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Abstract Piezoelectric actuators are increasinglypop-
ular for high-accuracy and high-speed nanopositioning
systems. However, nonlinear rate-dependent hystere-
sis of piezoelectric actuators leads to many difficul-
ties in accurately analyzing the dynamic characteris-
tics of piezoelectric nanopositioning systems in a wide
frequency band. This paper proposes fractional-order
model methods to characterize the hysteresis of piezo-
electric actuators in time and frequency domains. Input
voltage and output displacement of the piezoelectric
actuator in time domain are employed to identify the
parameters of the fractional-order model. Moreover,
amplitude and phase errors are utilized to obtain the
fractional model in frequency domain. Simulations and
experiments are performed to validate the effective-
ness of the proposed fractional-ordermodel. The results
show that the identified model in frequency domain is
preferable in a wider frequency range from 1 to 200
Hz, and the maximum error is about 4.47%.
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1 Introduction

High-accuracy and high-speed nanopositioning sys-
tems have a wide range of applications in many
significant occasions, such as atomic force micro-
scopes andmicromanipulations. The traditional motor-
driven approach has some drawbacks and could not
meet the high performance demands of nanoposition-
ing systems. Piezoelectric actuators have been widely
employed as the actuating element of high-speed
nanopositioning systems due to its high resolution, fast
response and large output force [1–5]. However, there
is a nonlinear output response due to the intrinsic hys-
teresis when the excitation voltage is applied to piezo-
electric actuators. Moreover, the nonlinear hysteresis
may usually lead to undesirable inaccuracies and sys-
tem instability. Generally, the hysteresis is described
by the multi-valued nonlinear function with the input
and output of the system. It also has great dependence
of frequency and amplitude of input signals. The pre-
vious investigations showed that there will be almost
15% error caused by the hysteresis, and it can not be
ignored in the precise positioning [6]. Therefore, it is
very significant to accurately analyze and control the
dynamic characteristics of piezoelectric nanoposition-
ing systems in a wider frequency bandwidth [7]. The
precise modeling of nonlinear rate-dependent hystere-
sis of piezoelectric actuators still attract the consider-
able interest of many researchers in the multidiscipline
field [8].
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In order to improve the control precision of piezo-
electric actuators, many efforts had been made to
develop nonlinear hysteresis models for characterizing
nonlinear phenomenon of piezoelectric actuators, such
as Preisach model [9–11], Prandtl–Ishlinskii model
and its modification [12–16], Maxwell model [17–19],
and Bouc–Wen model [20–22]. These models were
employed by multidisciplinary researchers for describ-
ing the rate-dependent characteristics of hysteresis.
However, it is very complicated to perform the double
integral calculation process for the Preisach model and
identify key parameters of Prandtl–Ishlinskii model
and the Bouc–Wen model. More importantly, great
effort has been dedicated to improve the control per-
formance under a constant frequency or relative nar-
row frequency bandwidth in recent years. However, the
mathematical model of piezoelectric ceramic actuators
under broadband frequency environments is required to
be further investigated to meet the broadband demand
in the real engineering.

Fractional calculus theory is a generalization of the
conventional integration and differentiation to non-
integer orders. Recently, various complex systems are
successfully described by fractional calculus due to its
advantageous frequency-dependent characteristics. In
particular, there aremany successful applications in the
field of mechanical constitutive relations of complex
viscoelastic materials and system control, highlighting
its own unique advantages, irreplaceability, and theo-
retical completeness [23–29]. Zakeri et al. [30] pro-
posed a novel interval type-2 fuzzy fractional-order
super-twisting algorithm and demonstrated its effec-
tiveness in fully actuated and under-actuated systems.
Zolotas et al. [31] investigated the fractional-order con-
trolling of railway vehicle suspensions and achieved
7.5–25% improvement in ride quality under the same
maximum suspension deflection. The fractional-order
model also has been used to describe the hysteresis
nonlinearity of piezoelectric actuators in the specific
frequency. Rebai et al. [32] proposed an approach to
identify fractional-order models, and their numerical
simulations show that the fractional-order model can
better describe the hysteresis nonlinearity of piezo-
electric actuators in comparison with an integer-order
model during the excitation frequency of 50Hz. Li et al.
[33] introduced a fractional-order operator to the con-
trol system for piezo-actuated nanopositioning stages,
and their results show that in spite of incomprehensive
understanding of the fractional characteristics of piezo-

