dimensional data.17,18 These methods have been successfully
applied in image processing,19–24 speech recognition,25–29

and many other domains such as medical science30–32 and
material science.33 In the field of metallography, several deep
learning-based methods have been proposed for the metal
microstructural segmentation in micrograph. Chowdhury
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et al.34 utilized the powerful feature learning ability of con-
volutional neural network (CNN) to obtain the microstruc-
tural feature of alloys of varying Sn–Ag–Cu compositions.
Lubbers et al.35 fused the CNN feature and manifold learning
for the extraction of a low-dimensional microstructural
representation. Azimi et al.36 proposed a fully convolutional
neural network (FCNN) accompanied by max-voting scheme
to segment some given microstructures of low carbon steel.
Ma et al.37 proposed a deep learning-based image segmen-
tation method for Al-La alloy microscopic images and point
out that deep learning methods achieve more accurate seg-
mentation results than the image processing methods.

In this paper, we focus our attention on the aluminum
alloy microstructural segmentation in micrograph. The
microstructure of aluminum alloy has different appearances,
influenced by different factors such as alloying elements,
rolling setup, cooling rates, heat treatment, and further
post-treatments. This makes the design of rules and features
more difficult, so the rule-based method and conventional
machine-learning method are difficult to achieve this accu-
rate segmentation task. The deep learning-based methods
can be used to deal with these problems. However, these
existing methods always need a large number of hand-
labeled data to achieve accurate microstructural segmenta-
tion. This hand-labeled work of micrograph is difficult,
slow, and typically requires material science experts to
manually assign each micrograph pixel an accurate label.38

In order to deal with this problem, a hierarchical parameter
transfer learning (HPTL)-based microstructural segmenta-
tion method is proposed for the aluminum alloy micrograph
in this paper.

Transfer learning focuses on utilizing the knowledge
gained while solving an old problem to solve a different but
related new problem.39 For example, the knowledge gained
while learning to segment natural images could apply when
trying to segment the microstructure in micrograph. So far,
the transfer learning methods have widely been applied in the
different research fields,40,41 such as computer vision42–46 and
natural language processing.47,48 The detailed surveys of past
research on transfer learning can be found in Refs. 40 and 41.
Yosinski et al.42 studied the relationship between network
structure and transferability, and point out which features are
transferable in deep networks and which type of networks
are more suitable for transfer. Inspired by these excellent
works, we propose an HPTL method that fuses the deep
learning network and hierarchical parameter transfer tech-
niques for the segmentation of microstructure in a metal
micrograph. Our proposed method can be seen as the gener-
alization of the typical parameter transfer method. Compared
with the typical parameter transfer learning method, our pro-
posed method has three contributions.

(1) Multilayer structure. Our proposed hierarchical
method uses a new multilayer structure, and the typ-
ical method generally uses a single-layer structure.
Our method consists of four layers. In the first layer,
we use public datasets to train the network, and
then obtain general features. Network parameters are
transferred from a low layer to a high layer. This
improvement can transfer network parameters in
the order from high transferability to low transferabil-
ity, which makes the transfer more detailed and

reasonable, and is helpful for improving the effect
of transfer.

(2) Multinetwork structure. Our proposed hierarchical
method uses a multinetwork structure, and the typical
method generally uses one network structure. We use
the four different deep convolution neural networks
(DCNNs), including VGG-19, FCN-32s, FCN-16s,
and FCN-8s. These networks contain the same local
structure, and the parameters are transferred between
these local structures. This improvement can make
full use of the advantages of different networks and
help to improve network performance.

(3) Retraining technology. In the typical parameter trans-
fer learning method, the transferred parameters gen-
erally are fixed in the process of network training.
In our method, the transferred parameters can still
be further optimized in the training process. This
improvement can enable the network to better com-
plete the task of the target domain on the basis of
making full use of the public dataset.

