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The Controllability, Observability, and Stability
Analysis of a Class of Composite Systems with

Fractional Degree Generalized Frequency Variables
Cuihong Wang, Yafei Zhao, and YangQuan Chen, Senior Member, IEEE

Abstract—This paper is concerned with fundamental prop-
erties of a class of composite systems with fractional degree
generalized frequency variables, including controllability, ob-
servability and stability. Firstly, some necessary and sufficient
conditions are given to guarantee controllability and observability
of such composite systems. Then we prove that the stability
problem of such composite systems can be reduced to judging
whether a fractional degree polynomial is stable. Finally, the
stability analysis result is applied in the supervisory control of
fractional-order multi-agent systems, and an example is provided
to illustrate the effectiveness of the proposed methods.

Index Terms—Composite system, controllability, fractional-
order system, observability, stability.

I. INTRODUCTION

RECENTLY, a class of composite systems called linear
time-invariant systems (LTIs) with generalized frequency

variables was proposed to provide a unified framework for
modeling multi-agent systems [1]−[5]. Specifically, such a
composite system can be represented by a composite transfer
function G (s) = G(φ(s)), where G(s) is a proper rational
transfer function matrix, and φ(s) is a scalar function about
variable s. The composite transfer function G (s) can be ob-
tained by simply replacing the Laplace transform s with φ(s)
in G(s), where the function φ(s) is called the generalized fre-
quency variable. The system represented by G (s) can also be
called a composite system with a generalized frequency vari-
able. Composite systems with generalized frequency variables
have been applied to a wide variety of fields such as gene-
protein regulatory networks [6], biomolecular communication
networks [7], consensus and formation problems [8], as well
as tire force distribution for multi-actuator electric vehicles [9],
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[10]. To our knowledge, the generalized frequency variables
mentioned in the above references are all limited to be the
integer degree rational functions.

In practice, many physical systems may be better charac-
terized by fractional-order differential equations [11]−[13].
For example, viscoelastic materials [14], biological tissues
[15], chaotic dynamic systems [16] and HIV infection [17]
can be described by fractional-order dynamic models. Some
fundamental properties of fractional-order systems, such as
controllability, observability and stability can be found in
[18]−[22]. From the view-point of the frequency variable,
the LTI fractional-order system with commensurate orders
can also be regarded as a composite system with generalized
frequency variable φ(s) = sα, α ∈ (0, 2). The fractional-
order system with multiple orders investigated in [23] can be
regarded as a composite system with the generalized frequency
variable φ(s) = sα1 + sα2 , α1, α2 ∈ (0, 1). In fact, the
frequency variable can be generalized to the function with
a fractional degree. For example, fractional-order multi-agent
systems and distributed-order system investigated in [23]−[25]
are all composite systems with fractional degree generalized
frequency variable. However, not much attention was paid
to fractional-order systems from the view of the generalized
frequency variable.

In this paper, we extend the generalized frequency variable
to the fractional degree rational function. We will investigate
the controllability- (and, by duality, the observability-) prop-
erties of a class of composite systems with fractional degree
generalized frequency variables, as well as some preliminary
stability results. The proposed methods of stability analysis are
applied to the supervisory control of fractional-order multi-
agent systems and an example is provided to illustrate the
effectiveness of the proposed general framework.

Notations: We denote Z, R and C as the set of integer
numbers, real numbers and complex numbers, respectively,
and R+ as the set of positive integer numbers, N as the set of
natural numbers and C+ as the closed right half of complex
plane. A⊗B is Kronecker product of the matrices A and B.
For a square matrix A, the set of its eigenvalues is denoted
by σ(A). For A ∈ Rm×n, we use σ̄(A) to denote the largest
singular value of matrix A.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following composite system with fractional
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degree generalized frequency variable φ(s)

G (s) = C0(φ(s)In −A0)−1B0 + D0 (1)

where A0 ∈ Rn×n, B0 ∈ Rn×m, C0 ∈ Rp×n and D0 ∈ Rp×m

are constant matrices. φ(s) = 1/h(s), h(s) is a fractional
degree transfer function with the following form

h(s) =
n(s)
d(s)

=
bmsβm + bm−1s

βm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
(2)

ak(k = 0, . . . , n), bk(k = 0, . . . , m) are constants; αk(k =
0, . . . , m), βk(k = 0, . . . , n) are arbitrary real numbers and
without loss of generality, we assume that αn > αn−1 >
. . . > α0, and βm > βm−1 > . . . > β0.

