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Abstract

The concept of the renormalization group (RG) emerged from the renor-
malization of quantum field variables, which is typically used to deal with
the issue of divergences to infinity in quantum field theory. Meanwhile, in
the study of phase transitions and critical phenomena, it was found that
the self–similarity of systems near critical points can be described using RG
methods. Furthermore, since self–similarity is often a defining feature of a
complex system, the RG method is also devoted to characterizing complex-
ity. In addition, the RG approach has also proven to be a useful tool to
analyze the asymptotic behavior of solutions in the singular perturbation
theory.

In this review paper, we discuss the origin, development, and appli-
cation of the RG method in a variety of fields from the physical, social
and life sciences, in singular perturbation theory, and reveal the need to
connect the RG and the fractional calculus (FC). The FC is another basic
mathematical approach for describing complexity. RG and FC entail a po-
tentially new world view, which we present as a way of thinking that differs
from the classical Newtonian view. In this new framework, we discuss the
essential properties of complex systems from different points of view, as
well as, presenting recommendations for future research based on this new
way of thinking.
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1. Background and motivation

The concept of a renormalization group (RG) initially derives from
quantum field theory, proposed by Stueckelberg and Petermann [110] in
1953, and which proved to be an efficient method of calculation in field
theory and statistical physics [14, 45]. Meanwhile, in dealing with diver-
gence in perturbed quantum field theory, the renormalization approach is
mainly utilized to quench diverging terms before they can destabilize a so-
lution [49]. Subsequently, Kadanoff and Wilson et al. [61, 62, 135, 136]
applied the RG method to the study of critical phenomena in continuous
phase transition processes. Wilson was awarded the Nobel Prize in physics
in 1982 for explaining the nature of second-order phase transitions.

Inspired by the applications of the RG method to perturbed quantum
field theory and critical phenomena in physics, Chen et al. [23, 24] ap-
plied the RG method to singular perturbation theory (SPT), making it an
important tool for asymptotic analysis. Although the idea originated in
physics, the form of this method completely changed when applied to the
treatment of secular terms in SPT.

Subsequently, the domain of application of the RG method was slowly
but systematically extended from mechanics to acoustics, into chemistry,
branching out into biology and cybernetics, with engineering forays into
optimization, and finally into basic mathematical research [40, 58, 92, 106].
In order to better understand the RG method, we discuss its relationships
with scaling laws and complex phenomena. This path leads from nonlinear
dynamics to chaos theory, to fractal statistics and eventually to the frac-
tional calculus (FC) from different disciplines, each contributing its unique
perspective to the understanding of complexity.

1.1. Scaling laws and the renormalization group. Scaling laws, also
known as power laws, describe the scale invariance found in many natural
phenomena. There are some notable examples that need to be mentioned,
since they are drawn from everyday experience. These include Pareto’s Law
of income distribution [97], whose inverse power law (IPL) form describes
the last few percents of a population as controlling most of the income
within a Western country; Zipf’s IPL of the relative frequency of word
usage within a language [84]; and finally the generic example of the IPL
form of structural self-similarity of fractals [109, 141].
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Kadanoff and Wilson established that the self-similarity of dynamic
systems near critical points could be described by the RG method. This
discovery not only provides a rational and practical theoretical expression
for continuous phase transition but also provides a direct physical basis
for the RG method. Subsequently, this method proved to be a powerful
tool for studying physical phenomena through its treatment of the scaling
properties of complex dynamics and chaos [144].

1.2. Complexity and the renormalization group. There is a long his-
tory of the inability to describe complex phenomena accurately, with ex-
isting contemporary theory leading to empirical paradoxes and confusion
[131]. The complexity of these phenomena was derived from theory un-
derlying real–world data and they can be seen almost everywhere, such
as global climate, fully developed turbulence, financial systems, and the
human brain, which makes the study of complexity fascinating.

Although a considerable amount of research has been devoted to the
study of complexity, there has not appeared a clear and unified definition
of complexity. Therefore, we propose the following two questions to be
addressed in this article, and to find at least partial answers:

(1) How can we characterize complexity?
(2) What methods should be used to study complexity in
order to understand real–world phenomena better?

There are many definitions of complexity, one being implicit in a phe-
nomenon that is neither entirely ordered nor completely random [126]. Sim-
ple ordered systems have patterns that repeat themselves periodically in
time or space, and they possess a highly organized structure, that is, a sys-
tem that can be described by classical Newtonian mechanics. On the other
hand, completely disordered systems have a random structure in space or
time, described by stochastic dynamics or the random spatial organization
of components. Such systems are complicated but simple because they can
be easily described using probability density functions (PDFs) so that the
main characteristics of the system can be reproduced. The single dynamic
trajectory of the former simple system is replaced by an ensemble of tra-
jectories in the later simple system and the behavior by that of the PDF
and averages.

However, truly complex systems not only have a large number of small
components that interact with non-identical components nearby and their
environment, making their behavior inherently challenging to model, but
the dynamics are not linear. The resulting chaotic dynamics make the in-
dividual trajectories chaotic. Consequently, the dynamics of the ensemble
PDF cannot be described by the usual partial differential equations in phase
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space. The equations for the PDF have been determined to be fractional
generalizations of the traditional phase space equations [144], as we subse-
quently discuss. For example, the stock market is a complex system with
many interactive properties. Billions of shares and transactions interact
through a finite chain of cause and effect, and even if we knew all relevant
information, the stock market would still produce unpredictable behavior.

Therefore, the property of complexity in complex phenomena has ob-
servable characteristics determined by the interactions, such as nonlinear
response to perturbation, long–term memory, scaling laws, and adaptive
properties, to name a few. Based on these characteristics, the study of
complexity has attracted contributions from many different fields, such as
self–organization in physics [55], the spontaneous transition between dis-
order and order in social sciences [116, 131], the mathematics of nonlinear
dynamics (such as chaos) [52, 130], and adaptation in biology [86]. Never-
theless, how to define, much less to measure, a system’s complexity remains
a controversial topic and is one of the key challenges in studying complex
phenomena. Up to now, many quantitative studies of complexity have
given rise to a number of measures including, temporal measures, spatial
measures, and entropy measures [31, 42, 90].

Inspired by the works of Galanter [42] and West [129], we recreated
the trend chart labeled with known measures of complexity. As shown in
Fig. 1, when the number of variables in a system is low, certainty, and
the dynamics of single–particle trajectories play a leading role, resulting in
low levels of complexity. In this few–particle case, behavior can usually be
described by well–known techniques, such as celestial dynamics [10], frac-
tals [72], and nonlinear dynamics, including chaos theory [74] and strange
attractors [103]. When the number of system variables is high the dynam-
ics of single–particle are replaced by the calculus of PDFs. However, due
to the emergence of collective variables, the resulting level of complexity
is again low. The treatment of higher levels of complexity arises, moving
leftward from the extreme right, using models such as random walks [122],
stochastic fractals [77], and the factional probability calculus [132] applied
to describe complexity.

The middle region of the mountain range contains a vast region where
all the science and mathematics remain to be done. It represents a ro-
bust domain where complexity and both the successful and maladaptive
networks of society and nature involving both order and randomness, with
neither dominating, reside. The delicate balance between order and ran-
domness is observed all around us in living systems, in social organizations,
as well as in complex physical networks. For example, the intermittency in
the thunderous sound of water from a leaky faucet crashing into the sink
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as you try to get to sleep; the unpredictable tremors that occur in many
pathologies of motor control networks; and disruptive interaction between
states on the international stage [128]. Note that the trend in the figure
implies a nonlinear increase in complexity when moving away from order
(extreme left to right) or from disordered (extreme right to left) and is
suggested by the rugged terrain of the mountain.

It is the FC and RG theory that provide entry into the central region
of the unknown. Hopefully, this review will facilitate the passage.

Figure 1. The measure of complexity and the number of
interacting entities are the axes for rugged landscape of sci-
entific knowledge. The extreme left is described by sim-
ple system dynamics, but even here nonlinear dynamics has
chaos with more than three degrees of freedom, strange at-
tractors for dissipative nonlinear dynamic systems and non-
integrable Hamiltonians. On the extreme right things are
again simple with equilibrium thermodynamics and random
walks. Moving from right to left the many degrees of free-
dom are replaced by low dimensional emergent variables and
their mutual interactions which dominate the system.

At the present stage, the research into the nature of complexity divides
into two basic strategies [85]. The first strategy is to create and study
relatively simple mathematical models, which although they may not ac-
curately capture the behavior of real systems they can abstract the most
significant qualitative elements into a solvable framework from which we
can extract scientific insights. The research tools used to gain insight into
complexity have been nearly as varied as the disciplines to which they
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have been applied, including FC theory [141], RG theory [132], dynamical
systems theory [8], game theory [5], information theory [34], and computa-
tional complexity theory [85].