This paper is organized as follows: Section 1 introduces
prior work, focusing on the main problems with existing
methods that are addressed by our model. The related work
is introduced in Sec. 2. In Sec. 3, the HPTL method is pro-
posed and its implementation details are described. Section 4
presents the experiment results on the transferability and
segmentation performance. The paper is concluded in
Sec. 5.

2 Related Work

2.1 Visual Geometry Group Network
Visual geometry group (VGG) network was first proposed
by Simonyan and Zisserman,49 and it is the dominant
approach for almost all classification and segmentation tasks.
The VGG network attracts increasing attentions from
researchers in recent years. A typical VGG network consists
of convolution layer, pooling layer, fully connected layer,
ReLU layer, and SoftMax layer. These layers are connected
repeatedly in a certain order.

In convolution layer, the input data r is convolved with
a linear convolution filter θ, which is described by

EQ-TARGET;temp:intralink-;e001;326;277hi ¼ θi ⊗ rþ ai; (1)

where hi represents the i’th output of convolution layer,
which is also called feature map. The filter θi and bias ai
are trainable parameters corresponding to the i’th feature
map.

In pooling layer, the input feature map is divided into
a set of nonoverlapping rectangles. For each such subregion,
the maximum is output.

In fully connected layer, the neurons z have connections
to all activations l in the previous layer, which is described by

EQ-TARGET;temp:intralink-;e002;326;147zi ¼ αTi lþ bi; (2)

where zi represents the i’th output neuron and the weight
αi and bias bi are trainable parameters corresponding to
neuron zi.
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In ReLU layer, a nonlinear activation function
fðxÞ ¼ maxfx; 0g is used for removing the negative values
from the activation map by setting them to zero.

In the SoftMax layer, the SoftMax classifier is applied to
predict a single class of k mutually exclusive classes, which
is described by

EQ-TARGET;temp:intralink-;e003;63;686yk ¼ Pðc ¼ kjx; wÞ ¼ expðxkÞP
j

expðxjÞ
; (3)

where xk represents the k’th input; yk represents the k’th
output, which is the probability of the k’th class; the
w represents the trainable network parameters, which can
be optimized by minimizing the cross-entropy error function,
as follows:

EQ-TARGET;temp:intralink-;e004;63;578 min EðwÞ ¼ − ln PðTjwÞ ¼ −
XN
n¼1

XK
k¼1

tnk ln ynk; (4)

where T is an N × K matrix of target variables with elements
tnk, and ynk represents the probability that the n’th input data
belongs to the k’th class, which is computed by Eq. (4).

This optimization problem can be solved by mini-batch
gradient descent algorithm, which is based on the back-
propagation process.

In our paper, we use the VGG-19 network architecture,
which consists of sixteen convolutional, five pooling, and
three fully connected layers. The 3 × 3 convolution kernel
is applied which is with less parameters, but with the same
support. This network is able to achieve empirically better
performance than GoogLeNet and AlexNet.

2.2 Fully Convolutional Neural Network
FCNN was first proposed by Long et al.,50 which takes input
of arbitrary size and produces correspondingly sized output
with efficient inference and learning. This network has been
the dominant approach in semantic segmentation. The
typical FCNN consists of the typical classification network
(AlexNet, VGG, or GoogLeNet) and upsampling layer.
In the upsampling layer, the simple bilinear interpolation
technology is applied to convert the classification network
into a fully convolutional network that produces a coarse
output map. At the end of network, the SoftMax classifier
is applied to predict the class of each pixel.

In our paper, we use the FCN-8s/16s/32s network archi-
tecture, which consists of sixteen convolutional layers, five
pooling layers, three fully convolutional layers, and 3/2/1
deconvolutional layers.