Note that the standard transfer function is expressed as

G0(s) = C0(sIn −A0)−1B0 + D0 (3)

and G (s) defined by (1) can be rewritten as

G (s) = G0(φ(s)), φ(s) =
1

h(s)
.

Essentially, G (s) is the composite function of G0(s) and φ(s),
that is, G (s) is generated by just replacing “s” by “φ(s)” in
G0(s). φ(s) is a fractional degree function. In this paper, we
will investigate controllability-, observability- and stability-
properties of such composite systems with fractional degree
generalized frequency variables.

In particular, the function h(s) is called commensurate order
if αk = αk1, βk = αk2 (0 < α < 1), k1, k2 ∈ Z, and has the
following form:

h(s) =
∑M

k=0 bk(sα)k

∑N
k=0 ak(sα)k

=
Q(sα)
P (sα)

. (4)

The function h(s) becomes a strictly proper rational function
with the complex variable sα when N > M .

Let function h(s), defined by (4), be of commensurate order,
the realization of h(s),

Dαx(t) = Ahx(t) + bhuh(t)
yh(t) = chx(t) (5)

is denoted by h(s) ∼ (Dα, Ah, bh, ch, 0), where Ah ∈ Rk×k,
bh ∈ Rk×1, ch ∈ R1×k. Then with [26], a realization of G (s)
is as follow:

DαX (t) = A X (t) + Bu(t)
y(t) = C X (t) + Du(t) (6)

where G (s) ∼ (Dα,A , B, C , D) and X (t) is the nk-
dimension state vector,

A = In ⊗Ah + A0 ⊗ (bhch) ∈ Rnk×nk

B = B0 ⊗ bh ∈ Rnk×m

C = C0 ⊗ ch ∈ Rp×nk (7)
D = D0 ∈ Rp×m

or

A = Ah ⊗ In + (bhch)⊗A0 ∈ RnN×nN

B = bh ⊗B0 ∈ Rnk×m

C = ch ⊗ C0 ∈ Rp×nk (8)
D = D0 ∈ Rp×m.

Dαf(t) is the Caputo fractional derivative of function f(t)
defined by [11]

Dαf(t) =
1

Γ(m− α)

∫ t

0

f (m)(τ)
(t− τ)α+1−m

dτ (9)

where m is an integer satisfying m − 1 < α ≤ m, m ∈ N,
and Γ(·) is the Gamma function.

Remark 1: In order to distinguish the state realization of the
integer-order system represented by G(s) ∼ (A,B, C, D), we
denote the state realization of the fractional-order system as
G(s) ∼ (Dα, A, B, C,D), where G(s) is the transfer function
and α is derivative order of state variable.

III. CONTROLLABILITY AND OBSERVABILITY ANALYSIS

In this section, we will investigate the controllability and ob-
servability of the state realization system of G (s) for the case
where h(s) is a commensurate order transfer function. The
observability results can be deduced by the duality method.

Lemma 1: If system (6) is controllable (observable) then
system (5) is controllable (observable).

Proof: Suppose, by contradiction, system (5) is not control-
lable. From [19], we know that sαIk−Ah and bh are not left
coprime, which implies that sαInk− In⊗Ah and In⊗ bh are
not left coprime,i.e., there exist a scalar s ∈ C and a nonzero
vector v ∈ Rnk such that

vT [sαInk −Ah ⊗ In | bh ⊗ In] = [0 | 0]. (10)

However, it is easy to check that for scalar s and nonzero
vector v

vT [sαInk −A | B] = vT [Ã | bh ⊗B0] = [0 | 0].

where Ã = sαInk−Ah⊗ In− (bhch)⊗A0. This implies that
(6) is not controllable.

The proof for observability is similar and omitted here. ¥
Proposition 1: If rank(B0) = n, then system (6) is con-

trollable (observable) if and only if system (5) is controllable
(observable).

Proof: (Sufficiency) Suppose, by contradiction, that system
(6) is not controllable. Then there exist a scalar s ∈ C and a
nonzero vector v ∈ Rnk such that

vT [sαInk −A | B] = vT [Ã | bh ⊗B0] = [0 | 0]. (11)

where Ã = sαInk − Ah ⊗ In − (bhch) ⊗ A0. Since B0 is of
full row rank, then vT bh⊗B0 = 0 implies vT bh⊗In = 0. By
easy computation, we can deduce that equality (11) implies
that

vT [sαInk −Ah ⊗ In | bh ⊗ In] = [0 | 0]. (12)

This means that (Dα, Ah ⊗ In, bh ⊗ In) is not controllable,
hence (Dα, Ah, bh) is not controllable.