In particular, in the process of analyzing complex systems, nonextensive
statistical mechanics (NSM) [118, 120, 121] plays an important role in bridg-
ing the transitional regions between scale-free and exponential distribu-
tions. Nonlinear statistical coupling [82, 83] explains the distinction be-
tween scale and the shape of distributions, and that the shape quantifies a
nonlinear source. The important distribution families in this paradigm are
generalized Pareto distribution and the Student’s t-distribution.

The second strategy attempts to create more comprehensive, detailed,
and realistic models, usually in the form that enables computer simulations,
since analytic solutions are often beyond reach. This modelling approach
simulates the interacting parts of a complex dynamic network, is accurate
in capturing small details, and motivates observation and measurement.
For example, Monte Carlo simulation was introduced into the complexity
context by [119], especially agent-based simulation [147, 148] in financial
markets and other technologies.

1.3. Inverse power laws and fractional calculus. One of the first an-
alytic treatments of the generation and spreading of complexity was the
movement of heavy particles in an ambient fluid of lighter particles. Today
we would classify this behavior as complicated but not complex. Consider
the standard diffusion equation:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
, (1.1)

where D denotes a positive constant, x and t are the space and time vari-
ables, respectively, and ρ (x, t) is the phase space density function. The
diffusion equation is used to describe the change of the matter density in
diffusive phenomena. In physics, Eq. (1.1) describes the macroscopic be-
havior of many large particles undergoing Brownian motion in an ambient
fluid and is often replace by the PDF P (x, t). In mathematics, the PDF
is related to Markov processes, and is often modeled using simple random
walks. The diffusion model can also be applied in many other fields, such
as the movement of alleles in population genetics [80], or more generically
the flow of information in complicated networks [129].

One of the basic boundary-value problems for diffusion is the Cauchy
problem:

P (x, 0+) = δ(x), −∞ < x < +∞; P (∓∞, t) = 0, t > 0,

where δ(x) is the Dirac delta function. This initial value problem describes
a point source for a tracer released at the origin at time t = 0, which then
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diffuses throughout the ambient fluid. The formal solution to the Cauchy
problem is:

P (x, t) =

∞∫
−∞

G(x− x′, t)P
(
x′, 0+

)
dx′, (1.2)

where the Green’s function G(x, t), also known as the propagator, is ob-
tained by taking the Fourier transform of Eq. (1.1), solving the result-
ing linear rate equation for the characteristic function and inverse Fourier
transforming the resulting solution to obtain:

G(x, t) = FT −1
{
e−|k|2σ2

;x
}
=

1√
2πσ

e−x2/(2σ2), σ2 = 2Dt,

which when inserted into Eq. (1.2) yields the well-known Gaussian or
normal PDF.

An example of the FC is introduced in this context by replacing the
second–order space derivative with a symmetric space–fractional derivative
of order β with 0 < β � 2. We can write the symmetric space–fractional
diffusion equation [50]:

∂P (x, t;α)

∂t
= D0

∂βP (x, t;α)

∂|x|β , x ∈ R, t ∈ R
+, (1.3)

where D0 is a positive coefficient and the fractional derivative is taken in
the sense of Riesz (for details, see Appendix A). Here again the Fourier
transform of the PDF yields the equation for the characteristic function
with the solution from the Fourier transform of Eq. (1.3) given by the
inverse Fourier transform of the characteristic function:

P (x, t;β) =

∞∫
−∞

eikxe−D0t|k|β dk
2π

. (1.4)

This is a symmetric Lévy PDF, the solution to the Cauchy initial value
problem for the fractional diffusion equation given for Eq. (1.3). Note
that the only closed–form solutions given by Eq. (1.4) arise for a limited
number of values of the Lévy index in the interval 0 < β � 2, including
that of Gauss β = 2. The Gauss PDF is the only case having finite second
moments, all other second moments of the Lévy PDF diverge including the
Cauchy with β = 1. The diverging second moment violates a fundamental
condition necessary for the proof of the central limit theorem (CLT) to
converge. Such strange behavior is common in our complex world.

It is worth mentioning here that as |x| → ∞, the analytic solution of
the symmetric Lévy PDF can be obtained by taking the |k| → 0 limit of
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the characteristic function within the integrand of Eq. (1.4):

lim
|x|→∞

P (x, t;β) ∝ 1

xβ+1
.

Thus, the asymptotic form of the symmetric Lévy PDF is an IPL [25, 127].
Using the IPL the failure of the second moment to converge for 0 < β < 2
is obvious.

1.4. Renormalization group and fractional calculus. From the per-
spective of scaling laws or IPLs, the present review seeks connections be-
tween the RG and the FC. Furthermore, we find that the two research areas
are not independent of one another, but have a particular relationship, in
that they both emerged from studies seeking to understand complex pheno-
mena. As mentioned above, these two mathematical strategies provide sys-
tematic ways to research complexity, and have the potential of providing
deep understanding of actual phenomena. Based on this, the purposes of
this review are as follows:

(1) Introduce the RG and FC methods and point out how
they are connected.
(2) Provide new ideas for the future improvement and ap-
plication of these methods.

Section 2 briefly introduces the RG method, which although derived
from mathematical physics has applications in a broad spectrum of disci-
plines. We touch on a number of these non-physical application in this sec-
tion. Section 3, we discuss the origin and developments of the RG method
in SPT and its applications in various fields of disciplinary research. In
Section 4, the connection between RG and FC is discussed. In the last
section, conclusions and prospects are given.

2. The origin and development of renormalization
group methods

As mentioned earlier, the concept of RG was first proposed by Stueck-
elberg and Petermann [110] well over half a century ago. Since its inception
it was known that the RG is not a group in the strict mathematical sense.
It is, in general, a semigroup, because its inverse elements cannot be defined
[48]. As a mathematical method, the RG theory was initially designed to
solve problems having self-similar structures with an infinite range, such
as in phase transitions [48] and critical phenomena [3]. However, in some
complex physical processes, it is difficult to grasp the details of the inter-
nal structure and interaction as part of the research objective. Therefore,
from a symmetry perspective, the RG method is an important research
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method to study the self–similar structures of physical phenomena and the
invariable properties under symmetric transformations.

2.1. Basic ideas. The physical phenomena studied by the RG method
have one common feature: the correlation length diverges ξ → ∞, that is,
there is no characteristic scale with which to characterize the process. This
is observed during a phase transition of water to ice as the temperature
T is lowered to its critical value Tc. The water molecules have a short–
range exponential correlation function and a constant correlation length
when T > Tc, but as T approaches Tc the correlation function becomes a
long–range IPL and the correlation length diverges as the water solidifies.

The purpose of the RG method is to derive typical scaling relations
among the physical parameters controlling the phenomenon’s behavior:

f(K1,K2) = K−α
1 F

(
K2

Kτ
1

)
,

where K1, K2 are coupling constants within the system and F (·) is an
unknown analytic function. For example, for ferromagnetic systems, K−1

1
could be the system scale size and K2 is the system temperature; for hy-
drodynamic systems, K1 could be the wave numbers and K2 the frequency.
The scaling indices α and τ are the critical exponents of the system. When
the correlation length diverges ξ → ∞, it is found that the above scaling
relation only depends on the symmetry of the system but is independent of
the micro details, and possesses universality. This emergence of universal
macroscopic behavior was the theme of the classic Science article “More is
different” by P. Anderson [4] who received the Nobel Prize in Physics.

As mentioned in Section 1.1, the scaling laws refers to the fact that
systems at different scales have the same properties. At the same time, due
to the correlation length ξ diverging to infinity, the universality signifying
the individuality of different systems retreats to secondary importance, and
its common behavior of universality emerges center stage.

In addition to the theoretical analysis alluded to above, experimental
observations [53, 104] found that different physical systems do have sim-
ilar characteristics near the critical points. The phenomenon that occurs
near the continuous phase transition points (critical points) is called a crit-
ical phenomenon. The characteristics near these points are summarized in
scaling laws and in the universality hypothesis (see Fig. 2).

The basic idea of the universality hypothesis is that the long–range
correlations near the critical points determine all the singularity properties
of the underlying process. When the state of the system is close to its
critical points, where the correlation length diverges (ξ → ∞), we can
obtain the same results by describing physical phenomena on any finite
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(a) T = 0.5Tc (b) T = Tc (c) T = 1.28Tc

Figure 2. Ising model simulations of a dynamic system
at critical and non-critical temperatures. (a) Binary 256 ×
256 lattices showing the configuration of spins after 2,000
timesteps at low temperature T = 0.5Tc; (b) at critical
temperature T = Tc; (c) at high temperature T = 1.28Tc.
At high temperature the spins are randomly configured, at
low temperature they have an alignment of spins, and at
critical temperature they have a fractal configuration.
Link: https://github.com/mattbierbaum/ising.js

scale near the critical points. Similar to isometric spirals of different scales
by zooming in and out, the textures can be superimposed together.