electric actuators, the fractional-order control approach
improved the bandwidth of the nanopositioning stages.
Liu et al. [34] integrated fractional-order dynamics into
the Maxwell resistive capacitor model to describe the
effect of hysteresis, and experimental results showed
the robustness to the amplitude change of the input
voltage in the case of constant frequency. Obviously,
previous models with fractional calculus were success-
fully applied for describing the nonlinearity of piezo-
electric actuators in some specific frequencies. How-
ever, the broadband motion demand of piezoelectric
actuators is popular in the field of vibration control and
micro-scanning measurements. There are few investi-
gations into the dynamic model of broadband hystere-
sis of piezoelectric systems in the past decade. There-
fore, this paper will numerically and experimentally
investigate different fractional-order model methods to
describe the hysteresis of piezoelectric actuators in a
wider frequency bandwidth.

In this paper, fractional-order models are proposed
to describe the hysteresis of a piezoelectric actuator. A
type of Laplace transform of the fractional-order lin-
ear differential equation is chosen as the fractional-
order model. The fractional-order model is utilized
to describe the relationship between the input voltage
and the output displacement of a piezoelectric actua-
tor. Then an identified approach is developed to iden-
tify the parameters of the fractional-order model from
input voltage and output displacement of the piezo-
electric actuator in time domain. Moreover, amplitude
and phase values in frequency domain are employed to
identify the frequency model for further improving the
model accuracy in a wider bandwidth. Validation and
performances evaluation of the proposed approach are
carried out with simulation and experiments.

This paper is organized as follows: an introduction
to fractional-order calculus is given in Sect. 2. Then
in Sect. 3, the fractional-order model of hysteresis is
discussed in more details and its parameters are identi-
fied in time domain. And in Sect. 4, the fractional-order
model is identified with the amplitude and phase val-
ues in frequency domain. Conclusions are followed in
Sect. 5.

2 Fractional-order systems

Fractional calculus is a generalization of integration
and differentiation to non-integer order, with the oper-
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ator t0D
α
t , where t0 and t are the lower boundary and

upper boundary of integration, respectively, and α is
the fractional order, and it can be a complex number. In
general, the operator t0D

α
t is defined as follows [23]:

t0D
α
t =

⎧
⎪⎨

⎪⎩

dα

dtα , Re(α) > 0
1, Re(α) = 0∫

0(dτ)−α, Re(α) < 0

(1)

where Re(α) is the real part of α.
There are kinds of definitions of the explanation of

fractional order operator, such as Grunwald–Letnikov
(G–L) definition and Riemann–Liouville (R–L) defi-
nition. The R–L definition is a common one, which is
shown as follows [23]:

t0D
α
t f (t)

= 1

�(m − α)

(
d

dt

)m

×
∫ t

t0

f (τ )

(t − τ)1−(m−α)
dτ,m − 1 < α < m (2)

where �(.) is the well-known Euler’s gamma function.
In this paper, the approximate calculation of G–L

definition is employed to carry out the numerical sim-
ulation of fractional-order operators, and the G–L def-
inition is given as [23]:

t0D
α
t f (t) = lim

h→0
h−α

×
[(t−t0/h)]∑

j=0

(−1) j
�(α + 1)

�(α − j + 1)�( j + 1)
f (t − jh)

(3)

where �(.) is the well-known Euler’s gamma function;
h is the calculation step; n is an integer.

Fractional-order systems can be represented by a
fractional-order linear differential equation of the form:

a0D
α0 y (t) + · · · + anD

αn y (t)

= b0D
β0u (t) + · · · + bmD

βmu (t) (4)

where u(t) and y(t) are, respectively, the system input
and output. Dα y(t) is the α time derivative of y(t).

