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a b s t r a c t

A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance
of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller
is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states
observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional
calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional
proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization
method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on
system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics
for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical
FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Fractional calculus is the generalization of ordinary integer
order calculus. Systems described by fractional order calculus are
known as fractional order systems (FOS). Fractional calculus pro-
vides a preferable method to describe complicated natural objects
and dynamical processes such as electrical noises, chaotic system,
and organic dielectric materials [1–6]. As a consequence, scientists
show more and more interests in identification of FOS [7,8].
Commensurate linear FOS is a special kind of FOS, with a simple
model and proportional orders [9,10].

Controllers with fractional order operator are naturally suitable
for the FOS [11,12]. There are mainly four kinds of fractional order
controllers, which are CRONE (Contrôle Robuste d’Order Non
Entier) controller, TID (Tilt Integral Derivative) controller, frac-
tional order PID controller, and fractional order lead-lag compen-
sator [13–19]. Considering the industrial universal controller
design requirements, such as compact structure, repeatability,
model independence, easy parameter turning and strong robust-
ness, active disturbance rejection control (ADRC) provides an
alternative paradigm for FOS control [20–22]. The central objective
of ADRC is to treat the internal and external uncertainties as the
total disturbance and to reject them actively. Compact frame,
effortless turning and sufficiently good performance make ADRC
rights reserved.

ce and Technology, Beijing
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popular in the world of industrial control [23–25]. ADRC was
firstly used to control FOS in [26], where fractional order is
regarded as a part of the total disturbances, and an extended state
observer (ESO) is used to estimate and reject it. Because the
known or available model information is neglected and under-
used, it would require higher observer bandwidth for accurate
state estimation. In this paper, a distinct fractional active dis-
turbance rejection control (FADRC) is proposed as a generalized
and enhanced ADRC solution for the FOS. ESO is redesigned as a
fractional one according to the highest fractional order of FOS. The
modified fractional extended states observer (FESO) not only
accurately estimates the total disturbance but also the fractional
order dynamic states, leading to a reduced observer bandwidth. In
addition, a fractional order PD controller is used to replace the
tracking differentiator and the nonlinear state error feedback.
Although FADRC is designed for commensurate linear FOS ori-
ginally, the robustness analyses demonstrate that FADRC is also
appropriate for incommensurate linear FOS. Simulation results
show that FADRC has more inherent superiority and potential for
FOS control.

Due to the difficulty brought by the nonlinearity and uncer-
tainty, theoretical studies of ADRC are still lagging behind its
industrial applications. Recent research focuses on time domain
convergence, frequency response and describing function in ana-
lyzing nonlinearity [27–29]. Stability analysis has been sub-
stantially studied for FOS in [30]. An extended root locus method
by Patil [31] provides a simple way to construct root locus of
general FOS and is employed for FADRC analysis and design.
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The FOS is translated into its integer order counterpart and then
analysis method of general integer system can be directly adopted.

The rest of this paper is organized as follows. In Section 2, an
introduction of commensurate linear FOS and fractional order
state observer with full-dimensionality are presented. In Section 3,
the framework of FESO and FADRC and the corresponding algo-
rithm are introduced. Section 4 presents the stability and
frequency-domain characteristics of FADRC. Simulation results of
FADRC and ADRC are then compared in Section 5. Finally, con-
clusions are given in Section 6.
2. Fractional order systems and fractional order state observer
with full-dimensionality

The conventional integer order single input single output
(SISO) transfer function can be extended to the case of the FOS.
There exist various alternative definitions of the fractional deri-
vative, and the Grünwald–Letnikov (GL), Riemann–Liouville (RL)
and Caputo definitions are mainly used. In all of the three defini-
tions, the fractional operator acts as a non-local operator, and that
is to say fractional derivatives have a memory of the past values.

It is difficult to directly implement the fractional order operator
in time-domain for the complicated FOS by using the standard
definitions. To solve this problem, the normative integer-order
operators are applied to approximate fractional order operators. A
lot of works and researches have been done in this area. Piché
gives the discrete-time approximations of fractional order opera-
tors based on numerical quadrature [32]. Freeborn proposed a
method to reduce the second-order approximation ripple error of
the fractional order differential operator [33]. The approximation
listed in [34] is adopted in this paper, which is based on network
theory approximations, and the approximation can give desired
accuracy over any frequency band.

