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ABSTRACT

Many studies have shown that hyperspectral measurements can help monitor crop health status, such as water
stress, nutrition stress, pest stress, etc. However, applications of hyperspectral cameras or scanners are still
very limited in precision agriculture. The resolution of satellite hyperspectral images is too low to provide the
information in the desired scale. The resolution of either field spectrometer or aerial hyperspectral cameras
is fairly high, but their cost is too high to be afforded by growers. In this study, we are interested in if the
low-cost hyperspectral scanner SCIO can serve as a crop monitoring tool to provide crop health information
for decision support. In an onion test site, there were three irrigation levels and four types of soil amendment,
randomly assigned to 36 plots with three replicates for each treatment combination. Each month, three onion
plant samples were collected from the test site and fresh weight, dry weight, root length, shoot length etc.
were measured for each plant. Meanwhile, three spectral measurements were made for each leaf of the sample
plant using both a field spectrometer and a hyperspectral scanner. We applied dimension reduction methods to
extract low-dimension features. Based on the data set of these features and their labels, several classifiers were
built to infer the field treatment of onions. Tests on validation dataset (25 percent of the total measurements)
showed that this low-cost hyperspectral scanner is a promising tool for crop water stress monitoring, though
its performance is worse than the field spectrometer Apogee. The traditional field spectrometer yields the best
accuracy as high as above 80%, whereas the best accuracy of SCIO is around 50%.

Keywords: A low-cost hyperspectral scanner, onions, irrigation treatment inference, SCIO

1. INTRODUCTION

Onions are produced and consumed throughout the world. It is worldwide used in different nationalities and

cultures during all seasons in a year.! California produces the most onion in the US. In 2015, it produced around

one third of the total onion crop in the US. It is the only state that can produce spring and summer-harvested
e 2

onions.

Onions are shallow-rooted crop, and most of the roots were found in the top 0.18 m of soil.?> This makes it
hard for onions to obtain enough soil water. Therefore, lighter and more frequent irrigation are recommended
in onion cultural practices.* On the other hand, experiments® showed that water stress in any growing stages
causes reduction in the yield.

To optimize irrigation schedule, it is necessary to have accurate and reliable water stress monitoring methods.
Many studies have been published on water stress detection using remote sensing, a real-time and nondestructive
method.® Near-infrared cameras were used to detected water stress of almond trees,” '? where new types of
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spectral features were proposed to predict stem water potential. Hyperspectral sensors were also applied for water
stress monitoring in apple trees,'® vineyard,'* 15 etc. In onions, studies of remote sensing are conducted on yield
and biomass prediction using the spectroradiometer,'® biomass monitoring using unmanned aerial vehicles and
RGB cameras,'” detecting diseased onion tissues,'® quality inspections.!?>2° However, to our best knowledge,
nobody has studied irrigation treatment inference using the hyperspectral sensor. Furthermore, SCIO, a low-cost
portable, light hyperspectral scanner is evaluated to infer irrigation treatments in onions for the first time.

2. MATERIAL AND METHODS
2.1 Onion Test Site

The test field is in the USDA-ARS, San Joaquin Valley Agricultural Sciences Center(36.594N, 119.512W), Parlier,
California. Since 2016, an onion test filed has been set up for research of biomass soil amendments and deficit
irrigation. There are three irrigation treatment levels, High, Medium and Low, and four soil amendments,
Biochar, Check, Biochar+Compost, and Biochar+Compost+Sulfur. There are three replicate plots for each
treatment combination.

2.2 Hyperspectral Scanner

Most recently, a light and small hyperspectral scanner called SCIO (Consumer Physics, Israel) was released in the
market. As a complete system, it includes a spectrometer, a light source and optimized algorithms in the cloud.
The SCIO spectrometer works in NIR at wavelengths of 700-1100 nm. It is so small that it could even integrated
in the smart phone.?! This system is a low-cost module, with the price less than $300. As a reference, we also
used a traditional handhold hyperspectral scanner Apogee PS100 (Apogee, USA). Its wavelength sensitivity is
from 350 nm to 1150 nm, with the spectral resolution of 1 nm and digital resolution of 16 bit.

