Digital Twin Enabled Collective Sensing and Steering for Source Determination Problems

A dissertation submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy

in

Mechanical Engineering

by

Derek Hollenbeck

Committee in charge:

Professor YangQuan Chen, Chair Professor Gerardo Diaz Professor Christopher T. Kello Professor Ricardo Pinto de Castro

2023

© Derek Hollenbeck, 2023 All Rights Reserved. The dissertation of Derek Hollenbeck is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

Professor Gerardo Diaz

Professor Christopher T. Kello

Professor Ricardo Pinto de Castro

Professor YangQuan Chen, Chair

University of California, Merced

2023

To my wife and family,

thank you for always being there and keeping me grounded with your support, love and understanding throughout my graduate career, without it, this milestone would not have been possible.

> To my daughter, through hard work, persistent effort and grit, anything is possible.

Contents

Li	st of	Figures	vii
Li	st of	Tables x	vii
\mathbf{A}	bbre	viations	xix
A	ckno	wledgment x	cxii
\mathbf{C}	urric	ulum Vita x	xiii
\mathbf{A}	bstra	act x	xix
1	Inti	roduction	1
	1.1	Research Motivations	1
	1.2	Literature Overview and Challenges	2
	1.3	Dissertation Objectives	6
	1.4	Dissertation Contributions	7
	1.5	Dissertation Outline	8
2	Col	lective Motion and the Science of Search	9
	2.1	The Science of Search	9
	2.2	Collective Motion and Steering	10
	2.3	A Case Study: On Optimal Tempered Lévy Flight Foraging	11
	2.4	A Case Study: Individual and Collective Foraging in Autonomous	
		Search Agents with Human Intervention	20
	2.5	A Case Study: Swarm Robotic Source Seeking with Fractional Fluxotaxis	38
	2.6	A Case Study: A More Optimal Stochastic Extremum Seeking Control	
		Using Fractional Dithering for A Class of Smooth Convex Function .	47
	2.7	Chapter Summary	61
3	Lea	k Detection and Quantification with sUAS	62
	3.1	Sensors and Platforms	62
	3.2	Leak Quantification Methods	66
	3.3	Analysis of Methods	87
	3.4	Case Studies: Leak Detection and Localization	93

	3.5	Case Studies: Controlled Release Testing and Emission Quantification	106
	3.6	Case Studies: Real World Emission Quantification	111
	3.7	Chapter Summary	116
4	Tow	vards Smarter Environmental Sensing with Digital Twins	118
	4.1	The Digital Twin Framework and POSIM Digital Twin Platform	120
	4.2	Methane Odor Abatement Simulator with Digital Twins (MOABS/DT) 127
	4.3	A Case Study: Single-sUAS-based Characterization of Ground-To-Air	
		Emissions	132
	4.4	A Case Study: Behavior Matching and Localization Using Fixed Sensor	
		Mesh	140
	4.5	A Case Study: Multi-sUAS-based Emission Quantification with DE-CV'.	F143
	4.6	A Case Study: Multi-sUAS-based Emission Quantification Using Mod-	4 5 0
		NGI	150
	4.7	A Case Study: Single and Multi-sUAS Emission Quantification Per-	150
	10	Charter Summer using MOABS/D1	150
	4.8	Chapter Summary	199
5	Dig	ital Twin Enabled Smart Sensor Placement and Steering	163
	5.1	Sensor Placement and Steering Problem	163
	5.2	Empirical Observability Gramians	165
	5.3	Empirical Identifiability Gramian	166
	5.4	Persistence of Excitation and Sufficient Richness	167
	5.5	A Case Study: DT-enabled Sensor Placement and Steering with the	1.0.0
	F 0	Empirical Observability Gramian	168
	5.0	Chapter Summary	176
6	Cor	clusions and Future Work	179
\mathbf{A}	ppen	dices	181
-	List	of sUAS-based Field Campaign Missions	181
Bi	ibliog	graphy	183

List of Figures

1.1	This diagram illustrates how the research topics and chapters are con- nected to the overall scope of the this dissertation	6
$2.1 \\ 2.2$	Searching efficiency of standard Lévy flight for different mean free path λ Probability density for tempered Lévy distribution with $\rho = 0.5$ for	14
2.3	different μ	14
	case with different λ	16
2.4	A typical example of foraging procedure with $\lambda = 1$ and $\mu = 1$	17
2.5	Searching efficiency $\eta \lambda$ for different order μ and ρ : the destructive case	
	with different λ	18
2.6	The actual tempered Lévy density function with $\rho = 0.5$ and $\mu = 1$	
	and the statistic results of generated jump lengths	18
2.7	Experimental results of searching efficiency for different λ and μ	19
2.8	A typical example of foraging procedure with $\lambda = 0.5$ and $\mu = 1$	19
2.9	A typical example of foraging procedure with $\lambda = 0.5$ and $\mu = 3$	20
2.10	(a) Illustrative view of the task space (not shown to players). The	
	green agent and circle represent the human's agent and their field	
	of view (detailed more below). Area outside their field of view was	
	occluded (greyed out area). The dotted line represents that the hu-	
	man agent moved towards the mouse pointer position, so the human	
	could control movement direction by moving the mouse. (b) Random	
	movement shown to be random angular deviations of movement from	
	each previous heading. (c) Flocking term directed agents to converge	
	towards a similar shared movement trajectory. (d) Distancing term	
	prompted agents to separate from one another when close, and to-	
	wards each other when further away. (e) Visual Chaining prompted	
	agents to move directly toward an agent flagged as detecting the target.	25
2.11	Example movement trajectories for 2000 ticks for each movement con-	
	dition: (a) Random; (b) Flocking; (c) Distancing; and (d) Loose Cou-	
	pling	26

