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a b s t r a c t 

In this paper, regional (gradient) exact and approximate observability problems are studied 

on Hadamard-Caputo time fractional distributed parameter systems. Without any knowl- 

edge of the initial vector and its gradient, several equivalent criteria are first provided to 

achieve the regional observability. Based on these, characterizations for both ω−strategic 

and gradient ω-strategic zone sensors are developed. Then, by employing the Hilbert 

Uniqueness Method (HUM), we explicitly reconstruct the initial vector and its gradient re- 

spectively. A one-dimension example is finally included to illustrate our results. 
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1. Introduction 

During the past two decades, time fractional distributed parameter systems (DPSs) with Caputo or Riemann-Liouville

fractional derivatives have been singled out as an outstanding tool to describe the sub-diffusion phenomena [1–4] . This is

due to the fact that fractional derivatives are defined as a kind of convolution and are suitable for modeling these dynamics

while integer order derivative approaches appear to be less accurate [5] . In recent years, ultra-slow diffusion has attracted

increasing attentions. Unfortunately, it’s shown in [6,7] that neither Caputo nor Riemann-Liouville fractional derivative could

well characterize the dynamics of ultra-slow diffusion processes. 

In fact, at the very start, Riemann-Liouville and Caputo fractional derivatives are introduced to bring about particular

convenience, especially in analyzing anomalous phenomena. In case these effects are not present, it’s more appropriate to

adopt a new definition. Therefore, we consider the Hadamard fractional derivatives, in which the power-law kernel functions

in Riemann-Liouville and Caputo fractional derivatives are replaced by logarithmic functions of arbitrary exponent [8,9] . In

addition, the t d 
dt 

in its definition has shown to be invariant on the half-axis in concerns of dilation. With this definition,

new opportunities would be posed to improve the existing results from the theoretical viewpoints. In [10–12] , the Mellin

transformation for Hadamard fractional integral and derivative was considered and several properties were obtained. Some

new results on the initial and boundary value problems of Hadamard differential equations and inclusions were given in

[13] . Meanwhile, two survey papers [14,15] proved the existence and uniqueness theorems for the (weak) solutions of sev-

eral classes of impulse Hadamard fractional differential equations, and provided the analytical solutions presented by the

Mittag-Leffler function and its generalization. For more knowledge in this field, we refer the reader to [16–19] and the
∗ Corresponding author. 
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references cited therein. However, even though Hadamard fractional derivative has abundant application prospects in frac-

tional thermoelasticity [20] , kinetic theory of gases [21] and physical phenomena in fluctuating environments [22] , etc, due

to its unique characteristics in describing ultra-slow diffusions, the analysis on the DPSs with Hadamard fractional deriva-

tives is still on its early stage. 

Note that observability occupies an important place in the analysis of control systems. By means of characterising sen-

sors, one can identify the trajectory of the considered system, i.e., reconstruct the initial state according to the measure-

ments given by the output function. It’s worth remarking that, in case we only concern about the observability on some

subregions we are interested in, the systems don’t need to be observed on the whole domain. As a result, regional analysis

was introduced [23] , which raised a new wave in the observability problem over the years. For instance, the regional gradi-

ent and boundary observability for integer order DPSs were considered by Zerrik et al. [24,25] . Recently, for time fractional

DPSs governed by Riemann-Liouville fractional derivative, the regional gradient observability was firstly developed in [26] .

Besides, similar results were developed for the regional enlarged observability of integer order linear parabolic systems [27] .

One can find more knowledge about the observability analysis and the design of fractional order observers in [28,29] . 

Motivated by the above arguments, in this work, we are concerned with the regional (gradient) exact and approximate

observability for Hadamard-Caputo time DPSs and explore the characterization for sensors to realize the regional (gradient)

strategy. More precisely, the initial state can be also reconstructed according to the output measurements. To this end, the

HUM is applied to the reconstruction of both the initial condition and its gradient. It’s also worth mentioning that in this

paper, we consider a class of Hadamard-Caputo fractional systems with physically interpretable initial conditions similar to

those in Caputo fractional systems. 

The rest of this paper is organized as follows. In Section 2 , the problem under investigation is presented and some

needed definitions and lemmas are recalled. Section 3 and 4 are dedicated to our main results on the regional observability

and regional gradient observability, respectively. An example is finally given to show the correctness of our results. 

2. Preliminary results 

In this section, we formulate the problem to be considered in this paper, and then recall some basic results. 

Let � be an open bounded subset of R 

n with smooth boundary ∂� and consider the following Hadamard-Caputo time

fractional distributed parameter system: ⎧ ⎨ ⎩ 

HC 
a D 

α
t y (x, t) = Ay (x, t) in U, 

y (x, a ) = y 0 (x ) in �, 

y (ξ , t) = 0 on �, 

(2.1)

where U = � × [ a, b] , � = ∂� × [ a, b] , a > 0 and 0 < α < 1. y (x, ·) ∈ AC[ a, b] � { y (x, ·) : [ a, b] → R is absolutely continuous},

A is a bounded linear operator and generates a C 0 −semigroup { T ( t )} on Hilbert space L 2 ( �), while −A a uniformly elliptic

operator. The initial vector y 0 ∈ L 2 ( �) is unknown. Moreover, HC 
a D 

α
t denotes the Hadamard-Caputo fractional derivative to be

specified later. 

The measurements are given by the following output function: 

z(t) = Cy (x, t) , (2.2)

where C : L 2 ( � × [ a, b] ) → L 2 ( a, b; R 

m ) is a bounded operator with dense domain, m donates the number of sensors. 

Let ω ⊆� and 

y 0 (x ) = 

{
y 1 0 (x ) in ω to be estimated , 

y 2 0 (x ) in � \ ω undesired . 
(2.3)

We next consider to reconstruct y 1 
0 
(x ) and its gradient in ω. 

Definition 2.1. [17] The left-sided Hadamard fractional integral of order α ∈ R , 0 < α < 1 of a function f ( t ) is defined by 

H 
a I 

α
t f (t) � 

1 

�(α) 

∫ t 

a 

(
log 

t 

s 

)α−1 

f (s ) 
ds 

s 
. (2.4)

Definition 2.2. [17] Let 0 < α < 1. If f ( t ) is absolutely continuous on [ a , b ], where 0 < a < b < ∞ . Then the left-sided

Hadamard-Caputo fractional derivative is defined by 

HC 
a D 

α
t f (t) � 

1 

�(1 − α) 

∫ t 

a 

(
log 

t 

s 

)−α

f ′ ( s ) ds. (2.5)

Definition 2.3. The restriction map p ω is defined by 
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p ω y = 

{
y in ω, 

0 in � \ ω. 

