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Abstract: This study addresses robust QSR-dissipativity and feedback dissipation of a class of fractional-order (FO) uncertain
linear systems. Both the state and controlled output matrices are with time-varying norm-bounded parameter uncertainties.
Firstly, some new notions of QSR-dissipativity and passivity for FO systems are introduced, the relationship between QSR-
dissipativity and asymptotic stability and input–output stability are discussed, respectively. Then, a sufficient condition in the
form of linear matrix inequality (LMI) is proposed to ensure that such system is robustly QSR-dissipative. According to this
condition, a state feedback controller is proposed when the full states can be measured. Secondly, by employing LMI techniques
and matrices singular value decomposition, sufficient conditions for the existence and a robust dissipation synthesis method are
derived, respectively. Thirdly, a design method of dynamic output feedback controller is developed in order to guarantee that the
closed-loop system is dissipative. Finally, some numerical examples are provided to show the application of the proposed
methods.

1 Introduction
The fractional-order (FO) (arbitrary order) calculus, as a non-
standard operator, solves the problem that the constitutive model of
classical differential equations cannot accurately characterise the
dynamic behaviour of complex systems. It provides a powerful tool
for describing practical models with memory properties and
historical dependence [1–5]. With the help of fractional operators,
more and more complex systems have been modelled in
engineering, nature and society, such as fractional Schrodinger
equation [6], fractional Langevin equation [7], fractional economic
systems [8], FO biological equations [9] and so on. So it is
extremely significant to study the dynamic characteristics of FO
systems and the possible method of changing the dynamics, which
will provide the necessary theoretical tools for the construction of
high-performance FO automatic control systems [10–16]. Recently,
analysis and synthesis of FO system have been attracted much
attention and a lot of research achievements on FO systems and
control are obtained both in time domain and frequency domain.
For example, the authors of [17–19] proposed stability conditions
in time domain for FO non-linear systems, interval FO non-linear
systems with time-delay and FO delayed linear systems,
respectively. The authors of [20–22] presented stability criteria
claimed in frequency/complex domains for FO (delayed) systems.

Analysis and synthesis of control systems based on dissipative
theory are important topics in modern control theory. Dissipativity
theory was firstly proposed by Willems in 1972 [23], which aims to
characterise the energy attenuation of the systems. The core idea is
derived from the physical circuit systems. Since then, it has
gradually become a research hotspot in the fields of systems,
circuits, networks and control theory [24–28]. Dissipativity theory
provides a new tool to design and analyse systems by employing an
input–output relationship based on energy-related consideration.
This idea not only simplifies the analysis and design of the
systems, but also plays a vital role in many aspects of system
control. It has been widely used in multi-agent system [29], vehicle
system [30], power system [31], physics system [32], energy
storage system [33], artificial neural network [34] and so on. The
main idea behind this is that many important physical systems have
certain input–output properties related to the conservation,

dissipation and transport of energy. Models for use in controller
design and analysis are usually derived from the basic laws of
physics (electrical systems, dynamics, thermodynamics). For a
system where the basic laws of physics imply dissipative
properties, it may make sense to define the model so that it
possesses the same dissipative properties regardless of the
numerical values of the physical parameters. Then, if a controller is
designed so that stability relies on the dissipative properties only,
the closed-loop system will be stable whatever the values of the
physical parameters. Even a change of the system order will be
tolerated provided it does not destroy the dissipativity. There is
another aspect of dissipativity which is very useful in practical
applications. It turns out that dissipativity considerations are
helpful as a guide for the choice of a suitable variable for output
feedback. This is helpful for selecting where to place sensors for
feedback control [35]. On the other hand, as pointed out in [36,
37], dissipativity has attracted many researchers' attention because
it not only unifies the H∞ and passivity performance but also
provides a more flexible robust control design in practical
engineering.

However, these theoretical results cannot be applied directly to
FO systems, the reasons are as follows. First, the dissipative
inequality in the definition of dissipativity of integer order systems
cannot characterise the memory property of fractional energy
dissipation of FO systems. Second, fractional systems usually have
a polynomial convergence speed, rather than the exponential
convergence speed that integer order systems generally have, so the
output of FO systems may diverge. Third, most classical processes
observed in the physical world are non-conservative with frictional
or dissipative processes, which are well characterised by FO
system. Some analysis methods such as the variational principle
and passivity theorem described by classical calculus cannot be
directly applied to nonconservative systems with energy
dissipation. Fourth, although the diffusion properties of fractional
operators determine that the intrinsic variables have dissipative
properties, the relationship between the initial conditions of FO
systems and their diffusivity is not clear. Therefore, to provide a
new dissipative theoretical framework for FO systems, it is
important and significant to study the dissipative and passive
dynamic characteristics of FO systems [38, 39].
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Motivated by the above discussions, in this paper, we generalise
notions of QSR-dissipativity to FO systems, asymptotic stability
and input–output stability can be derived from QSR-dissipativity
properties. The main contributions of this paper are summarised as
follows: (i) A sufficient linear matrix inequality (LMI) condition
for the robust QSR-dissipativity for uncertain FO linear systems is
presented. (ii) State feedback controller, static output feedback
controller and dynamic output feedback controller are proposed
such that the closed system is QSR-dissipative, respectively. (iii)
The relationship between stability and QSR-dissipativity of FO
systems are revealed.

The remainder of this paper can be organised as follows.
Section 2 describes the fundamental concepts and the problem to
be addressed. Section 3 presents the main results and discusses the
most relevant details. For illustration of the correctness of
theoretical results, two numerical examples are presented in
Section 4. Finally, some conclusions are given in Section 5.

2 Preliminaries and model description
Standard symbols and notations are used throughout the paper. The
following symbols stand for AC[a, b] the space of function f which
is absolutely continuous on [a, b]. I identity matrix of appropriate
order, and * the elements below the main diagonal of a symmetric
block matrix. The superscript T the transpose, diag{ ⋅ } the
diagonal matrix, respectively. L2[0, ∞) the space of square
integrable functions on [0, ∞). XT = X > 0( < 0) a symmetric
positive definite (negative definite) matrix. X matrix, if not
explicitly stated, is assumed to have the compatible dimension.
∥ y ∥α

2 := Iα(yTy), where Iα denotes α-order fractional integral as
follows.
 