2.12	Mean trial time per session as a function of movement type without	
	human intervention (left) and with human intervention (right). Mean	
	trial times are divided into their composite search times (red) and	
	consumption times (teal).	27
2.13	Mean targets found per session as a function of movement type without human intervention (left) and with human intervention (right).	28
2.14	Normalized histogram of the number of agents in view during the search time period respective to one autonomous agent without intervention	20
2.15	Normalized histogram of the number of agents in view during the search	30
	time period respective to only human agents	31
2.16	Entropy values for simulated agents as a function of movement type	
	(Random, Flocking, Distancing, and Loose Coupling) in the experi-	
	ment (With Human) versus the simulation (Without Human)	31
2.17	Entropy values by movement condition (Random, Flocking, Distanc-	
	ing, and Loose Coupling) for human players (Human) versus simulated	
	agents (Autonomous) in the experiment.	32
2.18	Area search rate for autonomous agents, averaged for each session,	
	and plotted as a function of movement type and human intervention	
	for agents individually (left) and collectively (right)	34
2.19	Area search rate averaged for each session and plotted as a function	
	of movement type and agent type for human players and individual	
	agents with intervention	35
2.20	Finding and consuming proportions for human players as a function of	
	movement type. The red line indicates the expected proportion to be	
	found and consumed if human performance was no better than that	
	of simulated agents. Proportions above the expected baseline indicate	
	the degree to which humans outperformed simulated agents. \ldots .	37
2.21	An example of the FO-fluxotaxis algorithm given a meandering plume	
	(a = b = 0.04 and G = 5). The color of the source seeking agent	
	represents the source seeking strategy (green is FO-fluxotaxis). When	
	the plume signal is lost and neighboring information is available, the	
	algorithm reverts back to the secondary source seeking strategy casting	
	(shown in black).	43
2.22	Simulation agent starting locations (blue), general wind direction $\bar{\mathbf{V}}$	
	(light blue), and source location \mathbf{x}_s (red) for both simulation cases.	43
2.23	Case I: Arrival time performance of different swarm strategies given	
	wind conditions driven by colored noise	45
2.24	Case I: Distance travelled performance of different swarm strategies	
	given wind conditions driven by colored noise	46
2.25	Case I: <i>Closeness</i> performance of different swarm strategies given wind	
	conditions driven by colored noise. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	46
2.26	The performance efficiency, \mathcal{E} , of all the swarm strategies	47
2.27	Control diagram of ESC.	49

2.28	Plot of fBm showing (left axis) neutral $H = 0.5$, and anti-persistent	
	behavior $H = 0.1$ and (right axis) persistent behavior $H = 0.9$	51
2.29	Step length distribution for different values of H	51
2.30	The PSD shows the behavior in fGn for $H > 0.5$ which $S_{xx}(\omega) \propto \omega^{-(2H-1)}$.	52
2.31	The long range dependence can be seen in the heavy tails of the prob-	
	ability distribution function of $S\alpha S$ for various α .	53
2.32	Bastrigin function	56
2.33	The temporal convergence to the global minimum from the initial con-	
	dition θ_0 denoted t^* is shown as a function of fGn and SoS dithering	58
2.34	The spatial deviation δ around the converged θ is shown as a function	00
	of fGn and S α S dithering.	59
2.35	The final converged θ is shown as function of fGn nd S α S dithering.	59
2.36	The temporal convergence to the global minimum from the initial con-	00
	dition θ_0 , denoted t^* , is shown as a function of fGn and S α S dithering.	60
2.37	The spatial deviation δ around the converged θ is shown as a function	
	of fGn and $S\alpha S$ dithering.	60
2.38	The final converged θ is shown as function of fGn nd S α S dithering.	61
3.1	Payload configuration examples of (\mathbf{a}) boom-mounted TDLAS on a DJI	
	M210 used in [1], \bigcirc 2020 IEEE, used with permission, (b) top-mounted	
	anemometer in a wind tunnel showcasing the effect of propellers on the	
	streamlines used in [2], and (\mathbf{c}) bottom-mounted RMLD used in [3].	65
3.2	Leak detection and quantification methods and modalities	66
3.3	A diagram depicting the bLS approach [4], © American Meteorological	
	Society, used with permission	69
3.4	(a) Depiction of Gaussian plume dispersion with an observer making	
	a stationary measurement downwind. (b) Resulting time-integrated	
	data with a Gaussian fit applied $[5]$	71
3.5	(a) Polar plot with the wind direction, θ as the radial axis, and the	
	conditionally averaged concentration, $\langle C \theta\rangle$ as the distance from the	
	center. θ_p is the peak wind direction located at the maximum condi-	
	tionally averaged concentration. (b) Illustration of the wind direction	
	geometry for conversion of θ to crosswind position Y with the source	
	plume represented by the dashed lines $[6]$, © 2015 Atmospheric Envi-	
	ronment, used with permission.	73
3.6	Example run of the PSG-SBM method at time steps: (a) $k = 0$, (b)	
	k = 6, (c) $k = 16$, and (d) $k = 36$. The white lines indicate the path of	
	the UAV starting at from the beginning at the white rectangle to the	
	UAV's current positions—the white quadrotor symbol. The black circle	
	is the source location, and the red arrow is the wind direction. The red	
	dots are the random sample approximation of the source parameter	
	estimates at that respective time step $[7]$, \bigcirc 2019 Field Robotics, used	-
	with permission	76

3.7	Demonstration of using sampled flux plane data and applying kriging	80
3.8	Example of the VFP-PI strategy via a UAV sensing in circular tra-	80
	jectories with (\mathbf{a}) being an internal leak producing a net positive flux	
	and (b) being an external leak producing a net zero flux. The color of	
	the arcs are indicative of methane flux strength with green being more	
	negative and red being more positive [3]	82
3.9	A diagram of the vertical radial plume mapping method [9]	85
3.10	Methane plume detections in the (a) MWIR and (b) LWIR ranges [10].	86
3.11	METEC results from the Standford EDF Mobile Monitoring Challenge	
	[11]	90
3.12	Published METEC results of ARPA-E MONITOR program partici-	
	pants from: (a) [12] using a static on-site portable TDLAS and PSG	
	method, (b) [13] using the dual frequency comb spectrometer and non-	
	zero minimum bootstrap (NZMB) method [14] with Gaussian plume	
	model, (c) Bridger Photonics' group white paper using Gas Mapping	
	LiDAR [15], and (d) [3] using bs-TDLAS and PI-VFP method	91
3.13	Diagram of summary of methods (based on Table 3.2) showing rela-	
	tionship between typical survey time versus sample distance and there	
	associated normalized accuracy, where lower values represent more ac-	
	curate measurements. (measured using ¹ fixed, ² foot, ³ vehicle, ⁴ manned	
	aircraft, or ^o UAV)	94
3.14	Diagram of the complexity ranking of the methods (based on Table	
	3.1), showing the relationship between the method complexity (red),	
	precision (green), and cost (blue). The precision is normalized on the	
	source estimate multiplied by 10 and the cost is ranked from 0 to 10.	0.4
9.15	(measured using fixed, foot, venicle, financed aircraft, or OAV).	94
5.10	image showing the OPLS emission frequency (5057 cm-1 = 5.27 μ m),	
	arrated OPLS sensor showing the open path optical head, and the inte-	
	the wind	05
3 16	The right shows a satellite view of MVPCB test site. The buildings	90
0.10	to the north are an abandoned farm house. The red line is 270 m	
	long On the left shows the gas diffuser setup and data from a 30 m	
	downwind flight with a 5 SCFH methane release	08
317	Localization back-trajectories from Feb. 2017 Merced Field test. Shown	50
0.11	are 4 examples Small red lines are back-trajectories from individual	
	methane signals. Fat red lines are the averaged back-trajectories for	
	that flight. The vellow is the predicted plume where the leak location	
	is at the sharp end of the vellow plume	100
	1 / 1 / 1	

