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Abstract—In this paper, we discuss the differences between the
tempered fractional calculus and substantial fractional operators
in anomalous diffusion modelling, so that people can better
understand the two fractional operators. We rst introduce
the de nitions of tempered and substantial fractional operators,
and then analyze the properties of two de nitions. At last, we
prove that the tempered fractional derivative and substantial
derivative are equivalent under some conditions. A diffusion
problem de ned by using tempered derivative is also given to
illustrate the slow convergence of an anomalous diffusion process.
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I. INTRODUCTION

The process of anomalous diffusion is one of common
phenomena in nature, and the continuous time random walks
(CTRWs) framework [1] is a useful tool to describe this
phenomenon. The CTRWs are often governed by the waiting
time probability density function (PDF) and jump length PDF.
When the PDFs are power law, the anomalous transport
process can be depicted by fractional diffusion equations.
While the PDFs are exponentially tempered power law, then
tempered anomalous diffusion models are derived in [2–8].
As Meerschaert [9] pointed out, tempered stable processes
are the limits of random walk models where the power law
probability of long jumps is tempered by an exponential factor.
These random walks converge to tempered stable stochastic
process limits, whose probability densities solve tempered
fractional diffusion equations. Tempered power law waiting
times lead to tempered fractional time derivatives, which have
proven useful in geophysics. Meerschaert et al. proposed a
tempered diffusion model to capture the slow convergence of
subdiffusion [6].

Baeumer and Meerschaert studied tempered stable Lévy
motion in [2], they proposed nite difference and particle
tracking methods to solve the tempered fractional diffusion
equation with drift. In view of the ef ciency of tempered
fractional calculus in describing exponentially tempered power
law behavior and its variants, it has attracted many researchers
to study numerical methods to solve these problems. Baeumera
and Meerschaert [2] derived nite difference and particle track-
ing methods. Cartea et al. [10] presented a general nite dif-
ference scheme to numerically solve a Black-Merton-Scholes
model with tempered fractional derivatives. Momoniat and
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Momoniat [11] compare the numerical solutions of three kinds
of fractional Black-Merton-Scholes equations with tempered
fractional derivatives. Recently, high order numerical scheme
for tempered diffusion equation is presented in [12]. However,
numerical algorithms for solving these problems are limited.

As an extension of the concept of CTRWs to phase space,
Friedrich et al. derived a new fractional Kramers–Fokker–
Planck equation [13], which involved a fractional substantial
derivative, it has important nonlocal couplings in both time
and space. In 2011, based on the CTRW models with coupling
PDFs, Carmi and Barkai obtained a deterministic equation by
using fractional substantial derivative [14]. The properties and
numerical discretizations of the fractional substantial operators
are recently discussed in [15]. To our best knowledge ,
whether the tempered fractional operators [3] or the fractional
substantial operators [13] is originated from the tempered
function space. Motivated by this, we try to let people know
the relationship of these two fractional operators.

The work is organized as follows. In Section II, we intro-
duce three common used de nitions of fractional integrals and
derivatives. Two classes of fractional operators called tempered
and substantial operators are introduced in Section III. Nu-
merical experiment is carried out to show the effectiveness of
tempered model in describing exponentially tempered power-
law behavior. Finally, we conclude the paper in the last section.

II. PRELIMINARIES

In this section, we give some preliminaries about fractional
calculus. There are sveral different de nitions of fractional
derivatives, but the most frequently used are the following three
de nitions, i.e. Grünwald–Letnikov derivative, the Riemann–
Liouville derivative and the Caputo derivative [16–21]. We
introduce the de nitions in the following way.

De nition II.1. The fractional integral of order α > 0 for a
function f(t) is de ned by

aD
−α
t f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s) ds, (1)

where Γ(·) is the Euler’s function.

De nition II.2. The left and right Grünwald–Letnikov deriva-
tives of order α > 0 of f(t) are de ned as

GLD
α
a,tf(t) = lim

h→0
Nh=t−a

h−α
N∑
j=0

(−1)j
(
α

j

)
f(t− jh), (2)

978-1-4799-2280-2/14/$31.00 ©2014 IEEE



and

GLD
α
t,bf(t) = lim

h→0
Nh=b−t

h−α
N∑
j=0

(−1)j
(
α

j

)
f(t+ jh), (3)

respectively.

De nition II.3. Suppose that f(t) be (n − 1)-times continu-
ously differentiable on (a,∞), and its n-times derivatives be
integrable on any subinterval [a,∞). Then the left Riemann-
Liouville derivative of order α > 0 of f(t) is de ned by

RLD
α
a,tf(t) =

dn

dtn

[
aD

−(n−α)
t f(t)

]
=

1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1f(s) ds,
(4)

and the right Riemann-Liouville fractional derivative is de ned
as

RLD
α
t,bf(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

(s− t)n−α−1f(s) ds,

(5)
respectively, where n is a nonnegative integer and n − 1 ≤
α < n.

