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a b s t r a c t

This paper develops a fractional-order sliding mode based extremum seeking controller (FO SM-ESC)
for the optimization of nonlinear systems. The proposed FO SM-ESC, involving an FO derivative function
0D

q
t sgn(e), 0 ≤ q < 1 is shown to achieve faster tracking and higher control accuracy than the integer-

order (IO) SM-ESC. The tradeoff between control performance and parameters selection is analyzed and
visualized. The comparison between the FO/IO SM-ESC is given to reveal the potential advantages of the
FO controller over the IO controller. Simulation and experimental results show that the FO SM-ESC can
have a faster convergence speed and a smaller neighborhood around the optimal operational point.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

The desired operational point of a considered process should
happen in the optimum of a nonlinear performance that is always
connected to efficiency of plant in a lot of applications. The ESC
(Ariyur & Krstić, 2003; DeHaan &Guay, 2005; Krstić &Wang, 2000;
Popovic, Jankovic, Magner, & Teel, 2006; Tan, Nešić, & Mareels,
2006; Teel & Popović, 2001; Zhang & Ordóñez, 2009) is a method
for tracking a variational optimum. ESC and its applications have
been extensively studied, such as maximum power point tracking
(MPPT) for the photovoltaic (PV) generators (Malek, Dadras, &
Chen, 2012), and source seeking (Cochran & Krstić, 2007). One
popular technique in ESC is slidingmode basedmethod (Drakunov,
Özgüner, Dix, & Ashrafi, 1995; Fu & Özgüner, 2011; Oliveira,
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Peixoto, & Hsu, 2012; Pan, Özgüner, & Acarman, 2003; Yin, Stark,
Zhong, & Chen, 2012). Drakunov et al. (1995) have developed an
SM-ESC for the output optimization of dynamic systems.

Extending IO derivatives and integrals to FO items has a solid
standing foundation. Applying FO controllers to IO systems, there is
a better flexibility in regulating FO than utilizing IO controllers. The
possible benefits have activated renewed interest in varieties of FO
control (Luo & Chen, 2012; Malek et al., 2012; Podlubny, 1999; Yin,
Stark, Chen, & Zhong, 2013). For example, Luo et al. in Luo and Chen
(2012) have shown the advantage of the FOPI over the IOPID.

1.2. Summary of contributions

In this paper, some useful tools for FO control analysis of IO sys-
tems are given. A concept of the FO sign function 0D

q
t sgn(e), 0 ≤

q < 1, involving an FO differentiator, is introduced. 0D
q
t sgn(e) is

proven to be able to extract the sign of e. Onemay feel this is trivial
compared with the sign function itself; others may doubt that this
is against intuition comparedwith the derivative of a generic func-
tion. The meaning of 0D

q
t sgn(e), 0 ≤ q < 1 is the fractional order

derivative of the sign function. The sign of the derivative is generally
not the same as the sign of the function itself. However, the sign of
0D

q
t sgn(e), 0 ≤ q < 1 is firstly proven to be the same as sgn(e). This

is the first important property of the FO sign function. In addition,
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we show that the absolute value of 0D
q
t sgn(e) can be greater than

1 (i.e. |sgn(e)| is just limited at 0 or 1). This is the second important
property of the FO sign function.

Based on 0D
q
t sgn(e), an FO SM-ESC is proposed for the optimiza-

tion of nonlinear systems. In the FO SM-ESC, the first property of
0D

q
t sgn(e), 0 ≤ q < 1 guarantees that the output achieves an ar-

bitrary small neighborhood of the optimal operational point and
remains close to it thereafter. The second property can improve
the control performance (i.e. convergence speed and accuracy). The
changes of 0D

q
t sgn(e), 0 ≤ q < 1with respect to q and t are visual-

ized to show how the properties of the FO sign function contribute
to the superior tracking behavior. Further FO/IO SM-ESC compar-
isons are given. They show the advantage of the FO SM-ESC over
the IO SM-ESC clearly. Both simulation and experimental results
demonstrate the advantages of the designed control scheme.

2. Fractional-order sliding mode based extremum seeking
control

2.1. Problem formulation

Consider a single-input–single-output (SISO) nonlinear system
(Krstić & Wang, 2000; Pan et al., 2003)

d
dt

x = f (x, u), (1)

y = F̃(x), (2)
where x ∈ Rn, u ∈ R, y ∈ R are respectively the state, control
input and output. f (x, u) and F̃(x) are smooth. Without loss of
generality, we consider the maximization of y. We do not assume
the knowledge of F̃(·). Consider a smooth control law: u = η(x, θ),
parameterized by a scalar parameter θ . The system (1) is derived
as d

dt x = f (x, η(x, θ)).

Assumption 1. ∃ a smooth function xe : R → Rn such that
f (x, η(x, θ)) = 0 if and only if x = xe(θ).

Assumption 2. At the equilibrium point xe(θ), the static perfor-
mance map from θ to y (i.e. y(t) = F̃(xe(θ)) = F(θ)) is smooth.