Definition 1: The fractional integral with non-integer order
α > 0 of function x(t) is defined [40] as follows:

It0, t
α x(t) = 1

Γ(α)∫t0

t
(t − τ)α − 1x(τ) dτ,

where Γ( ⋅ ) is the Gamma function, Γ(s) = ∫0
∞ts − 1e−t dt.

 
Definition 2: The Caputo derivative of FO α of function x(t) is

defined [40] as follows:

CDt0, t
α x(t) = It0, t

n − α dn

dtn x(t)

= 1
Γ(n − α)∫t0

t
(t − τ)n − α − 1x(n)(τ) dτ,

where n − 1 < α < n ∈ Z+.
Some basic concepts of passivity and dissipativity of FO

systems are firstly introduced. Let us consider the following FO
non-linear systems:

Dαx(t) = f (x(t), u(t)),
y(t) = h(x(t), u(t)),

(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input and
output of the system, respectively.

Storage function (energy stored in the system) and a supply
function (externally supplied energy) are core concepts in the
definition of a dissipative system. In general, dissipativity implies
that the increment of the stored energy is bounded by the supplied
energy.

 
Definition 3: If there exists a storage function V(x) ≥ 0 such

that the (integral) dissipation inequality

V(x(t)) − V(x(t0)) ≤ It0, t
α w(t)

= 1
Γ(α)∫t0

t
(t − s)α − 1w(x(s), u(s), y(s)) ds,

(2)

holds for all t0, t1 with t0 ≤ t1 and all solutions
x = x(t), y = y(t), u = u(t), t ∈ [t0, t1], then system (1) is said to be
dissipative with respect to the supply rate w(x, u, y), Moreover,
assume that the storage function is differentiable, the integral
dissipation inequality (2) can be rewritten as

DαV(x(t)) ≤ w(x(t), u(t), y(t)) . (3)
QSR-dissipativity, as a particular case of dissipativity, was

presented in [41]. On this occasion the supply rate is selected to be

w(x, u, y) = yTQy + 2yTSu + uTRu, (4)

where Q, S, and R are real symmetric matrices with appropriate
dimensions.

 
Definition 4: Assume that system (1) is dissipative. It is called

(1) Passive if system (2) is satisfied with w(u, y) = uTy.
(2) Input feedforward strictly passive (IFP), if (2) is satisfied for
w(u, y) = uTy − νuTu, where ν > 0.
(3) Output feedback strictly passive (OFP) if (2) is satisfied for
w(u, y) = uTy − ρyTy, where ρ > 0.

Considering the following n-dimensional FO uncertain linear
system that is controllable and observable:

Dαx(t) = (A + ΔA)x(t) + (B + ΔB)u(t)
+ (Bϖ + ΔBϖ)ϖ(t),

y(t) = (C + ΔC)x(t) + (D + ΔD)u(t)
+ (Dϖ + ΔDϖ)ϖ(t),

z(t) = C1x(t),

(5)

where x(t) = (x1(t), …, xn(t))T ∈ Rn represents system state vector,
ϖ(t) ∈ Rq denotes the external disturbance belonging to L2[0, ∞],
y(t) is the controlled output, u(t) ∈ Rp denotes the control input,
z(t) ∈ Rl represents the measured output, the FO α belongs to the
interval (0, 1). A, B, C, D, C1 are some nominal constant matrices
with appropriate dimensions. Time-varying uncertain matrices
ΔA, ΔB, ΔC, ΔD are with appropriate dimensions and the
following form:

ΔA ΔB ΔBϖ

ΔC ΔD ΔDϖ
= E1

E2
H(t) F1 F2 F3 ,

where E1, E2, and F1, F2, F3 are known real constant matrices and
unknown time-varying matrices H(t) satisfies

HT(t)H(t) ≤ I .

 
Lemma 1 (Schur complement): For a real matrix Σ = ΣT, the

following assertions are equivalent [42]

Σ: = Σ11 Σ12

* Σ22
< 0;

Σ11 < 0, Σ22 − Σ12
T Σ11

−1Σ12 < 0;
Σ22 < 0, Σ11 − Σ12Σ22

−1Σ12
T < 0.

 
Lemma 2: Given matrices Q = QT, H, E and R = RT > 0 of

appropriate dimension [43],

Q + HFE + ETFTHT < 0,
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for all F satisfying FTF ≤ R, if and only if there exists some λ > 0
such that

Q + λHHT + λ−1ETRE < 0.
 
Lemma 3: Let x(t) ∈ Rn be a differentiable vector-value

function. Then, for any time instant t ≥ t0 [44]

Dα(xT(t)Px(t)) ≤ (xT(t)P)Dαx(t) + (Dαx(t))TPx(t),

where P ∈ Rn × n is a symmetric positive definite matrix, α ∈ (0, 1).
 
Lemma 4: For any matrix Π ∈ Rq × n with q < n and full row

rank (rank(Π) = q), there exists an SVD of Π as follows [45]:

Π = U S 0 VT,

where S ∈ Rq × q is a diagonal matrix with non-negative diagonal
elements in decreasing order, U ∈ Rq × q, V ∈ Rn × n are the unitary
matrices.

 
Lemma 5: Given matrix Π ∈ Rq × n with q < n and rank(Π)=q,

assume that X ∈ Rn × n is a symmetric matrix, then there exists a
matrix X ∈ Rq × q satisfying ΠX = XΠ if and only if X can be
described as

X = V
X11 0
0 X22

VT,

where X11 ∈ Rq × q, X22 ∈ R(n − q) × (n − q) and V ∈ Rn × n is the unitary
matrix of SVD of Π [45].

The following hypothesis shall be made without loss of
generality.

 
Assumption 1:

Q < 0,
R + Dϖ

T S + SDϖ > 0.
In light of Theorem 5 in [46], one can get the following

relationship between QSR-dissipativity and Lyapunov stability.
 
