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A fractional-order locally active memristor is proposed in this paper. When driven by a bipolar periodic signal, the generated
hysteresis loop with two intersections is pinched at the origin. �e area of the hysteresis loop changes with the fractional order.
Based on the fractional-order locally active memristor, a fractional-order memristive system is constructed. �e stability
analysis is carried out and the stability conditions for three equilibria are listed.�e expression of the fractional order related to
Hopf bifurcation is given. �e complex dynamical behaviors of Hopf bifurcation, period-doubling bifurcation, bistability and
chaos are shown numerically. Furthermore, the bistability behaviors of the di�erent fractional order are validated by the
attraction basins in the initial value plane. As an alternative to validating our results, the fractional-order memristive system is
implemented by utilizing Simulink of MATLAB. �e research results clarify that the complex dynamical behaviors are at-
tributed to two facts: one is the fractional order that a�ects the stability of the equilibria, and the other is the local activeness of
the fractional-order memristor.

1. Introduction

Nonlinear electronic circuits provide powerful and analyt-
ical platforms for people to realize and understand the
complex dynamical behaviors in physics [1]. Chaotic circuits
especially have become e�ective tools for studying chaos
theory. �e memristor, originally de�ned as the forth ele-
ment of the circuit by Chua in 1971 [2], is a nonlinear circuit
device besides the nonlinear resistor, capacitor, and in-
ductor. As a result, many novel memristive circuits have
been constructed by integrating the memristors with ver-
satile nonlinearities into some existing linear or nonlinear
circuits [3–11]. In these memristive circuits, rich dynamical
behaviors have been reported and tested by numerical
simulations and hardware experiments, such as chaos and
hyperchaos [12, 13], hyperchaotic multiwing attractors
[14, 15], coexisting multiple attractors [16, 17], hidden

attractors [18, 19], and complex transient chaos and
hyperchaos [20]. It should be noted that the simplest chaotic
circuit has been proposed based on a locally active nonlinear
memristive element [4]. Compared to the chaotic circuit
shown in [21], the simplest chaotic circuit has following
characteristics: (1) the circuit components are connected in a
single way, i.e., in series; (2) the number of the circuit
components is decreased from four to three; (3) the
memristor is locally active.

At a given moment, the resistance of an ideal memristor
is represented by the integration of all states before the
current moment.�is means that the ideal memristor has no
memory loss. But the work [22] shows that the width of the
doped layer of the HP TiO2 linear model cannot be equal to
zero or the whole width of the model. �e HP TiO2 linear
memristor has memory loss. From the de�nition, the
fractional-order derivative depends on the previous history

Hindawi
Complexity
Volume 2019, Article ID 2051053, 13 pages
https://doi.org/10.1155/2019/2051053

mailto:baobc@cczu.edu.cn
https://orcid.org/0000-0002-2329-6890
https://orcid.org/0000-0003-3063-287X
https://orcid.org/0000-0001-6413-3038
https://orcid.org/0000-0002-7422-5988
https://orcid.org/0000-0003-1841-7608
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2051053


of the variable and is not a strictly local operator [23]. *e
order of the fractional-order derivative is related to the
memory loss or the “proximity effect” of some character-
istics [12]. *en the nonideal memristor with memory loss
mentioned in [22] can be modeled by a fractional-order
derivative with the order between 0 and 1 [24]. According to
this, there are many memristors modeled with the frac-
tional-order derivative [25–27]. As shown in [24], the
fractional-order memristor in the series circuits has ca-
pacitive properties or inductive properties by choosing a
suitable fractional order; i.e., the fractional order can be
regarded as a parameter which is used to control the memory
strength and dynamics of the circuit. In [25], the fractional
order can be used to control the time period in which the
resistance of thememristor increases from the initial value to
its maximum. In addition, a noncommensurate fractional-
order autonomous memristor-based circuit is proposed in
[27], where the chaotic behavior can be suppressed by ap-
plying periodic impulses. In addition, the dynamical system
with the locally active equipment can exhibit complexity and
emergent behaviors [28, 29]. *en, it is significant to model
the memristor or locally active memristor with the frac-
tional-order derivative and display the dynamics induced by
these fractional-order memristors.

