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Abstract

A novel linear time-invariant (LTI) system model with fractional de-
gree generalized frequency variables (FDGFVs) is proposed in this paper.
This model can provide a unified form for many complex systems, includ-
ing fractional-order systems, distributed-order systems, multi-agent sys-
tems and so on. This study mainly investigates the stability and robust
stability problems of LTI systems with FDGFVs. By characterizing the
relationship between generalized frequency variable and system matrix, a
necessary and sufficient stability condition is firstly presented for such sys-
tems. Then for LTI systems with uncertain FDGFVs, we present a robust
stability method in virtue of zero exclusion principle. Finally, the effective-
ness of the method proposed in this paper is demonstrated by analyzing
the robust stability of gene regulatory networks.
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1. Introduction

The linear time-invariant (LTI) system with a generalized frequency
variable (GFV) means that its transfer function has the form Ḡ(s) =
G(φ(s)), where G(s) = C(sI −A)−1B +D is the traditional transfer func-
tion of a state-space linear system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

and φ(s) is a scalar function about variable s. φ(s) is called the GFV, since
φ(s) replaces the traditional frequency variable s in the transfer function
G(s). The concept of LTI systems with GFVs was firstly came up by Hara’s
research group for providing a unifying theoretical framework of analysis
and synthesis of multi-agent systems [6, 7]. In recent years, LTI systems
with GFVs have appeared in a variety of areas including gene regulatory
networks [17, 20], biomolecular communication networks [11], multi-robot
formation control problems [6] as well as the control torque distribution of
electric vehicles [35].

Due to the wide application of LTI systems with GFVs, many re-
searchers have begun to investigate their fundamental properties includ-
ing controllability/observability [33], stability [10, 34] and stabilization [9].
However, GFVs mentioned so far are all integer degree rational functions.
In fact, GFVs can be generalized to be fractional degree rational func-
tions or even some complex functions. For example, from the view-point
of the frequency variable, the LTI fractional-order system [18, 23, 27, 38]
can be regarded as an LTI system with GFV, since its transfer function
Ḡ(s) = C(φ(s)I − A)−1B +D, where φ(s) = sα, α ∈ (0, 2); the multiple-
orders fractional system [14, 15, 31] can also be regarded as the LTI system
with the GFV φ(s) = r1s

α1 + r2s
α2 + · · · + rns

αn , α1, α2, · · · , αn ∈ (0, 1);
when fractional-order multi-agent systems are concerned, the GFV φ(s) can
be generalized to be fractional degree rational function [37]; the distributed-
order system [16] essentially belongs to a class of LTI systems with GFVs,
because its transfer function Ḡ(s) = C(s−1ln s I−A)−1B+D. However, to the
best our knowledge, few literatures have studied fractional-order dynamical
systems from the perspective of LTI systems with GFVs.

On the other hand, gene regulatory networks (GRNs) have attracted
wide attention in the biological and biomedical science. This network can
describe the interaction between DNA, mRNA and protein in genetic ex-
pression. Genes on a DNA molecule are firstly transcribed messenger to
mRNAs, then mRNAs are translated into proteins, these proteins activate
or repress the transcription process. Many pioneering works have witnessed
the modeling and analysis of dynamical properties of GRNs. Chen et al. in
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[4] provided a mathematical model for homogeneous GRNs with functional
differential equations and they analyzed the local stability and bifurcation
properties of this model. A sufficient condition was presented in [32] to
ensure the stability of GRNs with heterogeneous nominal systems. Wang
et al. in [36] modelled GRNs by a differential equation with polytopic un-
certainties, they presented a stability condition in terms of linear matrix
inequalities (LMIs). The robust stability problem was investigated in [17]
for large-scale GRNs with parametric or unstructured uncertainties. Very
recently, Hare et al. in [8] further presented robust stability conditions
for MIMO GRN systems with three types of perturbations. However, the
GRN systems addressed by these paper are all characterized by integer-
order differential equations. Ji et al. in [13] built GRN model based on
a fractional-order differential equation and experiment results showed that
the fractional-order differential equations were more suitable to model ge-
netic regulatory mechanism. In recent years, fractional-order GRNs have
aroused great research interest and some criteria on stability analysis have
been established by using the fractional Lyapunov method [12, 28]. How-
ever, till now, no efforts were made on modeling fractional-order GRNs
using LTI systems with fractional degree generalized frequency variables
(FDGFVs).