3.18	The PG&E Livermore training center. Top: The numbers in red refer	
	to release points that map to the test matrix provided above. Bottom:	
	Actual release points where green are below-ground leaks and yellow	
	are above-ground leaks.	101
3.19	(a) top: early back trajectories (red lines); (b) 2nd from top: mid-flight	
	back trajectories; (c) 3rd from top: late back trajectories; (d) averaged	
	back trajectories and predicted leak location (red square) vs. actual	
	leak location (yellow star)	102
3.20	(top) Depicts the autonomous searching path where the searcher de-	
	tects the emission and switches the searching strategy to a Brownian-	
	based random walk, slowing transitioning to a Lévy walk before con-	
	tinuing on the path. (bottom) Schematic of the switching algorithm.	105
3.21	This diagram depicts the change in searching strategy from Browian	
	motion to Lévy following the work in [16]	105
3.22	An experimental example applying the quadi-steady state inversion	
	method to localize a real-world leak. In this case, two sources are	
	present but based on the measured data (shown in the reduced image)	
	only one of the sources can be located.	106
3.23	An example curtain flight path for mass balance calculations.	107
3.24	Emission quantification from controlled release tests in the MVPGR	
0	February 2017. \ldots	108
3.25	Experiment location at Merced Vernal Pools and Grassland Reserve.	
	The vellow star indicates the source, the green triangle is the RMYoung	
	anemometer, and the flight area is shown red dotted line	109
3.26	DJI Matrice 210 (M210) equipped with a sensitive methane sniffer	
	developed by [17] and attached to the DJI Skyport.	109
3.27	Normalized controlled release estimation using the mass balance method	
	of the August 2018 MVPGR field test.	110
3.28	Example of an off-site emission source affecting the survey and emission	
	quantification.	111
3.29	Example of a survey with an underground source. The initial survey	
	detected a leak near the south-east corner of the site. The successive	
	flights had difficulty detecting the emission source when flying low and	
	slow (≈ 1 m/s or less), whereas, when flying faster the rate of detection	
	increases.	112
3.30	At the MCRWM site a new cell is being developed, such that, the bank	
	shown in the image has no membrane and only a dirt cover	113
3.31	Two surveys of an active landfill cell without a membrane are conducted	
	where measurements are taken from: (top) near the source; (bottom)	
	further back. The measurements near the source show the emission	
	emanating from the ground whereas when the measurement is taken	
	from further back the emission is subject to more turbulence	113
	× ·	

3.	.32 The mobile sUAS measurement platform above an eddy covariance tower in an Alaskan peatland bog.	115
3.	.33 A top down view of the Alaskan Peatland Experiment (APEX) site, showing the upwind and downwind measurements for two different	-
	wind conditions.	116
3	.34 (top) Tower-based flux measurement of the APEX site for the days and times of the 2019 September field campaign (bottom-left) Average flux given the cosine angle between the apparent wind direction and the normal vector of the flux plane (bottom-right) The emission quan- tification values are shown to be higher when the turbulence intensity is small	117
		111
4 4 4	 Digital twin framework diagram. MATLAB example of the digital twin with meandering Scheme for updating the colored noise in the corners interpolating the 	$121 \\ 123$
	adjacent boundaries.	124
4	4 Contrast in measurements of two different wind conditions stable (2016) vs unstable (2017) under controlled methane release of 5 standard cubic fact non hour (SCEII) at 20m downwind [18]	195
4	15. The timeseries behavior and sensitivity with tuning parameters θ given	120
	one pass through the plume	128
4	.6 A satellite image of the Colorado State University methane emission	
	equipment pads are numbered for simplicity in topology modeling	129
4	(a) Site level emission survey and quantification from METEC using TDLAS equipped drone. (b) The survey begins with a perimeter flight	
	to identify leaking equipment. (c) Once a leak is identified the quan- tification can be done using downwind and upwind mass belance flight	a 120
4	1.8 Running the DT in parallel with the physical system, the dynamics of the gas filaments are being lofted into the air due to the cylinders on equipment pad 3 at site 1 (top). The physical observations seen from experiment and calculated with the mass balance (bottom) reflect these	,8.130
	in the DT.	131
4	9 Example mass balance measurement for one curtain flight	132
4.	10 The concentration time series in ppm during flight curtain 1, where $n_p = 40$ puffs/sec and the symbols τ_{gi} , τ_{pi} , and τ_{lag} represent the <i>i</i> -th gap length <i>i</i> -th pulse length and the time lag between the simulation	
	and experimental data [1].	133
4	11 Pattern search method convergence plot for behavior matching of flight 1 given the cost function, $J(\theta)$. The algorithm converged as mesh size	
	tolerance was reached to $\approx 5.813.$	135
4	12 Response of the single parameter Mittag-Leffler function for $\mathcal{E}_{\alpha}(-t^{\alpha})$ as $\alpha \in [0, 1]$.	137