If Laplace transform of Dαx(t)with zero initial con-
dition:

L{Dαx(t)} = sαX (s) (5)

Then, taking Laplace transform of the two sides in
Eq. (4), the fractional-order linear time-invariant (LTI)
system can be described by the following transfer func-
tion:

G(s) = Y (s)

U (s)
= b0sβ0 + · · · + bmsβm

a0sα0 + · · · + ansαn
(6)

with α0 < α1 < · · · < αn and β0 < β1 < · · · < βm .
To take advantageof thememory effects of fractional-

order operations, the nonlocalmemory-dominant nature
of hysteresis could be well described and the hysteresis
would be suitable to be described as a fractional-order
model.

In Sects. 3 and 4, different fractional-order models
will be proposed to describe the hysteresis of the piezo-
electric actuator.

3 Hysteresis identification in time domain

In this section, the routine for parameter identifica-
tion in the time domain is given, including modeling,
parameter identification, and optimization. The exper-
imental verification is carried out.

3.1 Hysteresis modeling

To develop the fractional-order hysteresis model for
a piezoelectric actuator, it is necessary to study the
feature of the hysteresis existing in the piezoelectric
actuators. Hysteresis of the piezoelectric actuators is
frequency-dependent and amplitude-dependent. The
characteristics of hysteresis will change when the fre-
quency and amplitude of the input signals change. Sev-
eral hysteresis loops under input sinusoidal signalswith
different frequencies are shown in Fig. 1. Results show
that the hysteresis error will enlarge as the frequency of
input signal increases and the peak-to-peak amplitude
will decrease as the frequency of input signal increases.

Figure 2a shows the PZT actuator used for experi-
mental verification in this paper. It consists of an inte-
gration machine design structure of piezoelectric stack
and flexible hinge. The combined mechanism can be
equivalent to a damped mass-spring system shown in
Fig. 2b. Therefore, based on Newton’s second law
of motion, the governing differential equation of the
piezoelectric actuator can be expressed as:

mẍ(t) + (cp + c)ẋ(t) + (kp + k)x(t) = Fp(t) (7)

where m is the equivalent mass of the piezoelectric
actuator; x(t) is the output displacement of the piezo-
electric actuator; c and cp are, respectively, damping
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Fig. 1 Hysteresis loops with the different frequencies
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Fig. 2 The equivalent dynamic model of the piezoelectric actu-
ator: a schematic diagram of piezoelectric actuator; b the equiv-
alent dynamics model

coefficients of the flexible hinge and the piezoelectric
stack; k and kp are, respectively, the equivalent stiffness
of the flexible hinge and the piezoelectric stack; Fp(t)
is the driving force of the piezoelectric stack, which
can be expressed as:

Fp(t) = nd33kpUp(t) (8)

where n is the number of layer in the piezoelectric
stack; d33 is the piezoelectric constant; Up(t) is the
voltage applied to the piezoelectric stack. Equation (8)
is based on the linear assumption, but the nonlinear hys-
teresis effects cannot be ignored. To describe the hys-
teresis nonlinearity between actual voltages applied to
the piezoelectric stack and the corresponding displace-
ments of the piezoelectric actuator, a hysteresis force
model can be described by a linear fractional-order dif-
ferential equation, which can be given as:

Fp(t) + aDλFp(t) = nd33kpUp(t) + bDδUp(t) (9)

where λ and δ are, respectively, the differential orders
of the driving force and the applied voltage; a and b
are constant gains.

Taking Laplace transform of two sides in Eqs. (7)
and (9), the transfer function of the piezoelectric actu-
ator system is obtained as:

G(s) = X (s)

U (s)

= nd33kp + bsδ

1 + asλ
· 1

ms2 + (c + cp)s + (k + kp)
(10)

where s denotes the Laplace operator; X (s) and U (s)
denote theLaplace transformof x(t) andUp(t), respec-
tively.