We suppose that there exists a uniquemaximum at θ∗ for F(θ).
θ∗, F(·) and its gradient for any θ are assumed to be unknown
to the control designer. By utilizing F ′(θ) = dF(θ)/dθ, F ′′(θ) =

d2F(θ)/dθ2, one has d
dt y = F ′(θ) d

dt θ . The following assumption is
listed.

Assumption 3. There exists a unique θ∗
∈ R such that F ′(θ∗) = 0

and F ′′(θ∗) < 0. For any given ε > 0, there exists δ = δ(ε) such
that |F ′(θ)| > ε, ∀θ ∉ Dδ, where Dδ = {θ : |θ − θ∗

| < δ/2} is
called δ-vicinity of θ∗.

In order to design an FO SM-ESC,we use the following definition
and lemmas.

Definition 1. The Riemann–Liouville (RL) definition of the qth
order derivative is Monje, Chen, Vinagre, Xue, and Feliu (2010)
and Samko, Kilbas, and Marichev (1993) 0D

q
t f (t) =

dqf (t)
dtq =

1
0(m−q)

dn
dtn
 t
0

f (ι)
(t−ι)q+1−n dι, where n−1 < q ≤ nwith n is the integer,

0(·) is the gamma function.

Lemma 1 (Kilbas, Srivastava, & Trujillo, 2006 and Samko et al.,
1993). The fractional integration operator aI

β
t =

1
0(β)

 t
a

f (ι)
(t−ι)1−β dι,

(t > a; β ∈ C, Re(β) > 0) is bounded in Lp(â, b̂), (1 ≤ p ≤

∞, − ∞ < â < b̂ < ∞):

∥aI
β
t f ∥p ≤ K∥f ∥p,


K =

(b̂ − â)Re(β)

Re(β)|0(β)|


. (3)

Fig. 1. Block diagram of the proposed FO SM-ESC scheme.

Lemma 2. Consider the RL fractional derivative operator 0D
q
t f (t) =

1
0(1−q)

d
dt

 t
0

f (τ )

(t−τ)q dτ , 0 ≤ q < 1 and sign function, one can obtain

0D
q
t sgn(e(t))


> 0, if e(t) > 0, t > 0,
< 0, if e(t) < 0, t > 0. (4)

Proof. See Appendix A.

From Lemma 2, 0D
q
t sgn(e), 0 ≤ q < 1 is proven to be able to

extract the sign of e. This is its first property.

Remark 1. Consider two cases: (1) e(t) > 0, ∀t > 0, one has
0D

q
t sgn(e) =

t−q

0(1−q) ; (2) e(t) < 0, ∀t > 0, one also has 0D
q
t sgn(e)

=
−t−q

0(1−q) . Thus, 0D
q
t sgn(e) are bounded in both cases. Since the

absolute value of the above cases is greater than the other cases,
0D

q
t sgn(e), ∀e is bounded, i.e. there exists ϖ > 0 such that

|0D
q
t sgn(e)| < ϖ .

2.2. FO sliding mode based extremum seeking control

An FO SM-ESC will be designed for the system (1). First, the
tracking error is defined as e = y − yr , in which ẏr = kr , yr(0) =

yr0, with kr > 0 and yr0 is a design constant. So as to avoid an
unbounded yr(t), one can saturate yr(t) at a rough known upper
bound of y∗. Based on e, a function τ is proposed by

τ = γ1e + γ2(0D
q−1
t sgn(e)), (5)

where γi > 0, (i = 1, 2), 0 ≤ q < 1, 0D
q−1
t is an RL fractional

operator. The parameter θ is defined to meet θ̇ = v, in which v
denotes variable structure control

v = φ tanh

sin


π

γ0
τ


, (6)

in which φ denotes a designed modulation function and γ0 > 0.
The FO SM-ESC is depicted in Fig. 1.

3. Stability analysis of FO sliding mode based extremum
seeking control

3.1. Stability analysis of the FO SM-ESC

First, one has τ̇ = γ1F ′v+ξs, where ξs := −γ1kr +γ20D
q
t sgn(e).

Denoting k = γ1F ′, one has τ̇ = k(v + ω), in which ω :=

(−γ1kr + γ20D
q
t sgn(e))/k. From Assumption 3, there exists 0 <

k̃ ≤ γ1ε such that k̃ ≤ |k|, ∀θ ∉ Dδ . φ will be designed such that
φ tanh2(sin(πτ/γ0)) ≥ |ω| + α, in which α ≥ 0. Hence, |ω| ≤ ω̂,
where ω̂ ≤ (γ1kr +γ2ϖ)/k̃. Next, one possible φ will be proposed
to guarantee the control performance.