4.13	Here the turbulence intensity, $T_i = \sigma_u/\bar{u}$, of the wind is plotted against	
	the normalized flow rate, which trends toward $Q_*/Q = 1$ as $T_i \to 0$. A	
	boxplot of the source estimation for each flight (set of 10 simulations),	
	given a spatial interpolation method, is shown for each T_i condition	
	observed from the experimental data. A smaller boxplot (shown within	
	each boxplot) contains tails that represent the uncertainty. We can	
	observe 1) several flights agree with experimental data 2) majority of	
	flights underestimate the flow rate in short due to increased T_i and	
	3) the remaining flights that disagree are likely not capturing vertical	
	plume behavior.	138
4.14	The detection concentrations from the simulation and experimental	
	sensor are compared in a probabilistic histogram. While the distribu-	
	tions show that the majority of indications are near background levels.	
	they also agree with the less likely larger concentrations detected in	
	the experiment.	138
4.15	The detection altitude versus measured concentrations from the simu-	
1.10	lation and experimental sensor are compared. The distributions match	
	well with experiment and the probability of detection declines rapidly	
	as the altitude increases from 10-15 m	139
4 16	Given an unknown source location (x, y) the DT is behavior matched	100
1.10	to minimize the error e_{J} in the source location estimation $(\hat{x}_{s}, \hat{y}_{s})$ given	
	a sensor distance described by d	140
$4\ 17$	The results from a single snapshot of data using IDW is shown on the	110
1.11	left and the first four spatially interpolated DMD modes are shown	
	to the right (starting with the top row). The low frequency behav-	
	ior creates a hotspot that varies less with time allowing for behavior	
	matching optimization	142
/ 18	The time evolution of the DT behavior matching is shown for various	114
1.10	time steps. The DT is shown in blue and the unknown physical system	
	is shown in red	1/19
1 10	Civen both meandering and no meandering wind conditions the be	144
4.13	havior matching method converges around the true source location	
	Even though the additional turbulance from the meandering condi-	
	tions makes the convergence noisy the estimation of the source location	
	sooms to improve	1/12
4 20	Proliminary regults in source localization error are shown as a function	140
4.20	of appear density. A single source localization entry are shown as a function	
	of sensor density. A single source location, initial guess, and mean wind direction are used to usery meandering amplitude $1 \leq C \leq 10$ (where	
	direction are used to vary meandering amplitude $1 \le G \le 10$ (where 10 means and a single for a fixed metric) for a fixed metric of 0.2	
	To represents larger meandering) for a fixed natural frequency $\omega_n = 0.2$	
	and damping ratio $\zeta = 0.1$ ($a = \omega_n^2$ and $v = 2\omega_n \zeta$). The dashed line is	
	the distance between adjacent sensors and snows the method provides	1 1 4
	some improvements in resolution	144

4.21	This diagram depicts the simulation environment setup and framework implementation flowchart	145
1 99	These plots show the current position / density reconstruction (left)	140
1.22	the ground truth (middle) and the entropy (right) of the DE-CVT	
	(top row) and D-CVT (bottom row) strategies for flux reconstruction.	148
4.23	Given the 2D static case, the estimation error is reduced faster with	
	the DE-CVT. This is desirable behavior since the field may change	
	over time in practical applications.	148
4.24	(left) 3D fugitive gas emission with deployed UAVs performing DE-	
	CVT algorithm (middle-left) Ordinary kriging estimation given cur-	
	rent concentration measurements for the UAV's at timestep k (middle-	
	right) The first DMD mode capturing the low frequency behavior of	
	the kriging results and (right) the entropy map computed from the	
	kriging estimation variance.	149
4.25	A snapshot of the instantaneous source rate (red-dotted), the contin-	
	uous mass rate using 10 s moving average (blue), and true source rate	150
4.00	(black).	150
4.20	The simulation sample domain.	190
4.27	the plume	151
4 28	In these boxplots, the estimation performance results for static plumes	101
1.20	different plume widths are explored for (a) lawn mower & (b) spiral	
	paths	152
4.29	In these sets of plots, the performance of the NGI (red) and the mod-	
	NGI (blue) at different amplitudes of meandering are shown and the	
	different frequency responses of the algorithms are shown in each row.	
	It can be observed that both algorithms do not perform well given	
	dynamic (e.g. meandering) conditions. The most variability can be	
4.00	seen in the plume width estimates.	153
4.30	Given a moving source these six plots show the effect of the multi-UAS	
	$C \vee 1$ -mod-NGI and single ESC-mod-NGI based algorithms. It can be observed in plots (a) (b) that as the movement frequency of the source	
	increases the ability of the CVT-mod-NGI algorithm to estimate and	
	track the source diminishes. This behavior is much like the response of	
	a time series signal given a low pass filter. Conversely, as the window	
	of points used to compute the mod-NGI approach is reduced, much	
	like we would expect, the ability to track and estimate the parameters	
	increases. Although the performance in (c) is improved, the estima-	
	tions become more noisy, and thus there is a trade-off between tracking	
	performance and stable estimations. To illustrate why multi-sUAS sys-	
	tems may be better, an ESC-mod-NGI algorithm is shown in (d), where	
	the ability to estimate parameters is not as robust to meandering and	1 - 4
	exhibits more difficulty with hyperparameter tuning	154

4.31	Comparisons between the results from Shah et al.'s NGI, our NGI,	
	the mod-NGI, and the true controlled release flux using the controlled	
	release survey data from $[19]$	155
4.32	To validate the model the sUAS samples along a fixed path downwind	
	of the source. The measured signal is shown in the top right	156
4.33	Subsections of the METEC location used for the case studies: No Ob-	
	stacles (green), Small Obstacles (red), and Large Obstacles (Magenta).	
	The colored points correspond to the plume starting locations	156
4.34	Results for the Mass Balance and NGI methods averaged over all of	
	the meandering conditions and plume repetitions for each case study	
	and distance. The solid lines indicate the means at the points while the	
	vertical distance from the solid line to the edge of the shaded region	
	represents the standard deviation at that point	160
4.35	Results for the DE-CVT method for a swarm size of 3 UASs and 9 UASs	
	averaged over all of the meandering conditions and plume repetitions	
	for each case study and distance. The solid lines indicate the means	
	at the points while the vertical distance from the solid line to the edge	
	of the shaded region represents the standard deviation at that point.	161
4.36	Results for the Mod-NGI method for a swarm size of 3 UASs and	
	9 UASs averaged over all of the meandering conditions and plume	
	repetitions for each case study and distance. The solid lines indicate	
	the means at the points while the vertical distance from the solid line	
	to the edge of the shaded region represents the standard deviation at	100
	that point	102
5.1	The minimum and maximum condition numbers of the Fisher informa-	
	tion matrix is bounded by the empirical observability Gramian scaled	
	with the condition number of the measurement noise covariance matrix	
	(see $[20]$ for more details).	166
5.2	A diagram depicting the interconnection between the three major tasks	
	of digital twin enabled smart sensor placement framework	168
5.3	The domain Ω contains the source ρ , digital twin ρ_{DT} , and the Ω_p plane	
	(functions of $r(t)$ and $\varphi(t)$). The projection from the Lagragian states	
	to Eulerian states onto $\underline{\Omega}$ are shown by $\hat{\rho}_{DT}$. Inside $\underline{\Omega}$ there may be	
	regions that $r(t)$ cannot go, illustrated in red shaded color. The CVT	
	continuous coverage controller is shown on the right. The combination	
	of the two desired setpoints are used to dynamically steer the centroids	
	in a orbit around the stable point (located in the center of Ω_p)	171
5.4	The phase portrait for different parameters (outlined in 5.28) can be	
	seen here, where the velocity field is shown to divergent/convergent,	
	stretched, and shifted.	173