De nition II.4. Assume that f(t) be (n − 1)-times continu-
ously differentiable on (a,∞), and its n-times derivatives be
integrable on any subinterval [a,∞). Then the left Caputo
fractional derivative of order α > 0 for f(t) is de ned as

CD
α
a,tf(t) = aD

−(n−α)
t

[
f (n)(t)

]
=

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s) ds,
(6)

and the right Caputo derivative is de ned by

CD
α
t,bf(t) =

(−1)n

Γ(n− α)

∫ b

t

(s− t)n−α−1f (n)(s) ds, (7)

respectively, where n is a nonnegative integer and n − 1 <
α < n.

III. DEFINITIONS OF TEMPERED AND SUBSTANTIAL

FRACTIONAL CALCULUS

In this section, we will introduce the de nitions and no-
tations of tempered and substantial fractional operators. Then
we discuss the relations between them.

A. De nitions of the tempered fractional operators

De nition III.1. [3, 12] Suppose that f(t) is piecewise
continuous on [a,∞) and integrable on any nite subinterval
of [a,∞), α > 0, λ ≥ 0. Then
1) The left Riemann-Liouville tempered fractional integral of
order α of function f(t) is de ned by

RLD
−α,λ
a,t f(t) =

1

Γ(α)

∫ t

a

e−λ(t−τ)(t− τ)α−1f(τ)dτ.

2) The right Riemann-Liouville tempered fractional integral of
order α for f(t) is de ned as

RLD
−α,λ
b,t f(t) =

1

Γ(α)

∫ b

t

e−λ(τ−t)(τ − t)α−1f(τ)dτ.

De nition III.2. [3, 12] Let f(t) be (n − 1)-times continu-
ously differentiable on (a,∞), and its n-times derivatives be
integrable on any subinterval [a,∞). Then the left tempered
fractional derivative of order α > 0 for a given function f(t)
is de ned as

RLD
α,λ
a,t f(t) = (e−λt

RLD
α
a,te

λt)f(t)

=
e−λt

Γ(n− α)

dn

dtn

∫ t

a

(t− τ)n−α−1eλτf(τ)dτ,

(8)
and the right tempered fractional derivative is de ned as

RLD
α,λ
t,b f(t) = (eλt RLD

α
t,be

−λt)f(t)

=
(−1)neλt

Γ(n− α)

dn

dtn

∫ b

t

(τ − t)n−α−1e−λτf(τ)dτ,

(9)
respectively, where n is a nonnegative integer and n − 1 ≤
α < n.

Remark III.1. If λ = 0, the left and right Riemann-Liouville
tempered fractional derivatives reduce to the left and right
Riemann-Liouville fractional derivatives de ned in De nition
II.3.

Remark III.2. The variants of the left and right Riemann-
Liouville tempered fractional derivatives are de ned as [2, 12,
22]

RLD
α,λ
a,t f(t) =

{
RLD

α,λ
a,t f(t)− λαf(t), 0 < α < 1,

RLD
α,λ
a,t f(t)− αλα−1∂tf(t)− λαf(t), 1 < α < 2,

(10)
and

RLD
α,λ
t,b f(t) =

{
RLD

α,λ
t,b f(t)− λαf(t), 0 < α < 1,

RLD
α,λ
t,b f(t)− αλα−1∂tf(t)− λαf(t), 1 < α < 2,

(11)
respectively, where ∂t represents the classical rst derivative
operator.

B. Substantial fractional operators

De nition III.3. [13, 15] Let f(t) be piecewise continuous on
[a,∞) and integrable on any nite subinterval of [a,∞). Then
the fractional substantial integral of order α > 0 for f(t) is
de ned by

D−α
s f(t) =

1

Γ(α)

∫ t

a

e−λ(t−τ)(t− τ)α−1f(τ)dτ,

where λ can be a constant or a function not related to t.

De nition III.4. [13, 15] Suppose that α > 0, f(t) be (n−1)-
times continuously differentiable on (a,∞), and its n-times
derivatives be integrable on any subinterval [a,∞). Then the



substantial fractional derivative of order α > 0 for f(t) is
de ned by

Dα
s f(t) = Dn

s

(
D−(n−α)

s f(t)

)
,

where Dn
s =

(
d
dt + λ

)n
.

Remark III.3. If λ ≥ 0, it is clear that De nition III.1 is
equivalent to De nition III.3.

Theorem III.1. In De nition III.4, if λ is a positive constant,
then the tempered and substantial derivatives are equivalent.

Proof: Without loss of generality, we take 0 < α < 1
in De nition (8) and De nition III.4, then the left Riemann-
Liouville tempered derivative is

RLD
α,λ
a,t f(t) =

e−λt

Γ(1− α)

d

dt

∫ t

a

eλτ (t− τ)−αf(τ)dτ, (12)

and the substantial derivative becomes

Dα
s f(t) =

1

Γ(1− α)

(
d

dt
+ λ

)∫ t

a

e−λ(t−τ)(t− τ)−αf(τ)dτ

=
1

Γ(1− α)

d

dt

(
e−λt

∫ t

a

eλτ (t− τ)−αf(τ)dτ

)

+
λ

Γ(1− α)

∫ t

a

e−λ(t−τ)(t− τ)−αf(τ)dτ

=
−λ

Γ(1− α)

∫ t

a

e−λ(t−τ)(t− τ)−αf(τ)dτ

+
e−λt

Γ(1− α)

d

dt

∫ t

a

eλτ (t− τ)−αf(τ)dτ

+
λ

Γ(1− α)

∫ t

a

e−λ(t−τ)(t− τ)−αf(τ)dτ

=
e−λt

Γ(1− α)

d

dt

∫ t

a

eλτ (t− τ)−αf(τ)dτ.