*e main purpose of this paper is to study the complex
dynamical behaviors of a fractional-order system based on a
locally active voltage-controlled memristor. By theoretical
analyses, the stability conditions of the fractional-order
memristive system are listed. *e complex dynamical be-
haviors, such as Hopf bifurcation, period-doubling bi-
furcation, bistability, and chaos, are displayed numerically.
*e rest of the paper is organized as follows. In Section 2, the
mathematical model of the fractional-order memristor is
presented.*e fractional-order memristor’s fingerprints and
local activeness are addressed. In Section 3, an integer-order
locally active memristive system is generalized into a frac-
tional-order locally active memristive system. *e stability
conditions are listed. *e complex dynamical behaviors are
stated, and numerical simulations are displayed. As an al-
ternative to validating the numerical results, the fractional-
order memristive system is implemented by utilizing
Simulink of MATLAB. In Section 4, the effect of the local
activeness on complex dynamical behaviors is stated. Section
5 ends with some concluding remarks.

2. Fractional-Order Locally Active
Nonlinear Memristor

2.1. .e Model of the Fractional-Order Memristor.
Generally, the memristor can be seen as a sliding resistor
whose resistance changes with the charge crossing it. Driven
by a bipolar periodic signal, the memristor exhibits a hys-
teresis loop pinched at the origin in the current-voltage
plane. An integer-order nonlinear voltage-controlled
memristor is stated as follows [30]:

i � W xm( 􏼁v � x2
m − xm − 1( 􏼁v,

_xm � p1xm − p2x
3
m + p4v − p4xmv,

⎧⎨

⎩ (1)

where v and i are the voltage and current of the memristor,
respectively, xm is the internal state of the memristor and
W(xm) � x2

m − xm − 1 is the memductance, and p1, p2, p3,
and p4 are the system parameters. By using the trial and error
method [30], the parameters are decided as p1 � 1.8, p2 � 3.9,
p3 �1.4, and p4 �1.5. Considering the memory effect from
the memristor, a fractional-order voltage-controlled mem-
ristor Mα corresponding to (1) is modeled as follows:

i � Wα xm( 􏼁v � x2
m − xm − 1( 􏼁v,

C
0 D

α
t xm � 1.8xm − 3.9x3

m + 1.4v − 1.5xmv,

⎧⎨

⎩ (2)

where

C
0 D

α
t xm(t) �

1
Γ(1 − α)

􏽚
t

0

_xm(τ)

(t − τ)α
dτ, 0 < α≤ 1, (3)

is α-order derivative of xm(t) in the sense of Caputo’s
definition given in [23], _xm(τ) denotes the first-order de-
rivative of xm(τ) with respect to τ, and Wα(xm) � x2

m −

xm − 1 is the memductance of α-order memristor Mα. *e
integral process in (3) is the memory process of the
memristor. In the circuits, the proposed fractional-order
memristor is marked as Figure 1(a).

2.2. .e Characteristics of the Fractional-Order Memristor.
Driven by a sinusoidal voltage source v(t) � sin(ωt), hys-
teresis loops generated in the current-voltage plane are
plotted numerically in Figure 2, where ω is the stimulus
frequency. One has the following:

(1) Under different stimulus frequencies or different
fractional orders, the hysteresis loops of the frac-
tional-order memristor are pinched at the origin.

(2) *e larger the area of the hysteresis loop, the stronger
the memory [31]. Let the order α� 0.98. Figure 2(a)
shows that the smaller the stimulus frequency ω, the
stronger the memory. As ω� 1 rad/s, there is another
intersection in the hysteresis loop besides the origin
and another area S∗ is displayed. Currently, there are
few reports on the new intersection which reflects the
nonlinearity of the memristor.

(3) As fixingω� 1 rad/s and decreasing α from 1 to 0, the
area of the hysteresis loop increases; i.e., the strength
of the memory increases, referring to Figure 2(b).
Simultaneously, the quadrants which the hysteresis
loops lie in change from II and IV to II, III, and IV.

2.3. Local Activeness of the Fractional-Order Memristor. A
component being capable of providing a power gain is called
an active component. If the component provides the power
gain within the local range of its variables, the component is
locally active.

Based on (2), as (1 −
�
5

√
)/2< xm < (1 +

�
5

√
)/2, one has

Wα(xm) � x2
m − xm − 1< 0, the power p � v · i � Wα(xm)·

v2 < 0, and the memristor can provide the power gain; as
xm < (1 −

�
5

√
)/2 or xm > (1 −

�
5

√
)/2, one has Wα(xm) �

x2
m − xm − 1> 0, the power p � v · i � Wα(xm) · v2 > 0, and
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the memristor cannot provide the power gain. So the mem-
ristor is locally active.