5.5	The MOABS/DT simulation is first initialized in (Stage 1) by letting	
	the physical and DT plumes develop past the point of measurements,	
	then (Stage 2) initializes the continuous CVT and commands the Ω_p	
	plane to cross the plume. Once a detection is made the sensor place-	
	ment and steering is activated and begins using the DT projection onto	
	$\underline{\Omega}$ for the empirical observability Gramian computation	175
5.6	The sensor placement and steering trajectory for each cost function are	
	shown here.	177
5.7	The emission quantification using the mod-NGI method is shown against	
	different cost functions. The best performing metrics have smaller un-	
	certainty and better accuracy, such as with $det(W^{-1})$	178

List of Tables

3.1	Figures of merit for defining complexity of an estimation method	88
3.2	Summary of methods and their assumptions, operational details, com-	
	plexity, cost, average precision, and average accuracy are generalized	
	over implementations found in the literature. The average precision	
	and accuracy are given as unitless values, normalized by the true source	
	rate (estimated source rate). (measured using ¹ fixed, ² foot, ³ vehicle,	
	⁴ manned aircraft, or ⁵ UAV; cost with $\leq \leq 10,000, \leq \leq 50,000, \leq \leq$	
	\leq \$100,000, \$\$\$ \geq \$100,000; (·) represents precision normalized on es-	
	timated source rate average complexity	92
3.3	Summary of method advantages and disadvantages along with fields of	
	application	95
3.4	Testing matrix for February 14-15 Merced Vernal Pools controlled re-	
	lease test experiments. The flow rate is given in standard cubic feet	
	per hour (SCFH).	97
3.5	Number of passes needed at Pasquill-Gifford atmospheric stability class	
	and above ground level (AGL) altitude to gain 95% due diligence con-	
	fidence that a 5 SCFH leak was discovered	99
3.6	Test Matrix for PG&E Livermore Testing Facility Field Experiments.	102
3.7	Metrics of blind test leaks. The time represents the time to localize all	
	the leaks and the leak size is given in SCFH	103
3.8	Summary of the performance of the participating technologies in the	
	first phase of the Alberta Methane Field Challenge (AMFC)[21]. Days	
	refers to the number of participation days, rate refers to the number	
	of sites per day, and time is the survey in minutes per site	114
3.9	The quantification results are compared to tower estimates, which show	
	that the sUAS-based estimates are lower than the tower measurements	
	during the time of the flights. However, the estimates are within a rea-	
	son considering the variability of the wind and the difficulty in mea-	
	suring small emission rates.	115
<u> </u>	(top) Definitions of Digital Twin [22] and (bottom) recent Digital Twin	
4.1	platforms and applications	121
		141

4.2	Results from mass balance method for 16 curtain flights are shown be-	
	low along with the average experimental wind speed, \overline{u}_e and the $\cos \beta_e$	
	between the normal vector of the flux plane. The flow rates (experi-	
	mental Q_* and simulation \hat{Q}_*) are in SCFH, the subscripts denote the	
	spatial interpolation method, and the superscripts are the associated	
	parameters, where K is Kriging, IDW is inverse distance weighting,	
	and KDM is Kernel DM+V	139
4.3	An overview of the simulation testing scenarios	157
5.1	Observability metrics that can be used as a minimizing cost function	
	for evaluating a system.	167

Abbreviations

The following abbre	viations are used in this dissertation:
ADE	Advection diffusion equation
AJAX	Alpha Jet Atmospheric eXperiment
ALD	Advance Leak Detection
AMFC	Alberta Methane Field Challenge
AMOG	AutoMObile greenhouse Gas
ANOVA	Analysis of variance
ARPA-E	Advanced Research Projects Agency-Energy
AVIRIS-NG	Next generation Airborne visible/infrared imaging spectrometer
bLS	Backward Lagrangian Stochastic dispersion technique
bs-TDLAS	Back scatter tunable diode laser absorption spectrometer
CALMIM	California Landfill Methane Inventory Model
CARB	California Air Resources Board
CASIE	Characterization of Arctic Sea Ice Experiment
CFP	Cylindrical Flux Plane
CRDS	Cavity ring-down spectrometer
DiAL	Differential Absorption LiDAR Method
DT	Digital Twin
EC	Eddy Covariance
EDF	Environmental Defense Fund
EPA	Environmental Protection agency
EPA FLIGHT	EPA Facility Level Information on Greenhouse gases Tool
ES	Environmental sensing
FEAST	Fugitive Emissions Abatement Simulation Toolkit
FID	Flame Ionization Detector
FLEXPART-WRF	FLEXible PARTicle-Weather Research and Forecasting
FLOM	Fractional lower order moments
FPE	Fokker–Planck equation
FTIR	Fourier Transform Infrared
GADEN	A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments
GDT	Gauss Divergence Theorem
GDM	Gas distribution mapping
GDMF	Gradient divergence mass flux
GHG	Greenhouse gas
GLM	General linear model
GLM-VFP	General linear model vertical flux plane
GML	Gas Mapping $LiDAR^{TM}$ technology
GSL	Gas source localization
QOGI	Quantitative optical gas imaging
ICOS	Integrated cavity output spectroscopy