In order tomake the identification processmore sim-
ple, Eq. (10) can be simplified to the fractional-order
model of piezoelectric actuators with 10 parameters:

G(s) = a5sa10 + a6
a1sa7 + a2sa8 + a3sa9 + a4

(11)

3.2 Experiment setup

The experimental system shown in Fig. 3 is set up
to obtain the input and output response for identify-
ing the model parameters in Eq. (11). The displace-
ment of a piezoelectric actuator (model P06.X150AK
from coremorrow S&T Co., Ltd) is 175 μm under
150V input signal voltage. The excitation signal of
the piezoelectric actuator is generated by the sig-
nal generator (model AFG310 from Sony-Tektronix)
and amplified by a power amplifier (model M5041
from PI) with a fixed gain of 10 and a bandwidth
of 1000 Hz. The displacement of the PZT actuator
is measured by a laser displacement sensor (model
ILD2200-2 from Micro-epsilon). The input voltage
and output displacement are acquired and stored
by the oscilloscope (model MSOX3050A from Agi-
lent). All the above instruments are installed on the
vibration-isolated platform to reduce external distur-
bances.

3.3 Parameter identification and optimization

The sinusoidal signal is employed to be the input sig-
nal for the identification. The data of sinusoidal input
voltage and output displacement response are recorded
under different frequencies ranging from 1 to 200
Hz.
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Fig. 3 Experimental
platform

In order to obtain the parameters of the established
hysteresis model, particle swarm optimization is used
to obtain the 10 parameters of the hysteresis model
in Eq. (11). And the high-accuracy approximate cal-
culation of G-L definition is employed to carry out
the numerical simulation of fractional-order opera-
tors.

The root-mean-square (RMS) trajectory tracking
error is introduced to be the fitness function of par-
ticle swarm optimization for reflecting the modeling
deviation, which is given by:

eRMS =
√

1
n

∑n
k=1 (yd(k) − y(k))2

max(yd(k)) − min(yd(k))
× 100% (12)

where yd(k) and y(k) are the experimental displace-
ment and simulated displacement. And n is the number
of data for numerical calculation.

For the identification process, sinusoidal input sig-
nals and actual displacement response of 100 Hz is
employed for the parameter estimation. The coeffi-
cients and fractional powers of the model are identified
at the same time.

The model identification procedure in time domain
is as follows:

Step 1: Getting the data of input signals and actual
displacement responses.

Step 2: Selection of the identification parameters and
initial conditions.

Step 3: Parameter estimation using the PSO.
Step 4: Verification. If the model is unstable, steps

from 2 to 4 are repeated.

Themodel parameters are obtained as follows: α1 =
0.5262, α2 = 1.3604, α3 = 0.5801, α4 = 0.9516,
α5 = 0.2433, α6 = 0.5255, α7 = 0.93, α8 = 1.48,
α9 = 0.28, α10 = 1.27, and the accuracy of the identi-
fied fitness function is 1.17%, which is the RMS error.
Accordingly, the identified fractional-order model can
be obtained as:

G(s) = 0.2433s1.27 + 0.5255

0.5262s0.93 + 1.3604s1.48 + 0.5801s0.28 + 0.9516
(13)

The root-mean-square (RMS) trajectory tracking error,
Eq. (12), is also introduced to evaluate the performance
of themodel in the following experimental verification.

3.4 Experimental verifications

The fractional-order model identified with 100 Hz fre-
quency is utilized to verify the hysteresis characteris-
tics under the broadband frequency. The comparison
between experimental results and the fractional-order
model is shown in Fig. 4. The figure contains the com-
parison between the time curve and hysteresis loop at
50 Hz, 100 Hz and 200 Hz. The direction hystere-
sis loops shown in Fig. 4 is anticlockwise. It can be
observed from Fig. 4a, b that the model agrees well
with the experimental data at 100 Hz and the RMS
trajectory tracking error of the model is 1.17%. The
experimental data at 200 Hz shown in Fig. 4c, d have
the RMS trajectory tracking error of 9.10%, as well
as the RMS error 5.98% of 50Hz shown in Fig. 4e,
f. In order to analyze the bandwidth performance of
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Fig. 4 The comparison
between experimental
results and the
fractional-order model with
different frequencies: a
Time curve at 100 Hz; b
Hysteresis loop at 100 Hz; c
Time curve at 200 Hz; d
Hysteresis loop at 200 Hz; e
Time curve at 50 Hz; f
Hysteresis loop at 50 Hz
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time domain fractional model, Bode diagram of the
identified fractional model is plotted in Fig. 5. It is
observed that the model simulation curve only agrees
well with experimental data in 100Hz from the com-
parison of the fractional-order model and experimen-
tal results in Fig. 5. Numerical simulation and experi-
mental results demonstrate the effectiveness of the pro-
posed time domain fractional-order model to describe
the nonlinear hysteresis of piezoelectric actuators at a
specifically identified frequency while it may not agree
well with other frequencies. The identification in the

