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Tree-level irrigation inference using UAV thermal imagery and
convolutional neural networks

Haoyu Niu1, Dong Wang2, and YangQuan Chen3

Abstract— Irrigation management has been one of the keys to
achieve sustainability and marketability in agriculture, which
is estimated to account for over 70% of global water use.
The optimal use of water through irrigation is important for
the evolution of agriculture. Many progressive growers make
irrigation decisions using crop evapotranspiration (ETc). With
the advent of Unmanned Aerial Vehicles (UAVs), lightweight
sensors, such as thermal camera, can be mounted on the
UAVs to take high-resolution images. Compared with satellite
imagery, the spatial resolution of the UAV images can be
at the centimeter level. Thus, in this article, the authors
proposed a reliable individual tree-level irrigation inference
system using a small UAV platform and Convolutional Neural
Networks (CNNs). A field study was conducted at the USDA-
ARS Research Center in Parlier, California to train and test
CNN models using images of the pomegranate trees. The
pomegranate field was randomly designed into 16 equal blocks
to test two irrigation levels, the low irrigation volume (35%
and 50% of ETc) and high irrigation volume (75% and 100%
of ETc), measured by a weighing lysimeter in the field. Results
showed that the trained CNN model could successfully classify
the individual tree using the thermal UAV imagery into the
targeted irrigation levels. The overall prediction accuracy was
around 87%, which showed a state-of-art performance and
indicated that UAV thermal imagery could infer the irrigation
levels at individual tree level.

I. INTRODUCTION

The tree canopy temperature from infrared thermometer
(IRT) sensors is an effective tool for detecting plant water
stress. Research has been conducted on crops and trees
to relate the midday infrared canopy to air temperature
difference (∆T) to irrigation management. The main reason
is that a significant increase in ∆T will indicate stomata
closure and water stress conditions [1], [2], [3]. For example,
Zhang and Wang evaluated the performance of using ∆T
to manage postharvest deficit irrigation of nectarine trees in
[4]. The results demonstrated that the measured ∆T values
above the tree canopy showed consistent differences among
irrigation treatment levels. Clawson and Blad used canopy
temperature variability and average canopy temperature to
schedule irrigation in corn (Zea mays L.). They remarked that
canopy temperature variability could show the plant water
stress and the need to schedule an irrigation event [5]. Fur-
thermore, Wang and Gartung investigated the infrared canopy
temperature of early ripening peach trees under postharvest
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deficit irrigation and monitored the stem water potential [6].
The strong correlation between stem water potential and ∆T
(R2 ≈ 0.7) indicated that canopy temperature could be used
for water status estimation.

However, little research could be found in the literature on
using midday ∆T derived from UAV thermal infrared (TIR)
image as a primary input for mapping irrigation treatment
levels of a pomegranate field at individual tree level. This
article evaluated the feasibility and performance of using
midday ∆T (UAV-TIR) and CNN algorithms for tree water
status inference. Recently, UAV has been emerging as a pow-
erful platform in agricultural applications, such as irrigation
management [7], [8], [9], and water stress estimation [10],
[11], [12], [13]. With lightweight sensors being mounted
on UAVs, high spatial and temporal resolution imagery has
been taken in massive amounts with low cost [14], [15],
[16]. Because of the lightweight and low power consumption
characteristics, the thermal camera has been commonly used
in agriculture research [17], [18].

Convolutional neural network (CNN) is one of the most
common architectures, which includes the input layer, the
convolution layer, the pooling layer and the fully connected
layer [19]. Because of its powerful ability for complex
data analysis, CNN models have been commonly used in
agricultural applications, such as yield estimation [20], water
stress analysis [21], and pest management [22]. For example,
Yang et al. proposed to estimate corn yield by using the
hyperspectral imagery and a CNN model in [23]. Research
results showed that the spectral and color image-based inte-
grated CNN model had a classification accuracy of 75.5%.
In [22], Li et al. proposed an effective data augmentation
strategy for CNN-based method for pest detection. In the
training phase, they adopted data augmentation by rotating
images with several degrees followed by cropping into
different grids. Then, a large number of extra multi-scale
examples were obtained and could be used to train a multi-
scale pest detection model. Experimental results showed that
their data augmentation strategy with CNN model achieved
the pest detection accuracy of 81.4%. Advances in CNN
models have been leading to significantly promising progress
for agricultural research.

The objectives of this article were: 1. Evaluated the reli-
ability of the UAV thermal camera on individual tree canopy
temperature measurements. 2. Demonstrated the performance
of the CNN model on irrigation treatment inference. The
major contributions of this article were: 1. Developed a
reliable tree-level water stress detection method using UAV-
based high-resolution thermal images. 2. Proposed a CNN
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Fig. 1. The pomegranate field at the USDA-ARS (36.594◦N, 119.512◦W). The weighing lysimeter is located in the center of the pomegranate field,
marked as a red box. The blue marks are where the 14 IRT sensors were installed.

model and proved its performance on the classification of
tree-level water status. The rest of the paper was organized
as follows. Section II introduced the materials and methods
being used for UAV-based irrigation treatment inference.
Results and discussion were presented in Section III. In
Section IV, the authors drew the conclusive remarks.