Theorem 1: If system (1) is QSR-dissipative with Q < 0 and

there exists a continuously differentiable and locally Lipschitz
storage function V(x) > 0 such that α1 ∥ x ∥a ≤ V(x) ≤ α2 ∥ x ∥ab,
where a, b, α1, α2 are arbitrary positive constants, then the system is
stable in the sense of Lyapunov with the origin being the
equilibrium point.

 
Proof: By setting u = 0 in (4) and using Definition 3,

DαV(x) ≤ w(0, y) = yTQy. It follows from Assumption 1 that
DαV(x) ≤ w(0, y) = yTQy < 0, by virtue of Theorem 5 in [46], the
system (1) is Mittag–Leffler stable (asymptotically stable). □

 
Theorem 2: If system (1) is QSR-dissipative with Q < 0 and a

positive semi-definite storage function V = V(x), then the system is
input–output stable.

 
Proof: Denote −a1 = λmax(Q) < 0 (a1 > 0), a2 = λmax(S) > 0,

a3 = λmax(R) > 0, it follows from Definition 3 that

DαV(x) ≤ − a1 ∥ y ∥2 + a2 ∥ y ∥ ∥ u ∥ + a3 ∥ u ∥2

≤ − a1 ∥ y ∥2 + a2 ∥ y ∥ ∥ u ∥
+a3 ∥ u ∥2 + 2a2

2a1
−1 ∥ u ∥2

= − 1
2a1( ∥ y ∥ − 2a2a1

−1 ∥ u ∥ )2

+(2a2
2a1

−1 + a3) ∥ u ∥2 − 1
2a1 ∥ y ∥2

≤ (2a2
2a1

−1 + a3) ∥ u ∥2 − 1
2a1 ∥ y ∥2 .

Take the FO integral

1
2a1IαyTy ≤ (2a2

2a1
−1 + a3)IαuTu − V(x) + V(0) .

Since V(x) > 0, one can derive

IαyTy ≤ (4a2
2a1

−2 + 2a1
−1a3)IαuTu + 2a1

−1V(0) .

which is equivalent to

∥ y ∥α
2 ≤ (4a2

2a1
−2 + 2a1

−1a3) ∥ u ∥α
2 + 2a1

−1V(0),

which means that system (1) is input–output stable. □
 
Remark 1: Since Lyapunov method has not been well developed

for FO systems, stability or stabilisation of many kinds of FO non-
linear systems or uncertain systems remains a formidable problem.
It is an undeniable fact that estimation of FO derivative of
quadratic form Lyapunov function can address some problems, yet
the technology still has major limitations. Theorems 1 and 2 offer a
new insight and method to study stability and stabilisation of FO
systems, including FO non-linear systems, uncertain systems and
delayed systems.

3 Main results
3.1 Dissipativity analysis

In this subsection, a QSR-dissipative criterion for system (5) will
be presented.
 

Theorem 3: Under Assumption 1, for the given real symmetric
matrices Q, S and R, if there exists a symmetric positive-definite
matrix P̄, such that the following inequality is satisfied:

Ω =

AP̄ + P̄AT Bϖ − P̄CTS P̄CT

* −Dϖ
T S − SDϖ − R Dϖ

T

* * Q−1

* * *
* * *

P̄F1
T λE1

F3
T −λSE2

0 E2

−λI 0
* −λI

< 0,

(6)

then FO uncertain system (5) is QSR-dissipative.
 

Proof: Constructing the storage candidate function
V(x(t)) = xT(t)Px(t) and calculating the derivative of V(x(t)) along
system (5) with u(t) = 0, one yields
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DαV(x(t)) ≤ (xT(t)P)Dαx(t) + (Dαx(t))TPx(t)
= xT(t)(PA + ATP + PΔA + ΔATP)x(t)
+xT(t)PBϖϖ(t) + ϖT(t)Bϖ

T Px(t)
+xT(t)PΔBϖϖ(t) + ϖT(t)ΔBϖ

T Px(t) .

According to the dissipativity definition, one has

DαV(x(t)) − yT(t)Qy(t) − 2yT(t)Sϖ(t)
−ϖT(t)Rϖ(t)

≤ xT(t)(PA + ATP − CTQC − CTQΔC
−ΔCTQC − ΔCTQΔC + PΔA
+ΔATP)x(t) + xT(t)(2PBϖ − CQDϖ

−CTQΔD − ΔCTQDϖ − ΔCTQΔDϖ

−CTS − ΔCTS + 2PΔBϖ)ϖ(t)
−ϖT(t)(Dϖ

T QDϖ + Dϖ
T QΔDϖ

+ΔDϖ
T QDϖ + ΔDϖ

T QΔDϖ + Dϖ
T S

+SDϖ
T + ΔDTS + SΔDT + R)ϖ(t)

=: ξT(t)Πξ(t),

where ξ(t) = [xT(t), ϖT(t)]T,

Γ = Γ11 Γ12

* Γ22
, (7)

where

Γ11 = PA + ATP + PΔA + ΔATP
−(CT + ΔCT)Q(C + ΔC),

Γ12 = PBϖ + PΔBϖ − (C + ΔC)S
−(CT + ΔCT)Q(Dϖ

T + ΔTDϖ),
Γ22 = − (Dϖ

T + ΔDϖ
T )S − S(Dϖ + ΔDϖ) − R

−(Dϖ
T + ΔDϖ

T )Q(Dϖ
T + ΔDϖ

T ) .

It follows from Lemma 1 that (7)<0 is equivalent to

Γ =
Γ11

*
*

Γ12 − (Dϖ
T + ΔDϖ

T )S − S(Dϖ + ΔDϖ) − R
*

(CT + ΔCT)
(Dϖ

T + ΔDϖ
T )

Q−1

< 0,

(8)

where

Γ11 = PA + ATP + PΔA + ΔATP,
Γ12 = PBϖ + PΔBϖ − (CT + ΔCT)S .

In fact, (8) can be rewritten as follows:

Π =
PA + ATP PBϖ − CTS CT

* −Dϖ
T S − SDϖ − R Dϖ

T

* * Q−1

+
PE1

−SE2

E2

H(t) F1 F3 0

+
F1

T

F3
T

0
H(t) E1

TP −E2
TS E2

T < 0.