Theorem 1. Consider the system (1)–(2) with the FO SM-ESC (6).
Outside the Dδ , if φ in (6) satisfies

φ tanh2(sin(πτ/γ0)) := [(γ1kr + γ2ϖ) + ∥yt∥e−α1t ]/k̃ + α, (7)

where α1 > 0, then, while θ ∉ Dδ , one has (i): no finite-time escape
happens in the closed-loop signals (tM → +∞) and (ii) a sliding
mode on τ(t) = lγ0 is arrived in finite time for some integer l.
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Proof. See Appendix B.

Next, it will be shown that the FO SM-ESC with 0D
q
t sgn(e), 0 ≤

q < 1 andφ ensures that θ arrives atDδ of the unknownmaximizer
θ∗ defined in Assumption 3.

Theorem 2. Consider the system (1)–(2)under the controller (6)with
the function (7). If Assumptions 1–3 are satisfied, then: (i) Dδ in As-
sumption 3 is globally attractive that is achieved in finite time
and (ii) for small enough ε, the oscillations around y∗ of y can be
made of order O(γ0). Furthermore, all closed-loop system signals are
uniformly bounded (UB) except for τ(t) that is an argument of an FO
sign function in (5).

Proof. See Appendix C.

3.2. Comparison between IO SM-ESC and FO SM-ESC

In our previous work Yin et al. (2012), the IO SM-ESC with
tanh (sin (πτ/γ0)) was developed. τ in the IO SM-ESC is given by

τ = γ1e + γ2sgn(e), (8)

where e = y − yr . θ is proposed to satisfy θ̇ = v, in which
v = φ tanh (sin (πτ/γ0)). The IO SM-ESC can ensure that y
approaches y∗ and stays in it thereafter. Since 0D0

t sgn(e) =

1
0(1−0)

d
dt

 t
0

sgn(e(ϵ))
(t−ϵ)0

dϵ = sgn(e), the FO SM-ESC with 0D
q
t sgn(e),

0 ≤ q < 1 is an FO/IO controller synthesis (IO controller with sgn(e)
and FO controller with 0D

q
t sgn(e), 0 < q < 1). In what follows, a

comparison and analysis for the FO/IO SM-ESC synthesis reveal the
reason the FO SM-ESC can have a better tracking performance.

One property of the good tracking performance is that y
can quickly reach y∗. In order to show how to obtain a faster
tracking performance under the FO SM-ESC, the following remark
is presented.

Remark 2. The proof of Theorem 1 uses tanh(sin(πτ/γ0)) to en-
sure the existence of a series of sliding surfaces sl = τ − lγ0
and realization of τ -sliding modes, while θ ∉ Dδ . One has ė =

−(γ2/γ1)0D
q
t sgn(e) from τ̇ = 0. From Lemma 2, one has the fol-

lowing relationship (in which y(0), yr(0) are the initial conditions
of y and yr )

(I) When e(0) = y(0) − yr(0) < 0 (i.e.y(0) < yr(0)),
one has e ↗ since ė = −(γ2/γ1)0D

q
t sgn(e) > 0,

then, y will be close to yr .
(II) When e(0) = y(0) − yr(0) < 0 (i.e. y(0) < yr(0)),
one has e ↘ since ė = −(γ2/γ1)0D

q
t sgn(e) < 0,

then, y will be close to yr .

Hence, outside a small γ0-neighborhood of y∗, y tries to track yr .
One can assure that y approaches y∗. Moreover, it is more likely to
choose a series of q, (0 < q < 1) such that |0D

q
t sgn(e)| is big-

ger than 1 (i.e., |0D
q
t sgn(e)| ≫ 1 = |sgn(e)|) during the initial

time interval. This is the second important property of 0D
q
t sgn(e)

where y determined by the FO SM-ESC will create a stronger push
to any arbitrary small vicinity of y∗ during this time interval, even
if |0D

q
t sgn(e)| ≤ 1 during the next time interval. The simulation

and experimental results in Section 5 can help to demonstrate the
advantages of the FO SM-ESC.

Remark 3. Especially, the maximum point of some systems (e.g.
MPPT of the PV plant Malek et al., 2012) may be constantly chang-
ing with environmental variations, but the rough upper bound of
themaximumpoint is known. yr0 can be chosen such that yr0 is big-
ger than the upper bound, such that yr can draw y close to y∗ and
e < 0. Thus, y with the positive rate ẏ = kr − (γ2/γ1)0D

q
t sgn(e)

Fig. 2. Relationship between 0D
q
t sgn(e) and q, for e(t) < 0, 0 ≤ q < 1.

Fig. 3. Relationship between 1t1−q/0(2 − q) and q, for e(t) < 0, 0 ≤ q < 1.

approaches y∗ when y is out of the γ0 vicinity of y∗. Similarly, the
rate of y under the IO SM-ESC is kr + γ2/γ1. As shown in Fig. 2,
−0D

q
t sgn(e) ≫ 1 = −sgn(e), 0 < q < 1 during the initial time

interval. Thus, kr−(γ2/γ1)0D
q
t sgn(e) > kr+γ2/γ1 in the time inter-

val. One can assure that the FO SM-ESCwith 0 < q < 1 has a faster
tracking performance than that the IO SM-ESC does. The MPPT of
the PVmodel in Section 4 shows the advantages of the FO SM-ESC.