(13)
The proof ends.

De nition III.5. [23, 24] The left and right generalized
fractional integral of order α > 0 of a function f(t) with
respect to another function z(t) and weight w(t) are de ned
in the following way

(
Iαa,+;[z;w]f

)
(t) =

[w(t)]−1

Γ(α)

∫ t

a

w(τ)z′(τ)f(τ)
[z(t)− z(τ)]1−α

dτ, (14)

and

(
Iαb,−;[z;w]f

)
(t) =

[w(t)]

Γ(α)

∫ b

t

w(τ)z′(τ)f(τ)
[z(τ) − z(t)]1−α

dτ, (15)

respectively.

Remark III.4. If we take z(t) = t, w(t) = eλt, then the left
and right generalized integrals reduce to the left and right
tempered fractional integrals.

IV. NUMERICAL SIMULATION

In this section, based on the discussion of tempered and
substantial derivatives, we use nite difference method to solve
a tempered diffusion problem.

Example IV.1. Solve the following tempered fractional diffu-
sion equation

∂u(x, t)

∂t
= RLD

0.5,λ
0,x u(x, t)+f(x, t), 0 < x < 1, 0 < t < 1,

(16)
with the initial and boundary conditions: u(x, 0) =
0, u(0, t) = 0, u(1, t) = e−λx, where f(x, t) = 2e−λxx2.5t−
Γ(3.5)

2 x2e−λxt2. The analytical solution of Eq. (16) is

u(x, t) = e−λxx2.5t2.

For the numerical solution of Eq. (16), let tk = kΔt ,
k = 0, 1, 2, ..., N , xi = ih, i = 0, 1, 2, ...,M , where Δt = T

N

and h = L
M are the time, space steps, respectively.

The rst-order derivative ∂u(x,t)
∂t at mesh point (xi, tk) can

be approximated by the following backward difference method

∂u(xi, tk)

∂t
=

u(xi, tk)− u(xi, tk−1)

Δt
+O(Δt), (17)

then, we use shifted Grünwald–Letnikov formulae to approx-
imate fractional substantial derivative term in Eq. (16)

Dα
s u(xi, tk) = h−α

i+1∑
m=0

g1,αm u(xi−m+1, tk) +O(h). (18)

Let uk
i be the approximate solution of u(xi, tk), and fk

i =
f(xi, tk), substituting the Eqs. (17) and (18) into Eq. (16),
and denoting η = K Δt

hα , we obtain the following implicit nite
difference scheme for Eq. (16)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uk
i = uk−1

i + η

i+1∑
m=0

g1,αm uk
i−m+1

+Δtfk
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1

u0
i = 0, 0 ≤ i ≤ M,

uk
0 = φ1(tk), uk

M = φ2(tk), 0 ≤ k ≤ N.

(19)

Theorem IV.1. The local truncation error of difference scheme
(19) is O(τ + h).

Proof: According to (16), (17) and (18), we de ne the
local truncation error Rk

i of difference scheme (19) as below:

Rk
i =

u(xi, tk)− u(xi, tk−1)

Δt
−Kh−α

i+1∑
m=0

g1,αm u(xi−m+1, tk)

− f(xi, tk)

=

[
∂u(xi, tk)

∂t
− u(xi, tk)− u(xi, tk−1)

Δt

]

+K(Dα
s u(xi, tk)− h−α

i+1∑
m=0

g1,αm u(xi−m+1, tk))

= O(τ) +KO(h) = O(τ + h).



The proof ends.

Let λ = 0, 0.5, 1.0, the analytical and numerical solutions
are displayed in Fig. 1. It can be seen that the numerical
solutions t the analytical solutions very well. When λ = 0,
the equation (16) reduces to the Riemann–Liouville diffusion
equation, Fig. 1 (a) and (b) show that solution peak is high. For
λ = 0.5 and λ = 1.0, the solution are plotted in Fig. 1(c), (d)
and Fig. 1(e), (f), respectively. From Fig. 1, we can see that the
peak of the solutions of tempered diffusion equation becomes
more and more smooth as exponential factor λ increases.

V. CONCLUSION

In this paper, we introduce two classes of fractional
operators for anomalous diffusion, and further discuss the
properties of tempered and substantial derivatives. We obtain a
theorem on two de nitions under some conditions. It is easy to
conclude that tempered and substantial fractional calculus are
the generalization of fractional calculus, and both of them are
special cases of generalized fractional calculus. Although sub-
stantial derivative is equivalent to tempered derivative when the
parameter λ ≥ 0, they are introduced from different physical
backgrounds. Mathematically the fractional substantial calcu-
lus is time-space coupled operator but the tempered fractional
calculus is not. However, the tempered fractional operators are
the more commonly used in truncated exponential power law
description.
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