(Necessity) The necessity has been proved in Lemma 1.
The proof for observability is parallel to that for controlla-

bility and omitted here. ¥
Proposition 2: If rank(B0) < n (resp., rank(C0) < n), then

system (6) is controllable (resp., observability) if and only if
(A0, B0) is controllable (resp., observable) and system (5) is
both controllable and observable .
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Proof: We assume system (5) is controllable and hence we
have the following controllable form:

Ah =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −ak−1




, bh =




0
0
...
0
1




ch =
[

b0 b1 · · · bk−1

]
.

Based on this canonical form of controllability, the transfer
function of system (5) can be deduced to be

h(s) :=
n(sα)
d(sα)

=
bk−1s

α(k−1) + · · ·+ b1s
α + b0

sαk + ak−1sα(k−1) + · · ·+ a1sα + a0
.

From (7), we can obtain

A =




0 In 0 · · · 0
0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In

−Ā1 −Ā2 −Ā3 · · · −Āk




B =
[

0 0 · · · 0 BT
0

]T

where Āi , ai−1In− bi−1A0 (i = 1, . . . , k). Hence, we have

rank[sαInk −A | B] = n(k − 1) + rank[D̃ | B0] (13)

where D̃ = d(sα)Ink − n(sα)A0. This means that the
controllability of system (6) is equivalent to the condition
given by

rank [d(sα)Ink − n(sα)A0 | B0] = n, ∀s ∈ C. (14)

(Necessity) Suppose system (5) is not observable. Then there
exists an s0 ∈ C that satisfies d(sα

0 ) = n(sα
0 ) = 0. Since

rank(B0) < n, it follows that

rank [d(sα
0 )Ink − n(sα

0 )A0 | B0] = rank(B0) < n (15)

which violates the condition (14).
Next, suppose(A0, B0) is not controllable, i.e., there exists

a λ ∈ C such that

rank[λI −A0, B0] < n. (16)

Note that we can always find an s ∈ C such that λ =
d(sα)/n(sα), which violates condition (14). This completes
the proof of necessity.

(Sufficiency) Suppose (A0, B0) is controllable and system
(5) is observable, i.e., there exists no common factor s ∈ C
such that d(sα) = n(sα) = 0. Now, for any s ∈ C satisfying
n(sα) = 0, we have

rank [D̃ | B0] = rank[d(sα)In | B0] = n. (17)

Alternatively for any s ∈ C satisfying n(sα) 6= 0, we have

rank [D̃ | B0] = rank[
d(sα)
n(sα)

I −A0 | B0] = n (18)

where D̃ = d(sα)Ink − n(sα)A0. Hence system (6) is
controllable. This completes the proof of sufficiency. ¥

Meanwhile, we can obtain the following theorem.
Theorem 1: Consider the composite system G (s) given

by (1), where h(s) is strictly proper fractional degree trans-
fer function defined by (2). Then the realization G (s) ∼
(Dα,A , B, C , D) given by (6) is controllable (observable)
if and only if the realization G0(s) ∼ (A0, B0, C0, D0) is
controllable (observable) and h(s) ∼ (Dα, Ah, bh, ch, 0) is
both controllable and observable.

From Theorem 1, it follows that the zeros and poles
cancellation do not occur for the composite system G (s).
This property may not hold for parallel, cascade and feedback
connection of two fractional-order systems.

IV. STABILITY ANALYSIS

The nk-dimensional state vector X (t) of the state-space
realization of the composite transfer function G (s) becomes
quite large as n and N increase. Thus we do not directly inves-
tigate the stability properties of G (s) by its realization, but we
study its stability by its structure information, that is, G (s) is
compounded by G0(s) and h(s). In addition, it is sometimes
not a very easy task to realize the composite transfer function
G (s), especially when h(s) is of non-commensurate order.