Due to the above scaling characteristics, the RG method can be applied
to the analysis of critical phenomena. The small–scale fluctuations are
smoothed by the scale transformation, and the effective action at the large–
scales dominate. Since the similarity between global and local behavior has
been achieved, this transformation will not affect the global properties.

The main steps of the RG method are as follows:

(1) Use the renormalization transformation to obtain a coarse–
grained operator by changing the length scale and reducing
the number of degrees of freedom acting on the state vari-
able.
(2) Induce the transformation of the model parameters. Gen-
erally, use the approximate method to keep the partition
function of the system consistent. In this process, we can
obtain the renormalization flow (RG flow).
(3) Analyze the fixed points of this transformation, as well
as the behavior of the system near the fixed points.
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2.2. Renormalization group transformations. Much of the analytic
work in physics is done using conservative Hamiltonian systems, in large
part because such systems reproduce the mechanical forces of Newton.
Let H = H(K) be the Hamiltonian of a system of interest, where K =
(K1,K2, · · · ) is the vector of coupling constants. Each set of these con-
stants defines a point in the “Hamiltonian space”, that being the space of
coupling constants. The RG transformations operate on this space:

K′ = R(K).

The RG operator R reduces the number of degrees of freedom from N to
N ′:

bd =
N

N ′ ,

where b is the rescaling factor, and d is the spatial dimension.
The essential condition to be satisfied by the RG transformation is that

the form of the partition function remains invariant under the transforma-
tion:

ZN ′(K′) = ZN (K).

Therefore the total free energy does not change, but the free energy per
unit cell (spin) increases as:

f(K′) = bdf(K).

All lengths, measured in units of the new lattice spacing, are reduced by
the factor b. Thus, the correlation length scale is:

ξ′ =
1

b
ξ.

Fixed points. The iterations of the RG transform R traces a tra-
jectory in the Hamiltonian space, this “Hamiltonian flow” is identified as
RG flow. The most important information regarding RG flow concerns its
fixed points. The trajectories end at the fixed points K∗, defined by the
RG transform becoming equivalent to the identity operator:

K∗ = R(K∗),

which occurs, if and only if:

K′ = K ≡ K∗.
The set of fixed points provides the possible macroscopic state of the system
at a large scale. At these points the system is invariant under subsequent
scale changes and thus the correlation length remains constant:

ξ′ = ξ ≡ ξ∗,
and does not change.
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We can regard the RG flow as evolution such as that of a dynamical
system. In particular, there are some fixed points in space, which represent
the particular theory of scale invariance. These fixed points can be divided
into two categories: stable and unstable critical points. When a fixed point
has no unstable directions they are stable critical points and are called
“sinks”. If we start from a point in space and approach such an attractive
fixed point, the RG flow will be brought closer to the fixed point by the
behavior described using effective long-wave theory. When a fixed point
has unstable directions in space they are unstable critical points and are
called “sources”.

Therefore, the asymptotic behavior of all correlation functions in the
original system are determined by the nature of the fixed points. These
points divide the space into different regions and describe the transition
between different phases. This is the bare mathematics of critical pheno-
mena.

An example: To illustrate the main ideas of the RG method, we use a
classical model from statistical physics – the two–dimensional Ising model.
The model consists of a square lattice with N sites and E nearest neighbor
bonds, the i-th site of the lattice is assigned a spin si, 1 � i � N , which can
be +1 (spin up) or −1 (spin down). When neighboring spins are oriented
in the same (different) direction, there is an interaction energy −J (J),
where J is the spin–spin coupling constant. The spin si also couples with
an external magnetic field h with an energy −hsi. In this case, both the
height and width of the blocks of spins should have the same length ba,
where b is the rescaling factor, and a is the lattice spacing (see Fig. 3).

Thus the Hamiltonian (total energy) of the spin system can be written
as:

H(s) = −J
∑
(i,j)

sisj − h
N∑
i

si,

where s represents the configuration of N spins, i.e., s = (s1, · · · , sN ),
the first summation is over all E nearest-neighbor pairs of spins and the
second summation is over all N sites of the lattice. According to statistical
mechanics, at a given absolute temperature T , the probability for s to
appear p(s) is proportional to the Boltzmann factor exp(−βH(s)), and
thus is given by:

p(s) =
exp(−βH)

ZN
=

exp(K
∑

(i,j) sisj +B
∑N

i si)

ZN
,

where β = 1/(kBT ), kB is the Boltzmann constant, K = βJ , B = βh, and:

ZN =
∑

(s1,··· ,sN )

exp(−βH)

is the partition function of the system.
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Figure 3. Block spins transformation. The blocks (dotted
blue box) behave as if they were atoms, but with a reduced
number. • represents the lattice spin, ◦ represents the block
spin.

One way of defining the spin of a block is to use the majority rule:

sI = sgn(
∑
i∈I

si),

where I refers to the index of the blocks. Consequently, the Hamiltonian
for the coarse–gained problem is given approximately by:

H ′(sI) = −J ′ ∑
(I,J)

sIsJ − h′
N ′∑
I

sI .

Then the coarse–gained operator for the spin configuration induces a trans-
formation in the space of model parameters:

K′ = R(K),

where K = (K,B). This example constitutes the block renormalization
transformation.

Lattice spin models are not restricted to the understanding of phase
transitions and critical phenomena in physical systems. Versions of this
model have been applied to fractal geometry, such as the criticality and
phase transitions in Koch curves [113] and Sierpinski gaskets [44], as well
as to the molecular theory of biological evolution and the origin of life
[29, 37] and finally in the use of network science to the decision making
behavior of humans [128].

The above briefly describes the main ideas in the derivation of RG the-
ory, so let us now turn our attention toward applications. The applications
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of the RG method in various disciplines both past and present has led to
extensions and nuanced interpretations of the RG.

2.3. Applications of renormalization group.

2.3.1. Quantum electrodynamics. Gell-Mann and Low [45] introduced
the RG into quantum electrodynamics in 1954. In 1970, Callan [17] and
Symanzik [114] proposed the well-known Callan-Symanzik equation which
describe the evolution of the n-point correlation functions under variation
of the energy scale n in this context.

2.3.2. Condensed matter physics. Kadanoff [61] and Wilson [133, 134]
introduced the RG into the study of condensed matter physics in the decade
of the seventies. Kadanoff is often referred to as the person who did not
receive the Nobel prize in physics for his intuitively appealing scaling of the
Hamiltonian presented herein, which is found in virtually every text on the
subject of critical phenomena.

Wilson interpreted the self-similar nature of critical phenomena to im-
ply that the renormalization equations from quantum field theory can be
used in the study of critical phenomena. All physical properties near the
critical points are independent of the local details and the same behavior
can be obtained by selecting a description on any scale. Hence the theory
of critical phase transitions was established, and the RG method has sub-
sequently been successfully applied to statistical physics and related fields.

The frontiers of knowledge have been pushed back in a number of areas
using this method, such as in the understanding of critical phenomena [3]
and phase transitions [48], as well as, in the development of a grand unified
theory [89].

2.3.3. Fermion interaction system. Solyom [107] applied the RGmethod
to study the infrared divergence of one-dimensional Fermi gas in 1979.
Subsequently, the RG method has become a significant research method
for dealing with fermion interaction systems. This method became widely
used in the study of classical phase transitions and the critical behavior
of quantum phase transitions in one-dimensional and higher-dimensional
Fermi systems [39, 41, 98], in providing insight into quantum impurity
problems [63, 125], and non-equilibrium state of Fermi system [101, 102],
as well as many other physical problems.

2.3.4. Complex networks. The RG method has proven invaluable, not
just in physics, but has applications in the field of complex networks [12,
112]. As stated by Barabási and Bonabeau [9], many real world complex
networks, including the World Wide Web (WWW), social networks, protein
interaction networks, and cellular networks, are self-similar under a certain
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length–scale transformation, that is, the number of links per node follows
an IPL PDF.

Song et al. [43, 108] generalized the box–counting method to complex
networks, and pointed out that for many complex networks, there is a self–
similarity index related to the fractal dimension, which possesses inherent
self–similarity properties. Furthermore, by adopting the RG ideas reveals
that the similarity and scale–free degree IPL PDFs are established in all
coarse–grained stages of the network. The degree distribution P (k′) of the
renormalization network is invariant under the RG transform:

RP (k) = P (k′) ≈ (k′)−γ ,

where P (k) is the PDF of the k links per node, and the degree exponent
lies in the interval 2 < γ < 3.

Hernández-Bermejo [56] used the RG method to study a class of com-
plex metabolic network models. Their study showed that the accuracy of
the reported IPL models over several orders of magnitude of the metabo-
lite concentration because the IPLs are the invariant solutions to the RG
equations.

2.3.5. Time series. Time series are a set of data points, typically consist-
ing of events arranged in order of their time of occurrence. Usually, the
intervals of a time series are of constant value (such as one second, five
minutes), so the time series can be analyzed and processed as discrete-time
data. Examples of time series are gross domestic product (GDP), consumer
price index (CPI), weighted stock price index, interest rate, and exchange
rate. Or selecting from an equally complex set of data, we can mention
the intermittency of heart rate intervals, stride lengths in walking, or EEG
data.