*e above statement implies that the local activeness of
the memristor can be decided by the sign of the mem-
ductance Wα(xm). Referring to Figure 2, the slope of the
hysteresis loop is thememductance. Obviously, the changing
of the quadrants of the hysteresis loops changes the sign of
the slope or the sign of the memductance Wα(xm). Re-
membering the characteristics shown in Figure 2(b), it is
easy to know that the fractional order has influences on the
activeness of the memristor.

3. Fractional-Order Memristor-Based System

Besides the memristor can be modeled by the fractional-
order derivative, the capacitor and the inductor can also be
modeled by the fractional-order derivative due to the
memory effect [12, 32]. With the fractional-order locally
active memristor, a fractional-order memristive circuit is
generalized from an integer-order memristive circuit [30], as
shown in Figure 1(b), which is modeled by Caputo’s frac-
tional-order derivative

C
0 D

α
t vC � − a x2

m − xm − 1( 􏼁vC + iL􏼂 􏼃,

C
0 D

α
t iL � bvC,

C
0 D

α
t xm � 1.8xm − 3.9x3

m + 1.4vC − 1.5xmvC,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where 0< α≤ 1, a � 1/C> 0, b � 1/L> 0, and C, L, vC, and iL
are the capacitance, inductance, capacitor voltage, and in-
ductor current, respectively. Letting α� 1, model (4) is
changed into the integer-order model stated in [30].

Denoting x � vC, y� iL, and z� xm, (4) is converted into
the dimensionless form

C
0 D

α
t x � − a z2 − z − 1( 􏼁x + y􏼂 􏼃,

C
0 D

α
t y � bx,

C
0 D

α
t z � 1.8z − 3.9z3 + 1.4x − 1.5zx.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

For any values of the parameters a and b, system (5) has
three equilibria: E1 � (0, 0, − 0.6794), E2 � (0, 0, 0), and
E3 � (0, 0, 0.6794). For simplicity, the three equilibria are
denoted uniformly by Ez0

, where Ez0
� (0, 0, z0). *us,

Ez0
� E1 as z0 � − 0.6794, Ez0

� E2 as z0 � 0, and Ez0
� E3 as

z0 � 0.6794.

Mα

i

v

(a)

Mα (x)

iMα

C

iCiL

L vC

(b)

Figure 1: (a) *e fractional-order memristor Mα; (b) the fractional-order memristive circuit.

S∗

v (t)

i (
t)

1.5

1

1

0.5

0.5

0

0

–0.5

–0.5

–1

–1
–1.5

ω = 1 rad/s ω = 5 rad/s

(a)

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1.5

–1

–0.5

0

0.5

1

1.5
I

III IV

II

v (t)

i (
t)

ω = 1 rad/s

α = 0.98

α = 0.8

α = 0.5

(b)

Figure 2: v(t) versus i(t) of the fractional-order memristor. (a) *e order α� 0.98 with two different frequencies; (b) the frequency
ω� 1 rad/s with three different fractional orders.
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3.1. .e Stability of the Equilibria. *e Jacobian matrix of
system (5) at Ez0

is

JE �

− a z2
0 − z0 − 1( 􏼁 − a 0

b 0 0

1.4 − 1.5z0 0 1.8 − 11.7z2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

*e characteristic polynomial equation of system (5) at
Ez0

is yielded as

λ − 1.8 + 11.7z
2
0􏼐 􏼑 λ2 + a z

2
0 − z0 − 1􏼐 􏼑λ + ab􏽨 􏽩 � 0, (7)

which indicates that roots of (7) depend on the three
equilibria. *e roots of (7) are called the eigenvalues of
Jacobian matrix JE. *e following lemma is needed.

Lemma 1 [33]. .e fractional-order nonlinear system
C
0 D

α
t X � f(X), 0< α≤ 1, (8)

is asymptotically stable at the equilibrium E� (x0, y0, z0) if all
eigenvalues λ of Jacobian matrix JE satisfy the condition

|arg(λ)|>
απ
2

, (9)

where X � (x, y, z)T, f(X) � [f1(X), f2(X), f3(X)]T,
fi(X) � fi(x, y, z)(i � 1, 2, 3), and arg(λ) is the principal
argument of the eigenvalue λ.

Obviously, equation (7) has a real root λ1 � 1.8 − 11.7z2
0.

Considering the sign of λ1, two cases are discussed hereinafter.