And p ∗ω , the adjoint operator of the restriction map p ω is defined by 

p ∗ω f (x ) = 

{
f (x ) , x ∈ ω, 

0 , x ∈ � \ ω. 
(2.6) 

In particular, if n = 1 , we denote p ω as p 1, ω , so does p ∗
1 ,ω . 

In addition, the following two lemmas are necessary to obtain our main results. 

Lemma 2.1. [30] Suppose f ( t ) is continuous, then the unique solution of system ⎧ ⎨ ⎩ 

HC 
a D 

α
t y (x, t) = Ay (x, t) + f (t) in U, 

y (x, a ) = y 0 (x ) in �, 

y (ξ , t) = 0 on �

(2.7) 

is given by 

y (x, t) = S α

(
log 

t 

a 

)
y 0 (x ) + 

∫ t 

a 

(
log 

t 

s 

)α−1 

K α

(
log 

t 

s 

)
f (s ) 

ds 

s 
, (2.8)

where S α(t) = E α( At α) and K α(t) = E α,α( At α) . 

Proof. Applying Hadamard fractional integral of order α on both sides of the first equation in (2.7) , we have 

y (x, t) = y 0 (x ) + 

1 

�(α) 

∫ t 

a 

(
log 

t 

s 

)α−1 

( Ay (x, s ) + f (s ) ) 
ds 

s 
. (2.9) 

Since f ( t ) is continuous in [ a , b ], a positive constant M can be found such that ‖ f ( t ) ‖ ≤ M . This yields that all assumptions in

[15, Theorem 3.8] hold. Then, in order to obtain the existence for the solutions of (2.9) , we construct the following Picard

iterative sequence { 

η0 (x, t) = y 0 (x ) , 

ηi (x, t) = y 0 (x ) + 

1 

�(α) 

∫ t 
a 

(
log 

t 

s 

)α−1 

( Aηi −1 (x, s ) + f (s ) ) 
ds 

s 
, (x, t) ∈ U, i = 1 , 2 , · · · . 

Similar to Claims 1 ∼ 3 in [15] , we get that 

(i) ηi ( x , t ) ∈ C ( U ), i = 1 , 2 , . . . ; 

(ii) { ηi (x, t) } ∞ 

i =1 converges uniformly to η( x , t ) for ( x , t ) ∈ U ; 

(iii) η(x, t) = lim i →∞ 

ηi (x, t) is the continuous solution of (2.9) . 

From the iterative sequence, we get 

ηi (x, t) = y 0 (x ) + 

1 

�(α) 

∫ t 

a 

(
log 

t 

s 

)α−1 

( Aηi −1 (x, s ) + f (s ) ) 
ds 

s 

= y 0 (x ) + 

1 

�(α) 

∫ t 

a 

(
log 

t 

s 

)α−1 

Ay 0 (x ) 
ds 

s 
+ 

1 

�(α) 

∫ t 

a 

(
log 

t 

s 

)α−1 

f (s ) 
ds 

s 

+ 

1 

( �(α) ) 
2 

∫ t 

a 

(
log 

t 

s 

)α−1 

A 

∫ s 

a 

(
log 

s 

u 

)α−1 

( Aηi −2 (x, u ) + f (u ) ) 
du 

u 

ds 

s 

= y 0 (x ) + 

A 

(
log t 

a 

)α
�(α + 1) 

y 0 (x ) + 

1 

�(α) 

∫ t 

a 

(
log 

t 

s 

)α−1 

f (s ) 
ds 

s 

+ 

1 

�(2 α) 

∫ t 

a 

(
log 

t 

s 

)2 α−1 

A ( Aηi −2 (x, s ) + f (s ) ) 
ds 

s 

= · · ·

= 

i ∑ 

k =0 

A 

k 
(
log t 

a 

)kα
�(kα + 1) 

y 0 (x ) + 

1 

�(α) 

∫ t 

a 

(
log 

t 

s 

)α−1 i ∑ 

k =0 

A 

k 
(
log t 

s 

)kα
�((k + 1) α) 

f (s ) 
ds 

s 

→ S α

(
log 

t 

a 

)
y 0 (x ) + 

∫ t 

a 

(
log 

t 

s 

)α−1 

K α

(
log 

t 

s 

)
f (s ) 

ds 

s 
, 

as i → ∞ . 

Moreover, suppose that y 1 ( x , t ), y 2 ( x , t ) are two solutions of (2.9) , and denote ̃  y (x, t) = y 1 (x, t) − y 2 (x, t) . Then we have 

‖ ̃

 y (x, t) ‖ 

≤ 1 

�(α) 

∫ t (
log 

t 

s 

)α−1 

‖ A ‖ ‖ ̃

 y (x, s ) ‖ 

ds 

s 
. 
a 
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According to a generalized Gronwall’s Inequality (see [31, Theorem 4] ), we get ˜ y (x, t) = 0 , and thus, (2.9) exists a unique

solution in U . It’s not difficult to know y ( x , t ) is a solution of (2.7) if and only if y ( x , t ) satisfies (2.9) . Therefore, (2.7) has a

unique solution y (x, t) = S α
(
log t 

a 

)
y 0 (x ) + 

∫ t 
a 

(
log t s 

)α−1 
K α

(
log t s 

)
f (s ) ds 

s . �

Remark 2.1. For A being an infinitesimal generator of a C 0 -semigroup, S α( t ) denotes the so-called α-times resolution family

of the fractional differential equations. It’s not the Mittag-Leffler function as introduced for finite-dimensional system cases,

but with similar properties. In particular, if A is a real number or square matrix, then S α( t ) and K α( t ) are known as the

Mittag-Leffler function and its generalization. For more arguments and properties of S α( t ), K α( t ), we refer the reader to

[32–34] . 