In this paper, we provide an LTI system model with FDGFVs, while
the GFVs are generalized to be fractional degree rational functions. The
stability and robust stability problems will be investigated for such model.
Although the stability and robust stability problems of LTI systems with
fractional degree frequency variable have been investigated in many refer-
ences [1–3, 5, 19, 22, 24–26, 29], the stability analysis methods provided
in these references are mostly given for the case that frequency variable
φ(s) = sα, α ∈ (0, 2). For more generalized frequency variables, we will
establish stability conditions by analyzing the relationship between GFVs
and system matrix. Based on the zero exclusion principle, robust stabil-
ity conditions are given for LTI systems with uncertain FDGFVs. Finally,
the incommensurate fractional-order GRN systems are modelled as an LTI
system with FDGFV, the stability and the robust stability problem of this
kind of GRN systems are studied by using the GFV method proposed for
the first time in this paper.

Notations. We denote Z, R and C as the set of integer numbers, real
numbers and complex numbers, respectively. Denote C+ as the closed right
half of complex plane and C− = C \ C+. j =

√−1 denotes the imaginary
unit. For a square matrix A, the set of its eigenvalues is denoted by σ(A).
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2. Problem formulation and preliminaries

Consider the following LTI systems with fractional degree GFVs

Ḡ(s) = C(φ(s)In −A)−1B +D, (2.1)

where A ∈ R
np×np , B ∈ R

np×l, C ∈ R
q×np and D ∈ R

q×l are constant
matrices. φ(s) is a FDGFV with the following form

φ(s) =
n(s)

d(s)
=

bmsβm + bm−1sβm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
, (2.2)

where ai, bj (i = 0, · · · , n, j = 0, · · · ,m) are constant coefficients; αi, βj
(i = 0, · · · , n, j = 0, · · · ,m) are fractional degrees and we assume that
αn > αn−1 > · · · > α0 ≥ 0, and βm > βm−1 > · · · > β0 ≥ 0.

The function φ(s) is called commensurate-order if there exist pk, qk ∈ Z

such that αk = pkα, βk = qkα, (0 < α < 1), that is, φ(s) has the following
form:

φ(s) =

∑m
k=0 bks

qkα∑n
k=0 aks

pkα
. (2.3)

The function φ(s) becomes a strictly proper rational function when the
highest degree of the polynomial in the denominator is greater than that
of the polynomial in the numerator.

Now, let us recall the fractional calculus [27]. Without loss of generality,
we assume that the lower bound of the fractional integral is 0 throughout
this paper. The fractional-order integral is defined as,

0D
−α
t f(t) =

1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ,

where Γ(·) is the Gamma function. The Caputo derivative of function f(t)
with order α ∈ (0, 1] is defined by

C
0 D

α
t f(t) =

1

Γ(1− α)

∫ t

0
(t− τ)−αḟ(τ)dτ, (2.4)

where ḟ is the first-order derivative of function f . We denote Dα instead
of C

0 D
α
t for simplicity.

3. Stability analysis

In this section, we will investigate the stability of LTI systems with
FDGFVs. We say that the LTI system Ḡ(s) in (2.1) with FDGFV defined
by (2.2) is BIBO stable if Ḡ(s) has no pole in the closed right half complex
plane.
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Based on φ(s), we define two domains:

Ω+ := {λ ∈ C| ∃s ∈ C+ such that φ(s) :=
n(s)

d(s)
= λ},

and

Ωc
+ := C\Ω+, (3.1)

that is, Ωc
+ = {λ ∈ C| ∀s ∈ C+, φ(s) := n(s)

d(s) �= λ}. Then, a stability

criterion is stated as:

Lemma 3.1. The LTI system Ḡ(s) defined by (2.1) with FDGFV
defined by (2.2) is BIBO stable if and only if λ ∈ Ωc

+, where λ ∈ σ(A) and
Ωc
+ defined in (3.1).

P r o o f. Base on (2.1), it is easily known that all the poles of Ḡ(s)
satisfy the following characteristic equation

|n(s)I − d(s)A| = 0. (3.2)

Thus all the zeros of (3.2) should lie in the left half plane to ensure that the
BIBO stability of system (2.1), which is equivalent to that λ ∈ Ωc

+, where
λ ∈ σ(A). �

From Lemma 3.1, we can know that the stability of LTI system Ḡ(s)
is closely related to the GFV φ(s) and the eigenvalues of matrix A. In
the following, some examples are given to illustrate the stability region Ωc

+

characterized by GFV φ(s).