2.1. Transfer function representation

A SISO linear FOS can be described as [35]:

y tð Þþ
Xn
i ¼ 0

ait0Dt
ϕi y tð Þ ¼

Xm
j ¼ 0

bjt0Dt
φj u tð Þ; ð1Þ

where u tð Þ is the input, y tð Þ is the output, ϕi 1r irnð Þ and φj
0r jrmð Þ are real positive numbers, and ϕ1oϕ2⋯ oϕn;φ1o
φ2⋯oφm φmoϕn

� �
. Model coefficients ai 1r irnð Þ and bj 0r jð

rmÞ are constants. t0D
α
t α¼φi or α¼φj

� �
is a fractional order

differential operator, t0 and t denote the upper and lower limit of
the integral interval, respectively. The Caputo's fractional deriva-
tive of order α with variable t and starting point t0¼0 is defined as
follows:

0D
α
t y tð Þ ¼ 1

Γ 1�γ
� � Z t

0

y mþ1ð Þ τð Þ
t�τð Þγ dτ; ð2Þ

where Γ Zð Þ is Euler's gammafunction, and α¼mþγ; mANþ ;
0oγr1. In the fractional differential Eq. (1), if the order
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Fig. 1. Block diagram of fractional order state observer.
differentiations are integer multiples of a single based order: i.e.
ϕi ¼ iα;φj ¼ jα, the system will be termed as commensurate order
and takes the following form:

y tð Þþ
Xn
i ¼ 0

ai0Dt
iαy tð Þ ¼

Xm
j ¼ 0

bj0Dt
jαu tð Þ: ð3Þ

With zero initial conditions, the Laplace transform of Eq. (3)
becomes

G sð Þ ¼ Y sð Þ
U sð Þ ¼

Pm
j ¼ 0

bjsjα

1þ Pn
i ¼ 1

aisiα
: ð4Þ

2.2. Fractional order state observer with full-dimensionality

As is well known, a commensurate FOS admits the following
state-space representation:

0D
α
t xðtÞ ¼ AxðtÞþBuðtÞ

yðtÞ ¼ CxðtÞ ;

�
ð5Þ

where matrix A;B; and C are constants. A new fractional order
state observer with full-dimensionality for the commensurate
linear FOS is obtained by generalizing the classical Luenberger
state observer [36], and the structure of the state observer is
shown in Fig. 1. where L is the undetermined coefficient matrix,
and 1=sα represents the fractional order integer operator. The
observer error can be expressed as E¼ X� X̂ , where X is the actual
state and X̂ is the estimated state.

0D
α
t E¼ A�LCð ÞE: ð6Þ
When the eigenvalues of matrix (A–LC) stay in the stable

region, Eq. (6) will be asymptotically stable (refer to Section 4 for
details).
3. The structure of the fractional active disturbance rejection
controller

The traditional ADRC consists of three main parts: the tracking
differentiator (TD), the ESO, and the nonlinear state error feedback
(NLSEF). TD is used to provide the transient process and its deriva-
tive of the input signal. ESO is used to estimate the states plus the
total disturbance. After the aforementioned state variables have
been obtained, NLSEF is applied to combine them and obtain the
control signal. By the efforts of Gao, the bandwidth-
parameterization method was proposed to linearize the ESO and
PD controller without losing high precision and efficiency [37,38]. In
this section, the structure of FADRC is presented. Compared with
traditional ADRC, ESO is replaced by a FESO while NLSEF is replaced
by a linear fractional PD controller. A second-order FADRC is shown
in Fig. 2, where v0 tð Þ and y tð Þ represent the setpoint and output,
respectively, while u0 tð Þ denotes the output of linear fractional PD
controller, u tð Þ is the control signal, and w tð Þ is the external dis-
turbance. Particularly, z1 tð Þ, z2 tð Þ and z3 tð Þ are the outputs of FESO,
and

_
b is a system-dependent coefficient.
3.1. Design of fractional extended states observer

A second order linear FOS with commensurate order α is
assumed as follows

Y sð Þ
U sð Þ ¼

b
s2αþa2sαþa1

: ð7Þ
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where a2; a1; b and α 0oαo1ð Þ are constants. Its differential
equation form is

y 2αð Þ ¼ �a2y αð Þ �a1y
� �þbu¼ f y αð Þ; y; t

� �þbu: ð8Þ

Particularly, let x1 ¼ y; x2 ¼ y αð Þand x3 ¼ f y αð Þ; y; t
� �

, among
which x1; x2 represent the system states and x3 is the external
w(t)

Linear fractional
PD controller

Fractional Extended
State Observer

Plant1
b-

0 (t)u (t)u (t)y( )0v t

( )1z t
( )2z t

( )3z t

Fig. 2. Configuration of a second-order FADRC.
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Fig. 3. Tracking responses with different ωo. (a) ωo¼
state. Then, the augmented state space form of Eq. (7) can be
represented as:

x αð Þ ¼ AxþBuþEh

y¼ Cx
;