(9)

In light of Lemma 2, there exists a scalar λ such that

PA + ATP PBϖ − CTS CT

* −Dϖ
T S − SDϖ − R Dϖ

T

* * Q−1

+λ
PE1

−SE2

E2

E1
TP −E2

TS E2
T

+λ−1
F1

T

F3
T

0
F1 F3 0 < 0,

which can be rearranged as

Π =
Π11

*
*

PBϖ − CTS − λPE1E2
TS + λ−1F1

TF3

−Dϖ
T S − SDϖ − R + λSE2E2

T + λ−1F3
TF3

*
λPE1E2

T + CT

Dϖ
T − λSE2E2

T

Q−1 + λE2E2
T

< 0,

(10)

where Π11 = PA + ATP + λPE1E1
TP + λ−1F1

TF1.
By Schur complement, (10) is equivalent to

Ω =

PA + ATP PBϖ − CTS CT

* −Dϖ
T S − SDϖ − R Dϖ

T

* * Q−1

* * *
* * *

F1
T λPE1

F3
T −λSE2

0 E2

−λI 0
* −λI

< 0.

(11)

By pre-multiplying and post-multiplying (11) with diag
{P−1, I, I, I, I}, and let P−1 = P̄, it follows that inequality (11) is
equivalent to (6). The proof is completed. □

3.2 Dissipation via state feedback control

This subsection will give a sufficient condition for system (5) to be
robust QSR-dissipative by designing a state feedback control law

u(t) = Kx(t) . (12)
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Theorem 4: Suppose that Assumption 1 is satisfied. For the

given real symmetric matrices Q, S and R, the controlled system (5)
with controller (12) is QSR dissipative if there exists a symmetric
positive-definite matrix P̄ such that

Ω =

Ω11 Ω12 P̄CT + XTDT

* −Dϖ
T S − SDϖ − R Dϖ

T

* * Q−1

* * *
* * *
P̄F1

T + XTF2
T λE1

F3
T −λSE2

0 E2

−λI 0
* −λI

< 0,

(13)

where

Ω11 = AP̄ + BX + P̄AT + XTBT,
Ω12 = Bϖ − P̄CTS − XTDTS .

Moreover, a dissipation state-feedback gain matrix is obtained by

K = XP̄−1 .
 

Proof: Consider system (5) with control input (12) as follows:

Dαx(t) = (A + BK + ΔA + ΔBK)x(t)
+ (Bϖ + ΔBϖ)ϖ(t),

y(t) = (C + DK + ΔC + ΔDK)x(t)
+ (Dϖ + ΔDϖ)ϖ(t),

z(t) = C1x(t),

(14)

Since ΔA + ΔBK = E1H(t)(F1 + F2K),

ΔC + ΔDK = E2H(t)(F1 + F2K),

replacing A, C and F1 with A + BK, C + DK and F1 + F2K in (6),
respectively, one yields

Ω =

Ω11 Bϖ − P̄(C + DK)TS

* −Dϖ
T S − SDϖ − R

* *
* *
* *
P̄(CT + KTDT) P̄(F1

T + KTF2
T) λE1

Dϖ
T F3

T −λSE2

Q−1 0 E2

* −λI 0
* * −λI

< 0,

(15)

where Ω11 = (A + BK)P̄ + P̄(AT + KTBT).
Denote KP̄ = X in (15), inequality (13) is equivalent to (15).

This completes the proof. □

3.3 Dissipation via static output-feedback control

This subsection aims to design a static output feedback controller
in the form of

u(t) = Ly(t), (16)

such that the closed-loop systems are robustly QSR-dissipative.
 

Theorem 5: Assume that Hypothesis 1 holds and the singular
value decomposition (SVD) of the output matrix C1 is
Π = U S1 0 VT. Then, for the given real symmetric matrices Q, S
and R, the controlled system (5) with the control input (16) is
strictly (Q, S, R) dissipative if there exist symmetric positive-
definite matrices P

~ > 0, P
~

1 > 0, P
~

2 > 0 together with matrix X such
that

Ω =

Ω11 Ω12

* −Dϖ
T S − SDϖ − R

* *
* *
* *
P
~
CT + (XC1)TDT P

~
F1

T + (XC1)TF2
T λE1

Dϖ
T F3

T −λSE2

Q−1 0 E2

* −λI 0
* * −λI

< 0,

(17)

where

Ω11 = AP
~ + BXC1 + P

~
AT + (XC1)TBT,

Ω12 = Bϖ − P
~
CTS − C1

TXTDTS,

P
~ = V

P1
~ 0
0 P2

~ VT .

Moreover, dissipation output feedback gain matrix, L is provided
by

L = XUS1P
~

1
−1S1

−1U−1 .
 

Proof: By introducing (16) into system (5), the following
closed-loop system is obtained:

Dαx(t) = (A + BLC1 + ΔA + ΔBLC1)x(t)
+ (Bϖ + ΔBϖ)ϖ(t),

y(t) = (C + DLC1 + ΔC + ΔDLC1)x(t)
+ (Dϖ + ΔDϖ)ϖ(t),

z(t) = C1x(t) .

(18)

Since

P
~ = V

P1
~ 0
0 P2

~ VT .

From Lemma 5, there exists P
~̂ = USP

~
1S−1U−1 such that C1P

~ = P
~̂
C1,

where P
~̂−1

= USP
~

1
−1S−1U−1. Denote X = LP

~
1
−1, inequality (17) is

equivalent to (6). The proof is completed.