II. MATERIAL AND METHODS

A. Study site and irrigation management

The study was conducted in a 1.3 ha pomegranate field
in 2019 at the USDA-ARS San Joaquin Valley Agricultural
Sciences Center in Parlier, CA (36.594◦N, 119.512◦W). The
pomegranate (Punica granatum L., cv ’Wonderful’) was
planted in 2010 with a 5 m spacing between rows and a
2.75 m within-row tree spacing [24]. There are also two large
weighing lysimeters, which are 2 m × 4 m by 3 m in depth
and have a resolution of 0.1 mm of water loss. As shown in
Fig. 1, the weighing lysimeters are located in the center of
the pomegranate field. The experimental site was randomly
designed into 16 blocks to test effects of irrigation rates on
the pomegranate growth. As measured by the lysimeter, the
irrigation volumes were set up as 35%, 50%, 75%, and 100%
of crop ET or ETc. The trees in the lysimeter were irrigated
at the 100% level. For each irrigation treatment block, there
were three rows with 15 trees per row. Only the central row
of each block was used as the experimental row.

B. Ground truth: Infrared canopy and air temperature

The tree canopy temperature was measured with wireless
infrared thermometers or IRTs (Dynamax Inc., Houston,
TX), which were installed 4.5 m above the soil surface. The
field of view (FOV) of the IRT sensor was 20° (Fig. 2). The
air temperature and relative humidity were also measured
with a sensor in the experimental site.

C. Thermal infrared remote sensing data

1) Description of the UAV and thermal camera: A quad-
copter named “Foxtech Hover” was used as the low-cost

UAV platform (less than $1000) to collect high-resolution
thermal images at the height of 60 m. The UAV was
equipped with a highly efficient power system, including T-
Motor MN3508 KV380 motors, 1552 folding propellers, and
Foxtech Multi-Pal 40A OPTP ESC, to ensure long flight
time. The UAV also included a Pixhawk flight controller,
GPS, and telemetry antennas, enabling it to fly over the
pomegranate field by waypoints mode (designed using Mis-
sion Planner software). The Hover’s lithium-polymer battery
had a capacity of 9500 mAh, which could support 30-minute
flight missions with the thermal camera mounted on the
UAV. The thermal camera ICI 9640 P (Infrared Cameras
Inc, Beaumont, TX, USA.)1 was used for collecting thermal
images for the experimental field. The sensor has a resolution
of 640 × 480 pixels. The spectral band is from 7 µm to 14
µm. The dimension of the thermal camera is 34 mm × 30
mm × 34 mm. The accuracy is designed to be ± 2 ◦C. A
Raspberry Pi Model B computer (Raspberry Pi Foundation,
Cambridge, UK.) was used to trigger the thermal camera
during UAV flight missions.

2) UAV thermal image collection and processing: The
authors used the Mission Planner to program all flight mis-
sions. The flight height was set up as 60 m. The overlapping
of UAV imagery was set up as 80% so that the UAV
imagery of the pomegranate could be stitched together more
successfully during image processing. The UAV was flying
at noon with clear sky conditions to minimize the shading
effect on the thermal images. Since the thermal camera type
was uncooled, it usually took around 20 minutes to warm
up the thermal camera before flight missions. To calibrate
the thermal camera, the authors took thermal images of
ice water immediately before and after the flight missions
as the reference temperature. After the flight missions, all

1Mention of trade names or commercial products in this publication is
solely to provide specific information and does not imply recommendation
or endorsement by the University of California or the U.S. Department
of Agriculture. The University of California and the USDA are equal
opportunity providers and employers.
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Fig. 2. The IRT sensors were mounted on a cross arm attached to a metal pole 4.5 m above the soil surface, with a FOV of 20°. A quadcopter and a
thermal camera were used to collect high-resolution thermal images at the height of 60 m.

TABLE I
THE ARCHITECTURE OF THE CNN MODEL.

Layer Type Output Shape Parameter Numbers
Conv2D (None, 30, 30, 32) 896

MaxPooling2D (None, 15, 15, 32) 0
Conv2D (None, 13, 13, 64) 18496

MaxPooling2D (None, 6, 6, 64) 0
Conv2D (None, 4, 4, 64) 36928
Flatten (None, 1024) 0
Dense (None, 64) 65600
Dense (None, 2) 130

UAV thermal images were stitched together to generate the
orthomosaick images in Metashape (Agisoft LLC, Russian).