Another property of the good tracking performance is to drive
towards a smaller neighborhood of y∗. The following remark
illustrates the reason the oscillations under the FO SM-ESC can be
reduced.

Remark 4. In Theorem 2, the oscillations around y∗ of y can be
made of order O(γ0). Now, we consider t̃1D

q−1
t sgn(e) in (C.1). Since

e(t) < 0, ∀t > t̃1, one has |t̃1D
q−1
t sgn(e)| =

(t−t̃1)1−q

0(2−q) . From (C.1),
one has

|ỹ(t)| ≤ γ1|τ̃ (t)| + γ1kr(t − t̃1) +
γ2

0(2 − q)
(t − t̃1)1−q,
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Fig. 4. Time responses of y1 (blue line) under the FO SM-ESC, y2 (green line) under
the IO SM-ESC in Oliveira et al. (2011) and y3 (purple line) under the IO SM-ESC in
Pan et al. (2003). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

∀t > t̃1. Similarly, one has |ỹ(t)| ≤ γ1|τ̃ (t)|+γ1kr(t− t̃1)+γ2(t−
t̃1), ∀t > t̃1 by using the IO SM-ESC. Since t− t̃1 =

(t−t̃1)
0(2) , it is more

likely for the FO SM-ESC to obtain a smaller vicinity of y∗. Denoting
1t = t − t̃1, t > t̃1, the changes in −

1t1−q

0(2−q) , with different q and
1t , in which q ∈ [0, 0.99], 1t ∈ [0, 8] are depicted in Fig. 3. Since
there exist many q, t such that 0 < 1

0(2−q) (t − t̃1)1−q < t − t̃1,
the oscillations around y∗ of y under the FO SM-ESC can be made
smaller.

4. Simulation and experimental results

4.1. Simulation results

In this subsection, two examples are used to illustrate the
effectiveness of the proposed FO SM-ESC scheme.

Example 1. Consider the double-integrator system (Pan et al.,
2003)
ẋ1 = x2,
ẋ2 = u, (9)

with u(t) = −30(x1(t) − θ(t)) − 11x2(t) and the output y(t) =

−10(x1(t) − 5)2 + 10. y(t) reaches its maximum y∗
= 10 at

x1(t) = 5. x1(0) = θ(0) = 4, x2(0) = yr(0) = 0 and kr = γ0 =

γ1 = 2, φ = 0.25 are chosen, the same as in Pan et al. (2003).
γ1 = 0.5 is selected in the simulation. Fig. 4 shows the comparison
of y1 under the FO SM-ESC with q = 0.4, y2 under the IO SM-ESC
law inOliveira, Hsu, and Peixoto (2011) and y3 under the IO SM-ESC
in Pan et al. (2003). It shows that y1 has faster tracking performance
and higher accuracy than y2, y3.

Next, the simulations are performed while q is changed. Fig. 5
shows that y1, y3 under the FO SM-ESC with q1 = 0.5, q3 =

0.2 arrive at y∗ more rapidly than y2 under the IO SM-ESC, since
|0D0.5

t sgn(e)| ≫ 1, |0D0.3
t sgn(e)| ≫ 1during [0, 0.4]. Furthermore,

y1 and y3 achieve to a smaller vicinity of y∗ than y2 does. Thus, the
FO SM-ESC can have better tracking performance.

Example 2. Consider the MPPT problem of a PV array. In the
PV system, the net current of the cell is the difference of the
photocurrent IL and the normal diode current I0 : I = IL − I0
e

q(V+IRs)
nKT − 1


, that I, V are the current and voltage, n denotes a

variable parameter (instead of being fixed at either 1 or 2). We
consider the model in Malek et al. (2012) and Walker (2001). The
PV module provides about 48 W of nominal maximum power,
when T = 25° and G = 1000W/m2. Then, we describe the design
of the proposed MPP. Consider the following auxiliary first order
nonlinear system:

V̇ = v, I = h(V ) = IL − I0

e

q(V+IRs)
nKT − 1


. (10)

To maximize the power output P = VI , we employ the FO SM-ESC
(6) with q = 0.1 for (10). Matlab s-function is used to express the
PVmodel, adopted fromWalker (2001).φ = (γ1+γ2+γ1kr)/ε+α
and ε = 0.1γ0 are used. Let V (0) = 0, yr(0) = 50 and γ0 =

0.01, γ1 = 0.5, γ2 = 0.1, kr = 0.5 andα = 0.1 in our simulations.
Fig. 6 shows the comparison between P1 under the FO SM-ESC and
P2 under the IO SM-ESC. It shows that P1 converges to the MPP
faster than P2. Moreover, the amplitude of the oscillations around
PMPP of P can be reduced by utilizing the FO SM-ESC.