Time series are widely used in mathematical statistics, signal process-
ing, pattern recognition, econometrics, and most applications involving
time data measurements in science and engineering. Therefore, the analysis
and prediction of time series is the focus of much research in these fields.

A time series prediction and analysis algorithm based on the RG trans-
formation proposed in [6, 142] was different from traditional prediction
models, such as ARIMA and GARCH [115]. RG self–similarity does not
seek to discover the relationship between historical points, but rather at-
tempts to identify the dynamic trends that lead to these points. This
algorithm was applied to predict financial time series one step ahead, and
to the future development direction of financial time series.

2.3.6. Probability theory. In classical probability theory, the CLT occu-
pies a significant position. This theorem establishes that under well-defined
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conditions, the mean values of a large number of independent, identically–
distributed (i.i.d) random variables, with finite mean and variance, con-
verge to a normal distribution after appropriate standardization. The CLT
is the theoretical basis of traditional mathematical statistics as well as error
analysis and points out that the sum of a large number of random variables
approximately obeys a normal distribution.

There are different methods for proving the CLT. The derivation of the
CLT by the RG method can necessarily reveal its universal result, that
is, the normal distribution is the fixed point of the sum of these random
variables under the action of RG operator [30, 60]. Besides, the generalized
CLT can also be proved by using this point of view, such as a large number
of i.i.d random variables with infinite variance, converging to Lévy stable
distribution under appropriate scaling [2, 18, 19].

Consider the dynamic variable Z(t) having the homogeneous scaling
behavior:

Z(λt) = λδZ(t) (2.1)

where λ is a parameter and δ is a scaling index. In the phase space for the
system the dynamic variable is replaced with the trajectory mapped out by
(z, t) and P (z, t)dz is the probability that the random variable lies in the
interval (z, z + dz) at time t. The scaling behavior expressed in Eq. (2.1)
is manifest in the scaling of the PDF:

P (z, t) =
1

tδ
F
( z

tδ

)
, (2.2)

where F (·) is an unknown analytic function of the scaled variable. When
the scaling index is δ = 1/2 this corresponds to the Gauss distribution.
When the PDF is that of Lévy the scaling index is given by δ = 1/β and β
is the Lévy index from Eq. (1.4). We subsequently show that Eq. (2.2) is
the fixed point RG solution of the general fractional equation:

∂α
t [P (z, t;α, β)] = K∂β

|z| [P (z, t;α, β)] , (2.3)

and δ = α/β [129]. There are two kinds of non-locality in the fractional
equation for the PDF in Eq. (2.3): the Caputo derivative in time on the left
introduces memory into the evolution; the Reisz derivative in space on the
right introduces non-locality in space into the evolution. The RG solution
to this fractional evolution of the PDF given by Eq. (2.2) ties the scaling
in space and time together through the ratio of the two fractional indices.

Let us now turn our attention to presenting some details on the origin,
developments, and applications of the RG method in SPT.
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3. Renormalization group methods in
singular perturbation theory

Perturbation theory includes mathematical methods that were initiated
to obtain asymptotic analytic solutions to mathematical physics problems.
In general, these problems were regarded as systems with small perturba-
tions to the parameters or structures of ideal dynamic models. This per-
spective evolved and today there are two different types of perturbation
problems: regular and singular. When the asymptotic expansion uniformly
approaches an exact solution, the perturbation problem is regular. The
solutions to the equations of this system’s dynamics, with the perturba-
tion parameters set equal to zero can approximately replace the solutions
of the original system. This is called the degenerate system. Otherwise, it
is a singular perturbation problem. In the latter case the solution to the
degenerate system’s equations of motion is substantially different from the
solution to the equation for the original system.

The study of the singular perturbation problem has developed into
an essential branch of control theory. The commonly used techniques in-
clude the method of multiple scales, boundary layers, asymptotic matching,
Wentzel-Kramers-Brillouin (WKB) approximation, stretched coordinates,
and the averaging method, as mentioned in [24, 81]. However, it should be
noted that all the methods mentioned above have their shortcomings, which
hinder their application to real-word mechanical systems [81]. Therefore,
the authors of [20, 21, 22, 23, 24] proposed a new method based on RG
ideas to overcome these shortcomings.

3.1.The origin. From the perspective of the applications of the RGmethod
in perturbed quantum field theory and critical phenomena, Chen et al.
in the years from 1991 to 1996 [20, 21, 22, 23, 24] demonstrated a uni-
fied understanding of various singular perturbation methods and reductive
perturbation methods using several examples. Firstly, they discussed the
general relation between the RG method and multiple-scale analysis by
means of examples. Secondly, for a class of singular perturbation problems,
they showed that these problems could also be solved by the RG method.
Thirdly, they demonstrated with several switchback problems that the RG
approach has technical advantages over conventional asymptotic methods.
Lastly, they demonstrated that the RG method is a general and system-
atic method to derive slow-motion equations using the Newell-Whitehead
equation.

To better understand their work, and in keeping with historical prece-
dent we use an example to illustrate the efficiency of this method.
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Rayleigh equation. Lord Rayleigh supplemented the weak viscous force
acting on a harmonic oscillator with a cubic nonlinearity, which in standard
notation can be expressed as:

d2y(t)

dt2
+ y(t) = ε

[
dy(t)

dt
− 1

3
(
dy(t)

dt
)3
]
,

y(t0) = 0,
dy(t0)

dt
= R0,

where 0 < ε � 1 is known as the small perturbation parameter. The
solution to this equation is obtained by assuming a naive expansion in
powers of ε:

y(t) = y0(t) + εy1(t) + ε2y2(t) + · · · ,

which when substituted into the Rayleigh equation, and comparing coeffi-
cients of the same power of ε yields:

ε0 :
d2y0(t)

dt2
+ y0(t) = 0,

ε1 :
d2y1(t)

dt2
+ y1(t) =

dy0(t)

dt
− 1

3

(
dy0(t)

dt

)3

,

· · ·

This subsidiary set of equations is solved in ascending orders of the
perturbation parameter. The solution to the oscillator equation is inserted
as the driver to the order ε equation and solved. In this way we obtain the
straightforward perturbation solution to O(ε) of the Rayleigh equation:

y(t) =R0 sin(t+ θ0) + ε

[
−R3

0

96
cos(t+ θ0) +

R0

2
(1− R2

0

4
)(t− t0)

sin(t+ θ0) +
R3

0

96
cos 3(t+ θ0)

]
+O(ε2),

(3.1)

where θ0 is a constant determined by the initial conditions at t = t0.

Since this direct expansion possesses R0
2 (1− R2

0
4 )(t− t0) which is the so

called secular term [81]. The secular terms make yn(t)/yn−1(t) unbounded
as t approaches to infinity, such as tn cos t and tn sin t. Therefore, the
solution (3.1) is divergent and not uniformly valid. To regularize the series,
which is a formal way of suppressing the divergence in the solution, we
introduce an arbitrary intermediate time τ that partitions t− t0 into t− τ
and τ − t0. We absorb the terms containing τ − t0 into the renormalized



RENORMALIZATION GROUP AND FRACTIONAL . . . 23

counterparts R and θ as follows:

R = R0 + ε
R0

2
(1− R2

0

4
)(τ − t0),

θ = θ0.

This partitioning enables us to rewrite Eq.(3.1) after some algebra as the
following renormalized perturbation result:

y(t) =

[
R+ ε

R

2
(1− R2

4
)(t− τ)

]
sin(t+ θ)− ε

R3

96
[cos(t+ θ)

− cos 3(t+ θ)] +O(ε2),

where R and θ are functions of τ . Since τ does not appear in the original
problem, the solution should not depend on it. Therefore, requiring that
the solution be independent of τ yields:

∂y

∂τ
|τ=t = 0

for any t, so that the RG equation is:

dR

dt
= ε

1

2
R(1− 1

4
R2) +O(ε2),

dθ

dt
= O(ε2).

(3.2)

Thus, the final uniformly valid result is

y(t) = R(t) sin t+
ε

96
R(t)3 [cos(3t)− cos t] +O(ε2),

where the time-dependent amplitude R(t) is given by the solution to the
nonlinear rate equation Eq. (3.2).

The idea behind the RG method applied in this way is that the resonant
part of the equation dominates the dynamics of an system. By decompos-
ing the nonlinear term into resonant and non-resonant parts, the former is
constant in time and yields a secular term, which leads to the RG equation.
The solution to the RG equation is the main piece of an approximate solu-
tion to the initial perturbed equation. Such a decomposition is very useful
in studying the long–time behavior of solutions. The RG method became
a powerful technique with which to solve a sequence of perturbation prob-
lems. The advantage of this method over other more algebraically intensive
methods is that the starting point is a straightforward naive perturbation
expansion, for which no prior knowledge is required. In contrast to conven-
tional methods, this approach neither requires assumptions regarding the
perturbation series’ structure nor does it require matching of the solution
pieces in an asymptotic domain.
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To illustrate the effects of this method theoretically, different research-
ers provided rigorous mathematical analysis from different perspectives,
and on that basis, improved the method.