time domainmay not be suitable formodeling demands
in a wide range of frequencies. In the next section, a
modified approach for fractional-order model identifi-
cation in the frequency domain will be proposed.

4 Hysteresis identification in frequency domain

In this section, to extend the bandwidth of the model
establishedusing fractional calculus, amodified approach
for parameter identification in the frequency domain is
provided.
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Fig. 5 The comparison of the fractional-order model and exper-
imental results in the Bode diagram

4.1 Frequency identification of Hysteresis model

It is mentioned before that the hysteresis error will
enlarge and the output amplitude will decrease with
the increase in the input signal frequency. Moreover,
there are always phase-shift and amplifier modulation
in the hysteresis system. Amplitude error is the ampli-
tude difference and the phase error is the phase lag
between model value and reference value. The hystere-
sis model of piezoelectric actuators can be evaluated
by the two errors if the reference amplitude and phase
values of the PZT hysteresis system are obtained. Fig-
ure 6 shows the schematic diagram of the amplitude
error and phase error in Bode diagram. And it can be
observed that the main differences between the model
values and reference values are amplitude and phase
errors. If the two errors are reduced in each frequency,
the model value and reference value will fit each other
well in full span range. Similarly, the model curve will
have a good agreement with the reference curve in time
domain at each frequency. So the fractional-order hys-
teresismodel can be identifiedwith the changing ampli-
tude and phase values of hysteresis response at different
frequencies in frequency domain.

The original changing reference amplitude and
phase values can be obtained from the input voltage
and output displacement. Then, employing initial cal-
culation to the original values, 17 sets of data of ref-
erence amplitude and phase values are obtained with
several frequencies. All the real hysteresis values will
be used to identify the model in the frequency domain.
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Multi-tracker Optimization Algorithm (MTOA) [35]
is applied to obtain the parameters of the hysteresis
model. To have an accurate estimation of the multidi-
mensional minimization problem, the key issue is to
find a proper set of parameters to minimize the devi-
ation between modeling curve and experimental ref-
erence point in the Bode diagram. Herein, the global
maximum error is employed as the fitness function for
reflecting the modeling deviation, which is given as:

Errormax = max

{√

k2i + 1 − 2ki cosφi

}

(14)
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Fig. 8 The comparison of
experimental results and the
fractional-order model with
different frequencies, a time
curve at 100 Hz; b
hysteresis loop at 100 Hz; c
time curve at 200 Hz; d
hysteresis loop at 200 Hz; e
time curve at 50 Hz; f
hysteresis loop at 50 Hz
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where ki is the ratio of the amplitude reference value
to the model value; ϕi is the difference between phase
reference value and model value.

The coefficients and fractional powers of the model
are identified at the same time. And the model identi-
fication procedure in frequency domain is as follows:

Step 1: Getting the data of the changing amplitude
and phase values in the frequency domain.

Step 2: Selection of the identification parameters and
initial conditions.

Step 3: Parameter estimation using the MTOA.

Step 4: Verification. If the model is unstable, steps
from 2 to 4 are repeated.

Based on the amplitude and phase information
obtained from experimental displacement response
under several frequencies,model parameters ofEq. (11)
are identified as: α1 = 304, α2 = 569324, α3 =
668096, α4 = 292172, α5 = 70714, α6 = 35966,
α7 = 1.998, α8 = 0.892, α9 = 0.927, α10 = 0.875.
And the accuracy of the identified fitness function is
3.76%, which is the global maximum error. Accord-
ingly, the identified fractional-order model can be
described as:
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G(s) = 70714s0.875 + 35966

304s1.998 + 569324s0.892 + 668096s0.927 + 292172
(15)

The stability of the model mainly depends on the dif-
ferential orders, and the stability analysis is employed.
The least common divisor of the differential orders is
d = 0.001. If λ = s0.001, the pole position plot of λ and
the stable boundary can be drawn in Fig. 7. The stabil-
ity boundary is dπ/2 = 0.009◦. It is obvious that all
the poles are located in the stable region, which proves
that the model is stable.