IDW	Inverse distance weighted
	Iterative maximum a posteriori differential optical
IMAP-DOAS	absorption spectroscopy
LDAQ	Leak detection and quantification
LDAR	Leak detection and repair
LES	Large eddie simulation
LiDAR	Light detection and ranging
LGR	Los Gatos Research
LWIR	Long-wave infrared
MCMC	Markov Chain Monte Carlo
MEMS	Micro electrical mechanical systems
METEC	Methane Emission Testing and Evaluation Center
MGGA	Micro greenhouse gas analyzer
MOX, CMOS, MOS	Ceramic Metal oxide sensor
MMC	Standford EDF Mobile Monitoring Challenge
MMD	Micrometeorological mass difference method
MONITOD	Methane Observation Networks with Innovative Technology
MONITOR	to Obtain Reductions
MUST	Mock Urban Test Setting
MWIR	Mid-wave infrared
NDIR	Non-dispersive Infrared
NZMB	Non-zero minimum bootstrap
NGI	Near-field Gaussian plume inversion
NIR	Near infrared
OA-ICOS	Off axis integrated cavity output spectrometer
OGI	Optical gas imaging
OPLS	Open path laser spectrometer
OTM	Other test method
OU	Ornstein-Uhlenbeck
PG	Pasquill-Gifford
PID	Photo-ionization detector
PI-VFP	Path Integrated Vertical Flux Plane
PMT	Pollution mapping tool
PSD	Power spectrum density
PSG	Point source Gaussian
PSG-CS	Conditionally sampled point source Gaussian
PSG-RB	Recursive Bayesian point source Gaussian
PSG-SBM	PSG sequential Bayesian MCMC
QOGI	Quantitative optical gas imaging
RANS	Reynolds averaged Navier Stokes
RB-LSI	Recursive Bayesian least squares inverse
RGB	Red green blue
RMLD	Remote methane leak detector
SDP	Source determination problem

SEBASS	Spatially-Enhanced Broadband Array Spectrograph System
SEM	Surface emission monitoring
SESC	Stochastic extremum seeking control
SLAM	Simultaneous localization and mapping
STE	Source term estimation
sUAS	small Unmanned aircraft system
SWIR	Short-wave infrared
TDLAS	Tunable diode laser absorption spectroscopy
	Tracer dispersion method,
TDM, TCM, ATM	Tracer correlation (or dilution) method,
	Atmospheric tracer method
TIR	Thermal infrared
TSEB	Two source energy balance
UA	Ultrasonic Anemometer
UGGA	LGR Ultraportable GHG analyzer
VCSEL	Vertical cavity surface emitting laser
VFP	Vertical Flux Plane
VRPM	Vertical Radial Plume Mapping Method
WRF	Weather Research and Forecasting Model

Acknowledgment

First and foremost I would like to express my deepest thanks for my family and my wife, without their support I would not be able to make this happen. Secondly, I would like to give recognition to my fearless advisor, Professor YangQuan Chen, who pushes, not just myself, but everyone around him to pursue research excellence. I believe a great deal of my growth and successes are attributed to his mentorship and guidance.

It was through the support of the Mechatronics, Embedded Systems, and Automation Lab that I was able to accomplish so much. I would like to also show my gratitude to all of the MESA Lab members (former, current and future) for all of the collaborations. This includes but not limited to: Gregorio Nunez, Garrett John, Alexis Bonnin, Matthieu Loubens, Tiebiao Zhao, Gouxiang Zhang, Yuquan Chen, Haoyu Niu, Jairo Viola, Carlos Rodriguez, Justus Nwoke, Di An, and Rafal Krzysiak.

Thoughout my PhD career I was fortunate enough to work with brillant individuals from outside my home institution and I would like to acknowledge some of them here: Lance Christensen, Francios Rongere, Kristen Manies, Michael Whiticar, Brad Billwiller, and Eric Saczuk.

The text of several sections in Chapter 2 of this dissertation are reprints of articles titled: "On Optimal Tempered Lévy Flight Foraging"; "Individual and Collective Foraging in Autonomous Search Agents with Human Intervention"; "Swarm Robotic Source Seeking with Fractional Fluxotaxis"; and "A More Optimal Stochastic Extremum Seeking Control Using Fractional Dithering for a Class of Smooth Convex Functions". The text of several sections in Chapter 3 of this dissertation are reprints of articles titled: "Advanced Leak Detection and Quantification of Methane Emissions Using sUAS"; and "Characterization of Ground-to-air Emissions with sUAS Using a Digital Twin Framework". The text of several sections in Chapter 4 of this dissertation are reprints of articles titled: "A Digital Twin Framework for Environmental Sensing with sUAS"; "MOABS/DT: Methane Odor Abatement Simulator with Digital Twins"; "Digital Twin Behavior Matching of Gas Plumes Using a Fixed Sensor Mesh and Dynamic Mode Decomposition"; "Multi-UAV Method for Continuous Source Rate Estimation of Fugitive Gas Emissions From a Point Source"; "A Modified Near-Field Gaussian Plume Inversion Method Using Multi-sUAS for Emission Quantification"; and "Single and Multi-sUAS Based Emission Quantification Performance Assessment Using MOABS/DT: A Simulation Case Study". I would also like to acknowledge the financial support I have recieved over the years from the National Science Foundation (NSF) National Research Traineeship (NRT) Grant No. DGE-1633722, as well as computing time on the Multi-Environment Computer for Exploration and Discovery (MERCED) cluster at UC Merced, which was funded by NSF Grant No. ACI-1429783.