3.2. Recent developments.

3.2.1. Simplification of the renormalization group method. To bet-
ter understand the RG method in the SPT context, Ziane [146] contributed
to the mathematical analysis of this technique through the study of differ-
ential equations modeling the dynamics of autonomous nonlinear systems.
Not only did he introduce how to estimate the difference between the as-
ymptotic solution and the original solution, but he also established a con-
nection between the RG method and first–order normal form (NF) theory.
To see how this was done consider the following vector equation:

du

dτ
+

1

ε
Au = F(u),

u|τ=0 = u0,
(3.3)

where 0 < ε � 1, A is a complex diagonal matrix, and F is a polynomial
nonlinear term. Apply the time scale transformation t = τ

ε , and Eq.(3.3)
becomes the following equation:

du

dt
+Au = εF(u),

u|t=0 = u0.

Through the renormalization analysis in Section 3.1, we obtain the RG
equation:

dV

dτ
= R(V),

V |τ=0 = v0,

where R(·) is the resonant part of the polynomial F(·) relative to the op-
erator A. The final uniformly valid formal solution is:

u(τ) = e−
τ
ε
AV(τ ) + εG(V(τ )) +O(ε2),

where the form of function G(·) is related to the specific form of the nonlin-
ear function F(·). By applying the mathematical analysis this asymptotic
validity is up to O(ε).

In summary, the RG method applied to SPT can be expressed in three
steps:

(1) Write a naive perturbation expansion solution of the
equation, which always contains secular terms.
(2) Introduce a free parameter to remove the secular terms.
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(3) Derive the RG equation by using the fact that the ap-
proximate solution of the perturbed problem is independent
of the free parameter.

3.2.2. Simplification and comparison to normal form theory.
DeVille et al. [32, 33] not only examined the mathematical basis of the RG
method but derived a simplified algorithm for this method up to O(ε2). In
addition, the crucial step of the RG method is a near–identity change of co-
ordinates. It is equivalent to the NF theory for systems with autonomous/
non-autonomous perturbations to second–order and higher–order systems.

Consider the following weakly nonlinear autonomous ordinary differen-
tial equation (ODE):

dx

dt
= Ax+ εf(x),

and weakly nonlinear non-autonomous ODE:

dx

dt
= Ax+ εf(x, t),

where 0 < ε � 1, A is a complex diagonal matrix with purely imaginary
eigenvalues, and f(x), f(x, t) are both smooth functions.

Based on the previous studies, a simplified version that highlights the
mathematical underpinnings of the RG method can be shown as the fol-
lowing steps:

(1) Derive a naive perturbation expansion for the solution
of the given differential equation with an arbitrary initial
time t0 and initial condition x(t0).
(2) Renormalize the initial condition by absorbing those
terms in the naive expansion which are time–independent
and bounded into x(t0).
(3) Apply the RG condition:

dx

dt0
= 0.

By showing the relationship between the RGmethod and the NF theory,
the diagram can be summarized as the following form:



26 L. Guo, Y. Chen, S. Shi, B. West

where V denotes the space of vector fields, S denotes the space of trun-
cated asymptotic expansion. RG1, RG2 and RG3 represent the above three
steps, respectively. NF denotes the change of coordinates central to the NF
method.

The essential reductive step in the RG method is the change of coordi-
nates known as RG2. This coordinate change is near–identity on time scales
of O(1/ε). It absorbs the non–resonant terms from the asymptotic expan-
sion into the initial condition, which is similar to the coordinate change
involving the dependent variable in the NF theory. These two methods are
used together to remove the non–resonance term. Holzer et al. [57] devel-
oped this theory and used three examples to illustrate that the RG method
can well handle the perturbation problem with logarithmic switching terms.

The advantages of the RG method over the NF method are that the
secular terms are easier to identify, and the form of the near–identity coor-
dinate change is not necessarily known in advance so that the RG method
is quite general.

3.2.3. The geometric meaning. In geometry, the envelope of a family of
curves in the plane is a curve that is tangent to each member of the family
in at least one point, and these points of tangency together form the entire
envelope. Let {Cτ}τ denote a family of curves indexed by τ in the x–y
plane, where Cτ is implicitly given by the equation

F (x, y, τ ) = 0.

The envelope of {Cτ}τ is defined as the set of all (x, y) ∈ R
2 satisfying the

following equations

F (x, y, τ ) = 0,

∂F

∂τ
(x, y, τ ) = 0,

for some values of the parameter τ . For more details, see [1, 15].
To establish the geometric meaning of the solution of the differential

equation Kunihiro [67, 68] showed that the RG equation can be interpreted
as an envelope equation, which is known as the envelope of the family
of curves representing naive approximations. Kunihiro et al. [36] also
derived reduced equations for evolution on attracting slow manifolds and
approximate center manifolds in perturbed ODEs.

3.2.4. Invariant conditions. Independently and simultaneously with the
works of Chen et al., Woodruff [137, 138] proposed an invariance condition
that shares many features with the RG method. It was used to treat multi–
scale perturbation problems, that is, by introducing implicit invariance in
the expansion process, a uniformly valid solution can be constructed. It
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is the invariance condition that is analogous to the RG condition, and
Woodruff’s method yields the same types of results as the RG method.

3.2.5. New average ansatz. Mudavanhu and O’Malley Jr [79] analyzed
the asymptotic solution of a particular class of initial value vector system:

ẋ = Mx+ εN(x, t, ε),

whereM is a diagonal matrix with only imaginary eigenvalues andN(x, t, ε)
is a smooth matrix function concerning all three variables and is p−periodic
in t. This system is subject to small–amplitude time–periodic perturba-
tions.

Change the dynamic variables as follows:

z(t) = e−Mtx(t),

that will take the transformed system to the standard form:

ż(t) = εf(z, t, ε),

where the new function is defined by:

f(z, t, ε) = e−MtN(eMtz, t, ε).

To solve this equation perturbatively introduce the regular power series
expansion:

z(t) = z0(t) + εz1(t) + ε2z2(t) + · · · ,
where zi(t) (i = 0, 1, 2, · · · ) satisfy the following sequence of linear initial
value problems:

ε0 : ż0(t) = 0, z0(0) = x(0),

ε1 : ż1(t) = f(z0(t), t, 0), z1(0) = 0,

ε2 : ż2(t) = fz(z0(t), t, 0)z1(t) + fε(z0(t), t, 0), z2(0) = 0,

· · ·
and integrating successively, we can obtain the hierarchy of solutions:

z0(t) = x(0),

z1(t) =

∫ t

0
f(x(0), s, 0)ds,

z2(t) =

∫ t

0
[fz(x(0), s, 0)z1(s) + fε(x(0), s, 0)]ds,

· · ·
Partition the function f(x(0), t, 0) into an average part and a fluctuating

zero–average part:

f(x(0), t, 0) = 〈f(x(0), t, 0)〉 + {f(x(0), t, 0)},
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where the non-zero average is given by:

〈f(x(0), t, 0)〉 ≡ 1

p

∫ p

0
f(x(0), s, 0)ds,

which is the new ansatz when considering the simple resonance problem.
By using this ansatz, z1(t) can be separated into a secular part and a

bounded secular–free part

z1(t) = a0t+ Z1(t),

where the secular part is a0t, the average is:

a0 = 〈f(x(0), t, 0)〉
and the bounded secular–free part is:

Z1(t) =

∫ t

0
{f(x(0), s, 0)}ds.

Using the similar treatment, z2(t) possesses the same form. Finally, ap-
ply the multi–scale in a slow time τ = εt, the secular term in the direct
expansion solution can be separated and removed.

3.2.6. Lie–group approach. Goto et al. [51] constructed a representa-
tion of the Lie group from the renormalization transformation in several
examples and derived an asymptotic expression for a generator of the Lie
group. This novel perspective points out that the RG method can be un-
derstood as the procedure by which to obtain an asymptotic expression for
a generator of the renormalization transformation based on the Lie group.

This Lie–group approach provides the following simple recipe for ob-
taining the asymptotic form of the RG equation from an ODE to a partial
differential equation (PDE):

(1) By utilizing the naive perturbation calculations, obtain
a secular series solution of the perturbed equation.
(2) Find the renormalized integral constant to eliminate all
the secular terms in the perturbation solution and give the
renormalized transformation.
(3) Rewrite the renormalization transformation by perform-
ing an arbitrary shift operation on the independent variable:
t → t+ τ and obtain a representation of the Lie group un-
derlying the renormalization transformation.
(4) By differentiating the representation of the Lie group to
arbitrary τ , obtain an asymptotic expression of the genera-
tor, thereby generating an asymptotic RG equation.

