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ABSTRACT
RIOTS is a general purpose optimal problem solver written

as a MATLAB toolbox with mixed-language programming (C,
Fortran, Matlab, Simulink). This first paper introduces how to
make RIOTS run under an embedded platform RP3B (Raspberry
Pi 3 B) with Windows 10. We presented the system architec-
ture and a complete demo on running RIOTS as the inner kernel
for MPC, using a house made thermal control system based on
Peltier modules.

INTRODUCTION
Model predictive control (MPC) is a control strategy em-

ployed on different applications as oil refining [1], chemical pro-
cess [2], medical applications [3], robotics [4] among others. Its
main feature is allowing to obtain an optimal control action into a
prediction horizon based on a model of the system that could be
determined by experimental data with a certain number of con-
straints. Other features of the MPC control are that it allows han-
dling large-scale multivariable, constrained, and non-minimum
phase systems. An important step during the MPC control is the
solution to the optimization problem to obtain an optimal control
action. For this reason, different optimization tools can be em-
ployed for solving the MPC control problem as the Matlab MPC
control toolbox [5] or the fast MPC library [6]. One of these
tools is the Recursive Integration Optimal Trajectory Solver (RI-
OTS) [7], which solve linear and nonlinear optimization prob-
lems based on Matlab and C++ libraries. So that, the RIOTS

optimization toolbox has been employed to perform MPC con-
trol on different systems. For example, the RIOTS MPC control
is employed to perform the position control of a DC motor [8],
an HVAC thermal system [9], and even it has been employed to
solve the MPC problem for fractional order systems [10], but the
complexity of the MPC optimization and control problem diffi-
cult performing an embedded version of this technique.

On the other hand, the rising of edge computing, bring the
possibility of employing low-cost small computer devices like
the Raspberry Pi to add more computing power directly on a
control loop. Thus, it is possible running advanced algorithms
as Artificial Intelligence, Machine Learning, Data Analytics or
optimization toolbox running on real-time based on the process
data to improve its performance.

In this paper, an embedded implementation of RIOTS tool-
box is performed employing a Raspberry PI 3B low-cost com-
puter as edge device that runs Windows 10 as a native operating
system. This implementation is used to perform a SISO MPC
temperature control of a Peltier module using a thermal infrared
camera as a feedback sensor. The RIOTS MPC control runs on
Matlab-Simulink setup as hardware in the loop (HIL) configura-
tion with an Arduino board to receive the infrared thermal cam-
era measures and send the control action to the Peltier module.
For the RIOTS MPC control, a state space model of the Peltier
system is identified, which works as a reference model for the
optimization algorithm. The control strategy is validated on the
house made thermal system.

The main contribution of this paper is the embedded imple-
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mentation of the RIOTS toolbox optimal problem solver using a
low-cost edge device computer like the Raspberry Pi 3B to per-
form a SISO temperature MPC control of a thermal system using
visual feedback.

The paper is structured as follows. Initially, The MPC prob-
lem and the RIOTS toolbox are presented. Then, the embedded
system architecture for the RIOTS edge implementation and the
house-made thermal system are described. After that, the RIOTS
MPC controller design and the HIL implementation are shown
for the thermal system. Finally, conclusions are presented.

MODEL PREDICTIVE CONTROL
MPC is an advanced method for process control that allows

controlling a system satisfying a set of constrains. This tech-
nique is also known as receding horizon control (RHC), which
looks to obtain a control signal that minimize a cost function for
some system constraints based on a future prediction of the sys-
tem behavior. Thus, the MPC control has three components, the
predictive behavior based on a system model, the optimization
based on a cost function, and a receding horizon where the con-
trol input is updated at each sample time step. For MPC control,
state-space models are widely employed, which is given by (1)

x(i+1) = Ax(i)+Bu(i)+w(i)

y(i) =Cx(i)+Du(i)+ v(i) (1)

where x(i) is the states of the system, u(i) is the input, y(i) is the
system output, A,B,C,D are the linear state-space model matri-
ces, w(i) and v(i) are the state and feedback noises. From the
state-space model (1), the future of the system behavior moves
through the prediction horizon, and is estimated using only the
current state values x(i). Therefore, for the next predicted state
x̂(i+ 1), the system output ŷ(i+ k|i) can be estimated by all the
k steps of the prediction horizon Np as given by (2).