Example 3.1. Consider LTI system Ḡ(s) defined by (2.1) with FDGFV
φ(s) = sα, α ∈ (0, 2). It is obvious that Ḡ(s) = C(sαI −A)−1B +D is the
transfer function of commensurate fractional order system:{

Dαx(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t).

(3.3)

From references [21, 30], one can know that the stability region Ωc
+

characterized by φ(s) = sα is

Dα := {z : | arg(z)| > απ

2
, z ∈ C}. (3.4)

The domains Dα for 1 < α < 2 and 0 < α < 1 are depicted in Fig. 1 (a)
and Fig. 1 (b), respectively. Thus, fractional-order system (3.3) is stable if
and only if for all λ ∈ σ(A), λ ∈ Dα.
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Figure 1. Stability domain Dα for: (a) 1 < α < 2;
(b) 0 < α < 1.

Example 3.2. Consider the LTI system Ḡ(s) defined by (2.1) with

GFV φ(s) =
∑l

i=1 ris
αi , αi ∈ (0, 1), (i = 1, 2, · · · , l). From references

[14, 15, 31], one can know that Ḡ(s) is the transfer function of the multiple-
order fractional system as follows:{ ∑l

i=1 riD
αix(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t).

(3.5)

The stability region Ωc
+ characterized by φ(s) =

∑l
i=1 ris

αi is the left side
of the curve defined by la

⋃
lb in the complex plane, where la and lb are

symmetrical with respect to the real axis, and

la := {x+ iy| x = x(ω), y = y(ω), ω ∈ [0,+∞)} ,
where {

x(ω) =
∑l

i=1 riω
αi cos(αiπ/2),

y(ω) =
∑l

i=1 riω
αi sin(αiπ/2).

Thus, the multiple orders fractional system (3.5) is stable if and only if for
all λ ∈ σ(A), λ lie in the left part of the curve la

⋃
lb.

Example 3.3. From reference[16], one can see that the distributed-
order LTI system{ ∫ 1

0 Dαx(t)dα = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(3.6)

with transfer function G(s) = C(s−1ln s I −A)−1)B+D is BIBO stable if and
only if all the eigenvalues of A lie on the left of the curve l2 := lc ∪ ld in
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the complex plane, where lc and ld are symmetrical with respect to the real
axis and

lc :=

{
x− jy|x =

2πω lnω

4(lnω)2 + π2
, y =

4ω lnω + 2π

4(lnω)2 + π2

}
with ω ∈ [0,+∞). The stable boundary curve l2 of the distributed-order
system (3.6) is determinated by setting s = jω in the generalized frequency
variable φ(s) = s−1

ln s .

When the fractional-order multi-agent system is concerned , the GFVs
φ(s) can be generalized to be fractional degree rational function as (2.2)
[6, 7]. For this case, it is difficult to draw the boundary of curve determined
by φ(s). Thus we give the following stability criterion:

Theorem 3.1. Consider LTI system Ḡ(s) defined by (2.1) with frac-

tional degree GFV φ(s) = n(s)
d(s) defined by (2.2). Define the fractional degree

polynomial p(λ, s) for λ ∈ C

p(λ, s) := n(s)− λd(s), (3.7)

then the following statements are equivalent:

(i) The LTI system Ḡ(s) is Hurwitz stable.
(ii) σ(A) ⊂ Λ(φ(s)) := {λ ∈ C|p(λ, s) is Hurwitz stable}.

The proof of this theorem can refer to Theorem IV.2 in reference [37].

Remark 3.1. According to Theorem 3.1, the stable analysis of LTI
system Ḡ(s) can be converted into judging the stability of the polynomial
p(λ, s).

In fact, it is still a difficult task to determinate the Hurwitz stability
of polynomial p(λ, s). If h(s) = 1

φ(s) can be easily realized in a state-space

form, then a simpler stability criterion is presented in the following theorem.