Next, the simulations are done while q is changed. Since
|0D0.17

t sgn(e)|, |0D0.25
t sgn(e)|, |0D0.4

t sgn(e)| are bigger than 1 dur-
ing [0, 0.2], PFO−SM−ESC reaches P∗ than PIO−SM−ESC , as shown in
Fig. 7. They show the advantage of the FO SM-ESC.

Fig. 5. (a) Time responses of y1 (blue line) and y3 (purple line) under the FO SM-ESC with q1 = 0.5, q3 = 0.3 and y2 (green line) under the IO SM-ESC in Oliveira et al.
(2011); (b) time responses of D0.5sgn(e),D0.3sgn(e) and sgn(e). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 6. (a) Time responses of P1 (blue line) under our control and P2 (green line)
under the IO SM-ESC law in Oliveira et al. (2011); (b) time responses of 0D0.1

t sgn(e)
and sgn(e). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. (a) Time responses of Pi, (i = 1, 2, 3, 4) for different fractional orders; (b)
time responses of 0D0.17

t sgn(e), 0D0.25
t sgn(e), 0D0.4

t sgn(e) and sgn(e).

4.2. Experimental results

A fractional horsepower dynamometer has been applied to
model the PV model in Malek et al. (2012). In Fig. 8, the
dynamometer (Tarte, Chen, Ren, &Moore, 2006) has aDCmotor, an
optical encoder, a hysteresis brake, a load cell, and a tachometer. It
communicates with a Quanser Q4 terminal board for the connect
with the Matlab/Simulink Real-Time Workshop environment by
WinCon 4.0. The DC motor is identified

Gm(s) =
1.52

1.01s + 1
. (11)

In Malek et al. (2012), the PV panel has been built by the hysteresis
brake. The break output torque is considered as output current
of PV modules. Thus, the power is a product of the angular
velocity and the current of PV modules. The proposed scheme is
given in Fig. 9. The brake and motor are separately driven by an
advanced motion controls brush type PWM servo amplifier Model
50A8. These controllers obtain analog signals fromdata acquisition

Fig. 8. The fractional horse power dynamometer.

Fig. 9. Modeling the PV panel using the fractional horse power dynamometer.

hardware. The PWM controllers use the signals to set the voltage
output to the motor or the brake.

In this experiment, the FO SM-ESC is applied to the dynamome-
ter as the PVmodel. The Simulinkmodel used for the experiment is
shown in Fig. 10. The comparison between the FO/IO SM-ESC for PV
model is depicted in Figs. 11-12. Fig. 11(a) shows the comparison
of Pi, (i = 0, 1, 2, 3, 4) under the FO SM-ESC with q0 = 0, q1 =

0.1, q2 = 0.2, q3 = 0.35, q4 = 0.42. Fig. 11(b) shows the com-
parison between sgn(e) and 0D

qi
t sgn(e) with qi, (i = 1, 2, 3, 4).

As shown in Fig. 11, since |0D
qi
t sgn(e)| ≫ 1, i = 1, 2, 3, 4 dur-

ing [0, 0.05], Pi, (i = 1, 2, 3, 4) with the faster convergence speed
achieve to the γ0-neighborhood of P∗ when compared to P0. The
corresponding Vi and Ii, (i = 0, 1, 2, 3, 4) are depicted in Fig. 12(a)
and (b), respectively. They show that the FO SM-ESC has a better
tracking performance.

5. Conclusion

In this paper, the FO SM-ESC law with 0D
q
t sgn(e), 0 ≤ q <

1 was proposed for the optimization of nonlinear systems. The
FO SM-ESC was developed by combining the FO sign function
and the tanh periodic switching function. It has been shown that
the FO sign function can help to own faster convergence to an
arbitrary smaller vicinity of the optimal point, when compared to
the sign function. Simulation and experimental results show the
advantages of the proposed FO control scheme.

Appendix A. Proof of Lemma 2

For ∀t > 0, there exists a time series {ti} in which t0 = 0, tj1 >
tj2 (when j1 > j2, ∀j1, j2 ∈ N) such that t ∈ (tk, tk+1], ∃k ∈ N
and e(t ′) ≤ 0, ∀t ′ ∈ (ti, ti+1], if e(t ′) ≥ 0, ∀t ′ ∈ (ti−1, ti] when
i < k. Moreover, we require e(t̄) ≠ 0, where t̄ is the first time in
(ti, ti+1). Thus, the details can be divided into two cases: (a) while
e(t ′) ≥ 0, ∀t ′ ∈ (t0, t1], e(t ′) ≤ 0, ∀t ′ ∈ (t1, t2], and then, e(t ′) ≥

0, ∀t ′ ∈ (t2, t3], and so on. (b) While e(t ′) ≤ 0, ∀t ′ ∈ (t0, t1],
e(t ′) ≥ 0, ∀t ′ ∈ (t1, t2], and then, e(t ′) ≤ 0, ∀t ′ ∈ (t2, t3], and so
on.
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Fig. 10. Simulink model used in the FO SM-ESC real time experiment using RTWWindows Target.