Curriculum Vita

Derek Hollenbeck Mechanical Engineering University of California, Merced dhollenbeck@ucmerced.edu

Education

- University of California, Merced. Merced, CA, USA. (2016 2023). Ph.D. in Mechanical Engineering.
- University of California, Merced. Merced, CA, USA. (2013 2016). B.Sc. in Mechanical Engineering.
- Merced College. Merced, CA, USA. (2012 2013). Mathematics and Physics emphasis
- Lassen Community College. Susanville, CA, USA. (2010 2012).
 A.S. Mathematics and Physical Science

Publications

- 28. Hollenbeck, D., Zheng, K., Zulevic, D., & Chen, Y. (2023). Swarm Robotic Source Seeking with Fractional Fluxotaxis. *in Proceedings of 2023 International Conference on Fractional Derivatives and Applications*. Ajman, Jordan.
- Hollenbeck, D., An, D., Krzysiak, R., & Chen, Y. (2023, June). Towards Cognitive Battery Monitoring on Hybrid VTOL Fixed-Wing sUAS with Maximized Safe Endurance. In 2023 International Conference on Control, Mechatronics, and Automation (ICCMA). (Planned)
- An, D., Krzysiak, R., Hollenbeck, D., & Chen, Y. (2023, June). Batteryhealth-aware UAV Mission Planning Using a Cognitive Battery Management System. In 2023 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE. (Accepted)

- 25. An, D., Krzysiak, R., Hollenbeck, D., & Chen, Y. (2023, June). Long Endurance Site-Specific Management of Biochar Applications Using Unmanned Aircraft Vehicle and Unmanned Ground Vehicle. In 2023 International Federation on Automatic Control (IFAC) (Accepted)
- 24. Hollenbeck, D., Zulevic, D., & Chen, Y. (2022, June). Single and Multi-sUAS Based Emission Quantification Performance Assessment Using MOABS/DT: A Simulation Case Study. In 2022 18th IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications.
- An, D., Hollenbeck, D., Cao, K., & Chen, Y. (2022). Soil Methane Emission Suppression Control Using Unmanned Aircraft Vehicle Swarm Application of Biochar Mulch - A Simulation Study. *Journal of Information and Intelligence*
- 22. An, D., Liu, Z., Hollenbeck, D., & Chen, Y. (2022). A Greenhouse Gas Proximity Sensing Using Chemiresistive Strip and Miniaturized Radar Array. In 2022 10th International Conference on Control, Mechatronics and Automation.
- Hollenbeck, D., & Chen, Y. (2022). A Digital Twin Framework For Environmental Sensing with sUAS. Journal of Intelligent & Robotic Systems 105 (1), 1-15.
- An, D., Hollenbeck, D., Gao, S., & Chen, Y. (2022, June). A Field Study of Soil Biochar Treatment Response Using Small Unmanned Aerial Systems (sUAS). In 2022 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE.
- Hollenbeck, D., Zulevic, D., & Chen, Y. (2022, June). A Modified Near-Field Gaussian Plume Inversion Method Using Multi-sUAS for Emission Quantification. In 2022 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE.
- Viola, J., Rodriguez, C., Hollenbeck, D., and Chen, YQ. (2022). Outliers in Control Engineering, 237. (Book Chapter)
- 17. Hollenbeck, D., & Chen, Y. (2021). Digital Twin Behavior Matching of Gas Plumes Using a Fixed Sensor Mesh and Dynamic Mode Decomposition. In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection.
- 16. Hollenbeck, D., Zulevic, D., & Chen, Y. (2021). Advanced Leak Detection and Quantification of Methane Emissions Using sUAS. *Drones*, 5(4), 117.
- Hollenbeck, D., Zulevic, D., & Chen, Y. (2021, July). MOABS/DT: Methane Odor Abatement Simulator with Digital Twins. In 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI) (pp. 378-381). IEEE.

- Hollenbeck, D., & Chen, Y. (2021, June). Multi-UAV Method for Continuous Source Rate Estimation of Fugitive Gas Emissions From a Point Source. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1308-1313). IEEE.
- Schloesser, D. S., Hollenbeck, D., & Kello, C. T. (2021). Individual and Collective Foraging in Autonomous Search Agents With Human Intervention. *Scientific Reports*, 11(1), 1-13.
- Viola, J., Hollenbeck, D., Rodrigez, C., & Chen, Y. (2021). Fractional-Order Stochastic Extremum Seeking Control with Dithering Noise for Plasma Impedance Matching. *In proceedings of CCTA*.
- Fatehiboroujeni, S., Hollenbeck, D., Mishra, A., & Goyal, S. (2021) Postbuckling Stability of a Cantilever Beam with Cubic Non-Linearity in Constitutive Laws. In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection. (Accepted)
- Hollenbeck, D., Manies, K., Chen, Y., Baldocchi, D., Euskirchen, E. S., & Christensen, L. (2020, December). Evaluating a UAV-based Mobile Sensing System Designed to Quantify Ecosystem-based Methane. In AGU Fall Meeting Abstracts (Vol. 2020, pp. A115-0007).
- Niu, H., Hollenbeck, D., Zhao, T., Wang, D., & Chen, Y. (2020). Evapotranspiration Estimation with Small UAVs in Precision Agriculture. Sensors, 20(22), 6427.
- Hollenbeck, D., & Chen, Y. (2020, September). Characterization of Groundto-air Emissions with sUAS Using a Digital Twin Framework. In 2020 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1162-1166). IEEE.
- Hollenbeck, D., & Chen, Y. (2020). A More Optimal Stochastic Extremum Seeking Control Using Fractional Dithering For A Class of Smooth Convex Functions. *IFAC-PapersOnLine*, 53(2), 3737-3742.
- 6. Schloesser, D., **Hollenbeck**, **D.**, & Kello, C. T. (2020). Social Foraging in Groups of Search Agents with Human Intervention. *In CogSci.*
- Whiticar, M., Hollenbeck, D., Billwiller, B., Salas, C., & Christensen, L. (2019). Application of the BC GHGMapper[™] Platform for the Alberta Methane Field Challenge (AMFC). Geoscience BC Summary of Activities, 2020-02.
- Hollenbeck, D., Dahabra, M., Christensen, L. E., & Chen, Y. (2019, June). Data Quality Aware Flight Mission Design for Fugitive Methane Sniffing Using Fixed Wing sUAS. In 2019 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 813-818). IEEE.

- Hollenbeck, D., Oyama, M., Garcia, A., & Chen, Y. (2019, June). Pitch and Roll Effects of On-board Wind Measurements Using sUAS. In 2019 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1249-1254). IEEE.
- Chen, Y., Hollenbeck, D., Wang, Y., & Chen, Y. (2018). On Optimal Tempered Lévy Flight Foraging. Frontiers in Physics, 6, 111.
- Hollenbeck, D., Nunez, G., Christensen, L. E., & Chen, Y. (2018, June). Wind Measurement and Estimation with Small Unmanned Aerial Systems (sUAS) Using On-board Mini Ultrasonic Anemometers. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 285-292). IEEE.