Theorem 3.2. Consider LTI system Ḡ(s) defined by (2.1) with FDGFV

φ(s) = n(s)
d(s) defined by (2.2), assume that φ(s) has no zero points in C+,

h(s) = 1
φ(s) has a state realization: h(s) = Ch(s

αI − Ah)
−1Bh, α ∈ (0, 2),

then LTI system Ḡ(s) is Hurwitz stable if and only if for each λ ∈ σ(A),
all the eigenvalues of Ah + λBhCh lie in Dα, where Dα := {z : | arg(z)| >
απ
2 , z ∈ C}.
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P r o o f. Let T be a non-singular matrix such that T−1AT is a Jordan
matrix and λi (i = 1, 2, · · · , n) be eigenvalues of matrix A. Then

det(φ(s)In −A) = 0

⇔ det(φ(s)T−1InT − T−1AT ) = 0

⇔
n∏

i=1

det(φ(s)) det(1− λih(s)) = 0.

On the other hand,

det(1− λh(s)) = det(1− λCh(s
αI −Ah)

−1Bh) = 0

⇔ det(

[
sαI −Ah Bh

λCh 1

]
) = 0

⇔ det(sαI − (Ah + λBhCh)) = 0.

Thus, based on the condition that φ(s) has no zero points in C+, one can
deduce that the LTI system Ḡ(s) in (2.1) is Hurwitz stable if and only if
all the eigenvalues of Ah + λBhCh lie in Dα for every λ ∈ σ(A). �

Example 3.4. Consider the LTI system Ḡ(s) defined by (2.1) with

GFV φ(s) = 1/h(s), h(s) = sα+4
s3α+3s2α+2sα+1

and matrix A =

[
1 2
−2 1

]
. A

state realization is obtained as h(s) = Ch(s
αI −Ah)

−1Bh with

Ah =

⎡⎣ −1 2 −3
1 0 −2
0 1 −2

⎤⎦ , Bh =

⎡⎣ 0
0
−2

⎤⎦ , Ch =
[
0.5 0 0

]
.

By using MATLAB, we can check that φ(s) has no zeros in the closed
right half plane and the eigenvalues of A are λ1 = 1+2j, λ2 = 1− 2j. The
eigenvalue distributions of matrices Ah + λ1BhCh and Ah + λ2BhCh are
labeled by ‘o’ and ‘*’ in Fig. 2, respectively. It follows from Theorem 3.2
and Fig. 2(a) that the LTI systems Ḡ(s) is stable when α = 0.3, since all
the eigenvalues of matrix Ah + λiBhCh, (i = 1, 2), lie in D0.3. Otherwise,
Fig. 2(b) shows that LTI systems Ḡ(s) is unstable when α = 0.6, since
there exist eigenvalues of Ah + λiBhCh, (i = 1, 2), that do not lie in D0.6.
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Figure 2. The eigenvalue distributions of Ah + λBhCh

4. Robust stability analysis

In this section, we study robust stability analysis of LTI systems with
uncertain FDGFVs, and assume that the parameters (ai, bj) and (αi, βj)
in φ(s) defined by (2.2) are unknown, but these parameters belong to the
sets:

Pab := {(ai, bj)| a ≤ ai ≤ ā, b ≤ bj ≤ b̄, },
and

Pαβ := {(ai, bj)| 0 < α ≤ αi ≤ ᾱ, 0 < β ≤ βj ≤ β̄},
where i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

The LTI system Ḡ(s) defined by (2.1) with FDGFV φ(s) defined by
(2.2) is called to be robustly stable if it is BIBO stable for all parameters
(ai, bj) ∈ Pab and (αi, βj) ∈ Pαβ (i = 1, 2, · · · , n, j = 1, 2, · · · ,m).

According to Theorem 3.1, the LTI system Ḡ(s) defined by (2.1) with
GFV φ(s) defined by (2.1) is robustly stable if and only if p(λ, s) = n(s)−
λd(s) is Hurwitz stable for every λ ∈ σ(A) and for all (ai, bj) ∈ Pab and
(αi, βj) ∈ Pαβ (i = 1, 2, · · · , n, j = 1, 2, · · · ,m). Thus, the robust stability
problem of LTI systems with FDGFVs can be converted into analyzing the
robust stability of interval uncertain polynomials p(λ, s) = n(s) − λd(s).
The Zero Exclusion Principle provided in reference [39] has given a method
to determinate the robust stability of a fractional degree polynomial with
interval uncertainties. Based on the Zero Exclusion Principle, we easily
have the following proposition:

Proposition 4.1. Given matrix A, λ ∈ σ(A), consider the fractional
degree polynomial p(s, λ) = n(s) − λd(s), where n(s), d(s) are defined in
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(2.2) and parameters (ai, bj) ∈ Pab and (αi, βj) ∈ Pαβ. Then p(s, λ) is
robustly stable if and only if p(s, λ) contains at least one Hurwitz stable
polynomial and 0 /∈ p(jω, λ) for ∀ω ∈ [0,+∞).