Case 1. λ1 is positive
If λ1> 0, one has |z0|< 0.3922 and the equilibrium Ez0

is
unstable. Besides the positive root λ1, equation (7) has
another two roots:

λ2,3 �
− a z2

0 − z0 − 1( 􏼁 ±
������������������

a2 z2
0 − z0 − 1( 􏼁

2
− 4ab

􏽱

2
. (10)

It is easy to know that − 0.454< z2
0 − z0 − 1< − 1.2384 as

|z0|< 0.3922. Two cases are listed:

(1) λ2 and λ3 are the real roots and (z2
0 − z0 − 1)2 ≥ 4b/a

holds. Based on (10), one has λ1> 0, λ2> 0, and λ3> 0.
(2) λ2 and λ3 are the complex roots; i.e., (z2

0 − z0 − 1)2

< 4b/a holds.*e real parts of the conjugate complex
roots are Re(λ2,3) � − a(z2

0 − z0 − 1)/2> 0.

Case 2. λ1 is negative
As λ1 � 1.8 − 11.7z2

0 < 0, one has |z0|> 0.3922. Similar to
Case 1, two cases are stated as follows:

(1) λ2 and λ3 are the real roots.*en (z2
0 − z0 − 1)2 ≥ 4b/a

holds and

sgn λ2( 􏼁 � sgn λ3( 􏼁 � sgn − a z
2
0 − z0 − 1􏼐 􏼑􏼐 􏼑, (11)

where sgn(·) is the symbolic function. Due to

g z0( 􏼁 � z
2
0 − z0 − 1 � z0 −

1 −
�
5

√

2
􏼢 􏼣 z0 −

1 +
�
5

√

2
􏼢 􏼣,

(12)

one has

− a z
2
0 − z0 − 1􏼐 􏼑

< 0, z0 < − 0.618 or z0 > 1.618,

> 0, − 0.618< z0 < − 0.3299 or 0.3299< z0 < 1.618.
􏼨 (13)

where (1 −
�
5

√
)/2 ≈ − 0.618 and (1 +

�
5

√
)/2 ≈

1.618. *e inequalities − 0.618< z0< − 0.3299 and
z0>1.618 can be neglected because z0 of the three
equilibria is not in these regions. As z0< − 0.618, one has
λ2<0 and λ3<0. As 0.3229< z0<1.618, one has λ2>0
and λ3>0.

(2) λ2 and λ3 are the complex roots. *e inequality
(z2

0 − z0 − 1)2 < 4b/a holds. As z0< − 0.618, λ2 and λ3
are the conjugate complex roots with negative real
parts Re(λ2,3) � − a(z2

0 − z0 − 1)/2< 0. As 0.3229 <
z0 < 1.618, λ2 and λ3 are the conjugate complex roots

with positive real parts Re(λ2,3) � − a(z2
0 − z0 − 1)

/2> 0.

*e above discussion can be concluded in Tables 1 and 2.
Tables 1 and 2 show that E1 � (0, 0, − 0.6794) is stable and

E2 � (0, 0, 0) is unstable for any a> 0, b> 0, and any order
α ∈ (0, 1]. But for E3 � (0, 0, 0.6794), two cases are stated:

(1) if 1.4831≥ 4b/a, E3 is unstable for any order α be-
cause λ2> 0 and λ3> 0;

(2) if 1.4831< 4b/a, there are two conjugated complex
roots at E3 as

λ2,3 � Re λ2,3􏼐 􏼑 ± jIm λ2,3􏼐 􏼑 �
− a z2

0 − z0 − 1( 􏼁 ± j

������������������

4ab − a2 z2
0 − z0 − 1( 􏼁

2
􏽱

2
, (14)
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where j2 � − 1. If |arg(λ2,3)|> (απ)/2 holds, one has
�������������
4ab − 1.4831a2

√

1.2178a
> tan

απ
2

. (15)

By Lemma 1, E3 � (0, 0, 0.6794) is stable as�������������
4ab − 1.4831a2

√
/(1.2178a)> tan(απ/2) holds; E3 is un-

stable as
�������������
4ab − 1.4831a2

√
/(1.2178a)> tan(απ/2) does not

hold.
Based on the above discussion, the following theorem is

established.

Theorem 1. For system (5) (α ∈ (0, 1]), the stabilities of three
equilibria E1, E2, and E3 are as follows:

(1) Equilibrium E1 � (0, 0, − 0.6794) is stable for any a> 0,
b> 0 and any order α ∈ (0, 1];

(2) Equilibrium E2 � (0, 0, 0) is unstable for any a> 0,
b> 0 and any order α ∈ (0, 1];

(3) As 1.4831≥ 4b/a, E3 is unstable for any order
α ∈ (0, 1]; as 1.4831< 4b/a, E3 is stable if�������������
4ab − 1.4831a2

√
/(1.2178a)> tan(απ/2), and E3 is

unstable if
�������������
4ab − 1.4831a2

√
/(1.2178a)< tan(απ/2).

