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Abstract

Finite-time and fixed-time optimization are crucial in control and decision-making
systems that demand fast, guaranteed convergence. Unlike traditional meth-
ods that only ensure asymptotic convergence, these approaches are designed
to reach the optimal solution within a finite or uniformly bounded time, regard-
less of initial conditions (in the fixed-time case). This is especially important in
real-time, safety-critical, or resource-constrained applications like robotics, au-
tonomous systems, and networked control, where delays or prolonged compu-
tation can compromise performance or safety. This poster addresses controlled
optimization processes with a focus on convergence properties considering vari-
ous proposed algorithms with a unified framework. Toward this goal, a new anal-
ysis of finite-, fixed-, and prescribed-time convergent optimization algorithms is
presented in the perspective of dissipativity theory. This perspective enables the
unification of time-constrained optimization algorithms under the framework of
dissipativity control theory, and may enable the design of new algorithms that sat-
isfy theses convergence properties.

Preliminaries

Consider the nonautonomous nonlinear system defined as:

ẋ = f (t, x), x(t0) = x0 (1)

where x ∈ Rn is the state vector, and f : R≥0 × Rn → Rn is a nonlinear function
satisfies f (t, 0) = 0, that defines the origin x = 0 as an equilibrium point of the
dynamical system. t0 ∈ R≥0 is the initial time.
Definition 1. [5] The origin of system (1) is considered globally finite-time stable
if it is globally asymptotically stable and every solution x(t0,x0)(t) of (1) reaches
the origin within a finite time, i.e.,

x(t0,x0)(t) = 0, ∀t ≥ t0 + T (t0, x0) (2)

where T : R≥0 × Rn → R≥0 is a time function that measures the time of conver-
gence to the origin starting from some initial condition (t0, x0).

Definition 2. [5, 1] The origin of the system (1) is defined to be fixed time stable
if it is globally finite time stable and the time function T has an upper bound, say,
τmax > 0 such that:

T (t0, x0) ≤ τmax, ∀x0 ∈ Rn,∀t0 ∈ R≥0 (3)

Definition 3. The origin of the system (1) is said to be a prescribed/arbitrary time
stable if it is fixed time stable, and ∃τp ∈ R≥0, with no dependence on any sys-
tem parameters or initial conditions and can be predefined or designed in ad-
vance. If T (t0, x0) = τp, then the origin is strictly prescribed-time convergent,
while T (t0, x0) < τp indicates weakly prescribed-time convergence.

Dissipativity theory

Dissipativity theory may be viewed as a counterpart to Lyapunov theory but for
systems with inputs. Consider a discrete-time dynamical system satisfying the
state-space equation:

ζt1 = Aζt +But. (4)

In the perspective of classical dissipativity theory, ut is an external supply that
drives the dynamics governed by the state ζt.The two key concepts in dissipativity
are storage and supply. The storage function V (ζt) can be interpreted as a notion
of stored energy in the system. The storage function always satisfies V (ζt) ≥ 0.
The supply rate S(ζt;ut). When S > 0, the external force is adding energy to the
system. When S < 0, the external force is extracting energy from the system.

Feedback interconnections of gradient algorithms

The concept of time-constrained convergence of optimization algorithms is displayed in a
qualitative and quantitative sense. The required Lyapunov condition to satisfy finite- time,
fixed- time and prescribes- time convergence is shown.

Fig. 1: The concept of Finite/Fixed/Prescribed- Time stability.

Fig. 2: Example on prescribed-time convergent of gradient flow with time varying gradient feedback for the Trid function (x1 solid, x2

dashed: Left: for different prescribed times Tp = 5, 10 and 15, Right: For different initial conditions with Tp = 10 [2].

The dissipativity can be applied to the analysis of iterative optimization algorithms. The
benefit of using dissipativity for algorithm analysis is that it provides a principled and modular
framework where algorithms and oracles can be interchanged and analyzed [4, 3, 7].

Fig. 3: Equivalent feedback interconnections for general gradient algorithms [4, 6].

Dissipativity-based optimization design with
controllable convergence performance

Definition 4. The Optimization algorithm, say Σ is said to be Finite-time conver-
gent, if it is dissipative with the supply rate

S(u(t), ẏ(t), z(t)) = u⊤(t)ẏ(t)− βVk(t, z(t))−W (z(t)),

∀ t ≥ t0, for β > 0 and 0 < k < 1. where W (·) is a positive definite function, and
V is a storage function.

Definition 5. The Optimization algorithm Σ is said to be Fixed-time convergent,
if it is dissipative with the supply rate

S(u(t), ẏ(t).z(t)) = u⊤(t)ẏ(t)− β1Vk1(t, z(t))− β2Vk2(t, z(t))−W (z(t)),

∀ t ≥ t0 for β1, β2 > 0, 0 < k1 < 1 and k2 > 1. where W (·) is a positive definite
function, and V is a storage function

Definition 6. The Optimization algorithm Σ is said to be Prescribed-time conver-
gent, if it is dissipative with the supply rate

S(u(t), ẏ(t).z(t)) = u⊤(t)ẏ(t)− k
α(V(t, z(t)))

Tp − t
−W (z(t)),

∀ t ≥ t0 for β1, β2 > 0, 0 < k1 < 1 and k2 > 1. where W (·) is a positive definite
function,α(·) is a class K function, and V is a storage function

Remarks

This study aims to define and analyze a passivity-based controller design tech-
nique for discrete time and continuous time gradient flows. The approach es-
tablishes finite-time and fixed-time convergence of the gradient algorithm trajec-
tories [1] to its minimum point in the perspective of dissipativity theory, which
can be applied to the analysis of iterative optimization algorithms. As a future
work, a new form of a dissipation function, selected a priori, can be introduced
to design a feedback control rule to achieve such convergence properties. The
proposed framework may also extended to study time- constrained convergence
in distributed optimization, where the algorithms can be modeled as shown in
the figure below.
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