Lemma 2.2. [35] Let U be a closed, convex subset of a real Hilbert space H. Assume π(u, v ) be a continuous symmetric bilinear

form on H satisfying 

π(u, u ) ≥ c ‖ 

u ‖ 

2 
, ∀ u ∈ H, 

for some c > 0 . Then there exists a unique element u ∈ U such that 

π(u, u ) = inf 
v ∈ U 

π(v , v ) . 

3. Regional observability 

By Lemma 2.1 , the solution of (2.1) is y (x, t) = S α
(
log t 

a 

)
y 0 (x ) . Then, the output function (2.2) satisfies 

z(t) = CS α

(
log 

t 

a 

)
y 0 (x ) . (3.10)

Since C is densely defined, both C ∗ and ( CS α) ∗, the adjoint operators of C and CS α exist, respectively, and ( CS α) ∗ = S ∗αC ∗.

Define Q(t) = CS α
(
log t 

a 

)
. Then we have Q ∈ L 

(
L 2 (�) , L 2 ( a, b; R 

m ) 
)
. Hence, Q 

∗: L 2 ( a, b; R 

m ) → L 2 (�) , the adjoint operator

of Q can be given by 

Q 

∗z = 

∫ b 

a 

S ∗α

(
log 

s 

a 

)
C ∗z(s ) ds = 

∫ log b 
a 

0 

ae s S ∗α(s ) C ∗z ( ae s ) ds. (3.11)

Definition 3.1. [3,25] System (2.1)–(2.2) is said to be regionally exactly observable in ω and respectively, regionally approx-

imately observable in ω, if y 1 0 (x ) ⊆ L 2 (�) can be uniquely determined by z ( x , t ) and respectively, 

Ker 
(
Q p ∗1 ,ω 

)
= { 0 } . 

In fact, the regional exact observation problem is to find an operator H : L 2 ( a, b; R 

m ) → L 2 (ω) such that Hz = y 1 
0 
. Here,

we introduce H = p 1 ,ω Q 

∗. Then we conclude the following theorems. 

Theorem 3.1. The following statements are equivalent: 

(i) System (2.1) –(2.2) is regionally exactly observable in ω; 

(ii) Im ( H ) = L 2 (ω) ; 

(iii) Ker 
(

p 1 ,ω 
)

+ Im (Q 

∗) = L 2 (�) ; 

(iv) There is a constant c > 0 such that 

‖ 

z ‖ L 2 (ω) ≤ c ‖ 

H 

∗z ‖ L 2 ( a,b;R m ) , ∀ z ∈ L 2 (ω) . (3.12)

Proof. The equivalence between ( i ) and ( ii ) can be easily obtained from Definition 3.1 . In Theorem 1 of [36] , choose X = Z =
L 2 (ω) , Y = L 2 (�) , f = I, the identity operator and g = H, we have (i ) ⇔ (i v ) . So we only need to prove ( ii ) ⇔ ( iii ). 

( ii ) ⇒ ( iii ): For any x 1 ∈ Ker ( p 1, ω ), x 2 ∈ Im ( Q 

∗), since 

p 1 ,ω ( x 1 + x 2 ) = p 1 ,ω x 2 ∈ Im ( H ) = L 2 (ω) , 

we have x 1 + x 2 ∈ L 2 (�) , that is, 

Ker ( p 1 ,ω ) + Im (Q 

∗) ⊆ L 2 (�) . (3.13)

Next, for any x ∈ L 2 ( �), define ˜ x � p 1 ,ω x ∈ L 2 (ω) = Im ( H ) , and y � x −˜ x . So, there exists a z ∈ L 2 ( �), such that Hz = ̃x .

Then ̃

 x ∈ Im (Q 

∗) and 

p 1 ,ω y = p 1 ,ω ( x −˜ x ) = p 1 ,ω x − p 1 ,ω ̃  x = 0 , 

that is, y ∈ Ker ( p 1, ω ). Hence, 

L 2 (�) ⊆ Ker ( p 1 ,ω ) + Im (Q 

∗) . (3.14)

( iii ) ⇒ ( ii ): From ( iii ), we have for any x ∈ L 2 ( ω) ⊆ L 2 ( �), there exists x 1 ∈ Ker ( p 1, ω ) and x 2 ∈ Im ( Q 

∗), such that x = x 1 + x 2 .

Then there is a z ∈ L 2 ( �), such that Q 

∗z = x 2 . So we have 

x = p 1 ,ω x = p 1 ,ω ( x 1 + Q 

∗z ) = Hz ∈ Im ( H ) , 
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that is, 

L 2 (ω) ⊆ Im ( H ) . (3.15) 

Next, for any x ∈ Im ( H ), together with the definition of Q 

∗, we immediately have that there exists a z ∈ L 2 ( �), such that

Hz = x ∈ L 2 (ω) , namely 

Im ( H ) ⊆ L 2 (ω) . (3.16) 

Combining (3.13) ∼ (3.16) , we know that ( ii ) ⇔ ( iii ) and complete the proof. �

Theorem 3.2. The following statements are equivalent: 

(i) System (2.1) –(2.2) is regionally approximately observable in ω; 

(ii) Im ( H ) = L 2 (ω) ; 

(iii) Ker 
(

p 1 ,ω 
)

+ Im (Q 

∗) = L 2 (�) ; 

(iv) HH 

∗ is a positive definite operator; 

(v) Suppose y ∈ L 2 ( ω) satisfies that 

〈 Hz, y 〉 = 0 , ∀ z ∈ L 2 (�) , 

then y = 0 , where 〈 · , · 〉 denotes the inner product. 

Proof. Similar to the proof of Theorem 3.1 , we can easily prove ( i ) ⇔ ( ii ) and ( ii ) ⇒ ( iii ). The equivalence between ( i ) and (v )
can be given according to Proposition 3 in [25] with certain modifications. Thus we omit it. 

( iii ) ⇒ ( ii ): Im ( H ) ⊆ L 2 (ω) can be easily obtained from the range of Q 

∗. 