(
ð9Þ

where x αð Þ ¼
x1 αð Þ

x2 αð Þ

x3 αð Þ

2
64

3
75; x¼

x1
x2
x3

2
64

3
75;A¼

0 1 0
0 0 1
0 0 0

2
64

3
75;B¼

0
b
0

2
64

3
75;

C ¼ 1 0 0
� �

; E¼
0
0
1

2
64

3
75; and h¼ f αð Þ ∙ð Þ

A linear FESO is designed to estimate the states x1, x2, and x3 in

the following.

z αð Þ ¼ Azþ_BuþL y� ŷ
� �

ŷ¼ Cz
;

(
ð10Þ
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where

z αð Þ ¼ z1 αð Þ z2 αð Þ z3 αð Þ
h iT

; z¼ z1 z2 z3
� �T

;
_
B ¼ 0

_
b 0

h i
, and

L¼ β1 β2 β3

h iT
are observer gains. z1, z2 and z3 are the outputs

of FESO: z1 is the estimation of the state x1, z2 is the estimation of
the state x2, and z3 is used to estimate the total disturbance x3. In
addition,

_
b is the estimated value of b, and

_
b � b. To simplify the

tuning process, the bandwidth-parameterization method [39] is
employed. According to w-plane mapping (mentioned in Section
4), the FOS is translated into an integer order system in w-plane.
By placing the poles of the translated characteristic equation λ wð Þ
in one location, the following is obtained

λ wð Þ ¼w3þβ1w
2þβ2wþβ3 ¼ wþωoð Þ3 ð11Þ

where, the observer gains can be linearized as

β1 ¼ 3ωo

β2 ¼ 3ωo
2

β3 ¼ωo
3
;

8><
>: ð12Þ

For the integer order system, variable ωo is referred to as the
bandwidth of ESO. When it comes to FOS, ωo possesses the
bandwidth characteristics. In order to facilitate distinction, the
variable ωo in (11) is considered to be the w-plane bandwidth of
FESO. The main objective of FESO is to estimate the total dis-
turbance in real time, and wider w-plane bandwidth will result in
faster response. In practice, however, upper limitation of the
bandwidth is related with the sampling ratio, and exceeding the
limit will magnify sensor noises and dynamic uncertainties. A
well-tuned ωo must therefore make a balance between rapidity
and stability [26,39,40]. The following Eq. (13) is used to test the
FESO single parameter ωo. Both of the two poles �0:31257
1:0735i stay in the stable region (refer to Section 4 for details), that
means the system of Eq. (13) is open-loop stable. Parameters
ωc¼20,

_
b ¼ b¼ 1:25 and ωo is set as {5, 50, 500, 1000}. The

tracking responses are shown in Fig. 3

Y sð Þ
U sð Þ ¼

1:25
s1:8þ0:625s0:9þ1:25

: ð13Þ

Fig. 3 shows that estimating ability of FESO is strengthened
with the increase of the observer w-plane bandwidth. However,
outputs of FESO become unstable when the w-plane bandwidth is
beyond the toplimit. The upper limit is related to the sampling
rate, and a higher sampling rate leads to a higher upper limit.

3.2. Design of fractional PD controller

Referring to Fig. 3, a well-tuned observer can track the extended
state f y; y αð Þ;ω

� �
accurately. The control law can be designed as
u¼ �z3þu0
_
b

; ð14Þ

to obtain a desired response, where u0 is a common linear frac-
tional PD control:

u0 ¼ kpðv0�z1Þþkd v0 αð Þ �z2
� �

; ð15Þ

where kp and kd are controller gains. The parameters tuning is
further simplified using the method in [39]

kd ¼ 2ωc

kp ¼ω2
c

(
ð16Þ

where ωc is the w-plane bandwidth of the controller. Time
derivative of the setpoint is omitted to avoid the pulse in [39].
However, because the fractional order differentiation of the step
signal is a gradual process rather than the pulse signal, v0 αð Þ cannot
be omitted in (15). Then Eq. (7) becomes a commensurate cascade
fractional order integrator form as

y 2αð Þ � u0: ð17Þ

Considering Eqs. (15) and (17), the following closed-loop
transfer function can be obtained, namely, the desired response
of FADRC is

Y sð Þ
R sð Þ �

kdsαþkp
s2αþkdsαþkp

: ð18Þ
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Eq. (13) is taken as an example again, with fixed parameter
_
b ¼ 1:25. Fig. 4 shows the desired response and the output results
with different ωo (ωc¼20 is fixed). Fig. 5 shows the output
responses with different controllerw-plane bandwidthωc (ωo¼200
is fixed).