Awards, Fellowships, and Grants

- CITRIS Aviation Prize (inaugural, Fall 2021)
- UC Merced ME Bobcat Fellowship (Fall 2021)
- UC Merced ME Bobcat Fellowship (Sum 2021)
- NSF NRT Extended Intelligent Adaptive Systems Fellowship (Fall 2020 Sum 2021)
- NSF NRT Extended Intelligent Adaptive Systems Fellowship (Fall 2019)
- NSF NRT Extended Intelligent Adaptive Systems Fellowship (Spring 2019 -Sum 2019)
- NSF NRT Intelligent Adaptive Systems Fellowship (Spring 2017 Sum 2018)
- NSF NRT Interdisciplinary Computational Graduate Education (Spring 2017)
- UC Merced Outstanding Student Award (undergraduate, Spring 2016)

Presentations

- ICUAS 2022 Sum 2022 (title: A Modified Near-Field Gaussian Plume Inversion Method Using Multi-sUAS for Emission Quantification)
- CITRIS Research Exchange Spring 2022 (title: Long Endurance Edge-AI Platform For Research Opportunities and Data Gathering)
- PhD Dissertation Qualifying Exam Spring 2022 (title: Digital Twin Enabled Collective Sensing and Steering for Source Determination Problems)

- MESA Lab Research Group Meeting Fall 2021 (title: The empirical gramian and why it is important)
- MSNDC 2021 Sum 2021 (title: Post-buckling Stability of a Cantilever Beam with Cubic Non-linearity in Constitutive Laws)
- ICUAS 2021 Sum 2021 (title: Multi-UAV Method for Continuous Source Rate Estimation of Fugitive Gas Emissions from a Point Source)
- DTPI 2021 Sum 2021 (title: MOABS/DT: Methane Odor Abatement Simulator with Digital Twins)
- MESA Lab Research Group Meeting Spring 2021 (title: Swarm Robotic Source Seeking with Fractional Fluxotaxis and Seasonal Meandering)
- MESA Lab Research Group Meeting Fall 2020 (title: Physicomemitics, Chemical Plume Tracing, and Fluxotaxis (I))
- MESA Lab Research Group Meeting Fall 2020 (title: MOAB/DT: Towards Smart Swarming for Methane Emission Sensing and Understanding/Quantification)
- ICUAS 2020 Workshop Tutorial Sum 2020 (title: A digital twin framework on using drones as edge devices for environmental monitoring)
- ICUAS 2020 Workshop Tutorial Sum 2020 (title: Methane sensing drones with machine learning)
- UC Agriculture and Natural Resources (UCANR) DroneCamp Spring 2020 (title: Methane emission drone swarm sensing to better understand permafrost thawing dynamics.)
- MESA Lab Research Group Meeting Fall 2019 (title: Fractional Order Modeling of Atmospheric Dispersion)
- MESA Lab Research Group Meeting Spring 2019 (title: UAV Gas Sensing, a Digital Twin, and PET (POSIM Experimental Testbed))
- Invited Talk Applied Math Optimization Research Group Spring 2019 (title: tbd) NSF NRT Retreat Meeting Spring 2019 (title: Collective Foraging Among Loosely Coupled Agents)
- Invited Talk NSF NRT Fall Kickoff Meeting Fall 2018 (title: On Collective Behavior of Foraging Vultures and Individual Impact)
- NSF NRT Retreat Meeting Spring 2018 (title: Collective Foraging Among Loosely Coupled Agents)

- Invited Talk Applied Math Optimization Research Group Fall 2017 (title: Fractional Calculus Enhanced Source Seeking of Fugitive Methane)
- Guest Lecture ME190 Sum 2017 (topics: Communication Basics, Long Distance Drones, UTM)
- Guest Lecture ME190 Long Distance Drones Spring 2017
- Guest Lecture ME190 Long Distance Drones Fall 2016
- Guest Lecture ME190 Unmanned Aerial System Traffic Management Fall 2016

Teaching

- ENGR 057 Circuit Theory Fall 2022
- ENGR 057 (IOR) Circuit Theory Sum 2022
- ENGR 065 Statics and Dynamics Fall 2021
- ME 142 Mechatronics Spring 2020
- ME 143 Unmanned Aircraft Systems Fall 2018
- ENGR 057 Circuit Theory Sum 2017
- ENGR 190 Capstone Design Spring 2017
- ENGR 057 Circuit Theory Fall 2016

Abstract

Digital Twin Enabled Collective Sensing and Steering for Source Determination Problems

by: **Derek Hollenbeck** Mechanical Engineering University of California, Merced. 2023. Committee chair: Professor YangQuan Chen

Motivated by climate change and the global warming potential of methane (86 times more potent than CO_2), this dissertation focuses on the source determination problem using collective sensing and Digital Twins. Recently, Digital Twins have been developed to provide better performance assessment, fault prognosis and predict future behavior of complex systems. The term 'collective', refers to the group of mobile sensors that, as a whole, provide more information than a single mobile sensor can. The mitigation of methane emissions into the atmosphere is important to focus on in reducing the effects of global warming in the near term. In order to mitigate emissions, the leaks have to first be detected and assessed before they can be repaired. Many of these emissions can be modeled as a point source governed by partial differential equations (PDE), which, solutions are typically time-stepped into the future (i.e. the forward problem). In many cases, the emission plume is subject to turbulence which requires the use of turbulence models, such as large eddy simulations (LES), to compute. In both cases, the computational requirements and run-time can prevent real-time or near real-time analysis. Considering hybrid modeling approaches (e.g. deterministic and stochastic), the forward behavior matched Digital Twin model can be computed in near-real time and used for improving emission quantification methodologies as well as perform optimization (e.g. sensor placement and mobile or fixed-location sensing / actuation policy). The dissertation is broken into four main parts: the first part is on source seeking based optimization using random search, collective foraging, Fluxotaxis, and Extremum Seeking Control; the second part is on the application of leak detection and quantification with sUAS (including: sensors, platforms, and methods) as well as controlled release and real world field campaigns; the third part is on Digital Twins (POSIM and MOABS/DT) and how to use them for environmental sensing, method development, and performance evaluation case studies; the last part is on the sensor placement problem and how the observability Gramian combined with Digital Twins, can be used for smarter collective sensing and steering.