Next, for any z ∈ L 2 ( ω), we know p ∗
1 ,ω z ∈ L 2 (�) ⊆ L 2 (ω) is also arbitrary. From (iii), there are x ∈ Ker ( p 1, ω ) and y ∈ Im (Q 

∗) ,
such that p ∗

1 ,ω z = x + y . Then, for any ε > 0, there exists ̃  y ∈ L 2 ( a, b; R 

m ) , s.t. ‖ ̃  y − y ‖ < ε. Hence, we have ∥∥H ( x + ̃

 y ) − p ∗1 ,ω z 
∥∥

L 2 (ω) 
< ε, 

that is, L 2 (ω) ⊆ Im ( H ) . Therefore, 

Im ( p 1 ,ω Q 

∗) = L 2 (ω) . (3.17) 

Combining (3.17) with ( ii ) ⇒ ( iii ), we conclude ( ii ) ⇔ ( iii ). 

(ii ) ⇔ (i v ) : For any y , z ∈ L 2 ( ω), we have 

〈 H H 

∗y, z〉 = 〈 y, H H 

∗z〉 
and 〈 H H 

∗y, y 〉 = 〈 H 

∗y, H 

∗y 〉 . These, together with the equivalence between Im ( H ) = L 2 (ω) and the domain of HH 

∗ is dense

in L 2 ( ω) lead to the result. �

Next, we discuss the description of the sensors in the case that the studied system is regionally observable and provide

the minimum m to determine the initial value. 

Definition 3.2. [3] The sensor (sensors) is (are) said to be ω-strategic if system (2.1)–(2.2) is regionally approximately ob-

servable in ω. 

Suppose that λ1 , λ2 , . . . , λk , . . . are the eigenvalues of −A with the corresponding multiplicities r 1 , r 2 , . . . , r k , . . . , satisfying

0 < λ1 < . . . < λk < . . . , and lim k →∞ 

λk = ∞ . The orthonormal eigenfunctions αk j (x ) , j = 1 , 2 , . . . , r k corresponding to λk , for

k = 1 , 2 , . . . form an orthonormal basis of L 2 ( �). So we know, for any y 0 ( x ) ∈ L 2 ( �), 

S α(t) y 0 (x ) = 

∞ ∑ 

k =1 

r k ∑ 

j=1 

E α
(
−λ j t 
)〈 y 0 (x ) , αk j (x ) 〉 αk j (x ) . 

In [37] , El Jai et al. put forward that a sensor can be characterized by ( P , d ), where P ⊆� stands for the location of

the sensor and d is its corresponding spatial distribution. Thus, we consider system (2.1) with m zone sensors z(t) =
( z 1 (t) , z 2 (t ) , . . . , z m 

(t ) ) 
� 
, where z i (t) = 

∫ 
P i 

d i (x ) y (x, t) dx, i = 1 , 2 , . . . , m . 

Theorem 3.3. Denote d i 
k j 

(x ) = 〈 χP i 
d i (x ) , αk j (x ) 〉 and define 

D k = 

⎡ ⎢ ⎣ 

d 1 
k 1 

(x ) · · · d 1 
kr k 

(x ) 

. . . · · ·
. . . 

d m 

k 1 
(x ) · · · d m 

kr k 
(x ) 

⎤ ⎥ ⎦ 

. 

Then the sensors ( P i , d i (x ) ) , i = 1 , 2 , . . . , m are ω-strategic if and only if 

m ≥ r � sup { r k } and rank D k = r k , f or k = 1 , 2 , . . . . (3.18)
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Proof. According to Definition 3.1 and 3.2 , ( P i , d i (x ) ) , i = 1 , 2 , . . . , m are ω-strategic if and only if 

K er ( H 

∗) = K er 

(
CS α

(
log 

t 

a 

)
p ∗1 ,ω 

)
= { 0 } . (3.19)

For any y ∈ L 2 ( �), according to 

H 

∗y (x ) = C 

∞ ∑ 

k =1 

r k ∑ 

j=1 

E α

(
−λ j 

(
log 

t 

a 

)α
)

〈 p ∗1 ,ω y (x ) , αk j (x ) 〉 αk j (x ) , (3.20)

we have the equivalence between (3.19) and 

∞ ∑ 

k =1 

r k ∑ 

j=1 

E α

(
−λ j 

(
log 

t 

a 

)α
)

D k y k = 0 ⇒ y = 0 , (3.21)

where y k = 

(
y k 1 (x ) , y k 2 (x ) , . . . , y kr k 

(x ) 
)T 

and y k j (x ) = 

〈
p ∗

1 ,ω y (x ) , αk j (x ) 
〉
, j = 1 , 2 , . . . , r k . Now, we only need to prove

(3.18) ⇔ (3.21) . 

(3.21) ⇒ (3.18) : If m < sup { r k }, that is, there exists an integer number ̃  k , such that m < r ˜ k 
. Then there is a nonzero ˜ y ∈

L 2 (ω) , s.t. D ˜ k 
y ˜ k 

= 0 , i.e., 

∞ ∑ 

k =1 

r k ∑ 

j=1 

E α

(
−λ j 

(
log 

t 

a 

)α
)

D ˜ k 
y ˜ k 

= 0 , 

which leads to a contradiction. 

If m ≥ sup { r k }, there is an integer number ̃  k , such that rank D ˜ k 
< r ˜ k 

. From the knowledge of linear algebra, we can easily

know that there is a nonzero ̃  y ∈ L 2 (ω) , s.t. D ˜ k 
y ˜ k 

= 0 , which contradicts to (3.21) . 

(3.18) ⇒ (3.21) : If there exists a nonzero ̃  y ∈ L 2 (ω) , such that for some ̃  k , y ˜ k 
� = 0 and 

∞ ∑ 

k =1 

r k ∑ 

j=1 

E α

(
−λ j 

(
log 

t 

a 

)α
)

D ˜ k 
y ˜ k 

= 0 . 

Since E α

(
−λ j 

(
log t 

a 

)α)
> 0 , for all t ∈ [ a , b ], we immediately have D ˜ k 

y ˜ k 
= 0 . Then rank D ˜ k 

< r ˜ k 
, which leads to a contradic-

tion. And the proof is completed. �

Remark 3.1. If for every k , λk is a single value, that is, r k = 1 , then Theorem 3.3 shows that the initial condition y 1 0 (x ) of

system (2.1)–(2.2) can be reconstructed by one sensor; and if there is a ̃  k , such that the multiplicity of λ˜ k 
is infinite, then

the number of sensors should be infinite. 

The last part in this section is to provide a method to reconstruct y 1 
0 
(x ) on ω. The HUM, which was first introduced by

Lions [35,38] , is the main approach to be applied here. Moreover, the residual initial condition in �\ ω doesn’t need to be

taken into account. 