As Fig. 4 shows, the output results tracks closely to the desired
response with the increase of ωo. This is because the larger
observer w-plane bandwidth can ensures precise disturbance
estimation and then compensator can be applied to reject the total
disturbance. Fig. 5 shows that smallωc makes the system response
slower, while large ωc makes it faster.

In a practical application, the design procedure consists of two
stages. In the first stage, a linear FESO is designed and a well-tuned
ωo is selected to ensure accurate estimations. In the second stage,
a fractional order PD controller is designed under the assumption
that the total disturbance is well estimated, and all the existing
methods could be used in this stage for designing linear or non-
linear controllers.
4. Root locus and frequency domain analysis for fractional
active disturbance rejection control

A FOS can be generally expressed in the following form:

H sð Þ ¼ bms
m
v þ⋯þb1s

1
vþb0

ans
n
vþ⋯þa1s

1
vþa0

: ð19Þ

where ak k¼ 0;⋯;nð Þ; bk k¼ 0;⋯;mð Þ are constants, and v41. The
Riemann sheets are determined by using

s¼ sj jejϕ: ð20Þ
Φr sð Þ ¼
kds4αþ kpþkdβ1

� �
s3αþ kpβ1þkdβ2

� �
s2αþ kdβ3þkpβ2

� �
sαþkpβ3

_
b
Gp

s3αþ β1þkd
� �

s2αþ β1kdþβ2þkp
� �

sα
� � þ kpβ1þkdβ2þβ3

� �
s2αþ kpβ2þkdβ3

� �
sαþkpβ3

ð24Þ
where 2kþ1ð Þπoθo 2kþ3ð Þπ; and k¼ �1;0;⋯; v�2. The Rie-
mann sheet is named as the Principal Riemann Sheet when
k¼ �1: Note that only roots lying on the Principal Riemann Sheet
can determine the time-domain behavior and stability perfor-
mance. These sheets are mapped to the w-plane as defined by

w¼ wj jejθ ð21Þ
where w¼ sα and α¼ 1=v. The sheets can be projected to the w-
plane by

α 2kþ1ð Þπoθoα 2kþ3ð Þπ ð22Þ
The correspondence between the w-plane and s Riemann

sheets is shown in Fig. 6. With the transformation of the w-plane,
the stability of FOS can be predicted by the trend of root locus. The
region of instability �απ=2rarg wð Þrαπ=2

� �
in the w plane

corresponds to the right half plane �π=2rarg sð Þrπ=2
� �

in the s
plane. The root locus branches never enter the unstable region,
Fig. 7. Block diagram of the FA
which implies the system remains stable. Otherwise, if the root
locus branches never enter the stable region, the system remains
unstable. If the branches move from the stable region to the
unstable region (or move from the unstable region to the stable
region), then the range of grain can be determined [30,31,41,42].

4.1. Root locus of linear fractional order systems

The steps to plot the root loci of FOS are listed as follow:
a) Attain the open loop transfer function of FOS;
b) Transform FOS into an integer order system on the w-plane;
c) Obtain the root locus of the transformed system;
d) Identify the Principal Riemann Sheets and the unstable

region on the w-plane;
e) Perform stability analysis from the root locus on the w-plane.
In order to analyze the stability of FADRC, the FADRC time

domain configuration shown in Fig. 2 is changed into a frequency
domain block diagram form [42]. As Fig. 7 shows, V0(s) and Y(s)
represent the setpoint and output, respectively; Ω denotes the
external disturbance; Gp(s) is the transfer function of a commen-
surate linear FOS.

The other transfer functions in the blocks are listed in Appendix A.
By the equivalent transformation of the block diagram, the close-loop
transfer function can be obtained as follows when the effect of the
external disturbance Ω is omitted.