x̂(i+ k+1|i) = Ax̂(i+ k|i)+Bu(i+ k|i)
ŷ(i+ k|i) =Cx̂(i+ k|i)+Du(i+ k|i). (2)

Finally, the optimization problem can be defined by the cost
function J given by (3),

J =
Np

∑
k=1

[ŷ(i+ k|i)− r(i+ k)]TWy[ŷ(i+ k|i)− r(i+ k)] (3)

where r(i+ k) is the reference signal, Wy is the positive definite
weight matrix, and the system constrains are given by (4):

umin < u(i)< umax

xmin < x(i)< xmax (4)
ymin < y(i)< ymax.

The control action is calculated for each step of the horizon pre-
diction based on (3) and (4), taking as control action to be applied
the first one calculated among the prediction horizon.

RIOTS TOOLBOX
RIOTS is a Matlab toolbox developed by [7], that solve dif-

ferent linear and nonlinear optimization problems. The optimiza-
tion problem solved by RIOTS is given by:

min
(µ,η)∈Lm

∞XRn
f (µ,η) = g0(η ,x(b))+

∫ b

a
l0(t,x,u)dt. (5)

subject to the constrains:

x̂ = h(t,x,u),x(a) = ξ , t ∈ [ab]

umin j(t)< u j(t)< umax j(t)

ξmin j(t)< ξ
j(t)< ξmax j(t) (6)

lt iv(t,x(t),u(t))≤ 0,v ∈ Qt i

geiv(ξ ,x(b))≤ 0,v ∈ Qei

geev(ξ ,x(b)) = 0,v ∈ Qee

where x(t)∈Rn
x , u(t)∈Rn

u, g : Rn
x X Rn

x→ R, l : R X Rn
x X Rn

u→ R,
h : R X Rn

x X Rn
u → Rn

x . The functions g(·, ·) and l(·, ·, ·) are
subscripted with o, ti, ei, and ee, each of which stands for ob-
jective function, trajectory constraint, endpoint inequality con-
straint, and endpoint equality constraint respectively. Depending
on the nature of the optimal control problem, it can be solved for
both the optimal control u and one or more optimal initial state
ξ . For the MPC control problem, the RIOTS toolbox can be inte-
grated for solving the optimization problem. Thus, it is possible
to integrate into a closed loop for controlling real systems, as can
be observed on [8]- [10].

EDGE COMPUTING
Edge computing is defined as a computing paradigm,

which decentralizes the information management and process-
ing, putting more memory and processing capabilities close to
the source of information in order to reduce the load of the cen-
tral processing units [11]. This concept is applicable on process
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control, where more computing power can be installed directly
over the process to be controlled in order to perform data ana-
lytics, machine learning and artificial intelligence (AI) tasks that
improve the system performance.

It has some essential features that make very valuable for the
industry. One of them is reducing the intermittency in connectiv-
ity as well as the bandwitdth usagge for cloud transfering data.
Thus, its possible to offering real time data about the system be-
havior without depending on a central server in the cloud. A
meaningful use of edge computing is performing real-time pre-
dictive maintenance over the process monitored, reducing costs
associated with unexpected system stops, improving the system
reliability and power consumption.