Define G = Im ( H ) . For any g ∈ G 

∗, where G 

∗ is the dual space of G , consider the following system ⎧ ⎨ ⎩ 

HC 
a D 

α
t ϕ(x, t) = Aϕ(x, t) in U, 

ϕ(x, a ) = p ∗ω g(x ) in �, 

ϕ(ξ , t) = 0 on �. 

(3.22)

Define 

‖ g ‖ 

2 
G ∗� 

∫ b 

a 

∥∥∥∥1 

t 
Cϕ 

(
x, 

ab 

t 

)∥∥∥∥2 

dt, (3.23)

then we have the following lemma. 

Lemma 3.1. If system (2.1) –(2.2) is regionally approximately observable in ω, then (3.23) defines a norm on G 

∗. 

Proof. We can easily prove that (3.23) is a semi-norm on G 

∗. According to Lemma 2.1 , the solution of (3.22) is given by 

ϕ(x, t) = S α

(
log 

t 

a 

)
p ∗1 ,ω g(x ) . (3.24)

Since system (2.1)–(2.2) is regionally approximately observable in ω, from Definition 3.2 , we have 

K er ( H 

∗) = K er 

(
CS α

(
log 

t 

a 

)
p ∗1 ,ω 

)
= { 0 } . (3.25)
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This, together with ‖ g ‖ G ∗= 0 ⇔ CS α( log b t ) p 
∗
1 ,ω g = 0 , leads to 

‖ g ‖ G ∗= 0 ⇒ g = 0 . (3.26) 

Therefore, (3.23) defines a norm on G 

∗. �

Now, consider about the following system ⎧ ⎨ ⎩ 

HC 
a D 

α
t �(x, t) = A 

∗�(x, t) + C ∗ν(x, t) in U, 

�(x, a ) = 0 in �, 

�(ξ, t) = 0 on �, 

(3.27) 

which can be regarded as the dual system of (2.1) , where 

ν(x, t) = 

1 

t 
Cϕ(x, 

ab 

t 
) = 

1 

t 
CS α

(
log 

b 

t 

)
p ∗1 ,ω g(x ) . 

For any g ∈ G 

∗, define 

F g � p 1 ,ω 
H 
a I 

1 −α
t �(x, b) . (3.28) 

Then, according to the HUM, system (2.1)–(2.2) is regionally observable if and only if (3.28) has a solution in G 

∗. 

Theorem 3.4. If system (2.1) –(2.2) is regionally approximately observable in ω, then (3.28) has a unique solution g ∈ G 

∗. Further-

more, the initial vector can be reconstructed by 

y 1 0 = g. 

The following lemma plays a key role to prove Theorem 3.4 . 

Lemma 3.2. For any t ∈ [ a , b ] and α ∈ (0, 1), the solution �( x , t ) of system (3.27) has the property 

H 
a I 

1 −α
t �(x, t) = 

∞ ∑ 

k =1 

r k ∑ 

j=1 

∫ t 

a 

E α

(
−λ j 

(
log 

t 

τ

)α
)

〈 ν(x, τ ) , αk j (x ) 〉 dτ

τ
· αk j (x ) . (3.29)

Proof. According to Lemma 2.1 , the solution of (3.27) can be expressed by 

�(x, t) = 

∫ t 

a 

(
log 

t 

s 

)α−1 

K 

∗
α

(
log 

t 

s 

)
C ∗ν(x, s ) 

ds 

s 

= 

∞ ∑ 

k =1 

r k ∑ 

j=1 

∫ t 

a 

(
log 

t 

s 

)α−1 

E α,α

(
−λ j 

(
log 

t 

s 

)α
)

〈 C ∗ν(x, s ) , αk j (x ) 〉 ds 

s 
· αk j (x ) . 

(3.30) 

From (2.4) and (3.30) , we have 

H 
a I 

1 −α
t �(x, t) = 

1 

�(1 − α) 

∫ t 

a 

(
log 

t 

s 

)−α

�(x, s ) 
ds 

s 

= 

∞ ∑ 

k =1 

r k ∑ 

j=1 

∫ t 

a 

∫ t 

τ

∞ ∑ 

n =0 

(
−λ j 

)n (
log t 

s 

)−α(
log s 

τ

)nα+ α−1 

�(nα + α)�(1 − α) 

ds 

s 
· 〈 ν(x, τ ) , αk j (x ) 〉 dτ

τ
· αk j (x ) 

= 

∞ ∑ 

k =1 

r k ∑ 

j=1 

∫ t 

a 

∞ ∑ 

n =0 

(
−λ j 

)n 
h (t, τ ) 

�(nα + α) B (nα + α, 1 − α) 
· 〈 ν(x, τ ) , αk j (x ) 〉 dτ

τ
· αk j (x ) , (3.31) 

where B (nα + α, 1 − α) is the Beta function defined by 

B (nα + α, 1 − α) = 

∫ 1 

0 

x nα+ α−1 (1 − x ) −αdx (3.32) 

and 

h (t, τ ) = 

∫ t 

τ

(
log 

t 

s 

)−α(
log 

s 

τ

)nα+ α−1 ds 

s 

= 

(
log 

t 

τ

)nα ∫ 1 

0 

u 

nα+ α−1 (1 − u ) −αdu 

= 

(
log 

t 

τ

)nα

B (nα + α, 1 − α) . 

(3.33) 

The second equality in (3.33) is provided by variable transformation u = 

log s −log τ
log t−log τ

. 
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Substituting (3.32) and (3.33) into (3.31) , we get 

H 
a I 

1 −α
t �(x, t) = 

∞ ∑ 

k =1 

r k ∑ 

j=1 

∫ t 

a 

E α

(
−λk 

(
log 

t 

τ

)α
)

· 〈 ν(x, τ ) , αk j (x ) 〉 dτ

τ
· αk j (x ) . (3.34)

The proof is completed. �

Now, we prove Theorem 3.4 . 

Proof of Theorem 3.4 . Since system (2.1)–(2.2) is regionally approximately observable in ω, from Lemma 3.1 , we know

‖ ·‖ G ∗ defines a norm on G 

∗. 