3.4 Dissipation via dynamic output-feedback control

The aims of this subsection is to design the following dynamic
output feedback controller:

Dαxk(t) = Akxk(t) + Bkz(t),
u(t) = Ckxk(t) + Dkz(t), (19)

1458 IET Control Theory Appl., 2019, Vol. 13 Iss. 10, pp. 1454-1465
© The Institution of Engineering and Technology 2019



where xk(t) ∈ Rk
n is the state of the dynamic output feedback,

Ak, Bk, Ck and Dk are appropriate matrices to be determined, such
that the following closed-loop system constructed from (5) and
(19) is robustly dissipative:

Dαx̄(t) = (Ā + ΔĀ)x̄(t) + (B̄ϖ + ΔB̄ϖ)ϖ(t),
y(t) = (C̄ + ΔC̄)x(t) + (D̄ϖ + ΔD̄ϖ)ϖ(t),

(20)

where

Ā =
A + BDkC1 BCk

BkC1 Ak
,

ΔĀ =
ΔA + ΔBDkC1 ΔBCk

0 0
,

x̄(t) =
x(t)
xk(t)

, B̄ϖ =
Bϖ

0
,

ΔB̄ϖ =
ΔBϖ

0
,

C̄ = C0 + D0DkC1 D0Ck ,
ΔC̄ = ΔC + ΔDDkC1 ΔDCk ,
D̄ϖ = Dϖ, ΔD̄ϖ = ΔDϖ .

 
Theorem 6: Under Assumption 1, if there exists a symmetrical

matrix P, together with matrices Ak, Bk, Ck and Dk of appropriate
dimensions and a real scalar λ such that

Ω =

Ω11 Ω12 Ω13

* PAk + Ak
TP −Ck

TDTS

* * −Dϖ
T S − SDϖ − R

* * *
* * *
* * *
Ω14 F1

T + C1
TDk

TF2
T λPE1

Ck
TDT Ck

TF2
T 0

Dϖ
T F3

T −λSE2

Q−1 0 λE2

* −λI 0
* * −λI

< 0,

(21)

where

Ω11 = P(A + BDkC1) + (AT + C1
TDk

TBT)P,
Ω12 = PBCk + C1

TBk
TP,

Ω13 = PBϖ − (CT + C1
TDk

TDT)S,
Ω14 = CT + C1

TDk
TDT,

then the controlled closed-loop system (20) is robustly QSR-
dissipative with the given real symmetric matrices Q, S and R.
 

Proof: Let us define a storage function for the closed-loop
system (20)

V(x̄(t)) = x̄T(t)P̄x̄(t),

where P̄ = diag(P, P).
Taking the FO time derivative of V(x̄(t)) along the trajectory of

system (20) and applying the passivity definition, one has

DαV(x̄(t)) − yT(t)Qy(t) − 2yT(t)Sϖ(t) − ϖT(t)Rϖ(t)
≤ xT(t) P(A + BDkC1) + (AT

+C1
TDk

TBT)P + P(ΔA + ΔBDkC1)
+(ΔAT + C1

TDk
TΔBT)P − (CT

+C1
TDk

TDT + ΔCT + C1
TDk

TΔDT)Q
× (C + DDkC1 + ΔC + ΔDDkC1)

× x(t) + 2xT(t)(PBCk + PΔBCk

+C1
TBk

TP)xk(t) + 2xT(t)(PBϖ

+PΔBϖ)ϖ(t) + xk
T(t) (PAk + Ak

TP)

−(Ck
TDT + Ck

TΔDT)Q(DCk + ΔDCk)

× xk(t) − xT(t)2(CT + C1
TDk

TDT + ΔCT

+C1
TDk

TΔDT)Q(DCk + ΔDCk)xk(t)
−ϖT(t)2(Dϖ

T + ΔDϖ
T )Q(C + DDkC1

+ΔC + ΔDDkC1)x(t) − ϖT(t)2(Dϖ
T

+ΔDϖ
T )Q(DCk + ΔDCk)xk(t) − 2xT(t)

× (CT + C1
TDk

TDT + ΔCT + C1
TDk

TΔDT)
× Sϖ(t) − 2xk

T(t)(Ck
TDT + Ck

TΔDk)
× Sϖ(t) − ϖT(t) 2(Dϖ

T + ΔDϖ
T )S

+(Dϖ
T + ΔDϖ

T )Q(Dϖ + ΔDϖ) + R ϖ(t)

= ζT(t)Φζ(t),

where ζ(t) = [xT(t), xk
T(t), ϖT(t)]T,

Φ =
Φ11 Φ12 Φ13

* Φ22 Φ23

* * Φ33

, (22)

where

Φ11 = P(A + BDkC1) + (AT + C1
TDk

TBT)P
+P(ΔA + ΔBDkC1) + (ΔAT + C1

TDk
TΔBT)P

−(CT + C1
TDk

TDT + ΔCT + C1
TDk

TΔDT)Q
× (C + DDkC1 + ΔC + ΔDDkC1),

Φ12 = PBCk + PΔBCk + C1
TBk

TP − (CT

+C1
TDk

TDT + ΔCT + C1
TDk

TΔDT)
× Q(DCk + ΔDCk),

Φ13 = PBϖ + PΔBϖ − (CT + C1
TDk

TDT + ΔCT

+C1
TDk

TΔDT)Q(Dϖ + ΔDϖ) − 2(CT

+C1
TDk

TDT + ΔCT + C1
TDk

TΔDT)S,
Φ22 = (PAk + Ak

TP) − (Ck
TDT + Ck

TΔDT)
× Q(DCk + ΔDCk),

Φ23 = (Ck
TDT + Ck

TΔDT)Q(Dϖ + ΔDϖ)
−(Ck

TDT + Ck
TΔDk)S,

Φ33 = − (Dϖ
T + ΔDϖ

T )S − S(Dϖ + ΔDϖ)
−(Dϖ

T + ΔDϖ
T )Q(Dϖ + ΔDϖ) − R .

In view of Lemma 1, (22) < 0 is equivalent to
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Σ =

Σ11 Σ12 Σ13

* PAk + Ak
TP Σ23

* * Σ33

* * *
CT + C1

TDk
TDT + ΔCT + C1

TDk
TΔDT

Ck
TDT + Ck

TΔDT

Dϖ
T + ΔDϖ

T

Q−1

< 0,

(23)

where

Σ11 = P(A + BDkC1) + (AT + C1
TDk

TBT)P
+P(ΔA + ΔBDkC1)
+(ΔAT + C1

TDk
TΔBT)P,

Σ12 = PBCk + PΔBCk + C1
TBk

TP,
Σ13 = PBϖ + PΔBϖ − (CT + C1

TDk
TDT

+ΔCT + C1
TDk

TΔDT)S,
Σ23 = − (Ck

TDT + Ck
TΔDk)S,

Σ33 = − (Dϖ
T + ΔDϖ

T )S − S(Dϖ + ΔDϖ) − R .