3 Methods and Implementation

3.1 Problem Description
The microstructural segmentation in micrograph is the process
of assigning each pixel a label designating the microstructural
class to which it belongs (e.g.,Mg2Si or aluminum). Figure 1
shows an aluminum alloy micrograph, which contains the
Mg2Si, aluminum, and Fe-containing phase microstructures.
Let x represent a given micrograph and xn represent the n’th
pixel in micrograph. Associated with the output of pixel xn is
a binary class label tkn ∈ f0;1g, where k ¼ 1; : : : ; K.

Therefore, the posterior probability that the input pixel
belongs to the k’th class is given by

EQ-TARGET;temp:intralink-;e005;326;554pðtknjxn; wÞ ¼ ykðxn; wÞ ¼
exp½fðxn; wkÞ�P
j

exp½fðxn; wjÞ�
: (5)

Given a data set of N independent, identically distributed
observations X ¼ fx1; x2; : : : ; xNg, along with correspond-
ing target values T ¼ ft1; t2; : : : ; tNg. Assume that the class
labels are independent, then the conditional distribution of
the targets is given by

EQ-TARGET;temp:intralink-;e006;326;444pðtnjxn; wÞ ¼
YK
k¼1

ykðxn; wÞtkn ½1 − ykðxn; wÞ�1−tkn : (6)

In this segmentation problem, each pixel is assigned to
one of K mutually exclusive classes. So the negative loga-
rithm of the corresponding likelihood function then gives
the following error function:

EQ-TARGET;temp:intralink-;e007;326;350EðwÞ ¼ − ln PðTjX;wÞ ¼ −
XN
n¼1

XK
k¼1

tkn ln ykðxn; wÞ; (7)

and the parameter w can be optimized by minimizing the
error function EðwÞ.

When fðxn; wkÞ ¼ wT
k xn and xn is the feature vector, this

segmentation model is equal to the logistic regression that is
a typical model for classification. Unfortunately, it is always
difficult to obtain proper feature vectors. In order to deal with
this problem, we use a popular FCNN to model fðxn; wkÞ,
which has strong ability to learn the hierarchical latent fea-
tures of high-dimensional data. The network architecture of
FCN is shown in Fig. 2.

This optimization problem min EðwÞ can be solved by
mini-batch gradient descent algorithm, which is based on
the back-propagation process.

3.2 Hierarchical Parameter Transfer Technique
FCNN is the dominant approach in semantic segmentation
and has a strong ability to provide accurate segmentation.
However, in FCNN, we need a large amount of hand-labeled
data to achieve accurate microstructural segmentation. This
hand-labeled micrograph work is difficult, slow, and typi-
cally requires materials science experts to manually assign

Fig. 1 Aluminum alloy micrograph.
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each micrograph pixel an accurate label. For this problem, a
hierarchical parameter transfer technique is proposed, which
fuses the typical VGG network, FCN-32s, FCN-16s, and
FCN-8s to achieve small-sample learning.

This proposed hierarchical parameter transfer technique
is inspired by the work in Ref. 42. This work studies the
relationship between general features and specific features,
and points out that the general features are transferable in
deep networks. Therefore, we define a set of transferable
general features between each deep network, which is used
to transfer the knowledge between each deep network indi-
rectly and deals with the problem of imprecise segmenta-
tion caused by the shortage of the samples with accurate
labels. For easy description, the detailed process of the pro-
posed hierarchical parameter transfer technique is shown in
Fig. 3.

As shown in Fig. 3, the proposed hierarchical parameter
transfer technique includes three main steps. In the first step,
the VGG-19 network is trained using famous ImageNet data-
set, and we define that the first two layers (four convolutional
and two pooling layers) features are general and transferable,
as shown in the first layer in Fig. 3. These general features
are transferred to the FCN-32s network. In the second step,
the FCN-32s network is trained using given micrograph
dataset, and we define that the first eight layers (sixteen con-
volutional, five pooling, and three fully convolutional layers)
features are general and transferable, as shown in the second
layer in Fig. 3. These general features are transferred to the
FCN-16s network. Similarly, in the third step, the FCN-16s
network is trained using given micrograph dataset, and the
first nine layers (sixteen convolutional, five pooling, three
fully convolutional, and one deconvolutional layers) features
are transferred to the FCN-8s network, as shown in the third
layer in Fig. 3.