2.3 Field Measurement Collection

During the growing season, onions under different treatment were sampled once a month. The field hyperspectral
measurements were coordinated with these physiological measurements including shoot length, root length,
number of leaves, fresh weight, dry weight and bulb diameter. There are three onion samples collected for each
plot. For each onion sample, three hyperspectral measurements were made using both Apogee and SCIO at the
same time in the field. In sum, we have 81 hyperspectral measurements for 27 onions.

SCIO is an active remote sensing platform and it provides calibration case. SCIO was first calibrated using
the white panel in the case. The measurement using SCIO requires the distance between leaves and the scanner
as small as possible to minimize the disturbance of sun light source. On the other hand, Apogee is a passive
remote sensing platform. We first took the measurements of white panel and dark panel for calibration before
measured the leaves.

2.4 Principle Component Analysis

Both Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are methods used for
reducing dimentionality of a dataset to increase accuracy, speed up processing time, and aide visualization.

PCA is a linear transformation that rotates the axes of the data along the direction that maximizes its
variance, allowing data to be projected onto a lower dimentional subspace.?? These new axes, or ”loadings”, are
found by calculating the eigenvectors W of the data’s covariance matrix, where X is an M * N matrix representing
M samples of size N:

XTX =W (1)

The eigenvalues A represent how ”important” each loading is in transforming the data, or how much variance
the projection onto this axis contributes. As the loadings (and \) are sorted in descending order, W can be
truncated to r columns, which can then be used to project data along r dimensions, preserving the dimensions
that contribute most to the variance of distribution. W is often obtained with Singular Value Decomposition
(SVD) instead of performing the Eigen decomposition of X7 X, as it is more computationally efficient.
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2.5 Linear Discriminant Analysis

LDA reduces dimensionality of data by finding new axes to project it onto that maximizes the seperability
between classes.?? It does this by maximizing the distance between means of classes relative to some center
point for all classes, while minimizing the variance, or scatter, within each category (Equation. 2). In the
following equation, C' is the number of classes, N; is the size of class ¢, v is the mean all datapoints, u; is the
mean of class 7, and x; is the jth datapoint in class i:

S N — ) (i — )T
S S (g — ) (g — )T

The optimized solution contains eigenvectors is descending order of their eigenvalues, which can be used to
reduce the dataset similar to PCA. Optimizing for both within and between-class scatter is important because
only maximizing distance between means could lead to scenarios where the variance is high along the axis with
large mean distances, increasing the chance that there are points from different classes overlapping. Minimizing
the variance ensures data from each class is grouped tightly along the new axis, increasing seperability.

(2)

2.6 Multi-layer Perceptron Classifier

Single perceptrons, or artificial neurons, are nodes with a number of weighted data inputs, a bias input, and an
output.2* The weighted inputs are summed up and fed through an activation function, used as a threshold for
when the node should fire, and by how much. They can be used for 2-class classification or regression problems,
using either a step function activation function, or nonlinear activation function (e.g. tanh, sigmoid), respectively.
The function for a single perceptron is as follows, where s is the activation function, W is the input weights, and
b is the bias:

F(2) = s(b+ W) (3)

Single perceptrons cannot be used for many complex prediction tasks because they can only predict nonlinear
patterns.?> Multilayer Perceptrons (MLP) overcome this by constructing networks out of multiple perceptrons.
An MLP is a supervised learning system consisting of an input layer, N number of hidden layers, and an output
layer. Nonlinear activation functions used in MLP’s introduce nonlinearities into the model, allowing it to make
predictions on complex, nonlinear datasets, such as hyperspectral readings. MLPs are trained using a process
called backpropogation, which updates the network’s weights with respect to the error between it’s current
output and the expected result.