Note that (23) can be rewritten as

Π = Π1 +

PE1

0
−SE2

E2

H(t)

× F1 + F2DkC1 F2Ck F3 0

+

F1
T + C1

TDk
TF2

T

Ck
TF2

T

F3
T

0

HT(t)

× E1
TP 0 −E2

TS E2
T < 0,

(24)

where

Π1 =

Π11 Π12

* PAk + Ak
TP

* *
* *
PBϖ − (CT + C1

TDk
TDT)S CT + C1

TDk
TDT

−Ck
TDTS Ck

TDT

−Dϖ
T S − SDϖ − R Dϖ

T

* Q−1

,

Π11 = P(A + BDkC1) + (AT + C1
TDk

TBT)P,
Π12 = PBCk + C1

TBk
TP .

In light of Lemma 2, there exists a scalar λ such that

Π1 + λ

PE1

0
−SE2

E2

E1
TP 0 −E2

TS E2
T

+λ−1

F1
T + C1

TDk
TF2

T

Ck
TF2

T

F3
T

0
× F1 + F2DkC1 F2Ck F3 0 < 0,

which can be rearranged as

Φ =

Φ11 Φ12 Φ13

* Φ22 −Ck
TDTS + λ−1Ck

TF2
TF3

* * Φ33

* * *
Φ14

Ck
TDT

Dϖ
T

Q−1 + λE2E2
T

< 0,

(25)

where

Φ11 = P(A + BDkC1) + (AT + C1
TDk

TBT)P
+λPE1E1

TP + λ−1(F1 + C1
TDk

TF2
T)

× (F1 + F2DkC1),
Φ12 = PBCk + C1

TBk
TP + λ−1(F1

T

+C1
TDk

TF2
T)F2Ck,

Φ13 = PBϖ − (CT + C1
TDk

TDT)S − λPE1E2
TS

+λ−1(F1
T + C1

TDk
TF2

T)F3,
Φ14 = λPE1E2

T + (CT + C1
TDk

TDT),
Φ22 = PAk + Ak

TP + λ−1Ck
TF2

TF2Ck,
Φ33 = − Dϖ

T S − SDϖ − R + λSE2E2
TS

+λ−1F3
TF3 .

By applying Schur complement to (25), one has that (25) is
equivalent to (21). □

It is obvious that the matrix inequality (21) in Theorem 6 is not
an LMI because some cross terms of these determined parameters
appear in (21) in non-linear fashion, such as PBDkC1, PBCk.
However, it can be transformed into an LMI by employing
Lemmas 4 and 5, which will be shown below.

 
Theorem 7: Under Assumption 1, if there exist matrices

A
~

k, B
~

k, C
~

k, D
~

k, X1 and Y1 of appropriate dimensions and a real scalar
λ such that
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Ξ =

Ξ11 Ξ12 Ξ13 Ξ14

* Ξ22 Ξ23 Ξ24

* * −Dϖ
T S − SDϖ − R Dϖ

T

* * * Q−1

* * * *
* * * *
X1

T(F1
T + C1

TDk
TF2

T) + C
~

k
T E1

F1
T + C1

TDk
TF2

T Y1
TE1

F3
T −SE2

0 E2

−I 0
* −I

< 0,

(26)

where

Ξ11 = (A + BD
~

kC1)X1 + BC
~

k + X1
T(AT

+C1
TD

~
k
TBT) + C

~
k
TBT,

Ξ12 = A + BD
~

kC1 + A
~

k,
Ξ13 = Bw − (X1

T(CT + C1
TD

~
k
TDT) + C

~
k
TDT)S,

Ξ14 = (X1
T(CT + C1

TDk
TDT) + C

~
k
TDT),

Ξ22 = Y1
T(A + BD

~
kC1) + B

~
kC1 + (AT

+C1
TD

~
k
TBT)Y1 + C1

TB
~

k
T,

Ξ23 = Y1
TBw − (CT + C1

TD
~

k
TDT)S,

Ξ24 = CT + C1
TD

~
k
TDT,

then the controlled closed-loop system (20) is robustly QSR-
dissipative with the given real symmetric matrices Q, S and R.
Moreover, a desired dissipation output-feedback controller in the
form of (19) with the following parameters is given:

Ak = Y3
−1(A

~
k
T − Y1

TBDkC1X1 − Y1
TBDkC1X1

−Y1
TBC

~
k − B

~
kC1X1)X3

−1,
Bk = Y3

−TB
~

k,
Ck = C

~
kX3

−1,
Dk = D

~
k,

where X3 and Y3 are any non-singular matrices satisfying

X1Y1 + X3Y3 = I .
 
Proof: Since

ΔC̄ = ΔC + ΔDDkC1 ΔDCk

= E2H(t) F1 + F2DkC1 F2Ck ,
ΔB̄ϖ = E1 0 THF3 .

It follows from Theorem 3 that the controlled closed-loop system is
dissipative if there exist a symmetric positive-definite matrix P̄,
such that the following inequality holds:

Ω =

ĀP̄ + P̄ĀT B̄ϖ − P̄C̄TS P̄C̄T

* −Dϖ
T S − SDϖ − R Dϖ

T

* * Q−1

* * *
* * *

P̄F̄1
T λĒ1

F3
T −λSE2

0 E2

−λI 0
* −λI

< 0,

(27)

where F̄1 = F1 + F2DkC1 F2Ck , Ē1 = E1 0 T,
Matrix P̄ and its inverse can be written as

P̄ = X1 X2

X3 X4
, P̄−1 = Y1 Y2

Y3 Y4
,

where Xi, Yi(i = 1, 2, 3, 4) are non-singular.
From P̄P̄−1 = I, one has

X1Y1 + X2Y3 = I,
X3Y1 + X4Y3 = 0.

Since

P̄
I Y1

0 Y3
= X1 I

X3 0 ,

then,

P̄ = X1 I
X3 0

I Y1

0 Y3

−1

.