3.3. Nine applications of the renormalization group method.
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3.3.1. Stochastic differential equations. In real physical systems, un-
certainties that are difficult to explain using basic models occur due to
measurement errors, unresolved scales/interactions, and numerical inac-
curacies. It is desirable to quantify the robustness of models, especially
those involving singular perturbations, in the presence of these uncertain-
ties. Therefore, it is natural to combine small amplitude white noise driven
disturbances into existing singular models.

Blömker et al. [13] applied the RG method to the study of the stochas-
tic driven system, which is the stochastic two-dimensional Navier-Stokes
equation with additive Gaussian noise and periodic boundary conditions.

Glatt-Holtz and Ziane [47] studied a class of stochastic differential equa-
tions:

dX+
1

ε
AXdτ = F(X)dτ + εmG(τ , τ/ε)dW, (3.4)

where A is a linear operator that assume to be symmetric positive semidef-
inite or antisymmetric; F(·) is a polynomial function; G(·, ·) takes values in
M

n×n and is bounded in the Frobenius norm sense; m is a constant; dW is
the white noise process. By using the RG method on Eq. (3.4) we obtain
the following RG equation:

dV = R(V)dτ + εmH(τ , τ/ε)dW,

and the uniformly valid formal asymptotic solution:

X = e−Aτ/εV.

In the sense of probability the solution is valid to the order of O(1) through
a strict proof.

3.3.2. Fractional stochastic differential equations. Brownian motion
is the label for the motion of those particles driven by stochastic forces due
to coupling to the random environment. This process is an independent
incremental continuous random process with a normal PDF. Fractional
Brownian motion (FBM), compared with classical Brownian motion, is one
of the well–developed stochastic processes with strong long–range correla-
tions in space and time. These stochastic processes, such as FBM and Lévy
flights [38], are often used to describe phenomena with anomalous diffusive
behavior and extended memory processes in the field of economics and fi-
nance. Guo et al. [54] studied a class of stochastic differential equations
driven by FBM with Hurst parameter H ∈ (12 , 1) :

dX(t) +AX(t)dt = εF(X(t))dt+ εm+HG(εt, t)dBH
t ,

X(0) = X0,

where A is a linear operator that is assumed to be symmetric positive
semidefinite or antisymmetric; F(·) is the polynomial function; G(·, ·) takes
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values in M
n×n and bounded in the Frobenius norm sense; m is a constant;

BH
τ is the n-dimensional FBM, defined as the stochastic integral, for t � 0 :

BH
t =

1

Γ(H + 1/2)

{∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]dW(s)

+

∫ t

0
(t− s)H−1/2dW(s)

}
,

where dW(s) denotes an n−dimensional Wiener process defined on (−∞,∞).
By rigorous analysis, uniformly effective asymptotic solutions to the order
of O(1) are obtained. This was the first attempt to apply the RG method
to fractional stochastic differential equations.

3.3.3. Hamiltonian systems. Yamaguchi and Nambu [139] discussed the
relation between integrability of the original systems and the symplectic
properties of the RG equations in Cartesian coordinates. Consider the
following Hamiltonian systems:

H(q1, q2, p1, p2) = H0(q1, q2, p1, p2) + εV1(q1, q2),

H0(q1, q2, p1, p2) =
1

2
(p21 + p22 + q21 + q22),

where V1(q1, q2) is a homogeneous cubic or quartic function of the two
canonical displacement variables q1, q2 and the perturbation parameter is
quite small |ε| � 1.

The conclusion is that the original Hamiltonian systems and the RG
equations are integrable if the RG equations are Hamiltonian systems up
to the second leading–order of the small parameter. They [140] concluded
that the result obtained from the RG method equivalent to those obtained
by canonical Hamiltonian perturbation theory, up to O(ε2).

3.3.4. Vector field approximation on manifolds. By assuming the
secular term in the RG method satisfy Krylov–Bogoliubov–Mitropolsky
(KBM) condition, Chiba [26] studied the following types of ODEs:

ẋ = f(t,x) + εg(t,x),

in terms of the simple perturbation series:

ẋ = Fx+ εg1(t,x) + ε2g2(t,x) + · · ·+ εmgm(t,x),

where x ∈ R
n; f(t,x) and g(t,x) are C4 and C3 time-dependent vector

field functions; F is a diagonalizable n × n matrix with pure imaginary
eigenvalues; and g1(t,x), · · · ,gm(t,x) are C∞ vector field functions, which
are polynomials in x and periodic in t.

Furthermore, he concluded that the vector field is defined by the ap-
proximate solutions obtained using the RG method, which is close to the
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original vector field in the C1 topology. Furthermore, he considered the
following ODEs

ẋ = Fx+ εg(x),

along with the perturbation series:

ẋ = Fx+ εg1(x) + · · ·+ εmgm(x),

where as before F is a diagonalizable n × n constant matrix with pure
imaginary eigenvalues and g(x), g1(x), · · · ,gm(x) are vector polynomials
on R

n.
According to Fenichel theory, some topological properties of the original

vector field can be obtained, that means, if the approximate vector field
has normally hyperbolic invariant manifolds, then the original vector field
is also expected to have the same invariant manifolds.

Chiba [27] studied a more general class of singular perturbation prob-
lems:

ẋ = εg(x, t, ε),

where x ∈ U , U is an open set in C
n and g(x, t, ε) is a vector field and

is almost–periodic in t. The RG method can also lead to the existence
of approximate invariant manifolds, the inheritance of symmetries from
the original equation to the RG equation. Li and Shi [69] extended the
condition to a more general situation by using the RG method to study the
case where g(x, t, ε) is quasi–periodic in t and they obtained a number of
rigorous approximate results.

3.3.5. Energy conservation and dissipation. Based on the above aver-
aging ansatz, Temam and Wirosoetisno [117] considered the approximate
solution to a class of ODEs that were initiated from a fluid dynamics back-
ground:

du

dt
+

1

ε
Lu+Au+B(u) = f ,

u(0) = u0,

where u ∈ R
d, L is a real antisymmetric matrix, A is a positive definite

matrix, f = f(t) is a function with the bounded infinite norm, and B(u) is
referred to as the nonlinear part.

Two conclusions that follow from their analysis are:

(1) When using the RG method, the leading–order approx-
imation model obtained has the same energy conservation
and dissipation properties as the original model, but the
high–order approximations are no longer maintained.
(2) The higher–order solutions are still bounded, and like
the solution of the original equation, they eventually falls
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into an absorbing set associated with a sufficiently small
parameter ε.

3.3.6. Periodic orbit problems. Based on the RG method, Bhattachar-
jee et al. [11] identified and classified the periodic solutions – limit cycle
behavior or orbiting around a center – in various types of two–dimensional
nonlinear dynamical systems. Subsequently, Palit and Datta [88] improved
the RG analysis by invoking the concept of nonlinear time. They studied
the Rayleigh and Van der Pol equations and for the amplitude a(ε) of the
limit cycle of the two oscillators, derived the effective approximate formula
as a function of the nonlinear parameter ε. Additionally, they proposed
good approximate plots of the limit cycle of the oscillator.

3.3.7. Boundary layer problems. For a class of singular perturbation
problems, the domain can be divided into two or more subdomains. In one
of these (usually the largest) subdomains, the solution can be obtained as
an asymptotic series through regular perturbation theory. However, this
approximate solution is inaccurate in other subdomains. If these subdo-
mains are on the boundary of the domain, it is called the boundary layer.
If it is in the middle of the domain it is called the inner layer.

Consider the following boundary layer problem:

εÿ + p(x)ẏ + q(x)y = 0, 0 � x � 1
y(0) = α, y(1) = β,

where p(x) and q(x) are Cr(r ≥ 2) functions, and p(x) > 0 on the interval
[0, 1]. When dealing with the above boundary layer problem, Zhou et al.
[145] recently showed that the RG method has the same efficiency as the
classical matching asymptotic expansion method to order O(ε). The latter
can be seen as an extension of Kirkinis’s work [65].

3.3.8. Fast–slow systems. Consider the following fast–slow system mo-
tivated by biological applications:

duε

dt
= f(uε, vε), t > 0, uε(0) = u0, (3.5)

ε
dvε

dt
= −αvε +Φ(uε,vε), t > 0, vε(0) = v0, (3.6)

where f and Φ are defined on R
m+1 and take on values respectively in R

m

and R
1 with m � 1.

By using the RG method, Marciniak-Czochra et al. [73] derived the
O(ε2) approximation of Eq. (3.5) and Eq. (3.6), which only relates to the
variables of the slow equations given in Eq. (3.5). Furthermore, the proof
of the ε2–order error estimate over an infinite interval is provided. The
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contribution indicates that the RG method is more straightforward than
the boundary layer calculation in the classic method of Vasil’eva [123].