In general, any device like a smartphone or laptop computer
that perform the monitoring and processing tasks in the site of
the process can be considered as an edge computing device. This
is possible because it has more processing power than embedded
devices to perform data analytics and run more complex algo-
rithms. However, the concept of the edge computing device can
be applied to the low-cost general purpose computers like the
Raspberry Pi, which runs under Linux OS, and has enough com-
puter power to perform AI and data analytics tasks. Moreover,
considering the size and power consumption of these devices,
make it more suitable for integration directly on a process in or-
der to improve its performance based on the real-time behavior
analysis of the system.

Thus, this paper employs the Raspberry Pi 3B as edge com-
puting device to perform the MPC control problem using the RI-
OTS optimal problem solver, which is a complex optimization
algorithm to perform the temperature control of a SISO Peltier
system.

EMBEDDED RIOTS IMPLEMENTATION
In this paper, an implementation of the RIOTS optimal prob-

lem solver is performed employing a Raspberry Pi 3B work-
ing with Windows 10 as a native operating system, which runs
Matlab-Simulink set in hardware in the loop configuration with
an Arduino board to perform the MPC control of the temperature
on a Peltier module using the RIOTS toolbox. A house-made
system was built for this purpose, which is presented on Fig.1.
As can be observed, the system is composed by the Peltier mod-
ule (P1) as heating element, the infrared thermal camera (P2), the
Raspberry Pi running Windows 10 (P3) with Matlab-Simulink
configured on HIL with an Arduino and a power driver to man-
age the power applied to the Peltier module (P4).

Windows 10 running on Raspberry Pi
One of the main challenges for the embedded implementa-

tion of the RIOTS toolbox for MPC control is the fact that RIOTS
runs only on Matlab, which requires a computer running on Win-

FIGURE 1: HOUSE MADE TEMPERATURE SYSTEM

dows or Linux Operating systems (OS) compatible with the x86
architecture. Although most embedded devices support Linux
OS, these devices have an ARM-based microprocessor, which is
not compatible with x86 architecture programs as Matlab. An
alternative to solve this situation is installing a virtual machine
that runs a Windows OS on the embedded device, but this vir-
tual machine does not have a good performance because it is a
host of the Linux OS and should share the limited embedded sys-
tem resources with the host OS. Another alternative is employing
Windows 10 IoT core for embedded devices, but this is a limited
windows version focused on IoT only without the possibility of
running windows programs.

Recently, the team of Windows on Raspberry Pi project
(WORProject), release a Windows 10 version that runs as a na-
tive OS on the Raspberry Pi 3B and 3B+ [12]. This is a full
64 bits Windows 10 version based on the Windows 10 ARM de-
veloped for the Windows Surface, making possible running Win-
dows programs as MS-Office or Matlab on the Raspberry Pi. No-
tice that because this Windows 10 version runs as a native OS on
the Raspberry Pi, all the resources of this embedded device can
be employed, and are not shared with the host Linux OS as hap-
pen with a virtual machine. Therefore, there is the possibility of
running Matlab-Simulink configured as HIL device for running
RIOTS MPC. On the other hand, due to the WORProject was
released on May 2018, there are still many drivers and function-
alities under development, so that, the connectivity of the Rasp-
berry PI is limited by Serial communication with HIL devices
as Arduino. In this implementation, the serial Communication
is employed to share the information between the RIOTS MPC
running on the Windows 10 Raspberry Pi, the thermal feedback
camera and the power driver that controls the Peltier module.
Also, for this embedded implementation, the Matlab-Simulink
version employed is the 2007b 64 bits because the total amount
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FIGURE 2: PELTIER MODULE

of RAM on the Raspberry Pi is 948 MB, and for most recent
versions of Matlab the minimum amount of RAM required is at
least 1024 MB. However, this version has all the essential tool-
boxes and interface resources for running RIOTS MPC on HIL
configuration.