5. An application to fractional-order GRN systems

Consider a fractional-order GRN system described by the following
equation {

Dα1ri = −airi + diui
Dα2pi = ciri − bipi

, yi = [0 1]

[
ri
pi

]
, (5.1)

where ri and pi are the concentrations of mRNA and protein associated
with the i-th gene (i = 1, 2, · · · , n), respectively. Parameters ai > 0 and
bi > 0 are the degradation rates of the mRNA, and protein, respectively.
ci > 0 and di > 0 are the translation and transcription rates, respectively.
α1, α2 ∈ (0, 1) are fractional-orders, and in this paper we admit α1 and α2

to be incommensurate order.
The GRN has a cyclic feedback control, the input variable ui(t) is mod-

eled as

ui(t) =

{
ξipn(t), for i = 1
ξipi−1(t), for i = 2, 3, · · · , n,

ui(t) > 0 activates the transcription of a gene, otherwise ui(t) < 0 represses
the transcription.

The transfer function from ui to yi is

gi(s) =
cidi

sα1+α2 + bisα1 + aisα2 + aibi
. (5.2)

The overall GRN system with cyclic activation-repression interconnec-
tions is modelled as the feedback control system depicted in Fig. 3, where
u(t) := [u1(t), u2(t), · · · , un(t)]T = Ky(t) with

K :=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · ξ1
ξ2 0 0 · · · 0
0 ξ3 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · ξn 0

⎤⎥⎥⎥⎥⎥⎦ . (5.3)

To facilitate the stability analysis described below, we move the gain
cidi into the corresponding feedback gain ξi in K. Thus, the overall system
can be equivalently transformed into the feedback system shown in Fig. 3
by replacing gi(s) by ḡs and K by K̄, where

ḡi(s) =
1

Taibis
α1+α2 + Tais

α1 + Tbis
α2 + 1

, (5.4)
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and

K̄ :=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · ξ1R

2
1

ξ2R
2
2 0 0 · · · 0

0 ξ3R
2
3 0 · · · 0

...
...

. . .
. . .

...
0 0 · · · ξnR

2
n 0

⎤⎥⎥⎥⎥⎥⎦ , (5.5)

where Taibi =
1

aibi
, Tai =

1
ai
, Tbi =

1
bi
, Ri =

√
cidi√
aibi

.

u 1( )g s
2 ( )g s

( )ng s
�

0

0

K

0
y

Figure 3. The scheme representation of the GRN systems
with cyclic interconnection

If a1 = a2 = · · · = an, b1 = b2 = · · · = bn, c1 = c2 = · · · = cn
and d1 = d2 = · · · = dn, then ḡ1(s) = ḡ2(s) = · · · = ḡn(s) = ḡ(s), the
GRN system belongs to a class of homogenous multi-agent systems. The
dynamics of the GRN systems can be represented by

H(s) = (ϕ(s)I − K̄)−1, ϕ(s) =
1

ḡ(s)
, (5.6)

where ḡ(s) is defined in (5.4), K̄ is defined in (5.5).
To this end, we will investigate the stability of the GRN system base

on the GFV method.

Theorem 5.1. The homogenous GRN system with transfer function
defined in (5.6) is BIBO stable if and only if all the eigenvalues of K̄ lie
on the left part of curve la

⋃
lb in the complex plane, where la and lb are

symmetrical with respect to the real axis, and

la := {x+ yj|x = x(ω), y = y(ω), ω ∈ [0,+∞)}, (5.7)

where

x(ω) = Tabω
α1+α2 cos(

π

2
(α1+α2))+Taω

α1 cos(
π

2
α1)+Tbω

α2 cos(
π

2
α2)+1,

y(ω) = Tabω
α1+α2 sin(

π

2
(α1 + α2)) + Taω

α1 sin(
π

2
α1) + Tbω

α2 sin(
π

2
α2).
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P r o o f. From Lemma 3.1, we can know that the homogenous GRN
system with transfer function H(s) defined in (5.6) is Hurwitz stable if and
only if for all λ ∈ σ(K̄), λ �= ϕ(s) when s ∈ C+. It is natural to determine
the boundary of ϕ(s) when s lies on the imaginary axis. Then, for s = jω,
0 ≤ ω < +∞, we have