3.3.9. Partial differential equations. The RG method is also rigorously
applied to some PDEs on bounded intervals, such as the Navier-Stokes
equations [75], a slightly compressible fluid equation, the Swift-Hohenberg
equation [23, 76, 100], Maxwell’s wave equation [28], as well as the primitive
equations of the atmosphere and the ocean [93].

Salem [99] studied the quadratic nonlinear Schrödinger equation:

i∂tφ = −Δφ− εφ2,

where Δ is the spatial Laplacian operator in R
3. He concluded that the

approximate solution holds for a long time (t0 � t � t0+δ | log ε|
eφ0ε

, δ ∈ (0, 1)).

Moreover, the approximate solution is compared with the true solution in
space L2(R3).

Pocovnicu [94] obtained an approximate solution of the nonlinear half-
wave equation which is the Schrödinger equation in a non-dispersive situa-
tion:

i∂tφ− |D|φ = |φ|2φ,
where D = −i∂x. The approximation holds for a long time (0 � t �
Cε−2[log(1/εδ)]1−2α, 0 � α � 1/2, δ ∈ (0, 1)), and the approximate so-
lution also compares favorably with the true solution in space Hs

+(R), for
s > 1/2.

An approximation was obtained for the solution of the quadratic dis-
persive equations by Wang [124]:

i∂tu+Δu = −εv2, u(0, x) = 0,

i∂tv +Δv = 0, v(0, x) = v∗(x).

The approximation holds for a long time (0 � t � δ| log ε|
eεα , δ ∈ (0, 1)), and

the approximation solution also compared with the true solution in space
Lp(R), for p ∈ [2,∞].

4. Connecting renormalization group and
fractional calculus theories

We have reviewed, all too briefly, the origin and developments of the RG
method in different fields, and now turn our attention to determining the
connections between RG and FC theory. The essential difference between
traditional calculus and FC lies in the definition of the classical operations
of differentiation and integration. Classically the derivative is a “local”
operator, it is uniquely determined at the point x, where in dynamics that
point denotes either space or time and along with the definition of the limit
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forms the basis of Newtonian mechanics. Newton’s explicit assumption
that space is homogeneous and time is isotropic along with definitions of
the ordinary calculus are the mathematical foundations of classical physics.

The fractional derivative has “non-local” or “integral” properties in
that a fractional derivative in time has memory and a fractional derivative
in space depends on the behavior of the process arbitrarily far away. Con-
sequently, the fractional derivative of f(x) depends on all its values, not
just the value of the function in a small neighborhood of x. Just as in ge-
ometry having more than one way to generalize beyond the form of Euclid,
there are multiple ways to generalize the definitions of the derivative and
integral operators. For example, different formal expressions for fractional
derivatives are given in Appendix A.

At present, although the existing literature attempts to combine RG
and FC from different disciplines, there is a lack of in–depth and essential
research on the relationship between these two theories.

Douglas [35] studied the surface–interacting polymers model and ob-
tained the exact solution of the partition function using the FC. Moreover,
he explained the basic relationship between the RG scaling functions and
the exact scaling functions. This is the first research paper combining the
RG and FC theories that we could find.

4.1. Fractional Brownian motion. Quan [96] studied the connection
between FBM and the RG in statistical physics, and determined statistical,
geometric, and fractal properties of complex phenomena. The RG method
is a powerful tool for qualitatively studying physical phenomena as well
as pure mathematical problems with scaling properties. Meanwhile, some
complex systems with IPL properties can also be studied using the FC
theory.

As shown in Fig. 4, when a beam of white light enters a dispersive
prism, the prism decomposes the white light into its constituent spectral
colors (the colors of the rainbow). Complex systems are equivalent to such
a beam of white light, which can be decomposed into its various spectra
(observations) through a dispersive prism system. These observations are
typical representations of complex systems: scale–free, self–similarity, long–
range dependence, and long–term memory.

So, what is this prism system (or lens) that connects complexity with
its macroscopic observations? Through discussions in the previous sections,
we tried to explore the essence of complex systems through phenomena
from different angles and found that the “lens” is the IPL or scaling laws.
Through this “lens”, RG and FC become the common ground method to
reveal the essence of complexity. Therefore, it should emphasize that these



RENORMALIZATION GROUP AND FRACTIONAL . . . 35

Figure 4. The connection between renormalization group
and fractional calculus.

two research areas are by nature connected. This connection is the IPL
and scaling laws, both are essential for studying complex systems.

This point can be made directly by way of example wherein we consider
a random walk process determined by a fractal function and called the
Weierstrass random walk (WRW) [59] for reasons that will become obvious
in due course. Consider the discrete probability described by the stepping
PDF for the WRW on a one-dimensional lattice with sites indexed by q:

P (q) =
a− 1

2a

∞∑
n=0

1

an
[δq,bn + δq,−bn ] ,

where a and b are dimensionless constants greater than one. δij is the
Kronecker delta function: δij = 1 for i = j and δij = 0 for i �= j. We follow
the analysis of this discrete process given by West and Grigolini [130]. The
first property of note is that the second moment of this diffusive process is:

〈
q2
〉
=

a− 1

a

∞∑
n=0

(
b2

a

)n

,

which diverges for b2 > a since the series is infinite. The lattice structure

function P̂ (k) is the discrete Fourier transform of the PDF and conse-
quently is the discrete version of the characteristic function:

P̂ (k) =
a− 1

a

∞∑
n=0

1

an
cos [bnk] .
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This series was introduced by Weierstrass in 1872 [71] to represent a process
that is continuous everywhere but is nowhere differentiable. Thanks to
Mandelbrot we now know that this was the first consciously constructed
fractal function and the divergence of the second moment is a consequence
of its non-analytic properties.

As the WRW process proceeds the set of sites visited consists of local-
ized clumps of sites, interspersed by gaps, nested within clusters of clumps
over ever-larger spatial scales. The WRW generates a hierarchy of clumps
that are statistically self–similar, as suggested by Fig. 5.The parameter a
determines the number of subclusters within a cluster and the parameter b
determines the scale size between groupings.

Figure 5. The landing sites for the WRW are depicted and
the islands of clusters are radially seen.

Let us now apply the RG method to the lattice structure function and
determine the scaling properties of the WRW. Scaling the argument of the
lattice structure function by b and reordering terms in the series yields:

P̂ (bk) = aP̂ (k)− (a− 1) cos k.

The solution to this RG equation can be separated into homogeneous and

singular parts and the singular part P̂s (k) is obtained by solving the ho-
mogeneous scaling equation:

P̂s (bk) = aP̂s (k) . (4.1)



RENORMALIZATION GROUP AND FRACTIONAL . . . 37

The formal solution to this equation is given by:

P̂s (k) = A(k)kμ

which when inserted into Eq. (4.1) yields:

A(bk)bμkμ = aA(k)kμ.

The last equality implies that A(k) is periodic in the logarithm of k with
period ln b, μ = ln a/ ln b and the solution can be written:

P̂s (k) =

∞∑
n=−∞

An |k|Hn , (4.2)

with the complex power–law index:

Hn = μ+ in
2π

ln b
=

ln a

ln b
+ in

2π

ln b
.

The analytic forms of the Fourier coefficients in Eq. (4.2) are given in
Hughes et al. [59].

It is possible to prove that the dominant behavior of the WRW is de-
termined by the lowest-order term in the singular part of the solution for
the lattice structure function but we do not do that here. We assume that
the dominant behavior is given by the n = 0 term in the series:

P̂s (k) ≈ A0 |k|μ ,

whose inverse Fourier transform is the IPL:

P (q) =
K(μ)

|q|μ+1 ,

and K(μ) is a known function of μ. Thus, the singular part of the WRW
has an IPL stepping PDF and this behavior intuitively justifies ignoring all
the other terms in the series.

We now write for the time-dependent form of the discrete PDF:

P (q, n+ 1) =
∑
q′

P (q − q′)P (q′, n) =
∑
q′

K (μ)

|q − q′|μ+1P (q′, n),

where we assume that each step n in WRW process occurs at equal time
intervals. This equation was analyzed in 1970 by Gillis and Weiss [46], who
determined that its solution is a Lévy PDF, thereby connecting the RG
solution the WRW to discussion of the fractional diffusion equation given
earlier.
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4.2. Fractional kinetic equations. Zaslavsky [143] studied chaotic par-
ticle kinetics generated by a class of non-integrable Hamiltonians. He de-
rived the fractional Fokker-Planck-Kolmogorov (FFPK) equation for the
PDF to describe the ensemble behavior of the random walk in the fractal
space–time system. Using the RG method, he was able to solve the FFPK
equation and concluded that the critical exponents of the anomalous kinet-
ics represented the dynamics of the Hamiltonian. That is, when the fixed
points of the RG equation exist, they lead to the relationship between the
space–time fractional exponents and the space–time scale expressed in the
scaling form of the PDF solution. It is a pioneering work applying RG
theory to fractional–order stochastic dynamical systems.