Fig. 11. (a) Pi, i = 1, 2, 3, 4 under the FO SM-ESC and P0 under the IO SM-ESC; (b)
time histories of 0D0.1

t sgn(e), 0D0.2
t sgn(e), 0D0.31

t sgn(e), 0D0.42
t sgn(e) and sgn(e).

According to the integral properties, one has

0D
q
t sgn(e(t)) =

[f0(t) + f1(t) + · · · + fk(t)]
0(1 − q)

, (A.1)

where fi(t) =
d
dt

 ti+1
ti

sgn(e(τ ))

(t−τ)q dτ , (i = 0, 1, 2, . . . , k − 1), fk(t) =

d
dt

 t
tk

sgn(e(τ ))

(t−τ)q dτ .
First of all, we consider the first case e(t) > 0. Hence, e(t ′) ≥

0, ∀t ′ ∈ (tk, tk+1] from the above analysis. Let tk0 = tk, tklk = t ,
one can obtain (tk, t] = (tk0, tk1] ∪ (tk1, tk2] ∪ · · · ∪ (tklk−1, tklk ],
where if e(t ′) ≡ 0, ∀t ′ ∈ (tki, tki+1], e(t ′) ≥ 0, ∀t ′ ∈ (tki+1, tki+2]

in which e(t ′) = 0 just happens at an isolate point t ′. Since
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Fig. 12. (a) The corresponding voltages Vi, (i = 0, 1, 2, 3, 4); (b) the correspond-
ing currents Ii, (i = 0, 1, 2, 3, 4).

e(t) > 0, e(t ′) ≥ 0, ∀t ′ ∈ (tklk−1, tklk ]. Thus, one has

d
dt

 t

tklk−1

sgn(e(τ ))

(t − τ)q
dτ = (t − tklk−1)

−q,

d
dt

 tklk−1

tklk−2

sgn(e(τ ))

(t − τ)q
dτ =

d
dt

 tklk−1

tklk−2

0
(t − τ)q

dτ = 0,

d
dt

 tklk−2

tklk−3

sgn(e(τ ))

(t − τ)q
dτ =

d
dt

 tklk−2

tklk−3

1
(t − τ)q

dτ

= (t − tklk−3)
−q

− (t − tklk−2)
−q,
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and so on, one can conclude

fk(t) = (t − tk0)−q
− (t − tk1)−q

+ (t − tk2)−q

− (t − tk3)−q
+ · · · + (t − tklk−1)

−q
− 0. (A.2)

Since (t − tki)−q is an increasing function in tki, fk(t) ≥ (t −

tk0)−q
= (t − tk)−q. Then, we will discuss fi(t). When e(t ′) ≥

0, ∀t ′ ∈ (ti, ti+1], (let (ti, ti+1] = (ti0, ti1]∪(ti1, ti2]∪· · ·∪(tili−1, tili ]
in which ti0 = ti, tili = ti+1), fi(t) can be calculated as follows:

fi(t) = (t − ti0)−q
− (t − ti1)−q

+ (t − ti2)−q
− (t − ti3)−q

+ · · · + (t − tili−1)
−q

− (t − tili)
−q

≥ (t − ti)−q
− (t − ti+1)

−q,

or

fi(t) = (t − ti0)−q
− (t − ti1)−q

+ (t − ti2)−q
− (t − ti3)−q

+ · · · + (t − tili−2)
−q

− (t − tili−1)
−q

> (t − ti)−q
− (t − ti+1)

−q. (A.3)

When e(t ′) ≤ 0, ∀t ′ ∈ (ti, ti+1], let (ti, ti+1] = (ti0, ti1] ∪

(ti1, ti2] ∪ · · · ∪ (tili−1, tili ] in which ti0 = ti, tili = ti+1. If e(t ′) ≡

0, ∀t ′ ∈ (tij, tij+1], e(t ′) ≤ 0, ∀t ′ ∈ (tij+1, tij+2] in which e(t ′) = 0
just happens at an isolate point t ′. Based on the divided condition
for (ti, ti+1], one has e(t ′) ≤ 0, ∀t ′ ∈ (ti0, ti1]. Hence, one can
conclude that

d
dt

 ti1

ti0

sgn(e(τ ))

(t − τ)q
dτ = (t − ti1)−q

− (t − ti0)−q,

d
dt

 ti2

ti1

sgn(e(τ ))

(t − τ)q
dτ =

d
dt

 ti2

ti1

0
(t − τ)q

dτ = 0, (A.4)

and so on, so one has

fi(t) = (t − ti1)−q
− (t − ti0)−q

+ (t − ti3)−q
− (t − ti2)−q

+ · · · + (t − tili)
−q

− (t − tili−1)
−q > 0,

or

fi(t) = (t − ti1)−q
− (t − ti0)−q

+ (t − ti3)−q
− (t − ti2)−q

+ · · · + (t − tili−1)
−q

− (t − tili−2)
−q > 0. (A.5)