4.2 Experimental verification and discussion

Themodel identified in the frequencydomain is utilized
to verify the hysteresis characteristics under broad-
band frequency. The comparison between experimental
results and the fractional-order model is illustrated in
Fig. 8, containing the time curve and hysteresis loop at
50 Hz, 100 Hz and 200 Hz. And the hysteresis loops
direction of experimental results and fractional-order
model in Fig. 8 is anticlockwise. It can be observed
from Fig. 8a, b that the model agrees well with the
experimental data at 100 Hz, even in the peak and val-
ley cases; they are fitted well with each other. And the
RMS trajectory tracking error of themodel is 1.16%.At
200Hz, it agreeswellwith the experimental data shown
in Fig. 8c, d, and it has the max RMS error in the peak
case but no more than 3.53%. There is the RMS error
1.63% of 50 Hz shown in Fig. 8e, f. It can be viewed
from Bode diagram shown in Fig. 9 that the identified
model has a good agreement with experimental data
in the frequency range from 1 to 200 Hz. To study the
identification accuracy, the proposed fractional-order
models are compared with Bouc–Wen model. Bouc–
Wen model is one of the classical models to describe
nonlinear hysteresis characters and applied to a wide
variety of engineering problems. Table 1 indicates a
comparison of the model errors identified in the time
domain and frequency domain, as well as Bouc–Wen
model. It can be viewed from Table 1 that the pre-
sented identified model in frequency domain has bet-
ter accuracy when compared with Bouc–Wen model
in the wider frequency bandwidth. It illustrates that the
model identified in the frequencydomain performswell
in a wider frequency range from 1 to 200 Hz with the
maximum modeling error 4.47%. Numerical simula-
tion and experimental results demonstrate the identi-
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Fig. 9 The comparison between the fractional-order model and
experimental results in the Bode diagram

fied fractional-order model in the frequency domain
is effective to describe the hysteresis with a wide fre-
quency width. When compared with the proposed fre-
quency domain method, the above time domain iden-
tification method in the Sect. 3 has a larger deviation
due to that only the input and output response under a
constant frequency are employed. On the contrary, all
the output response under a certain of wide bandwidth
is utilized in the frequency domain.

5 Conclusion

In this paper, fractional-order model methods are pro-
posed to describe broadband hysteresis of piezoelec-
tric actuators. The fractional-order model is utilized
to describe the relationship between the input voltage
and the output displacement of a piezoelectric actuator.
An approach is developed to identify the parameters of
the fractional-order model. The fractional-order iden-
tification methods in the time domain are proposed by
using the input voltage and output displacement of the
piezoelectric actuator. Moreover, reference amplitude
and phase values are employed to identify the frac-
tionalmodel in the frequency domain for improving the
model accuracy in a wide bandwidth. Different experi-
ments under time and frequency domain are performed
to verify the effectiveness of the proposedmethods. The
comparison between the identified two models is per-
formed at various frequencies. All results show that the
identified model in the frequency domain has a higher
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Table 1 The comparison of
the model errors

Frequency (Hz) Model error
of Bouc–Wen
model (%)

Model error
identified in time
domain (%)

Model error
identified
in frequency
domain (%)

1 1.57 43.78 4.47

20 2.11 13.72 1.97

30 2.93 9.85 1.57

50 4.73 5.98 1.63

70 6.29 3.15 1.24

100 8.94 1.17 1.16

150 12.94 4.99 1.66

200 17.29 9.10 3.53

prediction accuracy in the frequency bandwidth rang-
ing from 1 to 200 Hz and the maximum error is about
4.47%. The fractional-order model identified in fre-
quency domain will be helpful to precise modeling and
controlling compensation of nonlinear rate-dependent
hysteresis of piezoelectric actuators.
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