Consider a random walk generated by a Hamiltonian system whose
dynamics are chaotic. The names Kolmogorov [66], Arnold [7] and Moser
[78] are associated with laying out the boundaries of classical mechanics
and as West and Grigolini [130] explain, KAM theory describes how the
continuous trajectories of particles determined by a Hamiltonian break up
into a chaotic sea of randomly disconnected points. This kind of “strange
kinetics” produces the FFPK equations to describe the evolution of the
PDFs in phase space. Schematically we write the FFPK equation for an
ensemble of chaotic trajectories as:

δtP (l, t) = δlP (l, t),

where δt is the infinitesimal time–variation of the PDF and δl is the corre-
sponding variational quantity in space.

The application of the RG transform R to this equation n−times yields
for an ensemble of chaotic trajectories:

Rn [δtP (l, t)] = Rn [δlP (l, t)] ,

where on the left we obtain by scaling the time increment Δtα :

Rn [Δtα] = λnα
T Δtα,

and on the right we obtain by scaling the space increment Δlβ :

Rn
[
Δlβ

]
= λnβ

L Δtβ.

Thus, in the simplest case we can write:

λnα
T ∂α

t [P (l, t)] = λnβ
L Kα,β∂

β
|l| [P (l, t)] ,

which diverges as:

lim
n→∞

(
λβ
L

λα
T

)n

=

{
0, if λβ

L < λα
T ,

∞, if λβ
L > λα

T ,

unless:
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λβ
L = λα

T . (4.3)

Eq. (4.3) defines a nontrivial fixed point of the RG relation and yields:

μ = α/β = lnλL/ ln λT ,

thereby yielding the fixed point kinetic equation:

∂α
t [P (l, t)] = Kμ∂

β
|l| [P (l, t)] .

The solution to FFPK equation is obtained by interpreting the frac-
tional time derivative in the Caputo sense and taking the Fourier-Laplace
transform of the equation from which after some algebra we obtain the
generalization of Eq. (1.4):

P (x, t;α, β) =

∞∫
−∞

eikxe−Kμtα|k|β dk
2π

.

After rescaling and some algebra we can rewrite this equation as:

P (x, t;α, β) =
1

tμ
P (

x

tμ
;α, β),

thereby providing a generic form for the solution to the fixed point FFPK
equation. Note that this is precisely the form of Eq. (2.2) discussed earlier.

5. Conclusions and outlook

This paper presents a brief history of the origin, developments, and
some applications of the RG method in the physical sciences and in SPT.
In addition, when dealing with complex systems, the connection between
RG and FC is revealed and explained. This connection is tied to the form
of scaling and IPLs, both of which are essential to the study of complex
systems.

In this connected framework, RG and FC each entail a potentially new
world view. A new way of thinking that diverges from the classical New-
tonian view in unexpected ways. Therefore, RG and FC have become the
strategies to address the complexity related issues of the future. The fol-
lowing are some suggestions for future research.

(1) Prediction and analysis of complex phenomena are the focus of
future research. Therefore, it is crucial to study the dynamics of the whole
system at equilibrium and in out-of-equilibrium states both theoretically
and experimentally, in the tradition of such variations as done on the Kondo
model [135].
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However, the known numerical methods, such as the numerical renor-
malization group [16], are limited to dealing with the problem of long–
term evolution. Therefore, it is desirable to develop a systematic theoret-
ical approach to study the physical properties of equilibrium and out-of-
equilibrium states in different models.

(2) When using the RG method to deal with the singular perturbation
problems, a more general form of the secular term is needed instead of using
only KBM condition or the average ansatz.

In the field of SPT secular terms may take many forms. However,
people usually assume that this term is based on the KBM condition or the
average ansatz. These assumptions have some limitations, such as dealing
with the following problems [70]:

ẋ(t) = ε(1− x2(t)),

or

ẋ(t) = x2(t) + t sinx(t) + εx(t).

Therefore, revising the assumptions and making the obtained RG equations
with a more general form is also a problem that needs to be solved in the
future.

(3) When studying models of physical, chemical, biological, social, and
financial processes, it is common to use stochastic differential equations
and master equations with fractional derivatives and fractal noise. The
correlation between the fractional derivative and the corresponding general
derivative to the asymptotic behavior can be evaluated by RG analysis of
the renormalization model, in which the fractional–order dimension of the
differential operator can be calculated. Since there are many definitions of
fractional derivatives, it is worth exploring the renormalization properties
of different fractional derivative operators.

(4) In many signal processing methods, noise is often modeled using
Gaussian statistics. However, in many real–world or man–made systems,
rather than being Gaussian, noise is more likely to be bursty or intermittent.
The statistics of intermittent noise is described by a heavy tailed distribu-
tion, with many spikes, which is often difficult to characterize. Therefore,
in fractional–order control and fractional–order signal processing, it is nec-
essary to solve the problem of finding a suitable filter for a given input
heavy tailed noise in order to produce the output noise with a desired
non–heavy–tailed distribution, using Laplace or Mellin transform [87].

Applying the RG method to the processing of non–Gaussian noise is an
area worthy of development. There have been some related research efforts,
such as applying the RG method in the context of extreme value theory
and to the generalized CLT [2].
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(5) As shown in Section 4, the FC and fractal processes can be used
to describe long–term memory processes and long–range dependent pro-
cesses. However, recent empirical analysis of complex nonlinear dynamic
systems raises questions about the capabilities of the constant–order frac-
tional processes. The root cause of these problems is that a constant Hurst
parameter fails to capture the multiscaling or multifractal characteristics
of a fractal random process. In order to accurately analyze complex signals
with self–similarity, there have been some attempts, such as introducing a
multifractional process with a time–dependent local Hurst exponents known
as multifractional Brownian motion [91, 105]

B
H(t)
t (t) =

1

Γ(H(t) + 1/2)

{∫ 0

−∞
[(t− s)H(t)−1/2 − (−s)H(t)−1/2]dW(s)

+

∫ t

0
(t− s)H(t)−1/2dW(s)

}
,

where H(t) is a Hölder exponent. Therefore, the multiscale RG [30] scheme
could be applied to analyze the above complex signals with multiscaling and
multifractal characteristics.

(6) At present, in terms of applications, fractional–order systems we
believe will have more comprehensive applications than integer–order sys-
tems. Therefore, the application of the RG method to the fractional–order
system will also be an exciting research direction [111]. For example, the
RG method can be used to reveal the relationship between the FC and the
properties (persistent correlation, self–similarity, and variance divergence)
of fractional–order stochastic processes and anomalous diffusion [38].

We foresee a bright future implementing the synthesized application
of the RG and the FC to problems emerging from complexity from in all
the disciplines of science. We anticipate that the FC the RG method will
be successfully applied to a broader range of fractional–order systems, and
the analysis of the properties of complex system will be made even more
tractable. It is our sincere hope that the present review will be useful in
studying complex dynamics with “useful consequences”.

Appendix A. Fractional calculus

There are various definitions of fractional differential-integral opera-
tors, not necessarily equivalent to each other. Basic fractional derivatives
include Riemann-Liouville derivative, Grünwald-Letnikov derivative, Ca-
puto derivative and Riesz derivative. For more details and properties, see
[64, 95].

The Riemann-Liouville fractional derivative is expressed as the integral
with a memory kernel:
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RLDα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ , t > a,

where RLDα
t represents the Riemann-Liouville derivative operator, f(t) is

an arbitrary integrable function over the interval [a, t], α ∈ (n− 1, n), and
Γ(·) is the Gamma function.

The Grünwald-Letnikov derivative is expressed as limit of the discrete
operator:

GLDα
t f(t) = lim

h→0
h−α

[
t−t0
h

]∑
j=0

(−1)j
(
α
j

)
f(t− jh),

where GLDα
t represents the Grünwald-Letnikov derivative operator, [·] is

the approximate recurrence term for integer part of the bracketed term,

and

(
α
j

)
= Γ(α+1)

j!Γ(α−j+1) .

The Caputo fractional derivative is expressed as the integral with a
memory kernel:

CDα
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ )

(t− τ)α−n+1
dτ, t > a,

where CDα
t represents the Caputo derivative operator, n is an integer, α ∈

(n− 1, n), and f (n)(τ) is the nth order derivative of the function f(τ). For
simplicity in the text we often write the Caputo fractional derivative as
∂α
t [·] .

The Riesz fractional derivative is expressed as

∂α

∂|x|α f(x) = − 1

2 cos(πα/2)

[
I−α
+ f(x) + I−α

− f(x)
]
, 0 < α � 2,

where ⎧⎪⎪⎨⎪⎪⎩
Iα+f(x) =

1

Γ(α)

∫ x

−∞
(x− ξ)α−1f(ξ)dξ,

Iα−f(x) =
1

Γ(α)

∫ +∞

x
(ξ − x)α−1f(ξ)dξ.
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