Remark 1. For a fractional-order system, at a parameter
ε� ε0, a pair of conjugated complex eigenvalues λ1,2 satisfy
|arg(λ1, 2)| � (απ)/2 and other eigenvalues are in stable
zones. While the parameter ε> ε0, |arg(λ1, 2)|< (απ)/2, Hopf
bifurcation is generated at ε� ε0 [34].

For system (5), based on Table 2, at E3 � (0, 0, 0.6794), as
1.4831< 4b/a holds, one has

(1) λ1< 0;
(2) |arg(λ2, 3)|> (απ)/2 as α< (2/π)arctan

(
�������������
4ab − 1.4831a2

√
/1.2178a);

(3) (arg(λ2, 3))< (απ)/2 as α> (2/π)arctan
(

�������������
4ab − 1.4831a2

√
/1.2178a). *is means that Hopf

bifurcation is generated as the order
α � (2/π)arctan(

�������������
4ab − 1.4831a2

√
/1.2178a) at the

equilibrium E3.

Remark 2. For simplicity, the eigenvalues (λ1, λ2, λ3) are
denoted as (c, σ + jω, σ − jω), where c, σ, and ω are all real

numbers. A saddle-focus point is called a saddle-focus point
of index 1 if c> 0 and σ < 0, and a saddle-focus point is called
a saddle-focus point of index 2 if c< 0 and σ > 0 [35]. As
pointed out in [35], the saddle-focus points of index 2 are
crucial to the generation of chaotic attractors. Usually, in
chaotic systems, scrolls are generated around the saddle-
focus points of index 2, and the saddle-focus points of index
1 are responsible only for connecting the scrolls.

3.2.Numerical Illustrations. For better comparisons with the
integer-order memristive circuit systems, in this section, the
parameter is chosen as a � 10/3 [30].

Case 1. a� 10/3, and b� 10.
In this case, a� 10/3 (C� 300mF) and b� 10 (L� 100

mH) satisfy 4b/a � 12> 1.4831. To make E3 stable, by
*eorem 1, the order α is satisfied as

α<
2
π

􏼒 􏼓arctan
�������������
4ab − 1.4831a2

√

1.2178a
􏼠 􏼡

�
2
π

􏼒 􏼓arctan

��������������������������

4 · (10/3) · 10 − 1.4831 · (10/3)2
􏽱

1.2178 · (10/3)
⎛⎜⎜⎝ ⎞⎟⎟⎠

� 0.7713.

(16)

*en equilibrium E3 � (0, 0, 0.6794) is stable as the order
α< 0.7713, and E3 is unstable as the order α> 0.7713. By
Remark 1, at equilibrium E3, Hopf bifurcation is generated
as α� 0.7713.

At the equilibrium E2, the two complex eigenvalues are

λ2,3 �
− a z2

0 − z0 − 1( 􏼁 ± j

������������������

4ab − a2 z2
0 − z0 − 1( 􏼁

2
􏽱

2

�
5 ± 5

��
11

√
j

2
, j

2
� − 1􏼐 􏼑.

(17)

If tan(arg(λ2,3)) �
��
11

√
> tan(απ/2), one has α< 0.8136.

*is means that the two complex eigenvalues λ2,3 of the
equilibrium E2 lie in the stable zone. Due to λ1> 0 and
Remark 2, E2 is an unstable saddle-focus with index 1 and E3
is an unstable saddle-focus with index 2. While α> 0.8136,
the two complex eigenvalues λ2,3 of the equilibrium E2 lie in
the unstable zone, E2 is an unstable node-focus, and E3 is an
unstable saddle-focus with index 2. *e types of three
equilibria are listed in Table 3. One has the following:

(1) As 0< α< 0.7713, there are two steady states of E1
and E3.

(2) As 0.7713< α< 0.8136, there are two steady states of
E1 and the limit cycle bifurcated from unstable
saddle-focus E3.

(3) As 0.8136< α< 1, the stability of E1 is unchanged. E2
is changed from unstable saddle-focus into unstable
node-focus because the two complex roots λ2,3 of E2
enter into the unstable zone.