Φr sð Þ ¼
Y sð Þ
VO sð Þ ¼

Gr1GcGpþGr2Gp
_
bþGpGf1þGcGpGf2

: ð23Þ

and
Taking Eq. (7) as an example, the parameters of FADRC are
designed using Eqs. (12) and (16). Then, the open loop transfer
function of Φr sð Þ can be written as

Φo sð Þ ¼ Φr sð Þ
1�Φr sð Þ

: ð25Þ

and

Φo sð Þ ¼ kds4αþ kpþkdβ1

� �
s3αþ kpβ1þkdβ2

� �
s2αþ kdβ3þkpβ2

� �
sαþkpβ3

_
b
Gp

s3αþ β1þkd
� �

s2αþ β1kdþβ2þkp
� �

sα
� ��kds4α� kpþkdβ1

� �
s3αþβ3s2α

ð26Þ
For different kinds of objects, two categories are studied to

discuss their root loci:

4.1.1. For the commensurate fractional order system
When Gp sð Þ ¼ b

s2α þa2sα þa1
and

_
b
b � 1, the open loop transfer

function can be written as
DRC in frequency domain.



Φo sð Þ ¼ kds4αþ kpþkdβ1

� �
s3αþ kpβ1þkdβ2

� �
s2αþ kdβ3þkpβ2

� �
sαþkpβ3

s5αþ β1þa2
� �

s4αþ β2þβ1a2þkda2þa1
� �

s3αþ β1kda2þβ2a2þkpa2þβ1a1þkda1þβ3

� �
s2αþ β1kda1þβ2a1þkpa1

� �
sα

ð27Þ
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Fig. 8 shows the root locus when α¼0.9, a1¼1.25, a2¼0.625,
_
b¼b¼1.25, ωo¼100 and ωc¼20, the open loop poles and zeros
are given in Table 1.

4.1.2. For the incommensurate fractional order system
When Gp sð Þ ¼ b

s2α þa2sαþ δ þa1
and

_
b
b � 1, the open loop transfer

function can be written as
Φo sð Þ ¼ kds4αþ kpþkdβ1

� �
s3αþ kpβ1þkdβ2

� �
s2αþ kdβ3þkpβ2

� �
sαþkpβ3

_
b
b s2αþa2sαþδþa1
� �

s3αþ β1þkd
� �

s2αþ β1kdþβ2þkp
� �

sα
� ��kds4α� kpþkdβ1

� �
s3αþβ3s

2α
ð28Þ
Fig. 9 shows the root locus when α¼0.9, δ¼�0.3 a1¼1.25,
a2¼0.625,

_
b¼b¼1.25, ωo¼100 and ωc¼20, the open loop poles

and zeros are given in Table 1. Fig. 10 shows the root locus
when α¼0.9, δ¼0.3 a1¼1.25, a2¼0.625,

_
b¼b¼1.25, ωo¼100
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Table 1
Open loop zeros and poles for different objects.

Objects Instability region

α¼ 0:9
a1 ¼ 1:25
a2 ¼ 0:625

δ¼ 0 (Fig. 8) � 9
20πrarg wð Þr 9

20π

b¼ 1:25
_
b ¼ 1:25

δ¼ �0:3 (Fig. 9) � 3
20πrarg wð Þr 3

20π

ωo ¼ 100
ωc ¼ 20

δ¼ 0:3 (Fig. 10) � 3
20πrarg wð Þr 3

20π
and ωc¼20, and the open loop poles and zeros are given in
Table 1.

From the root loci in Figs. 8–10, it is clear that all the curves are
in the stable region and have no intersections with the stability
boundary. In the other words, the system remains stable for all
gain values. Although the objects are not the standard commen-
surate FOS (δa0), the proposed method is also applicable.
4.2. Frequency-domain characteristics analysis

Frequency domain characteristics are widely used to analyze
automatic control systems in classical control theory. Bode
Zeros Poles

w1;2;3 ¼ �100
w4 ¼ �10

w1 ¼ 0
w2 ¼ �121:4
w3;4 ¼ �89:6720:5i
w5 ¼ �0:05

w1;2;3 ¼ �4:64
w4;5;6 ¼ 2:32þ4:02i
w7;8;9 ¼ 2:32�4:02i
w10 ¼ �2:15
w11;12 ¼ 1:0871:87i

w1;2;3 ¼ 0
w4;5 ¼ �4:7670:17i
w6 ¼ �4:40
w7;8 ¼ 2:4774:14i
w9;10 ¼ 2:1474:11i
w11;12 ¼ 2:3773:80i
w13 ¼ �0:38
w14;15 ¼ 0:1870:33i

w1;2;3 ¼ �4:64
w4;5;6 ¼ 2:32þ4:02i
w7;8;9 ¼ 2:32�4:02i
w10 ¼ �2:15
w11;12 ¼ 1:0871:87i

w1;2;3 ¼ 0
w4;5 ¼ 2:4374:51i
w6;7 ¼ 2:8373:73i
w8;9 ¼ 1:6673:88i
w10;11 ¼ �4:9670:42i
w12 ¼ �3:92
w13 ¼ �0:38
w14;15 ¼ 0:1970:32i