ϕ(jω) = x(ω) + jy(ω), (5.8)

for s = jω, −∞ < ω < 0, we have

ϕ(jω) = x(ω)− jy(ω), (5.9)

where x(ω) and y(ω) are defined in (5.7). Therefore the stability region of
system (5.6) is the left part of curve la

⋃
lb in the complex plane. �

Example 5.1. Assume that the number of gene is n = 5 and the
parameters (a, b, c, d) and (α1, α2) are given as a = 3, b = 2, c = 2, d = 1.5

and α1 =
√
2
2 , α2 =

√
3
2 , respectively. The nominal dynamics of each gene

is given as

ḡ(s) =
1

1
6s

√
2+

√
3

2 + 1
2s

√
2

2 + 1
2s

√
3

2 + 1
, R2 =

1

2
. (5.10)
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Figure 4. The domain Ωc
+ and the position of eigenvalues of K̄.

Thus Ta = 1
3 , Tb = 1

2 , Tab = 1
6 . The values of ξi are given as ξi =

1(i = 2, 4), ξj = −1(j = 1, 3, 5). One can compute the eigenvalues of

K̄ are λi = 1
2e

j(2i−1)π
5 , (i = 1, 2, · · · , 5), which are labeled by ‘o’ in Fig.

4(a). This figure demonstrates that all the eigenvalues of K̄ lie in the
stability region Ωc

+ characterized by GFV φ(s) = 1
ḡ(s) . Thus it follows from

Theorem 5.1 that the homogenous GRN system with cyclic gain matrix K̄ is
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stable. Given the initial conditions r1(0) = 0.2, p1(0) = −1.5, r2(0) = 1.2,
p2(0) = −0.3, r3(0) = 0.5, p3(0) = −1.3, r4(0) = 0.2, p4(0) = −1.3,
r5(0) = −1.2, p5(0) = 2.5, the state responses of mRNAs ri and proteins
pi, (i = 1, 2, · · · , 5) are depicted in Fig. 5(a) and Fig. 5(b), respectively.
From these figures, we can deduce that the GRN system is stable, which is
coincided with theoretical analysis results.
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Figure 5. The stable state responses of mRNAs and proteins.
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Figure 6. The unstable state responses of mRNAs and proteins.

Otherwise, let we update c = 3 and d = 5 and the other parameters
remain the same, then we can computer R2 = 2

5 and the eigenvalues of

K̄ are λi = 2
5e

j(2i−1)π
5 , (i = 1, 2, · · · , 5), which are labeled by ‘o’ in Fig.

4(b). This figure demonstrate that matrix K̄ has two eigenvalues that
do not lie in the stability region Ωc

+. Thus it follows from Theorem 5.1
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that the homogenous GRN system with cyclic gain matrix K̄ is unstable.
Meanwhile, given above initial conditions, the state responses of mRNAs
ri and proteins pi, (i = 1, 2, · · · , 5) are depicted in Fig. 6(a) and Fig. 6(b),
respectively. From these figures, we can deduce that the GRN system is
unstable, which verifies the theoretical analysis results.

In the following, we will investigate the robust stability of homogenous
GRN system with transfer function

H̄(s) = (φ(s)I −K)−1, φ(s) =
1

g(s)
, (5.11)

where

g(s) =
cd

sα1+α2 + bsα1 + asα2 + ab
. (5.12)

and K is defined in (5.5). We assume that parameters (a, b, c, d) and
(α1, α2) are unknown, but they belong to the following set:

Pabcd := {(a, b, c, d)| 0 ≤ a ≤ ai ≤ ā, 0 ≤ b ≤ bi ≤ b̄,

0 ≤ c ≤ ci ≤ c̄, 0 ≤ d ≤ di ≤ d̄},
and

Pα1α2 := {(α1, α2)| 0 ≤ α1 ≤ α1 ≤ ᾱ1 ≤ 1, 0 ≤ α2 ≤ α2 ≤ ᾱ2 ≤ 1}.
Based on Theorem 3.1, we can get the following propositions:

Proposition 5.1. The homogenous GRN system with transfer func-
tion H̄(s) defined in (5.11) is robustly stable if and only if for all λ ∈ σ(K),
the fractional degree polynomial

p(λ, s) = sα1+α2 + bsα1 + asα2 + ab− λcd (5.13)

is robustly stable for all (a, b, c, d) ∈ Pabcd and (α1, α2) ∈ Pα1α2 .