3) Image preprocessing for the CNN model: The indi-
vidual tree canopy images were extracted from the UAV
thermal imagery, 250 in total. Then, the dataset was dis-
tributed as 67% for training and 33% for testing using the
train test split method. To verify that the dataset looks
correct, the authors plotted the first 25 images from the
training set and displayed the class name below each image
(Fig. 3). All the images were resized into 32 × 32 × 3
in order to input into our CNN model using TensorFlow
2.0. The summary of the CNN model is shown in Table I.
The output of every Conv2D and MaxPooling2D layer is
a 3D tensor of shape (height, width, channels). The width
and height dimensions tend to shrink as we go deeper in the
network. The number of output channels for each Conv2D
layer is controlled by the first argument. The authors fed the
last output tensor from the convolutional base into the Dense
layers to perform classification. Dense layers take vectors as
input (which are 1D), while the current output is a 3D tensor.
Considering the dataset has two classes, the auhtors used a
final Dense layer with 2 outputs.

Fig. 3. 25 images were randomly selected from the training set and the
class name for each image was displayed below. All the images were resized
into 32 × 32 × 3 in order to input into the CNN model.

III. RESULTS AND DISCUSSION

A. Comparison of canopy temperature per tree based on
ground truth and UAV thermal imagery

To evaluate the reliability of UAV thermal remote sensing,
the authors first compared the canopy temperature per tree
acquired by IRT sensors and the UAV thermal camera.
The correlation between the canopy temperature per tree
measured by the IRT sensors and UAV thermal camera
was shown by their scatter-related plot and the established
regression equation (Fig. 4). The coefficient of determination
(R2) was 0.8668, which indicated that the difference between
the ground truth and UAV thermal camera was acceptable.
The UAV method was reliable for monitoring tree-level
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Fig. 4. The correlation between the canopy temperature per tree measured
by the IRT sensors and UAV thermal camera. The coefficient of determi-
nation (R2) was 0.8668, which indicated that the difference between the
ground truth and UAV thermal camera was acceptable. The method was
reliable for monitoring tree-level canopy temperature.

canopy temperature.

B. The performance of the CNN model

As mentioned earlier, there were 250 tree canopy images
in total, which were distributed as 67% for training and 33%
for testing using the train test split method. To train the
CNN model, the ‘adam’ optimizer and the cross entropy loss
function were adopted during the training process. The epoch
was set up as 100. For evaluating the trained CNN models,
the authors plotted the training and validation accuracy
curves with the epochs increasing (Fig. 5). The test accuracy
was 87%. To visualize the trained CNN model performance,
the authors made predictions about some images in the
test dataset (Fig. 7). Correct prediction labels are blue and
incorrect prediction labels are red. The number gives the
percentage (out of 100) for the predicted label. A confusion
matrix was also used, which was a summary of prediction
results on a classification problem. The number of correct
and incorrect predictions was tallied with count values and
divided into classes. The confusion matrix provided insight
not only into the errors being made by a classifier but,
more importantly, the types of errors that were being made.
“True label” meant the ground truth of ETc based irrigation
treatment levels. “Predicted label” identified the irrigation
treatment levels predicted by the trained CNN model. To
simplify the visualization, low irrigation (30% and 50% ET)
were labeled as “0”; high irrigation (75% and 100% ET)
were labeled as “1” (Fig. 6). The detailed information of
precision and recall was shown in Table II.

IV. CONCLUSIONS
In this article, the authors collected the high-resolution

thermal images by using a UAV-based lightweight payload.
Irrigation treatment inference at the individual tree level
was realized by using UAV-based thermal images and CNN
model in a pomegranate field. The research results showed
that the best classification accuracy of irrigation treatment

Fig. 5. The performance of the CNN model, training and validation
accuracy curves.

Fig. 6. The summary of prediction results on the irrigation treatment
classification problem. “True label” meant the ground truth of ETc based ir-
rigation treatment levels. “Predicted label” identified the irrigation treatment
levels predicted by the trained CNN model. To simplify the visualization,
low irrigation (30% and 50% ET) were labeled as “0”; high irrigation (75%
and 100% ET) were labeled as “1”.

TABLE II
THE CNN MODEL PERFORMANCE.

Irrigation level Precision Recall F1-score

Low irrigation 0.92 0.81 0.86

High irrigation 0.83 0.93 0.87

Accuracy NA NA 0.87
Macro avg 0.87 0.87 0.87

Weighted avg 0.87 0.87 0.87



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

Fig. 7. To visualize the trained CNN model performance, the authors made predictions about some images in the test dataset. Correct prediction labels
are blue and incorrect prediction labels are red. The number gives the percentage (out of 100) for the predicted label.

levels was 87% when the CNN model was adopted. The
results of this research supported the idea that a significant
increase in the midday infrared canopy to air temperature
difference (∆T) will indicate stomata closure and water
stress conditions. The authors also proposed a CNN model
and proved its performance on the classification of tree-level
irrigation treatments. The research clearly demonstrated the
capacity of new sensor technology and machine learning for
making better-informed irrigation water management deci-
sions. The authors developed a reliable tree-level irrigation
treatment inference method using UAV-based high-resolution
thermal images and CNN model.
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