The composite system G (s) defined by (1) is BIBO stable
if there exists a real number M > 0 such that ‖G (s)‖∞ ≤
M < ∞, where ‖G (s)‖∞ := ess sups∈C+

σ̄(G (s)).
Before analyzing the stability of composite system (1), we

will give the following lemma.
Lemma 2 [27]: For a commensurate order fractional degree

polynominal defined as

p(s) = pnsnα + pn−1s
(n−1)α + · · ·+ p1s

α + p0, p0 6= 0 (19)

where p0, p1, . . . , pn ∈ C, α ∈ R+, is stable if and only if
0 < α < 2 and all zeros of its companion polynomial defined
as

pc(ω) = pnωn + pn−1ω
n−1 + · · ·+ p1ω + p0, p0 6= 0 (20)

satisfy the condition |arg(ωi)| > π
2 α.

In the following section, we will provide a necessarily and
sufficiently BIBO stable condition for the composite system
G (s) defined in (1).

Theorem 2: Consider the composite system G (s) in (1)
with generalized frequency variable φ(s) = 1/h(s), where
h(s) = n(s)/d(s), n(s) and d(s) are fractional degree
polynomials. Define the fractional degree polynomial p(λ, s)
for λ ∈ C by

p(λ, s) := d(s)− λn(s) (21)

then the following statements are equivalent.
1) Composite system G (s) is BIBO stable.
2) σ(A0) ⊂ Λ(h(s)) := {λ ∈ C|p(λ, s) is stable}.
Proof: Note that h(s) defined in (2) is the fractional degree

transfer function and sα (α ∈ R+) defines a multi-valued
function of the complex variable s whose domain can be
viewed as a Riemann surface with a number of Riemann sheets
which are finite when α is a rational number, or are infinite
when α is an irrational number. For this multi-valued function,
only the first Riemann sheet has physical significance.

1) ⇔ 2) The composite system G (s) is BIBO stable if and
only if G (s) has no poles in the closed right-half plane of
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the principal Riemann sheet [18], which is equivalent to that
det(φ(s)I − A0)) 6= 0 for all s ∈ C+, i.e., φ(s) 6= λ for all
s ∈ C+ and λ ∈ σ(A0). This condition is equivalent to the
property that p(λ, s) is stable for all λ ∈ σ(A0).

Remark 2: As stated in Theorem 2, the stability of G (s) in
(1) can be reduced to judging whether the fractional degree
polynomial p(λ, s) is stable for all λ ∈ σ(A0). The stability of
p(λ, s) means that p(λ, s) has no zeros in the closed right-half
plane of the first Riemann sheet. If p(λ, s) is commensurate
order, we can use the result in Lemma 2, that is, the stability
of p(λ, s) can be transferred into judging the stability of its
companion polynomial pc(λ, s). See the following example:

Example 1: Consider the composite system (1) with frac-
tional degree generalized frequency variable φ(s) = 1

h(s) ,
where

h(s) =
100(s0.25 + 2)( 19

10s0.5 − 1
500000s0.25 + 21

10 )
(s0.25 − 1)2(s0.25 + 1)(s0.25 + 100)

.

We set system matrix

A0 =
[ − 1

2
1
2

− 1
2 − 1

2

]
.

By Theorem 2, we determine the stability of p(λ, s) in order
to analyze the stability of the composite system (1), where
p(λ, s) is given as

p(λ, s) = (s0.25 − 1)2(s0.25 + 1)(s0.25 + 100)

− λ100(s0.25 + 2)(
19
10

s0.5 − 1
500000

s0.25 +
21
10

)

where λ ∈ σ(A0). Let ω = s0.25, we obtain the companion
polynomial of p(λ, s) to be

pc(λ, ω) = (ω − 1)2(ω + 1)(ω + 100)

− λ100(ω + 2)(
19
10

ω2 − 1
500000

ω +
21
10

).

It is easy to see that the two eigenvalues of A0 are
λ1,2 = − 1

2 ± 1
2j and using [8], one can determine that the

zeros ωi, (i = 1, 2, . . . , 4) of pc(λ, ω) are all in the open left-
half plane which implies that |arg(ωi)| > π

8 . It follows from
Lemma 2 that p(λi, s) (i = 1, 2) is stable, which means that
the composite system (1) is BIBO stable.