According Lemma 3.2 , ∀ g ∈ G 

∗, we have 

〈 F g, g 〉 = 

〈
p 1 ,ω 

H 
a I 

1 −α
t �(x, b) , g 

〉
= 

〈 
p 1 ,ω 

∞ ∑ 

k =1 

r k ∑ 

j=1 

∫ t 

a 

E α

(
−λk 

(
log 

t 

τ

)α
)

· 〈 ν(x, τ ) , αk j (x ) 〉 dτ

τ
· αk j (x ) , g(x ) 

〉 

= 

〈∫ b 

a 

1 

τ 2 
S ∗α

(
log 

b 

τ

)
C ∗CS ∗α

(
log 

b 

τ

)
p ∗1 ,ω g(x ) dτ, p ∗1 ,ω g(x ) 

〉
= 

∫ b 

a 

∥∥∥∥1 

t 
Cϕ 

(
x, 

ab 

t 

)∥∥∥∥2 

dt = ‖ 

g ‖ 

2 
G ∗ . (3.35)

Applying Lemma 2.2 , (3.28) has a unique solution g(x ) = y 1 
0 
(x ) and the initial vector y ( x ) in ω is also estimated. 

4. Regional gradient observability 

First, we introduce some new definitions necessary in this section and need to modify parts of definitions and assump-

tions due to the gradient operator. 

Similar to (3.10) , the output function is given by 

z(x, t) = CS α

(
log 

t 

a 

)
y 0 (x ) � 

˜ Q (t) y 0 (x ) , (4.36)

where ˜ Q : H 

1 
0 
(�) → L 2 ( a, b; R 

m ) . Moreover, the adjoint operator of ˜ Q has the same representation as that of Q , shown in

(3.11) . 

Definition 4.1. [39] ∇ : H 

1 
0 
(�) → (L 2 (�)) n is the gradient operator defined by 

∇y � 

(
∂y 

∂x 1 
, 

∂y 

∂x 2 
, · · · , 

∂y 

∂x n 

)
. 

And ∇ 

∗ : 
(
L 2 (�) 

)n → H 

−1 (�) , y �→ h , the adjoint operator of ∇ , is given by the unique solution of {
�h = −di v y in �, 

h = 0 on ∂�. 

Definition 4.2. [3,25] System (2.1)–(2.2) is said to be regionally gradient exactly observable in ω and respectively, regionally

gradient approximately observable in ω, if the gradient of y 1 
0 
(x ) can be uniquely determined by the observation z ( x , t ) and

respectively, 

Ker 
(˜ Q ∇ 

∗ p ∗ω 
)

= { 0 } . 
In addition, we assume y 0 (x ) ∈ H 

1 
0 
(�) . Then, the regional gradient observability problem aims to reconstruct ∇y 1 

0 
, the

gradient of the initial vector in ω. Here,we define ˜ H : L 2 (a, b; R 

m ) → (L 2 (ω)) n , z �→ p ω ∇ ̃

 Q 

∗z such that ˜ H z = ∇y 1 0 . Then we

have the following theorems for the regional gradient observability. 

Theorem 4.1. The following statements are equivalent: 

(i) System (2.1) –(2.2) is regionally gradient exactly observable in ω; 

(ii) Im ( ̃  H ) = (L 2 (ω)) n ; 

(iii) Ker(p ω ) + Im (∇ ̃

 Q 

∗) = (L 2 (�)) n ; 

(iv) There is a constant c > 0 such that, for any z ∈ ( L 2 ( ω)) n , 

‖ z‖ (L 2 (ω)) n ≤ c‖ ̃

 H 

∗z‖ L 2 (a,b;R m ) . (4.37)

Theorem 4.2. The following statements are equivalent: 

(i) System (2.1) –(2.2) is regionally gradient approximately observable in ω; 
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(ii) Im 

(˜ H 

)
= 

(
L 2 (ω) 

)n 
; 

(iii) Ker ( p ω ) + Im (∇ ̃

 Q 

∗) = 

(
L 2 (�) 

)n 
; 

(iv) ˜ H ̃

 H 

∗ is a positive definite operator; 

(v) Suppose y ∈ ( L 2 ( ω)) n . If for any z ∈ ( L 2 ( �)) n , 〈˜ H z, y 
〉
= 0 , 

then y = 0 . 

The proofs of Theorems 4.1 and 4.2 can be given similarly to those of Theorems 3.1 and 3.2 , respectively, with some

modifications due to the gradient operator ∇ , its adjoint operator ∇ 

∗ and different Hilbert spaces. Hence, we omit it. 

Remark 4.1. For both regional observability and regional gradient observability, there are certain systems which are not

(gradient) observable on �, but regionally (gradient) observable on ω � �. An example will be given to illustrate this situa-

tion later in Section 5 . 

Then, we aim to link the characteristic of sensors with the regional gradient approximate observability of the system

under consideration. Suppose that the measurements of the system are given by m zone sensors ( P i , d i ( x )), i = 1 , . . . , m, that

is 

z i (t) = 〈 y (x, t) , d i (x ) 〉 L 2 (P i ) 
, 

for i = 1 , . . . , m . 

Definition 4.3. The sensor (sensors) is (are) said to be gradient ω-strategic if system (2.1)–(2.2) is regionally gradient ap-

proximately observable in ω. 

Theorem 4.3. Define 

D 

l 
k � 

∂ 

∂x l 

⎡ ⎢ ⎣ 

d 1 
k 1 

(x ) αk 1 (x ) · · · d 1 
kr k 

(x ) αkr k 
(x ) 

. . . · · ·
. . . 

d m 

k 1 
(x ) αk 1 (x ) · · · d m 

kr k 
(x ) αkr k 

(x ) 

⎤ ⎥ ⎦ 

, 

where d i 
k j 

(x ) � 〈 χP i 
d i (x ) , αk j (x ) 〉 , l = 1 , 2 , . . . , n . Then (P i , d i (x )) , i = 1 , 2 , . . . , m are gradient ω-strategic if and only if for any

y ∈ ( L 2 ( ω)) n , 

∞ ∑ 

k =1 

r k ∑ 

j=1 

E α( −λk t 
α) 

n ∑ 

l=1 

D 

l 
k �kl = 0 ⇒ y = 0 , (4.38) 

where �kl � 

(
y k 1 l , . . . , y kr k l 

)� 
, y k jl � 

〈
p ∗

1 ,ω y l , αk j (x ) 
〉

and y = ( y 1 , y 2 , . . . , y n ) 
� 
, l = 1 , 2 , . . . , n . When n = 1 , (4.38) is equivalent

to 

m ≥ r � sup { r k } and rank D 

1 
k = r k , 

for k = 1 , 2 , . . . . 

