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Abstract
Digital Twin Enabled Collective Sensing and Steering for Source Determi-
nation Problems
by: Derek Hollenbeck
Mechanical Engineering
University of California, Merced. 2023.
Committee chair: Professor YangQuan Chen

Motivated by climate change and the global warming potential of methane (86 times
more potent than CO2), this dissertation focuses on the source determination prob-
lem using collective sensing and Digital Twins. Recently, Digital Twins have been
developed to provide better performance assessment, fault prognosis and predict fu-
ture behavior of complex systems. The term ‘collective’, refers to the group of mobile
sensors that, as a whole, provide more information than a single mobile sensor can.
The mitigation of methane emissions into the atmosphere is important to focus on in
reducing the effects of global warming in the near term. In order to mitigate emis-
sions, the leaks have to first be detected and assessed before they can be repaired.
Many of these emissions can be modeled as a point source governed by partial dif-
ferential equations (PDE), which, solutions are typically time-stepped into the future
(i.e. the forward problem). In many cases, the emission plume is subject to turbu-
lence which requires the use of turbulence models, such as large eddy simulations
(LES), to compute. In both cases, the computational requirements and run-time can
prevent real-time or near real-time analysis. Considering hybrid modeling approaches
(e.g. deterministic and stochastic), the forward behavior matched Digital Twin model
can be computed in near-real time and used for improving emission quantification
methodologies as well as perform optimization (e.g. sensor placement and mobile or
fixed-location sensing / actuation policy). The dissertation is broken into four main
parts: the first part is on source seeking based optimization using random search,
collective foraging, Fluxotaxis, and Extremum Seeking Control; the second part is on
the application of leak detection and quantification with sUAS (including: sensors,
platforms, and methods) as well as controlled release and real world field campaigns;
the third part is on Digital Twins (POSIM and MOABS/DT) and how to use them
for environmental sensing, method development, and performance evaluation case
studies; the last part is on the sensor placement problem and how the observability
Gramian combined with Digital Twins, can be used for smarter collective sensing and
steering.
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