Peltier module
Peltier is a particular case of the thermoelectric effect that

produces a temperature change at an electrified junction of two
different conductors. If an electric current across the junction,
it generates a temperature change, which according to the direc-
tion of the current could produce a heating or cooling effect. The
Peltier module shown in Fig.2 is employed as a heating element
because it is a solid state device with low maintenance require-
ments and long service lifetime. The temperature range for this
device comes from 15o to 50oC, with maximum heating of 60W
and a power requirement of 12v and 5A. In this application, the
power on the Peltier system is controlled using pulse width mod-
ulation (PWM) with the Arduino board working on the range of
−255to255. Besides, the Peltier module includes a heat sink and
an external fan to release the extra power produced on the back
side of the Peltier plate to extend its lifetime.

Thermal infrared camera
Fig.3 shows the thermal infrared camera employed as a tem-

perature sensor for this system. Manufactured by FLIR [13], it is
a long wave infrared camera that measures the temperature over
a surface through its emitted infrared radiation. The wavelength
range for this camera comes from 8µm to 14µm with a maximum
frame rate of 9 FPS. The camera has a resolution of 80x60 pixels
with an accuracy of ±0.5oC, and its size is less than a quarter
coin. Besides, the camera has an SPI interface allowing its con-
nection with many embedded devices using the LeptonThread
software development kit, which is available for the camera data
acquisition and runs in Python and C++. Notice that employing
a thermal camera, each pixel acts as a temperature sensor, giv-
ing a big picture of the dynamical behavior of the temperature on
the Peltier module surface. In this house-made thermal system,

FIGURE 3: FLIR LEPTON THERMAL CAMERA

FIGURE 4: THERMAL IMAGE OF THE PELTIER MODULE
WITH TEMPERATURE VALUES

the infrared camera is connected to a Raspberry Pi 3B+, which
reads the infrared camera through the SPI interface and send the
temperature data to the Raspberry Pi running Matlab-Simulink
employing serial communication. Fig.4 shows a thermal image
of the Peltier module at 25oC acquired with the infrared camera
running on raspberry PI 3B. As can be observed, the thermal im-
age on the left is colored according to the temperature changes,
and the console in the right shows the temperature values of some
selected points on the image.

Arduino as HIL device
An Arduino MEGA board shown on Fig.5a is used in this

platform to exchange the information between the thermal cam-
era, the Matlab-Simulink control algorithm, and the Peltier mod-
ule. This board acts as HIL device, receiving the temperature
feedback of the camera, send it to the Raspberry Pi working on
Windows 10 with Matlab-Simulink, and applying the control ac-
tion generated by the RIOTS MPC controller to the Peltier mod-
ule given as a PWM signal from Matlab-Simulink through serial
communication. The use of Arduino as interface element results
from the real driver restrictions of the Raspberry Pi running Win-
dows 10, which is limited only to serial port communication. On
the other hand, an MC33926 DC motor driver shown in Fig.4b
is employed as a power interface to control the Peltier module
using the Arduino. The driver works in a rage of 5V to28V with
a maximum current supply of 3A.
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(a) (b)
FIGURE 5: ARDUINO MEGA AND MC33926 MOTOR
DRIVER
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FIGURE 6: TEMPERATURE SYSTEM CLOSED LOOP CON-
FIGURATION

Closed-loop System configuration
Figure 6 shows the block diagram of the closed-loop sys-

tem configuration used for the temperature control of the Peltier
module employing the RIOTS MPC algorithm. As can be ob-
served, the system temperature feedback is captured using the
thermal camera and sent to the Arduino using serial communica-
tion. Then, the data is sent to the Raspberry Pi running windows
10 with Matlab-Simulink, and the MPC RIOTS control running
on HIL to produce the control action. Once it is calculated, the
control action is sent to the Arduino using serial communication,
to be applied as PWM to the Peltier module.