-12 -10 -8 -6 -4 -2 0 2 4 6
-10

-5

0

5

10
Root Locus

Real Axis (seconds-1)

Im
ag

in
ar

y 
A

xi
s 

(s
ec

on
ds

-1
)

Stability Boundary

Fig. 9. Root locus when α¼0.9, δ¼�0.3 a1¼1.25, a2¼0.625,
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b¼b¼1.25, ωo¼100

and ωc¼20, where the dotted line is the stability boundary.
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diagram is an important component for the frequency-domain
analysis. The closed-loop stability, rapidity and accuracy can be
analyzed based on the bode diagram. A basic feedback frame can
be obtained from the frequency-domain block diagram of Fig. 7,
and the equivalent open-loop transfer function is described in Eq.
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Fig. 10. Root locus when α¼0.9, δ¼0.3 a1¼1.25, a2¼0.625, b¼1.25, ωo¼100 and
ωc¼20. The dotted line is the stability boundary.

Fig. 11. Bode diagrams with different parameters. (a) Bode diagram with differen
(26). Taking Eq. (13) as an example, the Bode diagram with dif-
ferent ωc (ωo¼200 is fixed), is shown in Fig. 11(a) and the bode
diagram with different ωo (ωc¼50 is fixed) is shown in Fig. 11(b).

Fig. 11(a) shows that the crossover frequency becomes bigger
with the increase of ωc. This means that a bigger ωc makes the
system response more quickly. In addition, the phase stability
margin keeps almost unchanged, which ensures the stability of the
system. It can be seen from Fig. 11(b) that the system almost has
almost the same bode diagram in the low frequency interval for
different ωo, which means the observer w-plane bandwidth ωo

has little effect on the stability.
5. Simulation and discussion

In this section, simulation results for four different FOS are
implemented to verify the superiority and effectiveness of the
proposed method. The methods in [43] and [26] are adopted to
design ADRC for FOS control (see Table 2). In Table 2, comparative
results with method in [43] are listed in No. 1 and comparative
results with method in [26] are listed in No. 2–5. For the sake of
fairness, the transition process of the setpoint generated by TD is
added in FADRC and ADRC, and the second order TD can be
designed as [21]
t ωc (ωo¼200 is fixed). (b) Bode diagram with different ωo (ωc¼50 is fixed).



Table 2
Controller parameters and performance indices.

No. Objects Parameters {ωo, ωc,
_
b, T} ISE (10�5)

FADRC Comparative method FADRC Comparative method

1. Commensurate nonlinear FOS {30, 5, 1, 0.001} ωo¼30, kp¼10, ki¼2, kd¼1 λ¼0.8,
_
b¼1, T¼0.001 3000 45,000

2. Gas-turbine model (at 90% rated speed) {100, 10, 14165, 0.001} 670 1000
3. Gas-turbine model (at 93% rated speed) {100, 10, 8533, 0.001} 340 660
4. Heat-solid model {300, 10, 0.0252, 0.0001} 35.3 37.5

{30, 10, 0.0252, 0.0001} 35.3 120
5. Solid-core active magnetic bearing {4000, 200, 5600, 0.0001} 1.2 68
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Fig. 12. Outputs comparison between FADRC and Gao's method. (a) The output y.
(b) Control signal.
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_v1 ¼ v2
_v2 ¼ f han v1�v0; v2; r;hð Þ ;

(
ð29Þ

where v0 is the setpoint, v1 is the transition process of v0, v2 is the
differential trajectory of v1, r and h are adjustable parameters, and
the function f han ∙ð Þ is defined as:

f han x1; x2; r;hð Þ ¼ �
rsign að Þ; aj j4d

rad; aj jrd ;

(
ð30Þ

where a and d are given as follows:

d¼ rh;

d0 ¼ hd;

y¼ x1þhx2;

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2þ8r y



 

q
;

a¼
x2þ a0 �dð Þ

2 sign yð Þ; y


 

4d0

x2þ y
h; y


 

rd0

:

8<
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð31Þ

All the parameters and assessment indices are listed in Table 2,
where T is the sampling time; ISE is the short for integral square
error: ISE tð Þ ¼ R t

0 y tð Þ�v1 tð Þð Þ2dt.

5.1. A commensurate nonlinear fractional order system

The following commensurate nonlinear FOS is used to compare
the performance between FADRC and the Gao's method [43].