The theory of composite system can be applied into the
supervisory control of fractional-order multi-agent systems.
For example, we consider an n SISO autonomous fractional-
order multi-agent system, where the input and output behavior
of each agent is represented by h(s), which is a strictly proper
scalar transfer function. The input and output behavior of the
n agents can be described as H(s) = h(s)In. Then we design
a supervisory controller with the transfer function G0(s) =
C0(sIn−A0)−1B0 + D0 such that the overall interconnected
system is stable. The logical scheme describing the fractional-
order plant and the supervisory controller connection is given
in Fig. 1.

Fig. 1. The scheme of overall interconnected system.

We denote up and yp as the input and output of the
plant, and u and y as the input and output of the overall
interconnected system. Therefore the transfer function of the
overall interconnected system from input u to output y is

H (s) = C0(
1

h(s)
In −A0)−1B0 + D0. (22)

From (22), we can determine that H (s) belongs to the
composite system defined in (1). It follows from Theorem IV.2
that if we want to design a supervisory controller such that
the overall interconnected system is stable, the eigenvalues of
matrix A0 should lie in a particular region specified by the
generalized frequency variable φ(s) = 1

h(s) . The following
example is provided to illustrate the design method of super-
visory controller.

Example 2: Consider n SISO fractional order agents with
h(s) = 1

s
√

5−2+0.8s
√

3−1−0.5
. The corresponding p(λ, s) is

given as

p(λ, s) = s
√

5−2 + 0.8s
√

3−1 − 0.5− λ

which is of non-commensurate order. One can not determine
the stability of p(λ, s) by using Lemma 2, however we
can determine that the stability of p(λ, s) is equivalent to
d(s) = s

√
5−2 +0.8s

√
3−1−0.5 6= λ, ∀s ∈ C+. It is necessary

to derive the boundary of d(s) when s ∈ C+. Since d(s)
is the analytic function for s ∈ C+, the boundary of d(s)
is determined by setting s = jω [23]. Then, for s = jω
(−∞ < ω < 0), we have

d(jω) = x(ω)− jy(ω)

where

x(ω) = ω
√

5−2cos(
√

5− 2
2

π)

+0.8ω
√

3−1cos(
√

3− 1
2

π)− 0.5,

y(ω) = ω
√

5−2sin(
√

5− 2
2

π)

+0.8ω
√

3−1sin(
√

3− 1
2

π)

while for s = jω (0 ≤ ω < ∞), we have

d(jω) = x(ω) + jy(ω).

Therefore, if we want to design the supervisory controller
up = A0yp such that the overall system is stable, we just set
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all the eigenvalues of A0 to lie on the left of curve l := l1∪ l2,
where l1 and l2 are symmetrical with respect to the real
axis, and l1 := {x + jy | x = x(ω), y = y(ω), ω ∈ [0 ∞)}.
The stable boundary of the overall interconnected system (22)
is plotted on Fig. 2 by referring to the program code provided
in [23].

Fig. 2. The stable boundary of the overall system.

For example, we set

A0 =
[

1 2
−4 1

]
, B0 =

[
1
2

]
, C0 =

[
2 1

]
, D0 = 0.

The eigenvalues of A0 are λ1 = 1 + 2.8284j, λ2 =
1− 2.8284j, which are labeled by symbol “ ∗ ” in Fig. 2 and
are all in the left-half part of curve l, so the multi-agent system
(22) is BIBO stable. The stable impulse response for H (s)
in (22) with null initiations is shown in Fig. 3 by referring to
the program code provided in [23].

Fig. 3. The stable impulse response of the overall interconnected system.

Otherwise, if we set A0 =
[

1 1
−1 1

]
, the eigenvalues of

A0 are λ1 = 1 + j, λ2 = 1− j, which are labeled by symbol
“ + ” in Fig. 2 and are all in the right-half part of curve l, so
the multi-agent system (22) is not BIBO stable. The unstable
impulse response for H (s) in (22) with null initiations is
shown in Fig. 4.

Fig. 4. The unstable impulse response of the overall interconnected system.

V. CONCLUSIONS

In this paper, we have considered some fundamental proper-
ties of a class of composite systems with fractional degree fre-
quency variables, described by G (s) = C0(φ(s)I−A0)−1B0+
D0. In particular, we have showed the relationship of the
controllability and observability between the state realization
systems about G (s) and h(s) = 1

φ(s) . Then we reduced
the stability condition of such composite system to judging
whether a fractional degree polynomial is stable. Finally
the stability analysis method for such composite systems is
applied to the supervisory control of fractional-order multi-
agent systems and an example is provided to illustrate the
effectiveness of the proposed method.
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