From the above analysis, it is clear that

k
i=0

fi(t) > (t − tk)−q
+ (t − tk−2)

−q
− (t − tk−1)

−q

+ · · · + t−q
− (t − t1)−q > 0,

or

k
i=0

fi(t) > (t − tk)−q
+ (t − tk−2)

−q
− (t − tk−1)

−q

+ · · · + (t − t1)−q
− (t − t2)−q > 0. (A.6)

Thus, we have

0D
q
t sgn(e(t)) =

[f0(t) + f1(t) + · · · + fk(t)]
0(1 − q)

> 0. (A.7)

Next, we consider the second casewhen e(t) < 0. Similar to the
first case, we have

0D
q
t sgn(e(t)) =

[f0(t) + f1(t) + · · · + fk(t)]
0(1 − q)

< 0. (A.8)

Fig. B.1. W1 when k < 0.

Fig. B.2. W2 when k > 0.

Appendix B. Proof of Theorem 1

Consider the non-negative functions, see Figs. B.1–B.2

W1(τ ) =

 τ

0
tanh


sin


π

γ0
ϵ


dϵ, W2(τ ) = γm − W1,

where γm denotes the maximum value of W1(τ ). One can ob-
tain Ẇi ≤ k{φ tanh2

[sin(πτ/γ0)]} + |k||ω|, i = 1, 2, since
| tanh(sin(πτ/γ0))| ≤ 1. According to |k||ω| ≤ |k|ω̂ and −|k| ≤ k̃,
one can conclude that

Ẇ1 ≤ −∥yt∥e−α1t − k̃α, if sgn(k) < 0, (B.1)

Ẇ2 ≤ −∥yt∥e−α1t − k̃α, if sgn(k) > 0, (B.2)

are satisfied nearly everywhere, with α ≥ 0, α1 > 0. Next, the
property (i) of Theorem 1 will be demonstrated.

(i) Assume that |τ(t)| escapes in some finite time t1 ∈ [0, tM).
Then, e(t) and y(t) escape at t = t1. Hence, ∃t2 ∈ [0, t1) such
that ∥yt∥ ≥ eα1t [α2 − k̃α], ∀t ∈ [t2, t1), where α2 ≥ 0. Thus,
from (B.1)–(B.2), one has Ẇ1 ≤ −α2 or Ẇ2 ≤ −α2, ∀t ∈ [t2, t1),
independently of sgn(k). Because τ(t) escapes at t = t1 and is
continuous, ∃te ∈ [t2, t1) and an integer lτ such that τ(te) =

lτγ0. Hence, W1(te) = 0 (even number lτ ) or W2(te) = 0 (odd
number lτ ). Obviously, W1(t) = 0 or W2(t) = 0, ∀t ∈ [te, t1),
see Figs. B.1–B.2. Note that Wi(τ (t)) was changed by Wi(t), i =

1, 2. Hence, τ(t) = lτγ0, ∀t ∈ [te, t1) is uniformly bounded,
i.e., a contradiction. Thus, τ , e and y cannot escape in finite time.
Furthermore, θ and all closed loop signals cannot escape in (tM →

+∞).
(ii) From (i), ∃t̄ ≥ 0 such that Ẇi ≤ −αt̄ , ∀t ≥ t̄ and 0 < αt̄ <

k̃α, for i = 1 or 2. Hence, Wi(t) ≤ −αt̄(t − t̄) + Wi(t̄), ∀t ≥ t̄ .
Thus, ∃t∗ ≥ t̄ such that Wi(t) = 0, ∀t ≥ t∗. Hence, τ = lγ0 for
that W1(τ ) = 0(W2(τ ) = 0) just happens at even(odd) number
l. In the small vicinity around τ = lγ0, sgn(tanh(sin(πτ/γ0))) =

sgn(tanh(τ−lγ0)), for evennumber l, or sgn(tanh(sin(πτ/γ0))) =

sgn(− tanh(τ−lγ0)), for oddnumber l. SelectingV = 0.5(τ−lγ0)
2,

one has V̇ = (τ − lγ0)(k(φ tanh

sin


π
γ0

τ


+ω)) ≤ 0. Therefore,
a sliding mode happens in finite time on one of the surfaces τ =

lγ0, independently of sgn(k).