D0:8x1ðtÞ ¼ x2ðtÞ
D0:8x1ðtÞ ¼ sin x2ðtÞð Þþx2ðtÞþuðtÞ
yðtÞ ¼ x1ðtÞ

:

8><
>: ð32Þ

The reference input is v(t)¼5, and the parameters of FADRC
and Gao's method are listed in Table 2. Fig. 12(a) shows the tran-
sition process and closed loop output of Eq. (32), and Fig. 12
(b) shows the control signals.

As Fig. 12 shows, FADRC can track the transition process with
less oscillation, and FADRC's control signal is also reasonable. It can
be seen that the commensurate nonlinear FOS is well controlled by
FADRC. In addition, the total variation(TV) of the control effort is
used to compare the performance of different controllers. The
definition of TV index is given as follows:

TV ¼
X1
i ¼ 1

juiþ1�uij: ð33Þ

TV obtained for FADRC is 26.1 and that for Gao's method is 44.1,
which shows that FADRC owns smaller control effort. This is
beneficial for practical application.

5.2. Gas turbine plant

The model of the fractional order gas turbine plant, which
converts the fuel energy into an useful form, is given by Nataraj
[44]. The input and output of the gas turbine are fuel rate and
turbine speed, respectively. For the operating regime at 90% rated
speed, the fractional order model is

G90% sð Þ ¼ 103:9705
0:00734s1:6807þ0:1356s0:8421þ1

: ð34Þ

For another operating regime at 93% rated speed, the fractional
order model is

G93% sð Þ ¼ 110:9238
0:0130s1:6062þ0:1818s0:7089þ1

: ð35Þ

Fig. 13 shows the output responses for the operating regime at
90% and 93% of rated speed demand. The well-tuned parameters
of FADRC and ADRC are listed in Table 2.

Fig. 13(a) and (c) shows FADRC has faster adjustment capability.
Fig. 13(b) and (d) shows the corresponding control signals.

5.3. Heat-solid model

A heat solid model is described by the following fractional
order transfer function [45]

G sð Þ ¼ 1
39:69s1:26þ0:598

: ð36Þ
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Fig. 13. Response comparisons between FADRC and ADRC on gas-turbine model.
(a) Output y (at 90% rated speed). (b) Control signal (at 90% rated speed). (c) Output
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The input and output are voltages, and least squares method is
used to identify the unknown parameters. A FADRC is designed
with the commensurate order α¼0.63, and the total disturbances
is f FADRC ¼ �0:598=39:69y. A first-order ADRC/second-order ESO is
used for comparison. The total disturbance is f ADRC ¼ y 1ð Þ �
y 1:26ð Þ �0:598=39:69y. Parameters of FADRC and ADRC are listed in
Table 2. Simulation results with ωo¼300 and ωo¼30 are shown in
Fig. 14(a) and (b), respectively.

It can be seen from Fig. 14 and Table 2 that FADRC has a better
response. It is also important to note that FADRC is able to respond
quickly even with a relatively small bandwidth (see Fig. 14(b)),
which makes the solution more practical.
5.4. Solid-core active magnetic bearing

Due to the eddy current effect, a solid-core active magnetic
bearing (AMB) shows some fractional order characteristics and the
traditional magnetic equivalent circuit model has significant
amounts of errors when predicting the actual system. A weighted
least-squares method was derived for the general fractional model
based on the widely studied commensurate order fractional model
in [46]. The final results show that the identified fractional model
structure is closer to the actual system, and the result is:

G sð Þ ¼ 5594:32
s2:75þ259:08s1:83�85950:3s0:79�14240336:8

: ð37Þ

Typically, the AMB model is close to the third order linear FOS
with the commensurate order α¼0.9, and a third order FADRC is
therefore adopted for the control of the plant. Parameters of
FADRC and ADRC are listed in Table 2.

Fig. 15 shows that third-order FADRC has faster adjustment
capability. Furthermore, FESO can get precise estimations when
the observer w-plane bandwidth is increased to 1000. For ESO,
however, the precise estimations are not available until the
observer bandwidth is increased to 4000. This means that FADRC
does not require higher bandwidth or sampling rate and is more
suitable for practical engineering.