In this process, a large number of ImageNet data with
accurate labels are used to learn the general features of net-
work, which alleviates the problem caused by the shortage of
the hand-labeled samples. Moreover, the proposed hierarchi-
cal parameter transfer technique is the generalization of the
typical parameter transfer technique. When there is only one
step, the proposed hierarchical parameter transfer method is
the same as the typical parameter transfer method. A large
number of experimental results show that the reasonable
hierarchical strategy can improve the prediction performance
of deep learning network.

3.3 Implementation Details
All models are trained and tested with TensorFlow on a
single NVIDIA Titan XP.

3.3.1 Training and test dataset

The problem of insufficient training data is inevitable in
practice for the microstructural segmentation in micrograph.
In order to deal with this problem, we use a subset of the
large hand-labeled ImageNet dataset as the training dataset
in source domain DS, which includes about 10 million
labeled images depicting 1000 object categories. In the target
domain, the 50 aluminum alloy micrographs accurately
labeled by an expert are used as training datasetDT . The data
augmentation technique is used in the target domain training
dataset DT , which increases the number of data to 1500
micrographs. The test dataset DV in target domain includes
40 aluminum alloy micrographs. These aluminum alloy
micrographs are taken through the Axio Imager Observer
and has the size of 2560 × 1920 pixels.

3.3.2 Network architecture

In our paper, we use four typical deep learning networks
including VGG-19, FCN-32s, FCN-16s, and FCN-8s. The
VGG-19 network architecture includes sixteen convolutional,
five pooling, and three fully connected layers. The FCN
network combines the typical classification network with
FCNs and accomplishes the semantic segmentation task. The
skip architecture that combines semantic information with
appearance information is first applied in FCN network.
In this paper, we use the FCN-8s/16s/32s network architec-
ture, which includes sixteen convolutional, five pooling,
three fully convolutional, and 3/2/1 deconvolutional layers.

3.3.3 Transferable parameter

In our proposed deep transfer learning network, it is vital to
determine which layer is transferable. We define the trans-
ferable layer in VGG-19, FCN-32s, FCN-16s, and FCN-8s,
respectively. The transferable layers between VGG-19 and
FCN-32s are the first two layers, including four convolu-
tional and two pooling layers. For easy description, the
parameter of these transferable layers are denoted as ωt1.
The transferable layers between FCN-32s and FCN-16s are
the first eight layers, including sixteen convolutional, five
pooling, and three fully convolutional layers. For convenient

Fig. 2 Network architecture of FCN.
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description, the parameters of these transferable layers are
denoted as ωt2. The transferable layers between FCN-16s
and FCN-8s are the first nine layers, including sixteen con-
volutional, five pooling, three fully convolutional, and one

deconvolutional layers. For easy description, the parameters
of these transferable layers are denoted as ωt3. In Sec. 5,
we show the appearance of some feature maps from general
to specific in our network.

Fig. 3 Workflow of the proposed HPTL method.
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3.3.4 Parameter description