Proof. According to Definition 4.3 and Theorem 4.2 , we know ( P i , d i ( x )), i = 1 , 2 , . . . , m are gradient ω-strategic if and only

if the following condition holds. 

If y ∈ ( L 2 ( ω)) n satisfies that for any z ∈ ( L 2 ( �)) n , 
〈˜ H z, y 

〉
= 0 , then y = 0 . 

From the definition of the adjoint operator and the characteristics of the sensors, we have 

C ∗z(t) = 

m ∑ 

i =1 

χP i d i (x ) z i (t) . (4.39) 

These, together with (3.11) , lead to 〈˜ H z, y 
〉
= 

〈 
∇ 

∫ log b 
a 

0 

ae s S ∗α(s ) 
m ∑ 

i =1 

χP i d i (x ) z i (ae s ) ds, p ∗ω y 

〉 

= 

〈 
∇ 

( ∫ log b 
a 

0 

ae s 
∞ ∑ 

k =1 

r k ∑ 

j=1 

m ∑ 

i =1 

E α( −λk s 
α) 
〈
χP i d i (x ) z i (ae s ) , αk j (x ) 

〉
ds · αk j (x ) 

) 

, p ∗ω y 

〉 

= 

n ∑ 

l=1 

〈 
∞ ∑ 

k =1 

r k ∑ 

j=1 

m ∑ 

i =1 

∫ log b 
a 

0 

ae s E α( −λk s 
α) z i (ae s ) d s · ∂ 

∂x l 

(
d i k j (x ) αk j (x ) 

)
, p ∗1 ,ω y l 

〉 
= 0 . (4.40) 
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According to Lemma 1 of Chapter 5 in [40] , the arbitrariness of z leads to the equivalence between (4.40) and 

∞ ∑ 

k =1 

r k ∑ 

j=1 

E α( −λk t 
α) 

n ∑ 

l=1 

D 

l 
k �kl = 0 

and the proof of the first part is completed. 

When n = 1 , then (4.38) reduces to 

∞ ∑ 

k =1 

r k ∑ 

j=1 

E α( −λk t 
α) D 

1 
k �k 1 = 0 ⇒ y = 0 . (4.41)

Since for any t ∈ [ a , b ], E α( −λk t 
α) > 0 , the equivalence between (4.41) and 

m ≥ sup { r k } , rank D 

1 
k = r k , k = 1 , 2 , . . . , 

can be obtained similar to that between (3.18) and (3.21) in Theorem 3.3 . �

Finally, we provide an approach to reconstruct the gradient of the initial vector in ω. Without taking the residual ini-

tial gradient in �\ ω into consideration, define V � { f ∈ (L 2 (�)) n | f = 0 in �\ ω} ⋂ {∇ f | f ∈ H 

1 
0 
(�) } . Therefore, for any h ∈ V ,

there exists ̃  h ∈ H 

1 
0 (�) , such that ̃  h = ∇ 

∗ p ∗ω h . Then, consider the system ⎧ ⎨ ⎩ 

HC 
a D 

α
t ϕ(x, t) = Aϕ(x, t) in U, 

ϕ(x, a ) = ̃

 h (x ) in �, 

ϕ(ξ , t) = 0 on �, 

(4.42)

which admits a unique solution ϕ ∈ C ( � × [ a, b] ) 
⋂ 

L 2 
(
a, b; H 

1 
0 
(�) 
)

presented by 

ϕ(x, t) = S α

(
log 

t 

a 

)̃
 h (x ) = S α

(
log 

t 

a 

)
∇ 

∗ p ∗ω h (x ) . (4.43)

Then we consider the semi-norm on V 

‖ h ‖ 

2 
V � 

∫ b 

a 

∥∥∥∥1 

t 
CS α

(
log 

b 

t 

)
∇ 

∗ p ∗ω h (x ) 

∥∥∥∥2 

dt (4.44)

and have the following lemma. 

Lemma 4.1. If system (2.1) –(2.2) is regionally gradient approximately observable in ω, then (4.44) defines a norm on V. 

Similar to Lemma 3.1 , we can easily conclude the result with certain revisions due to the gradient operator and omit the

proof. Changing the map F in (3.28) to 

F h = p ω ∇ψ(x, b) , (4.45)

where ψ( x , t ) is the solution of (3.27) . What needs to be explained is that ν( x , t ) in (3.27) is obtained from the solution of

(4.42) , other than the solution of (3.22) . Similarly, it can be shown that 

〈 F h, h 〉 ( L 2 (�) ) 
n = ‖ 

h ‖ 

2 
V , (4.46)

that is, F is coercive from V to V 

∗. Hence, we conclude the following theorem to estimate ∇y 1 
0 
(x ) according to Lemma 2.2 .

Since the proof of the following theorem is very similar to that of Theorem 3.4 , we omit it. 

Theorem 4.4. If system (2.1) –(2.2) is regionally gradient approximately observable in ω, then (4.45) has a unique solution h ∈ V.

Furthermore, the gradient of initial vector can be reconstructed by 

∇y 1 0 (x ) = h (x ) . 

5. An example 

Consider the following one-dimensional diffusion system with one zone sensor: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

HC 
2 D 

0 . 5 
t y (x, t) = 

∂ 2 

∂x 2 
y (x, t) in [ −1 , 1] × [2 , 4] , 

y (x, 2) = y 0 (x ) , x ∈ [ −1 , 1] , 

y (−1 , t) = y (1 , t) = 0 , t ∈ [2 , 4] , 

z(t) = Cy (x, t) = 

∫ 
P y (x, t) dx, t ∈ [2 , 4] , 

(5.47)

where P = [ p , p ] ⊆ [ −1 , 1] . 
1 2 
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Here, A = 

∂ 2 

∂x 2 
, the one-dimension Laplace operator, whose eigenvalue λk and the corresponding eigenfunction αk ( x ) are

known as λk = −k 2 π2 , and αk (x ) = 

√ 

2 sin (kπx ) , for k = 1 , 2 , . . . and x ∈ [ −1 , 1] . It can be obtained that for any y 0 (x ) ∈
L 2 ([ −1 , 1]) , 

Q(t) y 0 (x ) = CS α

(
log 

t 

a 

)
y 0 (x ) 

= 2 

∞ ∑ 

k =1 

E 0 . 5 

(
−k 2 π2 

(
log 

t 

2 

)0 . 5 
)

〈 y 0 (x ) , sin (kπx ) 〉 
∫ p 2 

p 1 

sin (kπx ) dx 

and 

˜ Q (t) ∇ 

∗y 0 (x ) = 2 

∞ ∑ 

k =1 

E 0 . 5 

(
−k 2 π2 

(
log 

t 

2 

)0 . 5 
)

〈 ∇ 

∗y 0 (x ) , sin (kπx ) 〉 
∫ p 2 

p 1 

sin (kπx ) dx. 