Table 1: *e eigenvalues as (z20 − z0 − 1)2 ≥ 4b/a.

z0 (− ∞, − 0.618) (− 0.3299, 0.3299) (0.3299, 1.618)
λ1 λ1< 0 λ1> 0 λ1< 0
λ2 λ2< 0 λ2> 0 λ2> 0
λ3 λ3< 0 λ3> 0 λ3> 0
Equilibrium E1 E2 E3

Table 2: *e eigenvalues as (z20 − z0 − 1)2 < 4b/a.

z0 (− ∞, − 0.618) (− 0.3299, 0.3299) (0.3299, 1.618)
λ1 λ1< 0 λ1> 0 λ1< 0
λ2 Re(λ2)< 0 Re(λ2)> 0 Re(λ2)> 0
λ3 Re(λ3)< 0 Re(λ3)> 0 Re(λ3)> 0
Equilibrium E1 E2 E3

Complexity 5



Remark 3. It is found that E3 is an unstable saddle-focus
with index 2 as the order α> 0.7713. Due to Remark 2, for
system (5), chaotic attractors may be generated as the order
α> 0.7713.

Fix the initial values (0.1, 0.1, 0.2). Figure 3(a) is the bi-
furcation diagram of the local maxima of the variable z about the
order α, which shows that Hopf bifurcation is generated at
α� 0.7713. As 0.7713<α<0.8136, system (5) displays a limit
cycle bifurcated from the equilibrium E3. As 0.8136<α<0.84,
the limit cycle induced by Hopf bifurcation disappears and the
phase portrait limits to the stable point E1. Increasing α from
0.84 to 1, the period-doubling bifurcation occurs in system (5).
Figure 3(b) is the first two Lyapunov exponents of system (5)
according to the MATLAB code of [36]. As α>0.97, the first
Lyapunov exponent LE1>0 and system (5) enters into the chaos.

Case 2. α� 0.99, and a� 10/3.
In this case, if the inequality 4b/a> 1.4831 holds, one has

b> 1.2359. Same as the integer-order case [30], the pa-
rameter L is set in [70mH; 100mH]; i.e., the parameter b is
in [10, 100/7]. If E3 is stable, by *eorem 1, the parameter b
should be satisfied as

b>
1.21782 · a · tan2(απ/2) + 1.4831a􏼂 􏼃

4

�
1.21782 · (10/3) · tan2(0.99π/2) + 1.4831(10/3)􏼂 􏼃

4

� 5009.2.

(18)

*is means that E3 is a saddle-focus with index 2 for any
b ∈ [10, 100/7] or any L ∈ [70mH, 100mH]. *us, chaotic
attractors may be generated at E3 as L increases from 70mH
to 100mH.

At the equilibrium E2, two complex eigenvalues are

λ2,3 �
− a z2

0 − z0 − 1( 􏼁 ± j

������������������

4ab − a2 z2
0 − z0 − 1( 􏼁

2
􏽱

2

�
(10/3) ± j

���������������

4(10/3)b − (10/3)2
􏽱

2
.

(19)

If tan(arg(λ2,3)) �
���������
120b − 100

√
/10> tan(0.99π/2), one

has b> 3377.65 or L< 0.2961mH. *is means that two

complex eigenvalues λ2,3 of the equilibrium E2 lie in the
unstable zone as L ∈ [70mH, 100mH]. Due to λ1> 0, E2 is
an unstable node-focus which is that same as the former case
of 0.8136< α< 1.

*e bifurcation diagram of the variable z about the
parameter L is plotted numerically in Figure 3(c). *e first
two Lyapunov exponents are shown in Figure 3(d). It is
found that system (5) goes into chaos by the period-doubling
bifurcation. After system (5) enters into chaos, there sud-
denly appears several periodic windows (PWs) as L> 86mH.
Compared to the integer-order model in [30], the fractional-
order memristive system described by system (5) has more
periodic windows. *e minimum of the parameter L for
system (5) entering into chaos is larger than the minimum of
the parameter L shown in [30].

*erefore, the generated complicated dynamical be-
haviors of system (5) are related to the coexistence of the
stable point E1, the unstable node-focus E2, and the saddle-
focus E3.

3.3. Bistability Behaviors. Fixing the parameter values and
choosing different initial values, a nonlinear system shows
two steady states. *is behavior is called the bistability
behavior. *e bistability behavior reflects the sensitivity of
the system to its initial values. For different order α or
different inductance L, different bistability behaviors appear
in system (5), which is listed in Tables 4 and 5.