There are many parameters in our deep transfer learning net-
work. For convenient description of VGG-19 network, we
shall denote the number of classification by c1 ¼ 1000, the
number of layer by o1 ¼ 24, and the network parameters by
ω1. In the process of training VGG-19 network, we use a
fixed learning rate γ1 of 0.001, a momentum Ψ1 of 0.9, and
weight decay τ1 of 0.95 in stochastic gradient descent (SGD)
algorithm. The training process stops when the iteration
number κ1 ¼ 120k. Similarly, for FCN-8s/16s/32s networks,
we shall denote the number of classification by c2 ¼ 3
including (Mg2Si, aluminum, and Fe-containing phase),
the number of layer by o8s ¼ 27∕o16s ¼ 26∕o32s ¼ 25 and
the network parameters by ω8s∕ω16s∕ω32s. In the process of
training FCN network, we use the learning rate γ2 of 0.0001
to train FCN-32s, FCN-16s, and FCN-8s. The input images
are cropped to 224 × 224 pixels size with batch size of 16.
The Adam (adaptive moment estimation) algorithm is used to
optimize the network parameters ω8s, ω16s, and ω32s. For the
moment estimation, the exponential decay rates τ2 ¼ 0.9 and
τ3 ¼ 0.999. The training process stops when the iteration
number κ2 ¼ 12k. Here we use random initializations for the
weights ω1, ω8s, ω16s, and ω32s. Dropout technique is used in
VGG-19 and FCN networks in order to improve generaliza-
tion power of network by randomly dropping neurons from
the network architecture during training phase. Moreover, the
L2 regularization is used in FCN-8s/16s/32s networks, which
is implemented by penalizing the squared magnitude of all
parameters directly in the objective. The regularization coef-
ficient λ ¼ 0.5. For convenient reading, the description of
parameters in our paper is summarized in Table 1.

To summarize, our entire microstructural segmentation
algorithm in a form of a pseudocode is done as follows.

(1) Initialization:

• Training dataset in source domain DS;
• Training dataset in target domain DT ;
• Random initialization: Network parameters ω1,

ω8s, ω16s, and ω32s; transferable parameters ωt1,
ωt2, and ωt3;

• For VGG-19 network, c1 ¼ 1000, o1 ¼ 24,
γ1 ¼ 0.01, Ψ1 ¼ 0.9, τ1 ¼ 0.95, and κ1 ¼ 120k;

• For FCN-8s/16s/32s network, c2 ¼ 3, o8s ¼ 27,
o16s ¼ 26, o32s ¼ 25, γ2 ¼ 0.0001, τ2 ¼ 0.9,
τ3 ¼ 0.999, κ2 ¼ 12k, and λ ¼ 0.5.

(2) Training: Compute ω1, ω8s, ω16s, ω32s, ωt1, ωt2, and
ωt3 by the following steps.

• Step 1: Optimize ω1 by SGD algorithm based on
dataset DS.

• Step 2: Transfer ωt1 to FCN-32s and compute
ω32s by Adam algorithm based on dataset DT .

• Step 3: Transfer ωt2 to FCN-16s and compute
ω16s by Adam algorithm based on dataset DT .

• Step 4: Transfer ωt3 to FCN-8s and compute ω8s
by Adam algorithm based on dataset DT .

• Step 5: Output ω8s.

(3) Prediction: Segment the given micrograph x by FCN-
8s with parameter ω8s.

4 Experiments and Analysis
In order to verify the effectiveness of our proposed algo-
rithm, a large number of experiments are performed for the
analysis of transferability and segmentation performance.

4.1 Analysis of Transferability
The aim of this experiment is to analyze the transferability of
the proposed HPTL method. The FCN-8s is taken as an
example in this experiment. For easy description, we divide
the FCN-8s network into five parts with no overlap,
including conv1 (two convolutional and one pooling layers),
conv2 (two convolutional and one pooling layers), conv3
(four convolutional and one pooling layers), conv4 (four

Table 1 Parameter description.