First, we consider the approximate observability and gradient approximate observability on the whole region, that is,

p 1 = −1 , p 2 = 1 . Then, we have 

Q(t) y 0 (x ) ≡ 0 and ˜ Q (t) ∇ 

∗y 0 (x ) ≡ 0 , ∀ y 0 ∈ L 2 ([ −1 , 1]) , (5.48)

which implies that Ker ( Q ) � = {0} and Ker( ̃  Q ∇ 

∗) � = { 0 } . From Definition 3.1 and 4.2 , we conclude that system (5.47) is neither

approximate observable nor gradient approximate observable on the whole domain. 

Next, we show that system (5.47) is both regionally approximately observable and regionally gradient approximately

observable on a subregion ω � [ −1 , 1] . 

Let p 1 = 0 , p 2 = 1 . Choose y 0 (x ) = sin mπx, where m is an integer number. Then we have 

Q(t) y 0 (x ) = 

∑ 

k � =2 q 

E 0 . 5 

(
−k 2 π2 

(
log 

t 

2 

)−0 . 5 
)

M km 

� = 0 , 

where q = 1 , 2 , . . . and M km 

= 

1 
kπ

( sin (m + k ) π
(k + m ) π

− sin (m −k ) π
(m −k ) π

) . Hence, Ker(Q p ∗
1 , [0 , 1] 

) = { 0 } and y 0 ( x ) is regionally approximately

observable on [0, 1]. 

Choose y 0 (x ) = cos mπx . Then 

˜ Q (t) ∇ 

∗y 0 (x ) = mπ
∑ 

k � =2 q 

E 0 . 5 

(
−k 2 π2 

(
log 

t 

2 

)−0 . 5 
)

M km 

� = 0 . 

Hence, cos m πx is regionally gradient approximately observable on [0, 1]. 

Since the eigenvalues of ∂ 2 

∂x 2 
are all single, that is, r k = 1 for all k , then r = 1 and rankD 

1 
k 

= 1 . Hence, from

Theorems 3.3 and 4.3 , we see that the zone sensor is both [0,1]-strategic and gradient [0,1]-strategic. The above results

coincide with Remark 3.1 and explain Remark 4.1 . 

Finally, we reconstruct the initial condition and its gradient in [0,1]. On one hand, when (5.47) is regionally approximately

observable in [0,1], it follows from Lemma 3.1 that for g ∈ G 

∗, (3.23) defines a norm on G 

∗, where ϕ( x , t ) solves ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

HC 
2 D 

0 . 5 
t ϕ (x, t) = 

∂ 2 

∂x 2 
ϕ (x, t) in [ −1 , 1] × [2 , 4] , 

ϕ(x, 2) = p ∗
1 , [0 , 1] 

g(x ) in [ −1 , 1] , 

ϕ(−1 , t) = ϕ(1 , t) = 0 on [2 , 4] . 

(5.49) 

Then the regionally observable problem is equivalent to solve 

F g = p 1 , [0 , 1] 
H 
2 I 

0 . 5 
t �(x, 4) , (5.50) 

where �( x , t ) is the solution of ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

HC 
2 D 

0 . 5 
t �(x, t) = 

∂ 2 

∂x 2 
�(x, t) + 

1 

t 
C ∗Cϕ 

(
x, 

8 

t 

)
in [ −1 , 1] × [2 , 4] , 

�(x, 2) = 0 in [ −1 , 1] , 

�(−1 , t) = �(1 , t) = 0 on [2 , 4] . 

(5.51) 

From Theorem 3.4 , we conclude that F is an isomorphism. Thus, (5.50) exists a unique solution g ∈ G 

∗ and y 1 
0 
(x ) = g(x )

provides the initial condition in [0,1]. 

On the other hand, according to Lemma 4.1 , (4.44) defines a norm on V provided by the regional gradient approximate

observability of system (5.47) on [0,1]. Consider the system 
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HC 
2 D 

0 . 5 
t �(x, t) = 

∂ 2 

∂x 2 
�(x, t) + 

1 

t 
C ∗CS 0 . 5 

(
log 

4 

t 

)
∇ 

∗ p ∗
1 , [0 , 1] 

h (x ) in [ −1 , 1] × [2 , 4] , 

�(x, 2) = 0 in [ −1 , 1] , 

�(−1 , t) = �(1 , t) = 0 on [2 , 4] , 

(5.52)

It follows from Theorem 4.4 that F : h �→ p 1,[0,1] ∇ψ( x , 4) has a unique solution in V , which is the initial gradient d 
dx 

y 1 0 (x ) in

[0,1]. 

6. Conclusion 

In this paper, we have explored the regional observability for time fractional DPSs involving an Hadamard-Caputo time

fractional derivative. The regional (gradient) exact and approximate observability results are guaranteed by several necessary

and sufficient conditions. The minimum number of sensors are also derived to achieve the regional (gradient) approximately

observability. By utilizing the HUM, the initial vector and its gradient are both reconstructed. Finally, an example shows the

applications of our results in practical models. In further works, investigating the numerical solutions for the Hadamard-

Caputo time fractional distributed parameter systems is of great interest. Since the Hadamard-Caputo fractional derivative is

a particular case of the Caputo-Katugampola fractional derivative with ρ → 0 + , the numerical methods discussed in [41] can

be extended and applied to the investigation on the numerical solutions of a Hadamard-Caputo time fractional distributed

parameter system, such as (5.47) . 
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