3. RESULTS AND DISCUSSION

To prepare the Apogee dataset, each 1675 -dimension reading was loaded into a vector, with readings of the same
plant being treated as different data points. SCIO measurements were obtained with the help of smart phone
application, and each reading is of 1060 dimensions. For each test iteration, data was split into a 75%/25%
train/test size. All data was normalized with Sklearn’s normalize() function, while the MLP classifier required
normalization with Sklearn’s StandardScalar module.2%

The evaluation stage was broken up into three steps: data preparation, classifier evaluation, and parameter
grid search on the best performing classifiers. Classifier performance was ranked by the percentage of correctly
predicted labels in the test dataset, averaged over 10 iterations with 75%/25% train/test splits as described
above. In the classifier evaluation stage, a number of classifiers from the Sklearn Python package, as well as
XGBoost, were ran (with default settings), with and without PCA and LDA dimensionality reduction.

3.1 Results Using PCA Based Classifiers

Figure. 1 shows the performance of several Sklearn classifiers (and XGBoost) ranked against each other in terms
of label prediction accuracy for the SCIO dataset (reduced with PCA from 3-99 components). Most classifiers
performed very poorly, with only the MLP classifier nearly breaking 50% accuracy, hitting a high score of 48.1%
at 90 components, with the rest barely beating random guessing (33% for 3 labels). After MLP was determined
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Figure 1: Classifier accuracy comparison on PCA reduced SCIO dataset

to perform the best with PCA reduced data, we performed parameter grid search to optimize it’s results, iterating
through the parameters listed in 3.1, acheiving a top accuracy of 53.1% (top 5 results and parameters are shown
in Table. 1).

e PCA components: 10, 20, 40, 80, 160

e Hidden layer sizes: 25, 50, 100, 200, 400
e Activation: relu, logistic, tanh

e Solver: Ibfgs, adam

e Alpha: 0.00001, 0.0001,0.001,0.01,0.1

e Batch size: 200,100,50,25

e Max iterations: 200, 500, 1000

3.2 Results Using LDA Based Classifiers

Each classifier was tested against reduced data with sizes ranging from 3-99 components, as with the PCA
reduction in the previous section. This hurt performance relative to PCA reduction, with all classifiers again
scoring only slightly above random guessing, with the exception of MLP which scored an average of 38.8%
accuracy (see Figure. 2), with a best score of 39.5% at 6 components. As these results were substantially less
than the default results of MLP with PCA reduction, parameter grid search was not conducted.

Accuracy PCA Components Hidden Layer Sizes Activation Solver Alpha Batch Size Max Iterations

0.53064 20 100 tanh adam  0.001 25 500
0.52903 20 50 relu Ibfgs 0.1 50 500
0.52741 20 200 tanh adam 1le-05 25 500
0.52741 20 400 relu adam  0.01 100 500
0.52580 20 50 logistic adam  le-05 25 1000

Table 1: Top 5 performing classifiers using PCA and MLP and their grid search parameters
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Figure 2: Classifier accuracy comparison on LDA reduced SCIO dataset

3.3 Results Using MLP

Sklearn’s MLP implementation was also tested with the raw, unreduced dataset, but performed substantially
worse than when it was tested against PCA and even LDA-reduced data. MLP predicted the correct label
36.6% of the time with the unreduced data, essentially randomly picking the result. This demonstrated that
dimensionality reduction is necessary for MLP to provide any benefit for this dataset. On the unreduced data,
Sklearn’s Extra Trees implementation performed the best, predicting the correct label 43.1% of the time.

4. CONCLUSION

Data from the SCIO sensor produces worse classification results as opposed to the Apogee sensor. Using the
Apogee data instead of SCIO increased MLP’s correct label prediction rate on unreduced data from 36.6% to
71.8%. Similar improvements are seen with dimensionally reduced data, with the MLP classifier configured with
default parameters improving its correct prediction rate from 48.1% (with 90 components) to 77.4% (with 30
components) for PCA, and 39.5% (with 6 components) to 58.5% (with 42 components) for LDA. The max results
yielded from MLP parameter grid search with PCA-reduced data also increased from 53.1% (with parameters
listed in section 3.1) to 83.1%.

In the future, we will test Apogee with more measurements in different growing stages of onions to make sure
it is robust to onions’ growths. As for SCIO, we will explore new machine learning algorithms to see if better
algorithms can help improve prediction accuracy.
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