Bistability behaviors for different fractional orders are
plotted numerically in Figure 4. Figure 4(a) is two steady
states of the stable points E1 and E3, Figure 4(b) is two steady
states of the stable point E1 and period-2 cycle, Figure 4(c) is
two steady states of the stable point E1 and period-4 cycle,
and Figure 4(d) is two steady states of the stable point E1 and
chaotic attractor. Compared to the bistability of stable point
and chaotic attractor in the integer-order model, a con-
clusion that the fractional-order derivative can enrich the
bistability behaviors is drawn.

Furthermore, the attraction basins in the x(0) − z(0)

plane are used to validate the bistability behaviors of system
(5) for four different orders α, as shown in Figure 5, where
y(0) � 0.1.*e light blue, green, yellow, andmagenta regions
represent the initial value regions for generating period-2,
period-4, chaotic, and stable point behaviors, respectively.

3.4. Block Designs of System (5) in Simulink of MATLAB.
By utilizing Simulink of MATLAB, the fractional-order
system (5) can be implemented to confirm the above nu-
merical plots.

Figure 6 is the block diagrams in Simulink of MAT-
LAB. Figure 6(a) is the α-order differentiator block design.
*e top in Figure 6(a) is the masked block of the α-order
derivative and the bottom in Figure 6(a) is the filter in
fractional-order differentiator (here the Oustaloup re-
cursive filter is used). *e masking technique of
fo_diff.mdl is provided in [37]. Double clicking the block
of Fractional Der sα, the order α can be changed by the
parameter dialog box. Furthermore, if

Table 3: *e types of the equilibria.

α E1 E2 E3

(0, 0.7713) Stable Unstable saddle-
focus Stable

0.7713 Stable Unstable saddle-
focus

Hopf bifurcation
point

(0.7713, 0.8136) Stable Unstable saddle-
focus

Unstable saddle-
focus

0.8136 Stable Unstable point Unstable saddle-
focus

(0.8136, 1) Stable Unstable node-
focus

Unstable saddle-
focus
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C
0 D

α
t x(t) � f(t), 0< α< 1, (20)

one has [38]

C
0 D

1− α
t

C
0 D

α
t x(t)􏼐 􏼑 �

dx(t)

dt
, (21)

or
dx(t)

dt
�

C
0 D

1− α
t f(t). (22)

*en in the block diagram of the fractional-order
memristor or in Figure 6(b), the α-order fractional-order
derivative of the state is obtained by an integrator.mdl and
the fo_diff.mdl of Fractional Der s(1− α).

*e input voltage in Figure 6(b) is v(t) � sin(ωt). Fixing
the order α� 0.98, the hysteresis loops of different input
frequency ω obtained in the scope (XY graph) are shown in
Figure 7(a). Fixing the input frequency ω� 1 rad/s, the
hysteresis loops of different order α obtained in the scope
(XY graph) are shown in Figure 7(b). Figure 7 plotted in
Simulink of MATALB is consistent with Figure 2.

*e block diagram of system (5) in Simulink of MAT-
LAB is designed in Figure 8. By using (22), the α-order
fractional-order derivative of the state is obtained by an
integrator.mdl and the fo_diff.mdl of Fractional Der s(1− α).
*e initial values of the states are set in three integrators.
Setting 1 − α� 0.25 in Figure 8, bistability behaviors of
α� 0.75 obtained in the scope (XZ graph) are shown in
Figure 9(a). Setting 1 − α� 0.01 in Figure 8, bistability be-
haviors of α� 0.99 obtained in the scope (XZ graph) are
shown in Figure 9(b).
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Figure 3: Numerical simulations of system (5), a� 10/3, b� 10, and the initial values (0.1, 0.1, 0.2). (a) Bifurcation diagram of the local
maxima of the variable z about the order α; (b) first two Lyapunov exponents of Case 1; (c) bifurcation diagram of the local maxima of the
variable z about the parameter L; (d) first two Lyapunov exponents of Case 2.

Table 4: Bistability in the case of a� 10/3 and b� 10.

α Two steady states
(0, 0.7713) Two stable points of E1 and E2
(0.7713, 0.84) Stable point E1 and limit cycle
(0.84, 0.97) Stable point E1 and limit cycle
(0.97, 1) Stable point E1 and chaotic attractor

Table 5: Bistability in the case of α� 0.99 and a� 10/3.