System identification
The RIOTS MPC controller requires a state space model to

made the system behavior prediction. So that, the identification
signal shown in Fig.7 is applied to the system, which applies the
maximum power to the Peltier module by 250s, and then power
off the module to analyze its natural cooling response with an
environment temperature of 220C. The data acquisition of the
system uses the HIL closed-loop architecture described above
with the following Matlab-Simulink interface shown Fig.7. As
can be observed, the interface receives the visual feedback data
from the thermal camera through the serial port. This data cor-
responds to the temperature in the center of the Peltier module
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FIGURE 7: TEMPERATURE SYSTEM CLOSED LOOP CON-
FIGURATION

(a)
FIGURE 8: MATLAB-SIMULINK HIL DATA ACQUISITION
INTERFACE

plate. Simultaneously, the identification signal is transmitted by
the serial port. The sampling time employed for this system is
two seconds. With the acquired data and employing the Matlab
Identification toolbox, a second order linear state-space model is
determined with a fit of 70% given by (7).

ẋ =
[

0.0017 −0.0009
0.18 −0.0299

][
x1
x2

]
+

[
36.2
896.6

]
u(t)

y(t) =
[
148.99 −5.95

][1
0

]
+0u(t). (7)

RIOTS MPC controller design
Considering the system is modeled using a state-space

model given by (7), the full state data of the system should be
available. So, the states should be directly measured or estimated
using a state observer. In this case, the system has a second order
state space model with only one feedback signal. For this reason,
a state observer is required. According to [7], the Luenberger ob-
server can be employed for the state estimation ˙̂x, which is given
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by (8).

˙̂x = (A−GC)x̂+Gy+Bu (8)

where G is a gain matrix designed to place the eigenvalues of
A−GC at [-1,-2,-3,-4]. The cost function for the RIOTS MPC
controller is presented on (9)

J = y((Np)− r)TWy(y(Np)− r)+∫ Np

0
((y(Np))− r)TWy(y(Np)− r)dt (9)

where Np is the prediction horizon, y(Np) is the system output at
the instant Np, and Wy is the weight matrix for the system output
error. For this system, the prediction horizon Np and the weight
matrix Wy are defined as

Wy =

[
1 0
0 100

]
Np = 20. (10)

Matlab-Simulink HIL RIOTS MPC controller implemen-
tation

The HIL implementation of the RIOTS MPC controller us-
ing Matlab-Simulink running on a Raspberry Pi with Windows
10 as native OS is presented on Fig.9. As can be observed, the
implementation is divided into three sections, the HIL data acqui-
sition (red square), the state observer based on the system feed-
back loop (blue square) and the RIOTS MPC controller with the
temperature reference for the system (green square).

Fig.10a and Fig.10b show the time response and the control
action of the RIOTS MPC controller for a temperature setpoint
of 25oC. As can be observed, the Peltier module reaches the
desired temperature in about 170s without overshoot. Besides,
the control action starts giving the maximum power to the Peltier
module. After that, the power applied to the Peltier module is
reduced up to reach a constant value that maintains the desired
temperature.

CONCLUSIONS
This paper presented an embedded implementation of the

RIOTS optimal problem solver to perform an MPC control on a
Peltier temperature system. The implementation is performed on
a raspberry PI 3B running Windows 10 as a native operating sys-
tem, which runs Matlab-Simulink using the HIL configuration
to perform the data acquisition and control tasks with a thermal
infrared camera as a temperature sensor. The obtained results
show that the RIOTS MPC control embedded implementation on
Raspberry Pi performs the control tasks adequately with a good

FIGURE 9: RIOTS MPC CONTROLLER ON HIL CONFIGU-
RATION ON MATLAB SIMULINK
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FIGURE 10: RIOTS MPC TEMPERATURE CONTROL A)
TIME RESPONSE AND B) CONTROL ACTION
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time response and control action. Besides, the possibility of run-
ning Windows 10 on a Raspberry PI as native OS brings windows
OS to the embedded devices, giving the opportunity for testing
and implement advanced control techniques as the RIOTS MPC
or even adaptive or nonlinear controllers within an embedded de-
vice using standard Matlab-Simulink tools.
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