5.5. Robust analysis

A robustness assessment is carried out about the parameters of
Eq. (13). The following plant (38) with uncertain parameters δ and
ε are considered:

y 1:8þεð Þ ¼ �5
8
y 0:9þδð Þ�10

8
y

� �
þ10

8
u: ð38Þ

The normalized integral square error (ISE) trajectory tracking
performance indices are used as

ISEv tð Þ ¼ R t
0 y tð Þ�v1 tð Þð Þ2dt

ISEf tð Þ ¼
R t
0 f tð Þ�z3 tð Þð Þ2dt :

8<
: ð39Þ



Fig. 16. Behavior of the output ISE trajectories for different values of the uncer-
tainty order δ, when ε¼0 is fixed (Red full line indicates FADRC, blue dotted line
indicates ADRC and the step is 2ζ. For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Behavior of the disturbance ISE trajectories for different values of uncer-
tainty order δ, when ε¼0 is fixed (Red full line indicates FADRC, blue dotted line
indicates ADRC and the step is 2ζ. For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Response comparison between FADRC and ADRC on solid-core active
magnetic bearing. (a) Output y. (b) Control signal.

Fig. 19. Behavior of the disturbance ISE trajectories for different values of uncer-
tainty order ε, when δ¼0 is fixed (Red full line indicates FADRC, blue dotted line
indicates ADRC and the step is ζ. For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 18. Behavior of the output ISE trajectories for different values of the uncer-
tainty order ε, when δ¼0 is fixed (Red full line indicates FADRC, blue dotted line
indicates ADRC and the step is ζ. For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

D. Li et al. / ISA Transactions 62 (2016) 109–119118
where v1 tð Þ is the transition process of the setpoint and f tð Þ is the
total disturbance. Considering the dynamic characteristic of the
system and the accuracy of the identification method, the varia-
tion of uncertain parameter ε is set between �0.25 and 0.25. As
the second item produces small effects on the system, and para-
meter δ is set between �0.5 and 0.5. Figs. 16 and 17 show the
trajectories of ISEv;δ tð Þ and ISEf ;δ tð Þ for different uncertain para-

meters of δ in step of 2ζ, when ε¼0 is fixed and ζ ¼
ffiffiffi
3

p
�

ffiffiffi
2

p� �
=6.

Fig. 17 and Fig. 18 show the trajectories ISEv;ε tð Þ and ISEf ;ε tð Þ for
different uncertain parameters of ε in step of ζ, when δ¼0 is fixed.

From Fig. 16 to Fig. 19, the following conclusions can be
obtained. 1). For different uncertain parameters δ, Figs. 16 and 17
show that FADRC owns smaller ISE value in both the output and
disturbance trajectories. This means that FADRC could track tra-
jectory (setpoint or total disturbance) more quickly and precisely.
The constant steady states of these loci indicate that the corre-
sponding outputs are ultimately close to the desired reference
trajectories. 2). When the uncertain parameter ε changes, the
advantages of FADRC are distinct. Figs. 18 and 19 show that FADRC
obtains better performance when the first item 1.8þε is changed,
while FESO is affected by the modification of ε. When 1.8þε is
closer to 2, the ESO achieve a better performance. This is a good
example to prove that FADRC is necessary for a system with an
integer-distancing fractional order. 3). The highest order of FOS
plays an important role in FADRC designing for different system
because the no-highest items are treated as the total disturbance
and rejected by the controller. 4). More importantly, FADRC could
track the trajectory quickly and precisely even if there exist a large
change of uncertain parameter δ and ε, which means the FADRC is
also appropriate for incommensurate linear FOS.
6. Conclusion

The traditional ADRC solution for FOS is improved in this paper,
where the ESO and the NLSEF are replaced by FESO and PDα
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controller respectively. Linear bandwidth-parameterization method
is applied to simplify the parameters tuning. In addition, stability
and frequency-domain characteristics of FADRC for FOS are also
analyzed. Numerical simulations show the superiority and effec-
tiveness of the proposed scheme over the existing ADRC solution.
Moreover, robustness analysis shows that FADRC is also appropriate
for incommensurate FOS control. Furthermore, it is believed that
further improvements can be obtained by employing the nonlinear
gains in FADRC but it would require a thorough theoretical study of
necessity.
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Appendix: A

The transfer functions of the blocks in Fig. 7 are

Gr1 sð Þ ¼ kdsαþkp
s2αþ β1þkd

� �
sαþ β1kdþβ2þkp

� � A�1

Gr2 sð Þ ¼ kds3αþ kpþkdβ1

� �
s2αþ kpβ1þkdβ2

� �
sαþkpβ2

s2αþ β1þkd
� �

sαþ β1kdþβ2þkp
� � A�2

Gf1 sð Þ ¼ kpβ1þkdβ2

� �
sαþkpβ2

s2αþ β1þkd
� �

sαþ β1kdþβ2þkp
� � A�3

Gf2 sð Þ ¼ s2αþkdsαþkp
s2αþ β1þkd

� �
sαþ β1kdþβ2þkp

� � A�4

Gc ¼
β3

sα
A�5
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