Symbol Description

DS Training dataset in source domain

DT Training dataset in target domain

DV Test dataset in target domain

ω1 VGG-19 network parameters

ω8s FCN-8s network parameters

ω16s FCN-16s network parameters

ω32s FCN-32s network parameters

ωt1 Transferable parameters between VGG-19 and FCN-32s

ωt2 Transferable parameters between FCN-32s and FCN-16s

ωt3 Transferable parameters between FCN-16s and FCN-8s

c1 Number of classification in DS

c2 Number of classification in DT

o1 Number of layer in VGG-19

o8s Number of layer in FCN-8s

o16s Number of layer in FCN-16s

o32s Number of layer in FCN-32s

γ1 Learning rate of VGG-19

γ2 Learning rate of FCN-8s/16s/32s

τ1 Weight decay of VGG-19

τ2 Exponential decay rate of FCN-8s/16s/32s

τ3 Exponential decay rate of FCN-8s/16s/32s

κ1 Iteration number of VGG-19

κ2 Iteration number of FCN-8s/16s/32s

λ Regularization coefficient
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convolutional and one pooling layers), and conv5 (four
convolutional and one pooling layers). Some representative
feature maps in different parts are chosen and shown in
Fig. 4. As shown in Fig. 4, the representative feature maps
of different parts are shown in the different columns. For
example, three feature maps of conv1 are shown in the first
column. From Fig. 4, we can see that the feature maps of
conv1 and conv2 are the general feature of microstructure,
including shape, color, and edge. Conversely, the feature
maps of conv3, con4, and conv5 are specific. These experi-
ment results verify the rationality of our HPTL method.

4.2 Analysis of Segmentation Performance
The aim of this section is to analyze the segmentation per-
formance of the proposed HPTL method. For the perfor-
mance measure of HPTL, we use the accuracy (acc), which
has been largely used in literature and commonly applied to
determine the quality of a processed image. It can be calcu-
lated by the following equation:

EQ-TARGET;temp:intralink-;e008;63;266accðfHPTL;DvÞ ¼
1

N

XN
i¼1

Y
½fHPTLðxiÞ ¼ ti�; (8)

where Dv is the test dataset in target domain, which includes
40 aluminum alloy micrographs.

Q½fHPTLðxiÞ ¼ ti� is the
indicator function defined as

EQ-TARGET;temp:intralink-;e009;63;183

Y
½fHPTLðxiÞ ¼ ti� ¼

�
1; fHPTLðxiÞ ¼ ti
0; fHPTLðxiÞ ≠ ti

: (9)

Here ti is the true label of the given xi and fHPTL denotes
our segmentation method.

To demonstrate the effectiveness of our proposed method,
we compare our method with other four segmentation meth-
ods commonly used in the area of image processing, includ-
ing OTSU,51 SVM,52 FCN,50 and DeepLab V3+.24 (1) The
OTSU method is a typical image processing algorithm,

which is widely used in image segmentation and achieves
good segmentation results. (2) The SVM is a typical machine
learning algorithm, which can effectively solve the task of
image segmentation. In the experiment, we use color and
boundary information as features, which have strong dis-
criminability. (3) The FCN is one of the most famous
DCNN for semantic segmentation. (4) The DeepLab V3+ is
one of the most advanced DCNN for semantic segmentation,
which has the encoder-decoder architecture and obtains the
best semantics segmentation effect on ImageNet.

The comparison results are reported in Table 2. In this
table, we show five performance measure results, including
training loss (l1), test loss (l2), difference between training
loss and test loss (ld), inference time per image (t̃), and accu-
racy (acc). For easy observation, the best measure values are
shown in boldface. As can be seen, the proposed method can
obtain the superior performance than other methods. The
typical image processing algorithm OTSU obtains the worse
performance than other machine learning methods, because

Fig. 4 Feature maps of aluminum alloy micrograph.

Table 2 Quantitative comparison between the proposed method and
other typical segmentation methods.

Method l1 l2 l d t̃ Acc (%)