Denote

Θ1 = X1 I
X3 0 , Θ2 = I Y1

0 Y3
. (28)

Then

P̄ = Θ1Θ2
−1 = X1 X3

X3 Υ , (29)

where Υ = − X3Y1Y3
−1. Form Lemma 1, P̄ = Θ1Θ2

−1 > 0 is
equivalent to X1Y1 + X3Y3 > 0.

Submitting (29) into (27), one yields

Ω =

Ω11 B̄ϖ − Θ2
−TΘ1

TC̄TS Θ2
−TΘ1

TC̄T

* −Dϖ
T S − SDϖ − R Dϖ

T

* * Q−1

* * *
* * *

Θ2
−TΘ1

TF̄1
T λĒ1

F3
T −λSE2

0 E2

−λI 0
* −λI

< 0,

(30)

where Ω11 = ĀΘ1Θ2
−1 + Θ2

−TΘ1
T ĀT.

Let us multiply the left sides of (30) by diag{Θ2
T, I, I, I, I}, and

the right sides of (30) by diag {Θ2, I, I, I, I}, it yields
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Ω =

Θ2
T ĀΘ1 + Θ1

T ĀTΘ2 Θ2
TB̄ϖ − Θ1

TC̄TS

* −Dϖ
T S − SDϖ − R

* *
* *
* *

Θ1
TC̄T Θ1

TF̄1
T λΘ2

TĒ1

Dϖ
T F3

T −λSE2

Q−1 0 E2

* −λI 0
* * −λI

< 0.

(31)

Combining (31) with (28), one obtains

Ω =

Ξ11 Ξ12 Ξ13 Ξ14

* Ξ22 Ξ23 Ξ24

* * Ξ33 Dϖ
T

* * * Q−1

* * * *
* * * *
X1

T(F1
T + C1

TDk
TF2

T) + X3
TCk

T λE1

F1
T + C1

TDk
TF2

T λY1
TE1

F3
T −λSE2

0 E2

−λI 0
* −λI

< 0,

(32)

where

Ξ11 = (A + BDkC1)X1 + BCkX3 + X1
T(AT

+C1
TDk

TBT) + X3
TCk

TBT,
Ξ12 = A + BDkC1 + X1

T(AT + C1
TDk

TBT)Y1

+X3
TCk

TBTY1 + (X1
TC1

TBk
T + X3

TAk
T)Y3,

Ξ13 = Bw − (X1
T(CT + C1

TDk
TDT)

+X3
TCk

TDT)S,
Ξ14 = (X1

T(CT + C1
TDk

TDT) + X3
TCk

TDT),
Ξ22 = Y1

T(A + BDkC1) + Y3
TBkC1 + (AT

+C1
TDk

TBT)Y1 + C1
TBk

TY3,
Ξ23 = Y1

TBw − (CT + C1
TDk

TDT)S,
Ξ33 = − Dϖ

T S − SDϖ − R,
Ξ24 = (CT + C1

TDk
TDT) .

Let Dk = D
~

k, CkX3 = C
~

k, Y3
TBk = B

~
k,

A
~

k = X1
T(AT + C1

TDk
TBT)Y1 + X3

TCk
TBTY1 + (X1

TC1
TBk

T + X3
TAk

T

)Y3,

and λ = 1 in (32), one readily obtains (26). Therefore, from
Definition 3, one can observe that the closed-loop system is
robustly dissipative. The proof is completed. □

 
Remark 2: According to Theorem 1, Theorem 3 can act as the

asymptotic stability criterion for system (5) with ϖ(t) = 0.
Theorems 4, 5 and 7 provide design methods of stabilisation state-
feedback controller, static output feedback controller and dynamic
output feedback controller for system (5) with ϖ(t) = 0,
respectively.

 
Remark 3: It follows from Theorem 2 that Theorem 3 can

ensure that system (5) is input–output stable. Similarly, Theorems
4, 5 and 7 can offer design methods of BIBO stabilisation state-
feedback controller, static output feedback controller and dynamic
output feedback controller for system (5), respectively.

 
Remark 4: The authors of [47–50] were concerned with

stability, static output feedback control design and state feedback
control design for FO uncertain systems described by the following
form:

Dαx(t) = (A + ΔA(t))x(t) + (B + ΔB(t))u(t),
y(t) = Cx(t) .

(33)

Obviously, system (33) is a special case of system (5). Theorems
4–7 can be also applied to system (33). However, these results in
[47–50] cannot be used to determine the dissipativity and
dissipation of the system (5).

 
Remark 5: Theorem 3 does just apply to system with

measurable system states, if system states are all unknown or
partially known, the problem of design a controller based on state
observer will be considered, which is our future work. In addition,
inequality analysis techniques are used to derive LMI QSR-
dissipativity criterion and feedback dissipation controller design
method, which will result in somewhat conservative. Therefore,
how to select a suitable inequality scaling technique to derive less
conservative result is also our future work. On the other hand, for
integer-order systems, we can construct various types of the
improved Lyapunov function to reduce the conservatism. However,
constructing a Lyapunov function and calculating its fractional
derivative poses difficulties, to reduce the conservatism by using
the FO Lyapunov method is still formidable.

 
Remark 6: The direct Lyapunov method provides a very

effective approach to analyse the stability of integer-order non-
linear systems without explicitly finding their solutions. However,
the Leibniz rule of derivative of two functions f and g,
Dα( f g) = (Dα f )g + (Dαg) f , does not hold for the fractional case,
which poses difficulties in constructing a Lyapunov function and
calculating its fractional derivative. In fact, this is the main reason
why there are limited results on stability of fractional non-linear
(delayed) systems. And because of that, there are few results about
control design methods for system (5). This paper proposed the
new definition of QSR-dissipativity and feedback dissipation, by
revealing the relationship of QSR-dissipativity and stability,
stabilisation controller design of system (5) is presented.

 
Remark 7: One can see that QSR-dissipativity criterion and all

feedback dissipation controller design methods are in form of LMI.
There are two advantages: first, it needs no tuning of parameters
and/or matrices; second, it can be efficiently verified via solving
the LMI numerically by MATLAB toolbox.