P r o o f. Let n(s) = sα1+α2 + bsα1 + asα2 + ab, d(s) = cd in (3.7),
Theorem 3.1 implies that this proposition holds. �

Proposition 5.2. The fractional degree polynomial

p(λ, s) = sα1+α2 + bsα1 + asα2 + ab− λcd

is robustly stable for all (a, b, c, d) ∈ Pabcd and (α1, α2) ∈ Pα1α2 , if and only
if p(λ, s) contains at least one Hurwitz stable polynomial and

Δ1(jω) �= Δ2(λ, jω),
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for all ω ∈ [0,+∞), where

Δ1(jω) = (jω)α1+α2 + b(jω)α1 + a(jω)α2 + ab,
Δ2(λ, jω) = λcd.

P r o o f. It follows from Proposition 4.1 that p(λ, s) is robustly stable
for all (a, b, c, d) ∈ Pabcd and (α1, α2) ∈ Pα1,α2 if and only if p(λ, s) contains
at least one Hurwitz stable polynomial and 0 /∈ p(λ, jω) for all ω ∈ [0,+∞),
which is equivalent to that Δ1(jω) �= Δ2(λ, jω) for all ω ∈ [0,+∞). �

Example 5.2. Assume that the number of genes is n = 5, and the
parameters (a, b, c, d) satisfy a = 2.75 ≤ a ≤ ā = 3.25, b = 1.80 ≤ b ≤ b̄ =
2.20, c = 1.90 ≤ c ≤ c̄ = 2.20, d = 1.42 ≤ d ≤ d̄ = 1.63. The fractional
degree parameters (α1, α2) satisfy α1 = 0.5 ≤ α1 ≤ ᾱ1 = 1, α2 = 0.5 ≤
α2 ≤ ᾱ2 = 1. The control gains are given as ξi = 1 (i = 2, 4), ξj = −1

(j = 1, 3, 5), thus one can calculate the eigenvalues of K as λi = e
j(2i−1)π

5 ,
(i = 1, 2, · · · , 5).

From Example 5.1, we can know that the polynomial p(λ, s) defined in
(5.13) is stable when the parameters (a, b, c, d) and (α1, α2) are given as a =

3, b = 2, c = 2, d = 1.5 and α1 =
√
2
2 , α2 =

√
3
2 , respectively. Thus p(λ, s)

defined in (5.13) contains at least one Hurwitz stable polynomial. Δ1(jω)
depicted by blue lines and Δ2(λ, jω) depicted by red lines are shown in Fig.
7(a), respectively. From this figure, we can see that Δ1(jω) �= Δ2(λ, jω)
for all ω ∈ [0,+∞). It follows from Propositions 5.1 and 5.2 that the GRN
system is robustly stable.
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Figure 7. The unstable state responses of mRNAs and proteins.

Next, assume d = 1.42 ≤ d ≤ d̄ = 3 and other parameters are kept
the same, Δ1(jω) depicted by blue lines and Δ2(jω) depicted by red lines
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are shown in Fig. 7(b), respectively. This figure demonstrates that the red
lines are contained in the blue lines, that is, there are some ω ∈ [0,∞) such
that Δ1(jω) = Δ2(λ, jω). Thus Propositions 5.1 and 5.2 imply that the
GRN system is not robustly stable.

6. Conclusions

In this paper, we generalized the GFVs to fractional degree rational
functions. The stability and robust stability problems were investigated
for LTI systems with fractional degree GFVs. We provided necessary and
sufficient conditions to ensure the stability and robust stability of LTI sys-
tems with fractional degree GFVs. Finally, the effectiveness of methods
proposed in this paper is verified by analyzing the stability and robust sta-
bility of incommensurate fractional-order gene regulatory network systems.
The tool of stability analysis adopted in this paper is mainly discriminat-
ing the roots distributions of fractional degree polynomial. However, it is
still a hard and complex task especially for the case that fractional degree
polynomial is with incommensurate order. Therefore, the future research
is to find a simpler tool for checking the stability and robust stability of
LTI systems with FDGFVs.
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