8 C. Yin et al. / Automatica ( ) –

Appendix C. Proof of Theorem 2

(i) Attractiveness of Dδ: Suppose that θ ∉ Dδ, ∀t ∈ [0, tM).
From Theorem 1, ∃tf such that τ̇ = 0. Hence, ė = −(γ2/γ1)0
Dq
t sgn(e), ∀t ≥ tf . From Lemma 2, yr draws y close in y∗. Since

y ≤ y∗ and yr strictly increases with time, yr > y∗
≥ y and e < 0

for large enough t . So y increaseswith ẏ = kr−(γ2/γ1)0D
q
t sgn(e) >

0 for large enough t , i.e. y = F(θ) must be close to y∗. So, θ ap-
proaches Dδ , which is a contradiction. Thus, Dδ is accomplished in
finite time. Thus, θ remains or oscillates around Dδ . Hence, y stays
in or oscillates around some small vicinity of y∗. These oscillations
appear due to the recurrent changes in the sign of F ′ at the vicin-
ity of (θ∗, y∗) where F ′

= 0. Meantime, τ can switch from one
sliding surface τ = lγ0 (odd number l (sgn(k) > 0)) to another
surface (even number l (sgn(k) < 0)). Since y could start oscil-
lations around y∗ with increasing maximum amplitude, it should
prove that |y − y∗

| can be made ultimately of order O(γ0).
(ii) Oscillations of order O(γ0) around y∗: From Assumption 3,

if θ stays in Dδ, ∀t , one has |y − y∗
| = O(γ0). Next, it will

illustrate that |y − y∗
| = O(γ0) when θ oscillates around Dδ . One

has yr > y∗
≥ y, ∀t large enough. Thus, ∃t̃ > 0 such that

e(t) < 0, ∀t > t̃ . From Lemma 2, 0D
q
t sgn(e) < 0, ∀t > t̃ . One

has τ(t) = γ1y(t) − γ1yr(t) + γ2(0D
q−1
t sgn(e)). Suppose that θ

arrives at Dδ from inside at t̃1 > t̃ and τ(t) is not in sliding surface
when t = t̃1.Dδ is constantwhen τ(t) is in slidingmanifold. Define
τ̃ (t) = τ(t) − τ(t̃1), ỹ(t) = y(t) − y(t̃1), one has

τ̃ (t) = γ1ỹ(t) − γ1kr(t − t̃1) + γ2(t̃1D
q−1
t sgn(e)). (C.1)

From Lemma 1, ∃K > 0 such that |t̃1D
q−1
t sgn(e)| < K |sgn(e)| = K .

Hence, one has |ỹ(t)| ≤ γ1|τ̃ (t)|+γ1kr(t− t̃1)+K . Let t̃2 be the first
timewhen τ(t) arrives at the next sliding surface τ(t) = τ(t̃2) and
t̃3 is the first time when θ reaches the frontier of Dδ again (from
outside). One has t̃2 ≥ t̃1, t̃3 ≥ t̃1. Then, consider two cases: (I)
t̃3 ≤ t̃2 and (II) t̃3 > t̃2.

For (I), let t ∈ [t̃1, t̃2]. τ(t) is not in sliding manifold during
[t̃1, t̃2). Hence, ∃ some integer l such that lγ0 < τ(t) < (l + 1)γ0.
Otherwise, slidingmode happens in τ(t) = lγ0 or τ(t) = (l+1)γ0.
Hence, |τ̃ (t)| = |τ(t) − τ(t̃1)| = O(γ0), ∀t ∈ [t̃1, t̃2). Since
0 < | tanh(sin(πτ(t)/γ0))| ≤ 1, ∀t ∈ [t̃1, t̃2), one has |v(t)| ≥

|φ tanh2(sin(πτ(t)/γ0))|. They guarantee α > 0 so that |τ̇ (t)| ≥

k̃(|φ tanh2(sin(πτ/γ0))| − |ω|) ≥ α̃ in which α̃ = k̃α > 0.
Thus, (t − t̃1) ≤ |τ̃ |/α̃, ∀t ∈ [t̃1, t̃2) and (t − t̃1) is of order
O(γ0), ∀t ∈ [t̃1, t̃2). Thus, one can assure that y(t)−y(t̃1) is of order
O(γ0), ∀t ∈ [t̃1, t̃2). By continuity, |y(t) − y(t̃1)| = O(γ0), ∀t ∈

[t̃1, t̃2].
For (II), let t ∈ [t̃1, t̃3]. Therefore, we have that y(t) − y(t̃1) is of

orderO(γ0), ∀t ∈ [t̃1, t̃2]. Next, consider t ∈ [t̃2, t̃3]. Since τ(t) is in
sliding motion during [t̃2, t̃3], one has τ̇ (t) = 0. y(t), ∀t ∈ [t̃2, t̃3]
is increasing with ẏ = kr − (γ2/γ1)0D

q
t sgn(e) > 0. Hence, y(t)

continues to approach y∗ during [t̃2, t̃3]. So, y(t) − y(t̃1) is of order
O(γ0), ∀t ∈ [t̃2, t̃3]. One has that the oscillation outside Dδ is of
order O(γ0), ∀t ∈ [t̃1, t̃3]. The boundedness of ymeans that θ is UB,
from the continuity of y = F(θ). Although limt→+∞ |τ(t)| = +∞

(actually, it is just an argument of an FO sign function in (5)), it is
not bad for UB of other signals. One can derive that other closed-
loop signals are UB.
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