4 Illustrative example
In this section, to demonstrate the applicability of the proposed
approach, two illustrative examples are provided.
 

Example 1: The boost converter, sometimes called a step-up/
down power stage, is an inverting power stage topology. Schematic
diagram of a DC–DC boost converter is shown in Fig. 1. When ST
OFF and SD ON, the expression of the FO mathematical model
proposed in [51] is described by

DαiL = 1
LUin − 1

LvC,

DαvC = 1
C iL − vC

RC .
(34)
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Taking iL and vC as state variable and selecting the input voltage
Uin = 12 V, the load resistance R = 40 Ω, the L = 477μH,
C = 10 μF/(s)1 − α. Note that Theorem 5 is also still valid for
nominal model (34). By using LMI Matlab toolbox, one could see
that the LMI (6) in Theorem 5 with Q = S = R = I is feasible. The
feasible solution is given by

P̄ = 0.0052 0.0043
0.0043 0.0196 , λ = 11.0146.

Therefore, it follows from Theorem 5 that FO DC–DC converter
(34) is QSR-dissipative. 
 

Example 2: Consider a three-dimensional uncertain FO linear
system (5) with the following parameters:

A =
0 2 −0.5
2 −5 1
3 1 −2.5

, Bϖ =
−2 1
−2 3
1 0

,

B =
2

−1
0

, C = 1 −2 0
2 1 −2 ,

C1 = 1 1 0 , Dϖ = 1 0.5
0 1 ,

D = 1
2 , E1 =

0.1
−0.1
0.2

, E2 = 0.3
−0.2 ,

α = 0.8, F1 = 0.2 −0.3 0.1 ,
F2 = 0.2, F3 = −0.1 0.2 .

Select

Q−1 = −6 0
0 −6 , S = 1 0

0 1 , R = 9 0
0 9 .

Applying matrix SVD for C1, one can obtain

U = 1, S = 1.4142, V =
0.7071 0.7071 0
0.7071 −0.7071 0

0 0 1
.

In the simulation, choose h(t) = 0.1cos t and the initial state
x0 = [1, 2, 3]T. When the external disturbance ϖ(t) = 0, the time
response of selected systems without the control input is depicted
in Fig. 2. One can see that the open-loop system is divergent. 

Case 1. Assume that the state variables are measurable. By
utilising packages Yalmip in Matlab, one could find that the LMI
(13) in Theorem 4 is feasible. The feasible solution with the
parameter: λ = 10.5821 is

P̄ =
0.8504 −0.6558 −1.4285

−0.6558 2.9440 −0.2103
−1.4285 −0.2103 3.5268

,

X = −2.4876 −0.1217 3.1361 .

Furthermore, the dissipation feedback controller gain is given by

K = −14.2030 −3.5679 −5.0763 .

Therefore, in light of Theorem 4, the controlled system in the
example is robustly dissipative. Fig. 3 shows that the controlled
system with a state feedback controller is asymptotically stable. 
Case 2. Assume that the states of controlled system are
unmeasurable and only the output is available. In this case, the
static output feedback controller is designed to make the closed-
loop system robustly dissipative. It follows from the LMI condition
(17) that the following feasible solutions are obtained:

P
~ =

0.8473 −0.1938 −0.9032
−0.1938 0.8473 0.9032
−0.9032 0.9032 1.7690

,

P
~

2 = 1.0411 −1.2773
−1.2773 1.7690 ,

P
~

1 = 0.6535, X = − 0.7967.

Moreover, a static output feedback gain matrix is given by
L = − 1.2191. Based on Theorem 5, the closed-loop system with
static output feedback controller (16) is robustly dissipative. The
time response of the closed-loop systems with the static output
feedback controller is illustrated in Fig. 4. 

Fig. 1  FO DC–DC boost converter
 

Fig. 2  Time response of the selected systems without the control input
 

Fig. 3  Time response of the selected systems with state feedback controller
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Case 3. If the static output feedback controller does not satisfy the
design requirement, better dynamic performance can be obtained
via dynamic output feedback control. According to Theorem 7, one
can use Yalmip in the Matlab to solve the LMIs (26), and obtain
the solution as

A
~

k =
0.5260 −2.3311 −0.8849

−2.3311 5.1835 −0.2638
−0.8849 −0.2638 2.9187

,

B
~

k = −2.9292 1.1786 −2.0016 T,
C
~

k = −1.1183 −0.1110 0.0034 ,
D
~

k = − 0.1287,

X1 =
−0.9351 −0.4745 −1.4799
−0.4745 0.1854 −0.5260
−1.4799 −0.5260 −0.8474

,

Y1 =
0.3261 −0.1795 −0.0312

−0.1795 0.7066 0.0446
−0.0312 0.0446 1.0903

,

X3 =
1.1736 1.2335 2.6056
1.1716 0.8073 1.5504
1.3617 1.1438 1.9013

, Y3 = I .

Further, the dynamics output feedback controlled (19) is obtained
as follows:

Ak =
−3.2167 −0.8359 1.3069
1.7286 −35.6034 28.0602
3.6816 −8.0474 0.9696

,

Bk = −2.9292 1.1786 −2.0016 T,
Ck = 1.3745 −2.7591 0.3681 ,
Dk = − 0.1287.

Therefore, by Theorem 7, the controller system with dynamic
output feedback controller (19) is robustly dissipative. Fig. 5 shows
that all states could converge to zero asymptotically under dynamic
output feedback controller. 

5 Conclusion
Robust dissipativity and dissipation for uncertain FO linear
systems with time-varying norm-bounded parameter uncertainties
are considered. By employing QSR-dissipativity methodology,
asymptotic stability and input–output stability are drawn. An LMI
sufficient condition for such a system to be robustly dissipative is
given. Sufficient state feedback dissipation criterion is also
proposed based on the available states. A static output feedback
controller and dynamic output feedback controller are designed for
the closed-loop system to be dissipative, respectively. Furthermore,
an illustrative example is provided to show the usefulness and
effectiveness of the presented results. It is well known that the
time-delay phenomenon often appears in many dynamic systems,
so it is our future work to discuss passivity and dissipativity issues
of FO delayed systems.
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