OTSU — — — 5.0 92.28

SVM 0.1684 1.8853 1.7169 46.0 97.14

FCN-32s 5.3213 5.7243 0.3030 2.0 96.27

FCN-16s 1.5011 1.6216 0.1205 2.1 97.20

FCN-8s 0.2102 0.3233 0.1131 1.6 97.96

DeepLab V3+ 0.1456 0.1532 0.0076 2.0 96.84

HPTL 0.0141 0.0166 0.0025 1.1 98.81
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it does not have the learning process. Since the hand-labeled
data are insufficient, the results of using DeepLab V3+ with
complex network to segment the aluminum alloy micro-
graphs are not satisfactory. The SVM method can achieve
satisfactory results, but we spend a lot of time on feature
extraction. Thus the overall performance of the proposed
method is much better than other methods for aluminum
alloy micrograph dataset without sufficient hand-labeled
data. Moreover, in metallographic images, some important
microstructures are usually very small in area. Therefore,
even when the segmentation accuracy is high, some impor-
tant microstructures information will be lost, as shown in
Fig. 5. In order to deal with this problem, our proposed
improved methodology is very necessary.

In order to evaluate the validity of our proposed multilayer
structure, we compare HPTL method with HPTL-2H
method. Here the HPTL-2H method can be seen as a special
form of the HPTL method, which contains two parameter
transfer processes. The work flow of HPTL-2H is shown
in red box in Fig. 3. The comparison results are shown in
Table 3. From this table, it is obvious that the HPTL has
better performance than HPTL-2H method. These experi-
ment results verify the validity of our proposed multilayer
structure.

In addition, we also evaluate the effect of regularization
on HPTL. The HPTL-R represents the HPTL method with
regularization item. The comparison results are listed in

Table 3. From this table, we can see that the HPTL-R method
has better performance than HPTL. These experiment results
show that the regularization technique is helpful to improve
the segmentation performance of HPTL.

To further evaluate the proposed method, Fig. 5 shows the
segmentation results processed by OTSU, SVM, FCN-32s,
FCN-16s, FCN-8s, DeepLab V3+, HPTL-2H, and HPTL.
The first column shows three original aluminum alloy micro-
graphs, and the second column shows their corresponding
ground truths. In the ground truth, black region represents
aluminum, red region represents Mg2Si, and yellow region
represents Fe-containing phase. The segmentation results of
different methods are shown in the different columns. For
example, the segmentation results of the proposed HPTL
method are shown in the last column. For convenient obser-
vation, we show the local enlarged maps of segmentation
results obtained by different methods, as shown in the fourth
row in Fig. 5.

As shown in the second column in Fig. 5, the OTSU
method cannot achieve accurate segmentation of aluminum
alloy microstructure, because the global threshold is
adopted in this method. The learning-based method can
solve this problem effectively. As can be seen, the SVM and
DeepLabV3+ can accurately segment objects from back-
ground, but they cannot accurately distinguish different
objects, such as Mg2Si and Fe-containing phase. This prob-
lem is mainly caused by insufficient hand-labeled data.
In addition, we can see that FCN-32s and FCN-16s omit
a lot of microstructures in micrograph. Although FCN-8s
and HPTL-2H can accurately segment objects from back-
ground, they have many mistakes in details, such as micro-
structural edge. Compared with other methods, our proposed
method can obtain more accurate segmentation results.

5 Conclusions
In this paper, an HPTL method is proposed for the segmen-
tation of microstructure in aluminum alloy micrograph,
which can be seen as the generalization of the typical

Fig. 5 Qualitative comparison between the proposed method and other typical segmentation methods.

Table 3 Comparison among HPTL, HPTL-2H, and HPTL-R.

Method l1 l2 l d ~t Acc (%)

HPTL-2H 0.5611 0.6721 0.1110 1.3 98.32

HPTL 0.0141 0.0166 0.0025 1.1 98.81

HPTL-R 0.0130 0.0154 0.0024 0.9 98.88
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parameter transfer learning method. In this method, we use
the four different DCNNs, including VGG-19, FCN-32s,
FCN-16s, and FCN-8s. The multilayer structure is designed
to transfer network parameters in the order from high trans-
ferability to low transferability. The experiment results dem-
onstrate that the proposed methodology is able to avoid the
problems caused by insufficient hand-labeled data. Its overall
performance outperforms other four typical segmentation
methods, including state-of-the-art DeepLab V3+ method.
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