L mH Two steady states
(70, 86) Stable point E1 and limit cycle
(86, 100) Stable point E1 and chaotic attractor

Complexity 7



–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8
E3

E1

(0.1, 0.1, 0.2)

(0.1, 0.1, –0.2)

z

x

(a)

–15 –10 –5 0 5 10

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

x

z

E1

(–2, 0.1, 1)

(4, 0.1, 4)

(b)

E1z

x
–20 –15 –10 –5 0 5 10

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

(4, 0.1, 4)

(–2, 0.1, 1)

(c)

–20 –15 –10 –5 0 5 10 15
x

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

z
E1

(0, 0.1, –1)

(–4, 0.1, 4)

(d)

Figure 4: Bistability behaviors with different fractional orders. (a) α� 0.75, two sets of the initial values (0.1, 0.1, 0.2) and (0.1, 0.1, − 0.2);
(b) α� 0.96 and two sets of the initial values (4, 0.1, 4) and (− 2, 0.1, 1); (c) α� 0.97 and two sets of the initial values (4, 0.1, 4) and (− 2, 0.1, 1);
(d) α� 0.99 and two sets of the initial values (− 4, 0.1, 4) and (0, 0.1, − 1).
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Figure 5: Continued.
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Figure 5: Bistability behaviors demonstrated by the attraction basins in the x(0) − y(0) plane for four different fractional orders with
y(0) � 0.1. (a) Attraction basin for α� 0.96; (b) attraction basin for α� 0.97; (c) attraction basin for α� 0.98; (d) attraction basin for α� 0.99.
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Figure 6: Block diagrams in Simulink of MATLAB. (a) Differentiator block design4 of the order α; (b) block diagram of the fractional-order
memristor.
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To obtain the bistability behaviors of α� 0.96 and
α� 0.97 in Simulink of MATLAB, the values of (1 − α) in
Figure 8 are set at 1 − α� 0.04 and 1 − α� 0.03, which are
omitted here.

4. Local Activeness and Stability

A locally active kinetic equation can exhibit complex
dynamics such as limit cycles or chaos. *e passive (not
locally active) kinetic equation must converge to a unique
steady state [39]. Furthermore, the time t can be set to be
large when the steady states of the system are concerned.

As parameters a � 10/3 and b � 10, for the fractional-order
memristor in system (5) with the large time t, one has the
following.

Fix the initial values (0.1, 0.1, 0.2). As α� 0.75, the
memristor is active because the power p � W0.75(xm) · v2

keeps negative, which is shown in Figure 10(a); as α� 0.82,
the memristor is passive because the power p � W0.82(xm) ·

v2 keeps positive for time t> t0 (such as t0� 50), which is
shown in Figure 10(b). As mentioned before, system (5) with
α� 0.75 or α� 0.82 converges to stable points. As α� 0.9 or
α� 0.99, the memristor is locally active because the power
p � Wα(xm) · v2 changes between the positive and the
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Figure 8: *e block diagram of system (5) in Simulink of MATLAB.
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Figure 9: Bistability behaviors obtained in Simulink of MATLAB, the running time t� 100 s. (a) α� 0.75, two sets of the initial values (0.1,
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negative, as shown in Figures 10(c) and 10(d). When the
locally active memristor is included in system (5), the limit
circle is generated as α� 0.9 and chaos is generated as α� 0.99.

It is found that the complex dynamics of the limit cycle
and chaos are not displayed in system (5) when thememristor
is active (α� 0.75) or thememristor is passive (α� 0.82), while
the complex dynamics of the limit cycle and the chaos are
generated when the memristor is locally active (α� 0.9 and
α� 0.99). As stated at the beginning of this section, complex
dynamics of limit cycle and chaos in system (5) are related to
the local activeness of the memristor.

5. Conclusions

In this paper, a chaotic system with a fractional-order locally
active memristor is discussed. *e fractional order in the
memristive system makes the equilibrium vary from un-
stable to stable, leading to the occurrence of Hopf bi-
furcation. Moreover, the fractional-order memristive system
enters into chaos via period-doubling bifurcation route and
triggers more periodic windows than the corresponding
integer-order system. Given the suitable parameters, say, a
and b, the fractional-order memristive system shows bist-
ability behaviors. For different fractional order and different
inductance, the fractional-order memristive system displays
different bistability behaviors. *e fractional order of the
system and the local activeness of the memristor are the

main reasons for the complicated dynamical behaviors.
Besides, the fractional-order memristive system is imple-
mented using the block diagram of Simulink of MATLAB
and its hardware implementation and corresponding ex-
periments will be our future works.
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